
'Therapeutic drug monitoring-guided dosing for pediatric cystic fibrosis patients: recent advances 1 

and future outlooks' 2 

Siân Bentley 1, Jamie Cheong1, Nikesh Gudka2, Sukeshi Makhecha1, Simone Hadjisymeou-Andreou3, 3 
Joseph F Standing2,4 4 

1 Pharmacy Department, Royal Brompton Hospital, London, UK 5 

2 Pharmacy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, 6 
UK 7 

3 Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK 8 

4 Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University 9 
College London, London, UK 10 

Address for correspondence: Siân Bentley, Pharmacy Department, Royal Brompton Hospital, Sydney 11 
Street, London, SW3 6NP  12 

Tel: +44(0)207 3528121 Email: s.bentley@rbht.nhs.uk 13 

Number of Tables: 1  14 

Abstract  15 

Medicine use in children with cystic fibrosis (CF) is complicated by inconsistent pharmacokinetics at 16 

variance with the general population, a lack of research into this and its effects on clinical outcomes. 17 

In the absence of established dose regimens therapeutic drug monitoring (TDM) is a clinically relevant 18 

tool to optimise drug exposure and maximise therapeutic effect by the bedside. In clinical practice 19 

though, use of this is variable and limited by a lack of expert recommendations.  20 

We aimed to review the use of TDM in children with CF to summarise recent developments, current 21 

recommendations and opportunities for future directions.  We searched PubMed for relevant 22 

publications using the broad search terms “cystic fibrosis” in combination with the specific terms 23 

“therapeutic drug monitoring (TDM)” and “children”. Further searches were undertaken using the 24 

name of identified drugs combined with the term “TDM”.   25 

Further research into the use of Bayesian Forecasting and the relationship between exposure and 26 

response, is required to personalise dosing, with the opportunity for the development of expert 27 

recommendations in children with CF. Use of non-invasive methods of TDM has the potential to 28 

improve accessibility to TDM in this cohort.   29 
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Introduction 32 

Cystic fibrosis (CF) is a life threatening autosomal–recessive disorder with an incidence of 33 

approximately one in 2,500 in the UK(1). CF is caused by mutations in the cystic fibrosis 34 

transmembrane conductance regulator (CFTR) gene. Although a multisystem disorder, lung disease is 35 

the major cause of morbidity and mortality. CFTR dysfunction leads to a defect in chloride secretion 36 

and a loss of inhibition of airway epithelial sodium channels which, in turn, leads to dehydration of 37 

airway surface liquid. Thus, the lungs are not able to effectively clear inhaled organisms due to 38 

impaired muco-ciliary clearance(2). The lungs of children with CF appear normal at birth, but quickly 39 

become infected by microorganisms. This often results in a progressive decline of lung function with 40 

intermittent episodes of acute worsening of symptoms, called ‘pulmonary exacerbations’(3).   41 

People with CF experience multiple exacerbations throughout life, however the bacterial flora in the 42 

lungs can  change over time, with some pathogens being more virulent than others(1). S.aureus, 43 

H.influenzae and S.pneumoniae are the bacteria most often encountered in exacerbations in infancy 44 

and early childhood(4). From mid-childhood onwards P.aeruginosa is the predominant bacterial 45 

pathogen(1). Early infection is readily eradicated if treated aggressively.  However, recurrence is 46 

common and chronic infection results in a more rapid decline in lung health in relation to the 47 

organisms resilience to host immune defence mechanisms(5-7). Fungal infection, commonly 48 

A.fumigatus, is also associated with poor lung health as it can be difficult to detect. This can cause 49 

significant lung disease (fungal bronchitis; saprophytic; invasive; or allergic (allergic 50 

bronchopulmonary aspergillosis (ABPA)(8). Early, timely and optimal treatment of pulmonary 51 

exacerbations is critical in improving the quality and length of life. 52 

Most recently, disease-modifying drugs that specifically target the consequences of CFTR gene 53 

variants have become available.  Huge benefits have been seen in those eligible for these medicines 54 

including improvements in lung function and a reduction in exacerbations(9).  However despite these 55 

positive outcomes there is still limited real world data available on their effect on clinical 56 

outcomes(10). 57 



Due to developmental changes occurring throughout childhood, the pharmacokinetics (PK) and 58 

pharmacodynamics (PD) of medicines used in children differ to adults. These differences can affect 59 

drug levels, treatment response and potential for toxicity/ adverse effects, and differ throughout the 60 

age range(11). This can be further complicated by a lack of biomarkers and /or disease progression 61 

measures suitable for use in children(12).  However, paediatric studies underpinning these concepts 62 

are lacking, and therefore dose recommendations for children are often extrapolated from adults 63 

without due consideration to these issues(13).  64 

When considering how we can optimise therapies for children with CF there is a further conundrum 65 

to reflect on – people with CF display altered pharmacokinetics for some drugs as a consequence of 66 

co-morbidities affecting drug absorption and disposition(14, 15). Changes within the gastrointestinal 67 

tract such as pancreatic insufficiency and bile acid dysfunction may result in slower and/or reduced 68 

extent of oral absorption, leading to lower overall drug exposure (AUC) or peak drug levels (Cmax). It is 69 

postulated that the lower adipose tissue to body weight ratio, decreased serum levels of albumin, 70 

augmented GFR, and inflammatory modulation of drug metabolism, may be responsible for changes 71 

in drug disposition, leading to increased clearance (CL) and volume of distribution (Vd)(14, 15).  72 

With a lack of concrete information on which to base recommendations for dosing regimens for 73 

children with CF, the use of therapeutic drug monitoring (TDM) is one of the most clinically relevant 74 

tools available, with the aim of optimising drug exposure and maximising therapeutic effect. Drugs 75 

where TDM is most useful are those that show substantial inter-individual PK variability which may 76 

not be predictable from patients characteristics, and a correlation between concentration and 77 

response (both efficacy and toxicity)(16). 78 

We aimed to review the use of TDM for drugs used in children with CF, to summarise recent 79 

developments,  current recommendations, and opportunities for future development in this area. 80 

Where there is no relevant data in children with CF, we have included data in adults with CF. We 81 

searched PubMed for relevant publications using the search terms “cystic fibrosis” in combination 82 

with the terms “therapeutic drug monitoring (TDM)” and “children”. Further searches were 83 



undertaken using the name of identified drugs combined with the term “TDM”. Reference lists of each 84 

selected publication were also reviewed to identify further relevant publications 85 

1. Antibiotics  86 

Traditionally TDM has been carried out on antimicrobials with a low therapeutic index which have 87 

high association of toxicity(17). Trough (pre-dose) level monitoring is taken as close to before the next 88 

dose and measures the lowest level of drug in the body (Cmin). For drugs such as aminoglycosides Cmin 89 

is used to minimise toxicity by avoiding accumulation, and for drugs such as glycopeptides serves a 90 

dual purpose of maximising efficacy and minimising toxicity(18, 19). Peak levels are taken to detect 91 

the maximum drug levels in the body (Cmax) and are done to ensure levels are within the therapeutic 92 

range. However, with the global threat of increasing antimicrobial resistance and limited number of 93 

antimicrobials available, TDM increasingly considers the minimum inhibitory concentration (MIC) of 94 

an organism. This takes into account the PK/PD profiles of antimicrobials, often described as time 95 

dependant (relates to the time that the antimicrobial concentration is above the MIC [T>MIC]) or 96 

concentration dependent (relates to the peak concentration above the MIC [Cmax/MIC]); or both where 97 

area under the curve to MIC ratio (AUC/MIC) is the most effective measure(20). 98 

1.1 Aminoglycosides 99 

Aminoglycoside antibiotics form the main stay of antimicrobial management of infections in children 100 

with CF.  They are used to treat a broad range of organisms such is P.aeruginosa, MRSA, M.abcessus 101 

and B.cepacia complex(21). Aminoglycosides exhibit bactericidal concentration dependent killing by 102 

disrupting protein synthesis by binding to the 30S ribosomal subunit causing inaccurate translation of 103 

mRNA(22).  They also take advantage of concentration-dependent post antibiotic effect (PAE) where, 104 

despite the serum concentrations fall below MIC, drug efficacy is not compromised because PAE 105 

prevents bacterial re-growth. PAE represents the time it takes for ribosomal protein to be re-106 

synthesised(23). 107 



TDM is essential for aminoglycosides utilising an approach that maximises efficacy – both Cmax/MIC 108 

ratio and AUC24/MIC have been utilised as PK/PD parameters(24); and trough levels (Cmin) are low 109 

enough to minimise toxicity(19).  The main side effects that are of concern with aminoglycoside use, 110 

include ototoxicity and nephrotoxicity, which can lead to irreversible loss of function. It is estimated 111 

that >50% of people with CF will experience hearing loss before they reach adulthood and 80% of 112 

those receiving more than 10 courses of aminoglycosides will have permanent hearing loss(25). 113 

Pharmacokinetic modelling was used to predict the risk of ototoxicity with intravenous tobramycin in 114 

38 people with CF (8 – 21 years)(25). Their results yielded those patients with more severe hearing 115 

loss were older and had higher trough concentrations >2mg/L, reinforcing the need for TDM.  116 

Traditionally TDM for aminoglycosides in all people with CF has focussed on measurement of trough 117 

concentrations and peak concentrations to ascertain safety and efficacy respectively(26, 27). This 118 

method is still used by many centres, likely due to the ease of measurement and interpretation, and 119 

was utilised in the TOPIC multicentre study, evaluating the clinical outcomes in people with CF, 120 

including children, of once daily versus thrice daily tobramycin(28). Target concentrations of 121 

tobramycin for the once daily regimen were trough concentrations of <1mg/L and peak concentrations 122 

of 20–30 mg/L. The primary endpoint was a mean change in FEV1 % predicted, and once daily dosing 123 

resulted in a mean change in FEV1 (% predicted) over 14 days of 10·4%. Conversely, the use of 124 

alternative TDM methods encompassing the PK/PD target AUC24/MIC have been used for many years 125 

in some regions including Australia(29). Mouton et al demonstrated a significant relationship between 126 

Cmax/MIC and AUC24/MIC of tobramycin and efficacy parameters (increase in FEV1 and FVC) in children 127 

and young adults with CF(30).  128 

More sophisticated TDM methods have evolved to measure AUC24/MIC, with a particular focus on 129 

individualised dosing. Log-Linear Regression (LLR) method utilises tobramycin levels taken at two 130 

specific time points, assumes a one-compartment intravenous infusion model, and uses a Microsoft 131 

excel spreadsheet embedded with relevant equations to calculate AUC24(31). Bayesian forecasting 132 

(BF) methods use population derived pharmacokinetics combined with patient’s dosing history, 133 



demographic data and a single tobramycin level at any time point inputted into programmes to 134 

estimate AUC24 and adjust dosing(31). Burgard et al used 3 available BF programmes (TDMx, InsightRX 135 

and DoseME) and LLR method to compare AUC24 in 55 children with CF(31). All three BF programs 136 

estimated statistically significant (p≤0.01) higher AUC24 (TDMx 92.5 [81.3–105.3] mg/h/l-1, InsightRX 137 

96.0 [82.0–108.0] mg/h/l-1, DoseMe 92.9 [81.1 to 105.0] mg/h/l-1) 
 compared to LLR method 89.2 138 

[74.3–102.1] mg.h.l-1 for an AUC target of 100 mg/h/L-1. This correlates with dosing data where LLR 139 

predicted higher doses 10.6 [8.4 to 13.3] mg/kg due to lower AUC24 versus TDMx 10.0 [8.3 to 12.0] 140 

mg/kg, InsightRX 9.8 [7.9 to 11.9] mg/kg and DoseMe 9.8 [8.1 to 12.0] mg/kg. The authors commented 141 

that despite the availability of technology to use AUC to calculate individual doses, the practice is not 142 

widely adopted, and more research is needed. Recently, a quasi-experimental pre-post intervention 143 

study evaluated LLR and BF methods in 378 admissions in children with CF(32). Precision dosing was 144 

defined as tobramycin AUC0-24 within a range of 100–110mg/l/h. Children monitored with the LLR 145 

method had twice the number of serum samples per single hospital admission (LLR = 3.8 versus BF = 146 

1.9; P < 0.001). The median tobramycin dose prescribed was higher where BF was used compared with 147 

LLR, during both initial (430 versus 390mg; p=0.18) and maintenance (400 versus 395 mg; p=0.89) 148 

therapy. A change from the empirical dose was more frequently observed in the BF group (72%; 149 

92/128) compared with the LLR group (63%; 155/248) although not statistically significant (p=0.07). 150 

The mean tobramycin AUC0–24 was higher in the BF group both when the first (BF = 106mg/L/h versus 151 

LLR = 94.7mg/L/h; P < 0.001) and final (BF = 102.6mg/L/h versus LLR = 95.1 mg/L/h; P <0.001) and the 152 

target AUC0-24 of >100mg.l/h was achieved more frequently in the BF group (72%; 92/128) versus the 153 

LLR group (50%; 124/248) (P < 0.001). A higher proportion of the BF group (39%; 50/128) achieved 154 

AUC0-24 precision range compared to the LLR group (25%; 61/248) (P=0.004). The authors concluded 155 

that both the LLR and BF method predicted tobramycin AUC0-24 with similar accuracy. BF lead to less 156 

blood tests, a higher likelihood of achieving target concentrations (BF 72% versus LLR 50%) and greater 157 

precision of target attained, compared to the LLR method (BF 39% versus LLR 25%). Prospective 158 

studies are needed to validate these findings.  159 



Though the need for TDM for aminoglycosides in children with CF is well established, many centres 160 

only carry out trough monitoring in children with CF routinely(29). Reasons for this include the costs 161 

and practicality of repeated blood tests, in addition to an assurance that the doses used were sufficient 162 

to reach the PD target and clinical endpoint for a majority of patients(24, 28). However, if we are to 163 

individualise each patient episode and maximise effectiveness by achieving favourable AUC24/MIC or 164 

Cmax/MIC then levels throughout the dosing interval are a necessary part of TDM for aminoglycosides. 165 

With the use of sophisticated BF methodologies and associated software this is becoming a realistic 166 

widespread approach. 167 

1.2 Beta-lactams  168 

T>MIC is the best predictor of efficacy for B-lactams(33). For beta-lactams 40% is assumed, but for 169 

maximum effect it is recommended that the targeted T>MIC should be 60%-70% of the dosing interval 170 

for cephalosporins for most pathogens(34) 40% for carbapenems and 50-60% for penicillins and 171 

monobactams(35, 36). 172 

PK studies have shown that clearance of both ceftazidime and meropenem is higher in children with 173 

CF compared to those without, therefore higher or more frequent dosing is required(37-39). 174 

Ceftazidime intermittent 30-minute infusions achieve a T>MIC 60-70% in children with CF if 175 

Pseudomonas aeruginosa MIC<8mg/L using higher doses of >50mg/kg TDS, compared to non-CF 176 

children who can attain this target at higher doses when MIC are ≤16mg/L(37). To reach the 177 

recommended T>MIC (65%) for ceftazidime and meropenem (40%) short intermittent infusions need 178 

to be changed to 3 hour extended infusions when MIC ≥8mcg/L for ceftazidime(37) or MIC≥4mg/ml 179 

for meropenem(38). Conversely the use of ceftazidime as a continuous infusion achieves the PK/PD 180 

target for all children, with and without CF, even at MIC 16mg/L(37). Of note B-lactam clearance 181 

(ceftazidime, meropenem, aztreonam, piperacillin/tazobactam, ticarcillin/clavulanate) has also been 182 

shown to increase between days 2 and 7 in adults with CF receiving continuous infusions necessitating 183 

a 20% increase in B-lactam dose in approximately 50% of patients(40).  184 



Although T>MIC 40% is the suggested PK/PD target for meropenem, achieving 65% fT>MIC was shown 185 

to be a significant predictor of response when using extended infusions of meropenem in children 186 

with CF with acute pulmonary exacerbations. This showed a relative improvement in FEV1 % predicted 187 

of at least 15%(41). A randomised controlled trial demonstrated significant improvement in FEV1 % 188 

predicted in both adult and children with CF when using ceftazidime continuous infusions compared 189 

to intermittent infusions for resistant strains of Pseudomonas aeruginosa (MIC>32mg/L)(42).  Mean 190 

ceftazidime levels were 56.2+/-23.2mcg/ml for continuous infusions, whilst peak levels were 216.3+/-191 

71.5mcg/ml and trough levels were 12.1+/-8.7mcg/ml for 30-minute intermittent infusions. In adult 192 

CF patients, using TDM for piperacillin/tazobactam and cefepime has been shown to reduce the 193 

frequency of exacerbations from 1.91 to 1.31 exacerbations/year, with longer intervals between 194 

exacerbations (103.7 days to 196.2 days) and a slower decline in FEV1 % predicted (-9.7 (pre-TDM) vs 195 

-4.9 (post-TDM)(43). 196 

In individual circumstances TDM has been useful to guide antibiotic dosing when using multiple 197 

antibiotic combinations (aztreonam and ceftazidime/avibactam) to achieve a reduced MIC (from 198 

≥256mcg/ml for individual antibiotics down to 8mcg/ml when used in combination) in a paediatric CF 199 

patient with resistant Stenotrophomonas maltophilia(44). Drug levels were taken at steady state: for 200 

intermittent infusions this was immediately after the end of the infusion and 1 hour after the end of 201 

the infusion; for continuous infusions this was after a minimum of 8 hours. Based on TDM, a dose 202 

increase and change to continuous infusion with ceftazidime led to 100% T>MIC being achieved for 203 

both aztreonam and ceftazidime. Despite clinical improvement and achieving target PK/PD 204 

parameters, lung function did not recover, highlighting that although TDM is useful it should be used 205 

in conjunction with other clinical investigations.  206 

Where there are altered PK profiles such as in a critically ill CF adult on ITU and ECMO with augmented 207 

renal clearance leading to low trough levels of meropenem, a switch to continuous infusion of the 208 

same daily dose of 6g/day ensured that target levels were reached (17.3-23.2mg/L)(45). When the 209 

same patient received transplanted lungs colonised with Acinetobacter baumannii with MIC=32mg/L 210 



the dose was increased to 8g/day given as a continuous infusion over 12 days to attain levels above 211 

the MIC at 39.6mg/L. They were also administered IV sulbactam, tigecycline with inhaled colistin and 212 

the patient was discharged from ITU without signs of infection. Positive outcomes were also achieved 213 

in an adult CF patient treated with ceftazidime/avibactam 2.5g every 8 hours and 214 

trimethoprim/sulfamethoxazole for Burkholderia cepacia colonisation(46). TDM showed ceftazidime 215 

trough levels were maintained above the MIC (2mg/L) and patient was discharged from the ward after 216 

2 weeks with surveillance cultures 1 month later reporting that the MIC remained unchanged. 217 

Adequate drug levels ensured minimal emergence of resistant strains. 218 

The increased clearance seen in people with CF leading to lower T>MIC with B-lactams necessitating 219 

higher dosing or the conversion to extended/continuous infusions, particularly in organisms with a 220 

higher MIC, would seem to justify the use of TDM. However instability of B-lactams in clinical samples 221 

requires them to be processed within a short time frame or adequately stored at the correct 222 

temperature(47). Rapid degradation occurs within 4 hours leading to inaccurately low levels and 223 

erroneous PK parameters which could then be used to miscalculate changes in drug dosing(48). Due 224 

to the need for additional information e.g., MIC of targeted organism, as well as a PK/PD software 225 

package to calculate target T>MIC, the need for frequent sampling (peak, trough, steady state, drug 226 

levels at set time intervals) and potential drug costs if dose increases are required, TDM of B-lactams 227 

may be associated with increased costs. Additionally, there is a paucity of evidence in children with CF 228 

and further studies are needed before recommending this in routine clinical practice. Nevertheless, 229 

TDM could be a useful adjuvant for optimising B-lactam dosing for children with CF where drug levels 230 

are affected due to changes in PK (increased CL, increased Vd in critically ill patients, organ 231 

dysfunction); where there are drug interactions; in the presence of resistant organisms to ensure 232 

target T>MIC; and to minimise the development of antibiotic resistance. 233 

1.3 Vancomycin  234 

Glycopeptides have a broad spectrum of activity against gram positive bacteria, including MRSA 235 

infections, which have become common in people with CF and associated with a decline in pulmonary 236 



function(21, 49). However it has poor penetration into the lungs(49), can cause renal impairment, 237 

drug reactions with eosinophilia and systemic symptoms and has a low therapeutic index with a 238 

recognised requirement for TDM.  239 

Historical practice for TDM of vancomycin (though not specific to CF) recommended that AUC/MIC 240 

≥400 was the best predictive pharmacokinetic parameter to attain clinical effectiveness, and that 241 

trough levels of 10 – 20 µg/ml, as a surrogate marker, was the most accurate and practical way to 242 

attain this.(26, 50, 51). However, updated vancomycin guidelines for MRSA infections have changed 243 

their recommendation to achieve a target AUC/MIC ratio 400-600 (assuming vancomycin MIC 1mg/L) 244 

to maximise efficacy and safety by individualised AUC guided dosing using first-order PK equations or 245 

Bayesian software programs following 1-2 samples (usually 1 peak and 1 trough level) achieved within 246 

24-48 hours of initiation for early appropriate treatment(18). Trough-only monitoring is no longer 247 

recommended. Indeed, a retrospective cohort study in 30 children with CF with MRSA treated with 248 

vancomycin found that trough concentrations did not correlate with either AUC or AUC/MIC(52). 249 

Although, there was a strong positive correlation between the vancomycin dose and AUC and 250 

AUC/MIC.  251 

A study evaluating the precision and bias in estimating the AUC of vancomycin using TDM (aiming for 252 

a target of AUC/MIC >400) in 23 children with CF obtained using either population PK models from a 253 

single trough concentration or 2 point estimated AUC monitoring using standard pharmacokinetic 254 

equations found that there was no significant difference between the models used (p=0.89) and that 255 

both models were unbiased and precise(53). It should also be noted though that to date there is no 256 

evidence to show that AUC based TDM correlates with clinical efficacy in children with CF(53). Mitchell 257 

et al compared the occurrence of acute kidney injury (AKI) in adults and children with CF receiving 258 

vancomycin and undergoing TDM using either single trough concentrations or 2 point estimated AUC 259 

monitoring using the Sawchuk–Zaske equation(54). Target concentrations were trough levels 10-20 260 

mg/L or latterly AUC 400–600 mg.h/L. The secondary objectives were time to return to baseline lung 261 

function and time to next pulmonary exacerbation. The study found that there was a significant 262 



difference in the number of adults that returned to within 10% of their baseline lung function in the 263 

AUC monitoring group (p=0.002). Though not statistically significant the reverse was found for 264 

children with 80% of those monitored via trough levels returning to baseline lung function whilst 67% 265 

of those monitored via AUC returned to baseline lung function (p = 0.458). There was no statistically 266 

significant difference in the occurrence of AKI in either children or adults, all grade 2–3 AKI’s in adults 267 

were in the single trough level group, which may be as a result of lower daily doses observed in the 268 

AUC group.   269 

Individualised AUC guided dosing, already adopted by many centres managing children with CF, has 270 

the potential to improve clinical outcomes and reduce toxicities associated with vancomycin therapy. 271 

With the potential shown by models utilising one trough concentration, which minimises the need for 272 

multiple blood samples, the stumbling block may be access to technology and / or expertise to carry 273 

out complex modelling. Though simpler to implement, 2-point AUC monitoring relies on two blood 274 

samples. However, there is a need for further research to establish whether AUC based TDM for 275 

vancomycin correlates with clinical efficacy in children with CF, and an opportunity to further 276 

investigate the applicability of the most recent recommendations using individualised AUC guided 277 

dosing for children with CF(26, 50).  278 

2. Antifungals  279 

In people with CF triazole antifungals are commonly used to treat infection caused by A.fumigatus, 280 

Scedosporium species and E.dermatitidis, or manage Allergic Bronchopulmonary Aspergillosis (ABPA), 281 

an inflammatory condition of the lungs precipitated by the presence of A.fumigatus in the airways. 282 

Triazoles exert their action by inhibiting 14α-demethylase which catalyses the synthesis of ergosterol 283 

from lanosterol, thereby disrupting the cell membrane of the fungus and causing cell death(55).  284 

2.1 Itraconazole  285 

Itraconazole is the triazole that has been in clinical use for longest with oral formulations most 286 

commonly used for treatment of Aspergillus and ABPA in children with CF(56, 57).  287 



Itraconazole exhibits marked inter individual variability in pharmacokinetics in children with CF(56, 58, 288 

59), which may be due to the multiple factors in children with CF that can affect the absorption of 289 

lipophilic drugs such as itraconazole, including exocrine pancreatic insufficiency(55). Many children 290 

with CF also require concomitant H2 antagonists and proton pump inhibitors to manage gastro-291 

oesophageal reflux which can affect the bioavailability of the capsule formulation, which requires an 292 

acidic environment for dissolution(55). In a number of studies in which itraconazole TDM was carried 293 

out, children with CF have failed to meet the therapeutic thresholds as defined by the studies(56-58, 294 

60). Most recently a retrospective, case control, single centre study in children and adults with CF 295 

investigating the use of prednisolone and itraconazole for the treatment of ABPA, in which 296 

itraconazole TDM was carried out, identified that patients with lower itraconazole serum trough levels 297 

during the first 3 months of treatment subsequently faced a relapsing disease course, suggesting that 298 

dose optimisation may confer clinical benefits(61). This relationship between serum concentrations 299 

and treatment efficacy, alongside the high inter-individual variability seen in itraconazole 300 

concentrations in children with CF lends weight to the argument for TDM. The ability to carry out TDM 301 

is also of practical use since itraconazole undergoes oxidative metabolism via the via CYP3A4 pathway 302 

in the liver, and is therefore subject to numerous drug-drug interactions (DDI) with medicines that 303 

share this pathway or alter the function of the CYP3A4 enzyme, leading to increased or reduced 304 

itraconazole serum concentrations(55, 62). 305 

Due to a paucity of data around the PK/PD relationships of triazoles for CF fungal lung disease, 306 

recommendations for TDM are extrapolated from other populations including adults and for invasive 307 

disease(63). ESCMID-ECMM guidelines for the treatment of invasive aspergillosis in neonates and 308 

children state that a trough level of 1-4 mg/L (itraconazole plus hydroxy-itraconazole) should be 309 

achieved using HPLC(64).  If measuring using bioassay, a range of 5–15 mg/L is usually 310 

recommended(57, 65). To note a standard trough concentration does not incorporate the MIC of the 311 

fungal pathogen, and so greater exposure may be required to maximise outcomes for organisms with 312 

a higher MIC, which would not be reflected in the trough concentration target.   313 



2.2 Voriconazole 314 

Voriconazole, a second generation triazole, has a similar spectrum of activity to itraconazole(21) and 315 

has been in clinical use for children with CF since 2002 when it was used as a therapeutic alternative 316 

to itraconazole(66). Similarly to itraconazole voriconazole is subject to numerous DDI’s due to its 317 

metabolism via CYP2C19(65), which is further complicated by genetic polymorphisms in this pathway, 318 

which can lead to variations in the metabolism of medicines that utilise this pathway, for example 319 

poor or extensive metabolisers(67).   320 

Voriconazole is associated with numerous adverse effects, including liver toxicity, ocular effects and 321 

squamous cell carcinoma(68). A meta-analysis investigating the utility of voriconazole TDM found that 322 

there was a statistically significant link between high voriconazole levels (as defined by the included 323 

studies) and toxic effects which included hepatotoxicity, gastrointestinal intolerance, and 324 

neurotoxicity (P<0.001)(69). This meta-analysis did not include adults or children with CF due to 325 

paucity of literature available at the time of review, however Markantonis et al investigated the 326 

relationship between voriconazole levels and photosensitivity in children with CF. They found no 327 

correlation between voriconazole serum concentrations and photosensitivity in 6/8 children who 328 

experienced a phototoxic rection(70). Of the liver function tests measured they found that GGT levels 329 

were associated with voriconazole levels (Cmax p=0.0374 and Cmin p<0.0001), and in one child they 330 

reported that after reducing the dose of voriconazole an improvement in hepatic function was seen. 331 

This study also described high inter-individual variability in both Cmax and AUC, although this was put 332 

partially down to the use of fixed doses as opposed to per body weight with significant correlations 333 

between the doses received and Cmax (p=0.0037) and estimated AUC (p=0.0015). Trough 334 

concentrations were found to be <1 mg/L in 8/10 of children included. They also determined the 335 

CYP2C19 genotype in their patients, and one patient with a poor metaboliser genotype was found to 336 

have the highest Cmax and AUC values of the series. An inability to reach therapeutic drug 337 

concentrations with standard doses was also demonstrated in a case series examining the use of TDM 338 



for itraconazole and voriconazole in children with CF, in which only 2/8 children reached therapeutic 339 

voriconazole trough concentrations (aiming for 1.3–5.7mg/L), and 1 child had undetectable levels(57). 340 

Like itraconazole there is a lack of pharmacodynamic data on which to base specific recommendations 341 

for children with CF in relation to clinical outcomes. However, we know that in other populations 342 

patients with therapeutic voriconazole serum concentrations are twice as likely to achieve successful 343 

outcomes(69). ESCMID-ECMM guidelines for the treatment of invasive aspergillosis in neonates and 344 

children state that a trough level of 1-5.5 mg/L is recommended, though suggests a higher level of 2–345 

6 mg/L for infections caused by Aspergillus spp. that have an MIC of >2 mg/L(64). Given the high inter-346 

individual variability seen in the available data on voriconazole in children with CF, as well as the 347 

potential for DDI’s and the possible impact of CYP2C19 genetic polymorphisms there is a clear need 348 

to measure serum concentrations both to prevent toxicity and maximise outcomes. 349 

2.3 Posaconazole 350 

Posaconazole is structurally similar to itraconazole, and is becoming the agent of choice, due to the 351 

poor tolerability and toxicity of the other triazoles(71). It is metabolised via UDP glucuronidation and 352 

is a substrate for p-glycoprotein efflux(72). Posaconazole itself is a potent inhibitor of CYP3A4 which, 353 

in keeping with the other azoles, means that DDIs are common(72). 354 

Data on the use of posaconazole in children with CF is limited to case reports and case series(73-78). 355 

A number of these have demonstrated with TDM that therapeutic concentrations of >1mg/L are 356 

readily attained in children with CF(73, 74, 76). A prospective observational study included 14 children 357 

with CF and reported that posaconazole trough concentrations of >1 mg/l were achieved in all children 358 

(> 12 years old) receiving posaconazole tablets at a dose of 300mg OD, although only 60% of children 359 

attained therapeutic concentrations whilst receiving posaconazole oral suspension(73). Bentley et al 360 

described the use of posaconazole tablets, in combination with terbinafine to treat Scedosporium 361 

species in 5 children with CF(76). Posaconazole concentrations were >1mg/L in all children. A 362 

population pharmacokinetic study of posaconazole tablets in children with CF demonstrated that the 363 



pharmacokinetics of posaconazole in children with CF were in line with children without CF, as 364 

established by Boosathorn et al(71, 79). Of note was the high inter-individual variability in clearance.  365 

In the absence of information linking a posaconazole TDM target with clinical outcomes in children 366 

with CF, a target of >1 mg/L is generally accepted(64). Though not validated in children with CF, Patel 367 

et al found that using this TDM target concentration children treated with posaconazole showed 368 

improvements in lung function(73). However, dosing simulations carried out against the trough of 369 

1mg/L, as well as an alternative target of AUC of 30mg/L - found to be associated with improved 370 

clinical outcomes in adults with invasive aspergillosis(71, 80) - found the AUC target to correlate with 371 

a trough target of 0.75mg/L. Further work is required to ascertain if this is sufficient to optimise 372 

outcomes in children with CF.  373 

Given the paucity of data linking the pharmacokinetics and pharmacodynamics of posaconazole in 374 

children as well the inevitable inter-individual variability and DDI’s, TDM is necessary to maximise 375 

therapy in this cohort. It should be noted however that availability of antifungal assays might be 376 

limited to specialist centres increasing the time and cost for routine TDM and thereby limiting their 377 

clinical utility(65). 378 

3. Ibuprofen 379 

Ibuprofen has been used for many years in people with CF as an anti-inflammatory therapy and has 380 

been shown to slow the rate of decline in FEV1, more notably so in children(81-84). 381 

TDM is recommended in children with CF on high dose ibuprofen therapy to determine dose 382 

requirements at initiation, periodically during maintenance therapy to assure optimal dosing 383 

requirements, and to redefine dosing if clinical circumstances change, for example, with significant 384 

weight changes(85, 86). TDM consists of a 3 hour pharmacokinetic study with determination of peak 385 

ibuprofen levels measured by high-performance liquid chromatography every 60 minutes after the 386 

administration of ibuprofen (20 to 30 mg per kilogram of body weight, to a maximum of 1600 mg) for 387 

3 hours(81, 85). Doses are adjusted to a target ibuprofen plasma concentrations of 50 - 100 388 



micrograms/mL, with levels greater than 50 micrograms/mL shown to inhibit neutrophil migration, 389 

and levels less than 50 micrograms/mL leading to an increase in neutrophil influx to mucosal surfaces 390 

and higher neutrophil counts(87). Levels greater than 100 micrograms/mL are associated with 391 

increased adverse effects(85).  392 

Recognition of the need for TDM arises from inter-individual variability in the pharmacokinetics in 393 

children with CF(88), pharmacokinetic differences between formulations(89), together with the 394 

potentially detrimental association between subtherapeutic levels of ibuprofen <50 micrograms/ml 395 

and pro-inflammatory effects(86, 87). Most recently, published data highlighted a DDI between 396 

lumacaftor/ ivacaftor and ibuprofen as a result of CYP450 enzyme induction by lumacaftor, 397 

highlighting further potential for variability in levels(90).  However, concern has been raised about the 398 

challenges of carrying out the pharmacokinetic dose finding studies required for initiation of 399 

therapy(91), and facilities to process levels may not be widely available outside regions where this 400 

therapy is used widely. Alternative methods to carry out dose optimisation for ibuprofen would be 401 

welcomed.  402 

4. CFTR modulators  403 

CFTR modulators are small molecules specifically targeting the consequences of CFTR gene mutations. 404 

Currently available CFTR modulator compounds fall into two categories known as potentiators and 405 

correctors(92). Potentiators (ivacaftor), facilitate increased anion transport by potentiating the 406 

channel-open probability of the CFTR protein at the cell surface(92). Correctors (lumacaftor, 407 

tezacaftor and elexacaftor) facilitate increased anion transport by correcting misfolding errors and 408 

increasing the quantity of protein delivered to the cell surface and are used in combination with 409 

potentiators (ivacaftor/lumacaftor, ivacaftor/texacaftor, elexacaftor/tezacaftor/ivacaftor) to 410 

synergistically enhance anion transport of F508del-CFTR protein via the two different 411 

mechanisms(92).  412 



TDM is not currently used for CFTR modulators in routine clinical practice, however there is debate 413 

about its clinical utility (16), since following their introduction, it has become clear that there is still 414 

much to learn about their PK/PD in a real-world setting.  415 

High inter-individual variability in the plasma levels of ivacaftor and lumacaftor/ivacaftor has been 416 

described(93-96). This variability is further compounded by numerous DDI’s since they are primarily 417 

metabolised in the liver via cytochrome P450 (CYP450) enzymes, specifically CYP3A4 and CYP3A5(97). 418 

However, there is a lack of in vivo DDI studies carried out in people with CF so much of the data is 419 

derived from in-vitro studies, from healthy volunteers, or extrapolated from how other members of 420 

the same drug group act(10). Van der Meer et al compared the interaction between ivacaftor and 421 

selected CYP3A4 inhibitors in healthy controls and people with CF. They found that clarithromycin had 422 

a much smaller effect on ivacaftor exposure than ritonavir (used as the standard strong inhibitor in 423 

drug interaction studies)(96), suggesting that the dose adjustment suggested by the manufacturers, 424 

which is the same for both clarithromycin and ritonavir, might be too much, with potential for 425 

underdosing of ivacaftor(98). A case report used tezacaftor/ivacaftor TDM to rule out a clinically 426 

relevant interaction between tezacaftor/ivacaftor and clofazimine, and thus avoid an unnecessary 427 

dose reduction(99).   428 

There is also an evolving adverse effect profile emerging in people with CF, specifically around 429 

psychological effects including anxiety, low mood, ‘brain fog’ and insomnia which may or may not be 430 

attributable to elexacaftor/tezacaftor/ivacaftor(100-103). Symptoms have been reported in those 431 

with and without a history of mental health problems. The mechanism for these effects is unknown, 432 

however given their lipophilicity they may cross the blood-brain barrier and have a direct action on 433 

CFTR in the brain, or on 5-HT2C receptors, as shown in animal models(102, 104). Spoletini et al used 434 

dose reductions of elexacaftor/tezacaftor/ivacaftor to manage these side effects in their 435 

patients(101). In the absence of TDM sweat chloride was closely monitored as an indirect measure of 436 

effect, to ensure that by reducing the dose to ameliorate adverse effects efficacy wasn’t compromised. 437 

Other strategies employed in published literature to date include discontinuing, changing dose or 438 



timing of administration and switching elexacaftor/tezacaftor/ivacaftor to either ivacaftor/tezacaftor 439 

or ivacaftor(100, 102). This might suggest that elevated levels of elexacaftor/tezacaftor/ivacaftor or 440 

indeed elexacaftor alone may be responsible for these effects, however since none of the reports to 441 

date measured elexacaftor/tezacaftor/ivacaftor concentrations it is not possible to establish 442 

causation. A recent literature review carried out by Choong et al, found that dose reduction, in the 443 

absence of TDM, had been used as mitigation for an adverse effect in 10% of publications reporting 444 

adverse effects of CFTR modulators(16). The authors postulated that the lack of TDM may be due to a 445 

‘lack of robust evidence on target levels, validated quantification methods, guidelines to monitor drug 446 

levels and poorly described indications for TDM’.  447 

The ability to carry out TDM for CFTR modulators, is key as part of our armoury to manage these 448 

adverse effects. It can also provide fundamental knowledge about the PK/PD of these medicines in 449 

special populations, to enable individualised dosing and provide more cost-effective management, 450 

particularly given the huge cost burden of these medicines to health services. One such population is 451 

those with CF related liver disease whom were excluded from phase III clinical trials. Although real-452 

world data has shown a significantly lower prevalence of hepatobiliary complications in those treated 453 

with ivacaftor(9) and improvements in markers of liver function in a cohort on ivacaftor/lumacaftor, 454 

some of which had CF liver disease(105), recommendations from the manufacturers of these 455 

medicines recommend that dose reductions be made based on Child-Pugh score, a marker of the 456 

severity of liver disease, though this is largely inapplicable for children with CF liver disease(106). This 457 

leaves clinicians unsure of what dose to use, and where the availability of TDM would contribute to 458 

the evolving knowledge of how we optimise doses by balancing efficacy and toxicity.  459 

A new facet of CF care comes with the increasing pregnancy rates in women with CF since the 460 

introduction of ivacaftor(107). Although the use of CFTR modulators is ‘off label’ in pregnancy, there 461 

is emerging data supporting the continuation of modulator therapy to prevent clinical decline during 462 

pregnancy(107, 108). With the potential for altered pharmacokinetics during pregnancy, data from 463 

the ongoing MAYFLOWERS sub-study looking at the pharmacokinetics of 464 



elexacaftor/tezacaftor/ivacaftor in pregnancy, at birth, and during lactation in both mother and infant 465 

will allow the determination of PK-PD parameters of this modulator in pregnancy and 466 

breastfeeding(109). However, with the high inter-individual variability seen in those that are not 467 

pregnant(93-96), TDM may still be necessary to personalise elexacaftor/tezacaftor/ivacaftor dosing 468 

during this critical time.  469 

There are currently no commercially available assays, though several groups have published assay 470 

methods (99, 110-112). With the potential application for TDM of CFTR modulators widening, 471 

availability of an accessible routine assay is key to ensure that we optimise the use of these highly 472 

expensive and effective medicines. 473 

3 Conclusion  474 

For this unique population, where medicine use is so integral in preventing disease progression, a lack 475 

of research into the fundamentals of pharmacokinetics and pharmacodynamics of drugs used to 476 

manage CF in children from the outset has led to a disparity in treatment regimens used and relied on 477 

the use of TDM to best tailor treatment regimens. With the growing interest in pharmacokinetic 478 

modelling and more sophisticated TDM methods there is an opportunity to optimise many medicines, 479 

both new and old, used for children with CF. 480 

4 Expert Opinion  481 

Recommendations for drug dosing in children are based on a combination of efficacy data in phase II 482 

and III trials in adults, the availability of paediatric PK data and safety data. Despite extensive 483 

legislation incentivising pharmaceutical companies to invest in paediatric research for both new and 484 

existing drugs, the proportion of clinical trials in the European clinical trial database EudraCT that 485 

include children increased from 8.25% in 2007 to 12.4% in 2016 so still a long way to go(113). To date 486 

a lack of dosing recommendations in children has led to the use of ‘scaled down’ adult doses where 487 

PK/PD data is scarce. This is just as relevant for disease specific PK/ PD data with CF as a prime example 488 

of this. The result of this is widely differing practices globally as a result of a lack of consensus as to 489 

how to optimise a particular medicine for a child with CF, with risks of ineffective treatment regimens 490 



and increased risk of adverse effects. In the wider healthcare context, inappropriate dosing can 491 

increase resistance. An analysis of the rate of azole resistant A.fumigatus isolates in a specialist 492 

respiratory centre, found the highest rate was in the 11-20-year-old age group(114).  493 

TDM is often utilised in children with CF to optimise dosing when clearly defined dosing regimens, and 494 

the data to support these, doesn’t exist. In the absence of this data TDM has been used in numerous 495 

publications to feed into population and physiologically based PK modelling to identify demographic 496 

and disease specific variables, and the subsequent use of models to simulate initial dosing regimens 497 

for children with CF. Although TDM may still be required to account for inter-individual variability it 498 

would be anticipated that the burden for repeated blood tests be diminished with benefits for both 499 

the child and the resources required if there is a higher likelihood that the starting dose may be 500 

sufficient - an important consideration for developing nations where resources might be scarce or 501 

technology lacking. Combining both of these methods BF combines a priori population-based data 502 

with a posteriori individual patient data to inform a patients dosing regimen, with accurate predictive 503 

outcomes(115). There is also increasing interest in the use of genomics testing to identify differences 504 

in PK and PD response to antibiotics and side effects which may be related to the genetic variability of 505 

individuals. In particular, polymorphisms in genes encoding for enzymic metabolism of drugs and 506 

membrane transporters(116). The association of this patient specific information with BF might be the 507 

key to truly personalised dosing.  We should also not forget the need to gain an in-depth 508 

understanding of the relationship between exposure and response to establish clinically useful plasma 509 

concentration values for optimum clinical outcomes – an area where there is still limited research in 510 

children with CF. Even with the most sophisticated modelling systems if the TDM target value is 511 

incorrect it will negate the opportunity to optimise clinical outcomes. 512 

There is also much potential to be gained from further research into alternative non-invasive methods 513 

of TDM, particularly in a population where ‘needle phobia’ is prevalent(117). Although there has been 514 

limited success with methods such as saliva for TDM of aminoglycosides(118), it has shown promise 515 

for the TDM of voriconazole(119, 120). Saliva was used as an alternative to serum voriconazole 516 



concentrations in 10 adult patients, one of whom had CF(119). Linear mixed modelling revealed strong 517 

agreement between voriconazole concentrations in saliva and unbound plasma voriconazole 518 

concentrations and was subsequently borne out in a population pharmacokinetic model(120). Breath 519 

metabolomics are also being investigated as an extension of TDM for some anti-epileptic drugs (121), 520 

and if applicable to drugs used by children with CF, would be a welcome addition to the TDM armoury.   521 
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