
1

Predicting total biogas potential of food waste using the initial output of biogas potential1

tests as input data to train an artificial neural network2

Sarah M. Huntera*, Edgar Blancob, Adiuan Borriona3

a Department of Civil, Environmental and Geomatic Engineering, Chadwick Building, University4

College London, Gower Street, London, UK. WC1E 6BT5

bAnaero Technology Limited, Cowley Road, Cambridge, UK. CB4 0DL6

7

Abstract8

Quantification of biogas potential is important for predicting anaerobic digestion operability9

and price. This study uses data from 446 biogas potential tests to train and test a multilayer10

perceptron artificial neural network (ANN) to forecast total biogas production using the11

evolution at the start of the experiment (3-14 days) as input data. ANN architecture (training12

algorithm, activation function, hidden nodes, regularisation, and input data) was optimised13

using response surface methodology. Best conditions (accuracy/computational speed) were14

obtained using adaptive moment estimation (adam) training algorithm and rectified linear unit15

(ReLU) activation function. When using three days of biogas production data, the accuracy of16

the model was reasonable (r2
test=0.881, r2

validation=0.879), although this increased significantly17

for 7 days (r2
test=0.953, r2

validation=0.925), or 14 days (r2
test=0.971, r2

validation=0.953). The highest18

accuracy was reported for readily digestible substrates (sugars and carbohydrates) and19

macronutrient mixtures. The methodology could be used to shorten prediction times of biogas20

potential tests.21

Keywords: biogas yield, multilayer perceptron, response surface methodology, machine22

learning, activation function, training algorithm23
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Anaerobic digestion (AD) is an effective technology for the treatment of food waste, producing25

biogas which can be burnt as a source of renewable energy. Optimising the performance and26

efficiency of AD is challenging, due to the nature of the complex process, varied chemical27

structure of food waste and the microbial consortiums involved (Enitan et al., 2017; Hunter et28

al., 2021; Xu et al., 2018). Artificial neural networks (ANNs) have emerged as a powerful tool29

for modelling and predicting the complex interactions within AD systems (Andrade Cruz et al.,30

2022; Enitan et al., 2017; Pomeroy et al., 2022). This study investigates the use of ANNs to31

predict the biogas potential of different macronutrients.32

A common problem facing operators of AD is quantifying biogas potential of substrates (Da33

Silva et al., 2018). A methodology for measuring this is the biogas potential test in which a34

sample of substrate is placed in a stirred batch reactor containing inoculum at a fixed35

temperature and monitored until gas production stops (Koch et al., 2020). As well as providing36

insight into the energetic potential, these tests can also be used to agree substrate prices and37

predict operability (Strömberg et al., 2015). One challenge associated with this type of test is38

that it can take days or weeks to complete, during which time large quantities of substrate39

may need to be stored. Shortening the time taken to estimate biogas potential could reduce40

delays in supply chains (Da Silva et al., 2018), which would offer significant financial savings.41

ANNs have been successfully used to predict various parameters and performance indicators42

in AD, such as biogas production (Aklilu and Waday, 2021; Mehryar et al., 2017b), methane43

yield (Almomani, 2020; Nair et al., 2016; Saghouri et al., 2020) and volatile fatty acid44

concentrations (Casallas-Ojeda et al., 2021; Dibaba et al., 2016). ANNs allow for the modelling45

of nonlinear relationships and complex interactions among multiple variables and use large46

data sets to extract patterns that may not be easily identifiable through traditional statistical47

methods and provide real-time predictions, facilitating process optimization and control. Many48
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authors have indicated high correlations between model results and measured outcomes49

(r2>0.95) (Casallas-Ojeda et al., 2021; Khashaba et al., 2022; Saghouri et al., 2020) and have50

indicated the superiority of such a technique over other statistical approaches (Aklilu and51

Waday, 2021; Jacob and Banerjee, 2016).52

Mougari et. al. (2021) used an ANN to predict cumulative biogas production and methane yield53

of several organic wastes using volatile and total solid ratio, carbon content, carbon to54

nitrogen ratio and digestion time. The ANN architecture was optimised using a genetic55

algorithm to optimise the number of hidden layers, neurons and activation function in each56

hidden layer. The resulting model achieved excellent agreement between the measured and57

predicted values (r2
training=0.9999, r2

testing=0.9998). Although this study clearly demonstrates the58

ability of ANNs to predict biogas and methane production, it requires timely and expensive59

analysis of carbon and nitrogen content of food waste. Similarly, the input data was collected60

from literature studies, therefore is only likely to include experiments with positive outcomes61

(Mougari et al., 2021).62

Another study which evaluated the use of ANNs on predicting biomethane test data was63

presented by Casallas-Ojeda (2021). In this work the authors evaluate co-digestion of food64

waste and garden waste using a multilayer perceptron (MLP) trained using Bayesian65

regularisation using the tangent sigmoid activation function. RMSE and computation load66

were combined in an objective function and this was optimised using response surface67

methodology (RSM). Although this study shows excellent model prediction (r268

application is limited to co-digestion of two particular substrates (food and garden waste)69

(Casallas-Ojeda et al., 2021).70

The aim of the presented study is to evaluate if data collected during the early stages of a71

biogas potential test can be used to predict the total biogas potential. Unlike the other studies72
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discussed which require some characterisation of the input substrate, using early stages of a73

biogas potential test could be a cost-efficient way of expediting total biogas production. This74

has been achieved using statistical (Ponsa et al., 2011; Strömberg et al., 2015) or kinetic75

modelling approaches (Strömberg et al., 2015), but no studies were identified which use ANNs76

to reduce biogas estimation time using only batch biogas production data as an input, as77

opposed to substrate characteristics such as solids or macronutrient content or operating78

parameters such as organic loading rate or hydraulic retention time. ANNs offer the advantage79

of being more generally applicable and have frequently been reported to be more accurate for80

predicting AD using alternative forms of input data (such as substrate characterisation). First81

some background on ANNs and RSM will be provided, followed by the methodology used. The82

ANN optimisation results, and associated biogas predictions are discussed, followed by study83

limitations and potential future work.84

1.1 Artificial Neural Networks85

An ANN is a machine learning technique which uses an interconnected network of nodes (or86

neurons) to model and predict real life systems. In an ANN, information is passed through87

layers of nodes producing a non-linear output by assigning weights to each node and, if a node88

output exceeds a threshold value, the node is activated and passes the output to the next layer89

(see Figure 1). The output is calculated using an activation function which adds a bias term to90

the weighted sum (Nagy, 2018; Wang et al., 2021).91

Activation functions generate non-linearity in neural networks (without this the model could92

be described by matrix multiplication), the most common being the identity (or linear), logistic93

(or sigmoid), hyperbolic tangent (tanh) and rectified linear unit (ReLU) functions (Nagy, 2018);94

Equation 1: Identity/linear activation function95

Equation 2: Logistic/sigmoid activation function96
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Equation 3: Hyperbolic tangent activation function97

Equation 4: ReLU activation functions98

An MLP is a feedforward ANN which uses a training algorithm, such as backpropagation99

(backward propagation of errors) for supervised learning. Backpropagation is an algorithm100

which uses gradient descent (with respect to the weights of the ANN) to minimise the101

objective function (Lowe and Lawless, 2021) although many algorithms are available. During102

the process of training, the weights and biases of the neural network are initialised, and the103

entire training set is fed forward through the network. The error is calculated, and104

backpropagation is performed by computing the gradients of the loss with respect to the105

weights and biases and updated. This whole process, known as an epoch, is then repeated106

until acceptable ANN performance is achieved (Berlyand and Jabin, 2023).107

Python is a popular programming language for the implementation of ANNs. The python108

sklearn package (version 0.20.3) offers three training algorithms; stochastic gradient descent109

(SGD), adaptive moment estimation (adam) and the limited memory Broyden Fletcher110

Goldfarb Shanno (LBFGS) (scikit-learn developers, 2023). SGD is an optimisation method111

where gradient is estimated from a selection of random data points (Cady, 2017). SGD and112

113

optimiser can automatically adjust the size of parameter changes, using adaptive estimates114

(scikit-learn developers, 2023). Specifically, it uses the first and second moments of the115

gradients where the first is the mean of the gradients and the second is the uncentered116

variance. This is beneficial as it can be used to provide a different learning rate for each117

parameter, thereby accounting for more sensitive parameters. It achieves quicker convergence118

and better generalisation than other optimisers (Sakshii, 2023). L-BFGS approximates the119
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second order partial derivative of a function, using a Hessian matrix and uses the inverse of120

this to update the weights and biases (scikit-learn developers, 2023).121

Optimising ANN structure is a challenging aspect of their application. Chen et. al. (2022)122

recommends optimising the number of hidden layers, number of neurons in each layer,123

activation function and training algorithm (Chen et al., 2022) although the balance between124

good model prediction and overfitting should also be considered. Overfitting occurs when125

predictions are too closely fitted to the training data and do not generalise well for new data126

sets. This can become a problem when the number of nodes is increased above the optimum127

(Chen et al., 2022). Finding the optimum hyperparameter values can be achieved by trial and128

error (Andrade Cruz et al., 2022; Guclu et al., 2011; Wang et al., 2018), grid search (Al et al.,129

2019; Fernandes, 2014; Long et al., 2022) or statistical approaches, such as RSM (Antwi et al.,130

2018; Lujan-Moreno et al., 2018; Nguyen et al., 2022) and global optima determining131

techniques like genetic algorithms (Jacob and Banerjee, 2016; Saghouri et al., 2020), or similar132

alternatives (Beltramo et al., 2016; Casallas-Ojeda et al., 2021; Dibaba et al., 2016).133

Approaches such as trial and error and grid search are computationally demanding and134

inefficient (Lujan-Moreno et al., 2018) particularly when the number of parameters is large and135

unlikely to return an optimal result whereas the use of RSM or optimisers requires fewer136

training runs with better selection of parameters (Antwi et al., 2018; Lujan-Moreno et al.,137

2018; Mckenzie and Mcdonnell, 2023).138

To determine the effectiveness of the model fit and identify any overfitting or underfitting,139

Goodfellow et. al. (2016) recommends comparing the error associated with the training and140

test sets. If the training set error is large, the model is underfit, whereas if the gap between the141

training error and test error is large, the model is overfit (Goodfellow et al., 2016). In addition,142

statistical tools such as the Akaike information criterion (AIC), Bayesian information criterion143
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(BIC) can also be used to assess ANN performance, particularly when evaluating model144

parsimony (Maier et al., 2010; Wu et al., 2014).145

1.2 Response Surface Methodology146

RSM is a statistical method which seeks to model the surface of an output, or response (Lujan-147

Moreno et al., 2018). It systematically evaluates the effect of reaction variables, their ranges,148

and their combined effects on an output or response variable. In a factorial design,149

experiments will be conducted at the corner of a design space, by running combinations of the150

input factors (Freddi and Salmon, 2019; Lujan-Moreno et al., 2018). The output or response151

can then be expressed as a linear combination of the inputs and interactions between the152

inputs;153

Equation 5154

Where represents the outputs, represents the inputs and represents the coefficients.155

Replicates are performed to determine the error (Freddi and Salmon, 2019). RSM provides a156

methodology to maximise sample variability and is beneficial when an exhaustive search is157

impractical, expensive or, as in this case, time consuming (Mckenzie and Mcdonnell, 2023).158

To build an RSM, factorial or fractional factorial designs are commonly applied. Central159

composite designs build on these factorial designs by including axial points, allowing160

estimation of curvature in the model, and therefore fitting a second order polynomial in the161

RSM. Distance of the axial points from the centre points (and the number of centre points) is162

dependent on the specific system being investigated, with circumscribed/distance-centred,163

inscribed/inner-face centred and face centred all possible alternatives (Freddi and Salmon,164

2019).165

2. Materials & Methods166

2.1 Biogas potential tests167
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The biogas potential of various substrates was quantified using Anaero Technology Nautilus168

units (Anaero Technology, n.d.) and standard methodology (Holliger et al., 2016). All biogas169

potential tests were performed at Each reactor in the Nautilus170

units were connected to a cell in a calibrated Anaero Gas Flowmeter which recorded real time171

biogas production data. Reactors were preloaded with microorganism rich inoculum, and a172

known mass of a single substrate was added. A range of substrate to inoculum (S:I) ratios were173

used (1:2 to 1:6) as this impacts the kinetics and therefore produces a more varied dataset.174

Substrates were analysed at least in duplicate (for full details refer to Supplementary Data) and175

continued until biogas production plateaued (20-80 days). Control reactors (inoculum only)176

were included in each set of tests to evaluate the biogas activity of the inoculum.177

2.2 Materials178

A total of 112 different substrates were analysed. This includes pure substrates (various179

carbohydrates, proteins, fats, sugars and amino acids) as well as mixtures (a total of 446180

individual experiments). These were sourced from supermarkets and food grade suppliers181

(Tesco, Bulk Powders ltd., Special Ingredients ltd.). The inoculum was sourced from a182

mesophilic, food waste, industrial AD facility.183

2.3 Analytical Methods184

Analysis of total solids (TS) and volatile solids (VS) for all substrates and inoculum (to185

determine S:I) was done according to the American Public Health Association (APHA) standard186

methods for water and wastewater (APHA, 1999).187

2.4 Artificial Neural Network188

Biogas potential raw data was imported into python (version 3.7.3) as a dataframe in pandas189

(version 0.24.2) and no preprocessing was performed. Biogas production data was collected on190

an hourly basis, and this was used for training the model, but for ease of understanding it will191

be referenced in days. Data was scaled (within the range 0-1) using the sklearn (version 0.20.3)192
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MinMaxScaler package and an MLP ANN (sklearn MLPregressor) was trained using back193

propagation and various ranges of input data (from 3 to 14 days).194

2.5 ANN Optimisation using CCF and RSM195

To determine the optimal ANN structure, a full factorial, face centred composite design (CCF)196

was used to train and test multiple model structures in silico. The use of a CCF design allows197

interpretation of the interactions between hyperparameters (as these are inherently non-198

linear). CCF was used (as opposed to a circumscribed design) to avoid negative199

hyperparameter values, which are not feasible. Table 1 indicates the CCF design used for each200

combination of training algorithm (adam, SGD, LFBGS) and activation function (identity,201

logistic, ReLU, tanh), resulting in this design being executed a total 12 times. Centre points202

were included for each of the 12 CCF designs and performed in triplicate to account for the203

variation generated by randomised partition of training and validation data.204

The ranges for the four input variables were defined; input data size (3-14 days of biogas205

production), number of nodes in layer 1 (1-9x the size of the input data), number of nodes in206

layer 2 (3-30x the size of the input data) and strength of the regularisation term ( 1x10-5 to207

10). The input data size was chosen based on a review of the raw data, as some of the208

substrates analysed have a lag time of 1-2 days, a minimum of 3 days was deemed209

appropriate. Similarly, some of the substrates analysed produce the majority of biogas within210

14 days and therefore a larger input data set would not offer any value for shortening211

prediction times. The number of nodes in each layer was selected using the widest possible212

range from existing heuristics (Chen et al., 2022), although this was verified by comparing213

model accuracy (r2 and MSE) and complexity (AIC and BIC) between training and validation214

data to avoid overfitting. Finally, the regularisation strength was selected using the python215

default ( =1x10-5) and, as was identified during screening simulations, increasing this appeared216
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to have beneficial impact on accuracy, therefore an upper value ( =10) was selected to take217

advantage of the effect whist limiting the potential risk of overfitting.218

After initial data screening and exclusion of the worst performing combinations of training219

algorithm and activation functions, RSM was fitted and analysed using MODDE® software. This220

approach was taken as an efficient way to explore a wide parameter space as opposed to using221

a global optimiser, which would inevitably find the larger input data sets give better prediction222

or grid search which would be laborious with the variable input data set.223

3. Results224

Initial screening was used to evaluate the effect of different training algorithms on MSE to225

assess the impact of the categorical variables and reduce the number of RSM models required226

to model the continuous variables. By plotting the outputs from the CCF design (varying227

number of input days, number of nodes per layer, and regularisation parameter alpha as228

shown in Table 1) it is possible to evaluate the categoric variables.229

3.1 Comparison of Training Algorithms230

As can be seen from Figure 2a, the MSE was much higher when using the LBFGS training231

algorithm, than when using the adam or SGD algorithm for all activation functions. In addition,232

adam and SGD generally show greater alignment between the training and validation data,233

indicating better model fit. On this basis, only the adam and SGD algorithms were considered234

for further optimisation.235

3.2 Comparison of Activation Functions236

As can be seen from Figure 2b, the ReLU activation function generally performed best across237

the range of hyperparameters and input days, although tanh also performed well at a low238

number of input days. As expected, the most accurate predictions can be achieved when using239

the highest number of days (14 days), this applied for all training algorithms except the logistic240
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function. The logistic activation function is prone to the vanishing gradient problem which241

could be the cause of this poor performance (Salam et al., 2021). Response surfaces were242

modelled for ReLU and tanh activation functions only.243

3.3 Response Surfaces244

RSM models were fitted to the CCF data and used to explore the hyperparameters (number of245

nodes, strength of regularisation and size of the input data set) for combinations of the best246

performing training algorithms (adam and SGD) and activation functions (ReLU and tanh). As247

can be seen in Table 2, the RSM model showed good prediction of the ANNs MSE (r2 0.92,248

r2
adjusted 0.84). Similarly, the model shows good predictive capability (Q2 0.73) for all but the249

combination of adam and tanh and high reproducibility in all cases (R 0.959).250

A contour plot (Figure 3) was produced from the RSM model, showing how the MSE varies251

with different structures. Although equivalent MSE can be achieved using the adam and SGD252

optimiser, the ability of the SGD optimiser to generalise can be seen; lower MSE values can be253

achieved for a much broader range of hyperparameters. This may be because SGD is more254

locally unstable and can, therefore, converge to the minima at the flat or asymmetric valleys255

(Zhou et al., 2020). For both optimisers, ReLU can clearly be seen to outperform tanh. This is256

discussed more in the following sections.257

3.4 Effect of Number of Input Days258

As expected, increasing the number of days used as input data resulted in more accurate259

predictions (lower MSE and r2), for both training functions and activation functions. It has been260

previously reported that biogas production at day 14 is highly correlated with total biogas261

production (Ponsa et al., 2011) and these results further support this. From Figure 3, it can be262

seen that it is also possible to get low MSE (<15,000) using 7 days of input data, when trained263

with the SGD algorithm and ReLU activation function. Good predictions can also be attained264
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using adam and ReLU and SGD and tanh, although approximately 10 days of data would be265

required to achieve equivalent performance.266

3.5 Effect of Hyperparameters267

3.5.1 Number of Nodes268

Optimising the number of nodes results in improved model performance (see Figure 3). It269

should be noted, however, that higher number of nodes increases model complexity and270

increases computational load and can result in overfitting (Andrade Cruz et al., 2022; Maier et271

al., 2010). Therefore, it is desirable to minimise the number of nodes required to achieve the272

desired model accuracy. Generally, the models with the broadest range of high accuracy were273

in the centre of the explored ranges (i.e. hidden nodes in the first and second layers are 5x and274

16.5x the number of input nodes), except for the adam/tanh model, which performed best275

with high nodes in the first and second layer (9x and 30x input nodes).276

3.5.2 Effect of Alpha277

Increasing the regularisation term (alpha) can improve overfitting by encouraging smaller278

weights (Wu et al., 2014). Higher alpha values improve the models ability to generalise by279

reducing the effect that small variations in the inputs have on the output (Tarca et al., 2007). In280

this study higher alpha values generally improve predictions when using SGD, whereas the281

adam optimiser performed best with median alpha values.282

3.6 Overfitting283

For most of the model configurations assessed, the MSE of the training data and validation284

data are similar indicating good model fit, but the extent of this does vary. As can be seen from285

Figure 4, choice of training algorithm and input data (number of days) can impact the extent of286

overfitting. When using the adam algorithm, the difference in the MSE for the training and287

validation data is smaller when using a lower number of input days. This suggests that288
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increasing the quantity of input data, increases the likelihood for overfitting. The SGD training289

algorithm, on the other hand, has a similar difference regardless of the number of days.290

3.7 Optimised Result291

Using the RSM model, an optimised model structure was determined for the best performing292

models (adam and SGD, both using the ReLU activation function) and this was used to train the293

ANN. As can be seen from Figure 5, the two training algorithms give very similar performance294

for optimised conditions (shown in Table 3) although SGD slightly outperforms adam. As seen295

in the RSM model, increasing the number of days used as input data gives increasing model296

accuracy (increasing r2) for both algorithms.297

To further evaluate the performance of each model, the computational load was considered.298

The number of epochs required for training each model is shown in Table 4. The adam training299

algorithm is generally much faster to converge than SGD (scikit-learn developers, 2023), and300

this was apparent in this study with SGD requiring 5-7x more epochs than when training with301

adam. Although accuracy is comparable between the models, adam clearly offers a significant302

advantage in terms of computational time.303

A selection of biogas curves predicted by the trained MLP is shown in Figure 6 and accuracy of304

the models considered per substrate group are shown in Figure 7. The cases, taken from the305

test set, show the difference in prediction capability for various substrates. Generally, the ANN306

is capable of more accurate prediction for mixed composition. This includes mixtures of307

carbohydrates and proteins, as well as fully synthetic mixtures (also including fats) and real308

food waste, but many of the pure substrates analysed can also be well predicted. The309

examples given in Figure 6 show how biogas production from fats and sugars are well310

modelled. On the other hand, poor predictability of inoculum only (control) systems is also311

apparent, this could be attributed to the variation in activity of inoculum, and also the312
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magnitude of difference in overall biogas production compared to substrates and this can be313

seen in Figure 7 where, despite the large error, inoculum actually has a relatively low RSME.314

Similarly fatty acids were poorly predicted, which is likely due to the smaller size of this315

subgroup (8 experiments), which is significantly limiting the effectiveness of the ANN.316

4. Discussion317

The presented results indicate that it is possible to expedite the results of a biogas potential318

test by using the early experimental output (biogas production) and an ANN to predict the319

remaining gas production. An optimised model selection can only be made by considering a320

balance of prediction error, extent of overfitting and model computation time. Of the321

parameters explored (training algorithms, activation functions, number of nodes, quantity of322

input data and alpha regularisation) the most robust models, capable of good predictions over323

a wide range of input data, were trained using SGD and adam in combination with the ReLU324

activation functions, although the SGD training algorithm also achieved reasonable results with325

tanh. Overall, a model trained with adam, using the ReLU activation function is recommended326

for accuracy and computational time. The optimised network structure depends on the total327

number of days used as input data (3-14 days); the number of nodes in the first and second328

hidden layers was optimised at 4-8x and 17-20x the total number of nodes in the input layer.329

The regularisation parameter ( ) was found to be optimal in the range 6.2-6.5.330

The methodology and results of this study have several implications which expand knowledge331

in the field. This study validates the use of this type of data (3-14 biogas production) as inputs332

when training ANNs to predict total biogas production. This differs from other published333

studies which typically use substrate characterisation data or operating parameters to334

estimate biogas potential, and this is advantageous as it reduces the need for analytical testing335

which can be costly or time consuming. Another key aspect of this research is that the broad336

set of substrates used to generate the training and validation data demonstrates general337
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applicability of ANNs. This expands on studies in the literature which generally focus on models338

developed for a single substrate or co-digestion feedstocks.339

Another novel aspect of the work is the use of a CCF design and RSM to optimise ANN340

structure, which builds on methodologies developed by other authors (Antwi et al., 2018;341

Lujan-Moreno et al., 2018; Nguyen et al., 2022). In this case it is advantageous as the variable342

input data size increases the number of potential ANN structures, and the use of an RSM343

model allows for a much more visual interpretation of the impact of hyperparameters than344

using grid search alone.345

This study also demonstrates the ability of ANNs to predict biogas production using raw data,346

with no pre-processing or noise reduction. ANNs generally have excellent capacity to handle347

noisy data (Khashei and Bijari, 2010), but many similar studies have used data presented in the348

literature (Mougari et al., 2021), simulated by the ADM1 (Beltramo et al., 2016) or fitted with a349

kinetic model (Casallas-Ojeda et al., 2021; Khashaba et al., 2022). By using raw data, this350

methodology could be applied directly to industry, where biogas potential tests are used to351

evaluate substates and set commodity prices, and large datasets are available. Due to the352

nature of biogas potential tests, this can be a slow process and using a ANN to give a353

prediction of biogas potential, within a few days, operators could potentially reduce these354

delays and allowing substrates to be fed into a digestor without the need to wait for a355

completed test, reducing the need for storage times and simplifying supply chains. Although356

this also has limitations as the performance of ANNs relies on the quality and357

representativeness of the training dataset and the use of raw data likely reduced the model358

accuracy.359

One limitation of this work is the variation in experimental data. Although efforts were made360

to ensure consistency in protocol, inherent variation exists, such as inoculum microorganism361
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consortium and activity. Similarly, a larger data would inevitably improve the model accuracy,362

which is particularly important when comparing the accuracy of different substrates, as those363

with a greater number of individual experiments were typically found to be more accurate.364

5. Further Work365

Although the presented model shows promise for predicting total gas production from early366

biogas potential test results, some improvements are recommended for future development.367

Increasing the size of the data set would improve the robustness. Although 446368

individual experiments were used to train and test the model, other works have suggested that369

over 1000 experiments are required to develop a model of this complexity (Alwosheel et al.,370

2018). Other works have highlighted a similar challenge and propose a collaborative approach371

among researchers and industry to create a database for model development (Andrade Cruz et372

al., 2022; Das Ghatak and Ghatak, 2018).373

As other authors have pointed out, although the use of design of experiment methodology and374

RSM is unlikely to have identified a global optimum (Lujan-Moreno et al., 2018) but it does375

allow for a much more extensive exploration of the parameters considered. This approach was376

particularly valuable for considering the optimisation over a range of number of input days,377

providing a better understanding of the interactions between parameters, but combining this378

with an optimisation technique, such as a grid search or genetic algorithm would allow users to379

definitively fix the ANN structure for a selected number of input days.380

In addition, a very wide range of substrates were evaluated as part of this study. Pure381

carbohydrates, proteins and fats were evaluated and these each have a distinct digestion382

kinetic profile. Mixtures of these are much more common in AD substrates. Although this383

demonstrates the ability of ANNs to model a wide variety of inputs, narrowing the range of384
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these to those relevant to an industrial AD would likely produce a more relevant model with385

potentially improved accuracy.386

Another improvement would be the inclusion of biogas composition as well as total production387

as an output of the ANN. To achieve this, online gas analysis would be required to provide the388

accuracy and frequency of measurements required (particularly when using hourly data). Such389

capability is not currently common standard equipment and therefore was deem infeasible for390

this study. Other works have reported lower accuracy when predicting methane yield391

compared to biogas (Holubar et al., 2000; Mehryar et al., 2017a), likely due to limited392

availability of measurements.393

6. Conclusion394

An ANN has been shown to accurately predict biogas production of single substrates and395

mixtures of food waste components. A large data set of biogas potential tests (446396

experiments), analysing various substrates (carbohydrates, proteins, and fats) was used to397

train the ANN. To determine optimal model architecture, RSM was used to evaluate398

hyperparameters (hidden nodes, regularisation), input data set (3-14 days), training algorithm399

(adam, SGD and LBFGS) and activation function (identity, logistic, ReLU and tanh). The optimal400

conditions (lowest MSE and maximised r2) were achieved using adam and ReLU and SGD and401

ReLU, although the former required lower computational load.402
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Figure 1: A visual representation of the artificial neural network structure used in this study,578

where nodes in the input, hidden and output layers are represented by In, Hn and On579

respectively, showing how biogas potential data is partitioned to form the input and outputs580

layers.581

Figure 2: a) Effect of training algorithm on MSE, based on 12 executions of the 27 experiments582

in the CCF design (324 simulations) varying hidden layers and number of nodes, number of583

days input data and activation function and b) Effect of activation function on MSE, based on 8584

executions (LBGFS results have been excluded) of the 27 experiments in the CCF design (216585

simulations) varying hidden layers and number of nodes, number of days input data and586

training algorithm.587

Figure 3: Contour plot of RSM models showing MSE at varying numbers of nodes in hidden588

layers, input days and regularisation (alpha) using a) SGD and ReLU b) adam and ReLU c) SGD589

and tanh & d) adam and tanh.590

Figure 4: Saddle plots for MSE of all (light grey), training (dark grey) and validation (grey) data,591

with varying numbers of nodes in each layer, and optimal alpha for a) SGD and 3 days of input592

data, b) adam and 3 days of input data, c) SGD and 14 days of input data and d) adam and 14593

days of input data.594

Figure 5: Measured biogas production and predicted values (using optimal ANN structure) for595

a) SGD and 3 days of input data, b) adam and 3 days of input data, c) SGD and 7 days of input596

data, d) adam and 7 days of input data, e) SGD and 14 days of input data and f) adam and 14597

days of input data598

Figure 6: A sample from the test group of biogas potential raw data and associated predictions599

by the trained MLP using 3, 7 and 14 days of input data600
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Figure 7: Percentage error for different substrate groups when using a) 3 days, b) 7 days and c)601

14 days of input data602

603

604

Table 1: Full CCF design used to build the RSM model for the ANN MSE with varying605

hyperparameters. Design was applied to train and test an ANN using every combination of606

training algorithm (adam, SGD, LBFGS) and activation function (identity, logistic, ReLU, tanh).607

Table 2: Accuracy of RSM model predictions of the ANN MSE across a range of608

hyperparameters when using different combinations of training algorithms (adam and SGD)609

and activation functions (ReLU and tanh)610

Table 3: Hyperparameters for optimal ANN structure (as defined by RSM) using 3, 7 and 14611

days of input data for a) adam and b) SGD612

Table 4: Number of epochs required to reach optimal ANN configuration using SGD and adam613

training algorithms.614

615

616
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Simulation
No Alpha

Nodes in Layer 1
(x input nodes)

Nodes in Layer 2
(x input nodes) Days

1 0.0001 1 3 3

2 10 1 3 3

3 0.0001 9 3 3

4 10 9 3 3

5 0.0001 1 30 3

6 10 1 30 3

7 0.0001 9 30 3

8 10 9 30 3

9 0.0001 1 3 14

10 10 1 3 14

11 0.0001 9 3 14

12 10 9 3 14

13 0.0001 1 30 14

14 10 1 30 14

15 0.0001 9 30 14

16 10 9 30 14

17 0.0001 5 16.5 5.5

18 10 5 16.5 5.5

19 5.00005 1 16.5 5.5

20 5.00005 9 16.5 5.5

21 5.00005 5 3 5.5

22 5.00005 5 30 5.5

23 5.00005 5 16.5 3

24 5.00005 5 16.5 14

25 5.00005 5 16.5 5.5

26 5.00005 5 16.5 5.5

27 5.00005 5 16.5 5.5



adam SGD
ReLU tanh ReLU tanh

MSEall MSEval MSEtes

t

MSEa MSEv MSEt MSEa MSEv MSEt MSEa MSEv MSEt

r2 0.972
0

0.954
1

0.9734 0.938
8

0.929
8

0.941
7

0.972
0

0.962
5

0.970 0.981
5

0.969
4

0.990
0

r2
adjuste

d

0.939
6

0.900
5

0.9425 0.861
0

0.840
4

0.867
7

0.939
4

0.918
8

0.934
1

0.959
8

0.953
2

0.984
6

Q2 0.803
8

0.738
8

0.8076 0.588
9

0.518
8

0.622
2

0.817
6

0.781
2

0.813
0

0.847
0

0.952
2

0.963
4

R 0.982
0

0.959
0

0.9849 0.999
1

0.997
7

0.998
9

0.997
4

0.999
2

0.991
2

0.972
6

0.985
3

0.966
2



Training algorithm adam SGD
Activation function ReLU ReLU

3
days

Nodes in layer 1 7.85 5.99
Nodes in layer 2 20.48 20.26
alpha 6.24 8.38

7
days

Nodes in layer 1 6.74 5.61
Nodes in layer 2 19.39 19.10
alpha 6.30 7.89

14
days

Nodes in layer 1 4.70 6.65
Nodes in layer 2 17.70 15.58
alpha 6.50 6.65



Days Epochs
adam SGD

3 365 2775
7 621 3673

14 805 4527


