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ABSTRACT

Cosmic shear is a powerful probe of cosmology, but it is affected by the intrinsic alignment (IA) of galaxy shapes with the large-scale
structure. Upcoming surveys such as Euclid and Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) require an
accurate understanding of IA, particularly for higher-order cosmic shear statistics that are vital for extracting the most cosmological
information. In this paper, we report the first detection of third-order IA correlations using the LOWZ galaxy sample from the Sloan
Digital Sky Survey (SDSS) Baryon Oscillation Spectroscopic Survey (BOSS). We compare our measurements with predictions from
the MICE cosmological simulation and an analytical model inspired by the Non-linear Linear Alignment (NLA) model and informed
by second-order correlations. We also explore the dependence of the third-order correlation on the galaxies’ luminosity. We find that
the amplitude AIA of the IA signal is non-zero at the 4.7σ (7.6σ) level for scales between 6 h−1 Mpc (1 h−1 Mpc) and 20 h−1 Mpc. For
scales above 6 h−1 Mpc the inferred AIA agrees both with the prediction from the simulation and estimates from second-order statistics
within 1σ but deviations arise at smaller scales. Our results demonstrate the feasibility of measuring third-order IA correlations and
using them for constraining IA models. The agreement between second- and third-order IA constraints also opens the opportunity for
a consistent joint analysis and IA self-calibration, promising tighter parameter constraints for upcoming cosmological surveys.
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1. Introduction

Cosmic shear, the correlations between galaxy shapes due to
the weak gravitational lensing by the cosmic large-scale struc-
ture, is a popular and constraining probe of cosmology. Cosmic
shear surveys such as the Dark Energy Survey (DES, Abbott
et al. 2016; Becker et al. 2016), the Kilo-Degree Survey (KiDS,
Kuijken et al. 2015), or the Hyper-Suprime-Cam survey (HSC,
Aihara et al. 2018) constrain the parameter S 8 = σ8

√
Ωm/0.3,

which is a combination of the matter density parameter Ωm and
the clustering parameter σ8, at 2–4 per cent (Asgari et al. 2021;
Amon et al. 2022; Secco et al. 2022; Dalal et al. 2023; Li et al.
2023). Soon, even more extensive and deeper surveys such as
Euclid (Laureijs et al. 2011; Euclid Collaboration 2024), Vera C.
Rubin Observatory’s Legacy Survey of Space and Time (LSST,
Ivezić et al. 2019) or the Nancy Grace Roman space telescope
(Akeson et al. 2019) will use cosmic shear in combination with
the correlations of galaxy positions to not only better constrain
Ωm and σ8, but also determine the time evolution of dark energy
(The LSST Dark Energy Science Collaboration 2018; Euclid
Collaboration 2020). Arguably, cosmic shear is now entering its
most exciting phase as a probe of our Universe.

While the increasing size of the data sets provides more
and more precision, the accuracy of theoretical predictions also
needs to be updated. For this, several astrophysical effects that

⋆ Corresponding author; laila.linke@uibk.ac.at

impact cosmic shear measurements must be understood. One
such effect is the alignment between the intrinsic shapes of
galaxies, the so-called intrinsic alignment (IA, Lamman et al.
2024; Troxel & Ishak 2015; Joachimi et al. 2015). IA occurs due
to the formation of galaxies within the dark matter-dominated
gravitational field (Catelan et al. 2001). Elliptical galaxies tend
to be aligned with the gravitational tidal field, leading to a radial
alignment with respect to matter overdensities (Kiessling et al.
2015). These alignments add to the observed shape correlations
and thus contaminate the cosmic shear signal.

If IA is not taken into account in cosmic shear analyses,
inferred parameters can be severely biased (Hirata et al. 2007;
Kirk et al. 2015). Therefore, cosmic shear analyses commonly
incorporate a description for IA in their model with some free
parameters that are constrained in the inference simultaneously
with the cosmological parameters.

Several IA models have been proposed for this purpose. A
relatively simple model is the non-linear linear alignment (NLA)
model by Bridle & King (2007). This empirical model assumes
that the power spectrum of galaxy shapes is linearly related
to the non-linear matter power spectrum via a free parame-
ter AIA describing the amplitude of the correlation. While it is
only a phenomenological description, it fits well to IA measure-
ments for red central galaxies at large scales (Singh et al. 2015).
There are also other more physically motivated models, such as
the Tidal Alignment and Tidal Torque (TATT) model (Blazek
et al. 2019), which allows galaxies to not align solely with the
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gravitational tidal field but also the tidal torque and includes
a density weighting term. Alternatively, there are halo model
descriptions (Schneider & Bridle 2010; Fortuna et al. 2021),
which explicitly distinguish between central and satellite galax-
ies inside dark matter halos. Other models are based on pertur-
bative approaches (Vlah et al. 2020; Maion et al. 2024; Chen
& Kokron 2024). The accuracy of the models depends on the
considered physical scales and galaxy samples. It is currently
unclear which IA models offer the best trade-off between model
complexity and accuracy for any given analysis. For example,
there is no clear observational evidence yet on whether the more
complex TATT or the simpler NLA model are more appropriate
for cosmological analyses (DES and KiDS Collaboration: Abbott
et al. 2023).

However, the choice of model can impact cosmological
parameter constraints. DES and KiDS Collaboration: Abbott
et al. (2023) find in a combined analysis of DES and KiDS
that using the TATT instead of the NLA model can lower the
inferred value for S 8 by almost 3 per cent, corresponding to a
shift by 0.9σ. Consequently, it is paramount to test IA models
independently of cosmic shear measurements to find an appro-
priate model. Furthermore, independent constraints of IA model
parameters can be used as priors for cosmic shear analyses, sig-
nificantly tightening constraints on other parameters (Johnston
et al. 2019).

IA studies so far have been mainly concerned with second-
order correlations of matter overdensity and intrinsic galaxy
shapes. Mostly the shape-shape and density-shape correlations
are constrained (e.g. Joachimi et al. 2011; Singh et al. 2015;
Singh & Mandelbaum 2016; Johnston et al. 2019; Fortuna et al.
2021; Johnston et al. 2021; Samuroff et al. 2023). For several
reasons, though, it has become increasingly interesting to study
higher-order statistics (HOS), for example third-order correla-
tions. For example, while current IA models are well-designed
to describe second-order IA correlations, it is an important
consistency check to see whether they also match higher-order
correlations. An example of such a test is carried out by
Pyne et al. (2022), who measure the IA power- and bispec-
trum in simulations and find that the same model parameters
could describe both. Furthermore, HOS depend differently on
both cosmological and IA parameters. Combining second-order
and HOS can reduce parameter degeneracies and lead to better
constraints (e.g. Burger et al. 2024; Euclid Collaboration 2023).
Adding higher-order information can also help in self-calibrating
systematic effects such as IA (Pyne & Joachimi 2021). Anal-
yses similar to these are vital to optimally use the data sets
of Euclid and LSST, but they can only be performed if we
can ensure we understand how systematic effects such as IA
behave for third-order statistics. As shown by Semboloni et al.
(2008) using cosmological simulations, third-order correlations
of intrinsic galaxy shapes and the matter field can significantly
impact analysis of third-order cosmic shear and contribute as
much as 15% of the signal for surveys with a median redshift
of 0.7. Consequently, we must include IA in the modelling of the
third-order cosmic shear signal and demonstrate that our models
can accurately describe higher-order correlations of the matter
overdensity and the intrinsic shapes of galaxies.

In this paper, we take the first step towards this by reporting
the first detection of third-order intrinsic alignment correlations
in the low-redshift (LOWZ) galaxy sample from the Sloan Digi-
tal Sky Survey (SDSS) Baryon Oscillation Spectroscopic Survey
(BOSS) survey. This sample contains spectroscopically observed
luminous red galaxies (LRGs) at redshifts below 0.4. For this
sample, Singh et al. (2015) measured second-order correlations

between the matter density and the shapes and between shapes
of different galaxies. The measurement was conducted by using
the positions of galaxies as tracers for the matter distribution and
comparing them pairwise to the galaxies’ shapes. We followed in
their footsteps by comparing the positions of galaxy pairs with
the shape of a third galaxy, thus measuring the density-density-
shape correlation. This correlation was then compared to predic-
tions by the Marenostrum Institut de Ciències de l’Espai (MICE)
cosmological simulation and an analytical NLA-based model.

This paper is structured as follows. In Sect. 2, we define fun-
damental notations, describe the third-order intrinsic alignment
correlation function and relate it to the matter-matter-shape bis-
pectrum. In Sect. 3, we describe our estimator for the correlation
function and our covariance estimate. Section 4 describes the
observed and simulated data sets. The measurements and com-
parisons to the analytical model are presented in Sect. 5. We
conclude with a discussion in Sect. 6.

2. Theoretical background and modelling

2.1. Basic quantities and definitions

In the weak gravitational lensing limit (see e.g. Bartelmann &
Schneider 2001 for a review), the observed ellipticity ϵ(ϑ) of a
source galaxy at angular position ϑ is determined by its intrinsic
ellipticity ϵI(ϑ) and the weak lensing shear γ(ϑ), both of which
are complex quantities. In weak lensing, |γ| ≪ 1, and,

ϵ(ϑ) = ϵI(ϑ) + γ(ϑ). (1)

Under the flat sky approximation, the shear is related to the
lensing convergence κ via the Kaiser-Squires relation (Kaiser &
Squires 1993)

γ̃(ℓ) = e2i ϕℓ κ̃(ℓ), (2)

where the tilde denotes Fourier transform and ϕℓ is the polar
angle of the angular frequency ℓ. Analogously, we can define an
‘intrinsic alignment (IA) convergence’ κI, which describes the
convergence that would cause a shear equivalent to the intrinsic
source ellipticity via

ϵ̃I(ℓ) = e2i ϕℓ κ̃I(ℓ). (3)

For source galaxies distributed with a probability distribution
p(χ) with comoving distance χ, κ(ϑ) is a weighted integral over
the κ(ϑ, χ) at each χ,

κ(ϑ) =
∫

dχ p(χ) κ(ϑ, χ) (4)

=

∫
dχ p(χ)

∫
dχ′W(χ, χ′) δ(χ′ϑ, χ′),

where we assumed a flat Universe, δ(χϑ, χ) is the matter den-
sity contrast at angular position ϑ and distance χ, and W is the
lensing efficiency given by

W(χ, χ′) =
3 H2

0 Ωm

2c2

χ′(χ − χ′)
χ a(χ′)

, (5)

where H0 is the Hubble constant,Ωm is the matter density param-
eter, and a(χ) is the scale factor at co-moving distance χ. The κI
can be related to a density contrast δI, which would cause a shear
equivalent to the intrinsic galaxy ellipticity,

κI(ϑ) =
∫

dχ p(χ) δI(χϑ, χ). (6)
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We are interested in correlations between the intrinsic ellip-
ticity field δI and the matter density contrast δ. To study
these correlations, we use galaxy positions as tracers of the
matter field. Their distribution is characterised by their three-
dimensional number density n(χϑ, χ) at angular position ϑ and
distance χ. This density is related to the galaxy number density
contrast δg by

n(χϑ, χ) = n̄(χ)
[
δg(χϑ, χ) + 1

]
, (7)

where n̄(χ) is the average number density at comoving distance
χ. From this, we also define the projected, two-dimensional
galaxy number density N(ϑ) as

N(ϑ) =
∫

dχ p(χ) n(χϑ, χ), (8)

whose average we denote as N̄.

2.2. Intrinsic alignment correlation functions

Since the intrinsic ellipticity of an individual galaxy is unknown,
its observed ellipticity alone does not contain usable cosmolog-
ical information. Instead, one needs to consider the correlation
functions of the ellipticities. The most commonly used ones are
the second-order correlations, either of the ellipticities ϵ with
themselves (i.e. ‘cosmic shear’) or between ellipticities and the
galaxy number density N (i.e. ‘galaxy-galaxy-lensing’). Here,
though, we are interested in third-order correlation functions
involving galaxy shapes. For this, we have, in principle, three
choices: correlating the ellipticities at three different positions
(‘third-order cosmic shear’, Schneider & Lombardi 2003)), the
ellipticities at two positions with the galaxy number density
at a third position, or the ellipticity at one position with the
number density at two different positions (‘galaxy-galaxy-galaxy
lensing’, G3L, Schneider & Watts 2005). The last of these, so-
called shape-lens-lens G3L, has the highest signal-to-noise ratio
(Simon et al. 2012), so we concentrate on this.

Additionally, one can also construct the correlation between
the galaxy number density at three different positions (‘third-
order galaxy clustering’) (Scoccimarro & Couchman 2001;
Takada & Jain 2003). While this correlation does not include
any information on the shapes or IA of the galaxies, it is a useful
statistic of the cosmic large-scale structure, has been measured
in several galaxy surveys (e.g Marín et al. 2013; Slepian et al.
2017) and can improve constraints from cosmological inference
(Yankelevich & Porciani 2019; Eggemeier et al. 2021; Ivanov
et al. 2023)

In general, the correlation function for shape-lens-lens G3L
is

G′(ϑ1,ϑ2) =
1

N̄2

〈
N(θ + ϑ1) N(θ + ϑ2) ϵ(θ) e−i(ϕ1+ϕ2)

〉
, (9)

where the ϑi are the angular separations between the lens galax-
ies and the shape tracing galaxy, with polar angles ϕi. This
function can be decomposed into the sum of the contribution
G′ggγ from the shear and G′ggI from the intrinsic ellipticities as

G′ggγ(ϑ1,ϑ2) =
1

N̄2

〈
N(θ + ϑ1) N(θ + ϑ2) γ(θ) e−i(ϕ1+ϕ2)

〉
, (10)

and

G′ggI(ϑ1,ϑ2) =
1

N̄2

〈
N(θ + ϑ1) N(θ + ϑ2) ϵI(θ) e−i(ϕ1+ϕ2)

〉
. (11)

If the distances χ of the considered lens and source galax-
ies are known, one can also measure the correlation functions
G, Gggγ, and GggI in terms of the projected physical separations
between the galaxies, for example,

GggI(r1, r2) =
1
N̄

∫
dχ p(χ)

∫
dχ1 p(χ1)

∫
dχ2 p(χ2) (12)

×
〈
n(r + r1, χ1) n(r + r2, χ2) ϵI(r, χ) e−i(ϕ1+ϕ2)

〉
,

where ϵI(r, χ) is the intrinsic shape of a galaxy at projected
galaxy separation r on the sky (in physical units) and distance
χ. The functions G and Gggγ can be defined analogously by
replacing the intrinsic shape with the total observed shape or the
shear.

Usually, when measuring the G3L correlation function, one
uses lens and source samples that are well separated along
the line of sight (Simon et al. 2012; Linke et al. 2020a). This
increases Gggγ since it depends on the correlation between the
matter structures in front of the sources and the lens number
density, weighted by the lensing efficiency W. For a given lens
distance, the efficiency is stronger if the sources are farther away
from the lensing structures and, thus, also the lens galaxies. The
intrinsic contribution GggI, though, is down-weighted if lenses
and sources are far apart from each other. This is because the
intrinsic ellipticity of the sources depends primarily on their
local density distribution. Therefore, the correlation to the lens
number density is strongest if sources and lenses are at the
same co-moving distance. Here, we are particularly interested
in GggI, so we reverse the usual process of using well-separated
lens and source samples. Instead, we explicitly measure the G3L
signal only for lenses and sources with distances smaller than
fixed physical distance Πm. Thus, using Eq. (8), the correlation
function we measure is

GΠm (r1, r2)

=
1

N̄2
Πm

∫
dχ p(χ)

∫ χ+Πm

χ−Πm

dχ1 p(χ1)
∫ χ+Πm

χ−Πm

dχ2 p(χ2) (13)

×
〈
n(r + r1, χ1) n(r + r2, χ2) ϵ(r, χ) e−i(ϕ1+ϕ2)

〉
,

where N̄2
Πm

is the average number density of galaxy pairs within
±Πm,

N̄2
Πm
=

∫
dχ p(χ)

[∫ χ+Πm

χ−Πm

dχ1 p(χ1) N̄(χ1)
]2

. (14)

In principle, one can model GΠm for anyΠm by including both the
IA and the cosmic shear contribution, as done for second-order
statistics (Samuroff et al. 2023). Here, though, we choose a small
Πm such that the cosmic shear contribution is suppressed. This is
possible because for a small enough Πm, χ1 and χ2 are close to
χ, so the lensing efficiency suppresses the correlation between
n and the shear γ. Therefore, we can replace ϵ by the intrinsic
shape ϵI. Simultaneously, we choose Πm large enough that all
intrinsic alignment contributions to the correlation function are
taken into account. Then, we can replace Πm with infinity, so
GΠm → GggI. We test whether this assumption holds in Sect. 5
using the simulated data (see Sect. 4), which only includes IA
and no cosmic shear contribution.

2.3. Aperture statistics

In the following, we are not directly analysing the corre-
lation function but instead convert it to aperture statistics
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(Schneider et al. 2002). These have several practical advantages.
For example, they can compress the data vector length from sev-
eral hundred for the correlation function to a few tens. Moreover,
they are more easily modelled from a bispectrum model than the
correlation functions.

Aperture statistics are moments of aperture masses M′ap,

M′ap(θ;ϑ) =
∫

d2ϑ′ Uθ(|ϑ − ϑ′|) κ(ϑ′) (15)

and aperture number counts N′ap,

N′ap(θ;ϑ) =
1
N̄

∫
d2ϑ′ Uθ(|ϑ − ϑ′|) N(ϑ′), (16)

where Uθ is a compensated filter function Uθ of aperture scale
radius θ, that is

∫
dϑ ϑUθ(ϑ) = 0. The M′ap can be linked to the

shear via

M′ap(θ;ϑ) =
∫

d2ϑ′ Qθ(|ϑ − ϑ′|) γ(ϑ′), (17)

where Q is related to U via

Qθ(ϑ) =
2
ϑ2

∫ ϑ

0
dϑ′ ϑ′ Uθ(ϑ′) − Uθ(ϑ). (18)

We also define aperture measures Map and Nap as functions
of projected physical separations r by

Map(R; r) =
∫

d2r′UR(|r − r′|)
∫

dχp(χ)
∫

dχ′W(χ, χ′) δ(r′, χ′) (19)

Nap(R; r) =
∫

d2r′ UR(|r − r′|)
∫

dχ p(χ) δg(r′, χ). (20)

Here, R is the aperture scale radius, but in contrast to the θ in
Eq. (15), it is in the same physical units, for example, Mpc, as r.
We also used the relations between three-dimensional densities
and projected quantities from Eqs. (4) and (8).

In analogy to Map, we define an intrinsic alignment aperture
measure MI

ap as

MI
ap(R; r) =

∫
d2r′ UR(|r − r′|)

∫
dχ p(χ) δI(r′, χ). (21)

Throughout, we use the Uθ from Crittenden et al. (2002),

Uθ(ϑ) =
1

2πθ

(
1 −
ϑ2

2θ2

)
exp

(
−
ϑ2

2θ2

)
. (22)

For this filter, Schneider & Watts (2005) showed that the corre-
lation function G′ggγ can be converted to the third-order aperture
statistic through〈

N′apN′apM′ap

〉
(θ1, θ2, θ3)

=
〈
N′ap(θ1;ϑ)N′ap(θ2;ϑ)M′ap(θ3;ϑ)

〉
(23)

=

∫
d2ϑ1

∫
d2ϑ2 G′ggγ(ϑ1,ϑ2)ANNM(ϑ1, ϑ2, ϕ | θ1, θ2, θ3).

where ϕ is the angle between ϑ1 and ϑ2 and the kernel function
ANNM is given in the appendix of Schneider & Watts (2005).
Similarly, by transforming variables from ϑi to ri,

〈
NapNapMI

ap

〉
(R1,R2,R3)

=
〈
Nap(R1; r) Nap(R2; r) MI

ap(R3; r)
〉

(24)

=

∫
d2r1

∫
d2r2 GggI(r1, r2)ANNM(r1, r2, ϕ | R1,R2,R3),

Our main observable is the aperture statistics
〈
NapNapMI

ap

〉
for equal aperture radii R1 = R2 = R3 =: R. As shown in
Appendix A,

〈
NapNapMI

ap

〉
can be related to the galaxy-galaxy-

shape bispectrum BggI as〈
NapNapMI

ap

〉
(R,R,R)

=

∫
d2k⊥,1
(2π)2

∫
d2k⊥,2
(2π)2 ŨR(k⊥,1) ŨR(k⊥,2)ŨR(|k⊥,1 + k⊥,2|) (25)

×

∫
dχ p3(χ)BggI(k⊥,1, k⊥,2, k⊥,3; χ, χ, χ).

2.4. Bispectrum model

We model the bispectrum BggI motivated by the Non-linear
alignment (NLA) IA model (Hirata & Seljak 2004; Bridle &
King 2007). According to this model, the power spectrum PδI
between matter densities and intrinsic ellipticities is

PδI(k) = −AIA
C1Ωmρcr

D(z)
P(k) = fIA P(k), (26)

where P is the non-linear matter power spectrum, Ωm is the mat-
ter density parameter, ρcr is the critical density, D is the growth
factor normalized to unity at the time the alignment is assumed
to have occurred, C1 is a normalization constant and AIA is the
intrinsic alignment amplitude. We extend this model to the bis-
pectrum by assuming that the bispectrum BδδI between matter
densities and the intrinsic ellipticities is

BδδI(k1, k2, k3; χ1, χ2, χ3) = fIA B(k1, k2, k3; χ1, χ2, χ3), (27)

where B is the matter bispectrum. The bispectrum BggI between
galaxies and the intrinsic ellipticities depends already at leading
order on both the linear galaxy bias b and the non-linear galaxy
bias b2 (e.g. Fry & Gaztanaga 1993).,

BggI(k1, k2, k3; χ1, χ2, χ3)

= b2 BδδI(k1, k2, k3; χ1, χ2, χ3) (28)

+
b b2

3
[
PδI(k1, χ1) P(k2, χ2) + PδI(k1, χ1) P(k3, χ3)

+PδI(k2, χ2) P(k3, χ3)
]

= b2 fIA B(k1, k2, k3; χ1, χ2, χ3) (29)

+ fIA
b b2

3
[
P(k1, χ1) P(k2, χ2)

+P(k1, χ1) P(k3, χ3) + P(k2, χ2) P(k3, χ3)
]
.

This bispectrum contains three free parameters, AIA, b, and b2.
However, AIA is degenerate with the galaxy bias parameters, as
they all determine only the amplitude of the bispectrum. There-
fore, we cannot simultaneously constrain the galaxy bias and IA
from

〈
NapNapMI

ap

〉
. Instead, we used the value for b estimated by

Singh et al. (2015) from second-order statistics. As we argue in
Appendix B, we found that for our sample and statistics, the non-
linear bias has only a small impact on the model compared to
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the measurement uncertainty, so we set b2 to zero and kept only
AIA as a free parameter. We model the matter bispectrum B with
the dark-matter-only bihalofit prescription (Takahashi et al.
2020). The linear matter power spectrum was modelled using
the fitting formula for the transfer function by Eisenstein & Hu
(1999). For predicting the LOWZ measurements, we assumed a
flat ΛCDM cosmology with parameters from Planck Collabo-
ration VI (2020), namely Ωm = 0.315, Ωb = 0.049, ns = 0.96,
σ8 = 0.811, and h = 0.674. For predicting the MICE measure-
ments, we used the parameters of the simulation, namely Ωm =
0.25, ΩΛ = 0.75, Ωb = 0.044, ns = 0.95, σ8 = 0.8, h = 0.7.

3. Measurement

3.1. Correlation function estimator

We measured GΠm for NL lenses and NS sources using the
estimator

ĜΠm
bias(r1, r2) (30)

=

∑NL
i

∑NL
j

∑NS
k ϵk ei(ϕi+ϕ j)△(r1, r2, ϕ, xi, x j, xk)ΘΠm (χi, χ j; χk)∑NL

i
∑NL

j
∑NS

k △(r1, r2, ϕ, xi, x j, xk)ΘΠm (χi, χ j; χk)
,

where ϵk is the ellipticity of galaxy k, △ is one if the galaxy posi-
tions form a triangle with side lengths r1 and r2 and opening
angle ϕ and zero otherwise1, and ΘΠm is one if the lens-source
distances are less than or equal toΠm. We evaluated the estimator
using an adapted version of the G3LconGPU2 code presented in
Linke et al. (2020b). This code uses GPU acceleration to evaluate
the triple sum in Eq. (30) by brute force. Our changes compared
to the version in Linke et al. (2020b) consist of implementing a
maximum comoving distance χmax between lenses and sources
and using physical instead of angular separations. We measure
the correlation function for r1, r2 in 20 logarithmic bins between
0.1 h−1 Mpc and 100 h−1 Mpc and ϕ in 10 linear bins between 0
and π.

As shown in Appendix C, this estimator is biased. Its expec-
tation value is〈
ĜΠm

bias

〉
≃

GΠm

B(r1, r2,Πm)
, (31)

where

B(r1, r2,Πm) (32)

=

∫
dχ

∫ χ+Πm

χ−Πm

dχ1

∫ χ+Πm

χ−Πm

dχ2 p(χ1) p(χ2) p(χ)

×
[
1 + ξ(|r1 − r2|, |χ1 − χ2|)

]
,

where ξ(r, χ) is the three-dimensional two-point correlation
function of galaxies with projected separation r and separation
χ along the line of sight. We correct for this bias by multiply-
ing ĜΠm

bias by an estimated B. To obtain this, we estimated the
correlation function ξ using a Landy-Szalay estimator as imple-
mented in the code treecorr (Jarvis et al. 2004). For the MICE
data set, we generate random galaxy positions by uniformly dis-
tributing right ascension and declination and drawing redshifts

1 In practice, △ is one, if the side lengths of the galaxy triplet triangle
fall into a bin centred on r1 and r2, and thus it depends on the chosen
bin width. For ease of notation, we omit this dependency here.
2 https://github.com/llinke1/G3LConGPU
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Fig. 1. Correlation matrix estimate from jackknife resampling for the
LOWZ measurement, using the full sample as shape tracers.

from the redshift distribution of the MICE galaxies. For the
LOWZ dataset, we used the same random galaxy sample as
Singh & Mandelbaum (2016), provided within BOSS DR12. The〈
NapNapMI

ap

〉
was estimated by inserting the unbiased estimator

ĜΠm into Eq. (24).

3.2. Covariance estimate

We estimated the covariance of
〈
NapNapMI

ap

〉
directly from the

data using jackknife resampling, both for the observed LOWZ
and simulated MICE galaxies (see Sect. 4). For this, the sur-
vey was divided into 100 tiles with approximately the same area.
We estimated ĜΠm for each of these tiles individually. We then
combine the estimates for all but the k-th tile to form the k-th
jackknife sample and converted it to the aperture statistics, which
gave us 100 jackknife samples, we write as

〈
NapNapMI

ap

〉
k
. The

i- j component of the covariance of
〈
NapNapMI

ap

〉
is then

Ĉi j =
100

100 − 1

100∑
k=1

[〈
NapNapMI

ap

〉
k

(Ri) −
〈
NapNapMI

ap

〉
k
(Ri)

]
(33)

×

[〈
NapNapMI

ap

〉
k

(R j) −
〈
NapNapMI

ap

〉
k
(R j)

]
,

where
〈
NapNapMI

ap

〉
k
(θi) is the average of all aperture statistics

jackknife samples. We used σi =
√

Ĉii as statistical uncertainty
on the measured aperture statistics. To estimate the inverse
covariance, we applied the Hartlap-correction (Hartlap et al.
2007), i.e., the estimate of the inverse covariance is the inverse
of Ĉ multiplied by the factor

α =
N − p − 2

N − 1
, (34)

where N = 100 is the number of samples and p is the number of
entries in the data vector.

We show the correlation matrix, defined by Ĉi j/(σi σ j), for
the LOWZ measurement in Fig. 1. The correlation matrix is
dominated by the diagonal, suggesting that shape noise, in con-
trast to sample variance, is the biggest contributor. However, we
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see strong non-diagonal contributions. In particular, the signal
for nearby scales is strongly correlated. This is expected for aper-
ture statistics. They combine information from the correlation
functions at different scales, which causes correlations between
the aperture statistics at different aperture radii. The correlation
matrix for

〈
NapNapMI

ap

〉
is qualitatively similar to the correla-

tion matrix for cosmic shear dominated
〈
NapNapMap

〉
, shown in

Fig. 10 of Linke et al. (2022).

3.3. Model fit

We fitted the NLA-inspired model defined in Eq. (25) and
Eq. (28) to our measurements. For a fixed cosmology, this model
includes the galaxy bias b and the IA amplitude AIA as free
parameters, but we fix the value of b from second-order statistic
measurements. For the LOWZ galaxies, we use b = 1.77 deter-
mined by Singh et al. (2015) from second-order statistics. For the
MICE galaxies, though, we use b = 1.47, which is 17% lower.
We use this because the two-point galaxy correlation function in
the MICE is approximately 30% lower than in the LOWZ, which
suggests this lower galaxy bias value (Hoffmann et al. 2022).

Alternatively, one could also infer the galaxy bias and IA
amplitude simultaneously from a third-order only analysis. For
this, we would require additional measurements of either the
position-shape-shape or position-position-position correlations.
However, the position-shape-shape correlation has a low signal-
to-noise in our sample and cannot be used for this exercise.
We also opted against using the position-position-position cor-
relation, even though it is detectable, since this correlation
depends even more strongly on non-linear bias terms than
the position-position-shape correlation: the relevant bispectrum
includes terms proportional to b2 b2, not only b b. Consequently,
our assumption of vanishing non-linear bias terms is likely inap-
propriate for this statistic, and we would need to include b2 as an
additional parameter in the model. Additionally, constraints on b
from third-order statistics are weaker than those from second-
order statistics. Therefore, we can constrain AIA to a higher
precision when using the b from second-order statistics. Con-
sequently, we decided to use the simpler galaxy bias model and
included the b from the second-order measurements.

Thus, the only free parameter remaining is AIA, which
we obtained by fitting the model to the measurements with a
least-squares minimizer (Nelder & Mead 1965), including the
covariance matrix obtained in Eq. (33). To investigate the model
validity across different scales, we performed two fits for each
measurement. One fit considers the aperture statistics for all
scales R ∈ [1 h−1 Mpc, 20 h−1 Mpc]. This includes much smaller
scales than the NLA model is considered valid for second-order
statistics. We further conducted a second fit, where we limited
the measurements to R > 6 h−1 Mpc. This is the smallest scale
considered by Singh et al. (2015) to be valid for the NLA model
for second-order statistics. However, we note that the aperture
radii R cannot be directly compared to the galaxy separation
scale of the two-point correlation function, considered by Singh
et al. (2015). Instead, aperture statistics for radius R include the
correlation function both at smaller scales and (depending on the
filter function) slightly larger scales than R.

4. Data
4.1. SDSS III BOSS LOWZ galaxies

Our primary dataset is the SDSS BOSS LOWZ galaxy sample,
previously used by Singh & Mandelbaum (2016). This sample

consists of luminous red galaxies (LRGs) at low redshifts, which
were observed by DR8 of the SDSS (Aihara et al. 2011) and the
BOSS DR11 (Alam et al. 2015). Shape measurements for these
galaxies were carried out by Reyes et al. (2012). They reported
galaxy ellipticities χ = (1−q2)/(1+q2), where q is the minor-to-
major axis ratio q. However, the ellipticity in Eq. (1) is defined
as ϵ = (1 − q)/(1 + q), so we converted χ to ϵ using the same
relation as Singh & Mandelbaum (2016),

ϵ =
χ

2R
, (35)

where R = 0.925.
The sample is constructed to contain a volume-limited sam-

ple of LRGs, so a selection in both redshift and colour-magnitude
space was performed. The selection cuts were

mr < 13.5 + c∥/0.3 + ∆mr 16.0 < mr < 19.6 + ∆mr (36)
|c⊥| < 0.2 0.16 < z < 0.36 ,

with

c∥ = 0.7 (mg − mr) + 1.2 [(mr − mi) − 0.18] (37)
c⊥ = (mr − mi) − 0.25 (mg − mr) − 0.18.

For the LOWZ galaxies, ∆mr = 0; however, for the simulated
galaxies (see next section), ∆mr needs to be set to 0.085 to match
the number density of the observed galaxies. We refer to Singh
et al. (2015) for more details on the selection.

Following Singh et al. (2015), we further divided the galaxy
sample into four luminosity bins L1 – L4 with L1 containing the
brightest galaxies. The bins L1 – L3 each contain 20% of the
galaxies, with L4 containing the remaining 40% faintest galaxies.
In the following we consider correlations between the shapes of
galaxies from one of these luminosity bins with the positions of
the whole galaxy sample.

4.2. MICE with IA

To test our measurement pipeline, we used a catalogue of
realistically simulated galaxies based on the MICE grand chal-
lenge light cone simulation (Fosalba et al. 2015a). MICE is a
dark-matter only N-body simulation that adopts a flat ΛCDM
cosmology with parameters Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.044,
ns = 0.95, σ8 = 0.8, h = 0.7. The simulation tracks the evolution
of 40963 particles, each with a mass of 2.93×1010h−1M⊙, within
a cubic volume of side length 3072h−1 Mpc, spanning from an
initial redshift of z = 100 to the present time. Halos were iden-
tified with a Friends-of-friends halo finder (Crocce et al. 2015).
Subsequently, the halos were populated with galaxies up to red-
shift z = 1.4, using a combination of halo abundance matching
and a halo occupation distribution model (Carretero et al. 2015).
The galaxies received positions, luminosities and colours such
that their luminosity function and colour-magnitude distribution
matched SDSS observations (Blanton et al. 2003; Zehavi et al.
2011).

The MICE was initially designed to accompany gravitational
lensing surveys, so an estimate of each galaxy’s weak lensing
shear was computed by projecting the mass distribution and
applying the Born approximation as described in Fosalba et al.
(2015b, 2008). Hoffmann et al. (2022) added realistic intrinsic
galaxy ellipticites using a semi-analytic IA model. In this proce-
dure, the simulated galaxies are divided into red and blue central
galaxies and satellites; red centrals receive a 3D orientation
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Table 1. Intrinsic alignment amplitudes from model fits to LOWZ and MICE galaxies.

LOWZ MICE

AIA (2pt) ⟨Mr⟩ ⟨z⟩ AIA (3pt, large scales) AIA (3pt, all) ⟨Mr⟩ ⟨z⟩ AIA (3pt, large scales) AIA (3pt, all)

All 4.6 ± 0.5 −21.88 0.28 4.40 ± 0.93 3.99 ± 0.53 −21.84 0.26 4.20 ± 0.59 3.90 ± 0.56
L1 8.5 ± 0.9 −22.42 0.28 8.3 ± 1.4 7.02 ± 0.76 −22.43 0.29 7.4 ± 1.3 6.65 ± 0.72
L2 5.0 ± 1.0 −22.05 0.28 5.3 ± 1.0 4.57 ± 0.58 −22.08 0.28 3.84 ± 0.83 4.39 ± 0.48
L3 4.7 ± 1.0 −21.86 0.28 5.01 ± 0.99 3.58 ± 0.45 −21.87 0.27 3.88 ± 0.70 4.77 ± 0.46
L4 2.2 ± 0.9 −21.55 0.28 2.01 ± 0.56 1.88 ± 0.31 −21.41 0.24 3.05 ± 0.51 2.33 ± 0.31

Notes. The AIA were obtained by Singh et al. (2015) from second-order statistics (second column), the third-order measurements at R > 6 h−1 Mpc
(fifth and ninth column), and at all scales (sixth and tenth column). Also shown are the average absolute magnitude ⟨Mr⟩ and the average redshift
⟨z⟩ of the samples. Bold denotes values that differ more than 1σ from the second-order estimates.

aligned with their host halo, while blue centrals are aligned with
the angular momentum of their host halo. Satellites are assumed
to point towards their host halo centre. These orientations are
then distorted by a randomly assigned misalignment angle. The
distribution of misalignment angles depends on galaxy colour
and magnitude. It is calibrated such that the simulated galaxies
reproduce the second-order correlation between intrinsic shapes
and galaxy positions observed in the LOWZ galaxy sample as
well as the observed distribution of galaxy axis ratios from COS-
MOS (Laigle et al. 2016; Griffith et al. 2012). Simulated galaxy
positions, shapes, and other properties for an octant on the sky
are available via Cosmohub 3 (Tallada et al. 2020; Carretero et al.
2017).

From the MICE with IA, we selected a sample mimicking
the LOWZ galaxies on the provided sky octant (5156.6 deg2, so
approximately half the BOSS footprint). We applied the same
selection as in Eq. (36). However, similar to Hoffmann et al.
(2022), we set ∆mr to 0.085 to match the number density of the
LOWZ galaxies. As with the LOWZ sample, we divided the sim-
ulated galaxies into four luminosity bins, containing 20, 20, 20
and 40% of the galaxy sample, respectively. We used only the
intrinsic galaxy shapes and neglected the cosmic shear contribu-
tion. We also used the ‘true’ (or purely cosmological) redshifts
of the sample; that is, we neglected any impact of redshift space
distortions.

5. Results

As mentioned in Sect. 3.3, we fitted the NLA-inspired model
to our measurements firstly using all aperture radii and then
restricted to scales above 6 h−1 Mpc, with galaxy bias values
obtained by Singh et al. (2015). The resulting values for AIA are
listed in Table 1 and the reduced χ2 values in Table 2. In Fig. 2,
we show the AIA for the larger-scale fits as a function of the mean
absolute magnitude Mr of the samples.

For all luminosity bins, AIA is significantly non-zero. Using
the large-scale (all-scale) fit, AIA for the full LOWZ sample is
4.7σ (7.6σ) larger than zero. The strongest detection occurs
for the brightest sample with 5.9σ for the large-scale fit. As
expected, AIA is largest for the brightest galaxies, which are
expected to show the strongest alignment, and decreases for
fainter galaxies.

Also shown in Fig. 2, and listed in Table 1, are the values for
AIA estimated by Singh et al. (2015) from second-order correla-
tions. Our third-order based estimates are consistent with these
second-order based estimates within their 1σ uncertainties for
all luminosity bins. As we are considering the same sample for

3 https://cosmohub.pic.es/

Table 2. Reduced χ2 values for model fits.

χ2
reduced LOWZ MICE

Large scales All Large scales All

All 0.99 1.56 0.68 1.19
L1 1.19 4.20 0.93 3.83
L2 0.97 2.53 2.54 9.70
L3 0.75 2.49 2.29 5.53
L4 0.84 0.93 1.29 1.35

−22.4−22.2−22.0−21.8−21.6−21.4
Mr [mag]

0

2

4
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A
IA

2pt, from Singh+ (2015)

2pt, whole sample

3pt, LOWZ

3pt, LOWZ, whole sample

3pt, MICE

3pt, MICE, whole sample

Fig. 2. IA amplitude AIA as a function of the mean absolute magnitude
Mr of the shape tracers for the LOWZ galaxies (pink circles) and for the
MICE (green diamonds) as obtained from the third-order IA measure-
ment at scales R > 6 h−1 Mpc. Also shown are the estimates by Singh
et al. (2015) from second-order statistics (black squares). Open symbols
are the estimates for the whole shape tracing sample.

the second and third-order measurements, the sample variance
contributions to the uncertainties of the two cases are correlated.
Therefore, we expect a deviation of less than the 1σ uncertain-
ties. The other contributions to the uncertainties, namely the
source galaxies’ shape noise and the shot noise of the lens galaxy
distribution, contribute differently to the second and third-order
measurements and are thus less correlated.

Figure 2 also shows the AIA obtained from fitting the model
to the measurements for the simulated MICE galaxies. Their AIA
show the same trends as for the observed galaxies and agree
with them within 1–2σ. Generally, AIA is lower in the simulation
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Fig. 3. Comparison of IA measurements for full LOWZ and simulated galaxy samples to model fits. Upper panels: IAaperture statistics for full
galaxy samples. The left panel shows the measurements for the LOWZ galaxies; the right panel shows measurements for the simulated MICE
galaxies. Points are measurements with jackknife error estimates. Solid lines show the model fit using scales above 6 h−1 Mpc; dashed lines are the
model fit using all shown scales. Lower panels: relative difference of measurement to model fit for large scales.

than observed, except for the faintest galaxies in the L4 sample.
However, the MICE galaxies have slightly different mean lumi-
nosities and luminosity distributions, so slight differences are not
unexpected.

Table 1 shows that we obtain smaller values for AIA when
fitting to all measured scales than when considering only larger
scales. To understand this, we show the measurement and both
fits for the full sample in Fig. 3 and the individual luminosity
bins in Fig. 4. For all LOWZ galaxy samples the signal flattens
at small scales. This flattening cannot be described by our sim-
ple model that only contains a scale-independent parameter. The
fit compensates for this inadequacy by lowering AIA across all
scales.

As can be seen in Table 2, including the small scales leads
to overall worse fits with larger χ2 values. This confirms that
the model cannot accurately describe the small scales. Moreover,
the difference between the inferred AIA and the estimate from
second-order statistics is greater when including the small scales.
For the L1 and L3 galaxies, the estimates no longer agree within
the 1σ uncertainty, so the extrapolation of the third-order model
to small scales is not consistent with the second-order model at
larger scales.

The MICE galaxies show the same trends as the LOWZ
galaxies. Aside from the L2 sample, we see the same flattening
of the signal at small scales. For the brightest galaxies, we also
find a more than 1σ difference in the AIA inferred from the fit to
the whole scale range compared to the second-order estimate.

6. Discussion

We presented the first detection of a third-order intrinsic align-
ment (IA) correlation in the Sloan Digital Sky Survey (SDSS)
Baryon Oscillation Spectroscopic Survey (BOSS) LOWZ galax-
ies. For this, we measured the third-order correlation function
between galaxy positions and shapes and expressed them in
terms of aperture statistics. We compared the measured signal
with predictions by the Marenostrum Institut de Ciències de
l’Espai (MICE) cosmological simulation and a non-linear lin-
ear alignment (NLA) based analytical model. Our measurements
depend on the BδδI contribution to the bispectrum of matter

densities and galaxy shapes, the matter-matter-shape correlation.
The positions of the LOWZ galaxies are used as tracers for the
matter distribution, which were then correlated with their shapes.

We find a significant third-order IA signal. For scales
between 6 h−1 Mpc and 20 h−1 Mpc and using the full LOWZ
galaxy sample, we find an IA amplitude AIA = 4.4 ± 0.93, which
is a non-zero signal at 4.7σ. After dividing the sample into sub-
samples based on galaxy luminosity, we find an increased S/N
for the brightest galaxies while the S/N for the fainter galaxies
decreases. However, even for the faintest galaxies, AIA is still
non-zero at 3.6σ. This dependence of the signal on the galaxy
luminosity is not surprising, as IA has been shown to increase
with galaxy luminosity and stellar mass, both in observations
(Singh et al. 2015; Singh & Mandelbaum 2016; Johnston et al.
2019) and hydrodynamical simulations (Samuroff et al. 2021).

Comparing the measurements from the observations to the
predictions by the MICE simulation, we again find that the best-
fitting AIA increases with luminosity. Indeed, the AIAs from the
simulation agree with the LOWZ measurements at 1–2σ. At first
glance, this agreement might seem unsurprising as the intrinsic
shapes of the simulated galaxies have been tuned to reproduce
the second-order IA measurements by Singh et al. (2015) in
the LOWZ sample. Moreover, the third-order galaxy clustering
of MICE galaxies has been successfully validated (Hoffmann
et al. 2015). However, the agreement is a crucial consistency
check for two reasons. First, the agreement suggests that tuning
the simulation to the second-order statistics automatically pro-
vides the correct third-order statistics, lending credibility to the
physical model implemented in the simulation. Second, only the
intrinsic galaxy shapes were used for the simulation measure-
ments without adding cosmic shear. Consequently, the agree-
ment of the measurements in the observations, where we cannot
turn off cosmic shear, shows that weak lensing does not signif-
icantly bias our measurement. This validates our choice of Πm,
the maximal distance between galaxies in a triplet considered
for the correlation function measurement. Evidently, the cho-
sen Πm is small enough that cosmic shear correlations become
sub-dominant.

Finally, we compared the AIA from the model fits to the third-
order IA signal to the estimates by Singh et al. (2015) from
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Fig. 4. Same as Fig. 3, but for the different luminosity samples, with L1 containing the brightest and L4 the faintest galaxies.

second-order statistics. The AIA obtained from fitting to scales
above 6 h−1 Mpc agree within 1σ with the second-order esti-
mates. Consequently, at these scales, the second and third-order
models are consistent and can be used in a combined analysis.
This combination offers the opportunity for IA self-calibration
(Pyne & Joachimi 2021), leading to tighter constraints on both
IA and cosmological parameters.

The AIA values inferred from the fit, including smaller scales,
agree less well with the second-order based estimates. While
the agreement is still within 2σ for all luminosity samples,
the measurements show a flattening at small scales that cannot
be described with our simple NLA-inspired model. Further-
more, the goodness-of-fit, as indicated by the reduced χ2 values,
degrades when small scales are included. This shows that the
model is no longer accurate at small scales. There are several
possible reasons for this inaccuracy, among them the inaccu-
racy of the NLA approach, non-linear contributions to the galaxy
bias, and small-scale physical effects such as baryonic feed-
back. Regarding the NLA model, Singh et al. (2015) find that
the NLA model cannot well describe the second-order IA statis-
tics for scales below 6 h−1 Mpc. Thus, it seems natural that the
NLA-inspired model also breaks down at small scales. As men-
tioned before, the NLA model is an effective, phenomenological
description of IA and is not rigorously physically motivated.
Higher-order corrections thus become necessary for small scales.

Another consideration in explaining the model deviations
is our choice of a simple linear deterministic galaxy bias. In
a perturbation theory approach, the galaxy bispectrum already
depends on the non-linear galaxy bias at the leading order. We
showed that a non-zero b2, which is the first non-linear bias term,
only has a small impact on the model compared to the mea-
surement uncertainties and thus can be neglected for the sample
and scales we consider here. Higher order contributions, i.e.,
b3, b4, and so on, enter at most at the next-to-leading order, so
they likely have even less impact on the model. Thus, it seems

unlikely that the full ‘flattening’ of the signal can be explained
by non-linear galaxy bias terms. However, galaxy bias depends
strongly on the selected sample, so while we could simplify our
model by neglecting non-linear galaxy bias, this simplification
might not be appropriate for different sample choices. We also
neglected the quadratic non-local bias, which depends on the
tidal field.

Small-scale physics, such as baryonic feedback, could also
be part of the cause of the model breakdown at small scales.
Baryonic feedback leads to a suppression of the matter power
and bispectrum at small scales. This would also suppress the
third-order IA signal for small aperture radii. However, the con-
crete values for the bispectrum suppression are unclear, with
predictions from hydrodynamical simulations ranging between
less than 1 and 20% at k = 1 h Mpc−1, while in some simulations
there is even an enhancement of the bispectrum at k ≃ 3 h Mpc−1

(see e.g. Aricò et al. 2021; Foreman et al. 2020).
The perturbation theory approach itself becomes inaccurate

when entering the regime of single dark matter halos, so a more
sophisticated third-order IA model might be needed at small
scales. For example, the bispectrum BggI could be modelled by
using a halo model approach for the correlation between galaxies
and matter (Linke et al. 2022), multiplied by the NLA prefactor
f1. Alternatively, a full halo model for the IA signal might be
devised in the spirit of Fortuna et al. (2021). However, in light
of the general good agreement, we see no necessity to use a
more complex IA model to describe the LOWZ data set. This
might change for other surveys with more constraining power, for
example, those expected by Euclid, LSST, and DESI. Repeating
our measurements on a more extensive survey and other galaxy
samples can help decide whether the NLA-inspired model is
still appropriate for analysing third-order statistics in upcoming
stage-IV surveys. Additionally, other third-order statistics, for
example, shape-shape-lens correlations or the related bispectra,
could be explored to further test the model’s consistency.
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Appendix A: Relation of aperture statistics to bispectrum

To model
〈
NapNapMI

ap

〉
, we relate it to the galaxy-galaxy-shape bispectrum BggI. For this, we first write it as

〈
NapNapMI

ap

〉
(R1,R2,R3) =

∫
dχ p(χ)

∫
dχ1 p(χ1)

∫
dχ2 p(χ2)

∫
d2r′1

∫
d2r′2

∫
d2r′3 UR(r′1) UR(r′2) UR(r′3)

×
〈
δg(r − r1, χ1) δg(r − r2, χ2) δI(r − r3, χ)

〉
. (A.1)

We now use the galaxy-galaxy-intrinsic shape bispectrum BggI defined by

(2π)3δD(k1 + k2 + k3) BggI(k1, k2, k3; χ1, χ2, χ) =
〈
δ̃g(k1, χ1) δ̃g(k2, χ2) δ̃I(k3, χ)

〉
, (A.2)

and separate the ki into their components kz,i along the line-of-sight and k⊥,i perpendicular to the line-of-sight. With this,

〈
NapNapMI

ap

〉
(R1,R2,R3) =

∫
dχ p(χ)

∫
dχ1 p(χ1)

∫
dχ2 p(χ2)

∫
d2k⊥,1
(2π)2

∫
d2k⊥,2
(2π)2

∫
d2k⊥,3
(2π)2 ŨR(k⊥,1) ŨR(k⊥,2)ŨR(k⊥,3) (A.3)

×

∫
dkz,1

2π

∫
dkz,2

2π

∫
dkz,3

2π
e−i(kz,1 χ1+kz,2 χ2+kz,3 χ (2π)3δD(k1 + k2 + k3) BggI(k1, k2, k3; χ1, χ2, χ).

Evaluating the k3 integrals leads to〈
NapNapMI

ap

〉
(R1,R2,R3) =

∫
dχ p(χ)

∫
dχ1 p(χ1)

∫
dχ2 p(χ2)

∫
d2k⊥,1
(2π)2

∫
d2k⊥,2
(2π)2 ŨR(k⊥,1) ŨR(k⊥,2)ŨR(|k⊥,1 + k⊥,2|) (A.4)

×

∫
dkz,1

2π

∫
dkz,2

2π
e−ikz,1 (χ1−χ)+ikz,2 (χ2−χ) BggI(k1, k2, k3; χ1, χ2, χ).

Now, we use the Limber approximation, under which

BggI(k1, k2, k3; χ1, χ2, χ) ≃ BggI(k⊥,1, k⊥,2, k⊥,3; χ1, χ2, χ). (A.5)

Inserting this, evaluating the kz,i integrals and the (then trivial) χ1 and χ2 integrals leads to

〈
NapNapMI

ap

〉
(R1,R2,R3) =

∫
d2k⊥,1
(2π)2

∫
d2k⊥,2
(2π)2 ŨR(k⊥,1) ŨR(k⊥,2)ŨR(|k⊥,1 + k⊥,2|)

∫
dχ p3(χ)BggI(k⊥,1, k⊥,2, k⊥,3; χ, χ, χ), (A.6)

so
〈
NapNapMI

ap

〉
can be readily computed for a given filter function U, a galaxy redshift distribution p and a bispectrum model BggI.

Appendix B: Impact of non-linear galaxy bias

As described in Eq. (28), the galaxy-matter bispectrum already depends on the non-linear galaxy bias b2 at the leading order.
However, we argue that b2 can be neglected for the

〈
NapNapMI

ap

〉
modelling at the level of uncertainty of the LOWZ measurements.

To demonstrate this, Fig. B.1 shows the best-fitting model for the LOWZ measurements in the full sample when neglecting b2 and
the model for the same AIA and b but now setting b2 = 1. For this, we computed the non-linear power spectrum using the revised
halofit prescription (Takahashi et al. 2012).

When including a positive b2, the model increases, particularly at larger scales, by up to 20%. However, this increase is small
compared to the measurement uncertainty and both models show good agreement with the measurement. Therefore, the value of b2

is not critical to describe the
〈
NapNapMI

ap

〉
from the LOWZ.

We note that Fig B.1 depicts a pessimistic case, as we do not expect b2 to be as large as one. Measurements of the bispectrum of
galaxies from the LOWZ sample by Gil-Marín et al. (2017) find b2 σ8 = 0.6, which for σ8 = 0.8 yields b2 = 0.75. Using LOWZ-like
simulated mock galaxies, Eggemeier et al. (2021) found the even lower value of b2 = 0.3 ± 0.2. Consequently, the impact of the
non-linear galaxy bias is likely even smaller than shown here.

Appendix C: Estimator bias

The estimator for the correlation function in Eq. (30) is biased. To see this, we calculate the expectation value of the estimator. The
expectation value of the numerator is〈 NL∑

i=1

NL∑
j=1

NS∑
k=1

ϵk ei(ϕi+ϕ j)△(r1, r2, ϕ, xi, x j, xk)ΘΠm (χi, χ j; χk)
〉

(C.1)

=

∫
d2x1

∫
d2x2

∫
d2x3

∫
dχ1

∫
dχ2

∫
dχ3 p(χ1) p(χ2) p(χ3)

〈
n(x1, χ1) n(x2, χ2) ϵ(x3, χ3) e−i(ϕ1+ϕ2)

〉
(C.2)
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Fig. B.1. Comparison of IA measurements for LOWZ sample with and without non-linear bias. Upper panel: Measurement of
〈
NapNap MI

ap

〉
for full

LOWZ sample (points), with model fit without non-linear bias (solid line) and same model but using b2 = 1 (dashed line). Lower panel: Relative
difference to the model, which neglects non-linear bias.

× △(r1, r2, ϕ, x1, x2, x3)ΘΠm (χ1, χ2; χ3)

=

∫
dχ

∫ χ+Πm

χ−Πm

dχ1

∫ χ+Πm

χ−Πm

dχ2 p(χ1) p(χ2) p(χ)
〈
n(x3 + r1, χ1) n(x3 + r2, χ2) ϵ(x3, χ) e−i(ϕ1+ϕ2)

〉
(C.3)

= N̄2
Πm

GΠm (r1, r2).

The expectation value of the denominator is〈 NL∑
i=1

NL∑
j=1

NS∑
k=1

△(r1, r2, ϕ, xi, x j, xk)ΘΠm (χi, χ j; χk)
〉

(C.4)

=

∫
d2x1

∫
d2x2

∫
d2x3

∫
dχ1

∫
dχ2

∫
dχ3 p(χ1) p(χ2) p(χ3) ⟨n(x1, χ1) n(x2, χ2)⟩ △(r1, r2, ϕ, x1, x2, x3)ΘΠm (χ1, χ2, χ3) (C.5)

=

∫
dχ

∫ χ+Πm

χ−Πm

dχ1

∫ χ+Πm

χ−Πm

dχ2 p(χ1) p(χ2) p(χ) ⟨n(x3 + r1, χ1) n(x3 + r2, χ2)⟩ (C.6)

=

∫
dχ

∫ χ+Πm

χ−Πm

dχ1

∫ χ+Πm

χ−Πm

dχ2 p(χ1) p(χ2) p(χ) × n̄(χ1) n̄(χ2)[1 + ξ(|r1 − r2|, |χ1 − χ2|)]. (C.7)

Here, ξ(∆r,∆χ) is the three-dimensional galaxy clustering function for galaxy pairs separated by ∆r in projection and by ∆χ along
the line-of-sight. This expectation value can be approximated by∫

dχ
∫ χ+Πm

χ−Πm

dχ1

∫ χ+Πm

χ−Πm

dχ2 p(χ1) p(χ2) p(χ) n̄(χ1) n̄(χ2) [1 + ξ(|r1 − r2|, |χ1 − χ2|)] (C.8)

≃ N̄2
Πm

∫
dχ

∫ χ+Πm

χ−Πm

dχ1

∫ χ+Πm

χ−Πm

dχ2 p(χ1) p(χ2) p(χ) [1 + ξ(|r1 − r2|, |χ1 − χ2|)]

= N̄2
Πm

B(r1, r2,Πm).

Therefore, the expectation value of the estimator ĜΠm
bias is〈

ĜΠm
bias

〉
≃

GΠm

B(r1, r2,Πm)
. (C.9)

We show in Fig. C.1 the B estimated for the full LOWZ sample. The bias is strongly scale-dependent.
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Fig. C.1. Estimator bias B for the full LOWZ galaxy sample.
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