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CONTEXT & SCALE The urgency of the transition to a low-carbon world requires a fast decarbonization of
the electricity generation system. Such a transition will change the demand for skills in the energy sector,
which can generate labor market frictions: skill shortages arise if employers cannot find enough skilled
workers and, vice versa, if displaced workers find it hard to get new work. This paper identifies occupation-
and time-specific skill mismatch frictions during a fast transition scenario of the US power sector. We use
methods from complex network theory to identify potential skill frictions for workers in these occupations,
adding nuance to the green jobs debate in the literature. The changes in demand that we find are small
compared with the total US labor market and can be influenced by changes to US competitiveness of en-
ergy-related products.
SUMMARY
Weanalyze the employment dynamics of a rapid decarbonization of theUSpower sector, reducing emissions
by 95% before 2035. We couple an input-output model with an occupational mobility network and identify
three labor market phases: ‘‘scale-up,’’ ‘‘scale-down,’’ and a long-term, low-carbon, ‘‘steady state.’’ During
the scale-up (2023–2034), for every job lost in an industry, 12 new jobs are created elsewhere. However, few
occupations see sustained growth throughout the transition. We predict that skill mismatches will create fric-
tions during the transition, especially in the scale-down phase. Comparedwith the size and fluctuations of the
US labor market, the impact of this transition is modest, particularly if the US increases exports of clean en-
ergy technologies to counteract the domestic scale-down phase. However, without proper planning, rapidly
growing industries will struggle to find skilled labor during the scale-up phase, while displacedworkersmight
struggle finding jobs during the scale-down phase.
INTRODUCTION

An immediate and accelerated decarbonization of the global

economy is required to limit global warming to below 2�C
above pre-industrial levels.1,2 Since the majority of greenhouse

gas emissions (more than 75%) are energy related, the rapid

expansion of renewables and the phase-out of fossil fuels

has become a key focus in near-term mitigation strategies.3

While a fast transition to a net-zero energy system could end

up being economically beneficial by itself,4,5 it will still have pro-

found impacts on countries’ economies, including their labor

markets.
Joule 9, 1–18, Febru
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The net-zero energy transition will create and destroy jobs. On

the one hand, the transition will lead to a downscaling or removal

of fossil-fuel energy generation with an associated displacement

of workers. Past experiences of long-term depressions from

shrinking industries and mine closures in North England, the

US Appalachians, and the German Ruhr areas underscore the

importance of managing such transitions and finding ways to

alleviate the negative impacts of stranded labor on displaced

workers and communities.6–10

On the other hand, a net-zero transition will create a demand

for many newworkers to build andmanage the new clean energy

infrastructure, leading to the possibility of skill shortages and
ary 19, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 1
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unfilled vacancies. This will be exacerbated if the overall labor

market is tight,11 as it currently is in many places in Europe

and North America.12 A shortage of workers with the right skills

could slow down the energy transition.

Previous literature is broadly aligned in concluding that there

will be a net gain of jobs in the US during a clean energy transi-

tion. For example, Jacobson et al.13 find almost 2 million net jobs

created in the US (6 million gained, 4 million lost), while the Inter-

national LaborOrganization (ILO)14 finds a 0.45%economy-wide

net increase in employment for the Americas as a whole, repre-

senting around 700,000 jobs15 for the US if we assume it follows

the regional average. Mayfield et al.16 estimate that the fraction

of the US workforce in the energy supply chain will grow from

1.5% in 2020 to 2.5%–5% in 2050, representing, approximately,

a 1.5–6 million increase in workers. Ram et al.17 find a roughly 4

million net increase in energy-related jobs between 2020 and

2050 for the US in a 100% renewable energy scenario. Xie

et al.18 find an increase of 439,000 jobs by the 2040s if the power

sector reaches net zero emissions by 2035. Other studies finding

job growth include Dell’Anna,19 Lehr et al.,20 and �Cerný et al.21

Only a few studies find a negative impact on job creation; for

an overview, see, e.g., Stavropoulos and Burger.22

Most of these studies only focus on aggregate job numbers in

the initial transition phase and do not address the heterogeneity

of impacts across workers and over time. Workers’ occupations,

skills, experience, geographic location, available alternative

employment options, and perceived socio-economic status can

affect their employment prospects.23–27 Workers are more likely

to transition to jobs in industries and occupations related to their

previous job.28–30 This can have significant implications for

employment. When new vacancies are opened in occupations

that are very unrelated to occupations where workers lose their

job, a skill mismatch is created, rendering it challenging for dis-

placed workers to find new roles as their usual job alternatives

are not available.31

The net-zero transition has the potential to generate skill mis-

matches, which can evolve over time. To assess the employment

implications of the net-zero transition, it is important to consider

the heterogeneous effects across all occupations and over time.

Traditional global integrated assessment models rarely analyze

the evolving labor structure or categorize households by occu-

pation, lacking information on employment shifts linked to spe-

cific mitigation scenarios.32 Although some macroeconomic

models have begun to explore labormarket impacts at a detailed

level and consider different skills and occupations, e.g., ILO14

and Mayfield et al.,16 most of these studies overlook potential

skill mismatches that result from correlated displacement

shocks across occupations and over time.

The skill-mismatch literature often builds on network models.

Three studies stand out in examining potential skill mismatches

resulting from the net-zero transition: Lankhuizen et al.33 apply

an industry and geography mobility model to the Netherlands,

andBerrymanet al.34 use a computable general equilibriummodel

linkedwithanoccupationalmobilitymodel forBrazil. Thesestudies

identify potential skill mismatches that could lead to higher rates of

unemployment or unfilled vacancies. Additionally, Xie et al.18 look

at thedistributional effects forworkersofaUSpower sectordecar-

bonization, disaggregated by skill level and gender across states.
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To understand the potential for skill mismatch in the net-zero

transition, previous work classifies occupations into ‘‘green’’

and ‘‘brown’’ categories depending on their skills, industry

employment, or future outlook in a decarbonizing economy,

sometimes with sub-classifications for green jobs. For example,

O*NET classifies occupations as ‘‘green new and emerging’’ if

they are likely to see a demand increase when shifting to a

‘‘greener’’ economy.35 Vona et al.36 analyze the characteristics

of green and brown occupations in a labor market network.

The labor transition is complicated by the fact that green jobs

tend to require higher skills, are more often located in urban

areas, and are less prone to automation than brown jobs.37–39

Nevertheless, more transitions from brown to green jobs can

be expected as the availability of green jobs increases.40

In this study, we argue that temporal effects play a crucial role

in the net-zero transition. The classification of occupations as

green or brown overlooks the fact that some roles may be crucial

for only part of the transition. While some macroeconomic

models can deal with temporal changes in demand, their focus

is often restricted to the initial scale-up phase. This approach

neglects the later stages when generation capacity has shifted

to renewables, and worker demand may decline, particularly in

construction andmanufacturing. The narrow focus on job growth

in the initial transition phase can lead to misunderstandings of

the complexities involved in the full trajectory to a net-zero

economy.

We develop a novel framework for analyzing occupation-spe-

cific skill mismatches as they evolve during the clean energy

transition. In our framework, if the demand for occupations

with similar skills rises in tandem, it becomes relatively harder

for employers to fill vacancies, and, if it falls in tandem, it be-

comes harder for workers to find new jobs. Our goal is to alert

policymakers to these frictions, so that they can make targeted

interventions to mitigate skill-mismatch frictions.

We follow a four-step procedure (seemethods; Figure 7). First,

we translate the different cost components (capital expenditure,

operational expenditure, and fuel cost) of power sector decar-

bonization scenarios into annual demand shocks and intermedi-

ate consumption changes.

Second, we use a simple demand-driven input-output (IO)

model to estimate direct and upstream industry output changes

as a consequence of the changing energy mix. To do this, we

disaggregate the IO data to include ten different electricity

technologies. Our model is dynamic: in each year of the analysis,

we update the links in the IO network in tandem with the energy

mix (e.g., when the coal power share of electricity production is

reduced in favor of wind energy, industries and households

switch part of their demand from coal power to wind).

Third, we calculate annual labor demand profiles for all occu-

pations and industries, assuming fixed employment and occu-

pation breakdown per constant-dollar output—this also means

that wages are kept constant in real terms. This assumption al-

lows for any energy technology cost reductions to be translated

into decreased labor demand for the same product, accounting

for automation and innovation through the electricity supply

chain.

Finally, by linking occupational demand trajectories to an occu-

pational mobility network, we quantify potential skill-mismatch
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frictions. All such ‘‘skill mismatch’’ or labor market frictions identi-

fied by this study relate to the difficulty of changing one’s occupa-

tion at different stages of the clean energy transition. To test the

robustness of our results, we engage in extensive sensitivity anal-

ysis of key assumptions and data sources (see supplemental

methods section D.6).

We apply our method to the United States using the National

Renewable Energy Laboratory (NREL)’s standard scenarios,

focusing on their fast transition scenario that reaches 95% de-

carbonization in the power sector by 2035.3 We are interested

in this scenario partly because accelerated climate action is

required to meet the US’s Paris pledge to keep global warming

well below 2�C. All the results in the main text concern the

implications of the ‘‘95% by 2035’’ scenario relative to NREL’s

‘‘no-new-policy’’ scenario, which we take as the ‘‘reference’’

scenario.

Recently announced policies, such as those included in the

Inflation Reduction Act (IRA), also make a fast transition in the

power sector more likely. The current US President Biden’s

stated goal is to deliver 100% clean electricity by 2035.41 The

IRA moves the US much closer to that trajectory, although

Bistline et al.42 show that IRA-compliant power sector scenarios

could still fall short of this target. A fast decarbonization might

also be accelerated further by economic forces if it becomes

financially beneficial.4,5

NREL is a US Department of Energy sponsored research

center that produces scenarios that are closely examined by

US policymakers, with high credibility in the research commu-

nity. NREL’s fast transition scenario also covers both the transi-

tion phase and a subsequent low-carbon power systemphase of

an energy sector that is decarbonized by 2050, enabling us to

assess the full temporal implications of the transition.

NREL does not make assumptions about whether clean tech-

nologies are imported or produced domestically, so we need to

specify that ourselves. However, it is important to bear in mind

that a substantial fraction of the demand for labor from the clean

energy transition is domestic, independent of imports and ex-

ports. This is because almost all of the operational expenses

are for domestic labor, and many categories of capital expenses

are for domestic industries such as construction. Thus, while

what happens in terms of imports and exports is important, we

find our basic conclusions hold across a range of plausible

import and export scenarios, as shown in Figures S18–S21 in

supplemental methods section D.6. Our main assumptions

represent a form of ‘‘business as usual’’: keeping the relative

share of import sf capital goods constant at 2018 levels, while

keeping exports fixed in absolute terms. The logic for our

approach and a description of the alternate scenarios,

and how they affect the results, is given in the section titled

‘‘robustness of results.’’

Our model works with national-level data and thus neglects

sub-national differences. The total flux of workers that the

NREL scenario causes in our model is small, especially for large

industries such as construction and manufacturing that are

engaged in many activities beyond renewable energy. However,

local impact can be more problematic. Green jobs are likely to

arise in different locations than fossil-fuel jobs,43 which can

amplify skill mismatches. Vice versa, locations without any
green- or brown-energy-related jobs may not be affected at all.

We discuss how our analysis can be extended to include geog-

raphy in the supplemental methods section B.1.

Sinceweareconcernedwith the labor impactsofdecarbonizing

the power sector and its upstream industries, an IO network pro-

vides a straightforward way to convert the scenario’s annual en-

ergy system spending into changes in direct and upstream labor

demand. This should not be interpreted as a macroeconomic

model, as it lacksmechanisms such as prices and substitutability;

any additional energy demand effects caused by electrification or

changes to the costs of energy services are assumed to have

alreadybeen included in theNRELenergyscenarios thatweapply.

We make three contributions to the wider debate on the labor

market impact of the green transition. First, we show that the

aggregate demand for jobs does not follow a linear pattern but

rather three distinct phases—scale-up, scale-down, and the

low-carbon power system. Second, we challenge the commonly

used green vs. brown jobs dichotomy of occupations, providing

a more accurate and meaningful list of demand trajectory typol-

ogies for occupations—temporary growth, consistent growth,

consistent decline, and late growth. Third, we use methods

from network science to quantify the frictions faced both by em-

ployers seeking qualified labor and workers looking for jobs in

each phase of the transition.

While it is beyond the scope of this work, the extent and timing

of further electrification and prospective efficiency drives will be

important factors. To focus specifically on the labor impacts of

the low-carbon transition, all of our results are shown as relative

to a second NREL no-new-policy reference scenario. We apply

our method to the US transition, but, with sufficient data, this

approach could be applied to virtually any modeled energy-

economy transition scenario for any country or region.

The remainder of this paper is organized as follows. In section

‘‘temporal heterogeneity in labor demand during the transition,’’

we present the transition scenarios and estimations of labor de-

mand dynamics. This is followed by ‘‘temporal typology of occu-

pational demand change,’’ where we introduce our suggested

classification of occupations according to the demand dy-

namics. In ‘‘skills shortages and stranded labor,’’ we use network

tools to identify potential skill mismatches and frictions. We

discuss the results of several robustness check in section

‘‘robustness of results.’’ We conclude with a discussion on this

paper’s contributions and implications. Our methodological

approach, based on coupling power transition scenarios with a

dynamic IO model to assess labor demand and occupational

mobility, is detailed in ‘‘methods.’’

RESULTS

Temporal heterogeneity in labor demand during the
transition
The two NREL scenarios we use are shown in Figure 1. The left

panels display the capacity and generation profile of the refer-

ence scenario that we use, which assumes no new carbon

reduction policies beyond those in place as of June 2021

(without, e.g., the more recent IRA). The right panels depict the

fast transition scenario, where the model is required to reach a

95% decarbonized system from 2035 onward. Both models
Joule 9, 1–18, February 19, 2025 3
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Figure 1. The US power sector scenarios

we use in this study

The upper panels show the capacities in GW and

the lower panels the electricity generation in TWh

in yearly resolution. On the left, we show NREL’s

no-new-policy reference scenario that we use as

the counterfactual and on the right NREL’s fast

95% by 2035 scenario. Source: NREL,44 with

technological categories aggregated according to

Table S1: gas electricity also includes gas with

carbon capture and storage (CCS) technology. Up

to 2020, the figures show historical data from the

Electric Power Annual 2020.45
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are the result of a cost-optimized energymodel with fixed and in-

elastic electricity demand. The increase in renewables in the

reference scenario, for example, shows the cost effectiveness

of including renewables with policies as of June 2021. For

more details on the modeling assumptions used in the NREL

scenarios, see Cole et al.44 The corresponding emission path-

ways are shown in the supplemental methods Figure S1. The

95% by 2035 scenario results in slightly higher total generation

because of higher losses during transmission and storage, and

energy used for carbon capture. Note that we model natural

gas with carbon capture technology as a separate variety

included in the natural gas part of our study (see Table S1 in sup-

plemental methods section C.1).

The fast transition scenario we consider here is an interesting

study case, but it should be pointed out that other low-carbon

energy mixes are feasible, possibly involving very different sets

of technologies (e.g., see, Bistline et al.42 and Pickering

et al.46). Different technology choices would lead to different la-

bor market impacts. Thus, the results presented should not be

understood as covering the whole spectrum of labor market im-

pacts of the power sector transition but, rather, model the poten-

tial impacts of specific future scenarios.

In supplemental methods section D.1 and accompanying Fig-

ure S7, we show how the scenarios translate to operating ex-

penses (opex) and capital expenses (capex), taking replacement

and newly built capacity into account. In the 95% by 2035 sce-

nario, we find a large increase in investment in renewable tech-

nologies (solar, wind, and batteries) and the transmission and

distribution (T&D) network until 2035 and a decline afterward in

the 95%by 2035 scenario. On the opex side, renewable technol-

ogies require a larger share of total cost over time in the 95% by

2035 scenario, while themain change in the reference scenario is

a switch from coal to natural gas opex. As explained further in
4 Joule 9, 1–18, February 19, 2025
the methods section, we use an IOmodel

to estimate the direct and indirect—sup-

ply chain—effect on worker demand.

Transition scenario and labor
market impact
In Figure 2, we present our model’s esti-

mates of the labor demand relative to

the reference scenario for industries and

occupations between 2020 and 2050.

For visualization purposes, the labels
indicate 2-digit NAICS (North American Industry Classification

System) codes (20 industries) and 22 high-level occupational

categories, but this is an aggregation of results using a more

detailed classification of 82 industries and 539 occupations.

These industries and occupations represent all nonfarmUS firms

and workers—with the exception of the US government defense

sector. See supplemental methods section E for the full list of in-

dustries and occupations. When we refer to ‘‘jobs’’ gained (lost)

or worker demand that increased (decreased) in this study, we

refer to the net increase (decrease) in demand within industries

or occupations relative to the reference scenario. See methods

for more information.

Across all industries with labor demand growth, we predict an

increase in demand of about 633,000 workers by 2034

compared with the reference scenario. In the same time period,

52,000 jobs are lost in industries with a decrease in demand, giv-

ing a net growth of around 580,000 workers by 2034. In testing

the sensitivity of our analysis against some of the key uncer-

tainties in the modeling (see supplemental methods section

D.6), we find that the net growth in the number of workers at

the peak in 2034 can be between 450,000 and 800,000, with

580,000 being our base case.

To put our estimates in perspective, a total change of 685,000

jobs (633,000 growth plus 52,000 decline) accounts for just 0:4%

of the current US employment and roughly 0.15% of the

estimated US labor market flux within 15 years.48 Not all job tran-

sitions are occupational transitions: Vom Lehn et al.49 calculates

that approximately 5.9% of US workers switched occupations

per year between 2000 and 2018, although in recent times, occu-

pational switching appears to have slowed down. While a

change of 685,000 workers may seem small with respect to total

employment and labor flows, job changes caused by the energy

transition could be highly geographically concentrated.43



Figure 2. Total additional demand change for workers in the 95% decarbonization by 2035 scenario

(A) Per aggregated industry and (B) per occupation category. The demand change is net of the NREL no-new-policy reference scenario. Industries are plotted at

the detailed level used in the analysis (82 industries) but colored by their 2-digit aggregated categories (14 of 20 categories are minimally affected and shown in

gray scale14). Occupations are plotted at the detailed level used in the analysis (539 occupations) and colored by their 2-digit level aggregation (13 of 22

occupation groups are minimally affected and shown in gray scale47). Different phases of the transition are demarcated with dotted vertical lines and labeled.
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Therefore, theremay be skill shortages within regions where jobs

are created and a concentration of displacedworkerswhere jobs

are lost. While the former may slow down the transition, the latter

can lead to local economic decline and rising political discon-

tent.50 Furthermore, the US labor market is still relatively tight

with low unemployment and high number of vacancies,51 which

can make additional skill shortages harder to absorb.

An important contribution of this study is the temporal

dimension of labor demand and skill mismatch, both during the

electricity sector transition and beyond. We focus on the hetero-

geneity of temporal trajectories for demand of detailed industries

and occupations.

Temporal phases of labor demand
Our temporal analysis shows three distinct phases in the

demand for labor in the electricity supply chain over the full tran-

sition. The first phase, before 2034, is the scale-up phase, in

which the work is done to reach the goal of a 95% decarbonized

electricity generation by 2035. It includes an increase in overall

demand for labor, mainly driven by the need to replace existing

fossil-fuel generation infrastructure with renewables and addi-

tional electrification. The next phase, between 2034 and 2038,

is the scale-down phase, characterized by decreasing overall la-

bor demand as most of the new replacement infrastructure is

built. Together, the scale-up and scale-down phases make up

what we refer to as the ‘‘transition phase.’’

Such fluctuations are not new and are to be expected in large-

scale infrastructure projects or technological transitions. For

example, railway construction started in Ireland in 1833, and

employment grew to over 30,000 workers in 1847 during the rail-
way mania. By 1849, the number of workers had fallen back to

10,000–15,000, where it remained until 1860.52 In amoremodern

example, BT Group in the UK announced job cuts in 2023 when

its fiberglass cable expansion was finished. One labor union

representative acknowledged that such job cuts were ‘‘no sur-

prise’’ given the infrastructure changes.53

After the transition phase begins the ‘‘low-carbon power sys-

tem’’ phase. While grid expansion continues in this phase until at

least 2050, the demand for labor is relatively stable. We estimate

the new low-carbon power system will have about 117,000 net

more employed workers compared with a no-new-policy refer-

ence scenario (see supplemental methods section D.6 for a

sensitivity analysis on this estimate).

Whenwedivedeeper into the industryprofiledetails (Figure2A),

we find that the largest contributors to the peak in 2034 are the

manufacturingandconstructionsectors,whicharecrucial for pro-

ducing renewable energy technologies and deploying the neces-

sary infrastructure. Smaller industries, such as professional, sci-

entific, and technical services, and wholesale trade, also fit

within this group. Other industries behave in different ways. Fos-

sil-fuel industries, including some utility industries and mining,

see a net loss of worker demand over the entire period. Such los-

ses could be lessened depending on global demand for US ex-

ports, such as possible increases in demand for US natural

gas.54,55 (See also supplemental methods section D.6 for more

details on import and export scenarios). Vice versa, utilities that

are based on renewables experience a net gain in labor demand.

We map sectoral labor demand changes to 539 occupations,

assuming a fixed occupational compositions per sector. Fig-

ure 2B shows the labor requirement dynamics per aggregate
Joule 9, 1–18, February 19, 2025 5



Figure 3. Occupation demand change relative to employment in the 95% by 2035 scenario

On the vertical axis, the net demand change between 2021 and 2034 (scale-up phase), and on the horizontal axis, the change between 2034 and 2048 (scale-

down phase). The demand change is relative to the no-new-policy reference scenario. Three occupations (wind turbine technicians, power plant operators, and

solar PV installers) that lie outside of the rectangular zoom-in box are labeled. The zoom-in box does not cover any data point in the main plotting area.

Occupations within the gray circle shown in the zoom-in box experience less than 1% demand change are considered minimally affected; all other occupations

are categorized by the labor transition typology that is formed by the four quadrants, which are labeled in purple. Occupations are colored according to their mean

wage. The occupational profiles on the right show the full temporal dynamics for four selected occupations. Gray error bars are constructed via the sensitivity

analysis on the trajectory calculation (see supplemental methods section D.6).
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occupation category. This represents an unconstrained estimate

without considering elasticity of demand or substitution between

physical capital and labor. We will discuss potential frictions this

causes in the later section skills shortages and stranded labor.

We highlight two results on Figure 2B: first, as seen by the dif-

ferences in the mass of color below the x axis, occupations

experience much fewer job losses than industries. This is due

to the fact that the same occupations are needed in many

different industries. For workers in such occupations, the transi-

tion might involve a change of firm and sector, but not neces-

sarily a change in occupation.

Second, while it is apparent that industries experience different

temporal employment dynamics (e.g., comparemanufacturing vs.

utilities vs. mining), most of the 22 occupational categories move

through the transition more or less in tandem. In the next section,

however, the heterogeneity becomes apparent at the more

detailed occupation level.
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Temporal typology of occupational demand change
To better understand skill mismatches, we study the temporal dy-

namics of different occupations. In Figure 3, we plot the change in

demand for all occupations during the initial scale-up phase

against the change in demand during the later scale-down phase

of the power system transition.

We classify occupations into five types based on the dy-

namics of their demand.56 We classify occupations that lie

within the gray circle as ‘‘minimally affected.’’ The combined

demand change of these occupations in the scale-up and

scale-down phases is less than 1% of their 2020 employment

level.57 This group consists of 423 out of the 539 occupa-

tions, or 88% of total US employment in 2020. The minimally

affected occupations include all legal, healthcare, and educa-

tion occupations, and the vast majority of sales, administra-

tive support, management, and business workers, among

others.



Figure 4. Network of related occupations

Nodes represent occupations, and two occupa-

tions are connected if workers can switch

between them, as defined by the list of related

occupations from O*NET. The layout of both net-

works is the same and is obtained using a force-

pull algorithm. In (A), the network is colored by

broad occupational categories, and in (B) by their

temporal profile typology.
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The remaining occupations are classified based on the quad-

rants in Figure 3. The top-right quadrant corresponds to the

‘‘consistent growth’’ occupations that experience a demand in-

crease during both the scale-up and scale-down of the electricity

transition. This group has only three occupations: solar photo-

voltaic (PV) installers, wind turbine service technicians, and

power line installers. Relative to the no-new-policy baseline,

the demand for solar PV installers is expected to increase by

20% between 2020 and 2038, and the demand for wind power

technicians is expected to increase by 80%. To achieve the

fast transition scenario, a substantial number of new workers in

these occupations needs to be trained.

The bottom-left quadrant corresponds to the ‘‘consistent

decline’’ group, which experiences a decline in demand during

both the scale-up and scale-down phase. The 13 occupations

of this group are mainly employed in mining and extraction

and fossil-fuel operations. We find some of the largest reduc-

tions in demand for power plant workers, roof bolters, mining

machine operators, and mine shuttle operators. Note that our

analysis focuses on the power sector only and thus does not

include other fossil-fuel uses, such as direct coal use in the

steel sector or fossil-fuel powered vehicles. If the power sector

transition is accompanied by a low-carbon transition in other

sectors, the decline in these occupations and others in fos-

sil-fuel extraction industries will be even more dramatic. On

the other hand, some of these losses might be reduced if

global demand for US fossil-fuel exports, such US natural

gas, increases, as some have predicted.54,55 (See also supple-

mental methods section D.6 for more details on import and

export scenarios).

The top-left quadrant of Figure 3 corresponds to the 97 ‘‘tem-

porary growth’’ occupations that have an increase in demand

during the scale-up phase followed by a decline during the

scale-down phase. The temporary growth occupations cover

more than half of production, construction, and engineering

occupations, as well as some installation and maintenance,

management, business, and administrative occupations.

Finally, there are no late growth occupations in the bottom-

right quadrant; i.e., there are no occupations that experience a

decrease in demand during the scale-up phase and an increase

in demand during the scale-down phase.
Skill content and overlap with
green jobs classifications
Following the methodology developed

by Consoli et al.,58 we examine the skill

content of these groups in supplemental

methods section D.4.2. We find that the
occupations most adversely affected by the transition have

higher manual and routine skills. This is particularly true for the

consistent decline occupations. Consistent growth occupations

score above average on non-routine interactive skills, and

consistent decline occupations score below average. The other

skills (analytical and cognitive) show fewer differences on aggre-

gate. We find a slightly negative correlation coefficient of �0.06

between mean annual wage and ‘‘temporary growth occupa-

tions.’’ The correlation coefficients between wage and consis-

tent growth or consistent decline are less than 0.01.

In Figure S13 in supplemental methods section D.4.1, we

map the current location quotients by US state of the occupa-

tion typology, which highlights the current geographical differ-

ences between some of these occupations. For example,

both Wyoming and West Virginia see a strong permanent

decline profile, but Wyoming has more permanent growth oc-

cupations because it has more installed wind power capacity

relative to its population. However, we want to stress that this

refers to 2018 data and does not include potential future

renewable capacity locations.

As expected, consistent decline occupationsmostly belong to

brown occupations as defined by Vona et al.,36 and consistent

growth occupationsmostly belong to ‘‘green new and emerging’’

occupations as defined by Dierdorff et al.35 Temporary growth

occupations do not fit neatly into either category.

This challenges the green vs. brown dichotomy: the demand

pattern of temporary growth occupations is similar to consis-

tent growth occupations for the scale-up phase but better re-

flects the pattern of consistent decline occupations during the

scale-down phase. We find that temporary growth occupations

are included in existing classifications of both green and brown

occupations. See supplemental methods section D.5 for more

information.

Skills shortages and stranded labor
A key focus of this study is to identify skill-mismatch frictions that

may arise in the scale-up and scale-downphases of the transition.

We follow previous work on skill mismatch using skill related-

ness.27,28,38 We use a list of related occupations from O*NET

that provide career switching options for each occupation and

create an occupational mobility network where the nodes
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Table 1. Assortativity of labor demand during the transition

Assortative attribute Assortativity

Occupational typology (consistent decline,

consistent growth, temporary growth)

0.43a

2021–2034: demand change during the

scale-up phase

0.05a

2035–2038: demand change during the

scale-down phase

0.26a

aIndicates results that are greater than for a randomized shock in 99.9%

of simulations in a Monte Carlo simulation (see methods for details).
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represent occupations. Links are drawnbetween twooccupations

if workers can switch between them, similar to the network used in

Bowen et al.38 (seemethods and supplemental methods sections

A.4 and B.9).

Figures 4A and 4B show the network structure with the nodes

(occupations) colored by eleven broad occupational categories

(supplemental methods section A.3.1) and our trajectory-based

typology, respectively. Most affected occupations cluster in

the upper side of the network, suggesting that the transition af-

fects specific parts of the labor market much more. Because

affected occupations are linked, skill-mismatch frictions are

likely to be present for some occupations.

Overall presence of skill-mismatch frictions
We confirm our visual analysis using assortativity, a standard

network science metric (see methods). Assortativity in networks

refers to the tendency of nodes to be connected to other nodes

that are like (or unlike) them with respect to specific attributes.

Assortativity is a network-wide measure. An assortativity value

of 1 means all occupations only link with similarly impacted

nodes; a value of 0 indicates random mixing. Thus, a high

assortativity value indicates that occupations are only connected

to other occupations that face a similar shock, and overall skill-

mismatch frictions are high.

Using our typology of consistent growth, consistent decline,

and temporary growth occupations, we find positive and sig-

nificant assortativity (Table 1). Thus, as suggested by Figure 4,

occupations tend to be connected with other occupations

within the same group, rather than with occupations of other

groups.

When we calculate the assortativity coefficient directly on the

change in demand scale-up phase, we find a positive but rela-

tively low level of assortativity. This indicates that while frictions

do exist in the scale-up phase, there are still career options avail-

able for workers moving out of shrinking occupations. This

concretely means that workers in the consistent decline group

have possibilities to move to occupations in the temporary

growth or consistent growth groups.

By contrast, assortativity in the scale-down phase is higher,

indicating that career changes from consistent decline and tem-

porary growth occupations to consistent growth occupations

are likely to be less common. Thismeans that skill-mismatch fric-

tions are of greater concern in the later stages of the transition.

The results show that the network exacerbates the labor market

impacts of the different phases of the transition but that these

impacts are not static—they evolve.59
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Skill-mismatch consequences for individual
occupations
Skill-mismatch frictions can affect both the supply and demand

side of the labor market. An increase in demand for an occupa-

tion as well as for its related occupations (neighbors) means em-

ployers will find vacancies harder to fill. Conversely, a decrease

in demand for an occupation and its related occupations can

make it harder for displaced workers to find new employment.

We therefore look at both frictions in moving away from one’s

occupation to other occupations (its out-neighbors) and frictions

in attracting workers to an occupation from other occupations

(its in-neighbors). For occupations that see a decline in demand,

out-neighbors are important. Vice versa, in-neighbors are impor-

tant when considering occupations that experience demand

growth.

To highlight occupations most affected by skill-mismatch fric-

tions during the first phase of the transition, in Figure 5, we plot

the demand change for the scale-up phase against the demand

change for the pool of workers in related (neighboring) occupa-

tions. Frictions are strongest in the gray areas of this figure,

where the demand change for individual occupations is similar

to the demand change for its neighbors.

The figure is split along the x = 0 line. On the left side of the

x = 0 line, the darker shading indicates increased frictions for

workers: that is, it becomes harder for displaced workers to

find new employment. We thus compare the average shock to

occupations with their out-neighbors on the y axis. These data

points are shown as squares in Figure 5. For a given occupation

a, out-neighbors are related occupations: they form potential

career switching options for workers in a.

Vice versa, on the right side of the x = 0 line, the darker

shading indicates increasing employer frictions: that is, it be-

comes harder for employers to fill vacancies. Here, we compare

the shock to occupations with the average shock to their in-

neighbors. These data points are shown as circles. Again, for a

given occupation a, in-neighbors are occupations for which a

is a related occupation: workers in those occupations see a as

a potential career switching option. In- and out-neighbors can

overlap but are not necessarily the same.

Along the identity line, occupational frictions are aligned

assortatively, and an occupation is as affected as their neigh-

boring pool of related occupations. In other words, for occupa-

tions along the identity line, labor market pressure caused by

the transition cannot easily be alleviated by switching occupa-

tions or headhunting workers with compatible skills. Farther

away from the x = 0 line, shocks to individual occupations can

be partially alleviated by switching between occupations.

During the scale-up phase, most of the skill-mismatch frictions

affect employers struggling to find suitable workers, including for

manufacturing occupations such as tool and die makers, con-

struction occupations such as construction laborers, and renew-

able operations workers such as wind turbine service techni-

cians. ‘‘Derrick, rotary drill and service unit operators, and

mining’’ see an increase in demand in this phase, but its

neighbors, on average, see a very small decline, suggesting an

availability of workers to fill vacancies.

Some occupations, such as ‘‘roof bolters’’ and ‘‘power plant

operators,’’ see their demand decrease but experience a milder



Figure 5. Skill mismatch during scale-up phase

Scatterplot of demand change in the scale-up phase (2021–2034) per occupation (x axis) and their neighbors (y axis) in the 95% by 2035 scenario, relative to the

no-new-policy reference scenario. If the occupation has a positive (negative) demand change, we average the neighbor demand change over its in- (out-)

neighbors. Out-neighbors of occupation a are related occupations: they form potential career switching options for workers in a. Data points using out-neighbors

are shown with squares. Vice versa, in-neighbors of a are occupations for which a is a related occupation: workers in those occupations see a as a potential

career switching option. Data points using in-neighbors are shownwith circles. In- and out-neighbors are not necessarily the same. The identity line is shownwith

a dashed line, and selected occupations are highlighted. Three occupations (wind turbine technicians, power plant operators, and solar PV installers) that lie

outside of the rectangular zoom-in box are labeled. The zoom-in box does not cover any data point in the main plotting area. The intensity of background shading

corresponds to more occupational frictions: worker frictions for x < 0, employer frictions for x > 0. The gray scaling is a linear function of the neighborhood shock,

when the sign of the demand change for individual occupations is the same as for its neighbors (i.e., top-right and bottom-left quadrants). On the right of the main

plot, demand change profiles over time are shown for occupations highlighted in red. The four quadrants are labeled by the main effect of the occupational

network faced by each occupation.
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overall impact as demand increases in their pool of out-neigh-

boring related occupations, meaning the network helps alleviate

(part of) the direct negative impact.

In the scale-down phase, as shown in Figure 6, the situation is

reversed. In contrast to the scale-up phase, displaced workers in

many occupations, excluding the minimally affected, will strug-

gle to find compatible jobs in the scale-down phase. The con-

struction and manufacturing occupations, as well as mining

and fossil-fuel workers, all see a decline in demand, as well as

a decline in demand for occupations with similar skills (that

they might be able to transition to).

We find that many of these occupations align along the identity

line of assortative frictions, confirming the relatively large assor-

tativity coefficient for the scale-down phase in Table 1. Solar PV

installers and wind turbine service technicians still face large de-

mand increases but see some of the hiring difficulties alleviated
because demand declines in their neighborhood, albeit to a

limited extent. Thus, successfully managing the power system

decarbonization will involve policies aimed at supporting

workers to switch from temporary growth and consistent decline

occupations into consistent growth or minimally affected

occupations.

We find no relationship (Pearson correlation coefficients are

smaller than 0.05) between mean annual wages and an increase

or decrease in demand in the scale-up or scale-down phases.

This means that, while specific occupations with low or high

wage may be impacted, the temporal dynamics of the transition

may have limited effects on the overall mean wage.

The six occupations most closely related (in-neighbors) to

wind turbine service technicians are energy engineers; solar

PV installers; power plant operators, distributors, and dis-

patchers; pipelayers, plumbers, pipefitters, and steamfitters;
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Figure 6. Skill mismatch during scale-down phase

Scatterplot of demand change in the scale-down phase (2034–2038) per occupation (x axis) and their neighbors (y axis) in the 95% by 2035 scenario, relative to

the no-new-policy reference scenario. If the occupation has a positive (negative) demand change, we average the neighbor demand change over its in- (out-)

neighbors. Out-neighbors of occupation a are related occupations of a: they form potential career switching options for workers in a. Data points using out-

neighbors are shown with squares. Vice versa, in-neighbors of a are occupations for which a is a related occupation: workers in those occupations see a as a

potential career switching option. Data points using in-neighbors are shown with circles. In- and out-neighbors are not necessarily the same. The identity line is

shown with a dashed line, and selected occupations are highlighted. The zoom-in box does not cover any data point in the main plotting area. The intensity of

background shading corresponds to more occupational frictions: worker frictions for x < 0, employer frictions for x > 0. The gray scaling is a linear function of the

neighborhood shock, when the sign of the demand change for individual occupations is the same as for its neighbors (i.e., top-right and bottom-left quadrants).

On the right of the main plot, demand change profiles over time are shown for occupations highlighted in red. The four quadrants are labeled by themain effect of

the occupational network faced by each occupation.
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installation, maintenance, and repair workers, all other; and in-

dustrial production managers. Using these neighboring related

occupations, we can see how Figures 5 and 6 relate to Figures 3

and 4. For example, in Figure 3, wind turbine service technicians

are in the consistent growth quadrant, and power plant opera-

tors in the consistent decline quadrant. Wind turbine service

technicians are part of installation, repair, and maintenance

occupations, and power plant operators are part of production

occupations in Figure 4A, but these two occupations are con-

nected and are placed close together in the network in Figure 4B.

Because wind turbine technician is an out-neighbor of power

plant operators, and, vice versa, power plant operators is an

in-neighbor of wind turbine technicians, they influence each

other’s y axis value in Figures 5 and 6. In particular, the connec-

tion between the two occupations increases the out-neighbors
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average shock to power plant operators and lowers the in-neigh-

bors average shock to wind turbine service technicians, lowering

skill-mismatch frictions for both.

Occupations most closely related to solar PV installers are

similar to those related to wind turbine service technicians,

but, in addition, include electricians, broadcast and sound engi-

neering, technicians and radio operators, construction and

building inspectors, and first-line supervisors of construction

trades and extraction workers.

Beyond 2038, the demand for workers remains higher than the

reference scenario and is relatively stable, although demand is

much lower than at the peak of the scale-up phase. This increase

in demand for workers arises for two reasons. First, grid

expansion is ongoing until at least 2050 (Figure S2). Second,

the scenario foresees an increase in both capacity and demand
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for electricity relative to the reference scenario, which increases

the overall demand for labor.
Robustness of results
As we show in detail in the methods and supplemental methods

section D.6, we have extensively tested the sensitivity of our

model and found that our results are robust with respect to a

number of important assumptions (fixed IO coefficients and

cost vectors, industry-occupation composition, etc.) We have

also identified two key sources of uncertainty in our analysis.

First, lower labor requirements from T&D investments (e.g.,

due to higher levels of innovation and automation) could lead

to lower employment in the electricity supply chain, bringing

them almost on par with the no-new-policy reference scenario.

This would affect occupations related to T&D most strongly,

such as electrical power line installers.

Second, the fraction of imports and exports can change during

the transition, which impacts the demand for labor. As

mentioned in the introduction, our main scenarios reference

everything to 2018 levels, keeping the relative share of imports

fixed and absolute size of exports fixed. The underlying logic

for the inconsistent treatment of imports and exports is moti-

vated by two facts: first, NREL’s 95%by 2035 scenario concerns

the transition in the US only. If the US shifts from the reference

scenario path to the 95% by 2035 scenario, but the rest of the

world does not change course, and import and export shares

remain constant, the US will import more in absolute terms but

exports will remain the same. Second, our results are presented

relative to a no-new-policies reference scenario. Potential im-

ports and export changes that affect both the reference scenario

and the US 95% by 2035 scenario equally cancel each other out

in our results. If, however, the US changing course to the 95% by

2035 scenario induces the rest of the world to also increase the

pace of the power sector transition, our assumptions about

imports still correspond to ‘‘all else being equal,’’ but our as-

sumptions about US exports might be pessimistic because US

exports would become smaller in proportional terms, corre-

sponding to a situation where US manufacturing becomes less

competitive, relatively speaking, than it is now.

To deal with these uncertainties, we investigate four alterna-

tive scenarios. In broad outlines, in order of most pessimistic

about changes to US competitiveness to most optimistic, these

are:
(1) The share of US imports increases by 50% while exports

remain constant.

(2) The share of US imports decreases by 50%while exports

remain constant.

(3) The share of US imports remains constant while the ex-

ports, compared with 2022 levels, double to triple in

2030 and increase 4- to 9-fold in dollar-terms by 2040, de-

pending on how 2022 export data are interpreted (this is

also consistent with a scenario in which the global market

for renewables increases by a factor of four to nine and

the US share of this market remains constant).

(4) The share of US imports decreases by 50%while exports

increase as in scenario (3) above.
These are stylized scenarios, but we have chosen the magni-

tude of import share changes in the alternate scenarios to be

roughly in line with the historical behavior, as seen in Figure S4

in supplemental methods section C.2. To put this in perspective,

between 1997 and 2014, the import share of computer and elec-

tronic productmanufacturing went from 33% to 54% in 2014 and

then declined to 44% in 2018. It is conceivable that the results of

the IRA, which has the ambition to increase US domestic

manufacturing,60 or other legislation will increase US production

beyond any of our scenarios here. Regardless of whether such a

rise in US exports occur, our qualitative conclusions remain

robust in the four alternative scenarios that we tested, as shown

in Figure S20 in supplemental methods section D.6: relative to

the reference scenario, the variation in the total number of jobs

in our model between the most pessimistic and most optimistic

scenarios ranges from about 560,000 to 630,000 in 2034, and

ranges from about 40,000 to 270,000 in 2045.

DISCUSSION

The transition to a world powered by renewable energy will

involve a transformation of part of the labor market. In this

work, we couple a dynamic IO model with a network analysis

of occupational mobility and show that such a transition has

the potential to generate temporal labor market fluctuations

and skill mismatches.

We make three contributions to the wider debate on the labor

market impact of the green transition. First, we find that more

jobs will be created than lost in the US during the initial part of

the renewable electricity transition—which is in linewith previous

research—but we also find that a large fraction of these new jobs

will only be required during the scale-up period of the fast

transition. The labor market dynamics will change throughout

the transition phase until the new stable decarbonized energy

system is in place. These dynamics are missed if the scale-

down phase, and a new stable decarbonized energy mix phase

are not included in the time horizon.

Second, in addition to the direct effects on occupational labor

demand, we show that there are important secondary effects if

related occupations are affected in similar ways. This creates a

skill mismatches, especially in later stages of the transition. In

the initial scale-up phase, we find the potential for skill shortages

that could jeopardize the speed of the transition. In the later

scale-down phase, we anticipate that related occupations expe-

rience similar demand declines, negatively affecting workers’

ability to find jobs. Temporal skill mismatches have received

limited attention in previous literature but are important when

considering the employment impact of the transition.

Third, we identify a 4-fold occupational typology based pri-

marily on the scale-up and scale-down phases of the transition.

Besides the large group of mostly unaffected occupations, a

small number of occupations see a sustained growth in demand,

a larger group sees a consistent decline, and most occupations

that are affected experience a temporary rise in demand during

the scale-up and an almost equal decrease in demand after

the electricity sector reaches its decarbonization target.

The green and brown jobs dichotomy cannot fully capture the

temporal dynamics of the electricity sector transition. We find
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that the occupations that experience only temporary growth do

not fit neatly in either category, overlapping with both brown

jobs from Vona et al.36 and green jobs from Dierdorff et al.35

More specifically, the demand pattern of temporary growth

occupations is similar to consistent growth occupations for the

scale-up phase but better reflects the pattern of consistent

decline occupations during the scale-down phase. Workers in

such occupations will be vital to ensuring the renewable elec-

tricity transition happens quickly, but additional care needs to

be taken to manage their long-term career trajectories.

Compared with the estimates in previous literature, as spelled

out in the introduction, our results are in line with Xie et al.18’s

estimate of US employment changes due to power sector decar-

bonization (439,000 net jobs) and the ILO’s estimate for theAmer-

icas as a whole of an IEA scenario to keep warming below 2�C14

(�700,000 net US jobs). Conversely, our estimates are roughly an

order of magnitude lower than those reported by Jacobson

et al.13 (�2 million), Mayfield et al.16 (�1.5–6 million), or Ram

et al.17 (�4 million). This discrepancy is in part due to the fact

that these studies include the entire energy sector, rather than

just the electricity sector. Some also do not report results relative

to a reference scenario, which in our case already contains

substantial decarbonization, or have their headline results

aggregated over a longer time period. Thus, while we look at a

subset of changes, the effects we uncover may be amplified

when considering the entire energy sector or longer time periods.

Our results are derived specifically for the US. Other countries

have a different economic structures and, hence, results should

not be extrapolated. For example, in ILO,14 the change in labor

demand ranges from +0.45% of the workforce (Americas) to

�0.48% (Middle EAST) for a scenario consistent with limiting

warming to 2�C. Likewise, Jacobson et al.61 report global net

job growth for a scenario with 100% renewable energy by

2050 but also find that net job losses are possible for some

fuel producing countries. Furthermore, the scope and pathway

of emission reduction will differ per country. For example, while

energy is the major source of emissions in most countries, in

Brazil, it is deforestation and agriculture, as its energy sector is

already highly decarbonized.34

The rapid transition scenario considered here involves a non-

marginal increase over the reference scenario in the demand for

three key consistent growth occupations: solar PV installers,

wind turbine service technicians, and power line installers. Given

that the skills needed for these occupationswill be in high demand

during the scale-up, itwill be important to rampup training in antic-

ipation of such shortages to avoid bottlenecks slowing down the

transition. To find how much the transition may be slowed by

such skill shortages, the occupational bottlenecks would need to

be coupled with, or incorporated endogenously in the energy-

economy model that produces the transition scenario.

Our sensitivity analysis in the methods and supplemental

methods section D.6 tests and discusses the most important as-

sumptions in our model, including changes to import and export

assumptions and T&D cost calculation. In our main scenarios,

we keep import fractions at the industry-level constant and ex-

ports constant in absolute value. However, if the US’s interna-

tional competitiveness in green technologies could be improved

by a fast transition, this could alleviate some of the difficulties for
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workers in the domestic scale-down phase. Similarly, growing

natural gas exports could limit the negative impact on some fos-

sil-fuel workers.54,55 The continuing cost declines of renewables

is another important consideration. We take our projections from

NREL’s annual technology baseline (ATB), but recent research

using empirically grounded technology learning curves suggests

that wemight see evenmore aggressive cost declines for renew-

ables and storage in the future,4,5 especially with additional pol-

icies such as the IRA. In our sensitivity analysis, more advanced

cost curves lead to lower demand growth for labor in the power

sector supply chain.While cost curves for some technologies are

well documented, estimating future cost and labor requirements

for grid expansion is challenging due to limited available esti-

mates in the literature.

Cost curves affect our labor demand estimates directly

because we assume a fixed ratio of workers per constant-dollar

of cost. This suggests a cost breakdown neutral path of innova-

tion, where productivity is fixed in monetary units (USD output

per worker) but can change in energy units (GW(h) output per

worker).Weprovide someempirical evidence on this assumption

in supplemental methods section C.6 and discuss further meth-

odological assumptions in supplemental methods section B.1.

We have demonstrated an approach that can provide valuable

insights into the labor market frictions associated with a major

transition, applied to the US power sector. This method is rela-

tively simple, transparent, and generic, yet it can give granular

results. Our approach naturally incorporates cost-reduction

forecasts and can be easily extended with more data granularity.

In light of the heterogeneous demand trajectory types that we

have identified and the need for rapid decarbonization, we

conclude that the transition requires enlightened management

to minimize skill mismatch for displaced workers and skill

shortages in filling vacancies. For example, targeted retraining

programs can make additional transition options become

feasible and alleviate pressure on certain occupations.

Monitoring how workers make career decisions during the

transitions can help validate our skill-mismatch results. Empirical

transition data from national surveys and CV repositories have

been used to show that occupational similarity translates into

how workers move between them.28,62 Future work could

employ a similar approach to validate the frictions identified in

this work with future empirical data.

Our method is sufficiently simple that it can and should be

applied regularly as new data and insights on labor market

changesbecomeavailable. Likewise, the convergenceof different

perspectives regarding future technological selections will

enhance scenario refinement and subsequently improve the re-

sults. Early identification of the potential causes of labor stranding

andshortagescanenablepolicymakers toeffectivelyhelpworkers

and employers tackle these frictions, thereby making the green

transitionhappen faster andmoreequitably, andultimately reduce

the global warming that future generations must face.

METHODS

Methods approach
We followed a four-step framework that couples a power transi-

tion scenario (step 1) with a dynamic IO model to estimate



Figure 7. Overview of our four-step meth-

odology

First, we calculate the cost of the power sector

decarbonization, both in terms of capacity

changes (investments), and electricity production

(operational costs) of different technologies. The

IO model then calculates the direct and upstream

supply chain changes in terms of industry output and, subsequently, demand changes for workers per occupation. Finally, we use occupational networks to

calculate skill mismatch and skill shortage frictions.
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upstream impacts (step 2), applying detailed occupational

employment data (step 3) and an occupational mobility network

(step 4) to assess labor market frictions. The approach is

pictured stylistically in Figure 7, and each of the steps are

described in detail below. To focus specifically on the labor im-

pacts of the low-carbon transition, all of our results are shown

as relative to a no-new-policy reference scenario (which is trans-

lated into our framework using the same four-step procedure). In

supplemental methods section D.3, we present some of the re-

sults relative to the year 2020, rather than those relative to the

no-new-policy reference scenario that are shown in the main

text. Additionally, in supplemental methods section D.2, we

show implications for the more gradual 95% by 2050 scenario.
Step 1: Energy and cost scenarios
The first step in our approach involves quantifying future technol-

ogy-specific expenses for electricity generation sectors. We

achieve this by combining the scenarios of future electricity ca-

pacity and generation with exogenous projections of unit costs

for various detailed electricity technologies. For our analysis,

presented in the main text, we utilize the exogenous deployment

and cost trajectories from the fast decarbonization scenario

(95% by 2035) outlined in NREL’s 2021 Standard Scenarios

Report: A US Electricity Sector Outlook.44

For each scenario, we map the deployment (capacity and gen-

eration) of 19 technologies and unit cost projections of 17 technol-

ogies onto 10 electricity generation and supporting sectors (coal,

natural gas, biomass, geothermal, hydro, nuclear, solar,wind, bat-

tery storage, and T&D), as explained in detail in the supplemental

methods section C.1. Since investments and operational ex-

penses affect the IO model differently (see step 2 below), we

consider capital expenditure (capex) and operational expenditure

(opex, which consists of variable and fixed opex, and fuel cost)

separately. See supplemental methods section B.4 for more de-

tails on why we make this cost component disaggregation.

More formally, let cji;t denote the unit cost projectionof electricity

generation technology i of a given cost category j for the year t.We

obtain the total annual costs Cj
i;t for each cost category j as

Cfix opex
i;t = Yi;tc

fix opex
i;t ; (Equation 1)

Cvar opex
i;t = Xi;tc

var opex
i;t ; (Equation 2)

Cfuel
i;t = Xi;tc

fuel
i;t ; (Equation 3)

Copex
i;t = Cfix opex

i;t +Cvar opex
i;t +Cfuel

i;t ; (Equation 4)
Ccapex
i;t = max

�ðYi;t � Yi;t� 1 + Ri;t� 1Þ; 0
�
ccapex
i;t ; (Equation 5)

where Yi;t is the installed capacity of technology i at t in MW, Ri;t

the retired capital stock inMWandXi;t the generated electricity in

MWh. The maximum operator in Equation 5 avoids negative in-

vestment values when total installed capacity declines.63 Note

that capex and fixed opex unit costs are measured in USD per

MW, whereas variable opex and unit costs are given in USD

per MWh.

Since scenarios generated by power system optimization

models can lead to substantial year-on-year fluctuations in

installed capacities, we avoid overly erratic job impacts by

smoothing the total technology-specific cost estimates using

3-year moving averages. In supplemental methods section

D.6, we discuss the impact on our results of removing this

smoothing or extending it to a 5-year moving window.
Step 2: IO model
In the second step, we feed the capex and opex estimates of the

previous step into a demand-driven IO framework to calculate

the output changes throughout the electricity sector and its

upstream supply chain. We consider a standard domestic de-

mand-driven IO model where the total output xi;t of industry i at

time t can be described as the weighted sum of final demand

fi;t and the intermediate demand of other industries:

xi;t =
Xn

j = 1

aij;txj;t + fi;t; (Equation 6)

and in matrix notation:

xt = Atxt + ft: (Equation 7)

The technical coefficient matrix (also called ‘‘IO table’’) Awith el-

ements aij;t stipulates the fixed amount of input i required to pro-

duce one unit of output j.64,65 By defining the Leontief inverse

Lt = ðI � AtÞ� 1, and taking the time difference of Equation 7,

we can write

Dxt = Ltft � Lt� 1ft� 1; (Equation 8)

which demonstrates that industrial gross output can change

over time as a result of changes in final demand ðDftÞ or/and of

changes in the IO network (DAtÞ. We model both components

explicitly by mapping capex and opex, computed in step 1,

onto the final demand ft and the IO table At, respectively. Note
Joule 9, 1–18, February 19, 2025 13
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that this approach explicitly calculates the alteration in input

structure within the electricity sector as different electricity tech-

nologies replace each other, while maintaining constant input

coefficients for other sectors. We do not directly account for

Keynesian income and consumption effects stemming from

shifts in wages or electricity prices. Consequently, our model fo-

cuses on direct and indirect effects while disregarding induced

impacts.

Mapping electricity costs to the IO framework

Changes to electricity technology capex from Equation 5 lead to

changes in final demand in the IO framework. Changes to the

electricity technology opex in Equation 4 instead rewire the inter-

mediate expenses. We require that every electricity generation

technology is represented as a separate sector in the IO data.

In supplemental methods section B.6, we discuss howwe disag-

gregate the energy sector for that purpose.

Capex. Let Kcapex
ij be the fraction of Ccapex

i;t (technology i’s

capex) that is spent on industry j,66 and let mi be the fraction of

capex that is imported from a foreign industry i.67 The capex of

technology i spent on the domestic industry j is thenbKcapex
ij = ð1 � mjÞKcapex

ij : (Equation 9)

The total domestic final demand in industry i due to capex in

technology j follows then as

fcapex;ji;t = Ccapex
j;t

bKcapex
ji : (Equation 10)

Summing over all technologies results into

fcapexi;t =
X
j

Ccapex
j;t

bKcapex
ji : (Equation 11)

We assume that all capex is created in the year it comes online,

such that the impact on the industry output at time t is

Dxcapext = Ltf
capex
i;t � Lt� 1f

capex
i;t� 1 : (Equation 12)

Opex. We use the opex in year t to update the base year IOma-

trix A2018 to At (with elements aij;t) as follows: industry i’s produc-

tion requirement for electricity generated by technology j is

aji;t = aji;2018
Copex

j;t

Copex
j;2018

: (Equation 13)

We perform a similar shift on the opex part of final demand

fopext at time t. Final demand at time t for the opex of electricity

generation technology j is fopexj;t = fopexj;t� 1C
opex
j;t =Copex

j;t� 1. We assume

here that the final demand for electricity is proportional to the to-

tal operational cost, which assumes a fixed and constant

markup. The change in output per industry between time t� 1

and t becomes, following Equation 8:

Dxopext = Ltf
opex
t � Lt� 1f

opex
t� 1 : (Equation 14)

Total effect of opex and capex. To quantify the total change in

sectoral output in a given year, we combine Equations 8, 12, and

14 to the following:
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Dxt = Dxopext + Dxcapext

= Lt

�
fopext + fcapext

� � Lt� 1

�
fopext� 1 + fcapext� 1

�
:

(Equation 15)

Step 3: Modeling occupational demand impacts
We assume that demand for workers per occupation changes

proportionally to industry output, i.e., the number of jobs in a

given occupation per constant-price USD output of an industry

is fixed through time. This means that we allow for proportionally

fewer jobs per MW(h) if innovation pushes real prices down. We

show in supplemental methods section C.6 some empirical evi-

dence for this proportionality in the solar and wind cost break-

down. In supplemental methods section D.6, we show how our

results depend on the speed of such cost reductions.

Let M be the matrix of workers per output, where Mij is the

number of workers in occupation iworking for industry j per con-

stant-USD output. We calculate the total demand change Dot for

workers per occupation between time t � 1 and t with Equation

15 as

Dot = MDxt (Equation 16)

where Dot = ½Do1;t;.;Dom;t� and each elements Doi;t is the de-

mand change for workers in occupation i between time t � 1

and t.

Skills and location quotient

We follow Consoli et al.58 for our calculation of skill content per

occupation (see supplemental methods section D.4.2). In sup-

plemental methods section B.8, we explain how we calculate

the location quotients of occupation-state pairs.
Step 4: Occupational network and frictions
We quantify occupational skill-mismatch frictions using mea-

sures derived from network science.Wewill first define the occu-

pation network, then define network-wide assortativity mea-

sures, and finally our local neighborhood friction measure. We

are concerned with frictions caused by reallocation of workers

between occupations. Any frictions arising from job transitions

between industries within the same occupation are not consid-

ered but could be significant if a geographic relocation is

required, or industry-specific knowledge is important.33

Network of related occupations

The related occupation network is a directed network GðV ;EÞ
where the nodes V are occupations, and the edges E contain a

link between occupations i and j if j is a related occupation of i.

We construct this network using data on related occupations

from O*NET (see supplemental methods section A.4 for further

details). The network is defined by the adjacency matrix R with

items Rij = RelOccij=
P
j

RelOccij, where RelOccij = 1 if j is a

related occupation of i according to O*NET, and 0 otherwise.

O*NET determines relatedness between occupations by

comparing the similarity in: tasks and work activities, knowledge

importance, and job titles.68 Note that this network is not neces-

sarily symmetric.
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Assortativity

We formalize a measure of overall frictions using assortativity. In

network science, assortative mixing refers to the inclination of

nodes to be connected if they are similar with respect to specific

characteristics. We study assortative mixing of the demand

change for occupations during the scale-up and scale-down

phase, and for the demand trajectory typology we identify in

this study.

Assortativity is a network-wide property. We say that a

network is assortative if a significant fraction of the edges in

the network connects similar nodes, or nodes that are of the

same type. In an unweighted network, we can compute the as-

sortativity coefficient,69 which is equivalent to a Pearson correla-

tion between connected nodes’ attributes. The attributes we are

interested in are the demand change, a continuous variable, and

our demand trajectory typology, a categorical variable. In our

analysis, we useweighted continuous assortativity andweighted

categorical assortativity, which are extensions to the assortativ-

ity coefficient for weighted networks with continuous and

categorical variables, respectively. We also define a local node

assortativity metric that we use to highlight frictions for individual

occupations.

Weighted continuous assortativity. We use an extended

version of this coefficient for weighted and directed networks;

see also Yuan et al.70 This gives the following assortativity coef-

ficient rs;x between the edge weights s and continuous node

value x for a weighted and directed network G:

rx =

P
ij

�
Rij � S+

i S
�
j

W

�
xixjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij

�
S+
i dij � S+

i S
�
j

W

�
xixj

s P
ij

�
S�
i dij � S�

i S
�
j

W

�
xixj

(Equation 17)

where s+i =
P
j

Rij and s�j =
P
j

Rji denote the in and out strength

(i.e., weighted degree) of nodes i and j respectively, Rij is the

weighted adjacency matrix, W the sum of edge strength, and

dij the Kronecker delta that is 1 if i = j and 0 otherwise. For the

unweighted and undirected case we have s+i = s�i = ki, the

degree of node i, and we recover the standard assortativity

coefficient from Newman69:

r0x =

P
ij

�
Rij � kikj

W

�
xixjP

ij

�
kidij � kiki

W

�
xixj

(Equation 18)

For Table 1, we calculate rP2034

t = 2021
Ot

and rP2038

t = 2035
Ot

using

Equation 17.

Weighted categorical assortativity. The categorical assortativ-

ity values in Table 1 are calculated with a weighted variety of

Eq. 2 in Newman.71 In Newman’s notation, categorical assorta-

tivity is

r =

P
ieii �

P
idibi

1 � P
idibi

(Equation 19)
with di =
P
j

eij and bj =
P
i

eij, where eij is the fraction of all edges

that connects a node of type i to a node of type j.71 In our appli-

cation, with weighted networks, we use Equation 19 to calculate

r but define eij as the fraction of edge weights in the occupational

network that connects a node of type i to one of type j, such that

eij =

P
kei;lejRklP
klRkl

(Equation 20)

eij can be interpreted as the probability that any given occupa-

tional transition happened between occupation archetypes i

and j. In our application, the types are the occupational groups

temporary growth, consistent growth, consistent decline, and

all other occupations.

Randomization robustness. We run Monte Carlo simulations

with randomized shocks to understand the robustness of our es-

timates. For each value of assortativity we measure, we run

100,000 additional calculations where we keep the nodes and

edges fixed but randomize the demand shocks over the nodes.

We highlight results that are greater in absolute value than in

99.9% of randomized runs in Table 1 and identify, in supple-

mental methods section D.4.3, with one, two, or three stars if

the assortativity value is larger than in 95%, 99%, or 99.9% of

randomized runs, respectively.

Node-specific frictions. Assortativity is a network-wide mea-

sure, and might not be informative on individual occupations.

For occupation i, it matters what happens in its direct neighbor-

hood N i = fjjRij > 0g. We call all jobs in the neighborhood

occupations of i the pool of i.

Node-specific frictions arise when the pool of i and i itself are

affected in the same way. This borrows from the logic of

assortativity. The change in demand in the pool of i at time t is

DoN i ;t =
X
jinN i

Doj;t: (Equation 21)

The neighborhood friction qi;t of occupation i is then the

weighted average of neighboring occupations demand change:

qi =
DoN i ;t

oN i ;t

: (Equation 22)

We define two types of node-specific frictions: employer (labor

demand) frictionsandworker (labor supply) frictions. If bothoccu-

pation i and its pool experience an increase in demand, it may be

hard to find workers to fill all vacancies in i. We call this employer

frictions, which can arise even if the pool of i increases but at a

slower rate thandemand for idecreases. Vice versa, if occupation

i and its pool experience a fall in demand, it may be difficult for

workers in i to find a new job. We call this worker frictions.
Sensitivity analysis and robustness of results
We perform a sensitivity analysis on nine assumptions and data

sources. For more details, see the sensitivity analysis results in
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supplemental methods section D.6. For each sensitivity analysis,

we reproduce Figure 2B in Figure S19. In Figures S20A and

S20B, we plot the cumulative worker demand at the peak

(2034) and in the new steady state (2045), respectively. In Fig-

ure S21, we reproduce part of Table 1 and plot the assortativity

in the scale-up and scale-down phase for the different assump-

tions. For each of the assumptions, we also reference which sec-

tion of the supplemental methods discusses the default options.

We probe the following assumptions in our sensitivity analysis:

(1) We have assumed (see supplemental methods section

B.5) that the IO network structure does not change in

time, i.e., aij;t = aij. Our sensitivity analysis shows that

our results are highly robust with respect to changing

this assumption.

(2) The capex cost vectors translate how the capital expendi-

ture per electricity technology from the scenario is spent

on specific industries in the IO table (see supplemental

methods section C.3). We add noise to the capex cost

vectors and find the results robust.

(3) The opex literature weights translate how intermediate

costs are spent on industries in the IO table. These are

used to disaggregate the energy sector in the IO table

(see supplemental methods section C.3). We add noise

to the opex cost vectors and find the results robust.

(4) The T&D grid line cost are calculated in supplemental

methods section B.2 following the methodology in Way

et al.4. We test the sensitivity of some parameters and

find that these parameters can have a large influence on

the results.

(5) To remove overly erratic results, we apply a 3-year

smoothing window to the energy scenario costs. We

also present results without smoothing and with a

5-year smoothing window.

(6) We take the employment per occupation-industry pair

from BLS and use it to calculate the labor requirements

per industry and occupation (see supplemental methods

section A.3). BLS publishes error bars together with the

point estimates that we use. We find that our results are

robust against using values that are on the extremes of

the error bars.

(7) We assume unit costs for electricity technologies can

change over time according to the ATB cost curves as

mentioned in supplemental methods section C.1. Our

default assumption is to use the moderate cost develop-

ment for each technology. We find that using advanced or

conservative cost curves can have a significant impact on

the results.

(8) We assume that exports per sector remain constant over

time and that the direct import fraction (mj in Equation 9)

is fixed. We test the sensitivity of these assumptions by

using other, stylized, projections for direct imports

and exports of solar and wind electricity generation

products. Specifically, we include 4 additional sce-

narios: decreasing direct imports, increasing direct im-

ports, increasing exports, and combined decreasing

direct imports and increasing exports. We find that these

changes to our trade and competitiveness assumptions
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can have a strong impact on the results, especially the

net worker demand in the decarbonized steady-state

phase.

(9) We test the sensitivity of the construction sector

granularity by using more detailed data on power and

communication line and related structures construction

for the construction part of T&D capex in the B matrix

of Equation 23. Our results are robust to this modification.

We also do a robustness check of the assortativity values in

supplemental methods section D.4.3 for different network types:

the original relatedness network, a network of empirical occupa-

tional mobility between 2011 and 2019, and a combination of

the two. Figure S21 shows the assortativity coefficient values

for the scale-up and scale-down phase for all tested scenarios

in the sensitivity analysis.
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