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Abstract

W Linking neurobiology to relatively stable individual differ-
ences in cognition, emotion, motivation, and behavior can
require large sample sizes to yield replicable results. Given the
nature of between-person research, sample sizes at least in the
hundreds are likely to be necessary in most neuroimaging stud-
ies of individual differences, regardless of whether they are inves-
tigating the whole brain or more focal hypotheses. However, the
appropriate sample size depends on the expected effect size.
Therefore, we propose four strategies to increase effect sizes
in neuroimaging research, which may help to enable the

INTRODUCTION

We are researchers who use neuroscientific methods to
investigate psychological individual differences. Humans
differ in their thoughts, feelings, and behaviors, and such
variations among individuals are neither random nor
entirely determined by the current situation. Many individ-
ual differences, described with terms such as traits, dispo-
sitions, attitudes, abilities, and symptoms, are relatively
stable over time and are caused by a mixture of genetic
and environmental influences (Polderman et al., 2015).
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detection of replicable between-person effects in samples in
the hundreds rather than the thousands: (1) theoretical match-
ing between neuroimaging tasks and behavioral constructs of
interest; (2) increasing the reliability of both neural and psycho-
logical measurement; (3) individualization of measures for each
participant; and (4) using multivariate approaches with cross-
validation instead of univariate approaches. We discuss chal-
lenges associated with these methods and highlight strategies
for improvements that will help the field to move toward a more
robust and accessible neuroscience of individual differences. Il

We will use the term “traits” as a generic descriptor for
all such constructs. Trait levels represent the probability
of particular thoughts, feelings, and behaviors; they are rel-
atively stable within individuals over time, reasonably con-
sistent in rank order between individuals, and typically
observable in many situations. Many trait measures are
useful for predicting future behavior and important life
outcomes (Soto, 2019; Deary, 2012). A long tradition of
research on traits has focused on identifying their causes.
Regardless of the proportion of the distal causes of a trait
that are genetic versus environmental, trait differences
must be caused proximally by differences in brain func-
tion, because the brain governs behavior and experience.

Neuroimaging research increasingly investigates associ-
ations of psychological traits with individual differences in
brain structure and function (DeYoung et al., 2022; Hilger
& Markett, 2021). Our aim in this article is to discuss how
best to conduct neuroimaging research on psychological
individual differences to achieve robust, replicable results,
in light of recent debates about sample size (e.g., Spisak,
Bingel, & Wager, 2023; Marek et al., 2022; Grady, Rieck,
Nichol, Rodrigue, & Kennedy, 2021). If samples are too
small, estimation of parameters will be imprecise, and
the chance of detecting true effects as significant (i.e.,
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statistical power) will be low. Precision and power both
depend crucially on sample size, and the fact that under-
powered samples yield imprecise estimates has an impor-
tant consequence that is often overlooked in neuroimaging
research (Nebe et al., 2023): Not only are underpowered
studies more likely (by definition) to yield false negatives
(Type I error, failing to detect a true effect) than adequately
powered studies, but they also yield a higher proportion
of significant results that are false positives (Type I error,
detecting an effect that is not true) because the estimated
effects fluctuate widely around the true value. Thus, signif-
icant effects in small samples are often inflated (some-
times known as a Type M or magnitude error; Gelman &
Carlin, 2014) or even completely spurious, which contrib-
utes to the prevalence of unreplicable results in scientific
publications (Yarkoni, 2009).

It is often said that power is defined by three things: the
significance criterion (o), the effect size, and the size of
the sample; however, power is also crucially defined by
the statistical model being used. Neuroimaging research
in general is often underpowered (Szucs & loannidis,
2020; Poldrack et al., 2017), and this problem is amplified
in research on individual differences because the statistical
models used to estimate between-person effects require
larger sample sizes than those for estimating within-person
effects. When studying the function of the average brain,
as in typical research on task-evoked brain activity, one
compares neural activity in different conditions within
the same individuals—in other words, participants serve
as their own controls—and this reduces noise. For exam-
ple, to achieve 80% power to detect a simple bivariate cot-
relation of » = .20 as significant (a = .05; two-tailed)
requires a sample of 194 participants, which is consider-
ably larger than would be required to detect the same
effect size as a difference between conditions in typical
within-person designs (e.g., 49 participants required for
a paired-samples ¢ test with d = .41, a = .05, two-tailed).

Achieving sufficient power is additionally challenging in
neuroimaging because many statistical tests are often con-
ducted within a single analysis. In the common case of uni-
variate brain-wide association studies, this entails using
values from voxels, vertices, or parcels across the entire
brain and testing for associations of psychological vari-
ables with each neural value independently. Such multiple
testing reduces power by effectively requiring a more
stringent significance () threshold for each individual test
to maintain the same overall a. (Note, however, that alpha
should not be corrected simply by dividing by the number
of tests, as in Bonferroni corrections, because the corre-
lated structure of the data—e.g., in spatially adjacent
voxels—makes many of the tests nonindependent; other
approaches, such as controlling the false discovery rate,
are needed.) Conducting many tests also increases the
temptation to engage in selective reporting, in which
some tests or analyses are not reported, obscuring the true
burden of multiple testing by reporting results that are
nominally but not actually significant. This kind of selective
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reporting within neuroimaging studies increases publica-
tion bias—the tendency to report only significant
effects—and has contributed greatly to the proliferation
of false positives and the resulting replication crisis
(Stanley, 2005).

All of this entails that sample sizes for individual-
differences research in neuroimaging need to be consider-
ably larger than samples sizes traditionally used in this
field. The big question is, “How much larger?” Recently,
an influential article argued that “thousands” of partici-
pants are necessary for “studies of the associations
between common inter-individual variability in human
brain structure/function and cognition or psychiatric
symptomatology” (Marek et al., 2022, p. 654). This impor-
tant study demonstrated the limited power of common
neuroimaging approaches to individual-differences
research and served as a clarion call to develop more
robust approaches for identifying associations between
traits and neural variables. Here, we attempt to answer
that call by discussing potential solutions to this problem
that might not require thousands of participants. We
argue that appropriate methods may allow replicable
neuroimaging research on individual differences with
hundreds of participants.

The key question we consider is how to increase
expected effect sizes, because larger effect sizes require
fewer participants to achieve the same statistical power.
Fundamentally, the motivation for claims that thousands
of participants are necessary comes down to effect size.
Using three very large MRI samples, Marek and colleagues
(2022) examined brain-wide associations of structural
parameters and resting-state functional connectivity with
performance tests of cognitive ability and questionnaire
measures of features of psychopathology and observed
that the largest 1% of replicable univariate effects were
between |7| = .06 and .16. It is worth emphasizing that
this means 99% of the replicable effects were even smaller
than .06. If all expectable between-person effect sizes
were indeed this low, then it might be true that samples
in the thousands were always necessary, not only when
conducting many statistical tests (although of course this
makes the problem more acute), but even when conducting
more focused studies that are not “brain wide.” However,
the observations of Marek and colleagues do not necessar-
ily generalize to all individual-differences research in
neuroimaging.

Expected effect sizes cannot be generalized from one
set of methods to all others. Marek and colleagues
(2022) drew conclusions based on analyses using some
of the most common methods in the field, but these none-
theless represent only a small subset of available methods
and some of them are suboptimal. Here, we discuss alter-
native methods, focusing on four categories of methodo-
logical improvement designed to increase expected effect
sizes and, therefore, to increase power independently of
sample size: (1) theoretical matching between tasks and
trait constructs, (2) improving measurement reliability,
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(3) individualization of measurement for each participant,
and (4) pivoting from univariate to multivariate analytic
approaches. Our aim is not merely to discuss arguments
made by Marek and colleagues (2022), although we do
address some of them directly. Rather, our aim is to con-
sider the broader issue of improving neuroimaging
methods for individual differences research.

TRAIT-RELEVANCE: MATCHING FMRI TASKS
TO TRAIT CONSTRUCTS

The first strategy we recommend to increase effect sizes
concerns the modality of neuroimaging assessments.
Many neuroimaging studies of individual differences have
relied on structural MRI or resting-state fMRI data, but
effect sizes may be larger in studies using appropriate fMRI
tasks (Finn, 2021). Structural and resting-state data have
been widely used in individual-differences research for
multiple reasons. For one, it is assumed that any trait could
potentially be related to parameters derived from these
imaging modalities because they do not target any specific
psychological content or processes. This makes it possible
to study many psychological traits in relation to the same
structural and resting-state data, whereas data from any
particular task seem likely to be relevant to a more limited
set of traits. In addition, brain structure and resting-state
functional connectivity are sometimes assumed to be
more trait-like than task-evoked activity because they are
independent of the situational demands of any specific
task (Hilger & Markett, 2021) and have been found to
demonstrate adequate retest reliability (Zuo & Xing,
2014), whereas task-induced neural activity often has poor
retest reliability (Elliott et al., 2020). However, the meta-
analysis of Elliott and colleagues (2020) shows that neural
activity during some specific tasks does have adequate
retest reliability.

The possibility of reliable signals from task fMRI is
consistent with the excellent reliability of various
performance-based cognitive tests (e.g., 1Q tests) and with
the common conceptualization of traits as tendencies to
respond in consistent ways to specific classes of stimuli
(DeYoung et al., 2022). Choosing the right task can pro-
vide the kind of stimuli that are particularly relevant to
the processes underlying the trait in question, leading to
differential associations between activation in different
fMRI tasks and personality traits (Hardikar et al., 2024).

The potential relevance of structural and resting-state
measures to any trait is both a strength and a weakness.
Neither modality directly assesses an aspect of brain func-
tion that is transparently relevant to most psychological
traits. (In addition, brain structure is ultimately relevant
to psychological traits only to the degree that it influences
function, so that the increment in trait prediction provided
by structural variables over functional ones may not be
very large; Ooi et al., 2022.)

In contrast, task-based fMRI may induce brain states
directly relevant to the trait of interest whenever that trait

is theorized to reflect variation in psychological processes
like those involved in the task. Identifying appropriate
tasks requires at least some minimal amount of theory
regarding the processes underlying the trait in question,
and we encourage researchers to consider the theoretical
background of any trait they are studying (DeYoung et al.,
2022). Theoretically informed research can potentially
increase effect sizes by identifying likely associations
among traits, underlying psychological processes, and
the brain systems that support them.

That task-based fMRI may lead to meaningful between-
person effects has been shown in studies considering task-
induced neural activation (e.g., Tetereva, Li, Deng, Stringaris,
& Pat, 2022) as well as in studies focused on functional
connectivity during tasks (e.g., Greene, Gao, Scheinost,
& Constable, 2018). In fact, task-based brain—behavior
associations are consistently stronger than resting-state-
based associations in cross-validation studies of very large
samples (Chen et al., 2022; Ooi et al., 2022; Feilong,
Guntupalli, & Haxby, 2021; Sripada, Angstadt, Rutherford,
Taxali, & Shedden, 2020; Greene et al., 2018). For exam-
ple, working memory is well-established as a cognitive
function involved in general cognitive ability, and several
of the studies cited in the previous sentence show that
associations of intelligence with neural functioning during
working-memory tasks are stronger than associations with
resting-state or structural data.

Marek and colleagues acknowledged that fMRI task data
may yield larger effect sizes than resting-state or structural
data. Notably, in their Extended Data Figure 3, they
reported that the correlation between cognitive ability
and activation of the dorsal attention network during a
working-memory task was .34. They dismissed this finding
by characterizing working-memory performance as a “con-
found” that needs to be controlled for in analysis (yielding
a much smaller correlation of .14), but the plausible causal
arrangement of the three variables—activation of the dor-
sal attention network, working-memory performance, and
general cognitive ability—is not one of confounding.
Working-memory performance is a relatively stable trait
strongly correlated with general cognitive ability and
thought to be a crucial process facilitating that ability
(Kovacs & Conway, 2016). Therefore, it should act as a
mediator between neural activity and general cognitive
ability, rather than as a confound. A correlation of .34
can readily be detected in samples considerably smaller
than a thousand. We would not recommend assuming that
task-based effects in general will be this large for the pur-
poses of power calculations, but any effect larger than .16
is larger than all of the replicable univariate structural and
resting-state effects reported by Marek and colleagues
(2022) and can be detected in hundreds of participants if
the multiple testing burden is not too high. We suspect
that such effects may be relatively common, given the right
pairings of traits with fMRI tasks.

Despite our enthusiasm for task-based fMRI, we want to
be clear that we are not suggesting individual-difference
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researchers should abandon structural and resting-state
neuroimaging studies. The remaining three categories of
strategies we endorse are applicable to all neuroimaging
modalities.

IMPROVING MEASUREMENT RELIABILITY

After deciding what question to address, an important
strategy for increasing effect sizes is to improve the reli-
ability of both trait and neural measures, because the joint
reliability of two measures sets an upper bound on the
possible strength of association between them (Nikolaidis
et al., 2022). Many recent articles have discussed reliability
in the context of human neuroscience (e.g., Haines,
Sullivan-Toole, & Olino, 2023; Nebe et al., 2023; Nikolaidis
et al., 2022), so our discussion here is not intended to be
exhaustive. However, we will highlight some opportuni-
ties for improving reliability for three different types of
assessment: neural measures, behavioral tasks, and ques-
tionnaires. (In addition, our suggested methods in the
next section also tend to increase reliabilities of neural
measures.)

The reliability of neural parameters can be improved by
a variety of means, both in fMRI data acquisition and in
subsequent data processing and analysis. For acquisition,
we recommend the use of multi-echo sequences. Multi-
echo fMRI significantly improves whole-brain temporal
signal-to-noise ratio and reduces signal dropout in typi-
cally problematic regions along the ventral-anterior sur-
face of the brain (Lynch et al., 2020; Kundu et al., 2017).
Furthermore, it enables a biophysically based removal of
noise from fMRI data sets during preprocessing because
of the known echo-time dependence of the BOLD signal.
This has been shown to improve reliability substantially
(Lynch et al., 2020; Kundu et al., 2017). More costly but
also effective is simply increasing the amount of fMRI data
for each task (or resting-state scan) that is collected for
each participant (Cho, Korchmaros, Vogelstein, Milham,
& Xu, 2021; Noble et al., 2017). In data processing, reliabil-
ity can be improved by modeling the hierarchical structure
of neural parameters, using machine learning methods, or
generating aggregates from multiple measures (Blair,
Mathur, Haines, & Bajaj, 2022; Schubert, Loffler, &
Hagemann, 2022).

In task-based fMRI, one pitfall to avoid is exclusively
selecting ROIs for individual-differences research by using
group-level fMRI contrasts to identify regions where a task
significantly activates the brain relative to a control condi-
tion (DeYoung et al., 2022). The problem with this
approach is that group-level contrasts ensure identifica-
tion of ROI where a sufficient number of individuals show
activation for the group average to be significantly differ-
ent from the control condition. This approach risks iden-
tifying ROIs with less individual variation in brain activity
relative to other brain regions. The most important
regions for a given trait may be ones that are not significant
at the group level, precisely because different brains
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respond differently to the task in those regions. Because
the reliability of measures of individual differences
depends on variability, focusing on robust within-persons
effects works against reliability at the between-person
level, a phenomenon described as the “reliability paradox”
(Hedge, Powell, & Sumner, 2017). Beyond using group-
level contrasts to select ROIs, researchers can select ROIs
from functional networks or anatomical regions indicated
as relevant for the trait of interest by theory or prior empir-
ical evidence, or they can use other relevant individual-
difference variables that are not involved in the focal
hypothesis to identify regions where those predict neural
variables (e.g., using performance during a scanned work-
ing memory task to identify regions where performance
predicts activation, then using activation levels in those
regions to predict other behavioral traits, such as intelli-
gence; DeYoung, Shamosh, Green, Braver, & Gray, 2009).

The reliability paradox applies not only to neural vari-
ables but also to behavioral variables extracted from tasks.
Some tasks, such as those that make up standard intelli-
gence tests, have been designed specifically to optimize
the assessment of individual differences, but many exper-
imental tasks used in neuroimaging have not. Instead,
those tasks have usually been designed to minimize
between-person variability to aid in studying typical func-
tion as the group average in within-person designs.
Researchers should investigate the degree to which tasks
used in neuroimaging are reliable as measures of individ-
ual differences and take steps to improve them (Blair et al.,
2022). Sometimes better options are already available; for
example, new versions of the Stroop and Flanker tasks
have recently been designed to improve measurement
of individual differences, and they show excellent internal
consistency and retest reliability (Burgoyne, Tsukahara,
Mashburn, Pak, & Engle, 2023).

For questionnaires, reliability is most often measured as
internal consistency (i.e., the degree to which individual
items correlate with each other), but, for constructs that
are conceived as relatively stable features of individuals,
retest reliability (i.e., the degree to which a sample’s rank
order is consistent over time) is an even more relevant
metric (Nikolaidis et al., 2022). Another important consid-
eration is that measures may differ in their reliability across
the range of the variables they are assessing, which
requires more sophisticated methods to detect. Although
Marek and colleagues reported adequate reliability for
their measure of psychopathology, analysis of the same
data using item response theory showed that it was inad-
equate for assessing individual differences in the lower
range of the scales, where most healthy individuals score
(Tiego et al., 2023). Measures should be investigated to
make sure they are appropriate for the population being
studied.

In addition, although it may be tempting to use short
forms of questionnaires, longer measures generally have
better validity and reliability (Credé, Harms, Niehorster,
& Gaye-Valentine, 2012). Using multiple informants is also
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valuable, as they provide incremental validity and reduce
the biases introduced by individual raters. This principle
can also be extended to the use of multiple measurement
modalities for the same trait (e.g., questionnaire and
behavioral task), although identifying adequately parallel
measurements across modalities can be challenging
(Joyner & Perkins, 2023). Whenever multiple measures of
the same variable are collected, measurement can often be
improved by modeling constructs as latent variables repre-
senting the shared variance of multiple indicators.

INDIVIDUALIZATION OF MEASURES

The third strategy we recommend to increase effect sizes
is to improve measurement through a family of proce-
dures known as individualization. A serious measurement
challenge arises from the uniqueness of every human
brain. Standard procedures to align individual brains to a
common anatomical template cannot handle variations in
which an anatomical feature is present or absent. For
example, in ACC, people vary in whether they have only
one sulcus or two, and the second sulcus (known as the
paracingulate sulcus [PCS)), if present, can be very short,
or it can extend the entire length of ACC. Warping a brain
with a PCS to a template without one (or vice versa) causes
inaccuracy in subsequent comparisons across individuals
because the presence or absence of PCS has important
consequences for the brain’s functional and structural
organization (Amiez, Wilson, & Procyk, 2018; Fornito et al.,
2008). Such structural idiosyncrasies can be taken into
account to improve measurement (Miller, Voorhies, Lurie,
D’Esposito, & Weiner, 2021; Voorhies, Miller, Yao, Bunge,
& Weiner, 2021).

Not only do different brains differ in structure, but also
the localization of functions relative to the brain’s anatom-
ical landmarks differs from person to person. This means
that, even if structural alignment were perfect, comparing
brains based merely on location would remain suboptimal.
Neuroimaging studies often use canonical brain atlases or
parcellations to identify ROI and define brain networks
(Moghimi et al., 2022), and these schemes often rely in
part or entirely on functional information to parcellate cor-
tex (which is appropriate given the primacy of function for
psychology). However, using the same standard parcella-
tion for all participants means that the parcel boundaries
will not precisely reflect the relevant functional boundaries
for any participant (Chong et al., 2017; Mueller et al.,
2013).

To overcome this problem, we recommend methods
that individualize standard parcellations by optimizing
the boundaries of each parcel for each participant. These
include group prior individualized parcellation (GPIP;
Chong et al., 2017) and multisession hierarchical Bayesian
modeling (MS-HBM; Kong et al., 2019). Both of these
methods have been found to increase effect sizes in
individual-differences research, as compared with using the
same atlas or parcellation scheme without individualization

(Sassenberg et al., 2023; Kong et al., 2021). Notably, indi-
vidualized parcellation is preferable to using dual regres-
sion following an independent components analysis (an
earlier strategy to deal with the same problem) because,
unlike dual regression, individualized parcellation retains
the benefit of canonical atlases in allowing comparison
of the same parcels across individuals and samples
(DeYoung et al., 2022).

Individualization can be taken even a step further than
shifting boundaries of parcels to identifying different col-
lections of voxels that encode the same information in dif-
ferent brains. Even within a given brain region that is well
aligned through GPIP or MS-HBM, information may be
encoded differently in different people. A technique
known as hyperalignment identifies different sets of voxels
with similar patterns of neural activity for each participant
and treats them as the relevant neural unit of analysis.
Hyperalignment increases effect sizes relative to other
methods (Feilong et al., 2021; Haxby, Guntupalli, Nastase,
& Feilong, 2020), considerably more than the increase
generated by individualized parcellation, although both
methods can be used together.

An older method of individualization is the use of func-
tional localizers, which are fMRI tasks that reliably activate
a particular brain system and thus can be used to identify a
specific region or regions activated by that task in each par-
ticipant before correlating parameters derived from those
regions with measures of psychological traits. This is a
powerful method for theory-driven research and may be
especially valuable for focal hypothesis testing that maxi-
mizes power by minimizing the multiple-testing burden.
However, it is also limited in that it can only identify
regions that are relevant to the particular task used, rather
than being able to individualize the whole brain. Individu-
alized parcellation using the methods described above can
match the functional localization of neural activity by tasks,
even when the individualized parcellation is derived from
resting-state data (Uddin et al., 2023; Kong et al., 2021,
Chong et al., 2017).

Finally, people vary not only in the spatial layout of brain
function but also in the timing of brain function as mea-
sured by fMRI. An early fMRI study revealed marked vari-
ability in the hemodynamic response function (HRF)
across individuals and brain regions (Aguirre, Zarahn, &
D’Esposito, 1998). Although fMRI research typically
assumes a canonical HRF, methods are available for esti-
mating the idiosyncratic shape of the HRF for each partic-
ipant separately (Singh, Wang, Cole, Ching, & Braver,
2022; Singh, Braver, Cole, & Ching, 2020). Variability in
the HRF is related to variation in vasculature more generally,
and methods to estimate and control for such differences
have been shown to improve fMRI signals dramatically
(Kazan et al., 2016).

Up to this point, we have focused on individualizing
neural data, but it is worth noting that individualization
of psychological measurements is also sometimes possi-
ble, for example, using computerized adaptive testing

DeYoung et al. 5

620z Atenuer ¢z uo Jesn NOANOT 3931100 ALISHIAINN Aq Jpd° 26220 & U0l/£12/6%2/.6220 € U0l/Z91 L 0L /10p/pd-8jopie/udol/npe-iw joaiip//:dny woy papeojumoq



(Wainer, Dorans, Flaugher, Green, & Mislevy, 2000) or
fitting computational models to each participant’s
trial-by-trial task data. The latter is useful in part because
different individuals can employ different strategies when
performing the same task. For example, studies using
learning tasks can estimate the degree to which partici-
pants engage in model-free versus model-based learning
(e.g., Kool, Gershman, & Cushman, 2017).

MOVING FROM UNIVARIATE TO
MULTIVARIATE APPROACHES

Our fourth suggestion is to increase effect sizes by tran-
sitioning from univariate to multivariate analytic ap-
proaches. Multivariate analyses involve using multiple
variables to predict the criterion variable and follow
naturally from the premise that psychological traits
are determined by many neural parameters. These var-
iables could all be of the same type (e.g., activation
values of individual voxels, as in multi-voxel pattern analy-
sis, or parameters derived from resting-state EEG; Thiele,
Richter, & Hilger, 2023), or they could involve parameters
from multiple measurement modalities, such as structural
and fMRI, from which parameters can be combined in the
statistical model (Rasero, Sentis, Yeh, & Verstynen, 2021;
Jiang et al., 2020).

It is unsurprising that multivariate models using many
predictors can yield better overall predictions than univar-
iate models using a single predictor. In a commentary on
the work of Marek and colleagues (2022), Spisak and
colleagues (2023) showed that multivariate brain-wide
association studies effects are larger than univariate
effects and can be replicable even when identified in
smaller samples. Although they suggest these samples
can be as small as 75, we would not recommend samples
that small, given the resulting lack of precision of param-
eter estimates. Indeed, Spisak and colleagues’ analyses
show that multivariate effects in such small samples
may be replicable in the sense of producing a significant
effect in the same direction, but the size of that effect is
often substantially different. Nonetheless, they showed
that samples of 300-500 generally yield multivariate
effects reasonably replicable in magnitude as well as
significance, when they are cross-validated to prevent
overfitting.

Tervo-Clemmens and colleagues (2023) rejected Spisak
and colleagues’ (2023) conclusion, but their exchange
makes it clear that the argument between the two research
teams is based largely on a terminological disagreement
about the proper way to use the phrase “out of sample.”
Before considering their different uses, it is important to
understand the difference between more traditional statis-
tical approaches that optimize the fit of the statistical
model in all of the data at once to best explain variance
within one sample, and predictive approaches, such as
those in machine learning, in which the model is fit in
one sample (or subset of one sample), and then the

6  Journal of Cognitive Neuroscience

parameters from that model are applied in another sample
(or subset of the same sample). In the predictive
approaches, the data are divided into a training set, in
which the model parameters are identified, and a test
set, in which the model parameters identified in the train-
ing data are used to predict the criterion variable in the
test data, to determine the generalizability of the model.
The effect size reported is from the test data (often com-
puted as the correlation between the predicted values of
the criterion and the observed values) because it is less
biased by overfitting than the effect size from the training
data. The predictive approach can be implemented in
three ways (Thiele et al., 2024; Yarkoni & Westfall,
2016): (1) A sample can be split into training and test sets
in an iterative manner, repeatedly fitting a model in one
part of the sample and then testing it in the rest of the
sample (as in k-fold cross-validation), with the reported
effect size being the average result from the test sets
across iterations. (2) A sample can be split just once into
test and training sets, without iteration, such that the test
set is never used as part of the training set (lock-box
validation). (3) For the most stringent test of model
generalizability, the model parameters identified in the
complete original sample can be used in an entirely
new sample, differing in various characteristics (external
cross-validation). In the predictive approach, finding a
significant effect in the test data is not considered repli-
cation because replication requires an entirely new
independent sample beyond both the training and the
test data.

Marek and colleagues (2022) and Tervo-Clemmens and
colleagues (2023) use the phrase “out of sample” to refer
to any test of a model in data not used to train the model
(including the use of a different subset of the same sam-
ple as the test set), whereas Spisak and colleagues use
“out of sample” to refer to testing the model in an
entirely new sample, excluding cases where the test set
is a subset of the same sample. These different uses of
“out of sample” diverge in k-fold cross-validation
(which was used by Spisak et al., 2023) because the
training and test data are both subsets of the same sam-
ple. This effect size is “out of sample” in Marek and col-
leagues’ sense, but “in sample” in Spisak and colleagues’.
From our perspective, Spisak’s perspective more directly
addresses the question of how many participants are
needed in total to identify effects with sufficient precision
that they will be replicable in subsequent studies in other
samples. In other words, how large must a single sample
be to yvield accurate results after cross-validation in that
sample? The exchange between Spisak and colleagues
and Tervo-Clemmens and colleagues makes clear that rep-
licable results considerably larger than || = .16 can be
achieved using multivariate prediction in samples in the
hundreds rather than the thousands, as long as effect
sizes are estimated using appropriate cross-validation pro-
cedures, rather than in data for which the model was
optimized.
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This conclusion is supported by the existing literature,
especially in relation to cognitive ability. One study of
the same sample used by Spisak and colleagues found
that neural activation during various tasks predicted
general cognitive ability in multivariate models with
r & .30 (Sripada et al., 2020). Similarly high multivariate
correlations between task connectivity and cognitive
ability were found in another large sample (Chen et al.,
2022). Multivariate effects can be even larger when
combined with individualization approaches. In the
same sample analyzed by Spisak and colleagues (2023),
Feilong and colleagues (2021) were able to predict cog-
nitive ability using estimates of functional connectivity
based on hyperalignment, with average multivariate
effect sizes of » = .53 for task data and » = .44 for
resting-state data.

When transitioning to multivariate analysis, it is impor-
tant to keep in mind that not all multivariate methods
provide equally good prediction or equally generalizable
results. Some yield larger effects than others (Spisak et al.,
2023). Even with cross-validation, effects are likely to be
larger if multiple modalities of imaging data are
employed (Schulz, Bzdok, Haufe, Haynes, & Ritter,
2024). Multivariate approaches are often understood as
wholly exploratory rather than hypothesis driven, and
this impression is reinforced by their association with
brain-wide analyses. However, multivariate methods
need not be applied brain-wide and can easily be used
in theoretically driven research, in which multiple param-
eters are derived, for example, from particular brain
regions or systems of interest. When multivariate
approaches are designed to facilitate interpretable
insights rather than only maximizing prediction, they
can also be used to test hypotheses and provide evidence
for or against specific psychological models (Thiele et al.,
2024). For example, a study of 257 participants used
many of the strategies we recommend and identified sig-
nificant multivariate correlations (ranging from .18 to .47)
of a trait measure of autobiographical memory with func-
tional connectivity between two theoretically identified
brain regions (hippocampus and temporal pole) and the
default network (Setton, Mwilambwe-Tshilobo, Sheldon,
Turner, & Spreng, 2022).

Conclusion

Our proposed strategies for increasing effect size are
summarized in Table 1, organized according to the typ-
ical sequence of neuroimaging research. Our list is not
exhaustive; anything that improves the reliability and
validity of measurement should increase expected effect
sizes in research linking neural variables to individual
differences in psychological traits. Careful application
of these methods may provide a path to identifying
more robust, generalizable, and scientifically or clinically
useful brain-behavior relationships in samples with
hundreds of participants. The debate about how large

samples sizes should be is currently prominent in the
field, but focusing exclusively on increasing sample sizes
ignores other ways to achieve higher statistical power.
Increasing effect size contributes independently to
power and is often easier and cheaper than increasing
sample size.

Evident in the research we reviewed above is that mul-
tivariate effect sizes are generally larger than univariate
effect sizes, and shifting to multivariate methods with
cross-validation and samples in the hundreds seems likely
to be very effective for increasing effect sizes, statistical
power, and replicability. However, smaller replicable
effects can also yield important conceptual insights, and
univariate research will continue to be valuable, especially
for theory-driven hypothesis testing. For univariate
research where the focal analysis involves only a single sta-
tistical test, we suggest using a sample size of at least 200,
provided there is reason to expect an effect size of at least
7 = .20 (and such expectations should never be based on a
single study). Note, however, first that this is just a loose
heuristic that does not consider the exact statistical model
(such as the inclusion of standard covariates like sex and
head motion) and, second, that only a small fraction of
published neuroimaging research on individual differ-
ences includes only a single focal test. If univariate
research involves conducting multiple tests, then the sam-
ple size needs to be adjusted upward accordingly (or
researchers must be confident that their expected effect
sizes are even larger, which will probably be rare). We have
mainly contrasted increases in sample size with increases
in effect size as two ways to improve statistical power, but
it is important to keep in mind a third way: reducing the
multiple-testing burden by using theory to devise more
focused hypotheses.

In conclusion, our suggestions for increasing effect size
can help neuroimaging researchers to conduct robust
research on psychological individual differences in situa-
tions where it is difficult to amass thousands of partici-
pants for a single study. Marek and colleagues’ (2022)
impressive work showed that common approaches to
investigating univariate associations of traits with resting-
state or structural MRI data are likely to require thousands
of participants. If this were true for all approaches to neu-
roimaging research on psychological traits, it would be
truly daunting, especially given the cost of neuroimaging.
This issue is especially critical for those with less access to
resources, such as early-career researchers or researchers
in developing countries. (Such researchers can certainly
benefit from the increasing availability of open data, but
many research questions require new data acquired with
specific acquisition parameters, during appropriate tasks,
or within particular samples.) Fortunately, the situation we
face as a field is not quite so dire. There are many available
ways to improve our methods and increase effect sizes,
leading to sample requirements that are larger than tradi-
tional norms in neuroimaging research but still less than a
thousand.
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Table 1. Recommendations to Increase Effect Sizes in Neuroimaging Research on Individual Differences, Organized by Stages of Research

Article
Strategy Examples Relevant References Section
(1) Study design
Selecting tasks for fMRI acquisition that induce/require Using a working-memory task during fMRI acquisition Greene et al. (2018) 2
behavior that is relevant for the behavioral constructs to study neural correlates of intelligence
of interest
Using tasks during fMRI assessment that were developed  Stoop and Flanker tasks that were specifically Burgoyne et al. (2023) 3
to measure individual differences instead of tasks developed to detect individual differences
optimized for research on within-person effects
Using longer questionnaires instead of A measure of personality traits that includes 10 items Credé et al. (2012) 3
abbreviated forms for each construct rather than two
Using multiple informants and multiple Using self-, parent, and teacher ratings of children’s Joyner and Perkins (2023) 3
measurement modalities behavioral problems; measuring impulsivity using
tasks as well as questionnaires
Choosing behavioral measures appropriate for Avoiding instruments optimized only for making clinical Tiego et al. (2023) 3
the population being studied distinctions when assessing the general population
Using computerized adaptive testing (CAT) to improve Using CAT to reduce the number of items needed for high ~ Wainer et al. (2000) 4
questionnaire or cognitive test assessment quality assessments of intelligence or symptoms of
psychopathology
(2) Data acquisition
Using multi-echo fMRI to improve signal-to-noise ratio Kundu et al. (2017); Lynch et al. (2020) 3
and reduce signal dropout
Increasing the amount of fMRI data per participant Lengthening scan time or conducting multiple Cho et al. (2021); Noble et al. (2017) 3
scan sessions longitudinally
Modeling the hierarchical structure of neural parameters Schubert et al. (2022) 3
Using machine-learning methods to increase the Blair et al. (2022) 3
reliability of neural parameters
Taking into account categorical differences Considering whether each participant has one or Miller et al. (2021); Voorhies et al. 4
in brain morphology two sulci in ACC (2021); Amiez et al. (2018);
Fornito et al. (2008)
Using individualized parcellation of the brain Applying GPIP or MS-HBM Mueller et al. (2013); Chong et al. 4

(2017); Kong et al. (2019)
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Using hyperalignment

(3) Data processing

Modeling the idiosyncratic shape of the HRF for
each participant

Individualization of psychological measures

(4) Formal analysis

Using latent variable models for neural or
behavioral variables

Using multivariate approaches with cross-validation
to predict criterion variables

Intelligence can be predicted more accurately using
hyperalignment than with nonindividualized methods

Identifying the extent to which participants use different
strategies in the same tasks (e.g., model-based vs.
model-free strategies in learning tasks)

Using multiple variables of the same type or combining
variables from different modalities in a prediction model

Feilong et al. (2021); Haxby et al. (2020)

Sigh et al. (2020, 2022)

Kool et al. (2017)

Joyner and Perkins (2023); Schubert
et al. (2020); Tiego et al. (2023)

Thiele et al. (2023, 2024); Jiang et al.
(2020); Rasero et al. (2021)

fMRI = functional magnetic resonance imaging.

620z Atenuer ¢z uo Jesn NOANOT 3931100 ALISHIAINN Aq ypd 26220 & U00l/£12/6%2/.6220 € U20l/Z91 1 0L /10p/#pd-8jopie/udol/npe-iw joaiip//:dny woy papeojumoq



Acknowledgments
Authors were supported by the following sources of funding.

Corresponding authors: Kirsten Hilger, University of Wiirzburg,
Marcusstraie 9-11, Germany, or via e-mail: kirsten.hilger@uni
-wuerzburg.de or Colin DeYoung, Department of Psychology,
75 East River Rd, Minneapolis, MN 55455 USA, or via e-mail:
cdeyoung@umn.edu.

Author Contributions

Colin G. DeYoung: Conceptualization; Visualization;
Writing—Original draft; Writing—Review & editing.
Kirsten Hilger: Conceptualization; Visualization;
Writing—Original draft; Writing—Review & editing. Jamie
L. Hanson: Conceptualization; Writing—Review & editing.
Rany Abend: Writing—Review & editing. Timothy A. Allen:
Writing—Review & editing. Roger E. Beaty: Writing—
Review & editing. Scott D. Blain: Writing—Review & edit-
ing. Robert S. Chavez: Writing—Review & editing. Stephen
A. Engel: Writing—Review & editing. Ma Feilong:
Writing—Review & editing. Alex Fornito: Writing—Review
& editing. Erhan Geng: Writing—Review & editing. Vina
Goghari: Writing—Review & editing. Rachael G. Grazioplene:
Writing—Review & editing. Philipp Homan: Writing—Review
& editing. Keanan Joyner: Writing—Review & editing. Antonia
N. Kaczkurkin: Writing—Review & editing. Robert D.
Latzman: Writing—Review & editing. Elizabeth A. Martin:
Writing—Review & editing. Aki Nikolaidis: Writing—
Review & editing; Alan D. Pickering: Writing—Review &
editing; Adam Safron: Writing—Review & editing; Tyler
A. Sassenberg: Writing—Review & editing; Michelle N.
Servaas: Writing—Review & editing; Luke D. Smillie:
Writing—Review & editing; R. Nathan Spreng: Writing—
Review & editing; Essi Viding: Writing—Review & editing;
Jan Wacker: Writing—Review & editing.

Funding Information

Kirsten Hilger, German Research Foundation ([DFG]
https://dx.doi.org/10.13039/501100001659), grant num-
ber: HI 2185-1/1. Roger E. Beaty, National Science Founda-
tion Graduate Research Fellowship Program (https://dx
.doi.org/10.13039/100023581), grant numbers: DRL-
1920653, and DUE-2155070.

Diversity in Citation Practices

Retrospective analysis of the citations in every article pub-
lished in this journal from 2010 to 2021 reveals a persistent
pattern of gender imbalance: Although the proportions of
authorship teams (categorized by estimated gender iden-
tification of first author/last author) publishing in the Jour-
nal of Cognitive Neuroscience (JoCN) during this period
were M(an)/M = .407, W(oman)/M = .32, M/W = .115,
and W/W = .159, the comparable proportions for the arti-
cles that these authorship teams cited were M/M = .549,
W/M = 257, M/W = .109, and W/W = .085 (Postle and

10 Journal of Cognitive Neuroscience

Fulvio, JoCN, 34:1, pp. 1-3). Consequently, JoCN encour-
ages all authors to consider gender balance explicitly when
selecting which articles to cite and gives them the oppor-
tunity to report their article’s gender citation balance.

REFERENCES

Aguirre, G. K., Zarahn, E., & D’Esposito, M. (1998). The
variability of human, BOLD hemodynamic responses.
Neuroimage, 8, 360-369. https://doi.org/10.1006/nimg.1998
.0369, PubMed: 9811554

Amiez, C., Wilson, C. R., & Procyk, E. (2018). Variations of
cingulate sulcal organization and link with cognitive
performance. Scientific Reports, 8, 13988. https://doi.org/10
.1038/541598-018-32088-9, PubMed: 30228357

Blair, R. J. R., Mathur, A., Haines, N., & Bajaj, S. (2022). Future
directions for cognitive neuroscience in psychiatry:
Recommendations for biomarker design based on recent test
re-test reliability work. Current Opinion in Behavioral
Sciences, 44, 101102. https://doi.org/10.1016/j.cobeha.2022
101102

Burgoyne, A. P., Tsukahara, J. S., Mashburn, C. A., Pak, R., &
Engle, R. W. (2023). Nature and measurement of attention
control. Journal of Experimental Psychology: General, 152,
2369. https://doi.org/10.1037/xge0001408, PubMed:
37079831

Chen, J., Tam, A, Kebets, V., Orban, C., Ooj, L. Q. R., Asplund,
C. L, et al. (2022). Shared and unique brain network
features predict cognitive, personality, and mental health
scores in the ABCD study. Nature Communications, 13,
1-17. https://doi.org/10.1038/541467-022-29766-8, PubMed:
35468875

Cho, J. W., Korchmaros, A., Vogelstein, J. T., Milham, M. P., &
Xu, T. (2021). Impact of concatenating fMRI data on reliability
for functional connectomics. Neuroimage, 226, 117549.
https://doi.org/10.1016/j.neuroimage.2020.117549, PubMed:
33248255

Chong, M., Bhushan, C., Joshi, A. A., Choi, S., Haldar, J. P.,
Shattuck, D. W., et al. (2017). Individual parcellation of
resting fMRI with a group functional connectivity prior.
Neuroimage, 156, 87-100. https://doi.org/10.1016/j
.neuroimage.2017.04.054, PubMed: 28478226

Credé, M., Harms, P., Niehorster, S., & Gaye-Valentine, A.
(2012). An evaluation of the consequences of using short
measures of the big five personality traits. Journal of
Personality and Social Psychology, 102, 874. https://doi.org
/10.1037/a0027403, PubMed: 22352328

Deary, L. J. (2012). Intelligence. Annual Review of Psychology,
63, 453—482. https://doi.org/10.1146/annurev-psych-120710
-100353, PubMed: 21943169

DeYoung, C. G., Beaty, R. E., Geng, E., Latzman, R. D.,
Passamonti, L., Servaas, M. N., et al. (2022). Personality
neuroscience: An emerging field with bright prospects.
Personality Science, 3, 1-21. https://doi.org/10.5964/ps. 7269,
PubMed: 36250039

DeYoung, C. G., Shamosh, N. A., Green, A. E., Braver, T. S., &
Gray, J. R. (2009). Intellect as distinct from openness:
Differences revealed by fMRI of working memory. Journal of
Personality and Social Psychology, 97, 883-892. https://doi
.0rg/10.1037/a0016615, PubMed: 19857008

Elliott, M. L., Knodt, A. R., Ireland, D., Morris, M. L., Poulton, R.,
Ramrakha, S., et al. (2020). What is the test-retest reliability of
common task-functional MRI measures? New empirical
evidence and a meta-analysis. Psychological Science, 31,
792-806. https://doi.org/10.1177/0956797620916786,
PubMed: 32489141

Volume X, Number Y

620z Atenuer ¢z uo Jesn NOANOT 3931100 ALISHIAINN Aq Jpd° 26220 & U0l/£12/6%2/.6220 € U0l/Z91 L 0L /10p/pd-8jopie/udol/npe-iw joaiip//:dny woy papeojumoq


mailto:kirsten.hilger@uni-wuerzburg.de
mailto:kirsten.hilger@uni-wuerzburg.de
mailto:kirsten.hilger@uni-wuerzburg.de
mailto:kirsten.hilger@uni-wuerzburg.de
mailto:cdeyoung@umn.edu
mailto:cdeyoung@umn.edu
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/100023581
http://dx.doi.org/10.13039/100023581
http://dx.doi.org/10.13039/100023581
http://dx.doi.org/10.13039/100023581
http://dx.doi.org/10.13039/100023581
http://dx.doi.org/10.13039/100023581
http://dx.doi.org/10.13039/100023581
http://dx.doi.org/10.13039/100023581
https://doi.org/10.1006/nimg.1998.0369
https://doi.org/10.1006/nimg.1998.0369
https://doi.org/10.1006/nimg.1998.0369
https://doi.org/10.1006/nimg.1998.0369
https://doi.org/10.1006/nimg.1998.0369
https://doi.org/10.1006/nimg.1998.0369
https://doi.org/10.1006/nimg.1998.0369
https://doi.org/10.1006/nimg.1998.0369
https://doi.org/10.1006/nimg.1998.0369
https://pubmed.ncbi.nlm.nih.gov/9811554
https://doi.org/10.1038/s41598-018-32088-9
https://doi.org/10.1038/s41598-018-32088-9
https://doi.org/10.1038/s41598-018-32088-9
https://doi.org/10.1038/s41598-018-32088-9
https://doi.org/10.1038/s41598-018-32088-9
https://doi.org/10.1038/s41598-018-32088-9
https://doi.org/10.1038/s41598-018-32088-9
https://doi.org/10.1038/s41598-018-32088-9
https://doi.org/10.1038/s41598-018-32088-9
https://doi.org/10.1038/s41598-018-32088-9
https://pubmed.ncbi.nlm.nih.gov/30228357
https://doi.org/10.1016/j.cobeha.2022.101102
https://doi.org/10.1016/j.cobeha.2022.101102
https://doi.org/10.1016/j.cobeha.2022.101102
https://doi.org/10.1016/j.cobeha.2022.101102
https://doi.org/10.1016/j.cobeha.2022.101102
https://doi.org/10.1016/j.cobeha.2022.101102
https://doi.org/10.1016/j.cobeha.2022.101102
https://doi.org/10.1016/j.cobeha.2022.101102
https://doi.org/10.1016/j.cobeha.2022.101102
https://doi.org/10.1016/j.cobeha.2022.101102
https://doi.org/10.1037/xge0001408
https://doi.org/10.1037/xge0001408
https://doi.org/10.1037/xge0001408
https://doi.org/10.1037/xge0001408
https://doi.org/10.1037/xge0001408
https://doi.org/10.1037/xge0001408
https://doi.org/10.1037/xge0001408
https://pubmed.ncbi.nlm.nih.gov/37079831
https://doi.org/10.1038/s41467-022-29766-8
https://doi.org/10.1038/s41467-022-29766-8
https://doi.org/10.1038/s41467-022-29766-8
https://doi.org/10.1038/s41467-022-29766-8
https://doi.org/10.1038/s41467-022-29766-8
https://doi.org/10.1038/s41467-022-29766-8
https://doi.org/10.1038/s41467-022-29766-8
https://doi.org/10.1038/s41467-022-29766-8
https://doi.org/10.1038/s41467-022-29766-8
https://doi.org/10.1038/s41467-022-29766-8
https://pubmed.ncbi.nlm.nih.gov/35468875
https://doi.org/10.1016/j.neuroimage.2020.117549
https://doi.org/10.1016/j.neuroimage.2020.117549
https://doi.org/10.1016/j.neuroimage.2020.117549
https://doi.org/10.1016/j.neuroimage.2020.117549
https://doi.org/10.1016/j.neuroimage.2020.117549
https://doi.org/10.1016/j.neuroimage.2020.117549
https://doi.org/10.1016/j.neuroimage.2020.117549
https://doi.org/10.1016/j.neuroimage.2020.117549
https://doi.org/10.1016/j.neuroimage.2020.117549
https://doi.org/10.1016/j.neuroimage.2020.117549
https://pubmed.ncbi.nlm.nih.gov/33248255
https://doi.org/10.1016/j.neuroimage.2017.04.054
https://doi.org/10.1016/j.neuroimage.2017.04.054
https://doi.org/10.1016/j.neuroimage.2017.04.054
https://doi.org/10.1016/j.neuroimage.2017.04.054
https://doi.org/10.1016/j.neuroimage.2017.04.054
https://doi.org/10.1016/j.neuroimage.2017.04.054
https://doi.org/10.1016/j.neuroimage.2017.04.054
https://doi.org/10.1016/j.neuroimage.2017.04.054
https://doi.org/10.1016/j.neuroimage.2017.04.054
https://doi.org/10.1016/j.neuroimage.2017.04.054
https://doi.org/10.1016/j.neuroimage.2017.04.054
https://pubmed.ncbi.nlm.nih.gov/28478226
https://doi.org/10.1037/a0027403
https://doi.org/10.1037/a0027403
https://doi.org/10.1037/a0027403
https://doi.org/10.1037/a0027403
https://doi.org/10.1037/a0027403
https://doi.org/10.1037/a0027403
https://doi.org/10.1037/a0027403
https://pubmed.ncbi.nlm.nih.gov/22352328
https://doi.org/10.1146/annurev-psych-120710-100353
https://doi.org/10.1146/annurev-psych-120710-100353
https://doi.org/10.1146/annurev-psych-120710-100353
https://doi.org/10.1146/annurev-psych-120710-100353
https://doi.org/10.1146/annurev-psych-120710-100353
https://doi.org/10.1146/annurev-psych-120710-100353
https://doi.org/10.1146/annurev-psych-120710-100353
https://doi.org/10.1146/annurev-psych-120710-100353
https://doi.org/10.1146/annurev-psych-120710-100353
https://doi.org/10.1146/annurev-psych-120710-100353
https://pubmed.ncbi.nlm.nih.gov/21943169
https://doi.org/10.5964/ps.7269
https://doi.org/10.5964/ps.7269
https://doi.org/10.5964/ps.7269
https://doi.org/10.5964/ps.7269
https://doi.org/10.5964/ps.7269
https://doi.org/10.5964/ps.7269
https://doi.org/10.5964/ps.7269
https://doi.org/10.5964/ps.7269
https://pubmed.ncbi.nlm.nih.gov/36250039
https://doi.org/10.1037/a0016615
https://doi.org/10.1037/a0016615
https://doi.org/10.1037/a0016615
https://doi.org/10.1037/a0016615
https://doi.org/10.1037/a0016615
https://doi.org/10.1037/a0016615
https://doi.org/10.1037/a0016615
https://pubmed.ncbi.nlm.nih.gov/19857008
https://doi.org/10.1177/0956797620916786
https://doi.org/10.1177/0956797620916786
https://doi.org/10.1177/0956797620916786
https://doi.org/10.1177/0956797620916786
https://doi.org/10.1177/0956797620916786
https://doi.org/10.1177/0956797620916786
https://doi.org/10.1177/0956797620916786
https://pubmed.ncbi.nlm.nih.gov/32489141

Feilong, M., Guntupallj, J. S., & Haxby, J. V. (2021). The neural
basis of intelligence in fine-grained cortical topographies.
elife, 10, e64058. https://doi.org/10.7554/eLife.64058,
PubMed: 33683205

Finn, E. S. (2021). Is it time to put rest to rest? Trends in
Cognitive Sciences, 25, 1021-1032. https://doi.org/10.1016/j
.tics.2021.09.005, PubMed: 34625348

Finn, E. S., Scheinost, D., Finn, D. M., Shen, X., Papademetris,
X., & Constable, R. T. (2017). Can brain state be manipulated
to emphasize individual differences in functional
connectivity? Neuroimage, 160, 140-151. https://doi.org/10
.1016/j.neuroimage.2017.03.064, PubMed: 28373122

Fornito, A., Wood, S. J., Whittle, S., Fuller, J., Adamson, C.,
Saling, M. M., et al. (2008). Variability of the paracingulate
sulcus and morphometry of the medial frontal cortex:
Associations with cortical thickness, surface area, volume,
and sulcal depth. Human Brain Mapping, 29, 222-2306.
https://doi.org/10.1002/hbm.20381, PubMed: 17497626

Gelman, A., & Carlin, J. (2014). Beyond power calculations:
Assessing type S (sign) and type M (magnitude) errors.
Perspectives on Psychological Science, 9, 641-651. https://
doi.org/10.1177/1745691614551642, PubMed: 26186114

Grady, C. L., Rieck, J. R., Nichol, D., Rodrigue, K. M., &
Kennedy, K. M. (2021). Influence of sample size and analytic
approach on stability and interpretation of brain-behavior
correlations in task-related fMRI data. Human Brain
Mapping, 42, 204-219. https://doi.org/10.1002/hbm.25217,
PubMed: 32996635

Greene, A. S., Gao, S., Scheinost, D., & Constable, R. T. (2018).
Task-induced brain state manipulation improves prediction
of individual traits. Nature Communications, 9, 2807. https://
doi.org/10.1038/541467-018-04920-3, PubMed: 30022026

Haines, N., Sullivan-Toole, H., & Olino, T. (2023). From classical
methods to generative models: Tackling the unreliability of
neuroscientific measures in mental health research.
Biological Psychiatry: Cognitive Neuroscience and
Neuroimaging, 8, 822-831. https://doi.org/10.1016/j.bpsc
.2023.01.001, PubMed: 36997406

Hardikar, S., McKeown, B., Turnbull, A., Xu, T., Valk, S. L.,
Bernhardt, B. C., et al. (2024). Personality traits vary in their
association with brain activity across situations.
Communications Biology, 7, 1498. https://doi.org/10.1038
/$42003-024-07061-0, PubMed: 39533085

Haxby, J. V., Guntupallj, J. S., Nastase, S. A., & Feilong, M.
(2020). Hyperalignment: Modeling shared information
encoded in idiosyncratic cortical topographies. eLife, 9,
€56601. https://doi.org/10.7554/eLife.56601, PubMed:
32484439

Hedge, C., Powell, G., & Sumner, P. (2017). The reliability
paradox: Why robust cognitive tasks do not produce reliable
individual differences. Bebavior Research Methods, 50,
1166-1186. https://doi.org/10.3758/s13428-017-0935-1,
PubMed: 28726177

Hilger, K., & Markett, S. (2021). Personality network
neuroscience: Promises and challenges on the way toward a
unifying framework of individual variability. Network
Neuroscience, 5, 631-645. https://doi.org/10.1162/netn_a
00198, PubMed: 34746620

Jiang, R., Calhoun, V. D., Cui, Y., Qi, S., Zhuo, C., i, J., et al.
(2020). Multimodal data revealed different neurobiological
correlates of intelligence between males and females. Brain
Imaging and Bebavior, 14, 1979-1993. https://doi.org/10
.1007/511682-019-00146-z, PubMed: 31278651

Joyner, K. J., & Perkins, E. R. (2023). Challenges and ways
forward in bridging units of analysis in clinical psychological
science. Journal of Psychopathology and Clinical Science,
132, 888-896. https://doi.org/10.1037/abn0000879, PubMed:
37843543

Kazan, S. M., Mohammadi, S., Callaghan, M. F., Flandin, G,
Huber, L., Leech, R., et al. (20106). Vascular autorescaling of
fMRI (VasA fMRI) improves sensitivity of population studies:
A pilot study. Neuroimage, 124, 794-805. https://doi.org/10
.1016/j.neuroimage.2015.09.033, PubMed: 26416648

Kong, R., Yang, Q., Gordon, E., Xue, A, Yan, X., Orban, C., et al.
(2021). Individual-specific areal-level parcellations improve
functional connectivity prediction of behavior. Cerebral
Cortex, 31, 4477-4500. https://doi.org/10.1093/cercor
/bhab101, PubMed: 33942058

Kool, W., Gershman, S. J., & Cushman, F. A. (2017). Cost—
benefit arbitration between multiple reinforcement-learning
systems. Psychological Science, 28, 1321-1333. https://doi
.0rg/10.1177/0956797617708288, PubMed: 28731839

Kovacs, K., & Conway, A. R. (2016). Process overlap theory: A
unified account of the general factor of intelligence.
Psychological Inquiry, 27, 151-177. https://doi.org/10.1080
/1047840X.2016.1153946

Kundu, P., Voon, V., Balchandani, P., Lombardo, M. V., Poser, B.
A., & Bandettini, P. A. (2017). Multi-echo fMRI: A review of
applications in fMRI denoising and analysis of BOLD signals.
Neuroimage, 154, 59-80. https://doi.org/10.1016/j
.neuroimage.2017.03.033, PubMed: 28363836

Lynch, C. J., Power, J. D, Scult, M. A., Dubin, M., Gunning, F.
M., & Liston, C. (2020). Rapid precision functional mapping
of individuals using multi-echo fMRI. Cell Reports, 33, 108540.
https://doi.org/10.1016/j.celrep.2020.108540, PubMed:
33357444

Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F.,
Kay, B. P., Hatoum, A. S., et al. (2022). Reproducible
brain-wide association studies require thousands of
individuals. Nature, 603, 654-660. https://doi.org/10.1038
/541580-022-04492-9, PubMed: 35296861

Miller, J. A., Voorhies, W. 1., Lurie, D. J., D’Esposito, M., &
Weiner, K. S. (2021). Overlooked tertiary sulci serve as a
meso-scale link between microstructural and functional
properties of human lateral prefrontal cortex. Journal of
Neuroscience, 41, 2229-2244. https://doi.org/10.1523
/JNEUROSCI.2362-20.2021, PubMed: 33478989

Moghimi, P., Dang, A. T., Do, Q., Netoff, T. I, Lim, K. O., &
Atluri, G. (2022). Evaluation of functional MRI-based human
brain parcellation: A review. Journal of Neurophysiology,
128, 197-217. https://doi.org/10.1152/jn.00411.2021,
PubMed: 35675446

Mueller, S., Wang, D., Fox, M. D., Yeo, B. T., Sepulcre, J.,
Sabuncu, M. R., et al. (2013). Individual variability in
functional connectivity architecture of the human brain.
Neuron, 77, 586-595. https://doi.org/10.1016/j.neuron.2012
.12.028, PubMed: 23395382

Nebe, S., Reutter, M., Baker, D. H., Bolte, J., Domes, G., Gamer,
M., et al. (2023). Enhancing precision in human
neuroscience. eLife, 12, €85980. https://doi.org/10.7554/eLife
.85980, PubMed: 37555830

Nikolaidis, A., Chen, A. A., He, X., Shinohara, R., Vogelstein, J.,
Milham, M., et al. (2022). Suboptimal phenotypic reliability
impedes reproducible human neuroscience. BioRxiv,
2022-2007. https://doi.org/10.1101/2022.07.22.501193

Noble, S., Spann, M. N.; Tokoglu, F., Shen, X., Constable, R. T.,
& Scheinost, D. (2017). Influences on the test-retest
reliability of functional connectivity MRI and its
relationship with behavioral utility. Cerebral Cortex, 27,
5415-5429. https://doi.org/10.1093/cercor/bhx230,
PubMed: 28968754

Ooi, L. Q. R,, Chen, J., Zhang, S., Kong, R, Tam, A,, Li, J., et al.
(2022). Comparison of individualized behavioral predictions
across anatomical, diffusion and functional connectivity MRIL
Neuroimage, 263, 119636. https://doi.org/10.1016/j
.neuroimage.2022.119636, PubMed: 36116616

DeYoung et al. 11

620z Atenuer ¢z uo Jesn NOANOT 3931100 ALISHIAINN Aq Jpd° 26220 & U0l/£12/6%2/.6220 € U0l/Z91 L 0L /10p/pd-8jopie/udol/npe-iw joaiip//:dny woy papeojumoq


https://doi.org/10.7554/eLife.64058
https://doi.org/10.7554/eLife.64058
https://doi.org/10.7554/eLife.64058
https://doi.org/10.7554/eLife.64058
https://doi.org/10.7554/eLife.64058
https://doi.org/10.7554/eLife.64058
https://doi.org/10.7554/eLife.64058
https://doi.org/10.7554/eLife.64058
https://pubmed.ncbi.nlm.nih.gov/33683205
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://doi.org/10.1016/j.tics.2021.09.005
https://pubmed.ncbi.nlm.nih.gov/34625348
https://doi.org/10.1016/j.neuroimage.2017.03.064
https://doi.org/10.1016/j.neuroimage.2017.03.064
https://doi.org/10.1016/j.neuroimage.2017.03.064
https://doi.org/10.1016/j.neuroimage.2017.03.064
https://doi.org/10.1016/j.neuroimage.2017.03.064
https://doi.org/10.1016/j.neuroimage.2017.03.064
https://doi.org/10.1016/j.neuroimage.2017.03.064
https://doi.org/10.1016/j.neuroimage.2017.03.064
https://doi.org/10.1016/j.neuroimage.2017.03.064
https://doi.org/10.1016/j.neuroimage.2017.03.064
https://doi.org/10.1016/j.neuroimage.2017.03.064
https://pubmed.ncbi.nlm.nih.gov/28373122
https://doi.org/10.1002/hbm.20381
https://doi.org/10.1002/hbm.20381
https://doi.org/10.1002/hbm.20381
https://doi.org/10.1002/hbm.20381
https://doi.org/10.1002/hbm.20381
https://doi.org/10.1002/hbm.20381
https://doi.org/10.1002/hbm.20381
https://doi.org/10.1002/hbm.20381
https://doi.org/10.1002/hbm.20381
https://pubmed.ncbi.nlm.nih.gov/17497626
https://doi.org/10.1177/1745691614551642
https://doi.org/10.1177/1745691614551642
https://doi.org/10.1177/1745691614551642
https://doi.org/10.1177/1745691614551642
https://doi.org/10.1177/1745691614551642
https://doi.org/10.1177/1745691614551642
https://doi.org/10.1177/1745691614551642
https://doi.org/10.1177/1745691614551642
https://pubmed.ncbi.nlm.nih.gov/26186114
https://doi.org/10.1002/hbm.25217
https://doi.org/10.1002/hbm.25217
https://doi.org/10.1002/hbm.25217
https://doi.org/10.1002/hbm.25217
https://doi.org/10.1002/hbm.25217
https://doi.org/10.1002/hbm.25217
https://doi.org/10.1002/hbm.25217
https://doi.org/10.1002/hbm.25217
https://doi.org/10.1002/hbm.25217
https://pubmed.ncbi.nlm.nih.gov/32996635
https://doi.org/10.1038/s41467-018-04920-3
https://doi.org/10.1038/s41467-018-04920-3
https://doi.org/10.1038/s41467-018-04920-3
https://doi.org/10.1038/s41467-018-04920-3
https://doi.org/10.1038/s41467-018-04920-3
https://doi.org/10.1038/s41467-018-04920-3
https://doi.org/10.1038/s41467-018-04920-3
https://doi.org/10.1038/s41467-018-04920-3
https://doi.org/10.1038/s41467-018-04920-3
https://doi.org/10.1038/s41467-018-04920-3
https://doi.org/10.1038/s41467-018-04920-3
https://pubmed.ncbi.nlm.nih.gov/30022026
https://doi.org/10.1016/j.bpsc.2023.01.001
https://doi.org/10.1016/j.bpsc.2023.01.001
https://doi.org/10.1016/j.bpsc.2023.01.001
https://doi.org/10.1016/j.bpsc.2023.01.001
https://doi.org/10.1016/j.bpsc.2023.01.001
https://doi.org/10.1016/j.bpsc.2023.01.001
https://doi.org/10.1016/j.bpsc.2023.01.001
https://doi.org/10.1016/j.bpsc.2023.01.001
https://doi.org/10.1016/j.bpsc.2023.01.001
https://doi.org/10.1016/j.bpsc.2023.01.001
https://doi.org/10.1016/j.bpsc.2023.01.001
https://pubmed.ncbi.nlm.nih.gov/36997406
https://doi.org/10.1038/s42003-024-07061-0
https://doi.org/10.1038/s42003-024-07061-0
https://doi.org/10.1038/s42003-024-07061-0
https://doi.org/10.1038/s42003-024-07061-0
https://doi.org/10.1038/s42003-024-07061-0
https://doi.org/10.1038/s42003-024-07061-0
https://doi.org/10.1038/s42003-024-07061-0
https://doi.org/10.1038/s42003-024-07061-0
https://doi.org/10.1038/s42003-024-07061-0
https://doi.org/10.1038/s42003-024-07061-0
https://pubmed.ncbi.nlm.nih.gov/39533085
https://doi.org/10.7554/eLife.56601
https://doi.org/10.7554/eLife.56601
https://doi.org/10.7554/eLife.56601
https://doi.org/10.7554/eLife.56601
https://doi.org/10.7554/eLife.56601
https://doi.org/10.7554/eLife.56601
https://doi.org/10.7554/eLife.56601
https://doi.org/10.7554/eLife.56601
https://pubmed.ncbi.nlm.nih.gov/32484439
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.3758/s13428-017-0935-1
https://doi.org/10.3758/s13428-017-0935-1
https://pubmed.ncbi.nlm.nih.gov/28726177
https://doi.org/10.1162/netn_a_00198
https://doi.org/10.1162/netn_a_00198
https://doi.org/10.1162/netn_a_00198
https://doi.org/10.1162/netn_a_00198
https://doi.org/10.1162/netn_a_00198
https://doi.org/10.1162/netn_a_00198
https://doi.org/10.1162/netn_a_00198
https://doi.org/10.1162/netn_a_00198
https://doi.org/10.1162/netn_a_00198
https://pubmed.ncbi.nlm.nih.gov/34746620
https://doi.org/10.1007/s11682-019-00146-z
https://doi.org/10.1007/s11682-019-00146-z
https://doi.org/10.1007/s11682-019-00146-z
https://doi.org/10.1007/s11682-019-00146-z
https://doi.org/10.1007/s11682-019-00146-z
https://doi.org/10.1007/s11682-019-00146-z
https://doi.org/10.1007/s11682-019-00146-z
https://doi.org/10.1007/s11682-019-00146-z
https://doi.org/10.1007/s11682-019-00146-z
https://doi.org/10.1007/s11682-019-00146-z
https://pubmed.ncbi.nlm.nih.gov/31278651
https://doi.org/10.1037/abn0000879
https://doi.org/10.1037/abn0000879
https://doi.org/10.1037/abn0000879
https://doi.org/10.1037/abn0000879
https://doi.org/10.1037/abn0000879
https://doi.org/10.1037/abn0000879
https://doi.org/10.1037/abn0000879
https://pubmed.ncbi.nlm.nih.gov/37843543
https://doi.org/10.1016/j.neuroimage.2015.09.033
https://doi.org/10.1016/j.neuroimage.2015.09.033
https://doi.org/10.1016/j.neuroimage.2015.09.033
https://doi.org/10.1016/j.neuroimage.2015.09.033
https://doi.org/10.1016/j.neuroimage.2015.09.033
https://doi.org/10.1016/j.neuroimage.2015.09.033
https://doi.org/10.1016/j.neuroimage.2015.09.033
https://doi.org/10.1016/j.neuroimage.2015.09.033
https://doi.org/10.1016/j.neuroimage.2015.09.033
https://doi.org/10.1016/j.neuroimage.2015.09.033
https://doi.org/10.1016/j.neuroimage.2015.09.033
https://pubmed.ncbi.nlm.nih.gov/26416648
https://doi.org/10.1093/cercor/bhab101
https://doi.org/10.1093/cercor/bhab101
https://doi.org/10.1093/cercor/bhab101
https://doi.org/10.1093/cercor/bhab101
https://doi.org/10.1093/cercor/bhab101
https://doi.org/10.1093/cercor/bhab101
https://doi.org/10.1093/cercor/bhab101
https://doi.org/10.1093/cercor/bhab101
https://doi.org/10.1093/cercor/bhab101
https://pubmed.ncbi.nlm.nih.gov/33942058
https://doi.org/10.1177/0956797617708288
https://doi.org/10.1177/0956797617708288
https://doi.org/10.1177/0956797617708288
https://doi.org/10.1177/0956797617708288
https://doi.org/10.1177/0956797617708288
https://doi.org/10.1177/0956797617708288
https://doi.org/10.1177/0956797617708288
https://pubmed.ncbi.nlm.nih.gov/28731839
https://doi.org/10.1080/1047840X.2016.1153946
https://doi.org/10.1080/1047840X.2016.1153946
https://doi.org/10.1080/1047840X.2016.1153946
https://doi.org/10.1080/1047840X.2016.1153946
https://doi.org/10.1080/1047840X.2016.1153946
https://doi.org/10.1080/1047840X.2016.1153946
https://doi.org/10.1080/1047840X.2016.1153946
https://doi.org/10.1080/1047840X.2016.1153946
https://doi.org/10.1080/1047840X.2016.1153946
https://doi.org/10.1016/j.neuroimage.2017.03.033
https://doi.org/10.1016/j.neuroimage.2017.03.033
https://doi.org/10.1016/j.neuroimage.2017.03.033
https://doi.org/10.1016/j.neuroimage.2017.03.033
https://doi.org/10.1016/j.neuroimage.2017.03.033
https://doi.org/10.1016/j.neuroimage.2017.03.033
https://doi.org/10.1016/j.neuroimage.2017.03.033
https://doi.org/10.1016/j.neuroimage.2017.03.033
https://doi.org/10.1016/j.neuroimage.2017.03.033
https://doi.org/10.1016/j.neuroimage.2017.03.033
https://doi.org/10.1016/j.neuroimage.2017.03.033
https://pubmed.ncbi.nlm.nih.gov/28363836
https://doi.org/10.1016/j.celrep.2020.108540
https://doi.org/10.1016/j.celrep.2020.108540
https://doi.org/10.1016/j.celrep.2020.108540
https://doi.org/10.1016/j.celrep.2020.108540
https://doi.org/10.1016/j.celrep.2020.108540
https://doi.org/10.1016/j.celrep.2020.108540
https://doi.org/10.1016/j.celrep.2020.108540
https://doi.org/10.1016/j.celrep.2020.108540
https://doi.org/10.1016/j.celrep.2020.108540
https://doi.org/10.1016/j.celrep.2020.108540
https://pubmed.ncbi.nlm.nih.gov/33357444
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1038/s41586-022-04492-9
https://doi.org/10.1038/s41586-022-04492-9
https://pubmed.ncbi.nlm.nih.gov/35296861
https://doi.org/10.1523/JNEUROSCI.2362-20.2021
https://doi.org/10.1523/JNEUROSCI.2362-20.2021
https://doi.org/10.1523/JNEUROSCI.2362-20.2021
https://doi.org/10.1523/JNEUROSCI.2362-20.2021
https://doi.org/10.1523/JNEUROSCI.2362-20.2021
https://doi.org/10.1523/JNEUROSCI.2362-20.2021
https://doi.org/10.1523/JNEUROSCI.2362-20.2021
https://doi.org/10.1523/JNEUROSCI.2362-20.2021
https://doi.org/10.1523/JNEUROSCI.2362-20.2021
https://doi.org/10.1523/JNEUROSCI.2362-20.2021
https://doi.org/10.1523/JNEUROSCI.2362-20.2021
https://pubmed.ncbi.nlm.nih.gov/33478989
https://doi.org/10.1152/jn.00411.2021
https://doi.org/10.1152/jn.00411.2021
https://doi.org/10.1152/jn.00411.2021
https://doi.org/10.1152/jn.00411.2021
https://doi.org/10.1152/jn.00411.2021
https://doi.org/10.1152/jn.00411.2021
https://doi.org/10.1152/jn.00411.2021
https://doi.org/10.1152/jn.00411.2021
https://doi.org/10.1152/jn.00411.2021
https://pubmed.ncbi.nlm.nih.gov/35675446
https://doi.org/10.1016/j.neuron.2012.12.028
https://doi.org/10.1016/j.neuron.2012.12.028
https://doi.org/10.1016/j.neuron.2012.12.028
https://doi.org/10.1016/j.neuron.2012.12.028
https://doi.org/10.1016/j.neuron.2012.12.028
https://doi.org/10.1016/j.neuron.2012.12.028
https://doi.org/10.1016/j.neuron.2012.12.028
https://doi.org/10.1016/j.neuron.2012.12.028
https://doi.org/10.1016/j.neuron.2012.12.028
https://doi.org/10.1016/j.neuron.2012.12.028
https://doi.org/10.1016/j.neuron.2012.12.028
https://pubmed.ncbi.nlm.nih.gov/23395382
https://doi.org/10.7554/eLife.85980
https://doi.org/10.7554/eLife.85980
https://doi.org/10.7554/eLife.85980
https://doi.org/10.7554/eLife.85980
https://doi.org/10.7554/eLife.85980
https://doi.org/10.7554/eLife.85980
https://doi.org/10.7554/eLife.85980
https://doi.org/10.7554/eLife.85980
https://pubmed.ncbi.nlm.nih.gov/37555830
https://doi.org/10.1101/2022.07.22.501193
https://doi.org/10.1101/2022.07.22.501193
https://doi.org/10.1101/2022.07.22.501193
https://doi.org/10.1101/2022.07.22.501193
https://doi.org/10.1101/2022.07.22.501193
https://doi.org/10.1101/2022.07.22.501193
https://doi.org/10.1101/2022.07.22.501193
https://doi.org/10.1101/2022.07.22.501193
https://doi.org/10.1101/2022.07.22.501193
https://doi.org/10.1101/2022.07.22.501193
https://doi.org/10.1093/cercor/bhx230
https://doi.org/10.1093/cercor/bhx230
https://doi.org/10.1093/cercor/bhx230
https://doi.org/10.1093/cercor/bhx230
https://doi.org/10.1093/cercor/bhx230
https://doi.org/10.1093/cercor/bhx230
https://doi.org/10.1093/cercor/bhx230
https://doi.org/10.1093/cercor/bhx230
https://doi.org/10.1093/cercor/bhx230
https://pubmed.ncbi.nlm.nih.gov/28968754
https://doi.org/10.1016/j.neuroimage.2022.119636
https://doi.org/10.1016/j.neuroimage.2022.119636
https://doi.org/10.1016/j.neuroimage.2022.119636
https://doi.org/10.1016/j.neuroimage.2022.119636
https://doi.org/10.1016/j.neuroimage.2022.119636
https://doi.org/10.1016/j.neuroimage.2022.119636
https://doi.org/10.1016/j.neuroimage.2022.119636
https://doi.org/10.1016/j.neuroimage.2022.119636
https://doi.org/10.1016/j.neuroimage.2022.119636
https://doi.org/10.1016/j.neuroimage.2022.119636
https://pubmed.ncbi.nlm.nih.gov/36116616

Polderman, T. J., Benyamin, B., De Leeuw, C. A., Sullivan, P. F.,
Van Bochoven, A., Visscher, P. M., et al. (2015). Meta-analysis
of the heritability of human traits based on fifty years of twin
studies. Nature Genetics, 47, 702—709. https://doi.org/10
.1038/ng.3285, PubMed: 25985137

Poldrack, R. A., Baker, C. 1., Durnez, J., Gorgolewski, K. J.,
Matthews, P. M., Munafo, M. R., et al. (2017). Scanning the
horizon: Towards transparent and reproducible neuroimaging
research. Nature Reviews Neuroscience, 18, 115-126. https://
doi.org/10.1038/nrn.2016.167, PubMed: 28053326

Rasero, J., Sentis, A. I, Yeh, F. C., & Verstynen, T. (2021).
Integrating across neuroimaging modalities boosts prediction
accuracy of cognitive ability. PLoS Computational Biology,
17, €1008347. https://doi.org/10.1371/journal. pcbi. 1008347,
PubMed: 33667224

Sassenberg, T. A., Burton, P. C., Mwilambwe-Tshilobo, L., Jung,
R. E., Rustichini, A., Spreng, R. N., et al. (2023).
Conscientiousness associated with efficiency of the
salience/ventral attention network: Replication in three
samples using individualized parcellation. Neuroimage, 272,
120081. https://doi.org/10.1016/j.neuroimage.2023.120081,
PubMed: 37011715

Schubert, A. L., Loffler, C., & Hagemann, D. (2022). A
neurocognitive psychometrics account of individual
differences in attentional control. Journal of Experimental
Psychology: General, 151, 2060-2082. https://doi.org/10.1037
/xge0001184, PubMed: 35130011

Schulz, M. A, Bzdok, D., Haufe, S., Haynes, J. D., & Ritter, K.
(2024). Performance reserves in brain-imaging-based
phenotype prediction. Cell Reports, 43, 113597. https://doi
.0rg/10.1016/j.celrep.2023.113597, PubMed: 38159275

Setton, R., Mwilambwe-Tshilobo, L., Sheldon, S., Turner, G. R.,
& Spreng, R. N. (2022). Hippocampus and temporal pole
functional connectivity is associated with age and individual
differences in autobiographical memory. Proceedings of the
National Academy of Sciences, US.A., 119, €2203039119.
https://doi.org/10.1073/pnas.2203039119, PubMed: 36191210

Singh, M. F., Braver, T. S., Cole, M. W., & Ching, S. (2020).
Estimation and validation of individualized dynamic brain
models with resting state fMRI. Neuroimage, 221, 117046.
https://doi.org/10.1016/j.neuroimage.2020.117046, PubMed:
32603858

Singh, M. F.;, Wang, A., Cole, M., Ching, S., & Braver, T. S.
(2022). Enhancing task fMRI preprocessing via individualized
model-based filtering of intrinsic activity dynamics.
Neuroimage, 247, 118836. https://doi.org/10.1016/j
.neuroimage.2021.118836, PubMed: 34942364

Soto, C.J. (2019). How replicable are links between personality
traits and consequential life outcomes? The life outcomes of
personality replication project. Psychological Science, 30,
711-727. https://doi.org/10.1177/0956797619831612,
PubMed: 30950321

Spisak, T., Bingel, U., & Wager, T. D. (2023). Multivariate BWAS
can be replicable with moderate sample sizes. Nature, 615,
E4-E7. https://doi.org/10.1038/s41586-023-05745-x, PubMed:
36890392

Sripada, C., Angstadt, M., Rutherford, S., Taxali, A., & Shedden,
K. (2020). Toward a “treadmill test” for cognition: Improved

12 Journal of Cognitive Neuroscience

prediction of general cognitive ability from the task activated
brain. Human Brain Mapping, 41, 3186-3197. https://doi
.0rg/10.1002/hbm.25007, PubMed: 32364670

Stanley, T. D. (2005). Beyond publication bias. Journal of
Economic Surveys, 19, 309-345. https://doi.org/10.1111/j
.0950-0804.2005.00250.x

Szucs, D., & Ioannidis, J. P. (2020). Sample size evolution in
neuroimaging research: An evaluation of highly-cited studies
(1990-2012) and of latest practices (2017-2018) in
high-impact journals. Neuroimage, 221, 117164. https://doi
.0rg/10.1016/j.neuroimage.2020.117164, PubMed: 32679253

Tervo-Clemmens, B., Marek, S., Chauvin, R. J., Van, A. N., Kay,
B. P, Laumann, T. O., et al. (2023). Reply to: Multivariate
BWAS can be replicable with moderate sample sizes. Nature,
615, E8-E12. https://doi.org/10.1038/s41586-023-05746-w,
PubMed: 36890374

Tetereva, A., Li, J., Deng, J. D., Stringaris, A., & Pat, N. (2022).
Capturing brain-cognition relationship: Integrating
task-based fMRI across tasks markedly boosts prediction and
test-retest reliability. Neuroimage, 263, 119588. https://doi
.0rg/10.1016/j.neuroimage.2022.119588, PubMed: 36057404

Thiele, J. A., Faskowitz, J., Sporns, O., & Hilger, K. (2024). Can
machine learning-based predictive modelling improve our
understanding of human cognition? PNAS Nexus, 13, 519.
https://doi.org/10.1101/2023.12.04.569974

Thiele, J. A., Richter, A., & Hilger, K. (2023). Multimodal brain
signal complexity predicts human intelligence. eNeuro, 10,
1-18. https://doi.org/10.1523/ENEURO.0345-22.2022,
PubMed: 36657966

Tiego, J., Martin, E. A., DeYoung, C. G., Hagan, K., Cooper, S. E.,
Pasion, R., et al. (2023). Precision behavioral phenotyping
as a strategy for uncovering the biological correlates of
psychopathology. Nature Mental Health, 1, 304-315.
https://doi.org/10.1038/s44220-023-00057-5, PubMed:
37251494

Uddin, L. Q., Betzel, R. F., Cohen, J. R., Damoiseaux, J. S., De
Brigard, F., Eickhoff, S. B., et al. (2023). Controversies and
progress on standardization of large-scale brain network
nomenclature. Network Neuroscience, 7, 864-905. https://
doi.org/10.1162/netn_a_00323, PubMed: 37781138

Voorhies, W. L., Miller, J. A., Yao, J. K., Bunge, S. A., & Weiner, K.
S. (2021). Cognitive insights from tertiary sulci in prefrontal
cortex. Nature Communications, 12, 5122. https://doi.org/10
.1038/541467-021-25162-w, PubMed: 34433806

Wainer, H., Dorans, N. J., Flaugher, R., Green, B. F., & Mislevy,
R. J. (2000). Computerized adaptive testing: A primer.
Routledge. https://doi.org/10.4324/978141060593 1

Yarkoni, T. (2009). Big correlations in little studies: Inflated
fMRI correlations reflect low statistical power—Commentary
on Vul et al. (2009). Perspectives on Psychological Science, 4,
294-298. https://doi.org/10.1111/.1745-6924.2009.01127 %,
PubMed: 26158966

Zuo, X. N., & Xing, X. X. (2014). Test-retest reliabilities of
resting-state FMRI measurements in human brain functional
connectomics: A systems neuroscience perspective.
Neuroscience & Biobehavioral Reviews, 45, 100-118.
https://doi.org/10.1016/j.neubiorev.2014.05.009, PubMed:
24875392

Volume X, Number Y

620z Atenuer ¢z uo Jesn NOANOT 3931100 ALISHIAINN Aq Jpd° 26220 & U0l/£12/6%2/.6220 € U0l/Z91 L 0L /10p/pd-8jopie/udol/npe-iw joaiip//:dny woy papeojumoq


https://doi.org/10.1038/ng.3285
https://doi.org/10.1038/ng.3285
https://doi.org/10.1038/ng.3285
https://doi.org/10.1038/ng.3285
https://doi.org/10.1038/ng.3285
https://doi.org/10.1038/ng.3285
https://doi.org/10.1038/ng.3285
https://doi.org/10.1038/ng.3285
https://pubmed.ncbi.nlm.nih.gov/25985137
https://doi.org/10.1038/nrn.2016.167
https://doi.org/10.1038/nrn.2016.167
https://doi.org/10.1038/nrn.2016.167
https://doi.org/10.1038/nrn.2016.167
https://doi.org/10.1038/nrn.2016.167
https://doi.org/10.1038/nrn.2016.167
https://doi.org/10.1038/nrn.2016.167
https://doi.org/10.1038/nrn.2016.167
https://doi.org/10.1038/nrn.2016.167
https://doi.org/10.1038/nrn.2016.167
https://pubmed.ncbi.nlm.nih.gov/28053326
https://doi.org/10.1371/journal.pcbi.1008347
https://doi.org/10.1371/journal.pcbi.1008347
https://doi.org/10.1371/journal.pcbi.1008347
https://doi.org/10.1371/journal.pcbi.1008347
https://doi.org/10.1371/journal.pcbi.1008347
https://doi.org/10.1371/journal.pcbi.1008347
https://doi.org/10.1371/journal.pcbi.1008347
https://doi.org/10.1371/journal.pcbi.1008347
https://doi.org/10.1371/journal.pcbi.1008347
https://pubmed.ncbi.nlm.nih.gov/33667224
https://doi.org/10.1016/j.neuroimage.2023.120081
https://doi.org/10.1016/j.neuroimage.2023.120081
https://doi.org/10.1016/j.neuroimage.2023.120081
https://doi.org/10.1016/j.neuroimage.2023.120081
https://doi.org/10.1016/j.neuroimage.2023.120081
https://doi.org/10.1016/j.neuroimage.2023.120081
https://doi.org/10.1016/j.neuroimage.2023.120081
https://doi.org/10.1016/j.neuroimage.2023.120081
https://doi.org/10.1016/j.neuroimage.2023.120081
https://doi.org/10.1016/j.neuroimage.2023.120081
https://pubmed.ncbi.nlm.nih.gov/37011715
https://doi.org/10.1037/xge0001184
https://doi.org/10.1037/xge0001184
https://doi.org/10.1037/xge0001184
https://doi.org/10.1037/xge0001184
https://doi.org/10.1037/xge0001184
https://doi.org/10.1037/xge0001184
https://doi.org/10.1037/xge0001184
https://pubmed.ncbi.nlm.nih.gov/35130011
https://doi.org/10.1016/j.celrep.2023.113597
https://doi.org/10.1016/j.celrep.2023.113597
https://doi.org/10.1016/j.celrep.2023.113597
https://doi.org/10.1016/j.celrep.2023.113597
https://doi.org/10.1016/j.celrep.2023.113597
https://doi.org/10.1016/j.celrep.2023.113597
https://doi.org/10.1016/j.celrep.2023.113597
https://doi.org/10.1016/j.celrep.2023.113597
https://doi.org/10.1016/j.celrep.2023.113597
https://doi.org/10.1016/j.celrep.2023.113597
https://pubmed.ncbi.nlm.nih.gov/38159275
https://doi.org/10.1073/pnas.2203039119
https://doi.org/10.1073/pnas.2203039119
https://doi.org/10.1073/pnas.2203039119
https://doi.org/10.1073/pnas.2203039119
https://doi.org/10.1073/pnas.2203039119
https://doi.org/10.1073/pnas.2203039119
https://doi.org/10.1073/pnas.2203039119
https://doi.org/10.1073/pnas.2203039119
https://pubmed.ncbi.nlm.nih.gov/36191210
https://doi.org/10.1016/j.neuroimage.2020.117046
https://doi.org/10.1016/j.neuroimage.2020.117046
https://doi.org/10.1016/j.neuroimage.2020.117046
https://doi.org/10.1016/j.neuroimage.2020.117046
https://doi.org/10.1016/j.neuroimage.2020.117046
https://doi.org/10.1016/j.neuroimage.2020.117046
https://doi.org/10.1016/j.neuroimage.2020.117046
https://doi.org/10.1016/j.neuroimage.2020.117046
https://doi.org/10.1016/j.neuroimage.2020.117046
https://doi.org/10.1016/j.neuroimage.2020.117046
https://pubmed.ncbi.nlm.nih.gov/32603858
https://doi.org/10.1016/j.neuroimage.2021.118836
https://doi.org/10.1016/j.neuroimage.2021.118836
https://doi.org/10.1016/j.neuroimage.2021.118836
https://doi.org/10.1016/j.neuroimage.2021.118836
https://doi.org/10.1016/j.neuroimage.2021.118836
https://doi.org/10.1016/j.neuroimage.2021.118836
https://doi.org/10.1016/j.neuroimage.2021.118836
https://doi.org/10.1016/j.neuroimage.2021.118836
https://doi.org/10.1016/j.neuroimage.2021.118836
https://doi.org/10.1016/j.neuroimage.2021.118836
https://pubmed.ncbi.nlm.nih.gov/34942364
https://doi.org/10.1177/0956797619831612
https://doi.org/10.1177/0956797619831612
https://doi.org/10.1177/0956797619831612
https://doi.org/10.1177/0956797619831612
https://doi.org/10.1177/0956797619831612
https://doi.org/10.1177/0956797619831612
https://doi.org/10.1177/0956797619831612
https://pubmed.ncbi.nlm.nih.gov/30950321
https://doi.org/10.1038/s41586-023-05745-x
https://doi.org/10.1038/s41586-023-05745-x
https://doi.org/10.1038/s41586-023-05745-x
https://doi.org/10.1038/s41586-023-05745-x
https://doi.org/10.1038/s41586-023-05745-x
https://doi.org/10.1038/s41586-023-05745-x
https://doi.org/10.1038/s41586-023-05745-x
https://doi.org/10.1038/s41586-023-05745-x
https://doi.org/10.1038/s41586-023-05745-x
https://doi.org/10.1038/s41586-023-05745-x
https://pubmed.ncbi.nlm.nih.gov/36890392
https://doi.org/10.1002/hbm.25007
https://doi.org/10.1002/hbm.25007
https://doi.org/10.1002/hbm.25007
https://doi.org/10.1002/hbm.25007
https://doi.org/10.1002/hbm.25007
https://doi.org/10.1002/hbm.25007
https://doi.org/10.1002/hbm.25007
https://doi.org/10.1002/hbm.25007
https://doi.org/10.1002/hbm.25007
https://pubmed.ncbi.nlm.nih.gov/32364670
https://doi.org/10.1111/j.0950-0804.2005.00250.x
https://doi.org/10.1111/j.0950-0804.2005.00250.x
https://doi.org/10.1111/j.0950-0804.2005.00250.x
https://doi.org/10.1111/j.0950-0804.2005.00250.x
https://doi.org/10.1111/j.0950-0804.2005.00250.x
https://doi.org/10.1111/j.0950-0804.2005.00250.x
https://doi.org/10.1111/j.0950-0804.2005.00250.x
https://doi.org/10.1111/j.0950-0804.2005.00250.x
https://doi.org/10.1111/j.0950-0804.2005.00250.x
https://doi.org/10.1111/j.0950-0804.2005.00250.x
https://doi.org/10.1111/j.0950-0804.2005.00250.x
https://doi.org/10.1111/j.0950-0804.2005.00250.x
https://doi.org/10.1016/j.neuroimage.2020.117164
https://doi.org/10.1016/j.neuroimage.2020.117164
https://doi.org/10.1016/j.neuroimage.2020.117164
https://doi.org/10.1016/j.neuroimage.2020.117164
https://doi.org/10.1016/j.neuroimage.2020.117164
https://doi.org/10.1016/j.neuroimage.2020.117164
https://doi.org/10.1016/j.neuroimage.2020.117164
https://doi.org/10.1016/j.neuroimage.2020.117164
https://doi.org/10.1016/j.neuroimage.2020.117164
https://doi.org/10.1016/j.neuroimage.2020.117164
https://pubmed.ncbi.nlm.nih.gov/32679253
https://doi.org/10.1038/s41586-023-05746-w
https://doi.org/10.1038/s41586-023-05746-w
https://doi.org/10.1038/s41586-023-05746-w
https://doi.org/10.1038/s41586-023-05746-w
https://doi.org/10.1038/s41586-023-05746-w
https://doi.org/10.1038/s41586-023-05746-w
https://doi.org/10.1038/s41586-023-05746-w
https://doi.org/10.1038/s41586-023-05746-w
https://doi.org/10.1038/s41586-023-05746-w
https://doi.org/10.1038/s41586-023-05746-w
https://pubmed.ncbi.nlm.nih.gov/36890374
https://doi.org/10.1016/j.neuroimage.2022.119588
https://doi.org/10.1016/j.neuroimage.2022.119588
https://doi.org/10.1016/j.neuroimage.2022.119588
https://doi.org/10.1016/j.neuroimage.2022.119588
https://doi.org/10.1016/j.neuroimage.2022.119588
https://doi.org/10.1016/j.neuroimage.2022.119588
https://doi.org/10.1016/j.neuroimage.2022.119588
https://doi.org/10.1016/j.neuroimage.2022.119588
https://doi.org/10.1016/j.neuroimage.2022.119588
https://doi.org/10.1016/j.neuroimage.2022.119588
https://pubmed.ncbi.nlm.nih.gov/36057404
https://doi.org/10.1101/2023.12.04.569974
https://doi.org/10.1101/2023.12.04.569974
https://doi.org/10.1101/2023.12.04.569974
https://doi.org/10.1101/2023.12.04.569974
https://doi.org/10.1101/2023.12.04.569974
https://doi.org/10.1101/2023.12.04.569974
https://doi.org/10.1101/2023.12.04.569974
https://doi.org/10.1101/2023.12.04.569974
https://doi.org/10.1101/2023.12.04.569974
https://doi.org/10.1101/2023.12.04.569974
https://doi.org/10.1523/ENEURO.0345-22.2022
https://doi.org/10.1523/ENEURO.0345-22.2022
https://doi.org/10.1523/ENEURO.0345-22.2022
https://doi.org/10.1523/ENEURO.0345-22.2022
https://doi.org/10.1523/ENEURO.0345-22.2022
https://doi.org/10.1523/ENEURO.0345-22.2022
https://doi.org/10.1523/ENEURO.0345-22.2022
https://doi.org/10.1523/ENEURO.0345-22.2022
https://doi.org/10.1523/ENEURO.0345-22.2022
https://doi.org/10.1523/ENEURO.0345-22.2022
https://doi.org/10.1523/ENEURO.0345-22.2022
https://pubmed.ncbi.nlm.nih.gov/36657966
https://doi.org/10.1038/s44220-023-00057-5
https://doi.org/10.1038/s44220-023-00057-5
https://doi.org/10.1038/s44220-023-00057-5
https://doi.org/10.1038/s44220-023-00057-5
https://doi.org/10.1038/s44220-023-00057-5
https://doi.org/10.1038/s44220-023-00057-5
https://doi.org/10.1038/s44220-023-00057-5
https://doi.org/10.1038/s44220-023-00057-5
https://doi.org/10.1038/s44220-023-00057-5
https://doi.org/10.1038/s44220-023-00057-5
https://pubmed.ncbi.nlm.nih.gov/37251494
https://doi.org/10.1162/netn_a_00323
https://doi.org/10.1162/netn_a_00323
https://doi.org/10.1162/netn_a_00323
https://doi.org/10.1162/netn_a_00323
https://doi.org/10.1162/netn_a_00323
https://doi.org/10.1162/netn_a_00323
https://doi.org/10.1162/netn_a_00323
https://doi.org/10.1162/netn_a_00323
https://doi.org/10.1162/netn_a_00323
https://doi.org/10.1162/netn_a_00323
https://pubmed.ncbi.nlm.nih.gov/37781138
https://doi.org/10.1038/s41467-021-25162-w
https://doi.org/10.1038/s41467-021-25162-w
https://doi.org/10.1038/s41467-021-25162-w
https://doi.org/10.1038/s41467-021-25162-w
https://doi.org/10.1038/s41467-021-25162-w
https://doi.org/10.1038/s41467-021-25162-w
https://doi.org/10.1038/s41467-021-25162-w
https://doi.org/10.1038/s41467-021-25162-w
https://doi.org/10.1038/s41467-021-25162-w
https://doi.org/10.1038/s41467-021-25162-w
https://pubmed.ncbi.nlm.nih.gov/34433806
https://doi.org/10.4324/9781410605931
https://doi.org/10.4324/9781410605931
https://doi.org/10.4324/9781410605931
https://doi.org/10.4324/9781410605931
https://doi.org/10.4324/9781410605931
https://doi.org/10.4324/9781410605931
https://doi.org/10.4324/9781410605931
https://doi.org/10.1111/j.1745-6924.2009.01127.x
https://doi.org/10.1111/j.1745-6924.2009.01127.x
https://doi.org/10.1111/j.1745-6924.2009.01127.x
https://doi.org/10.1111/j.1745-6924.2009.01127.x
https://doi.org/10.1111/j.1745-6924.2009.01127.x
https://doi.org/10.1111/j.1745-6924.2009.01127.x
https://doi.org/10.1111/j.1745-6924.2009.01127.x
https://doi.org/10.1111/j.1745-6924.2009.01127.x
https://doi.org/10.1111/j.1745-6924.2009.01127.x
https://doi.org/10.1111/j.1745-6924.2009.01127.x
https://doi.org/10.1111/j.1745-6924.2009.01127.x
https://doi.org/10.1111/j.1745-6924.2009.01127.x
https://pubmed.ncbi.nlm.nih.gov/26158966
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://pubmed.ncbi.nlm.nih.gov/24875392



