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ABSTRACT

Neural activity cannot be directly observed using fMRI; rather it must be inferred from the hemodynamic responses that neural
activity causes. Solving this inverse problem is made possible through the use of forward models, which generate predicted he-
modynamic responses given hypothesised underlying neural activity. Commonly-used hemodynamic models were developed to
explain data from healthy young participants; however, studies of ageing and dementia are increasingly shifting the focus toward
elderly populations. We evaluated the validity of a range of hemodynamic models across the healthy adult lifespan: from basis
sets for the linear convolution models commonly used to analyse fMRI studies, to more advanced models including nonlinear
fitting of a parameterised hemodynamic response function (HRF) and nonlinear fitting of a biophysical generative model (hemo-
dynamic modelling, HDM). Using an exceptionally large sample of participants, and a sensorimotor task optimized for detecting
the shape of the BOLD response to brief stimulation, we first characterised the effects of age on descriptive features of the re-
sponse (e.g., peak amplitude and latency). We then compared these to features from more complex nonlinear models, fit to four
regions of interest engaged by the task, namely left auditory cortex, bilateral visual cortex, left (contralateral) motor cortex and
right (ipsilateral) motor cortex. Finally, we validated the extent to which parameter estimates from these models have predictive
validity, in terms of how well they predict age in cross-validated multiple regression. We conclude that age-related differences in
the BOLD response can be captured effectively by models with three free parameters. Furthermore, we show that biophysical
models like the HDM have predictive validity comparable to more common models, while additionally providing insights into
underlying mechanisms, which go beyond descriptive features like peak amplitude or latency, and include estimation of non-
linear effects. Here, the HDM revealed that most of the effects of age on the BOLD response could be explained by an increased
rate of vasoactive signal decay and decreased transit rate of blood, rather than changes in neural activity per se. However, in the
absence of other types of neural/hemodynamic data, unique interpretation of HDM parameters is difficult from fMRI data alone,
and some brain regions in some tasks (e.g., ipsilateral motor cortex) can show responses that are more difficult to capture using
current models.
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1 | Introduction

Functional magnetic resonance imaging (fMRI) is often used
to infer changes in neural activity across the brain as a function
of a task or the individual being scanned. However, the Blood
Oxygenation Level Dependent (BOLD) signal measured in most
fMRI experiments is a complex function of neural activity, neu-
rovascular coupling, blood flow, blood oxygenation and blood
volume (Buxton, Wong, and Frank 1998). Therefore, differences
in the BOLD response across individuals can be caused by dif-
ferences in hemodynamics, rather than in neural activity per
se. Here we focus on the effects of age, since it is likely that age
affects vascular factors as well as neural activity (Handwerker
et al. 2012; Tsvetanov, Henson, and Rowe 2021; Wright and
Wise 2018). Indeed, neurovascular ageing is not only a confound
in fMRI, but an important process to assess alongside neural age-
ing (Abdelkarim et al. 2019; Tsvetanov, Henson, and Rowe 2021).

The most common way to model the BOLD impulse response
to an experimental input (e.g., stimulus or trial, assumed to
cause a short burst of neural activity) is with a linear convo-
lution model, in which a delta function is convolved with a
basis set of temporal functions, typically lasting 0-30s post-
stimulus. After convolution with multiple, sequential inputs
in a typical fMRI experiment, each convolved basis function
forms a separate regressor within a general linear model
(GLM). When fitting the GLM to the fMRI timeseries from a
voxel or region of interest (ROI), the weights (parameter esti-
mates) for each such function can be estimated using ordinary
least squares minimisation. There are multiple options for
such basis sets (Henson 2004), but a common one is the Finite
Impulse Response (FIR) basis set, which consists of multiple
“top-hat” functions, for example, 32 contiguous time bins of
1s duration, spanning from 0 to 32 s post-stimulus (Figure 1).

Using such a flexible basis set (Whether the FIR set in the time do-
main, or sinusoidal functions of periodic frequencies in the Fourier
domain), the first study to address age effects failed to find differ-
ences in BOLD response shape between young versus older par-
ticipants (D'Esposito et al. 1999). However, like many studies, this
study used relatively small groups (n =32 young and n =20 older),
and the older volunteers may have been healthier than average for
their age. Furthermore, tests using such flexible basis sets may be
less sensitive to subtle statistical differences in HRF shape.

Even though the BOLD response can vary across individuals and
brain regions, it has a typical shape: peaking around 5s and with
an undershoot lasting 10-30s: often called the canonical hemo-
dynamic response function (HRF; see Figure 1 for an example).
Thus a common approach is to assume this canonical form, and
allow for some variability around this by adding, for example, its
partial derivatives in SPM's “informed basis set,” or the first few
singular vectors in FSLs data-driven FLOBS approach (Woolrich,
Behrens, and Smith 2004; see Lindquist et al. 2009, for yet fur-
ther models of HRF shape). Greater sensitivity to ageing may
be achieved by focusing on specific features of the HRF shape,
such as the latency of its peak. For example, Taoka et al. (1998)
and Handwerker et al. (2007) found an age-related delay in the
time to peak, while Richter and Richter (2003) and Aizenstein
et al. (2004) found age-related reductions in the magnitude of the
undershoot. By contrast, other studies have reported no effect

of age. For example, Ward, Swayne, and Newton (2008) found
no age effects on the HRF in contralateral motor cortex during
hand grips, while Grinband et al. (2017) found few effects of age
on various HRF features, and argued that those found previously
could reflect age-related differences in neural activity. Moreover,
even if differences are found in the shape of the HRF (e.g., peak
latency), relating these to differences in underlying neural activity
is far from simple, given that the mapping from neural activity to
BOLD response is nonlinear (see Section 4).

Again, the above studies involved relatively small samples. In the
largest study of HRF shape of which we are aware, West et al. (2019)
compared a younger (n=74) and an older (n=173) group. They
found that HRFs differed between groups in auditory, visual and
motor cortices, with increased time-to-peak and decreased peak
amplitude in older compared to younger adults. These groups are
actually a sub-set of the full set of n=645 participants used here.
These participants come from the CamCAN cohort (Www.cam-
can.org), approximately uniformly distributed across 18-88years
of age. These participants were recruited using an opt-out proce-
dure after contact from local surgeries, making them more repre-
sentative of healthy adults than most typical studies that use opt-in
recruiting via adverts (although the present participants are still
biased toward people able to lie in an MRI scanner for an hour, and
toward those without physical or mental health problems). More
specifically, these data come from the CamCAN “sensorimotor”
task, in which participants saw brief trials consisting of bilateral
visual checkerboards and/or auditory tones (Shafto et al. 2014).
Importantly, the time between trials (in terms of the stimulus
onset asynchrony, SOA) was deliberately optimised for detecting
the shape of the HRF (assuming linear superposition of overlap-
ping responses), by using a 255-length “m-sequence” (Buracas
and Boynton 2002). Here we extend the work of West et al. (2019)
by examining the parametric effect of age across the whole sam-
ple, and more importantly, by directly comparing different linear
and nonlinear methods to characterise age-related changes in the
BOLD response.

This study addresses four objectives:

1. To characterise the effects of age on the BOLD response,
using a model that makes minimal assumptions about the
form of that response, at the cost of a large number of un-
constrained parameters (a 32-parameter Finite Impulse
Response model, FIR32) used as a basis set within the GLM.

2. To compare these effects of age against those inferred using
a more parsimonious basis set with fewer parameters, which
is statistically more efficient, but makes stronger assump-
tions: specifically, the 3-parameter, canonical or “informed”
basis set used in the SPM software package (Can3).

3. To compare these linear fits to a potentially more flexible,
4-parameter model, in which the parameters refer to specific
features of the BOLD response shape, such as latency and
amplitude, and which are nonlinearly fit to the trial-averaged
FIR estimates (a NonLinear Fitting approach, NLF4).

4. To go beyond the descriptive statistics provided by the mod-
els above, and fit a mechanistic, biophysical Hemodynamic
Model (HDM) to the same data. This model explains the
effects of ageing in terms of three biologically-meaningful
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FIGURE 1 |

HRF models: (A) linear Finite Impulse Response basis set with 32X 1s bins (FIR32); (B) an “informed” linear basis set with a

canonical HRF (blue), its temporal derivative (red) and dispersion derivative (yellow) (Can3); (C) nonlinear fitting of average empirical HRF for a
given ROI (here 1AC) using amplitude and latency offsets and scalings (NLF4); (D) nonlinear hemodynamic modelling using differential equations

with three free parameters (in red) (HDM3).

parameters: neural efficacy, neurovascular signal decay
rate and hemodynamic transit rate. A version of this HDM
is widely used as part of the Dynamic Causal Modelling
(DCM) framework used for connectivity analysis (Friston,
Harrison, and Penny 2003).

5. To test whether the models' parameters have real-world
(predictive) validity. We did this by evaluating how well all
the above models can predict the age of previously unseen
participants, using cross-validation, and whether they re-
late to independent measures of vascular health and neural
activity.

2 | Methods
2.1 | Participants

The N=645 participants were aged 18-88, fluent English
speakers and in good physical and mental health based on
the CamCAN cohort exclusion criteria, which excluded vol-
unteers with a low Mini Mental State Examination score
(<24), serious current medical or psychiatric problems or
poor hearing or vision, and standard MRI contraindica-
tions (for more details, see Shafto et al. 2014). None showed
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evidence of neurodegeneration in their structural MRIs (al-
though we cannot rule out sub-clinical effects of neural and/
or vascular disease that increase with age). The study was
conducted in compliance with the Helsinki Declaration. All
participants gave written informed consent for the study and
record linkage, as approved by the local ethics committee,
Cambridgeshire 2 Research Ethics Committee (reference: 10/
H0308/50). Nine participants were removed because they did
not show a significant evoked response in at least one of the
four ROIs (see ROI section below), leaving 636 participants,
exactly half (318) of each sex.

2.2 | Paradigm

Each trial consisted of two oval checkerboards containing a
rectangular pattern presented either side of a central fixation
cross (34ms duration) and/or a simultaneously-onsetting bin-
aural auditory tone (300ms duration). The inter-stimulus in-
terval was a blank screen containing only the fixation cross (to
which participants were told to fixate throughout). The auditory
tones were one of three equiprobable frequencies (300, 600, or
1200 Hz). Frequency was not relevant to the task or current hy-
potheses, so is collapsed here. The majority of the trials (120
of the 128) involved both visual and auditory stimuli, which
required a keypress with the right index finger; the remaining
8 randomly-intermixed “catch” trials had only visual (four tri-
als) or only auditory (four trials) stimuli, and participants were
told to withhold their responses to such “unimodal” trials. The
latter ensured that participants needed to pay attention to both
modalities in all trials. Visual acuity was corrected with MRI-
compatible glasses, while auditory presentation intensity was
adjusted so that the tones were audible for all participants.

The stimulus onset asynchrony (SOA) between trials was de-
termined by a second-order m-sequence (m=2; Buracas and
Boynton 2002), in which half of the sequence elements were null
events. The minimal SOA was 25, with the null events serving
only to produce SOAs that ranged from 2 to 26s (null events do
not produce any change in stimulation when they occur). There
was an additional random jitter drawn from a uniform distri-
bution of 0.1-0.3s before stimulus onset, which meant that the
effective sampling interval of the HRF across trials was 0.12s
(Josephs and Henson 1999). The total duration of the task was
8min, 34s (n=261 volumes).

2.3 | MRI Data Acquisition

The MRI data were collected using a Siemens Trio 3T MRI
Scanner system with a 32-channel head coil. A T2*-weighted
echo planar imaging (EPI) sequence was used to collect 261
volumes, each containing 32 axial slices (acquired in descend-
ing order) with slice thickness of 3.7mm and an interslice gap
of 20% (for whole-brain coverage including cerebellum; repeti-
tion time =1970ms; echo time=30ms; flip angle="78°; field of
view=192mmx192mm; voxel size 3x3Xx4.44mm). Higher
resolution (1 x1x1mm) T1- and T2-weighted structural images
were also acquired to aid registration across participants. For
more details, see https://camcan-archive.mrc-cbu.cam.ac.uk/
dataaccess/pdfs/CAMCAN700_MR_params.pdf.

2.4 | MRI Data Preprocessing

MRI preprocessing used the SPM12 software (Wellcome Centre
for Human Neuroimaging; https://www.fil.ion.ucl.ac.uk/spm),
release 4537, implemented in the Automatic Analysis pipeline,
release 4.2 (Cusack et al. 2015). Preprocessing is described in
(Taylor et al. 2017), but in brief, structural images were rigid-
body registered to a Montreal Neurological Institute (MNI)
template brain (just to improve the starting point for DARTEL
warping below), BO bias corrected, segmented, and warped to
match a gray matter template created from the whole CamCAN
Stage 2 sample using SPM's DARTEL toolbox. This template was
subsequently affine transformed to standard MNI space. Note
that the sample-specific DARTEL template, by virtue of being
generated from the full adult age-range in CamCAN, is less age-
biased than normalising directly to the MNI template brain.
While one could use separate, age-specific templates, which can
improve segmentation and morphometry (Fillmore, Phillips-
Meek, and Richards 2015), we doubt these would substantially
improve normalisation of the lower-resolution fMRI and ROI
analyses performed here.

The functional images were spatially realigned, interpolated in
time to the middle slice to correct for the different slice acquisi-
tion times, rigid-body coregistered to the structural image, trans-
formed to MNI space using the warps and affine transforms
from the structural image, and resliced to 3mm X3 mm X3 mm
voxels. An XML summary of preprocessing can be found here:
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/Imagi
ngScripts/mri_aa_release004_roistreams_v1_tasklist.xml.

2.5 | Single-Participant (1st-Level) Models

Two models were run, where neural activity was assumed to be:
(1) locked to the onset of each audiovisual stimulus or (2) locked
to the subsequent key-press. We included unimodal trials for the
stimulus-locked model (since they still involved stimulation),
but only included them for the response-locked model if the par-
ticipant incorrectly pressed the key.

GLMs for each participant were created and estimated in
SPM release 7771! in Matlab R2020b (https://www.mathw
orks.com). A single vector of delta functions at the onset of
each trial was convolved with each of the temporal basis
functions (FIR or SPM's informed basis set; see below) in a
high-resolution space with 32 time-points every TR (result-
ing in a microtime resolution of 0.062s), and subsequently
down-sampled at the middle point (to match the reference
slice for the slice-timing correction). Six additional regressors,
representing the three rigid body translations and the three
rotations estimated in the realignment stage, were included
to capture residual movement-related artifacts, plus the
timeseries extracted for WM and CSF compartments, to fur-
ther remove nonneural noise. Finally, the data were scaled to
a grand mean of 100 over all voxels and scans, and the model
fit to the data in each voxel. The autocorrelation of the error
was modelled using a “first-order autoregressive plus white-
noise” model, together with a set of cosines that were used
to high-pass filter both the model and the data at a frequency
cutoff of 1/128 Hz. The GLM and noise model were estimated

4 0of 23

Human Brain Mapping, 2024

95US017 SUOLILLIOD SAIER.D 3ot jdde auy) Aq peusenob ae sl YO '9sn 0 S9InJ 10) Afeid18UIIUO AS|IM U (SUONIPUGD-PUE-SLLIBY WD A | 1M Aleq 18U |UO//SANY) SUONIPUOD pue SIS | 8U1 89S *[6202/T0/82] U0 Akeiqiauluo A8 (1M ‘ssoinies Akidi 10N uopuo 8Bs(00 AIsAIIN AQ £700/ WIAU/Z00T 0T/10P/L0Y A8 | Aseiq1jpuluoy/sdny wouy papeoiumod ‘ST ‘v20¢ '€6T0L60T


https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/pdfs/CAMCAN700_MR_params.pdf
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/pdfs/CAMCAN700_MR_params.pdf
https://www.fil.ion.ucl.ac.uk/spm
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/ImagingScripts/mri_aa_release004_roistreams_v1_tasklist.xml
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/ImagingScripts/mri_aa_release004_roistreams_v1_tasklist.xml
https://www.mathworks.com
https://www.mathworks.com

using restricted maximum likelihood (ReML), and the result-
ing estimate of error autocorrelation used to prewhiten both
the model and the data. Finally, OLS was used to estimate the
model parameters for the whitened data.

2.6 | Group Model for FIR Basis Set

For the FIR basis set, the parameter estimate for each of the 32
X 1s time bins for each participant was entered into a second-
level GLM (equivalent to a repeated-measures ANOVA), as well
as a linear and a quadratic modulation by each FIR parameter
by age (see Figure 2). Analyses were restricted to a gray-matter
mask, determined by thresholding the DARTEL template for
voxels with > 50% proportion of gray-matter.

2.7 | ROI Definition

To maximise sensitivity to age, while not making assumptions
about the shape of the BOLD response, masks for each ROI were
defined from an F-contrast in the second-level group FIR analy-
sis that spanned the (linear) effects of age.? For the left auditory
cortex (1AC) and bilateral visual cortex (bVC), these came from
the stimulus-locked model, while for the left and right motor
cortex (IMC and rMC), these came from the response-locked
model. The F values were thresholded at F> 5 to define clusters
of contiguous voxels.? This resulted in a mask of 280 and 182
voxels for IAC and bVC, respectively, and 54 and 88 voxels for
IMC and rMC, respectively.

To allow for variability across participants in their most respon-
sive voxels, we sub-selected those voxels within the above masks
that showed a significant F-contrast (at p<0.05 uncorrected)
across time bins within each participant's first-level FIR mod-
els. Note that this entailed removing nine participants with no
voxels that survived this threshold. These nine were roughly
equally distributed across age (22, 37, 41, 51, 52, 57, 64, 71, and
80years) and showed excessive motion artifacts in their data
(that rigid-body realignment could not correct). The median
number of voxels across the remaining participants that passed
this threshold was 134, 77, 34, and 21 for 1AC, bVC, IMC, and
rMC, respectively. Spearman correlations showed that this num-
ber did decrease significantly with age for all ROIs, but we be-
lieve that matching the minimal signal-to-noise ratio across age
is more important than matching the number of voxels.

The fMRI timeseries for each ROI were then summarised in
terms of the first temporal component from a singular-value de-
composition (SVD) across the voxels remaining from the above
F-contrast, using standard tools for ROI extraction in SPM. This
entailed the high-pass filtering, pre-whitening and correction
for confounds described above during GLM estimation.

2.8 | HRF Models

For each ROI, we fit four types of model: two linear models
(estimated using OLS) and two nonlinear models (fit by gra-
dient descent). The two linear models corresponded to (1) the
32x1s bin FIR basis set described above (and used to define

the ROIs)—henceforth, the “FIR32” model—and (2) SPM's in-
formed basis set, consisting of a canonical HRF and two partial
derivatives—henceforth, the “Can3” model. The two nonlinear
models were based on shape-matching of the HRF using four
parameters—the “NLF4” model—and a biophysical generative
model with three parameters—the “HDM3” model. These are
detailed below.

2.8.1 | FIR32 Model

The “FIR32” model consisted of 32 top-hat temporal basis func-
tions of 1s duration that captured the first 32s of post-stimulus
time (Figure 1A). This FIR basis set is flexible, but can also cap-
ture nonhemodynamic trial-locked effects (e.g., motion of the
eyeballs during first time bin, in response to a visual stimulus).*
This approach is also called “selective averaging” (Dale and
Buckner 1997).

2.8.2 | Can3 Model

The canonical HRF used in SPM is a mixture of two gamma
functions, one capturing the positive peak around 5s and one
capturing the negative undershoot peaking around 15s. The pa-
rameters of these gamma functions were estimated from approx-
imating the first singular vector of stimulus-locked responses in
a previous fMRI experiment (Friston et al. 1998a, 1998b). The
second basis function in this “informed” basis set is the tempo-
ral derivative of the canonical HRF, obtained by the finite dif-
ference after shifting the onset of the canonical HRF by 1s. The
third basis function is the dispersion derivative, obtained by the
finite difference after increasing the dispersion of the gamma
function for the peak response by 1% (see Figure 1B).

2.8.3 | NLF4 Model

The NLF4 model refers to nonlinear fitting of a template HRF to
each individual's FIR fit, using a first order expansion with re-
spect to amplitude and with respect to time (i.e., four parameters
in total). More precisely, the following model is fit:

0 =a1Y<t£ - to) +a,
1

where vector Y is the template HRF, derived from the first sin-
gular vector from an SVD of the FIR values across all partici-
pants, t is the post-stimulus time (PST), ¢, is the latency offset
(constant delay), ¢, is the latency scaling (cumulative delay),
a, is the amplitude offset and a, is the amplitude scaling—
see Figure 1C. Thus for latency, t, moves the whole HRF
forwards or backwards in time, while ¢, extends the HRF in
proportion to the time relative to trial onset. This model has
greater flexibility, for example, in separating amplitude from
different types of latency, than the above linear basis sets. It is
fit by maximising the correlation between (normalised) tem-
plate and (normalised) individual FIR. We have previously
applied this approach to modelling the effect of age on the la-
tency of evoked MEG responses in the same task and partic-
ipants (Price et al. 2017), and use the same fitting procedure
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FIGURE2 | Panels A and B show maximal intensity projections (MIPs) of statistical parametric maps (SPMs) of F-contrast for (A) the mean effect
across participants, locked to audio-visual stimulation (thresholded for 50 contiguous voxels with F> 80), and (B) the (linear) effect of age, locked to
the right finger press (thresholded for 50 contiguous voxels with F> 5). The clusters corresponding to the four functional ROIs analysed below (IAC,
bVC, IMC and rMC) are labelled on the sagittal, coronal and transverse sections, along with the F-contrast and the design matrix (bottom right).
Panels C and D show the mean of each FIR parameter, that is, f/MRI signal change (arbitrary units) relative to inter-stimulus interval (upper plot) and
effect of age on each parameter, that is, when in time the fMRI signal increases or decreases with age (lower plot) for the peak voxel from the (C) IAC
ROI [-39-33 +12] and (D) rMC ROI [+ 36 -21 + 51]. Note that the scale of the y-axis is in arbitrary units and differs across plots; for % signal change,
see Figure 4. Red bars show 90% confidence interval.
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described there (gradient ascent on Pearson correlation). For
similar approaches to nonlinear HRF fitting, see Kruggel and
Yves Von Cramon (1999).°

2.8.4 | HDM3 Model

This nonlinear model is a biophysical, generative model based
on differential equations that can be integrated to produce
HRFs, as a function of biologically relevant parameters (e.g.,
vasodilatory time constants), rather than parameters that sim-
ply describe the shape of the HRF (as in NLF4 above). We used
a well-established hemodynamic model (Friston et al. 2000;
Stephan et al. 2007; Havlicek et al. 2015) with some updates to
the parameters. The form of the model is explained in detail in
appendix 5 of Zeidman et al. (2019), and it is shown schemat-
ically in Figure 1D. To briefly reprise, there are four hidden
states: vasoactive signal s, regional cerebral blood flow f,,, ve-
nous volume v and deoxyhemoglobin q. Their dynamics are gov-
erned by the following equations:

fin=s (1)

§=p2t) —ks—y(fin— 1) @

Thf) =f;n(t) _fout(vi t) (3)
1-(1-E finlm ,Dq(t

= - o)™ fom(:([ ))q( ) @

y=100~V0<k1(1—q)+k2<1—%)+k3(1—v)> ®)

k,=43-9,-E,- Ty ©)
ky=e,-1y-Ey- Ty @)
ky=1-¢, ®

Equations (1) and (2) model the vasoactive signal s, which in-
duces blood flow f;, in response to neural activity z(¢) € {0,1}
with neural efficacy parameter f. This part of the model sub-
sumes a variety of neurovascular coupling mechanisms, such
as nitric oxide signalling. The decay of the vasoactive signal is
governed by rate parameter k, while rate parameter y provides
autoregulatory feedback.® Together these equations form a cou-
pled oscillator.

Equations (3) and (4) model the cerebral blood volume v relative
to the blood volume at steady state, as well as the proportion of
deoxyhemoglobin relative to rest, q. These equations correspond
to the balloon model of Buxton, Wong, and Frank (1998), where
parameter 1/ 7, is the rate of blood flow through the vessel, and
parameter E, is the resting oxygen extraction fraction. The blood
outflow from the vascular compartment is f,,,(v,t) = v()Ye, in
which Grubb's exponent « relates cerebral blood flow (CBF) and
cerebral blood volume (CBV).

Finally, Equations (5-8) model the generation of the fMRI
BOLD signal (Obata et al. 2004; Stephan et al. 2007). Parameter

V, is the resting blood volume fraction, 9, is the frequency offset
at the outer surface of magnetised vessel, r, is the slope of intra-
vascular relaxation rate against O,, Ty is the echo time and ¢, is
the ratio of intra-vascular to extra-vascular components of the
gradient echo signal.

In the present HDM3 model, we allowed three parameters to
be estimated from the data: (1) neural efficacy parameter, g (as
a proxy for neural activity), (2) rate of decay of vasoactive sig-
nal, x and (3) transit rate of blood flow, 1 / z,. The remaining pa-
rameters were fixed based on empirical priors (see Supporting
Information).

To fit the HDM, we used https://github.com/pzeidman/HDM-
toolbox, which requires the SPM software package (https://
www.fil.ion.ucl.ac.uk/spm/software). The model was fit using
the standard Bayesian model fitting scheme in the SPM software,
called Variational Laplace. For participant i with timeseries Y,
this returns a multivariate normal probability density over the
parameters, P(6;|Y;) ~ N (u;,%;). The estimated values of the
parameters y; were those that maximised the log-evidence for
the model, as approximated by the free energy F; = lnP(Yi).

While this scheme provides parameter estimates for individual
participants, u;, it also yields the estimated covariance of the
parameters X,. To convey both yx; and ; to the group level, we
used the Parametric Empirical Bayes (PEB) framework in SPM
(Friston et al. 2016; Zeidman et al. 2019). This is a Bayesian hi-
erarchical linear regression model applied to the estimated pa-
rameters of all participants’ models (see Supporting Information
for more details). We then tested the evidence for the presence
versus absence of each covariate (mean and effect of age) on
each hemodynamic parameter using Bayesian Model Reduction
(BMR), which iteratively prunes mixtures of group-level param-
eters from the PEB model, where doing so does not reduce the
free energy.

2.9 | Temporal Resolution

In terms of temporal resolution (which determines the PST reso-
lution in Figure 4 and latency resolution in Figure 6), the choice
of the FIR bin width of 1s was deemed as a reasonable trade-
off between bin-width and number of samples per bin (and this
sub-TR sampling is only possible because of the jitter described
above; Josephs and Henson 1999). The Can3 basis functions
were simulated at the resolution of 0.062s (TR/32), as stated in
the “Single-participant (1st-level) models” section above. Even
though the NLF model is fit to the FIR, and so has the same 1s
resolution, the latency scaling is estimated via interpolation, so
can have higher resolution. Finally, the HDM model was sim-
ulated at its default resolution of 0.375s (a higher resolution of
0.062s did not affect results).

2.10 | Nonlinearities as a Function of SOA

Nonlinearities are known to exist for SOAs below around
10s. A key feature of the HDM3 model is that, as a nonlinear
model of hemodynamics, it explicitly captures these nonlin-
earities, which can then be visualised using a mathematical
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device called a Volterra expansion (Friston et al. 2000). This
expresses the relationship between the output of the system
(the HRF) and the input of the system (the stimulus) as the
weighted sum of Volterra kernels. A first-order Volterra kernel
is the modelled HRF in response to a brief stimulus, and a
second-order Volterra kernel is the nonlinear change in the
HRF as a function of time elapsed since the previous stimulus.
(Crucially, the second order kernels can only be estimated in
the context of an experimental design that samples nonlinear-
ities, through the use of variable SOAs, as here.) These kernels
are shown and discussed in Figure S8.

Of the total variance in the BOLD timeseries explained by the
two Volterra kernels, the proportion explained by the second-
order kernel ranged from 4.5% to 29% across ROIs (i.e., the
first-order kernel explaining the remaining 95.5%-71%). Thus
nonlinearities as a function of SOA were relatively small, al-
though not insignificant, which needs to be kept in mind when
interpreting the results of the other three models that assume
linearity. Nonetheless, the proportion of this second-order vari-
ance that related to age (linear and/or quadratic) only ranged
from 1% to 12% across ROIs, suggesting that this nonlinearity
is unlikely to dramatically affect age-related conclusions drawn
from the linear models.

3 | Results
3.1 | Whole-Brain Analyses

Separate analyses were performed to identify BOLD responses
time-locked to stimulus presentation in sensory cortices, and
BOLD responses time-locked to button presses in motor corti-
ces.” For each analysis, the parameter estimates for each basis
function (time bin) from the FIR32 GLM were entered into
a second-level group model across participants to estimate
the mean, linear and quadratic effect of age for each basis
function.

An F-test across the mean values from the stimulus-locked anal-
ysis showed many voxels that responded (relative to interstim-
ulus baseline), the most significant of which were in bilateral
auditory and visual cortices (Figure 2A).% Left (contralateral)
motor cortex showed a significant mean effect in the response-
locked analysis. All three regions showed a linear effect of age,
with additional linear effects seen in right (ipsilateral) motor
cortex (Figure 2B), as well as supplementary motor cortex (not
analysed further). No voxels showed strong quadratic effects
of age.

The stimulus-locked, mean FIR estimates from the peak of the
left auditory cortex cluster showed a typical BOLD impulse re-
sponse, peaking around 4-5s and with a more sustained under-
shoot (Figure 2C, top). Interestingly, the estimates for the effect
of age on each time bin (Figure 2C, bottom) showed a profile
that resembled a temporal derivative of the mean response, such
that the BOLD response became more delayed with age (which
can be visualised by adding the bottom plot in Figure 2C to the
top plot). Similar results were found for the visual and left motor
clusters (not shown, but see later).”

The response-locked mean FIR for the rMC (Figure 2D,
top), however, was not typical, and it was the effect of age
(Figure 2D, bottom) that appeared more like a typical HRF.
This pattern can be explained when plotting the HRF by
age in the next section (e.g., Figure 4), where it becomes ap-
parent that the young showed a larger negative undershoot,
which attenuated with age (see also Mayhew et al. 2022; Tak
et al. 2021).

The clusters showing linear age effects were used to define four
functional ROIs: 1AC, bVC, IMC and rMC (see Section 2). FIR
models were then re-fit to the first temporal component of a sin-
gular value decomposition of each voxel's BOLD timeseries for
each ROI. The first 16s of these ROI FIR responses are shown
for each participant as heatmaps in the top row of Figure 3, and
averaged within age tertiles as plots in the top row of Figure 4.

The effect of age for stimulus-locked responses in 1AC and bVC
is a reduction in amplitude (of both peak and undershoot), and
an increase in dispersion (e.g., delay in centre of mass of the re-
sponse). Indeed, the undershoot almost vanishes for the oldest
participants. For response-locked data, the IMC shows a simi-
lar increase in dispersion, but smaller age-related decrease in
amplitude. The rMC however shows a quite different response
that is almost triphasic, with a smaller peak but larger under-
shoot in young people (explaining the mean and age effects
in Figure 2D). Note also that there is some variability in HRF
shape across ROIs (see Figure S3).

3.2 | Features of FIR32 Fits

One could extract a number of features (i.e., descriptive statis-
tics) from the FIR fits to each participant. As an example, we
defined the peak amplitude and peak latency from the FIR time
bin with the maximal absolute value within the first 16s.

For peak amplitude, Spearman rank correlations showed signif-
icant decreases in peak amplitude with age for 1AC, bVC and
IMC, but a significant increase in peak amplitude for rMC (top
row of Figure 5).

For peak latency (top row of Figure 6), there is clearly limited res-
olution (given the FIR bin size) and there are many potential out-
liers (even when truncated at a maximum of 16s). Nonetheless,
Spearman rank correlations showed small but significant effects
of age in increasing peak latency for IAC and IMC. Peak latency
decreased with age in rMC, although this likely reflects the dif-
ficulty of defining the peak for the more complex response shape
in this ROI (cf. the latency parameters from NLF model below).

We also examined the root-mean squared error (RMSE) of
the residuals across the original BOLD timeseries (top row of
Figure S4a). Note there is some statistical circularity for the FIR
model, since the same model was used to define the ROIs in the
first place, but its inclusion here at least provides a lower bound
on the residuals, albeit biased, with which to compare the other
models. Not surprisingly therefore, the FIR32 model had least
error in fitting the original timeseries, although also likely be-
cause it had the most degrees of freedom (i.e., most flexibility).
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FIGURE 3 | HRFsshown as heatmaps for each ROI (columns) and model (rows). The y-axis represents each participant, sorted by age, while the
x-axis represents post-stimulus time (PST), truncated at 16s for easier visualisation. The fits were smoothed across participants with a 5-participant
running average. IAC=left auditory cortex, bVC =bilateral visual cortex, IMC =left (contralateral) motor cortex, rMC =right (ipsilateral) motor
cortex. The IAC and bVC data are from the stimulus-locked model; IMC and rMC are from the response-locked model—all chosen from FIR analysis

to show strong effects of age (see Figure 2).

This error then increased numerically from the Can3 to NLF4 to
HDM3 models.

The bottom row of Figure S4a shows the RMSE across trial-
averaged, post-stimulus time, namely the fit of the Can3, NLF4
and HDM3 models to the FIR fit. In this case, the NLF4 model
had least error (except in rMC), followed by the Can3 model and
then HDM3.

Note however that a better test of the models than the above
RMSE metric is to apply cross-validation, in order to adjust for
differences in model flexibility, as is done later. More impor-
tantly, Figure S4b plots the residuals (from original timeseries)
as a function of age. The residual error increased with age for all
models and in all ROIs except bVC, as did the variability across

participants. This suggests that a subset of older participants
have more (nonstimulus-locked) noise remaining in their fMRI
data (e.g., residual effects of head motion) and/or demonstrate
more trial-to-trial variability in their HRF.

3.3 | Can3 Fits and HRF Features

The second row of Figures 3 and 4 shows the fits of the Can3
basis set (see Section 2), while the second row of Figures 5
and 6 shows its estimates of peak amplitude and peak latency
derived from the reconstructed HRF for each participant.
Figure 4 shows that the Can3 basis set is accurate in captur-
ing variation in the BOLD response shape across age tertiles
and across ROIs (closely following the FIR estimates in dotted
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FIGURE4 | Average HRFswithin age tertiles (18-44, 44-66, and 66-88years) for each ROI (columns) and model (rows). Y =young; M = mid-life;
L =late-life. The dotted lines in rows 2-4 are the (replotted) FIR estimates (i.e., same as top row) for reference. Note y-axis scale different across ROIs

but matched across models. See Figure 3 legend for more details.

lines). One potential limitation of the Can3 set is the inability
to decouple the amplitude of the peak and that of the subse-
quent undershoot (see, e.g., IAC and bVC where the magni-
tude of the undershoot is slightly over-estimated).1®

The correlations of peak amplitude and peak latency with age
were stronger for the Can3 fits than the FIR fits for IAC, bVC
and IMC (cf. first and second rows of Figures 5 and 6). This
suggests that the Can3 basis set is more sensitive to effects of
age on features of the HRF shape (as would be expected when
the peak amplitude and latency are effectively derived from a
weighted sum of many time bins, rather than a single time bin
in case of the FIR). For rMC however, Can3 no longer showed

asignificant increase in peak amplitude with age, and showed
a smaller negative correlation for peak latency (cf. the NLF4
model considered next). Indeed, there is clearly a bimodal dis-
tribution of peak latencies from the Can3 model, reflecting
whether the peak or undershoot has greater absolute displace-
ment from zero.

3.4 | NLF4 Fits and HRF Features

The third row of Figures 3 and 4 shows the fits of the NLF4
model (see Section 2), while the third row of Figures 5 and 6
shows its estimates of amplitude and latency. This model does
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FIGURES5 | Amplitude estimates for each ROI (columns) and model (rows), plotted for each participant as a function of age. Amplitude is defined

as the maximum absolute value of the fit within the first 16s, except for the NLF4 model, where the amplitude scaling parameter is plotted instead

(since it is designed to capture amplitude without defining a peak). The R and p-value for Spearman rank correlations with age are shown in legend.

See Figure 3 legend for more details.

not appear to fit all ages as well as the Can3 model, particu-
larly effects of age on the undershoot, and particularly in the
rMC. The latter is understandable from the fact that the aver-
age across participants (or first singular temporal component)
for the rMC may not correspond to the typical “template” HRF
required by this approach.

Note that the purpose of the NLF4 model is to estimate ampli-
tude and latency directly, rather than derive them post hoc from
the peak of the fitted responses, so the third row in Figure 5 re-
flects the NLF4 amplitude scaling parameter and the third row in
Figure 6 reflects the NLF4 latency scaling parameter. Indeed, this

model distinguishes two types of amplitude and latency—an offset
(shift) and a scaling (stretch)—see Section 2. The advantage of the
NLF4 model can be seen in the generally stronger correlations of
amplitude and latency with age. For IAC and bVC, for example,
the amplitude scaling parameter shows a more negative effect of
age than does the peak amplitude estimated from fits of the FIR32
or Can3 basis sets, while the latency scaling parameter shows a
more positive effect of age. This is because the NLF4 model explic-
itly separates the amplitude from the latency. For rMC, the NLF4
model recovers a significant positive effect of age on amplitude,
but no longer produces a significant negative effect of age on la-
tency, most likely because it eschews the need to define the peak
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FIGURE 6

| Latency estimates for each ROI (columns) and model (rows), plotted for each participant as a function of age. Latency is determined

by the time of the maximum absolute value of the fit (peak) within the first 16, except for the NLF4 model, where the absolute value of the latency

scaling parameter is plotted instead (since it is designed to capture latency without defining a peak). See Figure 5 legend for more details.

of a more complex evoked response shape (cf. issue of peak and
undershoot for Can3 model above).

3.5 | HDMS3 Fits and Its Parameters

Whereas the NLF4 model is designed to fit features of the BOLD
response shape (specifically amplitude and latency), the final
model considered here is a biologically-plausible generative
model of how that response is caused. While the full HDM poten-
tially has multiple free parameters (see Supporting Information),
we focus on an HDM3 version, in which we fixed several param-
eters to their prior expected value, leaving three free parameters:

neural efficacy, neurovascular decay rate and hemodynamic
transit rate.

The bottom row of Figures 3 and 4 shows the fits of the HDM3
model, while the bottom row of Figures 5-6 shows estimates of
amplitude and latency from the HDM3 fit. The HDM3 model does
reasonably well for all ROIs, although appears to peak earlier than
the FIR model, and struggles to capture age effects in rMC.

The three free parameters of the HDM3 model are shown as a
function of age in Figure 7. Neural efficacy (top row) showed a
small negative effect of age in IAC and bVC (but not IMC), but a
positive effect of age in rMC. Neurovascular decay rate (second

12 of 23

Human Brain Mapping, 2024

85UB01 SUOWILLOD BAITERID) B(qedljdde 8L Aq peusnob a1 Sap1e YO '8N 4O S3|NJ 104 AReIGIT BUIIUO 4811 UO (SUOIIPUOD-PUE-SLLLBYWO /B | 1M ARR1 11U 1UO//STRU) SUORIPUOD pUe SLLB | 84} 885 *[5202/T0/82] Uo ARiqiTauluo AB|IMm ‘ssoinies Arigi 10N uopuoabe|ioD AIseAIIN AQ £700. WAU/Z00T OT/I0p/L0D 8] 1M Aseiq 1 BUlUO//SANY WO PBPeO|umMOQ ‘ST #7202 ‘E6T0L60T



IAC bvC IMC rMC
0.4 0.4 0.4 0.4
e [ - R=-0.10,p=0.01] [ - R=-0.11,p=0.01] [ - R=+0.00,p=0.96] [ - R=+0.28,p=0.00]
o] : 0.3 0.3 . 0.3
> 0.2} ‘-%n T T T 0.2 F: 5 .'»T"J';;':,.-i;:"f;ff e
@ 21 0 2 BT A IS Sl # it P (30EIN, S B
0.1 L AHE ShorEs]  0.1p4 LA b
2 HsePedy O NERREETS
AN B ViR . ol
o of et R 0 A
m
= -01 -0.1 -0.1
@)
T 02 -0.2 -0.2 -0.2
18 28 38 48 58 68 78 88 18 28 38 48 58 68 78 88 18 28 38 48 58 68 78 88 18 28 38 48 58 68 78 88
- R=+0.41, p=0.00 + R=+0.44, p=0.00 - R=+0.40, p=0.00 - R=+0.24, p=0.00
a5l | p=000]| | | p=000]| | | p=000] | | | p=0.00]
N
I
-~ 2 2 2 2
>
©
o 1.5 1.5 150 . 1.5
i) :
Q1 . 1 1 B 1
] e K .',.,‘.;I.':'.t:lﬂ.
Tos 0.5 .--;;'* J*""" S ?‘EE‘E;"
0 N ""' RN
0 0 0 0
18 28 38 48 58 68 78 88 18 28 38 48 58 68 78 88 18 28 38 48 58 68 78 88 18 28 38 48 58 68 78 88
3.5 3.5 3.5 3.5
[ - R=-0.23,p=0.00] [ - R=-0.15,p=0.00] [ - R=0.37,p=0.00] [ - R=-0.04,p=0.26
< 3 3 3 3
I L]
= 2.5 2.5 2.5 . 2.5 .
e - -
= :
c 2 2
o .
TS ) 15
m - .' . .:,..
= lhw i 1
T & Eé erp s 1
0.5 [- o R 2] 05

0 0
18 28 38 48 58 68 78 88 18 28 38 48 58 68 78 88
Age (years) Age (years)

0 0
18 28 38 48 58 68 78 88 18 28 38 48 58 68 78 88
Age (years) Age (years)

FIGURE 7 | HDM3 parameters (rows) for each ROI (column) plotted for each participant as a function of age. The R and p-value for Spearman

rank correlations with age are shown. Parameter estimates for decay and transit rates are after transforming the posterior expected values from their

log-values back into original units of Hz (see Supporting Information).

row) showed strong positive effects of age in all ROIs. The he-
modynamic transit rate (bottom row) showed strong negative ef-
fects of age in 1AC, bVC and IMC, but not rMC. Indeed, in rMC,
there were many participants for whom the default transit rate
of 1.02 was sufficient (likewise for the default neurovascular
decay rate of 0.64).

Furthermore, we can incorporate the HDM results into a hier-
archical linear model, in order to regularise the parameter es-
timates across participants, using SPM's PEB framework (see
Section 2). More specifically, we fit a group-level model that
included a constant term (average parameter value across par-
ticipants) and a linear age effect (slope of parameter change
with age). We then used BMR to prune parameters that are not
needed in order to maximise the model evidence for this group-
level model. This analysis takes into account the posterior co-
variance between parameters, effectively dropping parameters

whose effects can be accommodated by another parameter
(while maintaining similar model evidence).

The results of PEB-BMR on the linear effect of age on each param-
eter are shown in Figure 8 (results for the mean across participants
are shown in Figure S5). After PEB-BMR, the posterior expecta-
tion for the neural efficacy parameter remained close to its prior
(0)in1AC, bVC and IMC, that is, there was no need for age to mod-
erate neural efficacy. Only in rMC was there a need to increase
neural efficacy with age. By contrast, neurovascular decay rate
showed an increase with age across all ROIs, while hemodynamic
transit rate showed a decrease with age in IAC, bVC and IMC.

Note that while these Bayesian results were generally consis-
tent with the Spearman correlations of each parameter with age
in Figure 7, at least for the decay and transit parameters, the
PEB-BMR results question the significant negative Spearman
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FIGURE 8 | Results of PEB BMR on HDM parameters for each ROI for the linear effect of age across participants. Grey bars show posterior
expectation with 90% credible interval in pink; missing bars are parameters that BMR has removed as unnecessary (in terms of maximising evidence

for PEB model). For decay and transit parameters, units are log deviations.

correlations of neural efficacy with age in 1AC and bVC. This is be-
cause the PEB-BMR approach takes into account the posterior co-
variance among parameters, which was ignored by the correlation
analyses above, which were done independently on each parame-
ter. The presence of correlation between the posterior estimates of
the neural efficacy parameter estimates and those of the other two
“vascular” parameters means that not all are needed to simultane-
ously capture the effects of age on the BOLD response.

3.6 | Cross-Validated Prediction of Age

We tested how well each of the four models could predict
participants’ chronological age based on their parameter es-
timates, combined across all four ROIs, using multiple linear
regression and leave-one-out cross-validation.'! The top panel
of Figure 9 shows that all models did a reasonable job of pre-
diction, with the Can3 model explaining the most (44%) vari-
ance in age, and the NLF4 model explaining the least (25%).

The bottom panel of Figure 9 shows the absolute error in those
predictions. Sign tests showed that the Can3 model did signifi-
cantly better (smaller median error) than the FIR32 model, de-
spite the fact that the FIR32 model had smaller RMSE when
fitting individual timeseries data (see Figures S4a and S4b).
This is likely because the much greater number of parameters
in the FIR32 model results in over-fitting (i.e., capturing some
noise in individual fits), such that their estimates do not gener-
alise well to data from other individuals. The NLF4 model was
significantly worse than the FIR32 model, suggesting that its
parameters were failing to capture some important aspects of
ageing. The HDM3 model did not differ significantly from the
FIR32 model, which is reassuring for this model, although it did
not perform as well as the Can3 model.

For comparison, Figure S6 shows the age prediction error for the
Can3 model, when fitting the canonical HRF only, or adding its
temporal derivative, or adding both its temporal and its dispersion
derivatives. This suggests that all three basis functions are needed.

Figure S7 shows the age prediction error for four versions of the
HDM model (the HDM3 used here, plus versions with 4, 5 and
6 free parameters). The HDM3 model did better than the more
complex models with more parameters (indeed, performed sig-
nificantly better than the HDM4 model). This is why we focused
on the HDM3 model here.

3.7 | External Validation of HDM3 Parameters

Finally, we sought external validation of the HDM3 parame-
ters. In previous work (King et al. 2023), we estimated three
latent vascular factors (LVFs) from six potential measures
of vascular health in the CamCAN dataset. These factors
corresponded roughly to total blood pressure (LVF1), pulse
pressure (LVF2) and heart rate variability (LVF3), shown
to be associated to cerebrovascular health measures in the
CamCAN cohort (Fuhrmann et al. 2019; Tsvetanov, Henson,
and Rowe 2021). N=625 of the present participants had valid
data for these LVFs.

A priori, the LVF1 and LVF2 factors that related to blood pres-
sure would seem most likely to relate to the hemodynamic tran-
sit rate parameter of the HDM model. Nonetheless, to test for
any possible relationship between the three vascular factors and
three HDM3 parameters, we performed nine mediation analy-
ses (using the Matlab toolbox available here: https://github.com/
canlab/MediationToolbox; Shrout and Bolger 2002), testing
whether each LVF mediated the effect of age on each HDM3
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FIGURE 9 | Results of cross-validated prediction of age for each model, using all parameters across all ROIs. Top panel shows the Pearson

correlation between actual and predicted age. Bottom panel shows boxplots of absolute error, where each grey line corresponds to one participant.
An asterisk means that a two-tailed sign-test revealed significantly different error than from the FIR32 model. The average across ROIs of the median
error was 9.98 years (FIR32), 9.20years (Can3), 11.90years (NLF4) and 10.33 years (HDM3), respectively.

parameter.!> The HDM3 parameters were taken before PEB-
BMR (see above), and averaged across the four ROIs for each
participant, in order to reduce multiple comparisons and po-
tentially obtain a more accurate estimate for each participant,
assuming that the true vascular parameters are similar across
brain regions within the same person.

The only mediation test that survived Bonferroni correction
for nine tests was that of the first LVF (LVF1) on the HDM3
transit parameter. In this model, age was positively related
to LVF1 (total blood pressure; a-path=0.34, T=8.97), and
negatively related to mean transit rate (c-path without LVF1
present=—-0.27, T=-6.90), both as expected. Somewhat
surprisingly, LVF1 was positively related to transit rate (b-
path=0.15, T=3.64), such that higher total blood pressure
was associated with faster transit, whereas one might expect
age-related chronic vascular alterations, such as atheroscle-
rosis, to lead both higher BP and lower CBF (slower transit
times). In any case, the relationship between age and transit
rate became more negative with the inclusion of the LVF1 me-
diator (c’-path=-0.32), producing the significant mediation
effect (ab-path =0.05, T=3.36, p <0.001).

We also performed mediation analyses relating the HDM pa-
rameters to an independent measure of neural activity in the

same participants performing the same task in MEG (see Price
et al. 2017, for details). We took the mean evoked responses es-
timated from source-reconstruction of planar gradiometer data
from N=586 of the present participants, and summarised these
responses in terms of their energy (sum-of-squares of values
from 0 to 400 ms post stimulus- or response-onset, after mean-
correction for a pre-onset baseline period of 100 ms).

A priori, we would expect this MEG measure of neural activity
to mediate the effect of age on the neural efficacy parameter
of the HDM3 model, but not the other two vascular param-
eters. In this case, we ran mediation analyses separately for
each ROI, since the HDM neural efficacy parameter showed
different effects of age in the rMC compared to other ROIs.
Thus, we ran all 12 possible mediation analyses (three HDM3
parameters and four ROIs). None of these analyses showed a
significant mediation effect, even at p <0.05 uncorrected (and
even in rMC).

Finally, we tested the relationship across participants between
each of their HDM3 parameters and their median reaction time
(RT). We restricted this analysis to IMC and rMC, expecting a
relationship with the neural efficacy parameter in one of both
motor regions. Because RTs did not show a significant effect
of age (because the task was unspeeded; see Knights, Morcom,
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and Henson 2021, for discussion), we tested for a simple lin-
ear relationship, rather than a mediation. More specifically, we
performed a multiple regression predicting RT from an HDM3
parameter, age, and the interaction between the HDM3 param-
eter and age (the last term testing a moderation effect, for ex-
ample, whether the relationship was stronger in older people).
Interestingly, only the neural efficacy parameter in rMC showed
arelationship that survived Bonferroni-correction for the 12 tests
performed (3 parametersx 2 ROIsx 2 tests: of HDM parameter,
and its interaction with age), T(632)=—3.33, p<0.001 (p=0.011
corrected). Higher rMC neural efficacy was associated with
faster RTs, although any evidence that this ipsilateral activity
was compensatory (i.e., stronger in older people) did not reach
significance, T(632)=0.07, p=0.47 (see also Knights, Morcom,
and Henson 2021).

4 | Discussion

We compared the ability of four models to capture age-related
changes in the BOLD response to brief audiovisual stimuli and key
presses, using a large (N=645) and representative dataset contain-
ingindividuals uniformly distributed across the adult lifespan, and
an fMRI paradigm optimised to estimate the shape of the HRF.

Whole-brain analysis using the first model—the “FIR32” model
with 32 temporal basis functions capturing the HRF every
second—revealed strong effects of age in many brain regions,
particularly bilateral visual, auditory and motor cortices. The
predominant effects of increased age were to reduce the ampli-
tude of the BOLD response and to shift its centre of mass later
in time.

Focusing on four of these ROIs, we compared the FIR fit to a
more parsimonious linear model using a canonical HRF and
two of its partial derivatives (“Can3” model), as well as two non-
linear models. In terms of capturing features of the HRF such
as peak amplitude and peak latency, the Can3 model showed
stronger effects of age than the FIR32 model. However, a non-
linear model in which 4 parameters were fit to the FIR estimates
(“NLF4” model, comprising zero- and first-order expansions of
amplitude and post-stimulus time) showed even stronger effects
of age in most ROIs, suggesting better de-coupling of amplitude
and latency.

However, it is unclear whether such HRF features are infor-
mative with respect to the underlying neural activity, which is
normally what fMRI is used to infer. Indeed, the mapping from
neural activity to BOLD response is nonlinear, depending on
vascular and hemodynamic parameters that are also likely to
change with age. Only the fourth model, based on prior work
on biophysical, generative hemodynamic modelling (Buxton,
Wong, and Frank 1998; Friston et al. 2000), attempted to esti-
mate such neural and vascular parameters separately. When
allowing three of these parameters to vary (neural efficacy,
neurovascular decay rate and hemodynamic transit rate), this
“HDM3” model suggested that the majority of age-effects on the
BOLD response arise from vascular/hemodynamic differences.
Indeed, only one ROI—right motor cortex (tMC)—showed an
effect of age on HDM3's neural parameter, and this actually re-
flected increased neural activity in this ipsilateral motor region

with age (see below for further discussion about this particular
region).

We compared all four models in terms of the accuracy with
which the age of a new participant could be predicted from
parameters fit to the remaining participants, that is, their out-
of-sample cross-validated performance. Given that the models
are typically fit using different statistical frameworks (ordinary
least squares, gradient ascent and Variational Bayes), the cross-
validated performance was useful as a common basis for com-
paring all the models' sensitivity to ageing. Comparison of the
average (absolute) prediction error for 1, 2 and 3 basis functions
in the Can3 model (Figure S6), and of the four versions of the
HDM model with 3-6 parameters (Figure S7), confirmed the
value of this approach. When applied to the four main models
considered here, age prediction was better for the Can3 model
than FIR32 model, suggesting that the greater flexibility of
the latter resulted in over-fitting. Age prediction for the NLF4
model, on the other hand, was worse than the FIR32 model, sug-
gesting that it cannot capture all types of age-related variance.
The HDM3 model was comparable to the FIR32 model, sug-
gesting that it is doing a reasonable job, in addition to providing
more physiologically-meaningful parameters.

Finally, we sought external validation of the HDM parameters
using independent data about vascular health (abstracted from
blood pressure, BMI and ECG measures) and neural activity
(from an analysis of evoked MEG responses by the same par-
ticipants in the same task). While our MEG measure did not
provide evidence of mediating the effect of age on the HDM3
neural parameter, one of our independent vascular factors did
show evidence of mediating the effect of age on the HDM3 he-
modynamic transit time, which provides some validation for the
HDM3 model.

4.1 | Studying Ageing With fMRI

If one just wants to detect (e.g., localise in the brain) the effects
of age on the BOLD response, rather than interpret those effects
in terms of neuronal versus vascular influences, then the pres-
ent results demonstrate that SPM's canonical basis set, Can3,
is best. It outperformed the FIR32 model in its cross-validated
ability to predict age, and will offer greater statistical power by
virtue of using fewer degrees of freedom.!3

However, if one wishes to interpret age effects on the BOLD
response in terms of neural activity, then such linear basis
functions are not sufficient. For this, a biophysically-plausible
generative model is needed. Although its performance was
worse than the Can3 model, cross-validated age-prediction
performance of the HDM3 model was comparable to the
FIR32 model. Importantly, if the HDM3 model correctly dis-
tinguishes neural and hemodynamic contributions to the
BOLD response, then the present results have important po-
tential implications for previous fMRI studies that have in-
terpreted age-related differences in the BOLD response in
terms of differences in neural activity (at least in sensorim-
otor tasks like the present one). This is because the present
HDM3 results suggest that most age effects on the BOLD re-
sponse arise from vascular factors instead. This is consistent
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with recent work combining BOLD fMRI with glucose PET
(Stiernman et al. 2023), which showed that effects of age on
the BOLD response (during a working memory task) were not
accompanied by effects of age on glucose metabolism. Indeed,
we found that age need not affect neural efficacy in early vi-
sual, auditory and contralateral motor regions, when using a
Bayesian approach to prune away parameters whose effects
are close to zero or well captured by the other parameters.
This is consistent with a previous study (Tsvetanov et al. 2015)
that adjusted activations in the present task by empirical esti-
mates of vascular reactivity from an independent resting-state
fMRI dataset, called Resting-State Fluctuation Amplitudes
(RSFA). That study also found dramatically attenuated effects
of age on visual, auditory and contralateral motor BOLD re-
sponses, once they were scaled by RSFA. Interestingly, that
study also found that the BOLD increases with age in rMC re-
mained after RSFA scaling, again consistent with the present
HDM3 results in suggesting a neural origin for age effects in
ipsilateral motor responses.

The positive effect of age on the vasodilatory decay parame-
ter of the HDM3 model in all ROIs suggests that vasodilatory
signals decay faster in older people. This seems plausible, and
may reflect changes in the efficacy of neurovascular coupling.
Increasing this decay rate reduces the peak response and attenu-
ates the post-peak undershoot (Figure S1). Meanwhile, the neg-
ative effect of age on the hemodynamic transit rate parameter in
most ROIs (except rMC) suggests that blood flow is reduced (i.e.,
longer transit times) in older people. This also seems plausible;
cerebral blood flow decreases 0.3%-0.5% per year in healthy age-
ing (Graff et al. 2023). Decreasing this hemodynamic transit rate
delays the HRF (Figure S1).

The HDM3 finding that age increases the neurovascular decay
rate is also consistent with a previous study that used DCM to
examine resting-state connectivity in the CamCAN dataset
(Tsvetanov et al. 2016), in which there was a significant posi-
tive effect in two of the three resting-state networks. That study
also found the same negative effect of age on the hemodynamic
transit rate, although it was only significant in one resting-state
network. Nonetheless, that study used a different neural model
(based on a 1/fneural power spectrum in the resting-state, rather
than the brief burst of neural activity in response to a stimulus
assumed here) and a different formalisation of the HDM (in
which the ratio of intra-vascular to extra-vascular components of
the signal, e;,, was also estimated; see Supporting Information).
Moreover, it examined different (higher-order) brain regions.
These converging findings for the effects of age on the BOLD re-
sponse are reassuring.

Given that allowing for variation in the HRF seems to improve
resting-state connectivity estimates (e.g., in terms of their
correlation with cognitive scores; Tsvetanov et al. 2016; see
also Wu et al. 2021), it would be interesting to see whether
they agree better with connectivity estimates of MEG/EEG
than more traditional Pearson correlation (see, e.g., Wirsich
et al. 2021). It would also be interesting to explore age-related
changes in connectivity in the present sensorimotor task
using methods like DCM, given prior work suggesting that
activity and connectivity independently affect performance
(Tsvetanov et al. 2018).

Note that we are not claiming that there are absolutely no age-
related differences in neural activity in the present sensorimotor
task, particularly given that we have previously shown age-
related delays in evoked responses measured by MEG on the
same participants in the same task (Price et al. 2017). Indeed, we
used the same NLF4 model in that study to demonstrate that age
increased the latency offset (shift) in visual evoked responses
and the latency scaling (stretch) in auditory evoked responses.
However, these latency differences were small (approximately
20ms offset and 20% scaling), and so unlikely to have much ef-
fect on the HRF, given that the HRF integrates over several sec-
onds of neural activity. Thus we are claiming that age may not
affect the type of neural activity that can be detected by fMRI, at
least within the present ROIs and type of task. In other words,
we are claiming that our HDM3 results demonstrate that neu-
rovascular and vascular changes are sufficient to explain age
effects on the BOLD response in the ROIs and task considered
here. By extension, the onus is on researchers who wish to use
BOLD fMRI to infer about effects of age on neural activity to
first rule out age-related vascular effects.

4.2 | Linear Basis Sets and HRF Features

While the Can3 basis set showed best cross-validated prediction
of age, the partial derivatives of the canonical HRF are import-
ant to capture this variability (Figure S6). Thus, studies of ageing
that use only a single canonical HRF are likely to miss age-
related differences in the HRF. Such studies need to ensure that
parameter estimates for the derivatives are also taken forward
to any group-level (2nd-level) analyses (or else combined to esti-
mate a shape-independent effect size, e.g., Calhoun et al. 2004;
Cignetti et al. 2016). The additional flexibility provided by the
partial derivatives is also important to capture variability across
brain regions (Figure S3).

Figure S3 also shows that the canonical HRF used in SPM is
more dispersed than the BOLD responses estimated here. One
reason for this could be that the canonical HRF was derived
from studies in which the data were not slice-time corrected
(Friston et al. 1998a; Friston et al. 1998b; Friston et al. 2000),
so there was likely to be a delay (around TR/2 on average, typi-
cally corresponding to 1-1.5s), relative to stimulus onset, in the
activated brain regions. Here we were careful to synchronise the
GLM with the reference slice, ensuring no such delay. Another
reason is that only a small number of participants were used in
those studies, who may not have been representative, whereas
the HRFs in Figure S3 are averaged across a larger range of
adults, spanning the whole adult lifespan. In case it is helpful,
we have added a “revised” canonical HRF (and its partial deriva-
tives) to the github page associated with this paper, in which the
parameters of its two gamma functions are estimated by fitting
the average FIR across participants and across the IAC, bVC and
IMC ROIs. However, while this canonical form may be more ap-
propriate for the average, healthy adult aged between 18 and 88
than SPM's current one, the main point of the present study is
to show how age changes the HRF, so ideally researchers would
use age-appropriate HRFs for their analyses. By also providing
the FIR fit for all current participants on the github page, re-
searchers can define their own canonical HRF matched to the
ages of their own sample (at least for the four ROIs considered
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here; or indeed download the raw data and estimate an FIR fit
for any set of voxels).

Beyond localisation, it is unclear whether there are effects of age
on the shape of the HRF that can be directly interpreted (at least
without a biophysical model). There may be information about
the latency of neural activity in the latency of BOLD responses,
but this seems most likely for latency differences between two or
more conditions (e.g., types of stimuli), found within the same
brain region and same individual tested within the same ses-
sion. In such situations, one can reasonably assume that hemo-
dynamic variables are constant, so any differences are neural
in origin. In this case, temporally-extended basis sets like the
Can3 can better estimate latencies than individual FIR time
bins, which are more prone to noise, although the present re-
sults show that nonlinear fitting of models that explicitly para-
metrise different types of latency (e.g., offset and scaling, like
in the NLF4 model) leads to even higher sensitivity. Even so,
reverse inferences about the latency of neural activity from la-
tency of the BOLD response are complicated due to convolution
(e.g., a difference in peak latency of the HRF can arise from
differences in the duration rather than onset of neural activity,
Henson et al. 2002), not to mention potential nonlinearities in
the neural-BOLD mapping. Most importantly, however, for the
study of ageing, or other individual/group differences, it seems
unlikely that differences between individuals in the latency
(or indeed amplitude) of their BOLD responses could ever be
uniquely attributed to differences in neural activity, at least in
the absence of a validated biophysical model or independent
data about hemodynamic differences.

Conversely, it is important to remember that any individual
differences in the HRF (e.g., as a function of age) cannot be
uniquely attributed to hemodynamic factors, unless one knows
that neural activity is invariant across individuals (or can es-
timate that activity separately, e.g., with a biophysical model).
This point was made by Grinband et al. (2017) in the context
of ageing. We believe that our paradigm minimised factors that
could cause age-related differences in neural activity (compared
to some previous paradigms) because our trial-based design
entailed very brief, simple, meaningless stimuli (<300ms) that
required minimal processing. While older people are generally
slower to react in such tasks, we accommodated this delay (for
analysis of motor cortices) by locking analysis to the keypress
rather than the stimulus, which should allow for age-related
variability in execution time at least (though differences could
remain in motor force and other kinematic variables). However,
our task did involve long and variable SOAs, in order to max-
imise the ability of fMRI to estimate HRF shape (Josephs and
Henson 1999), so it is possible that age-related differences in
sustained attention existed that modulated neural activity
(Grinband et al. 2017). But this is exactly why more sophisticated
models like the HDM are needed (in the absence of independent
measures of neural/hemodynamic factors), to try to separate ef-
fects of age on neurodynamics and hemodynamics.

4.3 | Caveats With HDM

Though the present HDM3 model offers the potential to sep-
arate neural and vascular contributions to the BOLD impulse

response, this is subject to several assumptions, as detailed in
the Supporting Information. We fixed several parameters of the
full HDM to their prior expected values, whereas in reality they
may also have changed with age. The reason for fixing some of
them is that the effects of several parameters on the BOLD re-
sponse are very similar, so they are difficult to disentangle in
the absence of independent data (e.g., about blood flow or blood
volume). This is reflected in high posterior covariances between
some parameters when fitting a 6-parameter HDM (Figure S2),
and the fact that freeing up more than 3 HDM parameters
did not significantly improve cross-validated age prediction
(Figure S7). Thus, interpretation of some of the age effects that
we found with the HDM3 model could be wrong, mandating fol-
low-up studies that complement the BOLD response with other
measurement modalities.

For example, regarding the neural efficacy parameter, its effects
on the scaling of HRF are very similar to those of the venous
blood volume fraction (V,), and Vj is known to change with age.
Nonetheless, since V;, must be positive, it cannot be solely re-
sponsible for the negative BOLD response we found in young
people in rMC. The effects of the neural efficacy parameter can
also be similar to those of the resting oxygen extraction frac-
tion E, (Figure S1), resulting in a high negative correlation in
their parameter estimates (Figure S2). However, we argue in the
Supporting Information that effects of age on oxygen extraction
fraction are unlikely to be detectable in the BOLD signal mea-
sured here. The effects of the neural efficacy parameter are
also related to vessel stiffness parameter a (Grubb et al. 1974),
although in this case, they tend to have opposite effects on the
HRF amplitude (inducing positive correlation in their parame-
ter estimates). Nonetheless, our application of PEB to the HDM3
model resulted in no effects of age on neural efficacy § in any
ROI except rMC, and the latter is unlikely to be explained by
parameters such as blood volume fraction, oxygen extraction or
vessel stiffness, because the effects of age on these are unlikely
to differ dramatically across cortical regions, particularly across
contralateral ROIs like IMC and rMC.

Likewise, the effects of age that we did find on neurovascular
decay rate and hemodyamic transit rate could also be attributed
to effects of age on other HDM parameters that we fixed, partic-
ularly the neurovascular feedback parameter, whose effects on
the latency of the HRF are similar to those of the hemodynamic
transit rate (Figure S1). To properly decouple these HDM pa-
rameters, one would need independent measurements of blood
flow, oxygenation, vasodilatory signal and neural activity, to si-
multaneously constrain their values, for example, using Arterial
Spin Labelling (ASL) fMRI for blood flow, or Vascular Space
Occupancy (VASO) fMRI for blood volume.

Here we made a preliminary attempt to validate the HDM pa-
rameters against other, independent data from CamCAN, using
mediation analysis. We did find that the effect of age on the HDM
transit rate parameter was significantly mediated by a previous
cardiovascular factor related to total blood pressure (systolic plus
diastolic). A relationship between hemodynamic transit and blood
pressure would appear to make sense. Nonetheless, we note that
this mediation took the form of a “suppressor effect,” whereby the
negative relationship between age and transit rate became more
negative in the presence of the cardiovascular mediator. One
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interpretation of this is that increases in blood pressure compen-
sate for age-related reductions in transit rate (given the positive
relationship between the cardiovascular factor and transit rate).
Whatever the interpretation, this highly significant mediation
provides some construct validity to the HDM model.

We did not find any relationship between any of the HDM pa-
rameters and the amplitude of early, evoked MEG responses
from the same participants performing the same task. One
might have expected a mediation of age effects on the HDM
neural efficacy parameter, but given that the BOLD response
integrates over several seconds of neural activity, it is possible
that this short-lived evoked amplitude measure is not sufficient.
Future work could examine the effects of age on the power spec-
trum of neural responses (evoked and induced), for example, to
see if BOLD amplitude relates to a shift in power toward higher
frequencies (Kilner et al. 2005).

However, we did find a relationship between the neural efficacy
parameter in rMC and median RT, adjusted for age. Higher ipsi-
lateral neural activity was associated with faster RTs. This could
reflect compensatory activity in older people (compensating for
reduced efficiency in the contralateral IMC), but there was no
evidence that this relationship was stronger in older people (con-
sistent with Knights, Morcom, and Henson 2021). Nonetheless,
this suggests that the HDM model was able to estimate mean-
ingful estimates of neural activity, adjusted for haemodynamic
variability. Thus in summary, we are not claiming that the HDM3
model used here is the best or most accurate model. Rather our
aim is to illustrate how biophysical models like the HDM could
be used in principle to better interpret effects of age on the BOLD
impulse response, for example, in separating neural and vascu-
lar components. Indeed, we expect future studies to continue to
improve the HDM as an explanation for the genesis of BOLD
fMRI, and to extend the model to integrate complementary im-
aging modalities. To illustrate, Havlicek et al. (2015, 2017) pro-
posed improvements to the form of the HDM model to better
explain transient features of the BOLD response, and extended it
to explain functional ASL measurements. Thus while the present
work supports the face validity and predictive validity of HDM,
further support for its construct validity will require independent
measurement of several of its variables, beyond the final BOLD
response. For example, concurrent EEG/MEG can provide inde-
pendent measurements of neural activity from the same people
doing the same task, while other types of fMRI contrast, which
depend on blood flow or blood volume, could also be acquired
concurrently.

4.4 | Other Caveats

There are other caveats with the general approach adopted here.
Firstly, while our paradigm (specifically the m-sequence dis-
tribution of SOAs) was optimised to estimate the shape of the
HRF to impulsive stimulation, this is under linear convolution
assumptions. Nonlinearities have been shown for SOAs below
around 10s (Friston et al. 2000), which we replicated here from
the HDM3 model (see Section 2). Furthermore, we showed
significant effects of age on the second-order Volterra kernel
(Figure S8). However, the proportion of variance explained by
the second-order kernel was relatively small, and the proportion

of this variance related to age was even smaller. Thus we think
it unlikely that many of the present inferences about age ef-
fects were confounded by nonlinearities as a function of SOA.
Nonetheless, this remains possible, and there are other types of
nonlinearities, such as nonlinearities in the BOLD response as a
function of stimulus duration or magnitude, which are typically
bigger than nonlinearities as a function of the SOAs (Birn, Saad,
and Bandettini 2001). While stimulus duration was fixed here,
it remains possible that the duration of induced neural activity
differed with age. We have no way to test this, other than to note
that reaction times (RTs) did not differ much with age in the
present task, by design, because it was unspeeded. Nonetheless,
future studies could also explore the effects of age as a func-
tion of the duration of neural activity (e.g., by varying stimulus
duration).

Second, we identified voxels within ROIs that showed a sig-
nificant effect (at p <0.05 uncorrected) of stimulus/response-
locked activity versus baseline. The number of such voxels did
decrease with age. While the number of voxels does not nec-
essarily bias estimates of the average across voxels, it is pos-
sible that the range of cortical areas sampled, and hence HRF
shapes, differed for younger versus older people. Future stud-
ies could perform more detailed analyses of individual vox-
els, possibly better functionally-aligned across participants
(than with the present anatomical normalisation), whose HRF
shapes might vary, for example, in the contribution of drain-
ing veins.

4.5 | Ipsilateral Motor Cortex

Finally, the BOLD response in rMC is noteworthy in its dif-
ference from the other ROISs: it showed a negative and delayed
BOLD response versus baseline in young people, which became
more positive with age (see also Mayhew et al. 2022; Ward,
Swayne, and Newton 2008; Tak et al. 2021; Knights, Morcom,
and Henson 2021; or Mattay and Weinberger 1999, for review).
Indeed, the HRFs in rMC were the hardest to fit, particularly
for the HDM3 model. There may be several reasons for this. For
example, it has been suggested that the motor cortex ipsilateral
to the effector is inhibited by the contralateral motor cortex, but
that this inhibition decreases with age, explaining the increase
in neural efficacy with age disclosed by the HDM3 model. Such
activity in inhibitory interneurons may have metabolic conse-
quences (hemodynamics) that differ from those assumed by the
HDM for excitatory activity (Vazquez, Fukuda, and Kim 2018).
Indeed, the neural component of the HDM could be augmented
by distinguishing excitatory and inhibitory cell populations, as
was proposed for DCM (Marreiros, Kiebel, and Friston 2008).
Furthermore, the neural activity in ipsilateral motor cortex in
such tasks could be more delayed/dispersed than the brief burst
assumed by all models used here. Ipsilateral motor cortex would
therefore be an interesting region to explore more closely in
terms of its neurodynamics and hemodynamics.

5 | Summary

Age has strong effects on the form of the HRF, as shown using
all four models we tested, and this should be taken into account
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when analysing fMRI data. The model one would select for a
study depends on its aims. Where the priority is regional local-
isation, our results demonstrate that the three parameter Can3
model works well. It is parsimonious, has similar sensitivity to
ageing effects as the other models we compared, and has best pre-
dictive validity. However, when interpreting differences between
individuals that have been localised this way, such as due to their
age, caution should be exercised before interpreting those differ-
ences in terms of neural differences (rather than vascular ones).
By contrast, where the aim is to ask mechanistic questions about
the underlying causes of ageing effects, there is an opportunity
to deploy physiological models such as the HDM. As illustrated
here, these kinds of models can generate mechanistic hypothe-
ses, which could then be tested with other modalities that can
provide direct measures of neural activity, blood perfusion, or
blood volume. Thus, with the appropriate model and data, we
can go beyond descriptive statistics such as time-to-peak or peak
amplitude, and ask mechanistic questions about the genesis of
the BOLD response and its dysfunction in ageing.
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Endnotes

I Except that orthogonalisation of regressors within each condition
was switched off within spm_fMRI_design.m (see https://github.
com/RikHenson/AgeingHRF).

2 The purpose of this study is to compare models of the effect of age on
the HRF, so we want to define ROIs that show strong age effects in
the first place. Though performing this ROI selection from fits of the
FIR model biases the comparison of the FIR model with other models
(as noted later), alternative definitions such as defining ROIs on the
average effect across participants would not identify the right motor
cortex, because it showed a particularly strong effect of age, while
defining ROIs on anatomical criteria instead would be problematic
because the age effects could reflect functional boundaries not re-
spected by anatomy. In other words, our goal is not to identify (local-
ise) brain regions that happen to show age effects in this paradigm,
but rather explain the nature of those effects (in terms of HRF shape
or underlying physiological parameters) wherever those age effects
are strong.

3 The degrees of freedom in this model are so high (>20,000) that
nearly every active voxel survives correction for multiple compar-
isons, hence the arbitrary threshold to define reasonably-sized
ROIs.

4 Trial-locked FIR effects that do not resemble a typical HRF are some-
times rejected as “non-hemodynamic,” but in this case, such an im-
plicit model of the HRF would be better put explicitly into the GLM
in the first place, for example, by using a more constrained basis set.
Nonetheless, if the neural activity associated with a trial is sustained
(more than a second or so) and unknown in form, then a FIR basis set
can be a useful “catch-all.”

5> Note that, unlike the other three models, the NLF4 approach is fit
to the FIR parameters (i.e., peristimulus time), rather than the origi-
nal fMRI timeseries. One could take the best-fitting HRF shape from
such nonlinear fitting of the FIR parameters, and insert it back into
the first-level GLM for the fMRI timeseries, in order to estimate a
single scaling (amplitude) parameter. This would enable inference to
be performed on a single parameter, while allowing for variability in
the HRF shape across ROIs and/or across participants. This has the
potential to be more robust than re-inserting the FIR estimate of HRF
shape for a given participant and ROI, if the latter is noisy, owing to
the effective “regularisation” of the HRF by the average shape across
participants and/or ROIs (similar to the formal hierarchical model
used for HDM below). Nonetheless, care would be needed for regions
like rMC that do not show a consistent HRF shape across participants
(see Section 3).

¢ The autoregulatory feedback parameter may not have a direct phys-
iological correlate at the vascular level. Indeed, it has been proposed
that neurovascular coupling can be modelled as a purely feedforward
system, in conjunction with inhibitory neural activity (Havlicek et
al. 2015). In the absence of a neural model, the purpose of the feed-
back parameter here is simply to enable damped oscillatory dynamics
on a physiologically plausible timescale. See appendix 5 of Zeidman
et al. (2019) for details.

7 Statistical parametric maps for the stimulus-locked and response-
locked group FIR models were similar, as would be expected since the
median across participants of their median reaction time (RT) across
trials was 282 ms (range = 182-679 ms), which is short relative to the
time-constants of the BOLD response. Nonetheless, this variability
in RTs (across both trials and participants) is important for latency
analyses below.

8 The degrees of freedom in this model are so high (> 20,000) that nearly
every active voxel would survive correction for multiple comparisons,
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so the statistical and extent thresholds were chosen simply to obtain
reasonably-sized ROIs.

° Note that the slight “sawtooth” modulation across alternating FIR
bins (particularly apparent in tail of HRFs) reflects the differential
sampling across the run owing to the non-integer ratio of bin-width
relative to TR, such that even-numbered bins tended to be sampled
from trials later in the run than odd-numbered bins.

10We did try a fifth model in which the gamma function for the peak
and the gamma function for the undershoot were separate basis func-
tions (along with their temporal derivatives, i.e., four basis functions
in total), but this model did not perform as well (e.g., in the cross-
validated prediction of age reported later). Also note that, according
to the HDM model, the peak and undershoot are highly coupled,
since they are part of the same damped oscillation in response to a
brief burst of neural activity.

H'Wwe did try adding second-order expansions of HDM parame-
ters (including interaction terms), as well as more advanced ML
techniques (such as gradient boosting), but these did not show
better cross-validated prediction than standard (unregularised)
multiple regression (indeed, SHAP analyses showed linear terms
are sufficient).

12 One could also enter such independent measures as additional co-
variates in the PEB model (as could higher-order polynomial ex-
pansions of age, in case there are nonlinear effects of age on the
HDM parameters). However, given the high correlation of these
vascular/neural factors with age, here we sought instead to test
whether such measures mediated the age effects that we already
found.

13 The more constrained nature of the Can3 basis set also prevents false
detection of trial-locked effects that are implausible as hemodynamic
responses, such as “activity” in the eyeballs for the first FIR time bin
only, which reflects stimulus-driven eye-motion instead.
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