
J. reine angew. Math., Ahead of Print Journal für die reine und angewandte Mathematik
DOI 10.1515/crelle-2024-0099 © the author(s) 2025

Non-commutative nature of `-adic
vanishing cycles

By Dario Beraldo at London and Massimo Pippi at Angers

Abstract. Let pWX ! S be a flat (proper) and regular scheme of finite type over a
strictly henselian discrete valuation ring. We prove that the singularity category of the special
fiber with its natural two-periodic structure allows to recover the `-adic vanishing cohomology
of p. Along the way, we compute homotopy-invariant non-connective algebraic K-theory with
compact support of certain embeddings Xt ,! XT in terms of the motivic realization of the
dg-category of relatively perfect complexes.

1. Introduction

1.1. Posing the problem.

1.1.1. It is well known, and well documented in the existing literature, that differential
graded (dg) categories of singularities are intimately related to vanishing cohomology. For
instance, see [5, 12, 13, 27, 31].

1.1.2. In particular, let W be a complex smooth quasi-projective variety and suppose
that f WW ! A1C is a regular map. In [13], it is proven that the vanishing cohomology of
f together with its monodromy action can be recovered as the periodic cyclic homology of
the singularity category of f �1.0/, with the extra datum given by a Getzler–Gauss–Manin
connection. The latter was introduced in [16] and written down explicitly in [32].

1.1.3. In this paper, we deal with the `-adic analogue of the above phenomenon, where
the extra datum of the Getzler–Gauss–Manin connection is replaced by a natural (left) module
structure on the dg-category of singularities of the special fiber.
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1.1.4. Let S D Spec.OK/ be the spectrum of an excellent strictly henselian discrete
valuation ring, with closed point iS W s ! S and inertia group IK. We assume that the residue
field is perfect and fix a prime number ` different from the residue characteristic of OK. Let
pWX ! S be a proper, flat and regular S -scheme. The main result of [5] shows that it is possi-
ble to recover the homotopy IK-fixed points of the `-adic vanishing cohomology of p by means
of derived and non-commutative algebraic geometry as follows.

1.1.5. In [5], Blanc–Robalo–Toën–Vezzosi construct the `-adic realization of dg-cate-
gories functor

r`S W dgCatS ! ModQ`;S .ˇ/

�
ShvQ`

.S/
�
;

where the right-hand side is the1-category of modules over Q`;S .ˇ/ D
L
j2Z Q`;S .j /Œ2j �

in the1-category of `-adic sheaves on S . More details will be provided in Section 2.3.

1.1.6. Consider the quotient dg-category

Dsg.Xs/´
Db

coh.Xs/

Dperf.Xs/
:

This is called the dg-category of singularities of the special fiber and it is naturally a module
over the convolution monoidal dg-category Dsg.G/, where G D s �S s is the derived self-
intersection of the special point.

1.1.7. The main theorem of [5] states that there is an equivalence

r`S
�
Dsg.Xs/

�
' iS�H�ét

�
Xs; p̂.Q`;X .ˇ//

�IK Œ�1�;

where p̂.Q`;X .ˇ// is the `-adic sheaf of vanishing cycles of p with Q`;X .ˇ/ D p
�Q`;S .ˇ/

coefficients. Moreover, this equivalence respects the natural actions of the algebra

r`S
�
Dsg.G/

�
' iS�Q`;s.ˇ/

IK

on both sides.
It is natural to ask the following.

Question 1.1.8. Is it possible to recover the vanishing cohomology

H�ét
�
Xs; p̂.Q`;X .ˇ//

�
;

with its natural continuous IK-action, as the `-adic realization of a dg-category?

1.2. Our main results. The goal of this paper is to provide an affirmative answer to the
question above.

1.2.1. Let T D Spec.OL/! S be a (necessarily totally ramified) extension of excellent
strictly henselian discrete valuation rings. Let IL denote the absolute Galois group of the generic
point Spec.L/ of T . Let iXT

WXt ,! XT be the pullback of the closed immersion Xs ,! X

along T ! S . This morphism, being closed and quasi-smooth, induces a dg-functor

iXT �WD
b
coh.Xt /! Db

coh.XT /
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which preserves perfect complexes. In particular, it induces a dg-functor

iXT �W
Db

coh.Xt /

Dperf.Xt /
D Dsg.Xt /! Dsg.XT / D

Db
coh.XT /

Dperf.XT /

at the level of the singularity dg-categories. Let us consider the dg-category of relative singu-
larities of Xt ,! XT ([6, 14]),

Dsg.Xt
iXT
��! XT /´ Ker

�
iXT �WDsg.Xt /! Dsg.XT /

�
:

Our main theorem reads as follows.

Theorem A. Let GL=K denote the (finite) quotient of IK by IL. There is an equivalence

r`S
�
Dsg.Xt

iXT
��! XT /

�
' iS�H�ét

�
Xs; p̂.Q`;X .ˇ//

�IL Œ�1�

of iS�Q
IL
`;s
.ˇ/-modules, compatible with the natural GL=K-actions.

1.2.2. Given this result, it is then easy to answer to Question 1.1.8 as follows.
Let E be the filtered category of finite extensions of discrete valuation rings T ! S

as above. For two extensions U ! T ! S as above, the pullback along Xu ! Xt induces
a dg-functor

Dsg.Xt
iXT
��! XT /! Dsg.Xu

iXU
���! XU /:

This construction induces a diagram of dg-categories indexed by E . The actions of the finite
quotients IK=IL are compatible with this diagram and induce a continuous action of IK on the
colimit

S´ lim
�!
T2E

Dsg.Xt
iXT
��! XT /:

Theorem B. There is an equivalence

r`S .S/ ' iS�H
�
ét
�
Xs; p̂.Q`;X .ˇ//

�
Œ�1�

of iS�Q`;s.ˇ/-modules, compatible with the natural (continuous) IK-actions.

Remark 1.2.3. In Theorems A and B, it is not really necessary to assume that pWX! S

is proper. In Appendix A, we explain how to remove this hypothesis.

1.3. Strategy of the proof of Theorem A.

1.3.1. Observe that there is an equivalence of dg-categories

Dsg.Xt
iXT
��! XT / '

Db
coh.Xt

iXT
��! XT /

Dperf.Xt /
;

where

Db
coh.Xt

iXT
��! XT / � Db

coh.Xt /

denotes the full subcategory spanned by objectsE 2 Db
coh.Xt / such that iXT �.E/ 2 Dperf.XT /.
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This is the dg-category of relatively perfect complexes we alluded to in the abstract. In order to
prove Theorem A, one needs to compute the motivic realization of

Db
coh.Xt

iXT
��! XT /:

1.3.2. We now notice that we have a localization sequence

Db
coh.Gt

a1
�! t / ,! Db

coh.Gt /! Dsg.t/

of dg-categories. Moreover, this is a localization sequence of left Db
coh.G/-modules. Here,

a1WGt ! t is the pullback of iS W s ! S along t ! S and the dg-functor Db
coh.Gt /! Dsg.t/

is induced by the pushforward along a1 (notice that a1 is proper and quasi-smooth).

1.3.3. Since the dg-category Db
coh.Xs/

op admits a right Db
coh.G/-module structure, we

can then apply the functor Db
coh.Xs/

op ˝Db
coh.G/

� (i.e. the relative tensor product) and obtain
the localization sequence

Db
coh.Xs/

op
˝Db

coh.G/

�
Db

coh.Gt
a1
�! t / ,! Db

coh.Gt /! Dsg.t/
�
:

1.3.4. After computing these tensor products, we recognize that the rightmost dg-func-
tor identifies with Db

coh.Xt /! Dsg.XT /, the composition of iXT �WD
b
coh.Xt /! Db

coh.XT /with
the quotient dg-functor Db

coh.XT /! Dsg.XT /. As a consequence, we deduce that

Db
coh.Xs/

op
˝Db

coh.G/
Db

coh.Gt
a1
��! t / ' Db

coh.Xt
iXT
��! XT /

and that

(1.1) Db
coh.Xt

iXT
��! XT / ,! Db

coh.Xt /! Dsg.XT /

is a localization sequence.

Remark 1.3.5. This fact is nontrivial: even if

Db
coh.Xt

iXT
��! XT /

is by definition the kernel of Db
coh.Xt /! Dsg.XT /, the equivalence

Db
coh.Xt /

Db
coh.Xt

iXT
��! XT /

'
�! Dsg.XT /

is not obvious.

1.3.6. Now consider the motivic realization of dg-categories, that is, the functor

M_S W dgCatS ! SHS

introduced in [5]; see Section 2.3 for the details. A fundamental property of M_S is that it sends
localizations sequences to exact triangles. Using (1.1) as a key ingredient, we obtain that

(1.2) M_S
�
Db

coh.Xt
iXT
��! XT /

�
'M_S

�
Dperf.XT /Xt

�
;
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where Dperf.XT /Xt
denotes the dg-category of perfect complexes on XT with set-theoretic

support contained in Xt .

Remark 1.3.7. The equivalence (1.2) could be regarded as a form of dévissage for
homotopy-invariant non-connective algebraic K-theory and seems to be a new result interesting
on its own; see Theorem 4.2.3.

1.3.8. Once the above computation of

M_S .D
b
coh.Xt

iXT
��! XT //

is settled, we can proceed similarly to [5] and conclude the proof of Theorem A.

Remark 1.3.9. This work is the second in a series of three papers whose goal is to prove
the Deligne–Milnor conjecture following the vision of Toën–Vezzosi. The first and third paper
of the series are [3] and [4], respectively.

2. Preliminaries

2.1. Notation. We fix here some notation that we will adopt in the main body of the
paper.

2.1.1. Let OK be a complete1) strict discrete valuation ring and K � OK its fraction
field. We assume that the residue field is perfect.

We fix once and for all a uniformizing element �K 2 OK and denote by k D OK=.�K/

the (algebraically closed) residue field. We also fix a separable closure K of K and denote by
IK D Gal.K=K/ the absolute Galois group of K, which coincides with the inertia group in this
case. Moreover, let S (resp. s, �, N�) be the spectrum of OK (resp. k, K, K),

s
iS
�! S

jS
 � � � N�:

2.1.2. Let K � L be a finite Galois extension (viewed inside K), which is necessarily
totally ramified, and assume that the ring of integers OL of L is still a (strictly henselian) trait.
In this case, for a fixed uniformizing element �L 2 OL, there is a unit u 2 O�L such that

�K D u � �
e
L;

where e D ŒL W K� is the degree of the extension (which agrees with the ramification degree in
this case).

2.1.3. Denote by IL D Gal.K=L/ the absolute Galois group of L: this is an open normal
subgroup of IK. Let GL=K ' Gal.L=K/ be the (finite) quotient group IK=IL. Set T ´ Spec.OL/

and denote by t (resp. �L, N�L) the pullback of s (resp. �, N�) along T ! S . We thus have

1) In the introduction, we only assumed OK to be excellent and strictly henselian. This further assumption
on OK is harmless in view of [11, Exposé XIII, Proposition 2.1.12].
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Cartesian squares

t T �L N�L

s S � N�:

 

!
iT

 !  !

 

!jT

 !

 

!

 !

 

!
iS

 

!jS
 

!

Notice that t ' Spec.OL=.�K// is a nil-thickening of Spec.k/, while

�L D Spec.L/ and N�L ' GL=K �N�:

2.1.4. We denote byGt
a1
�! t the pullback ofG ,! s (i.e. the first projection s �S s! s)

along t ! s. In fact, it is easy to see that we can write Gt as the (derived) pullback t �T t and
that a1 agrees with the first projection,

t �T t t

t T :

 

!
a1

 !a2

 ! iT

 

!
iT

Under the equivalence t �T t ' s �S s �S T , the map a1 corresponds to the projection

ypr13W s �S s �S T ! s �S T

onto the first and third component.

2.1.5. Throughout this paper, we will consider a proper and flat S -scheme pWX ! S ,
which is moreover assumed to be regular (and generically smooth). We denote by psWXs ! s

(resp. pKWXK ! �, pKWXK ! N�) the pullback of pWX ! S along s ,! S (resp. � ,! S ,
N�! S ), so that we obtain a diagram

Xs
iX
��! X

jX
 �� XK  �� XK:

2.1.6. Similarly, we denote by pT WXT ! T (resp. pt WXt ! t , pLWXL ! �L) the pull-
back of pWX ! S along T ! S (resp. t ! S , �T ! S ), and get the open-closed decompo-
sition

Xt
iXT
���! XT

jXT
 ��� XL:

2.2. Higher categories.

2.2.1. We will freely use the theory of higher categories; see [18, 19]. All functors are
implicitly derived. Morphisms between1-categories are simply called “functors”, instead of
the more precise “1-functors”.

2.2.2. We work in the framework of dg-categories up to Morita equivalences. We refer
to [17, 34, 35] for exhaustive accounts.

2.2.3. Let dgCatsS denote the (ordinary) category of small OK-linear dg-categories (i.e.
categories enriched in cochain complexes of OK-modules). A dg-functor is then just a functor
compatible with these enrichments.
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2.2.4. For a dg-category T, its homotopy category is the (OK-linear) category hT with
the same objects of T and such that HomhT.x; y/ D H0.HomT.x; y// for any objects x; y.

2.2.5. Among all dg-functors, we consider the collection WMor of Morita equivalences,
that is, those dg-functors F WT! U such that F induces a quasi-isomorphism

HomT.x; y/! HomU
�
F.x/; F.y/

�
for all pairs of objects x; y 2 T and the image of F generates the Karoubi completion yUc of U
(recall that U � yUc) under cones, shifts and retracts. Then we consider the1-localization of
dgCatsS along WMor, dgCatS ´ dgCatsS ŒW

�1
Mor�.

Remark 2.2.6. This1-localization has a model. Indeed, in [33], G. Tabuada exhibits
a model category structure on dgCatsS where weak equivalences are quasi-equivalences, i.e. dg-
functors inducing quasi-isomorphisms on the hom complexes and which induce equivalences
on the homotopy categories. Every quasi-equivalence is a Morita equivalence and one can take
the associated Bousfield localization, which is a model category whose associated1-category
is equivalent to dgCatS .

2.2.7. In [34], B. Toën showed that there is a well behaved theory of dg-localizations. In
other words, for every T 2 dgCatS and every (saturated) collection of morphisms W � T, there
exists a dg-category TŒW�1� 2 dgCatS endowed with a dg-functor T! TŒW�1� which has the
following universal property: it induces a fully faithful embedding of functor1-categories

FundgCatS .TŒW
�1�;U/! FundgCatS .T;U/

for every U 2 dgCatS , whose essential image consists of dg-functors T! U mapping every
morphism in W to an equivalence.

2.2.8. There is also a theory of dg-quotients: for a sub-dg-category U � T, the dg-
quotient T=U is the dg-localization of T along those morphisms x ! y in T whose fiber
belongs to U. More generally, for a dg-functor F WU! T, the dg-quotient T=U is defined as
the dg-quotient of T by the full sub-dg-category spanned by the essential image of F .

2.2.9. Of major relevance for the purposes of this paper is the notion of localization
sequence in dgCatS . We say that a diagram T1! T2! T3 in dgCatS is a localization sequence
if the composition is homotopic to 0, the induced dg-functor T2=T1 ! T3 is a Morita equiva-
lence and T1 is the kernel of T2 ! T3.

2.3. Motivic and `-adic realizations of dg-categories. We recall here some of the
main constructions of [5].

2.3.1. We denote by SHS the stable homotopy category of S -schemes introduced by
F. Morel and V. Voevodsky in [20] (or rather its1-categorical version; see [30]). This is a stable
symmetric monoidal presentable1-category endowed with a symmetric monoidal functor

†1C WSmS ! SHS
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which enjoys the following universal property (see [30]). Suppose that C is a stable presentable
symmetric monoidal1-category endowed with a symmetric monoidal functor F WSmS ! C

such that

� F satisfies Nisnevich descent (i.e. it sends Nisnevich squares in SchS to pullbacks in C ),

� the canonical map A1S ! S is mapped to an equivalence in C ,

� the fiber of F.S
1
�! P1S / is an invertible object in C ;

then F must factor (essentially uniquely) through †1
C

.

2.3.2. Among motivic spectra (that is, objects in SHS ), there is BUS , the spectrum
which represents homotopy-invariant non-connective algebraic K-theory. This object enjoys
the algebraic Bott periodicity, i.e. there is a canonical equivalence BUS ' BUS .1/Œ2�.

2.3.3. In [30], M. Robalo constructs a non-commutative analogue of SHS (see also
[9, 10] for an alternative construction). This is a stable symmetric monoidal presentable 1-
category SH nc

S equipped with a symmetric monoidal functor �W dgCatft;op
S ! SH nc

S from the
opposite1-category of dg-categories of finite type (see [36]) which enjoys the analogue uni-
versal property of SHS : for every symmetric monoidal functor F W dgCatft;op

S ! C , where C is
a stable presentable symmetric monoidal1-category, such that

� F sends Nisnevich squares of dg-categories (see [30]) to pullbacks in C ,

� the morphism Dperf.A1S /! Dperf.S/ in dgCatft;op
S induced by pullback along the projec-

tion map is mapped to an equivalence in C ,

� the fiber of F.Dperf.S/
1�

��! Dperf.P1S // is an invertible object in C ,

then F factors (essentially uniquely) through �.

2.3.4. The composition

SmS
Dperf
��! dgCatft;op

S

�
��! SH nc

S

is symmetric monoidal and enjoys all the properties listed above. By the universal property
of SHS , we thus obtain a functor RpeWSHS ! SH nc

S , called the perfect realization. This is
a (symmetric monoidal) colimit preserving functor between presentable stable1-categories;
thus it admits a (lax-monoidal) right adjoint MS WSH nc

S ! SHS . As proved in [30], this
functor maps the unit object 1nc

S of SH nc
S to BUS .

2.3.5. In [5], the following “dual” version of MS is considered:

M_S W dgCatftS
�op

��! SH
nc;op
S

HomSHnc
S
.�;1nc

S /

�����������! SH nc
S

MS
��! SHS :

Since SHS is presentable and Ind.dgCatftS / ' dgCatS (see [36]), we can extend this (lax-
monoidal) functor to dgCatS ,

M_S W dgCatS ! SHS :

This is called the motivic realization of dg-categories. As it is lax-monoidal, we actually
get a functor M_S W dgCatS ! ModBUS

.SHS /. For a dg-category T, the motivic spectrum
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underlying M_S .T/ is a functor Smop
S ! Sp (here Sp denotes the stable presentable symmetric

monoidal1-category of spectra) defined on objects by the assignment

Y 7! HK
�
T˝Dperf.S/ Dperf.Y /

�
;

where HK denotes homotopy-invariant non-connective algebraic K-theory.

2.3.6. The motivic realization of dg-categories enjoys the following properties:

� it preserves filtered colimits;
� for every qcqs S -scheme qWY ! S of finite type, M_S .Dperf.Y // ' q�BUY ;
� it sends localization sequences in dgCatS to fiber-cofiber sequences in SHS .

2.3.7. Let ` be a prime number invertible in OK. The authors of [5] considered also the
`-adic realization

R`
S WSHS

�˝HQ
�����! ModHQ.SHS / �����! ShvQ`

.S/;

where HQ is the spectrum of rational singular cohomology. The second functor is constructed
in [5] (based on the rigidity theorems due to Ayoub and Cisinski–Déglise; see [1,7]). It is a sym-
metric monoidal functor with values in the1-category of ind-constructible `-adic sheaves. It
follows from results of J. Riou (see [29]) that R`

S .BUS / ' Q`;S .ˇ/ D
L
j2Z Q`.j /Œ2j �.

2.3.8. The composition

r`S W dgCatS
M_S
��! ModBUS

.SHS /
R`

S
��! ModQ`;S .ˇ/ D ModQ`;S .ˇ/

�
ShvQ`

.S/
�

is a lax-monoidal functor which enjoys the same properties of M_S (mutatis mutandis) and it is
called the `-adic realization of dg-categories.

2.4. Some dg-categories of interest. We will be interested in some very specific dg-
categories.

2.4.1. Let Y denote a (possibly derived) scheme of finite type over S . One associates to
it its dg-category of quasi-coherent complexes Dqcoh.Y /. We will need to consider the following
two sub-dg-categories:

� the full subcategory Db
coh.Y /, spanned by those complexes with coherent and bounded

cohomology sheaves;
� the full subcategory Dperf.Y / of perfect complexes.

Under the mild hypothesis that the structure sheaf OY is bounded, we have a fully faithful
embedding Dperf.Y / � Db

coh.Y /. In this case, the dg-category of (absolute) singularities of Y
is defined as the dg-quotient

Dsg.Y /´
Db

coh.Y /

Dperf.Y /
:

2.4.2. We will also need to consider the following. Let j WZ ,! Y be a quasi-smooth
closed embedding of (derived) schemes of finite type over S . Then the pushforward

j�WDqcoh.Z/! Dqcoh.Y /
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induces dg-functors j�WDb
coh.Z/!Db

coh.Y / and j�WDperf.Z/!Dperf.Y /. Therefore, it induces
a dg-functor j�WDsg.Z/! Dsg.Y /. The dg-category of relative singularities of Z ,! Y is
defined as the kernel of this dg-functor,

Dsg.Z
j
�! Y /´ Ker

�
j�WDsg.Z/! Dsg.Y /

�
:

2.4.3. This dg-category also admits an alternative description. Let Db
coh.Z

j
�! Y / denote

the kernel of the dg-functor

Db
coh.Z/

j�
�! Db

coh.Y / � Dsg.Y /:

This is the full subcategory of Db
coh.Z/ spanned by those complexesE 2 Db

coh.Z/whose image
along j� is a perfect complex of Y . Since j� preserves perfect complexes, all perfect complexes
over Z lie in this subcategory,

Dperf.Z/ � Db
coh.Z

j
�! Y /:

Thus, there is an equivalence

Db
coh.Z

j
�! Y /

Dperf.Z/

'
�! Dsg.Z

j
�! Y /:

2.5. The monoidal dg-categories BC and B. Following [37], we now introduce two
important monoidal dg-categories.

2.5.1. Consider the derived fiber product

G ´ s �S s;

i.e. the spectrum of the simplicial Koszul algebra K.OK; .�K; �K//. This is a derived group-
oid scheme over s (i.e. K.OK; .�K; �K// is a Hopf algebroid). The composition G �s G ! G

corresponds to the projection onto the first and third factor under the equivalence

G �s G ' s �S s �S s;

while the unit corresponds to the canonical morphism uW s ! G.

2.5.2. This derived groupoid structure induces a monoidal convolution ˇ product on
BC´ Db

coh.G/. Roughly, this is defined as the dg-functor

�ˇ�WBC ˝ BC ! BC;

.M;N /! pr13�.pr�12M ˝ pr�23N/;

where prij WG �s G ' s �S s �S s ! G denotes the projection onto the i -th and j -th factors
(which is a proper quasi-smooth map). The unit of this convolution product is u�Os; in other
words, it is k with the obvious OG-module structure.

Remark 2.5.3. Beware that this convolution product is associative and unital (up to
coherent homotopy), but not commutative in general. In other words, BC is just an E1-algebra
in dgCatS .
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2.5.4. The above convolution product is compatible with perfect complexes, i.e.

M ˇN 2 Dperf.G/

as soon as M or N lies in Dperf.G/. Therefore, ˇ induces a similarly defined convolution
product on the dg-category of singularities B´ Dsg.G/.

2.5.5. We will denote the 1-category of left (resp. right) BC-modules by dgCatBC
(resp. dgCatB

C

). An analogous notation will be employed for left (resp. right) B-modules.

3. A useful localization sequence

The goal of this section is to construct a localization sequence of dg-categories

Db
coh.Gt

a1
�! t / ,! Db

coh.Gt /! Dsg.t/;

and then show that it is BC-linear for the natural BC-module structures on all terms.

3.1. Explicit models.

3.1.1. Recall from [26] that we have the following explicit models for Db
coh.Gt / and

Db
coh.t/. The simplicial algebra K.OL; .�K; �K// corresponds, under the Dold–Kan equiva-

lence, to the dg-algebra (also denoted K.OL; .�K; �K//, by abuse of notation)

OL � h1h2 ! OL � h1 ˚ OL � h2 ! OL

placed in (cohomological) degrees Œ�2; 0� and with differential characterized by the require-
ment that h1; h2 7! �K. Also, the variables h1; h2 anticommute and square to zero.

3.1.2. Similarly, the simplicial algebra K.OL; �K/ corresponds, under the Dold–Kan
equivalence, to the dg-algebra (also denoted K.OL; �K/) OL � h! OL placed in (cohomolog-
ical) degrees Œ�1; 0� and with differential characterized by h 7! �K. The variable h squares to
zero.

3.1.3. For i D 1; 2, the morphism

ai W t �T t ' Spec
�
K.OL; .�K; �K//

�
! Spec

�
K.OL; �K/

�
' t

corresponds to the morphism of simplicial algebras K.OL; �K/! K.OL; .�K; �K// uniquely
determined by h 7! hi .

3.1.4. Let Cohs.OL; .�K; �K// denote the strict OK-dg-category of dg-modules over
K.OL; .�K; �K// with strictly perfect underlying OL-dg-modules. More explicitly, it is defined
as follows.

� The objects of Cohs.OL; .�K; �K// are tuplets .E; d; ¹h1; h2º/, where .E; d/ is a strictly
perfect cochain complex of OL-modules (i.e. degreewise projective of finite type and
strictly bounded) and each hi is a OL-linear morphism hi WE ! EŒ�1� of degree �1.
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These data are subject to the following requirements:

(1) hi ı hi D 0 for i D 1; 2;

(2) Œh1; h2� D 0;

(3) Œd; hi � D �K � idE .
� For two such objects

E D .E; dE ; ¹hi;E ºiD1;2/; F D .F; dF ; ¹hi;F ºiD1;2/

and for each n 2 Z, the OK-module of degree n morphisms Homn.E;F/ is the submod-
ule of M

j2Z

HomOL.E
j ; F jCn/

(which is isomorphic to
Q
j2Z HomOL.E

j ; F jCn/ as the complexes are strictly bounded)
spanned by those elements ¹�j WEj ! F jCnºj2Z verifying the equations

�j ı h
jC1
i;E D h

jCnC1
i;F ı �jC1; i D 1; 2:

As usual, these modules form a cochain complex by considering the differential

Homn.E;F/! HomnC1.E;F/;

¹�j WEj ! F jCnºj2Z 7! ¹d
jCn
F ı �j C .�1/nC1�jC1 ı d

j
E WE

j
! F jCnC1ºj2Z:

Remark 3.1.5. Since strictly perfect cochain complexes of OL-modules are degreewise
projective of finite rank and strictly bounded, the OL-module

L
j2Z HomOL.E

j ; F jCn/ is
projective of finite rank for each n 2 Z. As OL is a principal ideal domain, this means thatL
j2Z HomOL.E

j ; F jCn/ is free of finite rank for each n 2 Z. Therefore,

Homn.E;F/ �
M
j2Z

HomOL.E
j ; F jCn/

is free of finite rank for each n 2 Z as well. Since OL is a (faithfully) flat OK-algebra, it follows
that Cohs.OL; .�K; �K// is a locally flat OK-dg-category.

3.1.6. We have an analogous model for Db
coh.t/. Let Cohs.OL; �K/ denote the strict OK-

dg-category of K.OL; �K/ dg-modules with strictly perfect underlying OL-dg-module. This
dg-category can be described explicitly as well.

� The objects of Cohs.OL; �K/ are tuplets .E; d; h/, where .E; d/ is a strictly perfect com-
plex of OL-modules (i.e. degreewise projective of finite rank and strictly bounded) and
hWE ! EŒ�1� is a OL-linear morphism of degree �1 such that

(1) h2 D 0;

(2) Œd; h� D �K � idE .
� For two such objects

E D .E; dE ; hE /; F D .F; dF ; hF /

and for each n 2 Z, the OK-module Homn.E;F/ is the submodule ofM
j2Z

HomOL.E
j ; F jCn/
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(which is isomorphic to
Q
j2Z HomOL.E

j ; F jCn/ as the complexes are strictly bounded)
spanned by those elements ¹�j WEj ! F jCnºj2Z such that

�j ı h
jC1
E D h

jCnC1
F ı �jC1:

The OK-module
L
n2Z Homn.E;F/ is equipped with the same differential as above.

Remark 3.1.7. Just as in the previous remark, Cohs.OL; �K/ is a locally flat OK-dg-
category.

3.1.8. According to [5, 26], the strict dg-categories Cohs.OL; .�K; �K//, Cohs.OL; �K/

are strict models for Db
coh.Gt / and Db

coh.t/.

Lemma 3.1.9. Let Wqi denote the class of quasi-isomorphisms in both the dg-categories
Cohs.OL; .�K; �K// and Cohs.OL; �K/. Then

Cohs�OL; .�K; �K/
�
ŒW�1qi �dg ' Db

coh.Gt /;

Cohs.OL; �K/ŒW�1qi �dg ' Db
coh.t/:

On the left-hand side, we consider the localization of dg-categories introduced by B. Toën [34].

3.1.10. Using these strict models, it is easy to give strict models of the dg-functors

a�i WD
b
coh.t/! Db

coh.Gt /; i D 1; 2;

ai�WDb
coh.Gt /! Db

coh.t/; i D 1; 2:

Indeed, the pushforward along ai (i D 1; 2) corresponds to the dg-functor

Cohs�OL; .�K; �K/
�
! Cohs.OL; �K/

defined on objects by .E; d; ¹hsºsD1;2/! .E; d; hi / and on morphisms by the inclusion

Hom
�
.E; dE ; ¹hE;sºsD1;2/; .F; dF ; ¹hF;sºsD1;2/

�
� Hom

�
.E; dE ; ¹hE;iº/; .F; dF ; ¹hF;iº/

�
�

M
j;n2Z

HomOL.E
j ; F jCn/:

This is obviously compatible with the differentials, with the identities and with the composition
of morphisms. Moreover, it obviously preserves quasi-isomorphisms and its dg-localization
along Wqi is equivalent to

ai�WDb
coh.Gt /! Db

coh.t/; i D 1; 2:

3.1.11. The pullback along ai (i D 1; 2) can be “strictified” as well. Consider the dg-
functor

Cohs.OL; �K/! Cohs�OL; .�K; �K/
�

defined by sending an object .E; d; h/ to E ˚EŒ1� with differential�
d �K � idE
0 �d

�
WE ˚EŒ1�! EŒ1�˚EŒ2�
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and where hi 2 K.OL; .�K; �K// acts via�
h 0

0 �h

�
WE ˚EŒ1�! EŒ�1�˚E;

while hj 2 K.OL; .�K; �K// (j 2 ¹1; 2º X ¹iº) acts via�
0 0

idE 0

�
WE ˚EŒ1�! EŒ�1�˚E:

It is defined on morphisms as

�WE ! F 7!

�
� 0

0 �Œ1�

�
WE ˚EŒ1�! F ˚ F Œ1�:

It is straightforward to verify that this is compatible with the differentials, with the identities and
with the composition. This dg-functor also preserves quasi-isomorphisms and its localization
along Wqi is equivalent to

a�i WD
b
coh.t/! Db

coh.Gt /; i D 1; 2:

Remark 3.1.12. The two pairs of dg-functors

a�i WCohs.OL; �K/ � Cohs�OL; .�K; �K/
�
Wai�

are adjunctions.

Remark 3.1.13. The dg-functor a�2 WD
b
coh.t/! Db

coh.Gt / factors through the full em-
bedding Db

coh.Gt
a1
�! t / � Db

coh.Gt /. This is an immediate consequence of the base-change
equivalence a1� ı a�2 ' i

�
T ı iT� and of the regularity of T .

3.2. The main computation. We use the above explicit models to prove Corollary 3.3.4,
which is the main ingredient for Theorem 4.2.3.

Remark 3.2.1. The chain

Db
coh.Gt

a1
�! t / ,! Db

coh.Gt /! Dsg.t/

is a localization sequence if and only if so is

Dsg.Gt
a1
�! t / ,! Dsg.Gt /! Dsg.t/:

Lemma 3.2.2. The dg-category

Db
coh.Gt /

Db
coh.Gt

a1
�! t /

'
Dsg.Gt /

Dsg.Gt
a1
�! t /

is 2-periodic, i.e. there is a natural equivalence of dg-functors

id ' Œ2�W
Db

coh.Gt /

Db
coh.Gt

a1
�! t /

!
Db

coh.Gt /

Db
coh.Gt

a1
�! t /

:

Here Œ2� D Œ1� ı Œ1� denotes the double shift functor.
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Proof. We will show that, for every E 2 Db
coh.Gt /, there is a functorial exact triangle

a�2a2�E ��! E
uE
��! EŒ2�

in Dsg.Gt /, where the first morphism is the counit of the adjunction .a�2 ; a2�/.
2)

In the diagrams below, we will write horizontally from left to right the differentials of
a complex and from right to left the homotopies which are part of the datum for an object
in Cohs.OL; .�K; �K//. Morphisms in this category will be written vertically. Notice that it
suffices to consider an object in Dsg.Gt / represented by some

.E; d; ¹h1; h2º/ 2 Cohs�OL; .�K; �K/
�

with E concentrated in three degrees at most, say Œn; nC 2� (see [26, Theorem 2.7]),

En EnC1 EnC2: 

!
dn

 

!h
nC1
i

 

!
dnC1

 

!h
nC21
i

In this case, using the strict models above, one computes that a�2a2�E ! E is

En En ˚EnC1 EnC1 ˚EnC2 EnC2

En EnC1 EnC2:

 
!h

�K
�dn

i  !Œ 1 0 �

 !

Œ 0 �h
nC1
2

�

 

!

Œ id hnC1
1

�

 
!�

dn �K
0 �dnC1

� !

h
0 0
1 0

i  !

"
h

nC1
2

0

0 �h
nC2
2

#
 

!

Œ id hnC2
1

�

 
!�

dnC1 �K
0 �dnC2

� !

h
0 0
1 0

i  !

�
h

nC2
2
0

�

 

!

id

 

!
dn

 

! h
nC1
i

 

!
dnC1

 

! h
nC21
i

Then we have the following morphism fromEŒ2� to the cone of the morphism displayed above:

En En ˚EnC1 En ˚EnC1 ˚EnC2 EnC1 ˚EnC2 EnC2

En EnC1 EnC2:

 

!h
��K
dn

i !Œ�1 0 �

 !

Œ 0 h
nC1
2

�

 

!24 id h
nC1
1

�dn ��K
0 dnC1

35
 

!

h
0 0 0
0 �1 0

i  !

"
0 �h

nC1
2

0

0 0 h
nC2
2

#

 

!"
dn id h

nC2
1

0 �dnC1 ��K

# 

!

"
h

nC1
1

0

0 0
0 �1

#

 !

24hnC1
2

0

0 �h
nC2
2

0 0

35

 

!
Œ dnC1 id �

 

!

h
h

nC2
i
0

i

 

!
dn

 

!

� id

 

!h
nC1
i

 

!
dnC1

 

!

h
h

nC1
1
� id

i

 

! h
nC21
i

 

!"
0

h
nC2
1
� id

#

2) By abuse of notation, we still denote by E 2 Dsg.Gt / the image of E 2 Db
coh.Gt / along

Db
coh.Gt /! Dsg.Gt /:
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It is easy to check that the latter induces isomorphisms on cohomology groups. Now recall that
the object a�2a2�E belongs to Db

coh.Gt
a1
�! t / and it is thus zero in the dg-quotient

Db
coh.Gt /=Db

coh.Gt
a1
�! t /:

In other words, the morphism uE WE ! EŒ2� becomes an equivalence in

Db
coh.Gt /=Db

coh.Gt
a1
�! t /:

This shows that there is a canonical equivalence id ' Œ2� on the dg-quotient of

Db
coh.Gt

a1
�! t / ,! Db

coh.Gt /

computed in dgCatsS ŒW
�1
qe �, the1-localization of dgCatsS with respect to quasi-equivalences.

The objects of this quotient dg-category are in correspondence with those of Db
coh.Gt /. Since

Db
coh.Gt /=Db

coh.Gt
a1
�! t /

is Karoubi generated by the image of the canonical functor

Db
coh.Gt /! Db

coh.Gt /=Db
coh.Gt

a1
�! t /

and the morphism uE is functorial in E, we obtain a natural equivalence

uW id
'
�! Œ2�W

Db
coh.Gt /

Db
coh.Gt

a1
�! t /

!
Db

coh.Gt /

Db
coh.Gt

a1
�! t /

as claimed.

3.2.3. We will also need the following characterization of the objects in the quotient of
Db

coh.Gt / by Db
coh.Gt

a1
�! t /.

Lemma 3.2.4. The dg-category Db
coh.Gt /=Db

coh.Gt
a1
�! t / is Karoubi generated by the

images along

Cohs�OL; .�K; �K/
�
!

Db
coh.Gt /

Db
coh.Gt

a1
�! t /

of objects .E; d; ¹hiºiD1;2/, where .E; d/ is a cochain complex concentrated in at most two
degrees.

Proof. Thanks to the equivalence

Db
coh.Gt /

Db
coh.Gt

a1
�! t /

'
Dsg.Gt /

Dsg.Gt
a1
�! t /

;

it follows from [26, Theorem 2.7] that this dg-quotient is Karoubi generated by the images
of objects .E; d; ¹hiºiD1;2/, where .E; d/ is a cochain complex concentrated in at most three
degrees,

En�1
dn�1

���! En
dn

���! EnC1:

Now, En�1, En and EnC1 are finitely generated projective OL-modules. The characterization
of finitely generated modules over a principal ideal domain guarantees that each is free of
finite rank. Now, Ker.dn/ � En and Im.dn/ � EnC1 are submodules of free OL-modules of
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finite rank. Thus, they are both finitely generated and torsion free; hence they are also free OL-
modules of finite rank. It follows that the cochain complexes (with obvious K.OL; .�K; �K//-
module structures)

En�1
dn�1

���! Ker.dn/; Im.dn/ ,! EnC1

belong to Cohs.OL; .�K; �K//.
Moreover, .E; d; ¹hiºiD1;2/ is clearly an extension of Im.dn/ ,! EnC1 by

En�1
dn�1

���! Ker.dn/:

We conclude that Db
coh.Gt /=Db

coh.Gt
a1
�! t / is Karoubi generated by the images of those objects

.E; d; ¹hiºiD1;2/ 2 Db
coh.OL; .�K; �K// such that .E; d/ is a cochain complex concentrated in

two degrees at most.

Remark 3.2.5. Suppose that an object

.E; d; ¹hiºiD1;2/ D .E
n d
�! EnC1/ 2 Cohs�OL; .�K; �K/

�
is concentrated in two degrees. Then h1 D h2. In fact, the equations imposed on d and hi ,
combined with the fact that �K 2 OL is not a zero-divisor, imply that d is injective and that

d ı h1 D d ı h2:

Lemma 3.2.6. In Lemma 3.2.4, it suffices to consider those complexes generated in
degrees Œ0; 1�.

Proof. By the two-periodicity of Db
coh.Gt /=Db

coh.Gt
a1
�! t / (see Lemma 3.2.2) and by

the proof of Lemma 3.2.4, we see that it suffices to show that, for every objectA represented by
an object E D .E; d; ¹hiºiD1;2/ of Cohs.OL; .�K; �K// concentrated in two degrees, AŒ1� can
be represented by some object of Cohs.OL; .�K; �K// concentrated in the same two degrees.
We consider the dg-functor

Cohs.OL; �K/! Cohs�OL; .�K; �K/
�
;

.E; d; h/ 7! .E; d; ¹h; hº/:

This is a strict model for the pushforward along the diagonal map ıW t ! Gt ' t �T t . As
a1 ı ı D idt , this induces a dg-functor

Dsg.t/!
Db

coh.Gt /

Db
coh.Gt

a1
�! t /

:

By Remark 3.2.5, every object A as above is in the image of this functor. Therefore, it suffices
to compute AŒ1� before applying the functor, i.e. in Dsg.t/. Then [26, Corollary 3.7] is exactly
what we want.

Proposition 3.2.7. The dg-functor a1�WDb
coh.Gt /! Db

coh.t/ induces an equivalence

Db
coh.Gt /

Db
coh.Gt

a1
�! t /

'
�! Dsg.t/

in dgCatS
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Proof. The dg-functor

Q´
Db

coh.Gt /

Db
coh.Gt

a1
�! t /

! Dsg.t/

is induced by the dg-functor of strict models

a1�WCohs�OL; .�K; �K/
�
! Cohs.OL; �K/;

.E; d; ¹hiºiD1;2/ 7! .E; d; h1/:

Moreover, as the dg-categories involved are triangulated (see [35]), it suffices to show that
it induces an equivalence at the level of homotopy categories, F W h.Q/! h.Dsg.t//. Let yQ
and 1Dsg.t/ denote the dg-quotients of Db

coh.Gt
a1
�!/ ,! Db

coh.Gt / and Dperf.t/ ,! Db
coh.t/ com-

puted in dgCatsS ŒW
�1
qe �. In particular, Q and Dsg.t/ are the triangulated hulls of yQ and 1Dsg.t/

respectively. Recall that the homotopy category of 1Dsg.t/ has the following explicit description:

h
�1Dsg.t/

�
' h

�
MF.OL; �K/

�
;

where h.MF.OL; �K// denotes the triangulated category of matrix factorizations (see [24]).
This is the category whose objects are tuplets

E D .E0; E1; d WE0 ! E1; hWE1 ! E0/;

where E0; E1 are projective OL-modules of finite rank and d; h are OL-linear maps such that
d ı h D �K � idE1

and h ı d D �K � idE0
. For two such objects E;E0, the OK-module of mor-

phisms E! E0 is the set of pairs of OL-linear maps � D .�0WE0 ! E 00; �1WE1 ! E 01/

commuting with d; d 0; h; h0 in the obvious sense, endowed with the obvious OK-module struc-
ture. The shift functor is

Œ1�W h
�
MF.OL; �K/

�
! h

�
MF.OL; �K/

�
;

.E0; E1; d WE0 ! E1; hWE1 ! E0/ 7! .E1; E0;�hWE1 ! E0;�d WE0 ! E1/

and the cone of a morphism �WE! E0 as above is

coFib.�/ D
�
E1 ˚E 00; E0 ˚E 01;

�
�1 d 0

�h 0

�
;

�
0 �d

h0 �0

��
:

The distinguished triangles are those isomorphic to triangles of the form

E
�
! E0 ! coFib.�/:

The equivalence h.1Dsg.t// ' h.MF.OL; �K// is induced by the functor

.E; d; h/ 7!
�M
i2Z

E2i ;
M
i2Z

E2iC1; d C h; d C h
�
:

See [26, Corollary 3.11]. Therefore, we get a triangulated functor

G W h
�
MF.OL; �K/

�
! h. yQ/;

E D .E0; E1; d; h/ 7! G .E/ D .E0
d
�! E1; ¹h; hº/;

.�0; �1/ 7! .�0; �1/;
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where the object G .E/ is concentrated in degrees Œ0; 1�. The composition yF ı G is then the
identity functor. Here yF denotes the dg-functor

h. yQ/! h
�
MF.OL; �K/

�
;

.E; d; ¹hiºiD1;2/ 7!
�M
i2Z

E2i ;
M
i2Z

E2iC1; d C h1; d C h1

�
:

The composition G ı yF is also equivalent to the identity, as it is so on those objects concen-
trated in degrees Œ0; 1�, to which every object in h. yQ/ is isomorphic. Thus, we have proved that
h. yQ/ ' h.MF.OL; �K// and the claim of the proposition follows immediately.

Corollary 3.2.8. The following are localization sequences in dgCatS :

Db
coh.Gt

a1
�! t / ,! Db

coh.Gt /! Dsg.t/;

Dsg.Gt
a1
�! t / ,! Dsg.Gt /! Dsg.t/:

Proof. By Remark 3.2.1, it suffices to show that the first one is a localization sequence.
This follows from Proposition 3.2.7 and from the observation that Db

coh.Gt
a1
�! t / is by defini-

tion the kernel of the dg-functor Db
coh.Gt /! Dsg.t/ induced by a1�.

3.3. The structure of left BC-modules. In this section, we show that the above local-
ization sequences are compatible with the natural BC-module structures.

3.3.1. Recall from [37] that Db
coh.Gt / and Db

coh.t/ are both equipped with natural left
actions of BC. Since these actions preserve the full subcategories of perfect complexes, the
quotient dg-categories Dsg.Gt / and Dsg.t/ are left BC-modules, too.

3.3.2. Let Cohs.OK; .�K; �K// be the strict model for Db
coh.G/, defined (mutatis mutan-

dis) just as Cohs.OL; .�K; �K//. There is a pseudo-action

�ˇ�WCohs�OK; .�K; �K/
�
˝ Cohs�OL; .�K; �K/

�
! Cohs�OL; .�K; �K/

�
;

.M;E/ 7!M ˇE ´M ˝K.OK;�K/ E;

where M and E are seen as a K.OK; �K/-module by forgetting the actions of h2 and h1
respectively and by restricting scalars on E. Similarly, there is a pseudo-action

�ˇ�WCohs�OK; .�K; �K/
�
˝ Cohs.OL; �K/! Cohs.OL; �K/;

.M;E/ 7!M ˇE ´M ˝K.OK;�K/ E;

where M is seen as a K.OK; �K/-module by forgetting the action of h2 and by restring scalars
on E.

These are strict models for the left BC-module structures on Db
coh.Gt / and Db

coh.t/; see
[37, Section 4.1].

Lemma 3.3.3. The dg-functor

a1�WDb
coh.Gt /! Db

coh.t/

is a morphism of left BC-modules.
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Proof. This follows immediately from the strict models. In fact, as already mentioned
above, a1�WDb

coh.Gt /! Db
coh.t/ can be “strictified” by the dg-functor

Cohs�OL; .�K; �K/
�
! Cohs.OL; �K/

which forgets the action of h2. This is obviously compatible with the pseudo-actions described
above.

Corollary 3.3.4. The sequence

Db
coh.Gt

a1
�! t / ,! Db

coh.Gt /! Dsg.t/

is a localization sequence of left BC-modules.

Proof. As a1�WDb
coh.Gt /! Db

coh.t/ and Db
coh.t/! Dsg.t/ are morphisms of left BC-

modules, their composition is BC-linear too. It remains to show that the inclusion

Db
coh.Gt

a1
�! t / ,! Db

coh.Gt /

is BC-linear. Observe that as a1�WDb
coh.Gt /! Db

coh.t/ is BC-linear and the action of BC on
Db

coh.t/ preserves Dperf.t/ � Db
coh.t/, the dg-category Db

coh.Gt
a1
�! t / inherits a left BC-module

structure from Db
coh.Gt /. It is then clear that

Db
coh.Gt

a1
�! t / � Db

coh.Gt /

is BC-linear.

4. A dévissage-like result

In this section, we compute the motivic realization of the dg-category Db
coh.Xt

iXT
��! XT /.

4.1. Another useful localization sequence.

4.1.1. Recall from [37, Section 2.1] and [19, Section 4.4] that there is a functor

dgCatB
C

� dgCatBC ! dgCatS

which sends a right BC-module R and a left BC-module L to

R˝BC L´ .R˝S L/˝BC;e BC;L;

where BC;e denotes the “enveloping” algebra BC;rev ˝S BC, and BC;L the dg-category BC

endowed with its natural left BC;e-module structure.

4.1.2. Also recall (see [37, Remark 2.1.4, Proposition 4.1.7]) that Db
coh.Xs/ is coten-

sored over BC, so that Db
coh.Xs/

op is a right BC-module. We can therefore consider the functor

Db
coh.Xs/

op
˝BC �W dgCatBC ! dgCatS :
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Lemma 4.1.3. The functor Db
coh.Xs/

op ˝BC �W dgCatBC ! dgCatS sends localization
sequences of left BC-modules to localization sequences in dgCatS .

Proof. By [19, Corollary 4.4.2.15] (applied to C D dgCatS , A D C D Dperf.S/ and
B D BC), we know that this functor preserves colimits. In particular, if L1 ,! L2 ! L3 is
a localization sequence in dgCatBC , then

Db
coh.Xs/

op
˝BC L3 '

Db
coh.Xs/

op ˝BC L2

Db
coh.Xs/

op ˝BC L1
:

It remains to prove that the induced arrow Db
coh.Xs/

op ˝BC L1 ! Db
coh.Xs/

op ˝BC L2 is fully
faithful. Objects in the tensor product Db

coh.Xs/
op ˝BC L1 (resp. Db

coh.Xs/
op ˝BC L2) are

pairs .E;L/, where E 2 Db
coh.Xs/ and L 2 L1 (resp. L 2 L2). For two such objects .E;L/,

.E 0; L0/, the hom complex of morphisms from .E;L/ to .E 0; L0/ in Db
coh.Xs/

op ˝BC L1 (resp.
Db

coh.Xs/
op ˝BC L2) is computed as

HomDb
coh.Xs/op.E;E 0/˝kŒu� HomL1

.L;L0/

.resp. HomDb
coh.Xs/op.E;E 0/˝kŒu� HomL2

.L;L0//:

Here kŒu� is the algebra of endomorphisms of the unit object of BC.
For two objects L;L0 2 L1, the morphism HomL1

.L;L0/! HomL2
.L;L0/ is a quasi-

isomorphism. Therefore, its image along HomDb
coh.Xs/op.E;E 0/˝kŒu� � is a quasi-isomorphism

as well and the claim follows.

Corollary 4.1.4. The sequence

Db
coh.Xs/

op
˝BC Db

coh.Gt
a1
�! t / ,! Db

coh.Xs/
op
˝BC Db

coh.Gt /! Db
coh.Xs/

op
˝BC Dsg.t/

is a localization sequence in dgCatS .

Proof. This follows immediately from Lemma 4.1.3 and Corollary 3.3.4.

4.1.5. Our next goal is to identify the localization sequence above with a more explicit
one. Recall from [37, Section 4.2] that, for two regular and flat S -schemes Y and Z, there is
an equivalence

FY;Z ´ j�
�
DYs

.�/�s .�/
�
WDb

coh.Ys/
op
˝BC Db

coh.Zs/
'
�! Db

coh.Y �S Z/Ys�sZs
;

where ��s � denotes the external tensor product over s,

DYs
.�/´ HomYs

.�;OYs
/

the Grothendieck duality functor and Db
coh.Y �S Z/Ys�sZs

the subcategory of Db
coh.Y �S Z/

spanned by those complexes supported on the closed subscheme j WYs �s Zs ,! Y �S Z.

Remark 4.1.6. Actually, we observe that the proof of [37, Lemma 4.2.3] only requires
that Y and Z are Gorenstein S -schemes of finite type. The flatness assumption is never really
used (it is actually there only to guarantee that the derived special fibers agree with the usual
ones), while regularity is only needed to guarantee that this functor is compatible with perfect
complexes and thus induces a functor at the level of dg-categories of singularities.
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Proposition 4.1.7. The localization sequence

Db
coh.Xs/

op
˝BC

�
Db

coh.Gt
a1
�! t / ,! Db

coh.Gt /! Dsg.t/
�

of Corollary 4.1.4 identifies with

Db
coh.Xt

iXT
��! XT / ,! Db

coh.Xt /
iXT �

��! Dsg.XT /:

Proof. We will proceed in steps.

Step 1. By Remark 4.1.6, we have an equivalence

FX;t WD
b
coh.Xs/

op
˝BC Db

coh.Gt /
'
�! Db

coh.X �S t /Xs�sGt
:

However,Xs �s Gt ,! X �S t ' Xt is a closed embedding with empty open complement (as
Gt

a1
�! t is so). In particular, we have Db

coh.X �S t /Xs�sGt
' Db

coh.Xt /, and thus we obtain an
equivalence

FX;t WD
b
coh.Xs/

op
˝BC Db

coh.Gt /
'
�! Db

coh.Xt /:

Step 2. Starting from the localization sequence Dperf.t/ ,! Db
coh.t/! Dsg.t/ of left

BC-modules, Lemma 4.1.3 implies that

Db
coh.Xs/

op
˝BC Dperf.t/! Db

coh.Xs/
op
˝BC Db

coh.t/! Db
coh.Xs/

op
˝BC Dsg.t/

is a localization sequence in dgCatS . As explained in the proofs of [37, Lemma 4.2.3, Theo-
rem 4.2.1], the functor FX;T yields a commutative diagram

Db
coh.Xs/

op ˝BC Dperf.t/ Db
coh.Xs/

op ˝BC Db
coh.t/

Dperf.XT /Xt
Db

coh.XT /Xt
;

 

!

 ! FX;t

 ! FX;T

 

!

where the vertical arrows are equivalences. Therefore,

Db
coh.Xs/

op
˝BC Dsg.t/ '

Db
coh.XT /Xt

Dperf.XT /Xt

' Dsg.XT /:

Here we used that XT has smooth generic fiber, so that

Db
coh.XT /Xt

Dperf.XT /Xt

'
Db

coh.XT /

Dperf.XT /
D Dsg.XT /:

Thus, FX;T induces an equivalence

FX;T WD
b
coh.Xs/

op
˝BC Dsg.t/

'
�! Dsg.XT /:

Step 3. Consider now the square

Db
coh.Xs/

op ˝BC Db
coh.Gt / Db

coh.Xs/
op ˝BC Dsg.t/

Db
coh.Xt / Dsg.XT /;

 

!
id˝BCa1�

 ! FX;t

 ! FX;T

 

!
iXT �
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and recall from the two previous steps that both vertical arrows are equivalences. In this step, we
prove that this square is commutative. So we need to show that dg-functor Db

coh.Xt /!Dsg.XT /

corresponding to Db
coh.Xs/

op ˝BC .D
b
coh.Gt /! Dsg.t// identifies with the pushforward along

iXT
WXt ,! XT composed with the projection

Db
coh.XT / � Dsg.XT /:

For this, we will use the diagram

X �S s X �S s

X �S s �S s �S T X �S s �S T X �S T

s �S s �S T s �S T T :

 !pr12

 

!
pr134

 ! pr234

 !zpr12

 

!
iXT
Dzpr13

 ! zpr23

 ! pr2

 

!
a1Dypr13  

!
iT

Recall that FX;T is defined as

. zp13/�
�
zpr�12DXs

.�/˝ zpr�23.�/
�
WDb

coh.X �S s/
op
˝BC Db

coh.s �S T /

! Db
coh.X �S T /X�Ss�ST

and that FX;s�ST
is defined as

.pr134/�
�
pr�12DXs

.�/˝ pr�234.�/
�
WDb

coh.X �S s/
op
˝BC Db

coh.s �S s �S T /

! Db
coh.X �S s �S T /:

LetE 2 Db
coh.Xs/ andM 2 Db

coh.Gt /. To identify FX;T .E; a1�M/with iXT �FX;t .E;M/, we
compute

iXT �FX;s�ST
.E;M/ D . zpr13/�.pr134/�

�
pr�12DXs

.E/˝ pr�234M
�

' . zpr13/�.pr124/�
�
pr�124 zpr�12DXs

.E/˝ pr�234M
�

' . zpr13/�
�
zpr�12DXs

.E/˝ .pr124/� pr�234M
�

' . zpr13/�
�
zpr�12DXs

.E/˝ zpr�23. ypr13/�M
�

D FX;T .E; a1�M/ (when considered as an object in Dsg.XT /):

The first equivalence follows from the obvious identities

zpr13 ı pr124 ' zpr13 ı pr134;

pr12 ' zpr12 ı pr124;

the second equivalence is the projection formula and the last equivalence follows from the
base-change

zpr�23. ypr13/� ' .pr124/� pr�234 :

This shows that the diagram of dg-functors

Db
coh.X �S s/

op ˝BC Db
coh.s �S s �S T / Db

coh.X �S s/
op ˝BC Db

coh.s �S T /

Db
coh.X �S s �S T / Db

coh.X �S T /X�Ss�ST

 

!
id˝a1�

 ! FX;t

 ! FX;T

 

!
iXT �
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is commutative. As an immediate consequence, we obtain

Db
coh.Xs/

op
˝BC

�
Db

coh.Gt /! Dsg.t/
�
'
�
Db

coh.Xt /
iXT �

��! Db
coh.XT / � Dsg.XT /

�
:

Step 4. We can now conclude the proof. The commutativity of the above square implies
that

Db
coh.Xs/

op
˝BC Db

coh.Gt
a1
��! t / ' Db

coh.Xt
iXT
��! XT /

as the left-hand side has to be equivalent to

Ker
�
Db

coh.Xt /
iXT �

��! Dsg.XT /
�
D Db

coh.Xt
iXT
��! XT :

4.2. Motivic realization of Db
coh.Xt

i
�! XT /.

4.2.1. The motivic spectrum underlying M_S .D
b
coh.Xt

iXT
��! X// is easy to describe: it

is the functor Smop
S ! Sp that sends a smooth S -scheme Y to

HK
�
Db

coh.Xt
iXT
��! X/˝Dperf.S/ Dperf.Y /

�
:

4.2.2. We think of the following statement as a kind of dévissage for homotopy-invariant
non-connective algebraic K-theory. We therefore state it as a theorem, as it seems to be a new
result interesting on its own.

Theorem 4.2.3. With the same notation as in the previous sections, there are equiva-
lences

M_S
�
Db

coh.Xt
iXT
��! XT /

�
'M_S

�
Dperf.XT /Xt

�
' qT�iXT �i

Š
XT

BUXT

in SHS , where qT WXT ! S is the composition XT
pT
��! T ��! S .

Proof. Proposition 4.1.7 immediately yields a commutative diagram

Db
coh.Xt

iXT
��! XT / Db

coh.Xt / Dsg.XT /

Dperf.XT /Xt
Db

coh.XT /Xt
Dsg.XT /;

 

!

 ! iXT �

 

!

 ! iXT �

 ! id

 

!

 

!

where the rows are localization sequences in dgCatS . As M_S sends localization sequences to
fiber-cofiber sequences, we obtain a commutative diagram

(4.1)
M_S

�
Db

coh.Xt
iXT
��! XT /

�
M_S

�
Db

coh.Xt /
�

M_S
�
Dsg.XT /

�
M_S

�
Dperf.XT /Xt

�
M_S

�
Db

coh.XT /Xt

�
M_S

�
Dsg.XT /

�
;

 

!

 ! M_S .iXT �
/

 

!

 ! M_S .iXT �
/  ! id

 

!

 

!

where the rows are fiber-cofiber sequences. We know that

M_S .iXT �/WM
_
S

�
Db

coh.Xt /
�
!M_S

�
Db

coh.XT /Xt

�
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is an equivalence. For Y a smooth S -scheme, the map of spectra

M_S
�
Db

coh.Xt /
�
.Y /

M_S .iXT �
/.Y /

����������!M_S
�
Db

coh.XT /Xt

�
.Y /

identifies with a map

HK
�
Db

coh.Xt /˝Dperf.S/ Dperf.Y /
�
! HK

�
Db

coh.XT /Xt
˝Dperf.S/ Dperf.Y /

�
:

Since Y is a smooth S -scheme, Dperf.Y / ' Db
coh.Y / and it follows from [27, Proposition B.4.1]

that
Db

coh.Xt /˝Dperf.S/ Dperf.Y / ' Db
coh.Xt �S Y / ' Db

coh.Xt �s Ys/:

Similarly, using the fact that �˝Dperf.S/ Dperf.Y / preserves localization sequences (see [30,
Proposition 3.19 2)]), [27, Proposition B.4.1] implies that Db

coh.XT /Xt
˝Dperf.S/ Dperf.Y / iden-

tifies with the kernel of the localization dg-functor

Db
coh.XT �S Y /! Db

coh.XL �S Y / ' Db
coh.XL �� Y�/;

that is, with Db
coh.XT �S Y /Xt�sYs

. It follows that the map M_S .iXT �/.Y / identifies with

HK
�
Db

coh.Xt �s Ys/
�„ ƒ‚ …

DG.Xt�sYs/

HK..Xt�sYs!XT�SY /�/
������������������! HK

�
Db

coh.XT �S Y /Xt�sYs

�„ ƒ‚ …
DG.XT�SY /Xt�sYs

;

which is an equivalence by the theorem of the heart (see [2, 21–23]) and by dévissage in G-
theory (see [28, §5, Theorem 4]).

Since the middle and rightmost vertical arrows in diagram (4.1) are equivalences,

M_S .iXT �/WM
_
S

�
Db

coh.Xt
iXT
��! XT /

�
!M_S

�
Dperf.XT /Xt

�
is an equivalence as well. To show that these motivic spectra identify with qT�iXT �i

Š
XT

BUXT
,

we consider the localization sequence Dperf.XT /Xt
,! Dperf.XT /! Dperf.XL/. Combining

this with the equivalence

M_S
�
Dperf.XT /! Dperf.XL/

�
' qT�.BUXT

! jXT �BUXL/

(see [5]), we deduce that

M_S
�
Dperf.XT /Xt

,! Dperf.XT /! Dperf.XL/
�

is a fiber-cofiber sequence that identifies with the localization sequence

qT�iXT �i
Š
XT

BUXT
! qT�BUXT

! qT�jXT �BUXL

associated to the open-closed decomposition iXT
WXt ! XT  XL WjXT

.

Remark 4.2.4. The above theorem agrees with the prediction, stated in [5, 25], that

M_S
�
Db

coh.Ys
iY
�! Y /

�
'M_S

�
Dperf.Y /Ys

�
for every qcqs flat S -scheme Y of finite type.
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5. The main theorems

As already mentioned in Section 1 (and as already pointed out in [5, Remark 4.46]), once
Theorem 4.2.3 is established, the proof of [5, Theorem 4.39] works essentially unchanged. In
this section, we spell out the minor changes needed for the proof of Theorem A.

5.1. `-adic vanishing cycles and IL-homotopy fixed points. We recall here the defi-
nition of the vanishing cohomology introduced in [11, 15].

5.1.1. Let NjX WXK ! X be the pullback of N�! S along pWX ! S . We denote by
ShvQ`

.Xs/
IK the1-category of `-adic sheaves on Xs endowed with a continuous action of IK.

The functor of nearby cycles is defined by

‰pWShvQ`
.XK/! ShvQ`

.Xs/
IK ;

E 7! i�X
NjX�.EjXK

/;

with the IK-action induced by transport of structure from the natural IK-action on EjXK
.

Remark 5.1.2. We do not spell out the details of this construction here. These are pro-
vided for example in [8] for finite coefficients. Then one can take a limit and invert ` to get
Q`-coefficients.

5.1.3. For an `-adic sheaf E on X , there is a functorial morphism

spE W i
�
X .E/! ‰p.EjXK/

called the specialization morphism, induced by the counit of the adjunction . Nj �X ; NjX�/. This
morphism is IK-equivariant if we endow i�X .E/ with the trivial IK-action.

5.1.4. The vanishing cycles functor

p̂WShvQ`
.X/! ShvQ`

.Xs/
IK

is defined as
p̂.E/´ coFib.spE /;

where the cofiber is computed in ShvQ`
.Xs/

IK .

5.1.5. Let us recall an explicit description of the homotopy IL-fixed points of p̂.Q`;X /.
Let vX WXT ! X be the pullback of T ! S along pWX ! S .

Lemma 5.1.6. There is a canonical equivalence

p̂.Q`;X /
IL ' coFib

�
Q`;Xs

˚Q`;Xs
.�1/Œ�1�! i�XvX�jXT �Q`;XL

�
;

compatible with the natural actions of GL=K on both sides.

Proof. As taking IL-fixed points is an exact functor, we have an equivalence

p̂.Q`;X /
IL ' coFib

�
QIL
`;Xs

spIL
Q`;X

�����! ‰p.Q`;XK/
IL
�
:
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We will start by proving that there are equivalences

Q`;Xs
˚Q`;Xs

.�1/Œ�1� ' QIL
`;Xs

;

‰p.Q`;XK/
IL ' i�XvX�jXT �Q`;XL ;

compatible with the GL=K-actions. In the first equivalence, both members are equipped with
the trivial GL=K-action; in the second one, the first member carries the canonical GL=K-action
and the second one the action induced by transport of structure.

The first equivalence follows from the computations in [5] (applied to pT WXT ! T ).
This is tautologically compatible with the GL=K-actions because these actions are trivial on
both sides.

The second equivalence is a form of Galois descent as in [5, Proposition 4.31]. Indeed,
the morphism uLWX NK ! XL induces an equivalence

u�LWShvQ`
.XL/

GL=K � ShvQ`
.X NK/

IK WuL�.�/
IL

between the 1-category of Q`-adic sheaves on XL endowed with a GL=K-action and the
1-category of Q`-adic sheaves on X NK endowed with a continuous IK-action. In particular,
Q`;XL ' uL�.Q`;X NK/

IL . It follows that

i�XvX�jXT �Q`;XL ' i
�
XvX�jXT �uL�.Q`;X NK/

IL ' i�X .vX�jXT �uL�Q`;X NK/
IL ;

where the latter equivalence holds since the functor .�/IL commutes with pushforwards. Using
the continuity of the IL-action as in [5, Proposition 4.31], we deduce that

.i�XvX�jXT �uL�Q`;X NK/
IL D ‰p.Q`;XL/

IL :

It remains to construct an homotopy between spIL
Q`;X

and

Q`;Xs
˚Q`;Xs

.�1/Œ�1�! i�XvX�jXT �Q`;XL :

For this, it suffices to observe that both morphisms pre-composed with

Q`;Xs
! Q`;Xs

˚Q`;Xs
.�1/Œ�1�

are homotopic to the morphism Q`;Xs
! i�XvX�jXT �Q`;XL induced by the unit of the adjunc-

tion �
.vX ı jXT

/�; .vX ı jXT
/�
�
:

Now, the fact that both spIL
Q`;X

and Q`;Xs
˚Q`;Xs

.�1/Œ�1�! i�XvX�jXT �Q`;XL are QIL
`;Xs

-
linear concludes the proof. Notice that the latter morphism is GL=K-equivariant, as it factors
through i�XjX�Q`XK ' ‰p.Q`;XK/

IK ' .‰p.Q`;XK/
IL/GL=K .

Remark 5.1.7. A similar result holds (with the same proof) if we replace Q`;X with
Q`;X .ˇ/.

5.2. The action of GL=K.

5.2.1. Recall that GL=K denotes the (finite) group IK=IL. Explicitly, OL is isomorphic
to the quotient of the polynomial ring OKŒx� by an Eisenstein polynomial E.x/ 2 OKŒx� of
degree e. The group GL=K ' Gal.L=K/ permutes the roots of E.x/ and thus acts on OL.
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We thus obtain actions of GL=K on the S -schemes T ,XT , �L,XL, t andXt . These actions
are compatible in the natural way.

5.2.2. We obtain actions (induced by pullbacks) of GL=K on

Db
coh.XT /; Db

coh.Xt /; Db
coh.Xt

iXT
��! XT /; etc.

In turn, these immediately yield actions of GL=K on the motivic and `-adic realizations of such
dg-categories.

Lemma 5.2.3. There is a GL=K-equivariant equivalence

M_S
�
Dperf.XL/

�
' qT�jXT �BUXL

in ModBUS
.SHS /. In particular, there is a GL=K-equivariant equivalence

r`S
�
Dperf.XL/

�
' qT�jXT �Q`;XL.ˇ/

in ModQ`;S .ˇ/.ShvQ`
.S//.

Proof. The first equivalence is one of the main features of the motivic realization of
dg-categories. By functoriality, it is obviously compatible with the actions of GL=K: these are
both induced by the GL=K-action onXL. The second equivalence follows immediately from the
first one.

Lemma 5.2.4. There is an equivalence

r`S
�
Dperf.Xt /

�
' p�iX�Q`;Xs

.ˇ/

in ModQ`;S .ˇ/.ShvQ`
.S//. The group GL=K acts trivially on both sides.

Proof. Notice that r WXs ! Xt is a closed embedding (induced by s D .t/red ! t ) with
empty open complement. The localization sequence in `-adic cohomology implies that

r�Q`;Xs
.ˇ/ ' Q`;Xt

.ˇ/:

Moreover, we have that

r`S
�
Dperf.Xt /

�
' qT�iXT �Q`;Xt

.ˇ/; r`S
�
Dperf.Xs/

�
' p�iX�Q`;Xs

.ˇ/:

Then the desired equivalence follows from qT ı iXT
ı r D p ı iX .

It remains to show that GL=K acts trivially on r`S .Dperf.Xt //. This is clear since the
action is induced by pullbacks along the isomorphisms hWXt ! Xt , which verify the equations
r D h ı r .

5.3. The `-adic realization of Dsg.Xt

iXT
���! XT /. We now approach the proof of our

main theorem.

Proposition 5.3.1. The `-adic realization of Dsg.Xt
iXT
��! XT / lives naturally in the

following fiber-cofiber sequence:

r`S
�
Dsg.Xt

iXT
��! XT /

�
! p�iX�

�
Q`;Xs

.ˇ/˚Q`;Xs
.ˇ/Œ1�

�
! qT�iXT �i

�
XT
jXT �Q`;XL.ˇ/:

Here, GL=K acts trivially on the middle term and naturally on the right one.
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Proof. By applying r`S to the localization sequence

Dperf.Xt /! Db
coh.Xt

iXT
��! XT /! Dsg.Xt

iXT
��! XT /;

together with Theorem 4.2.3 and Lemma 5.2.4, we get the fiber-cofiber sequence

p�iX�Q`;Xs
.ˇ/! qT�iXT �i

Š
XT

Q`;XT
.ˇ/! r`S

�
Dsg.Xt

iXT
��! XT /

�
in ModQ`;S .ˇ/.ShvQ`

.S//. In particular, we observe that

r`S
�
Dsg.Xt

iXT
��! XT /

�
' iS�i

�
S r`S

�
Dsg.Xt

iXT
��! XT /

�
is supported on s. Consider now the diagram

(5.1)

r`S
�
Dperf.Xt /

�
r`S
�
Db

coh.Xt
iXt
��! XT /

�
r`S
�
Dsg.Xt

iXt
��! XT /

�
p�vX�jXT ŠQ`;XL.ˇ/ p�vX�Q`;XT

.ˇ/ p�vX�iXT �Q`;Xt
.ˇ/

p�vX�jXT �Q`;XL.ˇ/

 

!

 

!

 !

 

!

�

 

!

 

!

�

 

!

 !

and observe that the two rows and the column in the middle are fiber-cofiber sequences. This
has already been remarked for the first row. The second row is just localization in `-adic
sheaves. As for the column in the middle, one observes that the map

p�vX�
�
Q`;XT

.ˇ/! jXT �Q`;XL.ˇ/
�

identifies with

r`S
�
Dperf.XT /

j�XT
���! Dperf.XL/

�
:

The latter has fiber equal to

r`S
�
Dperf.XT /Xt

�
' r`S

�
Db

coh.Xt
iXT
��! XT /

�
:

Consider now the composition

r`S
�
Dperf.Xt /

�
! r`S

�
Db

coh.Xt
iXT
��! XT /

� �
! p�vX�iXT �Q`;Xt

.ˇ/;

which we claim to be homotopic to zero. Indeed, the pushforwards along Xt ! Xs , XT ! X
induce a commutative diagram

(5.2)

r`S
�
Dperf.Xt /

�
r`S
�
Db

coh.Xt
iXt
��! XT /

�
r`S
�
Dperf.XT /

�
r`S
�
Dperf.Xt /

�„ ƒ‚ …
'p�vX�iXT �

Q`;Xt
.ˇ/

r`S
�
Dperf.Xs/

�
r`S
�
Db

coh.Xs/
�

r`S
�
Dperf.X/

�
r`S
�
Dperf.Xs/

�
;„ ƒ‚ …

'p�iX�Q`;Xs .ˇ/

 

!

 

!

'

 

!
r`
S
.iXT �

/

 

!

 

!

r`
S
.i�

XT
/

 

!  ! '

 

!

 

!
r`
S
.iX�/  

!
r`
S
.i�

X
/
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where the vertical morphisms at the extremes are equivalences. By [5, Lemma 3.26], the bottom
composition is homotopic to zero and the claim follows.

Notice also that coFib.�/ ' coFib.�/. This is a general fact about diagrams like the one
above in a stable1-category.

We now apply the octahedron construction to the composition

r`S
�
Dperf.Xt /

�
! r`S

�
Db

coh.Xt
iXT
��! XT /

� �
! p�vX�iXT �Q`;Xt

.ˇ/

and obtain the fiber-cofiber sequence

r`S
�
Dsg.Xt

iXT
��! XT /

�
! p�vX�iXT �Q`;Xt

.ˇ/˚ r`S
�
Dperf.Xt /

�
Œ1�! coFib.�/:

Observe now that all objects are supported on s and that

p�vX�iXT �Q`;Xt
.ˇ/˚ r`S

�
Dperf.Xt /

�
Œ1� ' p�iX�

�
Q`;Xs

.ˇ/˚Q`;Xs
.ˇ/Œ1�

�
:

Moreover, by proper base-change, we have

iS�i
�
S

�
coFib.�/

�
' qT�iXT �i

�
XT
jXT �Q`;XL.ˇ/:

We deduce that there is a fiber-cofiber sequence

r`S
�
Dsg.Xt

iXT
��! XT /

�
! p�iX�

�
Q`;Xs

.ˇ/˚Q`;Xs
.ˇ/Œ1�

�
! qT�iXT �i

�
XT
jXT �Q`;XL.ˇ/:

To conclude, observe that the term in the middle, which is equivalent to

r`S
�
Dperf.Xt /

�
˚ r`S

�
Dperf.Xt /

�
Œ1�;

carries the trivial action of GL=K by Lemma 5.2.4. Therefore, it is equivalent to

p�iX�Q`;Xs
.ˇ/˝Q`;S

QIL
`;S

by Lemma 5.1.6.

Notation 5.3.2. We will denote the morphism appearing in Proposition 5.3.1 by

canXT
Wp�iX�

�
Q`;Xs

.ˇ/˚Q`;Xs
.ˇ/Œ1�

�
! qT�iXT �i

�
XT
jXT �Q`;XL.ˇ/:

Remark 5.3.3. The morphism p�iX�Q`;Xs
.ˇ/! qT�iXT �i

�
XT
jXT �Q`;XL.ˇ/ obtained

by restriction from the second map in the fiber-cofiber sequence of Proposition 5.3.1 corre-
sponds to the one induced by the unit Q`;XT

.ˇ/! jXT �Q`;XL.ˇ/ under the equivalence

p�iX�Q`;Xs
.ˇ/ ' qT�iXT �i

�
XT

Q`;XT
.ˇ/:

In particular, as

ps�
�
Q`;Xs

.ˇ/˚Q`;Xs
.ˇ/Œ1�

�
' ps�Q`;Xs

.ˇ/˝Q`;s
QIL
`;s

(see [5, (4.3.43)]), we see that canXT
is obtained from the unit morphism

Q`;XT
.ˇ/! jXT �Q`;XL.ˇ/

by recognizing that qT�iXT �i
�
XT
jXT �Q`;XL.ˇ/ has a natural iS�Q

IL
`;s

-module structure.
In particular, we can write the fiber-cofiber sequence of Proposition 5.3.1 as

r`S
�
Dsg.Xt

iXT
��! XT /

�
����! iS�ps�Q`;Xs

.ˇ/˝Q`;s
QIL
`;s

canXT
����! iS�ps�‰p

�
Q`;XK.ˇ/

�IL :
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Remark 5.3.4. Diagram (5.2) also shows that the map

canXT
Wp�iX�

�
Q`;Xs

.ˇ/˚Q`;Xs
.ˇ/Œ1�

�
! qT�iXT �i

�
XT
jXT �Q`;XL.ˇ/

is GL=K-equivariant. Indeed, combined with the version of (5.1) for XT replaced by X , it
implies that this map factors through

p�i
�
XjX�Q`;XK.ˇ/ '

�
qT�iXT �i

�
XT
jXT �Q`;XL.ˇ/

�GL=K :

5.3.5. Proof of Theorem A. We are finally ready to prove our first main theorem. We
will do so by showing that there is a homotopy of morphisms of algebras

spIL ' canXT
Wp�iX�

�
Q`;Xs

.ˇ/˚Q`;Xs
.ˇ/Œ1�

�„ ƒ‚ …
'p�iX�Q`;Xs .ˇ/˝Q`;S

Q
IL
`;S

! qT�iXT �i
�
XT
jXT �Q`;XL.ˇ/:

Notice that spIL is homotopic to the morphism

p�iX�Q`;Xs
.ˇ/˝Q`;s

QIL
`;s
! qT�iXT �i

�
XT
jXT �Q`;XL.ˇ/

which corresponds, under the adjunction .�˝Q`;s
QIL
`;s
;Forget/, to the morphism

p�iX�Q`;Xs
.ˇ/! qT�iXT �i

�
XT
jXT �Q`;XL.ˇ/

induced by the adjunction .j �XT
; jXT �/. This is Lemma 5.1.6. The same is true for canXT

, as
one can see from diagram (5.1).

5.4. Non-commutative nature of `-adic vanishing cycles. In this subsection, we prove
Theorem B.

5.4.1. Recall from [5] that the category of LG models over S is the ordinary cate-
gory of pairs .Y; f /, where Y is a flat S -scheme and f WY ! A1S is a function. A morphism
.Y; f /! .Z; g/ between LG models is a morphism of S -schemes Y ! Z compatible with f
and g in the obvious sense.

The assignment .Y; f / 7! Dsg.Y0
iY
�! Y /, where iY WY0 ! Y is the closed embedding

of the fiber over zero of f in Y , can be promoted to a functor DsgWLGop
S ! dgCatS , where the

transition maps are induced by pullbacks. See [5, §2.3.15].

Notation 5.4.2. In this section, we will adopt the notation

Dsg.Y; f /´ Dsg.Y0
iY
�! Y /:

5.4.3. Let E denote the filtered category of finite extensions OK � OL of complete strict
discrete valuations rings, like the one considered in Section 2.1.2. For an S -scheme Y , we will
denote by .Y; �K/ the LG model over S given by Y with the function Y ��! S

�K
��! A1S .

5.4.4. Consider a proper flat regular S -schemeX (generically smooth). For an extension
OK � OL, let XOL denote the pullback X �S Spec.OL/. Then we get the following diagram of
LG models over S :

E op
! LGS ;

.OK � OL/ 7! .XOL ; �K/:
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Notice that, for every chain of extensions OK � OL � OM, the morphism of LG models

.XOM ; �K/! .XOL ; �K/

is HM-equivariant, where the HM-action on XOL is induced by the quotient

Gal.M=K/ D HM ! GL=K D Gal.L=K/:

5.4.5. Composing this diagram with the functor Dsg, we get a diagram

dWE ! dgCatS

defined on objects by .OK � OL/ 7! Dsg.XOL ; �K/.

Remark 5.4.6. The dg-category Dsg.XOL ; �K/ is precisely the dg-category denoted by

Dsg.Xt
iXT
��! XT /

in the previous sections (for T D Spec.OL/).

5.4.7. It follows immediately from functoriality that each Dsg.XOL ; �K/ carries a canon-
ical GL=K-action and that the dg functors

Dsg.XOL ; �K/! Dsg.XOM ; �K/

are compatible with these actions for every chain of extensions OK � OL � OM.

5.4.8. Recall that dgCatS is a cocomplete1-category. We consider the colimit

S´ lim
�!

.OK�OL/2E

Dsg.XOL ; �K/

of the diagram d. It follows immediately that this dg-category carries a continuous action of

IK ' lim
 �

.OK�OL/2E

GL=K :

Roughly, this means that, for every object A 2 S, there exists some .OK � OL/ 2 E such that
IL � IK acts trivially on the full subcategory .A/ � S generated by A.

5.4.9. Proof of Theorem B. Notice that, for every chain OK � OL � OM, there is a
commutative diagram

r`S
�
Dsg.XOL;�K/

�
iS�ps�Q`;Xs

.ˇ/IL iS�‰p
�
Q`;XK.ˇ/

�IL

r`S
�
Dsg.XOM;�K/

�
iS�ps�Q`;Xs

.ˇ/IM iS�‰p
�
Q`;XK.ˇ/

�IM ;

 

!

 ! ..XOM!XOL /�Ss/
�

 

!
spIL

 !  !

 

!

 

!
spIM

where the rows are fiber-cofiber sequences of Theorem A and the middle and rightmost vertical
morphisms are the canonical maps from IL-homotopy fixed points to IM-homotopy fixed points.
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Therefore, the filtered diagram

r`S ıdWE ! ModQ`;S .ˇ/.ShvQ`
.S//

is equivalent to the filtered diagram

E ! ModQ`;S .ˇ/

�
ShvQ`

.S/
�
;

.OK � OL/ 7! iS�H�ét
�
Xs; p̂.Q`;S .ˇ//

�IL Œ�1�:

5.4.10. Recall that r`S commutes with filtered colimits. Since the equivalences

r`S
�
Dsg.XOL ; �K/

�
' iS�H�ét

�
Xs; p̂.Q`;S .ˇ//

�IL Œ�1�

are compatible with the GL=K-actions, we get that

r`S .S/ D r`S
�

lim
�!

.OK�OL/2E

Dsg.XOL ; �K/
�

.definition of S/

' lim
�!

.OK�OL/2E

r`S
�
Dsg.XOL ; �K/

�
.r`S commutes with filtered colimits/

' lim
�!

.OK�OL/2E

iS�H�ét
�
Xs; p̂.Q`;S .ˇ//

�IL Œ�1� .Theorem A/

' iS�H�ét
�
Xs; p̂.Q`;X .ˇ//

�
Œ�1� .continuity of the action of IK/:

This concludes the proof of Theorem B.

A. Remarks on the properness hypothesis

In this final section, we briefly comment on the properness hypothesis for the morphism
pWX ! S . This assumption is superfluous, provided that one is willing to work at the level of
`-adic sheaves on X . This observation is the analogue of [37, footnote 8, page 503] in the case
where Galois actions are taken into account.

A.1. An attentive reader might have noticed that the properness hypothesis is used only
once throughout the paper: in the proof of Proposition 5.3.1 in order to invoke proper base-
change. This is needed because we work with the `-adic realization functor r`S . However, as
explained in [37, Remark 2.2.2], r`S admits a relative version

r`X W dgCatX ! ModQ`;X .ˇ/

�
ShvQ`

.X/
�

with the same properties of r`S . The computations and the proofs in this paper all work mutatis
mutandis by applying r`X in place of r`S . Only the fact that

Db
coh.Xt

iXT
��! XT / ,! Db

coh.Xt /! Dsg.XT /

is a localization sequence of X -linear dg-categories deserves a bit of explanation.
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A.2. The functor
p�W dgCatX ! dgCatS

admits a (symmetric monoidal) left adjoint

p� D �˝Dperf.S/ Dperf.X/W dgCatS ! dgCatX

which preserves localization sequences.

A.3. By Corollary 3.3.4, we obtain that�
Db

coh.Gt
a1�
��! t / ,! Db

coh.Gt /! Dsg.t/
�
˝Dperf.S/ Dperf.X/

is a localization sequence of (left) BCX -modules, where BCX ´ BC ˝Dperf.S/ Dperf.X/.

A.4. Clearly, Db
coh.Xs/ (regarded as an X -linear dg-category) admits a left BCX -module

structure. As a consequence, Db
coh.Xs/

op admits a right BCX -module structure.

A.5. One sees that

Db
coh.Xs/

op
˝BCX

�
.Db

coh.Gt
a1�
��! t / ,! Db

coh.Gt /! Dsg.t//˝Dperf.S/ Dperf.X/
�

identifies with the diagram of X -linear dg-categories

(A.1) Db
coh.Xt

iXT �

��! XT / ,! Db
coh.Xt /! Dsg.XT /:

In particular, this is a localization sequence in dgCatX (the proofs of Lemma 4.1.3 and Propo-
sition 4.1.7 can be adapted easily to the X -linear situation).

Remark A.5.1. If we apply the forgetful functor p�W dgCatX ! dgCatS to (A.1), we
find the localization sequence of S -linear dg-categories obtained in Proposition 4.1.7.

A.6. Given this key ingredient, the proofs of the computations of motivic and `-adic
realizations in the main body of the paper apply before taking p�. Hence, we can avoid any
reference to proper base-change, and in particular, we obtain the following.

Theorem. Let pWX ! S be a flat and generically smooth morphism of finite type.
Assume that X is regular. There is an equivalence of iX�Q

IL
`;X
.ˇ/-modules

r`X
�
Dsg.Xt

iXT
��! XT /

�
' iX� p̂

�
Q`;X .ˇ/

�IL Œ�1�;

compatible with the natural GL=K-actions.
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