
INVITED PAPER FOR THE IEEE TSE 50TH ANNIVERSARY SPECIAL ISSUE (AUTHORS’ VERSION) 1

Obstacle Analysis in Requirements Engineering:
Retrospective and Emerging Challenges

Emmanuel Letier and Axel van Lamsweerde

Abstract—With the growing adoption of AI-based systems,
effective risk management is more important than ever. Obstacle
analysis is a requirements engineering technique introduced three
decades ago for designing dependable software systems despite
failures, exceptions, and unforeseen behaviors in both the soft-
ware and its environment. An obstacle is an undesirable situation
that violates a stakeholder goal, an environment assumption, or a
software requirement. Obstacles include safety hazards, security
threats, user errors, and other adverse situations. Obstacle anal-
ysis provides a structured, systematic approach for identifying,
analyzing, and resolving obstacles at the requirements level. In
this retrospective paper, we summarize the original technique and
discuss its impacts on research and practice. We also propose a
research agenda to extend obstacle analysis to address emerging
challenges in AI systems engineering.

Index Terms—Obstacle analysis, risk analysis, fault-tolerance,
exception handling, goal-oriented requirements engineering, for-
mal specification, AI engineering.

I. INTRODUCTION

AS software engineers, we aim to build systems that
serve meaningful purposes in the world [1], [2]. Our

systems must remain dependable, even in the face of failures,
exceptions, and unforeseen circumstances—whether within the
software itself or its operating environment. Adverse situations
are inevitable: hardware components such as sensors and
actuators may fail; external software systems may malfunction;
our own software may occasionally produce incorrect results;
communication systems may prove unreliable; people may
make mistakes or act unpredictably; and the deployment
environment may present exceptional situations. Despite these
challenges, our systems must remain safe, secure, and useful.
Achieving this level of dependability requires careful engineer-
ing, starting at the requirements level and continuing through
architectural design, quality assurance, operation, and system
evolution [3].

This paper provides a retrospective account of our earlier
work, Handling Obstacles in Goal-Oriented Requirements
Engineering, published in this journal’s October 2000 Special
Issue on Exception Handling [4]. The paper was an expanded
version of an ICSE’98 paper [5]. It introduced a structured
approach for designing dependable systems by managing
exceptions at the requirements level. The paper’s objective was
to tackle the challenges of incomplete and overly optimistic
requirements [1]—challenges that are still critical today in

Emmanuel Letier is an Associate Professor in the Department of Computer
Science at University College London (e.letier@ucl.ac.uk).

Axel van Lamsweerde is an Emeritus Professor in the Department
of Computer Science at Université catholique de Louvain, Belgium.
(axel.vanlamsweerde@uclouvain.be).

the engineering of AI-based systems [6], [7]. The paper de-
fined obstacles as undesirable situations that may obstruct the
satisfaction of stakeholder goals, software requirements, and
environment assumptions. It presented systematic techniques
for identifying obstacles and resolving them by revising the
initial, idealized goals, requirements, and assumptions.

To describe the paper’s novel ideas, we first briefly recall
the goal-oriented requirements engineering method it builds
upon. We then summarize the TSE’2000 paper, highlight its
contributions over other hazard and risk analysis methods, and
present subsequent research and industrial applications. We
conclude by outlining a research agenda for obstacle analysis
in the context of modern AI systems.

II. GOAL-ORIENTED REQUIREMENTS ENGINEERING

Goal-oriented requirements engineering methods focus on
stakeholder goals to guide the elicitation, specification, and
analysis of software requirements [1]. Stakeholder goals are
desired properties of the world in which the software oper-
ates. For example, in an Automated Driving System (ADS),
stakeholder goals include adhering to traffic laws, avoiding
collisions, and ensuring overall safety. A goal model relates
stakeholder goals to subgoals through refinement links, ul-
timately connecting them to software requirements and en-
vironment assumptions. Goal models can be represented as
AND/OR refinement graphs, where the leaves are software re-
quirements and environment assumptions. Conceptually, such
models establish an argument that if the software satisfies its
requirements (R) and the environment satisfies its assumptions
(A), then the stakeholder goals (G) are satisfied: R,A ` G [2].

Consider the stakeholder goal of avoiding collisions (G1)
in an ADS. The leaf refinements of this goal might include
software requirements such as: (R1) “The ADS must alert
the driver when it determines that their attention is needed
to prevent a potential collision” and (R2) “The ADS must
activate emergency braking when it predicts an imminent
collision.” The leaf refinements will also include environment
assumptions on which the ADS relies to satisfy the goal G1
of avoiding collisions: (A1)“When the ADS alerts the driver,
the driver will resume control of the car”; (A2) “When the
driver resumes control of the car, they will avoid a collision”;
(A3) “When the ADS activates emergency braking, the car will
stop in a short distance”; and so on. One can then establish
that if the ADS satisfies its requirements and the environment
satisfies its assumptions, the goal G1 will be met.

Goals, requirements, and assumptions are expressed in
natural language and can optionally be formulated in Linear
Temporal Logic (LTL) for formal reasoning and analysis. The



INVITED PAPER FOR THE IEEE TSE 50TH ANNIVERSARY SPECIAL ISSUE (AUTHORS’ VERSION) 2

LTL formulae are used ”behind the scenes” to enable auto-
mated techniques for model checking, requirements animation,
and test generation, while remaining hidden from stakeholders.

III. OBSTACLE ANALYSIS

Prior to the introduction of obstacle analysis, requirements
engineering methods largely overlooked the problem of ideal-
ized goals, requirements, and assumptions. Although system
failures were often attributed to invalid assumptions [2], [8],
no methods existed to identify, describe, or analyze such
flaws. Likewise, methods were lacking to identify and ana-
lyze potential violations of idealized goals, requirements and
assumptions.

Our work built on earlier contributions by Potts and An-
ton, who first introduced the idea of considering obstacles—
characterized as “anything that could thwart a goal”—to
generate exceptional scenarios during requirements elicita-
tion [9], [10]. We extended this idea by formalizing the
concept of obstacles and making them declarative instead of
operational. Additionally, we integrated obstacles into a goal-
oriented requirements engineering process and developed sys-
tematic techniques for their identification and resolution. The
TSE’2000 paper extends our work presented at ICSE’98 [5]
and features an extensive application of the approach to a large
real-world example [11], based on reports of the 1993 failure
of the London Ambulance Service [12].

An obstacle O to some goal, assumption or requirement P
is a property satisfying two conditions:

1) Obstruction: if the obstacle holds in a world that
satisfies the domain properties Dom, then P will not
hold: O,Dom |= ¬P .

2) Domain consistency: the obstacle is logically consistent
with the domain properties Dom, that is, O ∧ Dom is
satisfiable.

For example, consider the earlier environment assumption
A1: “When the ADS alerts the driver, the driver will resume
control of the car”. One obstacle to this assumption is O1.1:
“The driver is asleep when the ADS alerts them”. The obstacle
O1.1 obstructs A1 based on a domain property, Dom1: ”A
driver cannot resume control of the car if they are asleep”.
O1.1 is an obstacle to A1 because O1.1 implies the negation of
A1 when Dom1 holds, and O1.1 is consistent with the domain
properties. That same environment assumption has many other
obstacles, such as O1.2: “The driver is distracted by their
mobile phone when the ADS alerts them”, and O1.3: “The
driver is incapacitated by a medical emergency”.

Obstacles can be AND/OR refined into sub-obstacles, sim-
ilar to fault trees [13]. This process produces obstacle re-
finement trees, providing a structured approach to exploring
and analyzing situations that could lead to the violation of
a goal, requirement, or assumption. Each refinement tree is
rooted in the obstructed goal, requirement, or assumption, with
the top-level obstacle representing its negation. Additionally,
the formalization of obstacle refinement trees in LTL enables
automated reasoning and analysis.

The obstacle analysis process consists of three main steps:

1) Goal Model Elaboration: Build a goal model that
captures stakeholder goals and their refinements into
subgoals down to software requirements and environ-
ment assumptions.

2) Obstacle Identification: Identify obstacles that obstruct
the leaf goals in the goal model, that is, those require-
ments and assumptions.

3) Obstacle Resolution: Generate new goals and require-
ments, or revise existing ones, in order to prevent,
reduce, or mitigate the identified obstacles.

This process is iterative and incremental. Obstacle identi-
fication can begin before the goal model is fully elaborated.
Obstacle identification and resolution may be intertwined. Re-
solving obstacles often generates new goals and requirements,
which may, in turn, trigger further obstacle identification and
resolution. The process ends when the risks associated with
the remaining unresolved obstacles are deemed acceptable—a
challenging judgement, which is partly addressed in subse-
quent work (see Section V).

Obstacle Identification Techniques. To support obstacle
identification, our TSE’2000 paper introduced two formal,
logic-based techniques: a regression procedure inspired by
AI planning and obstacle refinement patterns in the style of
formal goal refinement patterns [14]. The paper also presented
informal heuristics derived from these patterns and past expe-
riences.

Obstacle Resolution Techniques. Our paper also intro-
duced a catalog of resolution strategies, classified into three
broad categories.

1. Obstacle elimination strategies aim to remove the
obstacle entirely. These strategies include: (1) selecting an
alternative design where the obstructed assumption or require-
ment is no longer needed; (2) introducing a new goal that
requires avoiding the obstacle; or (3) weakening the obstructed
requirement or assumption.

For example, resolving the obstacle O1.1 (“Driver Asleep”)
could involve: (1) designing an alternative ADS that does not
depend on the driver to avoid collisions, thus eliminating the
need for assumption A1 and, consequently, the existence of
O1.1; (2) introducing a new goal, “Keep the Driver Awake”,
which could then be refined into software requirements for
monitoring and ensuring driver wakefulness; or (3) modifying
A1 to a weaker assumption A1’: “When the ADS alerts the
driver and the driver is awake, the driver will resume control
of the car”. Such a change would then be propagated along
refinement links in the goal model, affecting related goals and
requirements. The paper introduced formal patterns for deide-
alizing assertions and systematically propagating the resulting
changes.

2. Obstacle reduction strategies aim to decrease the like-
lihood or frequency of an obstacle occurring rather than
eliminating it entirely. These strategies often involve measures
designed to influence human behavior. The original paper did
not explore such strategies in detail; examples include educa-
tion and training (e.g., informing drivers about the importance
of staying alert), behavioral nudges (e.g., periodic cues to
maintain driver attentiveness), or incentive structures (e.g.,
rewards for the safe and attentive use of the ADS).



INVITED PAPER FOR THE IEEE TSE 50TH ANNIVERSARY SPECIAL ISSUE (AUTHORS’ VERSION) 3

3. Obstacle tolerance strategies aim to mitigate the conse-
quences of an obstacle that cannot be entirely eliminated or is
too costly to address fully. These strategies produce new goals
to ensure that critical parent goals of the obstructed require-
ment or assumption remain satisfied despite the obstacle. There
are three steps: (1) identify all parent goals impacted by the
obstacle by following the refinement links in the goal model;
(2) determine which of these parent goals are critical and must
be preserved despite the obstacle; and (3) produce new goals to
ensure the critical parent goals are maintained in the presence
of the obstacle. For example, consider the obstacle O1: “The
ADS alerts the driver, and the driver does not resume control
of the car”, which cannot be entirely eliminated. A critical
parent goal affected by O1 is the initial goal G1: “Avoid
Collisions”. Applying this strategy leads to generating a new
goal: “Collisions must be avoided even if the driver does
not resume control of the car when alerted”. Refining this
new goal results in requirements such as: “If the driver does
not resume control of the car when alerted, the ADS should
slow the car to a gradual stop”, and “The ADS must activate
emergency braking when it predicts an imminent collision”.

A single obstacle can be resolved in multiple ways. The
obstacle resolution strategies provide a structured approach
for exploring alternatives. By systematically considering all
strategies, the process encourages the creative exploration of
alternative system designs that might otherwise be missed.

Once potential resolutions are identified, they must be
evaluated, and a subset selected based on factors such as
cost, impact on goal satisfaction, and associated risks. The
TSE’2000 paper did not address the evaluation and selection of
resolution strategies—a challenging problem that we explored
in subsequent work discussed in Section V.

IV. CONTRIBUTIONS

Our TSE’2000 paper introduced several contributions to
requirements engineering and risk analysis, particularly in
comparison to other hazard and risk analysis methods such as
Fault Tree Analysis (FTA), Failure Mode and Effect Analysis
(FMEA), and Hazard and Operability Study (HAZOP) [13].

Goal-Anchored Risk Identification. The primary advantage
of obstacle analysis lies in its integration with a goal model.
Anchoring risk analysis on a goal model, elaborated through
systematic techniques [1], exposes the numerous environment
assumptions upon which the system depends. These assump-
tions are made explicit and serve as a starting point for
risk identification. The paper introduced heuristics and formal
techniques to support this identification.

Goal-Driven Risk Reduction. The integration with a goal
model also facilitates the generation and evaluation of multiple
risk reduction alternatives. The goal model helps identify
the potential impacts of an obstacle on stakeholder goals by
tracing refinement links upward through obstacle trees and
goal refinement trees. It also helps pinpoint critical goals
that should be preserved despite the obstacles. In this way,
risk reduction is explicitly driven by the stakeholders’ critical
goals. The paper introduced a catalog of obstacle resolution
strategies to support this process.

Systematic Goal-Oriented Process. Analyzing the numer-
ous failures and exceptions in a typical system is unmanage-
able without a systematic process. Obstacle analysis offers a
structured approach to manage this complexity, ensuring that
all activities remain focused on achieving stakeholder goals.

Structured Documentation of Exceptions. Obstacle anal-
ysis also supports organizing requirements documentation.
It allows the formulation of failure-handling and exception-
handling goals, requirements, and assumptions to be distinct
from—but clearly linked to—the goal model for ideal scenar-
ios. This ensures clarity and traceability in addressing both
normal and exceptional cases.

Formal Foundations and Reasoning Obstacle analysis
provides precise definitions for key concepts such as obstacles,
goal obstructions, and obstacle refinements; these concepts are
grounded in Linear Temporal Logic. Such formal foundation
enables automated techniques for obstacle identification and
resolution. Additionally, many of the informal heuristics for
obstacle identification and resolution are derived from and
informed by this formal foundation.

These benefits of obstacle analysis became increasingly
clearer over time through subsequent research and practical
experience, discussed in the next section.

V. SUBSEQUENT RESEARCH AND APPLICATIONS

Our TSE’2000 obstacle analysis framework paved the way
to further research and industrial applications.

Research Developments. Obstacle analysis highlights that
goals may occasionally be violated, leading to the need to
reason about levels of goal satisfaction. In addition to consid-
ering a goal as a Boolean property (e.g., “no collision”), it
is necessary to define metrics that quantify the level of goal
satisfaction (e.g., “number of collisions per 100,000 vehicle-
miles travelled”). We therefore extended our goal modelling
framework with a quantitative layer for specifying such met-
rics, linking stakeholder goal metrics to software requirements
metrics, and evaluating the impacts of requirements-level de-
sign decisions on these metrics [15]. The resulting quantitative
goal models can be analyzed using stochastic simulation and
multi-objective optimization techniques [16]. These techniques
enable the evaluation of obstacle severity and the identification
of Pareto-optimal obstacle resolutions. The approach has since
been extended to address parameter uncertainty [17] and
implemented in a lightweight goal modelling tool [18]. In
parallel, probabilistic goals were introduced to assess how
likely and critical the identified obstacles are, so as to support
an informed resolution step [19]. This probabilistic framework
was later extended to cope with uncertainty margins about
estimates of likelihoods in such obstacle assessment [20].

Further support was also provided for the resolution step to
determine where and how exception handling goals should be
integrated in a goal model to make it more complete [21].

As an alternative to handling obstacles at design time,
techniques were also developed for runtime monitoring of
obstacle satisfaction rates together with on-the-fly system
adaptation to more effective countermeasures [22].

As mentioned before, the LTL formalization of goals and
obstacles enables formal reasoning. Various efforts were un-



INVITED PAPER FOR THE IEEE TSE 50TH ANNIVERSARY SPECIAL ISSUE (AUTHORS’ VERSION) 4

dertaken in this direction. For the obstacle identification step,
a tool-supported technique was developed for developing a
complete and consistent set of obstacles. The technique com-
bines model checking, for generating counterexample traces
and witness traces from goal specifications, and inductive
obstacle learning from these negative/positive traces [23]. The
combined use of model checking and inductive learning further
allowed the obstacle-driven generation of resolutions [24] and
the automated adaptation of goal/obstacle models to varying
environment conditions [25].

Obstacle analysis techniques have also been extended for
specific concerns.

For security, one must address malicious obstacles, referred
to as anti-goals, set up by attackers to threaten security
goals [26]. Threat trees are built systematically through anti-
goal refinement until leaf nodes are derived that are either
software vulnerabilities observable by the attacker or anti-
requirements implementable by this attacker. Security require-
ments are then obtained as countermeasures by application of
threat resolution operators.

For scalability, one needs to consider situations where a goal
cannot be satisfied by its responsible agent because the load
imposed by the goal exceeds the agent capacity [27]. Patterns
and heuristics are available to support the identification and
resolution of such scalability-related obstacles.

Our obstacle analysis framework has also been applied in
various research areas, for example, in managing uncertainty
in adaptive systems [28]–[30]; defining requirements for a
product family of DNA devices [32]; assessing the likelihood
of goal conflicts [33]; migrating legacy systems to cloud
platforms [34]; exploring trade-offs in resolving obstacles [35];
analysing cybersecurity risks in automotive systems [36]; and
ensuring cybersecurity in operating system kernels [37]. These
examples illustrate the breadth of work that referenced and
used our obstacle analysis framework over time.

Industrial applications. Obstacle analysis has also been
applied in industrial projects [38]. Noteworthy examples in-
clude: the specification of contingency requirements for an
unpiloted aerial vehicle at NASA [39]; the definition of
security goals and requirements for a threat assessment and
response management system for civil aviation, developed in
response to the 9/11 terrorist attacks [40]; the analysis of
scalability requirements for the redesign of a complex, large-
scale financial fraud detection system used by many of the
world’s largest banks [27], [41]; and an industrial pilot study
where goal-obstacle modeling was used for the certification of
new technology in safety-critical infrastructure for the offshore
energy industry [31]. Many applications are unreported. For
example, a major global provider of telecommunication tech-
nologies and mobile devices used goal modelling and obstacle
analysis in the development of a fingerprint authentication
feature for mobile phones.

VI. PERSPECTIVES

Although obstacle analysis was originally conceived within
the context of the KAOS goal-oriented method, its core prin-
ciples of identifying and resolving obstacles to goals, require-
ments, and assumptions are applicable to other requirements

engineering methods that incorporate explicit specifications of
goals, requirements, and assumptions. This includes the Prob-
lem Frame approach [42], the REVEAL method [43], [44] and,
potentially, future frameworks for requirements engineering in
the age of AI. We anticipate that the core principles of obstacle
analysis might play significant roles both in the engineering of
AI systems (SE4AI) and in AI-supported software engineering
(AI4SE).

Obstacle Analysis for AI Systems Engineering. Obstacle
analysis is well-suited to the design of AI systems. Since the
machine learning (ML) components in such systems cannot
be expected to be correct at all times, there is a clear need
for systematically identifying cases where the ML model
may fail, and for designing a system to handle such cases
effectively. Obstacle identification and resolution techniques
might provide valuable support for this process. Typical ob-
stacles (e.g., false positives and negatives) and resolution
strategies (e.g., human-in-the-loop, guardrails) are already
well-documented [45], [46]. They might be formulated as
heuristics and patterns for obstacle identification and resolu-
tion to simplify and promote their application.

Significant research is also needed to address some of the
most complex challenges of requirements engineering for AI
systems [47], [48], such as those described below.

One important challenge in the field of autonomous vehicles
is the specification of Operational Design Domains (ODD),
that is, real-world contexts under which the AI-based system
is expected to operate safely [49], [50]. In our goal modelling
framework, an ODD specification amounts to a set of environ-
ment assumptions that the autonomous vehicle software relies
on to satisfy its safety goals. An accurate ODD specification
is crucial for the system’s safety, as it informs the construction
of training and evaluation datasets. The ODD specification is
also crucial for the implementation of monitoring requirements
to detect when the system leaves its ODD or moves from one
ODD to another. A challenging aspect of specifying an ODD
is the identification and specification of edge case scenarios,
such as rare events, exceptional situations and adverse behav-
iors [50]. Obstacle analysis might provide a natural conceptual
framework to address this challenge through novel techniques
for identifying and resolving obstacles to ODD assumptions.

The challenges of specifying ODD assumptions and
analysing their obstacles extend beyond autonomous vehicles.
All AI-based systems are designed to operate within a specific
context; assumptions about that context guide the system
design as well as the ML model training, evaluation, and run-
time monitoring. The ability to specify such assumptions and
analyse their obstacles will be essential in future requirements
engineering methods for AI-based systems.

A second significant challenge is the AI alignment prob-
lem [51]. Many AI systems, particularly those using rein-
forcement learning, are driven by the optimization of an
objective function. The AI alignment problem arises when the
objective function provided to the AI system diverges from
the actual stakeholder goals that system designers, users, and
society intend to be pursued. This misalignment can lead to
situations where the AI system optimizes its objective function
but violates important stakeholder goals. From an engineering



INVITED PAPER FOR THE IEEE TSE 50TH ANNIVERSARY SPECIAL ISSUE (AUTHORS’ VERSION) 5

perspective, the AI alignment problem can be analysed through
the lens of obstacle analysis. Since mathematical objective
functions are always proxies for actual stakeholder goals,
building AI systems with guarantees that they will always
pursue the correct goals in the correct way appears unfea-
sible. Consequently, potential failures must be anticipated and
addressed by identifying and resolving ”alignment obstacles”,
that is, situations where optimizing the objective function leads
to the violation of critical stakeholder goals. The research
challenge lies in developing automated techniques to support
the identification and resolution of such obstacles. This effort
would complement other research on modelling human val-
ues, which are also relevant to addressing the AI alignment
problem [52].

A third research challenge is to extend obstacle analysis to
address new categories of stakeholder goals, such as fairness
and explainability, which have become critical concerns in the
design of AI systems [53]–[55].

More broadly, we believe that a formal, quantitative
goal-oriented requirements engineering framework provides a
strong conceptual foundation for developing future require-
ments engineering methods for AI engineering, due to its
ability to relate stakeholder goals to software requirements
(including relating stakeholder goals metrics to ML perfor-
mance metrics [18]), to systematically explore and resolve
large numbers of obstacles, and to analyze trade-offs under
uncertainty [16]–[18].

AI-Assisted Obstacle Analysis. Another promising area of
research is the exploration of AI techniques to support obstacle
analysis. This aligns with the current surge in applying AI
methods, particularly Large Language Models (LLMs), to soft-
ware engineering tasks, including requirements engineering
tasks [56]–[58].

A first direction would be to explore the use of LLMs for
identifying and resolving obstacles in the context of goal-
oriented requirements models outlined in this paper. Goal mod-
elling tools such as Objectiver (https://www.objectiver.com)
could include an AI assistant that would help requirements
engineers in identifying and resolving obstacles. Incorporating
our existing heuristics and strategies for obstacle identification
and resolution into the LLM prompts might enhance the
assistant’s ability to identify a broader range of obstacles and
propose more diverse resolution alternatives.

Another direction would be to enhance emerging tools for
the automated generation of requirements documents from
natural language problem statements by integrating obstacle
analysis steps into their chain of thought. This approach might
build on promising initial research in this area [59] and be
incorporated into commercial tools in the style of chatPRD
(https://www.chatprd.ai/). An obstacle analysis feature would
enable such tools to generate more comprehensive require-
ments by considering potential failures and exceptions, rather
than focusing solely on the normal ”happy path”.

A third direction is to develop AI-based data analysis and
decision support techniques to assess obstacle likelihoods,
predict their impacts on stakeholder goals and ultimately
guide the selection of suitable obstacle resolutions among
all generated candidates. These techniques would enhance,

complement or replace existing techniques for requirements-
level decision-making [18] and for design-time and run-time
analysis of obstacles and their resolutions [20], [22].

In conclusion, we believe that obstacle analysis provides a
useful conceptual framework for studying emerging challenges
of AI-based systems engineering and for developing new tech-
niques to address these challenges. Moreover, we anticipate
that obstacle analysis will play a crucial role in AI-assisted
software engineering methods by enabling future AI-based re-
quirements assistants to generate more complete requirements
that account for potential failures, adverse behaviors, and other
exceptions in both the software and its environment.

ACKNOWLEDGMENTS

This paper is dedicated to the memory of Dewayne Perry (1940-
2024), who was Guest Editor of the TSE’2000 Special Issue on
Exception Handling. Dewayne will always be remembered for his
leadership in software engineering research and for his insights on
the bridges between software engineering and music.

REFERENCES

[1] A. van Lamsweerde, Requirements engineering: from system goals to
UML models to software specifications. Wiley, 2009.

[2] M. Jackson, “The world and the machine,” in Proceedings of the 17th
international conference on Software engineering, 1995, pp. 283–292.

[3] L. I. Millett, M. Thomas, and D. Jackson, Software for dependable
systems: Sufficient evidence? National Academies Press, 2007.

[4] A. Van Lamsweerde and E. Letier, “Handling obstacles in goal-oriented
requirements engineering,” IEEE Transactions on software engineering,
vol. 26, no. 10, pp. 978–1005, 2000.

[5] ——, “Integrating obstacles in goal-driven requirements engineering,”
in Proceedings of the 20th international conference on software engi-
neering. IEEE, 1998, pp. 53–62.

[6] N. Nahar, H. Zhang, G. Lewis, S. Zhou, and C. Kästner, “A meta-
summary of challenges in building products with ML components–
collecting experiences from 4758+ practitioners,” in 2023 IEEE/ACM
2nd International Conference on AI Engineering–Software Engineering
for AI (CAIN). IEEE, 2023, pp. 171–183.

[7] M. Kalinowski, D. Mendez, G. Giray, A. P. S. Alves, K. Azevedo,
T. Escovedo, H. Villamizar, H. Lopes, T. Baldassarre, S. Wagner et al.,
“Naming the pain in machine learning-enabled systems engineering,”
arXiv preprint arXiv:2406.04359, 2024.

[8] A. Van Lamsweerde, R. Darimont, and P. Massonet, “Goal-directed
elaboration of requirements for a meeting scheduler: Problems and
lessons learnt,” in Proceedings of 1995 IEEE International Symposium
on Requirements Engineering (RE’95). IEEE, 1995, pp. 194–203.

[9] C. Potts, “Using schematic scenarios to understand user needs,” in
Proceedings of the 1st conference on Designing interactive systems:
processes, practices, methods, & techniques, 1995, pp. 247–256.

[10] A. I. Antón and C. Potts, “The use of goals to surface requirements for
evolving systems,” in Proceedings of the 20th international Conference
on Software Engineering. IEEE, 1998, pp. 157–166.

[11] E. Letier et al., “Reasoning about agents in goal-oriented requirements
engineering,” Ph.D. dissertation, PhD thesis, Université catholique de
Louvain, 2001.

[12] D. Page, P. Williams, and D. Boyd, Report of the Inquiry into the London
Ambulance Service, February 1993. South West Thames Regional
Health Authority, 1993.

[13] N. G. Leveson, Safeware: system safety and computers. Addison-
Wesley, 1995.

[14] R. Darimont and A. Van Lamsweerde, “Formal refinement patterns
for goal-driven requirements elaboration,” ACM SIGSOFT Software
Engineering Notes, vol. 21, no. 6, pp. 179–190, 1996.

[15] E. Letier and A. van Lamsweerde, “Reasoning about partial goal
satisfaction for requirements and design engineering,” in FSE, 2004,
pp. 53–62.

[16] W. Heaven and E. Letier, “Simulating and optimising design decisions
in quantitative goal models,” in International Requirements Engineering
Conference, 2011, pp. 79–88.

https://www.objectiver.com
https://www.chatprd.ai/


INVITED PAPER FOR THE IEEE TSE 50TH ANNIVERSARY SPECIAL ISSUE (AUTHORS’ VERSION) 6

[17] E. Letier, D. Stefan, and E. T. Barr, “Uncertainty, risk, and information
value in software requirements and architecture,” in ICSE, 2014, pp.
883–894.

[18] S. A. Busari and E. Letier, “RADAR: A lightweight tool for require-
ments and architecture decision analysis,” in ICSE, 2017, pp. 552–562.

[19] A. Cailliau and A. van Lamsweerde, “Assessing requirements-related
risks through probabilistic goals and obstacles,” Requirements Engineer-
ing, vol. 18, pp. 129–146, 2013.

[20] A. Cailliau and A. Van Lamsweerde, “Handling knowledge uncertainty
in risk-based requirements engineering,” in 2015 IEEE 23rd interna-
tional requirements engineering conference (RE). IEEE, 2015, pp.
106–115.

[21] ——, “Integrating exception handling in goal models,” in 2014 IEEE
22nd International Requirements Engineering Conference (RE). IEEE,
2014, pp. 43–52.

[22] A. Cailliau and A. V. Lamsweerde, “Runtime monitoring and resolu-
tion of probabilistic obstacles to system goals,” ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 14, no. 1, pp. 1–40,
2019.

[23] D. Alrajeh, J. Kramer, A. Van Lamsweerde, A. Russo, and S. Uchitel,
“Generating obstacle conditions for requirements completeness,” in 2012
34th International Conference on Software Engineering (ICSE). IEEE,
2012, pp. 705–715.

[24] D. Alrajeh, A. Van Lamsweerde, J. Kramer, A. Russo, and S. Uchitel,
“Risk-driven revision of requirements models,” in Proceedings of the
38th International Conference on Software Engineering, 2016, pp. 855–
865.

[25] D. Alrajeh, A. Cailliau, and A. van Lamsweerde, “Adapting requirements
models to varying environments,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 50–61.

[26] A. Van Lamsweerde, “Elaborating security requirements by construction
of intentional anti-models,” in Proceedings. 26th International Confer-
ence on Software Engineering. IEEE, 2004, pp. 148–157.

[27] L. Duboc, E. Letier, and D. S. Rosenblum, “Systematic elaboration of
scalability requirements through goal-obstacle analysis,” IEEE Transac-
tions on Software Engineering, vol. 39, no. 1, pp. 119–140, 2012.

[28] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel,
“RELAX: a language to address uncertainty in self-adaptive systems
requirement,” Requirements engineering, vol. 15, pp. 177–196, 2010.

[29] A. J. Ramirez, A. C. Jensen, B. H. Cheng, and D. B. Knoester, “Au-
tomatically exploring how uncertainty impacts behavior of dynamically
adaptive systems,” in 2011 26th IEEE/ACM international conference on
automated software engineering (ASE 2011). IEEE, 2011, pp. 568–571.

[30] M. A. Langford, K. H. Chan, J. E. Fleck, P. K. McKinley, and B. H.
Cheng, “MoDALAS: Model-driven assurance for learning-enabled au-
tonomous systems,” in 2021 ACM/IEEE 24th International Conference
on Model Driven Engineering Languages and Systems (MODELS).
IEEE, 2021, pp. 182–193.

[31] M. Sabetzadeh, D. Falessi, L. Briand, S. Di Alesio, D. McGeorge,
V. Åhjem, and J. Borg, “Combining goal models, expert elicitation,
and probabilistic simulation for qualification of new technology,” in
2011 IEEE 13th International Symposium on High-Assurance Systems
Engineering. IEEE, 2011, pp. 63–72.

[32] R. R. Lutz, J. H. Lutz, J. I. Lathrop, T. H. Klinge, D. Mathur, D. M.
Stull, T. G. Bergquist, and E. R. Henderson, “Requirements analysis for
a product family of dna nanodevices,” in 2012 20th IEEE International
Requirements Engineering Conference (RE). IEEE, 2012, pp. 211–220.

[33] R. Degiovanni, P. Castro, M. Arroyo, M. Ruiz, N. Aguirre, and M. Frias,
“Goal-conflict likelihood assessment based on model counting,” in Pro-
ceedings of the 40th International Conference on Software Engineering,
2018, pp. 1125–1135.

[34] M. Fahmideh and G. Beydoun, “Reusing empirical knowledge during
cloud computing adoption,” Journal of Systems and Software, vol. 138,
pp. 124–157, 2018.

[35] C. Ponsard and R. Darimont, “Towards quantitative trade-off analysis in
goal models with multiple obstacles using constraint programming.” in
ICSOFT, 2020, pp. 537–543.

[36] C. Ponsard, V. Ramon, and J.-C. Deprez, “Goal and threat modelling
for driving automotive cybersecurity risk analysis conforming to iso/sae
21434.” in SECRYPT, 2021, pp. 833–838.

[37] S. Mergendahl, S. Fickas, B. Norris, and R. Skowyra, “Manipulative
interference attacks,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, 2024, pp.
4569–4583.

[38] A. Van Lamsweerde, “Goal-oriented requirements enginering: a
roundtrip from research to practice [enginering read engineering],”

in Proceedings. 12th IEEE International Requirements Engineering
Conference, 2004. IEEE, 2004, pp. 4–7.

[39] R. Lutz, A. Patterson-Hine, S. Nelson, C. R. Frost, D. Tal, and R. Harris,
“Using obstacle analysis to identify contingency requirements on an
unpiloted aerial vehicle,” Requirements Engineering, vol. 12, pp. 41–
54, 2007.

[40] R. Darimont and M. Lemoine, “Security requirements for civil aviation
with UML and goal orientation,” in Requirements Engineering: Foun-
dation for Software Quality: 13th International Working Conference,
REFSQ 2007, Trondheim, Norway, June 11-12, 2007. Proceedings 13.
Springer, 2007, pp. 292–299.

[41] L. Duboc, E. Letier, D. S. Rosenblum, and T. Wicks, “A case study
in eliciting scalability requirements,” in 2008 16th IEEE International
Requirements Engineering Conference. IEEE, 2008, pp. 247–252.

[42] M. Jackson, Problem Frames: Analyzing and structuring software de-
velopment problems. Addison-Wesley Longman Publishing Co., Inc.,
2000.

[43] P. C. S. Limited, “REVEAL: A Keystone of Modern Systems En-
gineering,” Praxis Critical Systems Limited, White Paper Reference
S.P0544.19.1, 2001.

[44] J. Hammond, R. Rawlings, and A. Hall, “Will it work?” in Proceedings
Fifth IEEE International Symposium on Requirements Engineering.
IEEE, 2001, pp. 102–109.

[45] C. Kastner, Machine learning in production: from models to products.
MIT Press, 2025.

[46] G. Hulten, Building intelligent systems: a guide to machine learning
engineering. Apress, 2018.

[47] A. P. S. Alves, M. Kalinowski, G. Giray, D. Mendez, N. Lavesson,
K. Azevedo, H. Villamizar, T. Escovedo, H. Lopes, S. Biffl, J. Musil,
M. Felderer, S. Wagner, T. Baldassarre, and T. Gorschek, “Status quo
and problems of requirements engineering for machine learning: Results
from an international survey,” in International Conference on Product-
Focused Software Process Improvement. Springer, 2023, pp. 159–174.

[48] M. Kalinowski, D. Mendez, G. Giray, A. P. S. Alves, K. Azevedo,
T. Escovedo, H. Villamizar, H. Lopes, T. Baldassarre, S. Wagner, S. Biffl,
J. Musil, M. Felderer, N. Lavesson, and T. Gorschek, “Naming the
pain in machine learning-enabled systems engineering,” arXiv preprint
arXiv:2406.04359, 2024.

[49] H.-M. Heyn, E. Knauss, A. P. Muhammad, O. Eriksson, J. Linder,
P. Subbiah, S. K. Pradhan, and S. Tungal, “Requirement engineering
challenges for ai-intense systems development,” in 2021 IEEE/ACM
1st Workshop on AI Engineering-Software Engineering for AI (WAIN).
IEEE, 2021, pp. 89–96.

[50] K. M. Habibullah, H.-M. Heyn, G. Gay, J. Horkoff, E. Knauss, M. Borg,
A. Knauss, H. Sivencrona, and P. J. Li, “Requirements and software
engineering for automotive perception systems: an interview study,”
Requirements Engineering, pp. 1–24, 2024.

[51] I. Gabriel, “Artificial intelligence, values, and alignment,” Minds and
machines, vol. 30, no. 3, pp. 411–437, 2020.

[52] W. Hussain, H. Perera, J. Whittle, A. Nurwidyantoro, R. Hoda, R. A.
Shams, and G. Oliver, “Human values in software engineering: Con-
trasting case studies of practice,” IEEE Transactions on Software Engi-
neering, vol. 48, no. 5, pp. 1818–1833, 2020.

[53] Y. Brun and A. Meliou, “Software fairness,” in Proceedings of the 2018
26th ACM joint meeting on european software engineering conference
and symposium on the foundations of software engineering, 2018, pp.
754–759.

[54] L. Chazette, V. Klös, F. Herzog, and K. Schneider, “Requirements on
explanations: a quality framework for explainability,” in 2022 IEEE 30th
International Requirements Engineering Conference (RE). IEEE, 2022,
pp. 140–152.

[55] J. M. Wing, “Trustworthy AI,” Communications of the ACM, vol. 64,
no. 10, pp. 64–71, 2021.

[56] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software engi-
neering: A systematic literature review,” ACM Transactions on Software
Engineering and Methodology, vol. 33, no. 8, pp. 1–79, 2024.

[57] M. Borg, “Requirements engineering and large language models: In-
sights from a panel,” IEEE Software, vol. 41, no. 2, pp. 6–10, 2024.

[58] A. Vogelsang, “From specifications to prompts: On the future of genera-
tive large language models in requirements engineering,” IEEE Software,
vol. 41, no. 5, pp. 9–13, 2024.

[59] M. Krishna, B. Gaur, A. Verma, and P. Jalote, “Using LLMs in software
requirements specifications: An empirical evaluation,” arXiv preprint
arXiv:2404.17842, 2024.


	Introduction
	Goal-Oriented Requirements Engineering
	Obstacle Analysis
	Contributions
	Subsequent Research and Applications
	Perspectives
	References

