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Abstract

This study investigated surgical workflow analysis by compar-

ing frame-based and event-based methodologies. Initial research fo-

cused heavily on frame-wise classification and metrics. At the out-

set, we assessed traditional models against a proposed frame-based

sequence-to-sequence model using both frame-based and event-based

metrics across multiple datasets, including Cholec80 and an in-house

Sacrocolpopexy dataset. Although conventional frame-based tech-

niques generally performed well, they struggled with lengthy and com-

plex surgical videos when evaluated on event-based metrics. Despite

our proposed sequence-to-sequence model achieving superior event-

based metrics, it still had limitations. Therefore, we introduced a

new transition-retrieval configuration incorporating several innovative

models: the TRN model for offline segmentation, and the enhanced

ATRN model providing both offline/online segmentation and antici-

pation tasks. These methods showed improved performance in seg-

mentation tasks by integrating transitions and minimizing frame-level

noise. The study also underscored the importance of event-based met-

rics in capturing long-term temporal patterns and phase continuity,

which is essential in the medical field.The Sacrocolpopexy dataset,

which involves a unique type of surgery to current surgical workflow

analysis benchmarks, contains surgeries of longer duration than those

in existing benchmarks, thus increasing the likelihood of transition

over-detection. We observed that the transition-retrieval configura-

tion yields better results for this dataset. The research concluded

that while traditional frame-based approaches are effective for quick

evaluations, event-based metrics offer more detailed and accurate seg-

mentation, which is essential for downstream surgical applications.
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geons with real-time, data-driven insights. This leads to increased accuracy,
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tools streamline surgical processes, potentially shortening operation times

and reducing patient recovery periods. This can translate to cost savings for

healthcare systems and improved patient satisfaction.

Moreover, the adoption of Computer Assisted Intervention (CAI) systems

incorporating our models facilitates continuous surgical training and profi-

ciency assessments. By offering detailed, phase-specific feedback on surgical

performance, these systems empower surgeons to refine their techniques and

learn from retrospective analyses. As a result, the surgical community can

achieve consistent improvements in skill levels and procedural standards.
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from this research can stimulate further advancements in machine learning

and artificial intelligence. The novel approaches to workflow segmentation
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learning, our research supports the ongoing development of intelligent, au-
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tonomous systems capable of performing complex tasks with minimal human

intervention.

In conclusion, the impact of this research extends from enhancing the quality

and efficacy of minimally invasive surgeries to driving innovations in artificial

intelligence and machine learning. These advancements foster a collabora-

tive and more efficient healthcare environment, ultimately benefiting society

by improving medical outcomes and supporting technological growth.
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1 Introduction

Laparoscopic surgery, often referred to as a type of minimally invasive surgery,

involves performing procedures via small cuts with the aid of a camera and

specialized instruments. Due to the fact that minimally invasive surgery does

not allow for direct access to the surgical site as traditional open surgery

does, the procedure can be more complicated for the surgeon, and in some

instances, it might take a longer time to complete. Thus, Computer As-

sisted Intervention (CAI) has the potential to become crucial in modern la-

paroscopic surgery. It provides surgeons with improved visualization, higher

accuracy, and better operative control. The integration of CAI into laparo-

scopic procedures has revolutionized the field by facilitating minimally in-

vasive surgeries that reduce patient recovery durations and enhance surgery

success rates. [26,33,62,66,69,92,96]

During CAI, various types of data can be produced during operations, includ-

ing instrument kinematics signals [47,96], surgical gesture information [6,8],

and data from model-integrated force sensors [48, 70]. However, the most

significant data generated is undoubtedly the vast amount of surgical video

data.

With more retrospective surgical video data available for researchers, ma-

chine learning models and video-based surgical vision systems, which heavily

rely on data, have made significant advancements. Generally, Machine learn-

ing methods can enhance surgical quality and efficiency by offering more ac-

curate decisions [63,89], quicker decision-making, and comprehensive patient

status monitoring [36] during ongoing surgeries, or aid in retrospective anal-

ysis [12], quality control [54], and auditing of recorded surgical videos [39].

In addition to these general benefits, there are particular CAI applications

that are highly advantageous in laparoscopic surgery.
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In this study, we will focus on surgical workflow analysis, a key aspect of

CAI that supports surgeons in various stages of an operation, including the

preoperative, intraoperative, and postoperative phases. It offers a standard-

ised timeline of an operation, as defined by its different phases. This helps

in assessing surgical proficiency, improving surgical training, and providing

essential data for audits and support systems [48]. As a consequence, these

analyses provide surgeons with detailed insights into their performance, al-

lowing for technique refinement, better patient outcomes, and providing real-

time feedback during surgery to enhance decision-making and potentially

lower the risk of complications [23] .

We identify two main computational tasks for analyzing surgical workflows:

segmentation and anticipation. Surgical workflow segmentation breaks down

a procedure into distinct phases or stages and can be classified into online

and offline tasks. Online video segmentation processes frames as they are

received in real-time, ideal for applications needing instant feedback. Offline

video segmentation occurs after recording is complete, allowing for more com-

plex algorithms aimed at higher accuracy and quality. Different methods are

chosen based on the context. Surgical workflow anticipation forecasts and

prepares the sequence of tasks during an operation, ensuring the necessary

instruments, equipment, and staff are ready and keeping the team informed.

Initially, this PhD research focused on segmentation in the first two studies

and developed hybrid methods for both segmentation and anticipation in

the third study.

The state-of-the-art in this domain is based on supervised deep learning.

Given the temporal nature of this problem, the majority of the state-of-the-

art models for surgical workflow segmentation can be decomposed into two

components: feature extractor and feature classifier. The feature extractor
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normally is a convolutional neural network (CNN) backbone that converts

images or batches of images (clips) into feature vectors. Figure 1 provides

an illustration of this setup.

Phase 1    Phase 2    Phase 3    Phase 4    Phase 5

Frame-wise Classification Model

Coventional Setup:

P1 P2 P3 P5P4
Original video input

Feature extractorFeature sequence

Classification Output

Figure 1: The conventional model configuration for workflow segmentation
task

Most of the features extracted at this stage are spatial features or fine-

level temporal features depending on the type of the input. Considering that

long-term information in surgical video sequences aids the classification pro-

cess, the following feature classifier predicts phases based on a temporally

ordered sequence of extracted features.

At the beginning of this PhD research, the leading methods for automated

workflow segmentation primarily relied on frame-wise multi-label classifica-

tion. We assessed the performance of the then state-of-the-art model on

an in-house laparoscopic sacrocolpopexy dataset (a different surgery that

has not been evaluated in public benchmarks) comprising videos signifi-

cantly longer than typical surgical datasets, using standard frame-wise eval-
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uation metrics and commonly-used segmental metrics for general activity

segmentation tasks. It was demonstrated that models with high accuracy

are still prone to predict erroneous transitions randomly distributed within

sequences. Specifically unexpected transitions can be easily detected at ac-

tual phase transitions. This phenomenon is particularly pronounced in long

video sequences. Therefore, the subsequent work introduced an event-based

phase-wise configuration, which was thoroughly validated against the state-

of-the-art methods using both public benchmarks and our large-video in-

house video dataset. The key contributions of this research are summarized

in the later section.

1.1 Report Outline

This report is divided into 5 major chapters. Chapter 2 contains the lit-

erature review which provides the background information for the datasets

and evaluation metrics related to this research. Also, a summary for the

state-of-the-art AI techniques applied in this field is included in this chapter.

In Chapter 3, we conducted experiments on large-scale surgical video datasets

using both frame-wise metrics (including accuracy, precision, recall, and F1-

score) and event-based segmental metrics (a modified Ward Metric [97]),

which consider the number of erroneous classification transitions. These ex-

periments address the issue that conventional methods often underperform

on event-based metrics, particularly with large videos. We proposed the

use of a sequence-to-sequence architecture, which to our knowledge, is the

first application of such an approach to workflow segmentation. An ablation

study was performed on the proposed model. The results were presented

using the Cholec80 dataset and the in-house dataset.

Although the sequence-to-sequence network showed improved performance

on event-based metrics, it remains essentially a frame-wise classification
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model and cannot completely avoid over-segmentation, particularly near

transitions. In Chapter 4, we propose the Transition Retrieval Network

(TRN) with a novel workflow segmentation configuration that emphasizes

event-based metrics. This model focuses on identifying transitions between

phases directly, rather than labeling each individual frame. Reinforcement

learning is applied in this model. To maintain consistency with activity seg-

mentation tasks, we use standard segmental metrics such as EDIT and F1@k

to evaluate performance on the Cholec80 and in-house datasets.

Chapter 4 has demonstrated the efficacy of transition detection over frame-

specific classification in surgical workflow segments. Nonetheless, the ar-

rangement remains rudimentary. The output of the proposed approach is

restricted to discrete action spaces, which is less computationally efficient,

and the method can only handle offline video processing. In chapter 5, we

have enhanced the transition-retrieval configuration with improvements to

address these concerns. Additionally, by enabling the model to act within a

continuous action space, similar to the format used in workflow anticipation

tasks,we designed a hybrid model capable of concurrently performing work-

flow segmentation and anticipation. The performance of this hybrid model

has been comprehensively evaluated on three datasets using frame-based and

event-based segmental metrics.

Finally, a conclusion on current work is presented in Chapter 6.

1.2 Contribution

Chapter 3 have contributed to the following publication at IJCARS and will

be referenced as [J1].
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• ZHANG, Yitong, et al. Large-scale surgical workflow segmentation

for laparoscopic sacrocolpopexy. International Journal of Computer

Assisted Radiology and Surgery, 2022, 1-11.

The contributions of [J1] are:

• A general sequence-to-sequence temproal model formulation of the sur-

gical workflow segmentation problem and several implementations with

different configurations (time-synchronous and time-shifted), architec-

tures (LSTM [41] and transformer [95]) and learning strategies. The

time-shifted configuration has the advantage of not requiring a fine-

level initialisation beyond the first few frames of a video.

• Introducing workflow segmentation in the context of laparoscopic sacro-

colpopexy, with its significant challenges in terms of large and highly

varying phase duration. These differences are also highlighted in com-

parison with the widely used benchmark Cholec80.

• An event-based evaluation methodology for surgical workflow that com-

plements standard classification metrics to inform on potential work-

flow applications such as automated time-stamping of events.

Chapter 4 have contributed to the following publication at MICCAI 2022

and is referenced as [C1]. The contributions of [C1] are:

• We propose a novel formulation for surgical workflow segmentation

based on phase transition retrieval. This strictly enforces that surgical

phases are continuous temporal intervals, and immune to frame-level

noise.

• We propose Transition Retrieval Network (TRN) that actively searches

for phase transitions using multi-agent reinforcement learning. We

describe a range of TRN configurations that provide different trade-

offs between accuracy and amount of video processed.
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• We validate TRN both on the public benchmark Cholec80 and on an in-

house dataset of laparoscopic sacropolpopexy, where we demonstrate

a single phase detection application.

Chapter 5 is under review and is referenced as [J2]. The contributions of

[J2] are:

• We introduce the novel architecture ATRN, to simultaneously retrieve

all phase transition timestamps in a surgical video, while only process-

ing a fraction of its frames. The multi-purpose nature of ATRN enables

application to both online/offline phase segmentation and online phase

anticipation.

• Our online/offline segmentation models achieved superior performance

in segment-level metrics (edit score) compared to the state-of-the-art

methods, enabling more accurate prediction of the exact start and

end timestamps of each phase, while keeping competitive frame-level

performance (f1-score).

• Our offline segmentation model significantly reduces computational

costs with respect to state-of-the-art by processing only a fraction of

the whole video.

• Our online anticipation model has superior performance when com-

pared to the state-of-the-art. We also demonstrate that accurate an-

ticipation can be achieved from a small window of frames.

• We showcase the effectiveness of our method across three datasets: two

public benchmarks (Cholec80, Cataract101) and an in-house dataset

of laparoscopic sacropolpopexy (Sacro56).
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2 Background

In this chapter, we provide a comprehensive background on surgical workflow

analysis. We provide a overview of the essential machine learning configu-

rations for analyzing surgical workflows and examined the latest literature

in this area. In addition, we review and compare the datasets and evalua-

tion metrics used in both general activity recognition tasks and the surgical

workflow analysis domain, highlighting and identifying the differences be-

tween them.

Activity or action segmentation refers to the process of dividing a continuous

sequence of actions or activities into distinct segments, each representing a

specific activity. This technique is widely used in various fields. Applications

of activity segmentation include video surveillance for security purposes, ac-

tivity monitoring for elderly or patients in healthcare, sports analytics, and

improving user experience in interactive systems. [1,2,34,82]. Surgical work-

flow segmentation, being a subset of activity segmentation, utilizes similar

techniques and some of the same evaluation metrics as those employed in

general activity segmentation tasks.

This chapter begins with a literature review that encapsulates the current

advancements in surgical workflow analysis, associated with sections summa-

rize both the datasets and evaluation metrics employed to assess performance

across various methodologies. The chapter concludes with a discussion on

the limitations of existing approaches, datasets, and metrics, which serve as

the impetus for this research.

It is noteworthy that genuine clinical evidence in the field of surgical workflow

analysis remains scarce. While metrics for activity segmentation tasks are

often presented, it is uncommon for researchers to assess their methods us-
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ing clinical metrics. Certain economic factors and ethical consent challenges

could serve as major barriers in assessing methods based on clinical metrics.

While our study focuses on comparing activity segmentation metrics, we aim

to highlight the significance of incorporating actual clinical metrics—such as

complication rates, blood loss, mortality, and readmission rates—as a crucial

future direction for workflow analysis in this domain.

2.1 Surgical workflow analysis

In the introduction, two primary tasks of surgical workflow analysis were

identified: surgical workflow segmentation and surgical workflow anticipa-

tion. Segmentation seeks to divide the entire surgical procedure into various

temporal phases, whereas anticipation predicts the time remaining until the

forthcoming surgical phases. The segmentation task is further categorized

into offline and online approaches. Clinically, offline segmentation allows

for the automation of retrospective audits and the review of recorded surgi-

cal procedures [103]. On the other hand, online segmentation coupled with

phase anticipation can deliver real-time contextual data to the surgical team

and support other subsequent algorithms, such as instrument navigation,

risk assessment, and skill analysis [68, 80].

In the majority of image-guided surgeries, the main source of data for work-

flow analysis is video. The standard model architecture to handle this task

in computer vision can be split into two primary components: a feature

extractor that transforms frames of images into high-level, predominantly

spatial feature vectors, and a subsequent sophisticated model that interprets

a sequence of feature vectors to generate the necessary segmentation or pre-

diction output. The configuration specifics were outlined in the introduction

section with the Fig. 1.
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Numerous studies have leveraged additional data sources alongside video,

such as instrument trajectories obtained from robotic joint kinematics [7,57]

or activity signals from surgical tools [98]. Some research relies on tool de-

tection as an initial step for segmenting surgical phases. Despite the efficacy

observed in surgeries like cholecystectomy [13, 44, 94] and cataracts [106],

this approach demands precise tool labels, which necessitate laborious anno-

tation efforts or extra tracking procedures in the operating room. The ap-

plicability of tool/kinematic signals is limited to specific types of surgeries,

whereas video-only sources can be generalized for all surgeries, including our

in-house sacrocolpopexy dataset. Therefore, this study restricts itself to uti-

lizing purely video-based input signals.

2.1.1 Surgical Workflow Phase segmentation

Early studies in surgical phase segmentation relied on handcrafted feature ex-

traction. Linear statistical models such as Hidden Markov Models (HMMs)

[75], Conditional Random Fields (CRFs) [59], and Dynamic Time Warping

(DTW) [11, 55] were then employed to capture the temporal relationships

between extracted features across the entire surgical video. However, these

approaches had limited generalisability and ability to represent the complex

temporal dynamics.

With the advent of deep learning, Convolutional Neural Networks (CNNs)

became the predominant technique to extract high-level spatial features

from visual frames, and in particular ResNet has been widely adopted as

a feature extractor for workflow segmentation. Recent research has mainly

focused on exploring different temporal classification models that operate

on top of extracted CNN features to provide temporal context, including

25



Long Short-Term Memory (LSTM) [44,94], Temporal Convolution Networks

(TCN) [17, 27], and Transformers [18, 31]. More recently, Gated Recurrent

Unit (GRU) has been demonstrated to compete with state-of-the-art in this

task, despite being a relatively simple and old model [19,40].

Recent research has increasingly focused on the hierarchical structures of

temporal information in workflow analysis, proposing various methodolo-

gies to improve surgical workflow recognition by capturing complex multi-

scale temporal patterns and enhancing feature learning. For instance, TM-

RNet [45] leverages a long-range memory bank and a temporal variation

layer, while the segment-attentive hierarchical consistency network (SAHC)

[24] emphasizes high-level segment information and a hierarchical segment-

frame attention module. Additionally, a multi-stage architecture [100] and

SKiT [65], a fast Key Information Transformer, have been introduced to fur-

ther enhance performance and capture global information efficiently.

Additionally, timestamp supervision and uncertainty-aware temporal diffu-

sion have been utilized to reduce manual annotation costs and improve surgi-

cal phase recognition performance by generating trustworthy pseudo labels

from single timestamp annotations and diffusing them to adjacent frames

based on uncertainty scores. [25] Moreover, GLSFormer, a transformer-based

model for surgical step recognition in videos, employs spatio-temporal at-

tention, a two-stream model, and a gating module to capture long-range

dependencies, outperforming existing methods on cataract surgery video

datasets [87]. Lastly, a weakly supervised temporal convolutional network

approach has been proposed for fine-grained surgical activity recognition by

utilizing phase annotations to train an end-to-end spatio-temporal model for

step recognition and introducing a phase-step dependency loss to enforce

weak supervision. [78] Together, these advancements highlight the signifi-

cant strides being made in improving the accuracy and efficiency of surgical
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workflow recognition through sophisticated hierarchical and temporal anal-

ysis techniques.

2.1.2 Surgical Workflow Phase Anticipation

Compared to workflow segmentation, there has been far less work on work-

flow anticipation. Since the outputs for anticipation are typically continuous

values, a regression model is generally used for this task instead of a classi-

fication model. This distinction adds more challenges to both the training

and evaluation processes compared to the segmentation task. Early antici-

pation studies predicted the remaining duration of the ongoing phase [29,50],

while recent works forecast different upcoming phases [80,101]. Some recent

studies have combined surgical phase segmentation and anticipation in joint

frameworks. TransSV employed multi-task learning, with a shared encoder

and separate decoders for each task [46]. Attention mechanisms have been

used to integrate contextual information. While offering both functionali-

ties, these hybrid models still rely on frame-by-frame classification. On the

other-hand, this paper introduces further accuracy gains with our model fo-

cused on phase transitions.

2.2 Datasets

The tasks of activity recognition and segmentation have been explored across

various fields, such as cooking, manufacturing, and sports, using several

well-known datasets like 50 Salads [90], Breakfast [53], EPIC-Kitchen [20],

Assembly101 [86] and MultiThumos [99]. However, surgical procedures pos-

sess distinct features and challenges that necessitate a focused study. Many
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types of surgeries exhibit clearly defined temporal phases (e.g., cholecystec-

tomy [74], robotic prostatectomy [5], cataracts [93]), in which specific actions

are performed with certain instruments targeting specific anatomical regions

at particular times. The same procedure may be carried out by surgeons with

varying expertise at different times (e.g., a consultant might take over from

a junior trainee during a more sensitive part of the operation). These sce-

narios create a unique temporal context vocabulary for surgical procedures,

which allows for specialized modeling of temporal phases and events for work-

flow analysis [32]. Some datasets that capture these surgical characteristics

include cholecystectomy (Cholec80) [94], cataracts (CATRACT101) [106],

micro-surgical anastomosis on artificial blood vessels (MISAW) [42], or gen-

eral surgeon action detection (ESAD) [9]. We have compiled the details of

these datasets in Table 1 to summarize and compare the similarities and

differences across the datasets used in these domains.

Additionally, an overview of the Cholec80, Cataract, and Sacrocolpopexy

datasets is presented below, as these are the primary datasets employed in

this study for assessing the models’ performance.

2.2.1 Cholec80

Cholec80 is one the most widely used datasets for surgical workflow anal-

ysis [13, 94] and tool segmentation [81] . It contains 80 videos of cholecys-

tectomy surgeries performed by 13 surgeons. The videos are captured at 25

fps. There are 7 phases in this surgery which are: 1)Preparation; 2) Calot

triangle dissection; 3) Clipping and cutting; 4) Gallbladder dissection; 5)

Gallbladder packaging; 6) Cleaning and coagulation; 7) Gallbladder retrac-

tion. The average duration of this surgery is 38min. Figure 2 shows some
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Table 1: Summary of datasets information for surgical workflow and general
action segmentation
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example images for each phase in cholecystectomy surgery.

(a) Phase 1 (b) Phase 2 (c) Phase 3 (d) Phase 4

(e) Phase 5 (f) Phase 6 (g) Phase 7

Figure 2: Surgical phases of cholecystectomy surgery: 1)Preparation; 2)
Calot triangle dissection; 3) Clipping and cutting; 4) Gallbladder dissection;
5) Gallbladder packaging; 6) Cleaning and coagulation; 7) Gallbladder re-
traction.

2.2.2 Cataract-101

Cataract101 [84] is a public dataset consisting of 101 cataract surgery videos

performed by different surgeons over a 9-month period. The surgical sites

and anatomy structures involved in this dataset are very different from those

of laparoscopy. In cataract surgery, the surgical site involves the front part

of the eye, known as the cornea. A small incision is made at the edge of the

cornea to allow access to the lens. Through this incision, the clouded lens

(cataract) is removed and replaced with a clear artificial lens. Displayed be-

low are the illustrative images depicting the stages of this surgical procedure,

as mentioned in [84]:
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(a) Incision (b) Viscous Agent In-
jection

(c) Rhexis

(d) Hydrodissection (e) Phacoemulsification (f) Irrigation and Aspi-
ration

(g) Capsule Polishing (h) Lens Implant (i) Viscous Agent Re-
moval

(j) Tonifying and An-
tibiotics

Figure 3: Surgical phases of cataract surgery

This surgery is divided in up to 10 phases and their duration is signifi-

cantly shorter compared to the other utilised datasets. After trimming out

the non-phase portions of the surgical video, the average procedure duration

is 8 minutes.
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2.2.3 Laparoscopic Sacrocolpopexy

In addition to public benchmarks, we examined the workflow analysis us-

ing an in-house dataset focusing on laparoscopic sacrocolpopexy surgery.

Laparoscopic sacrocolpopexy is considered the gold standard for treating

vaginal vault prolapse [15]. All videos in this dataset were collected by the

same team of clinicians from UZ Leuven Hospital, Belgium. In scenarios

where trainee surgeons work under the guidance of a trainer surgeon, they

gain experience as they participate in more procedures.

This learning process prompted the clinician team to ask: How long does

it take to train a surgeon to perform sacrocolpopexy at the expert level?

The clinician team investigated the learning curve for proficiency in laparo-

scopic sacrocolpopexy surgery [16]. The results revealed that the most time-

consuming step is the dissection of the vault, which required 31 procedures

for the trainee to attain an operation time comparable to the instructor. In

addition, the quality of the dissection improved with time. The suturing of

the implant to the vault and peritonealisation required only 10 and 6 proce-

dures, respectively. The measurement of durations in lengthy surgical videos

is labor-intensive, and automation through machine learning can help reduce

the effort required.

When compared to public datasets like Cholec80, which has an average du-

ration of 38 minutes, and Cataract101 with an average of 8 minutes, the

sacrocolpopexy surgeries are substantially longer, averaging 3 hours and 10

minutes. This extension in surgical duration raises several rarely discussed

issues: (1) The conventional workflow segmentation configuration, in which

the feature extractor processes each frame, becomes progressively more com-

putationally expensive for longer surgeries, particularly when a large volume
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of videos is processed for offline tasks. Minimizing the computational de-

mands associated with feature extraction can substantially lower the compu-

tational expenses for offline activities.(2) Frame-wise classification outputs

inevitably contain noise. Even with the same performance in frame-wise

metrics (e.g., accuracy), the issue of overpredicting the presence of tran-

sitions may be more pronounced in lengthy sequences. Therefore, a more

comprehensive evaluation metric is required to analyze performance in large

surgical videos. (3) In practice, surgeons need more preparation and longer

rest periods during lengthy surgeries, which may include frames where the

laparoscopic camera is removed from the patient, entirely altering the visual

context. Properly handling these non-phase frames is another open question

that could affect the performance of methods for segmenting long surgical

videos.

This in-house dataset contains 14 videos (Sacro14) of laparoscopic sacro-

colpopexy surgery in the first research of Sequence-to-sequence network in

Chapter 3. The dataset expanded to 38 videos (Sacro38) during the TRN

study as discussed in Chapter 4, and ultimately reached 56 videos (Sacro56)

in the third study on ATRN presented in Chapter 5. Two surgeons operated

simultaneously with one of them manipulating the laparoscopic instruments

and the other controls the tissues.
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(a) Phase 1 (b) Phase 2 (c) Phase 3

(d) Phase 4 (e) Phase 5

Figure 4: Surgical phases of laparoscopic sacrocolpopexy: 1) promontory
preparation; 2) dissection of vault and gutter; 3) mesh fixation to vault; 4)
mesh fixation to promontory; 5) peritonealisation.

The videos are acquired at 24 fps resolution with a display resolution of

1920 × 1080 pixels. Most videos captured complete procedures, where the

average duration was 3 hours 13 minutes with the shortest video of 1 hours

and 47 minutes and the longest video of 4 hours 56 minutes. Each video was

annotated by an expert Gynaecologist to indicate the start, the end and any

pausing and resuming of each phase as timestamps.

Recently, the clinical team has introduced several enhancements in perform-

ing laparoscopic sacrocolpopexy. Surgical robots are employed for this pro-

cedure. Furthermore, traditional suturing has been substituted with a new

gluing technique. The impact of these changes on patient outcomes and the

reliability of the surgical workflow analysis model is still uncertain. While

this research does not allow sufficient time to address these issues compre-
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P1 P2
Ground truth

High Event-based score, Low Frame-based score

High Frame-based score, Low Event-based score

Figure 5: Example in differences between frame-based metrics and event-
based metrics

hensively, they warrant further investigation based on the findings of this

study.

2.3 Evaluation metric

In general, evaluation metrics are classified into two types: frame-based seg-

mental evaluation metrics and event-based evaluation metrics. Frame-based

metrics gauge model predictions using frame-level performance indicators

such as accuracy and F1 score. On the other hand, segmental metrics as-

sess sequences by considering the continuity of phases or steps. Funke, I.

et.al. [30] highlights the inconsistencies found in the evaluation processes of

various surgical phase recognition methods, particularly those evaluated on

the Cholec80 benchmark. An example showing the difference between the

two types of metrics is shown in Figure 5. In our research, we chose accu-

racy and F1 score, which are the metrics most commonly used in surgical

workflow segmentation, and we examined a series of segmental(event-based)

metrics to evaluate the segmental behavior of the sequences.
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2.3.1 Frame-based metric

The most common evaluation metrics for workflow analysis are the mea-

surement of video-based accuracy, phase-based precision and recall. These

measurements are easy to calculate and provide a quick intuition on the

performance of the models. In our work, we provide macro-averaged (per

phase) precision and recall, F1-score calculated through this precision and

recall, and micro-averaged accuracy. Macro-average treats all phases equally

by computing the metric independently for each class and then averaging the

results. Micro-average aggregates the contributions of all classes to compute

the metric globally by considering all instances together. The equations for

these metrics are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2 ∗ Precision ∗Recall

Precision + Recall
(4)

TP denotes true positives, TN denotes true negatives, FP denotes false pos-

itives, and FN denotes false negatives.

2.3.2 Event-based metric

In light of the preceding study, it has been observed that the assessment

and comparison of surgical workflow segmentation, viewed as an action seg-

mentation task, predominantly rely on frame-level metrics. These metrics,

however, do not entirely capture the effectiveness of the methods used in

this time-based action segmentation task. Human understanding to a se-
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quence is a complex problem as we are not only analysing the precision and

recall but also the continuity of actions. Segmentation metrics outperform

frame-level metrics in scenarios such as: 1. Evaluating the structure and

order of actions in surgical procedures, offering a holistic view unlike frame-

level metrics, which focus on individual frames [77]. 2. Tasks requiring clear

transitions between actions, where event-based metrics capture changes more

effectively than frame-level metrics, which consider frames separately [105].

3. Long-duration activities with dispersed action points, where segmenta-

tion metrics provide a more accurate assessment over the entire period, in

contrast to frame-level metrics that may focus on specific moments [3]. 4.

Reverting to an earlier phase is an unfavorable indication in surgery, but

it is difficult to recognize within the frame-based evaluation metric. In this

study, we utilize three segmental metrics to address the previously mentioned

drawbacks of the frame-based metric. These metrics include Ward’s metric,

EDIT score, and F1@50.

An event in action segmentation can be defined as continuous positive la-

bels with a start time and a stop time. Ward define 5 types of error by

comparing the predicted sequence to the ground truth sequence as: dele-

tion(D), insertion(I′), merge(M, M′), fragmentation(F, F′), and Fragmented

and Merged(FM, FM′), where the prime symbol indicates the segment in

the predicted sequence. Figure 6 shows an example sequence with the each

type of error where C stands for correctly predicted.

Figure 6: Event-based Ward Metric Error Definition [97]
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Ward Metric The Ward metric counts each type of error individually and

summarizes them in an event analysis diagram (EAD). In our research, as

a multi-class classification problem, we implemented the ward metric phase-

by-phase and added them up to obtain the final evaluation of a single se-

quence. We define event ratio as Egt

Edet
where Egt is the number of ground

truth events, and Edet is the number of detected events by each method. We

define a second ratio based on the event evaluated as correct in event-based

Ward metric. We denote the Ward event ratio as ( C
Egt

). For both of these

ratios, values closer to 1 indicate better performance.

Edit Score In various fields, there is considerable uncertainty about when

one action ends and another begins. In applications such as surgical skill

assessment, the order of actions might be more crucial than exact temporal

segmentation. In practice, the edit score metric [60] penalizes less for the

timing offset of an action. For each sequence, the segmental labels G′ and P ′

are designated for the original ground truth G and the prediction sequence

P . For example, if G = {[A], [BBBB], [CC]}, then G′ = {ABC}. The

segmental edit score is described as a normalized edit distance, denoted

se(G
′, P ′), involving insertions, deletions, and substitutions. where

se(G
′, P ′) =

e(G′, P ′)

max(|G′|, |P ′|)
(5)

The function e is the Levenshtein distance. Levenshtein distance is a

metric for measuring the difference between two sequences. It is the mini-

mum number of single-character edits (insertions, deletions, or substitutions)

required to change one segment into the other. Finally, the edit score is cal-
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culated as (1 − se(G
′, P ′)) · 100, with 100 indicating the best score and 0

representing the worst outcome.

F1@k When delving into action detection research, it’s quite common to

encounter works that rely on mean Average Precision (mAP) paired with an

intersection over union (IoU) overlap criterion, often denoted as mAP@k [79].

This metric, mAP@k, is determined by comparing the IoU overlap score for

each action segment against the ground truth action of the same category.

If an IoU score is above a threshold of k percent it is considered a true

positive otherwise, it is deemed a false positive. Researchers calculate the

average precision for each class and then average these results to derive the

mAP value. This metric proves to be particularly beneficial for information

retrieval tasks such as video searching. However, it has limitations, where

the mAP is very sensitive to a confidence score assigned to each segment

prediction. Colin L et al. [58] improved the mAP@k metric into the F1@k

to address this problem. Similarly to mAP detection scores, F1@k compares

the IoU with the ground truth using a specified threshold k. If more than

one correct detection exists within the span of a single true action, only one

is considered a true positive, whereas all others are marked as false posi-

tives. Then the precision and recall for true positives, false positives, and

false negatives aggregated across all classes are computed. In the end, F1@k

is calculated by F1@k = 2∗Precision@k∗Recall@k
Precision@k+Recall@k

.

The F1@k score possesses several key characteristics: (1) it penalizes er-

rors related to over-segmentation, (2) it does not penalize slight temporal

misalignments between predictions and the actual data, which might occur

due to annotation inconsistencies, and (3) it bases scoring on the number of

actions rather than the length of each action instance. Although this metric
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is similar to mAP@k, it does not require confidence in individual predictions.

As shown in [58], qualitatively, the F1@k is better at capturing the quality

of specific segmentations than mAP@k.

2.3.3 Anticipation Metric

The workflow anticipation task enables the model to predict the exact re-

maining time until the next phase begins.Consequently, we follow the method-

ology detailed in [80], using frame-based evaluation metrics like the mean

absolute error (MAE) along with its variations: iMAE and eMAE. The rep-

resentations for iMAE and eMAE are as follows:

iMAE =
1

T

T∑
i

MAE(fi, yi), 0 < y < h (6)

eMAE =
1

T

T∑
i

MAE(fi, yi), 0 < y < 0.1h (7)

Given T as the sequence length, fi representing the estimated remaining

time, and yi being the actual remaining time at the present timestamp, h

denotes the anticipation threshold.

2.4 Discussion

As indicated in Table 1, the distinctions between surgical datasets and gen-

eral action segmentation datasets are evident. Generally, general action

segmentation datasets are more extensive than surgical datasets, offering

a larger number of training samples due to the limited number of videos

in surgical datasets. Furthermore, surgical datasets feature fewer actions

compared to general action segmentation datasets. While surgical datasets

usually segment videos into predefined steps or phases of surgeries, general
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action segmentation datasets aim to make complex predictions by identify-

ing both actions (verbs) and objects (nouns) under certain conditions. The

video content also varies; in surgical datasets, the background is often sim-

ilarly coloured to the operating area, with blood or smoke that may cause

occlusions. Conversely, in general action segmentation datasets, scenes dif-

fer greatly for various actions and have distinct features for identification,

though this can vary based on the specific task and dataset context.

Meanwhile, the commonly used benchmark metrics differ between general

action segmentation and surgical phase segmentation. In action segmenta-

tion, segmental metrics like EDIT or F1@k are often employed for network

performance evaluation. Contrarily, in the surgical phase segmentation do-

main, accuracy and F1 score remain the predominant metrics for perfor-

mance assessment. This frame-by-frame approach is generally simpler to

implement and can be more efficient since each frame is processed indepen-

dently. However, it may fail to capture the temporal relationships between

frames, which are crucial for understanding the progression of a surgical pro-

cedure. This might deem detected erroneous transitions as a less significant

issue, while the offset of predicted phases can be heavily penalized in the

metrics. Conversely, event-based methods treat a sequence of frames as a

single entity (or event), making predictions based on the entire sequence.

This approach captures the temporal dynamics and dependencies between

surgical phases or steps, offering a more comprehensive understanding of the

surgical procedure. Therefore, in the subsequent studies within this thesis,

event-based metric performance is also considered a key factor in method

evaluation.

The vision-task-based metrics reviewed in this section serve to assess the

effectiveness of models used in the analysis of surgical videos. These metrics

are essential to determine how effectively models can identify and predict
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surgical phases and actions, ensuring that the sequence and timing of steps

are meticulously recorded. Nevertheless, analyzing surgical workflows, as a

task with clinical significance, demands more than mere model performance

evaluation in a broad context. Clinical metrics such as operative duration,

blood loss, complication rates, readmission rates, and patient-reported out-

comes are centered on the overall quality and safety of surgical procedures.

These metrics evaluate the efficiency, safety, and effectiveness of surgeries,

offering insights into patient outcomes and the caliber of care provided. Both

categories of metrics are vital for advancing surgical practices, with vision-

task-based metrics enhancing real-time analysis and training, while clinical

metrics guarantee patient safety and superior surgical outcomes. This dis-

cussion primarily focuses on vision-task-based metrics, but it is beneficial to

consider incorporating clinical metrics in future studies on this subject.

In conclusion, it is evident that surgical datasets and general action seg-

mentation datasets differ significantly in terms of their structure, content,

and the metrics used for performance evaluation. The limited number of

videos and the uniformity in surgical datasets pose challenges that are in-

herently difficult to alter. However, by focusing on methods that prioritize

event-based metric performance, we can better capture the temporal dynam-

ics and dependencies within surgical procedures. This approach promises

to provide a more comprehensive understanding and assessment of surgical

phase segmentation, paving the way for more robust and accurate models in

this specialized domain.
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3 Sequence-to-sequence architectures

Through a case study on our in-house Sacrocolpopexy dataset, we identified

the discrepancies in segmental performance across different surgeries and sur-

gical datasets, particularly when the videos in a specific dataset are large.

It was observed that although the standard Endo3D model reached an stat-

of-the-art accuracy of 85.9, it experienced significant fragmentation issues

based on the ward metric, with an event ratio of 0.266. To address this

issue, we propose using sequence-to-sequence (seq2seq) models for coarse-

level phase segmentation to manage the highly variable phase durations in

Sacrocolpopexy. Various architectures (LSTM and transformer), configura-

tions (time-shifted, time-synchronous), and training methods are evaluated

within this proposed framework to assess its adaptability. It is important

to note that this research was conducted just as transformers were about to

gain popularity in the following months, coinciding with the first implemen-

tation work in surgical workflow segmentation, TransSV [31]. This study

confirmed the practicality of using transformers in workflow segmentation,

and showcased a possible configuration for implementing transformers in a

seq2seq model.

We perform 7-fold cross-validation on the Sacro14 dataset. We perform

both a frame-based (accuracy, F1-score) and an event-based (Ward metric)

evaluation of our algorithms and show that different architectures present a

trade-off between higher number of accurate frames (LSTM, Mode average)

or more consistent ordering of phase transitions (Transformer). We compare

the implementations on the widely used Cholec80 dataset and verify that

relative performances are different to those in Sacro14.

43



3.1 Methods

Surgical workflow segmentation can be modeled as a sequential multi-label

classification problem with inherent temporal constraints. Considering the

most recent state-of-the-art deep learning approaches, these temporal con-

straints can be modeled at a fine-level with 3D convolutional neural networks

(3D CNN’s), and at a coarse level with a temporal model, such as LSTM.

In this section, we assume that a fine-level model estimates a sequence of

feature vectors (input sequence) and an initial workflow segmentation pre-

diction from them (target sequence). We will now explore different ways of

processing these sequences at a coarse level to produce an output sequence

that represents our final workflow segmentation.

Input Sequence

Encoder Network Decoder Network

Target Sequence

Output Sequence

a) Many-to-many Model b) Sequence-to-sequence Model

Sequential model

Input Sequence

Output Sequence

Figure 7: Network architectures for coarse-level sequential models. The
main differences from the sequence-to-sequence to the many-to-many model
are: 1) the presence of an encoder-decoder structure, allowing input/output
sequences to have different sizes; 2) In addition to a sequence of feature
vectors (input sequence), the input to this model also includes a sequence of
label classifications (target sequence). The colour legend can be referred to
Figure 8

We refer to conventional recurrent models in this domain as many-to-many

(many2many) models, since both their input and output are sequences with
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the same dimension [38, 64], where each unit in the sequential model pro-

cesses a single input unit from the input sequence and produces a corre-

sponding output, maintaining a one-to-one relationship. Although tech-

niques like padding can be used to align the input and output sequences,

these methods often result in inefficient implementations or require the use

of a large model with superfluous parameters. In contrast, a seq2seq model

can have input and output sequences of different sizes [28] that are linked

by an encoder-decoder architecture. Additionally, a seq2seq model uses the

fine-level predictions (target sequence) to guide feature selection at the the

decoder level [67, 72]. These differences are summarised in Fig. 7. Recent

works have also used related strategies for feature selection though attention

mechanisms in the context of cholecystectomy workflow segmentation [18,31].

3.1.1 Network Architecture

Our proposed network (Fig.8) has two main components: a 3D convolutional

neural network (Conv3D) for fine-level phase classification and a seq2seq

model for coarse-level refinement. Conv3D takes clips xt of 16 consecutive

RGB images with 112×112 pixel resolution. Our 3D convolution architecture

follows the Endo3D network architecture [13] and refers to the hyperparame-

ters used in this work, which is based on Alexnet [52]. The Conv3D Network

utilizes three-dimensional convolutional layers to process data with three

spatial dimensions, typically height, width, and time. This architecture is

particularly advantageous for handling video data and volumetric images,

where temporal information is critical. By applying convolution operations

over both spatial and temporal dimensions, Conv3D is able to capture not

only the spatial features within each frame but also the temporal dynam-

ics across consecutive frames. This allows the network to effectively model

changes over time, making it suitable for tasks such as action recognition

in videos, where understanding the sequence of movements is essential. A

final fully connected layer is added to output 6 classifications (phases in
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sacrocolpopexy) and 7 classifications (phases in Cholec80). Both the final

classification as well as the 1200 dimensional feature vector from the previ-

ous fc8 layer is fed into the seq2seq model (Fig.9)

The seq2seq model analyses a larger video segment, consisting of 100 Conv3D

clips. The base unit of seq2seq sequences are clips, not frames, and therefore

at a coarse-level, we refer to the label of an entire clip as the most frequent

label in its 16 frames. This technique generally has no impact on the clips

during the middle of the phase. However, for clips at the transition, it es-

tablishes a distinct phase transition. During network training, the target

sequence can be defined differently, e.g. as the groundtruth labels.

We implemented seq2seq with two base architectures, LSTM [41] and trans-

former [95].Both of these models can be adapted to the position of the seq2seq

model as shown in Fig.8, without having to alter the input or output struc-

ture of the model. Note that LSTM has been already extensively used for sur-

gical phase segmentation [43,73,106], but only as a conventional many2many

sequential model. In this paper, we refer to LSTM adapted to the seq2seq

structure. We additionally consider two configurations: time-synchronous

and time-shifted.

Time-synchronous Configuration (100 series) The time-synchronous

(Fig.8.a) configuration takes as the target sequence the 100 labels corre-

sponding to the same clips as the fc8 feature vectors. Hence, these networks

are named as LSTM100(L100) and Transformer100(T100) for simplicity.
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Configuration
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Figure 8: Seq2seq Network Architecture with a sequential input consists of
100 clips. The length of the target and output sequence depends on the
configuration of the network: a) in the time-synchronous configuration the
target, input and output sequences correspond to the same time interval
of 100 clips; b) in the time-shifted configuration the target and output se-
quences have a length of 90 time steps with a shift of 10 between them.
Together they span a length of 100 clips which corresponds to the size of
the input sequence that is obtained from the Conv3D feature extractor. To
obtain segmentations for consecutive sequences in a video, the seq2seq pre-
dictions become the target sequence of the next prediction iteration

Time-shifted Configuration (90 series) The time-shifted configuration

(Fig.8.b) takes as the target sequence only the first 90 labels corresponding

to the 100 fc8 feature vectors to predict the last 90 labels of that sequence.

Hence, there are 10 labels in the prediction that act as ’future’ labels relative

to the target sequence with only 80 overlapping labels, caused the target

sequence to shift by 10 timesteps relative to the input sequence. By having

this shift between target sequence and prediction, the detection can have
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the first 90 target sequence to be initialized by the Conv3D network and

the prediction of all following labels in the video relies completely on the

seq2seq model by treating the previous predictions as the current target

sequence recursively. These type of networks are named as LSTM90(L90)

and Transformer90(T90) for simplicity.

3.1.2 Network Parameters

Figure 9: The C3D Network Architecture with each box represting a tensor
with the labeled size

The detailed network parameters of Conv3D are presented in Fig.9. The

fc8 layer that is extracted for sequential model input has a dimension of

1200. This dimension is used as the hidden dimensions of the LSTM model
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for convenience and each separate LSTM model (many-to-many, LSTM en-

coder and LSTM decoder) has 3 hidden layers.

The transformer setup is analogue to the originally proposed default set-

tings [95] with 6 layers of the 8 head encoder-decoder pairs. The input

dimensions are adjusted to fit our input sequence with a sequence length of

100 and the dmodel of 1200. The inner layer dimension for the feed forward

network is reduced to 1000 to decrease the model size. And the sine and

cosine functions of different frequencies are used for positional encoding as

used in the original transformer setup [95].

3.1.3 Network Training Strategies

Conv3D and Seq2seq are trained separately. The Conv3D model was fine-

tuned based on the parameters that have been pre-trained on the Cholec80

dataset, as Cholec80 and our dataset have roughly similar tool usages and the

tissue shares some spatial features. For seq2seq we defined different training

strategies in terms of sampling policy and usage of the target sequence.

All strategies are independently modified from a baseline so that an ablation

study can evaluate them independently. These training strategies are defined

as following:

• Standard method (baseline): During training, the input to the tar-

get sequence are the groundtruth labels. When deployed, the network

uses Conv3D (time-synchronous) or past Seq2Seq (time-shifted) pre-

dictions instead. This is the standard approach for training seq2seq

models in previous works [91]. The entire video is sampled for train-

ing in sequence. For balancing the videos of different lengths in the

training data, a fixed number of sliding windows (200) is sampled from

each video, with their interval changing depending on total video time.

During training, the sliding windows with the same indices will be

extracted from each video and assembled into a batch. Hence, each
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batch contains the samples that are at the same relative positions in

all videos.

• Target Sequence with injected noise (noised): We inject noise

into the groundtruth target sequence to simulate prior classification

errors during training and enabling seq2seq to learn a filtering action.

Noise is injected by randomly replacing 40% with correct labels which

is the average accuracy of applying a pure C3D network to the dataset.

• Target Sequence with Predicted Labels (pred): Similarly to the

previous strategy, we introduce classification errors by using Conv3D

predicted labels as the target sequence. This method may preserve

some internal structures between the predicted labels.

3.1.4 Loss Function

Cross entropy loss is utilized in training the network. The general form of

the loss function for the Conv3D network is:

LConv(y,x) = −1

d

d∑
j=1

n∑
i=1

wiyi,jlog(xi,j), (8)

where x is the softmax output from the network and y is the one-hot la-

bel for that particular clip. There are n classes of labels that represent the

phases and each label has a corresponding weight wi in evaluation. Multiple

samples are trained together with a batch size d and the average loss for all

samples are considered as the general loss for that batch.

The loss function for the sequential model is similar but with an extra time

dimension t for the sequence length:

Lsequential(y,x) = − 1

td

t∑
k=1

d∑
j=1

n∑
i=1

wiyi,j,klog(xi,j,k). (9)

50



3.2 Experiment Setup

3.2.1 Post-processing

Both the time-synchronous configuration and the time-shifted configurations

have fixed-length input and output sequences. The length is designed to be

short enough for extracting sufficient amount of sliding windows from the

videos. Hence, it is necessary for composing the output sequence together

for a final predicted sequence. For the time-shifted configuration, there are

overlaps existing between the sliding windows. A single time step in the

video can have multiple predictions throughout the sliding windows. The

mode of the predicted labels among the multiple predictions is taken as the

final prediction for that time step. For the time-synchronous configuration,

the sliding windows can be assembled in sequence as there are no overlaps

between them.

3.2.2 Comparison with the state-of-the-art

With the sacrocolpopexy dataset, we compare our seq2seq results against

raw predictions from [13] (C3D), a filtered version with mode averaging, and

the many-to-many models LSTM and TCN. C3D+LSTM can take sequences

of arbitrary length, and thus it is normal to perform predictions based on all

past frames. However, our seq2seq models require a fixed sized sequence and

perform predictions using a sliding window. To understand how this affects

the performance, we test C3D+LSTM with both all-past-frames input mode

and with a sliding window input mode. All above methods are also tested on

the Cholec80 public dataset [94] to which we add for completeness the state-

of-the-art results as reported in [13], [44], [17]. The major difference between

our dataset and Cholec80 is the overall duration of each phase, which can

be significantly larger in Sacrocolpopexy. Notably, this significantly changes

the relative performance between different algorithms, as we show in Sec.

3.3.2.
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3.2.3 Training Details

The captured videos are downsampled to 2.4 fps, centre cropped, and resized

into a square of resolution 300× 300 pixels before them are augmented into

112× 112 pixels to match the input requirement of the Conv3D network to

prevent extra information loss. Then, 16 consecutive frames are assembled

into a clip as the basic unit of input for the Conv3D network. The most

common label (mode value) for all the frames in a clip is assigned as the

label for that clip. The sequential model takes a continuous sequence of 100

clips (1600 frames) as input, where the clips are processed by the Conv3D

network first and its last fully connected layer of 1200 neurons for those 100

clips are assembled into a tensor as one training sample.

Data augmentation is applied to each clip along with sampling [10] by per-

forming horizontal and/or vertical flip, rotation in the range of 0 to 360

degrees, crop with a minimum factor of 1
9

of the original image and then re-

sizing, blur with a Gaussian filter of 5×5 kernel with 1.5 standard deviation

and luminance variation in the range of 0.6 to 1.4. These augmentations are

selected randomly with a uniform distribution within the indicated ranges.

The same augmentation is applied to all the frames in a single clip for consis-

tency. Finally, all frames are resized to 112× 112 pixels to match the input

requirement of the Conv3D network. The proposed network is implemented

in PyTorch using a single Tesla V100-DGXS-32GB GPU of an NVIDIA DGX

station.

The training is performed using 7-fold cross-validation for Sacro14. The

14 videos that constitute our dataset are divided into seven pairs where five

of them are used for training, 1 pair is used for validation and 1 pair is used

for testing. Cholec80 has sufficient amount of videos, we use 40 videos for

training, 20 for validation and 20 for test. Adam [51] optimiser with a learn-

ing rate (lr) of 1e−5 and a decay set to 0.93× lr for every fifth epoch is used
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for the Conv3D network training.

Each epoch contains 600 samples of batch size 10 with each phase sam-

pled to a same number. The average accuracy without the transition phase

and non-phase is calculated on the validation set 4 times per epoch, and

network parameters with the best accuracy in history are saved as the final

parameters. The output (fc8 and prediction) of the trained Conv3D are then

used as input for sequential models.

3.3 Results and discussion

3.3.1 Ablation Study of Seq2Seq On Sacrocolpopexy

Architectures
Precision
(Macro)

Recall
(Macro)

F1-Score
Accuracy
(Micro)

LSTM(L)

100
baseline 61.6±6.7 74.8±9.7 0.68 70.7±9.0
pred 72.8±12.8 69.6±17.6 0.71 80.4±13.0
noised 74.6±11.8 78.8±11.5 0.77 82.8±9.8

90
baseline 53.7±24.1 54.4±17.5 0.54 67.2±22.3
pred 57.7±16.0 59.0±15.1 0.58 75.5±20.2
noised 53.5±16.3 58.8±11.7 0.56 76.5±16.0

Transformer(T)

100
baseline 64.6±13.7 63.2±14.7 0.64 73.1±13.4
pred 75.4±14.3 69.4±14.2 0.72 80.6±16.1
noised 72.9±14.2 68.6±15.7 0.71 82.7±13.5

90
baseline 76.4±12.6 71.7±15.5 0.74 81.1±15.5
pred 71.7±14.2 65.1±13.1 0.68 80.4±14.1
noised 74.9±13.6 71.2±15.5 0.73 81.9±14.1

Table 2: Ablative phase recognition results(%) over different proposed archi-
tectures on Sacrocolpolpexy dataset the best among each configuration are
bolded in different colour (green for 100 series and blue for 90 series)

Table 5 shows an ablation study of our different seq2seq implementations,

and Fig.11 shows its results on a particular video sequence. The noised

training strategy overall performed best for both time-synchronous (100 se-

ries) and time-shifted (90 series) configurations, with respectively LSTM100
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(L100) and Transformer90 (T90) being the best performing in terms of accu-

racy. The baseline strategy using groundtruth labels for the target sequence

is generally the worst, with a single exception (T90). In this case the network

suffers from the exposure bias [83] as there is a strong dependency between

the groundtruth and the predictions.
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Figure 10: Sacrocolpopexy per phase results: averaged confusion matri-
ces(%) over all cross-validation folds normalized by the sample number of
each phase with the two best methods in sequential models. (Note: transi-
tion phase is eliminated from the graph)

Figure 10 (b) and (c) provides the confusion matrices of the selected meth-

ods. Most of the misclassifications for this type of surgery happens between

the two consecutive phases as phase 1-2, phase 3-4 and phase 3-5. The mesh

is introduced in phase 3 which separates the following phases from the first

2 phases. The same tools are also used in phase 3, 4 and 5 but applied to

different positions with phase 3 (promontory) and 4 (vault). Phase 5 can be

started from either phase 3 or 4 but in most cases is phase 3, hence it has

more misclassifications with phase 3 rather than phase 4.
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3.3.2 Comparison With the State-of-the-art

Sacrocolpopexy (average of 1389 clips per video) Cholec80 (average of 360 clips per video)

Method
Pre.
(Macro)

Rec.
(Macro)

F1-Score
Acc.
(Micro)

Pre.
(Macro)

Rec.
(Macro)

Acc.
(Micro)

C3D+LSTM+Tool(Endo3D)* [13] 81.3 87.7 91.2
ResNet-50+LSTM+PKI (SV-RCNet)* [44] 90.6±8.1 86.2±15.3 92.4±5.2
ResNet-50+LSTM * [44] 80.7±7.0 83.5±7.5 85.3±7.3
ResNet-50+TCN(TeCNO Stage I)* [17] 82.44±0.46 84.71±0.71 88.35±0.3
C3D 58.5±6.8 68.6±10.1 0.63 69.2±8.8 67.5±8.1 74.7±7.4 71.0±8.5
C3D + Mode average 78.1±9.5 79.7±12.6 0.79 82.8±9.5 73.9±10.6 81.2±9.9 79.5±8.1
C3D+TCN 76.6± 12.6 74.3± 15.3 0.72 82.6±12.4 81.3±5.9 82.0±8.4 83.8±7.8
C3D+LSTM 71.6±22.6 64.8±19 0.68 77.1±18.8 80.1±10.0 82.0±8.3 85.9±7.9
C3D+LSTM+Sliding Window 71.2±17.5 65.8±15.7 0.68 79.2±14.7
C3D+T90 noised(Proposed) 74.9±13.6 71.2±15.5 0.73 81.9±14.1 43.7±18.7 48.1±16.0 71.1±13.9
C3D+L100 noised(Proposed) 74.6±11.8 78.8±11.5 0.77 82.8±9.8 64.9±9.6 73.5±10.6 81.1±5.3

Table 3: Comparison of the phase recognition results(%) with other methods
on the Sacrocolpopexy and Cholec80 datasets. Asterisk (*) denotes cholec80
results were directly extracted from respective publications, while the others
are our own implementations. This table is grouped by (row 1-2) methods
that use models specific to cholecystectomy (tools or priors), as reported in
previous literature; (row 3-4) models with ResNet-50 backbone, as reported
in previous literature; (row 5-11) models with a C3D backbone, as proposed
in this work. Note: In this table, the green color highlights the optimal
performance for Sacrocolpopexy, while the blue color indicates the top per-
formances among Cholec80.

Our best performing seq2seq time-synchronous and time-shifted models (T90,

L100 noised) are also compared with previously proposed approaches on our

Sacrocolpopexy dataset (Table 3). First, we can observe that performing

predictions on a sliding window does not affect the general performance of

Endo3D, slightly increasing its accuracy. This suggests that the loss of in-

put information from using a fixed sliding window is not negatively affecting

performance and therefore this should not be a limiting factor in our seq2seq

architectures that always operate on a sliding window. Both seq2seq models

(T100,L90) outperform the many-to-many approach (Endo3D). Surprisingly,

the best performance in terms of F1-score is the simple mode average on C3D

results which narrowly beats the seq2seq L100 noised. However, an analy-

sis purely based on F1-scores disregards how accurately are we capturing a

time ordered sequence of events. To further interpret these results we also
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perform an event-based evaluation. (Sec.3.3.3)

Table 3 also compares the performance of networks on the Cholec80 dataset.

Our own implementation of Endo3D (no-tool) achieves a close result to the

original Endo3D + LSTM, where the slight decrease in performance is ex-

plained by not using tool signal information. The average number of clips

per video in Cholec80 is 360 which is much smaller than in Sacrocolpopexy

(1389). Furthermore, the relative proportions of each phase is also generally

different. Taking these factors into consideration, it is worth noting that the

relative performances between our implemented methods is almost reverted

in Cholec80, with Endo3D performing the best and mode average the sec-

ond worst. This shows that the specific characteristics of a given surgery

greatly affects algorithm performance. More specifically, we verify that our

seq2seq models outperform conventional LSTM on Sacrocoplopexy but this

is not the case on Cholec80. We should also highlight that more recent ap-

proaches such as TeCNO (based on Temporal Convolutional Network) and

SV-RCNet+PKI (uses surgery-specific priors) still outperform both conven-

tional LSTM and seq2seq models on Cholec80 according to their reported

results. Even though we have clearly shown that we should not draw firm

conclusions on how they would perform in Sacrocolpopexy data, they are

still worth considering as promising options.
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3.3.3 Event-based Analysis

Method F C F’ event ratio
C3D 79 4 2299 0.015
Mode Average 49 33 218 0.172
Endo3D(no-tool) 30 41 123 0.266
Endo3D+slinding window 39 35 150 0.238
L100 noised 63 19 415 0.097
T90 noised 28 42 98 0.313

LSTM avg. 40 24 347 0.217
Trans avg. 36 34 188 0.215
100 series avg. 54 22 427 0.123
90 series avg. 22 36 107 0.309

Table 4: Ward Metric results summed over all Sacrocolpopexy cross-
validation folds. F and F′ represents the fragmentation label where an event
F in the groundtruth is fragmented into multiple F′ events in the predictions.
C represents the correct labels for the events in predictions that are matched
with the corresponding events in ground truth.

Table 4 shows the sum of the Ward metric results over the 7 cross valida-

tion folds. The event ratio, number of correct (C) events and number of

the fragmentation errors (F, F′) are presented in the table. A higher event

ratio means that the temporal order of phase transitions is better preserved.

Filtering very noisy predictions generally leads to better results in this eval-

uation due to eliminating a significant number of false phase transitions (e.g.

comparing C3D with its mode average). Seq2seq models can further increase

the event ratio in most cases. T90 noised has a slightly worse F1-score and

accuracy than the mode average, but it has a significantly better Ward met-

ric, specifically in terms of its event ratio and low fragmentation number.

This effect can be visualised in the example results in Fig 11, where even

if overall accurate, mode average tends to have many incorrect transitions,

while T90 performs all transitions in correct order but accumulates errors

near the phase transitions. This may be a desirable outcome, since phase
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noise target sequence

Figure 11: Phase diagrams from the best Sacrocolpopexy fold. Orange is
ground-truth label and blue is predicted label.

transitions are by definition more subject to annotation ambiguity than the

middle of the phases. The trade-off between F1-score and event ratio can

also be observed by comparing the overall performance of time-synchronous

configurations (100 series) with the time-shifted configurations (90 series).

The first one tends perform better in terms of F1-score, while second better

preserves number and order of transitions.

3.4 Conclussion

In this chapter, we introduce frame-based seq2seq models as a novel coarse-

level sequential model for surgical workflow segmentation. We validated the

approach on a challenging dataset of Sacrocolpopexy surgery where phase

duration has a very high variability. We experimentally highlight the dif-

ferences between this dataset and the widely studied benchmark Cholec80,

58



showing that the same set of algorithms have different relative performances

on each dataset. Additionally, the inclusion of an event-based analysis (Ward

metric) to complement more standard accuracy metrics (F1-score,accuracy)

revealed a trade-off between different seq2seq configurations. While L100

(and more generally, seq2seq 100 series) performs accurate predictions on a

higher number of frames, T90 (and more generally, the 90 series) produces

a temporally more consistent workflow prediction. How each criteria should

be weighted will invariably be application-specific. Nevertheless, accurate

time-stamping of phase transitions requires both standard and event met-

rics to perform well. Nevertheless, despite the high accuracy achieved by

seq2seq, it is not entirely possible to eliminate random transitions between

phases during a single phase, which leads to a lower event ratio.The intrin-

sic weaknesses of this architecture complicate the determination of precise

transition points between phases and hinder the accurate identification of

the phase order as well. On the other hand, this error can be alleviated If

phases can be detected in one shot rather than in independent frames. The

next chapter introduces a method to do so.
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4 Transition Retrieval Network

The preceding chapter offers insights into analyzing surgical workflow seg-

mentation by incorporating an event-based metrics (Ward metric) alongside

frame-based analysis. Additionally, a novel frame-based method is proposed

to improve the segmental-level behavior of the predictions.

Nevertheless, the frame-based approach inherently encounters issues with

erroneous transitions, as the predictions unavoidably produce random noise.

To adress this issue, we introduce a novel reinforcement learning formulation

for offline phase transition retrieval. Instead of attempting to classify every

video frame, we identify the timestamp of each phase transition. By con-

struction, our model does not produce spurious and noisy phase transitions,

but contiguous phase blocks. We investigate two potential configurations

that this new model setup can accomplish: one is focused on reducing com-

putational cost, and the other is aimed at achieving optimal performance

The first does not require processing all frames in a video (only < 60% and

< 20% of frames in Cholec80 and Sacro38 respectively), while producing re-

sults slightly under the state-of-the-art accuracy. The second configuration

processes all video frames and outperforms the state-of-the art at a compa-

rable computational cost.

We compare our method with recent top performing frame-based approaches

TeCNO and Trans-SVNet on the public dataset Cholec80 and also the in-

house Sacro38 dataset. Besides the earlier metrics, we altered the Ward

metric to a simplified version called Ward event ratios as explained in Chap-

ter 2 to provide a clearer understanding of the segmental performance of the

methods.
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Frame-based Model TRN Model 

(a) Coventional Workflow analysis model (b) Proposed Model

(f1b,f2b,f3b,f4b) (f1e,f2e,f3e,f4e)

Figure 12: Comparison of network architecture between (a) conventional
model and (b) our proposed model with potential error illustration. The
conventional model assigns labels for each individual frames and our pro-
posed model predicts frame indices for the starts and end position of phases.

4.1 Methods

In this chapter, we introduced an innovative method for segmenting surgi-

cal workflows by pinpointing the transition points between different phases

directly. The main feature of our proposed formulation can be visualised

in Fig.12. While previous work attempts to classify every frame of a video

according to a surgical phase label, we attempt to predict the frame in-

dex of phase transitions. More specifically, for a surgical procedure with N

different phases, our goal is to predict the frame indices where each phase

starts {t1b, t2b...tNb}, and where each phase ends {t1e, t2e...tNe}. Assuming

surgical phases occur as continuous events without abrupt shifts to differ-

ent phases and then returning, which is frequently observed, our method

naturally supports this assumption. In contrast, conventional frame-based

methods inadvertently identify transitions at any point within a phase, re-

sulting in incorrect insertion between phases or the fragmentation of a single

phase. To solve this problem we propose the Transition Retrieval Network

(TRN), which we described next.

4.1.1 Architecture of Transition Retrieval Network (TRN)

Figure 13 shows the architecture of our TRN model. It has three main

modules: an averaged ResNet feature extractor, a multi-agent network for
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Figure 13: TRN architecture with (a) averaged ResNet feature extractor, (b)
multi-agent network for transition retrieval and (c) Gaussian composition
operator

transition retrieval, and a Gaussian composition operator to generate the

final workflow segmentation result

Averaged ResNet feature extractor: We first train a standard ResNet50

encoder (outputs 2048 dimension vector) with supervised labels, in the same

way as frame-based models. For a video clip of length M , features are aver-

aged into a single vector. We use this to temporally down-sample the video

through feature extraction. In this work we consider M = 16.
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DQN Transition Retrieval: At this stage, we process phases indepen-

dently denoted by n. We treat it as a reinforcement learning problem

with 2 discrete agents Wb and We, each being a Deep Q-Learning Network

(DQN) [4, 49]. These agents iteratively move a pair of search windows cen-

tered at frames tnb and tne, with length L. The state of the agents sk is

represented by the 2L features within the search window, obtained with the

averaged ResNet extractor. As the agents progress through their steps, the

index k denotes the count of steps taken. Based on their state, the agents

generate actions akb = Wb(sk), and ake = We(sk), which move the search

windows either one clip to the left or to the right within the entire video.

During network training, we set a +1 reward for actions that move the search

window center towards the groundtruth transition, and -1 otherwise. During

training, we discovered that providing an additional reward for ’halting pre-

cisely at the transition point’ led the agent to stop indiscriminately, making

convergence difficult. Therefore, we streamlined the reward function by re-

moving the stop reward. Instead, the agent maneuvers freely until reaching

a predetermined step that guarantees oscillation around the target transi-

tion. Therefore, we learn direction cues from image features inside the search

windows. As our input to DQN is a sequence of feature vectors, a 3-layer

LSTM of dimension 2048 is introduced to DQN architecture for encoding the

temporal features into action decision process. The LSTMs are followed by 2

fully connected layer of dimension 20L and 50 respectively that maps tempo-

ral features to the final 2 Q-values of ’Right’ and ’Left’. We implemented the

standard DQN training framework for our netwrok. [71] At inference time,

we let the agents explore the video until they converge to a fixed position

(i. e. cycling between left and right actions). Two important characteristics

of this solution should be highlighted: 1) we do not need to extract clip

features from the entire video, just enough for the agent to reach the desired

transition; 2) the agents need to be initialised at a certain position in the

video, which we discuss later.

63



Agent initialization configurations: We propose two different approaches

to initialise the agents: fixed initialization (FI) and, ResNet modified ini-

tialization (RMI). FI initializes the search windows based on the statistical

relative position (frame index average) of each phase transition on the en-

tire training data. With FI, TRN can make predictions without viewing the

entire video and save computation time. On the other hand, RMI initialises

the search windows based on the averaged-feature ResNet-50 predictions by

averaging the indices of all possible transitions to generate an estimation. In

this way, we are very likely to have more accurate initialization positions to

FI configuration and yield better performance.

4.1.2 Merging different phases with Gaussian composition:

So far, we have only explained how our DQN transition retrieval model

segments a single phase. To generalise this, we start by running an indepen-

dently trained DQN transition retrieval model for each phase. If we take the

raw estimations of these phase transitions, we inevitably create overlapping

phases, or time intervals with no phase allocated, due to errors in estimation.

we used the Gaussian composition (shown in Figure 13 (C)). We obtain the

middle point µi of each phase from its beginning and end transition predic-

tions. For each phase, we define a Gaussian curve with mean µi and standard

deviation σi equal to half of the phase duration divided by a slackening factor

C. These values can be obtained by the following expressions:

µj =
tej − tbj

2
+ tbj, σj =

tej − tbj
2C

(10)

where tbj, t
e
j denote the beginning and end transitions of phase j respectively.

We now define our final estimation of phase transitions as the point of in-

tersection (P.O.I.) between adjacent Gaussian curves Xj ∼ N (µj, σ
2
j ) and
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Xj+1 ∼ N (µj+1, σ
2
j+1) as follows:

tej = tbj+1 = P.O.I(Xj, Xj+1) (11)

This results in a workflow segmentation defined by timestamps in continu-

ous time domain. For comparison with frame-based methods and computing

performance metrics, we discretise our workflow segmentation by assigning

each frame label n to its corresponding transition:

Ytbj :t
e
j

= j (12)
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4.2 Training details

The DQN model is trained in a multi-agent mode where Wb, We for a single

phase are trained together. In this scenario, the agents engage with the same

environment but do not pursue a shared reward; instead, they optimize their

individual rewards. This situation is known as independent multi-agent re-

inforcement learning [22, 61]. The input for individual DQNs in each agent

shares a public state concatenated from the content of both search windows,

allowing the agents to be able to aware information of others. The procedures

of training the DQN are showing in pseudo code in Algorithm 1. For one

episode, videos are trained one by one and the maximum number of steps an

agent can explore in a video is 200 without early stopping. For every steps

the agents made, movement information (sk, sk+1, ak, rk) are stored in its

replay memories, and sampled with a batch size of 128 in computing Huber

loss [71]. This loss is optimized with gradient descent algorithm, where α is

the learning rate and ∇Wk
Lk is the gradient of loss in the direction of the

network parameters. The detailed equations for updating parameters are

explained below.
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Algorithm 1 The procedures of training DQN

Initialize parameters of agents Wb and We as W0b and W0e

Initialize individual replay memories for agents Wb and We

for episode← 0 to episodeMAX do
Initialize search window positions (FI or RMI)
for video← 0 to range(videos) do

for k ← 0 to 200 do
sk ← read ResNet features in search window
akb ← Wkb(sk) and ake ← Wke(sk)
sk+1 ← update search window position by (akb, ake) , read new

features
rkb, rke ← compare sk and sk+1 with reward function
Save (sk, sk+1, ak, rkb) and (sk, sk+1, ak, rke) into agent memory
Compute loss (Lkb,Lke) from random 128 samples from each

memory
Optimize Wkb: Wk+1b ← Wkb + α∇Wkb

Lkb

Optimize Wke: Wk+1e ← Wke + α∇Wke
Lke

end for
end for

end for

DQN is a Q-function approximator that maps input features sk and action

ak into Q-value where an ideal Q-function maps the highest Q-value with the

best action to take for a known state. A policy π() is the process of choosing

action to maximize the reward with the best Q-value. An ideal Q-function

satisfies the Bellman equation:

Q(sk, ak) = r + γQ (sk+1, π (sk+1)) (13)

where k represents the current state, k + 1 is the next state after taking an

action chosen from policy π() and r is the reward for taking that action.

In our experiment, the reward is defined by the movement of the central

position of W . The reward is set to 1 if the agent is moving closer to its tar-

get transition and to −1 if the agent in moving away from it in this step. In
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real situations, the fact that Q-function is not perfect leading to a difference

δ between the two sides of Bellman equation:

δ = QP (sk, ak)−
(
r + γ max

ak+1

QT (sk+1, ak+1)

)
(14)

Our training purpose is to minimize this difference δ. We applied the Huber

loss to it on a batch B sampled from a memory of the past taken steps.

L = 1
|B|

∑
(sk,ak,sk+1,rk)∈B L(δ)

where L(δ) =

{
1
2
δ2 for |δ| ≤ 1

|δ| − 1
2

otherwise.

(15)

Noticeably, the difference δ is calculated with two separate networks of same

architecture. The QP () part called policy net that the parameters are up-

dated for every step and QT () is called target net [71]. As the samples in

batch are discrete in time having less correspondence with each other, the

optimization of the policy net may forget the learnt features catastrophically.

By coping the parameters from policy net to target net periodically improves

the robustness of the optimization process [71].

4.3 Experiment setup and Dataset Description

The proposed network is implemented in PyTorch using a single Tesla V100-

DGXS-32GB GPU of an NVIDIA DGX station. For the ResNet-50 part,

PyTorch default ImageNet pretrained parameters are loaded for transfer

learning. The videos are subsampled to 2.4 fps, centre cropped, and re-

sized into resolution 224*224 to match the input requirement of ResNet-50.

We train both ResNet-50 and DQN with Adam [51] at a learning rate of

3e-4. For ResNet-50, we use a batch size of 100, where phases are sampled

with equal probability. For DQN, the batch size is 128.
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We evaluated the performance of the TRN model on both the Cholec80

and Sacro38 datasets. At the time of this study, the laparoscopic sacro-

colpopexy dataset has been increased to 38 videos. The Sacro38 contains

up to 8 phases (but only 5 in most cases) at this stage, however, here we

consider the simplified binary segmentation of the phases related to suturing

a mesh implant (2 contiguous phases), given that suturing time is one of

the most important indicators of the learning curve [16] in this procedure.

As indicated in the literature, the timing of these two phases is of clinical

interest for assessing a surgeon’s performance in performing this surgery. We

performed a 2-fold cross-validation with 20 videos for training, 8 for valida-

tion, and 10 for testing. For Sacrocolpopexy, we train our averaged ResNet

extractor considering all phases, but train a single DQN for retrieving the

suturing phase as the second stage of the whole network. We also do not re-

quire to apply Gaussian composition since we’re interested in a single phase

classification.

4.3.1 Evaluation metrics:

Apart from the evaluation metrics introduced in Sec.2.3, we also provide a

coverage rate for the fixed initialisation (FI) configuration, indicating the

average proportion of the duration for each video that was processed to

perform the segmentation. Lower values indicate fewer features need to be

extracted and thus lower computation time.
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4.4 Results and Discussion

4.4.1 Ablative Study of TRN on Cholec80

Window size Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7
Overall
F1-score

TRN21 FI 0.854 0.917 0.513 0.903 0.687 0.549 0.83 0.782
TRN41 FI 0.828 0.943 0.636 0.922 0.558 0.694 0.85 0.808
TRN21 RMI 0.852 0.942 0.619 0.939 0.727 0.747 0.837 0.830
TRN41 RMI 0.828 0.940 0.678 0.945 0.753 0.738 0.861 0.846

Table 5: TRN ablation in the Cholec80 dataset (F1-scores). The values per-
phase are computed before Gaussian Composition, while the overall F1-score
is for the complete TRN method.

We first provide an ablation of different configurations of our TRN model

in Table 5, for Cholec80. It includes two search window sizes (21 and 41

clips) and two initialisations (FI, RMI). The observations are straightfor-

ward. Larger windows induce generally better f1-scores, and RMI outper-

forms FI. This means that heavier configurations, requiring more computa-

tions, lead to better accuracies. Particular choice of a TRN configuration

would depend on a trade-off analysis between computational efficiency and

frame-level accuracy.
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4.4.2 Comparison With Other Works

Dataset Method Accuracy Precision Recall F1-Score
Event
ratio

Ward
Event Ratio

Coverage
rate(%)

Cholec80

ResNet-50 79.7±7.5 73.5±8.4 78.5±8.9 0.756 0.120 0.375 full
TeCNO 88.3±6.5 78.6±9.9 76.7±12.5 0.774 0.381 0.691 full
Trans-SVNet 89.1±5.7 81.7±6.5 79.1±12.6 0.800 0.316 0.566 full
TRN21 FI 85.3±9.6 78.1±11.1 78.9±13.5 0.782 1 0.934 57.6
TRN41 FI 87.8±8.1 80.3±9.1 81.7±12.4 0.808 1 0.956 59.1
TRN41 RMI 90.1±5.7 84.5±5.9 85.1±8.2 0.846 1 0.985 full

Sacrocol-
-popexy

ResNet-50 92.5±3.8 94.9±2.8 84.5±8.4 0.892 0.029 0.016 full
TeCNO 98.1±1.7 97.7±1.9 97.5±3.0 0.976 0.136 0.438 full
Trans-SVNet 97.8±2.2 96.5±4.5 98.0±3.5 0.971 0.536 0.813 full
TRN21 FI 89.8±6.2 88.6±11.7 85.3±11.1 0.860 0.971 0.875 14.6
TRN81 FI 90.7±6.1 88.6±11.5 88.5±11.1 0.875 0.941 0.860 18.3

Table 6: Evaluation metric results summary of ResNet-50, our implementa-
tion of TeCNO and Trans-SV, and ablative selected TRN result on Cholec80
and Sacrocolpopexy.

Table 6 shows a comparison between TRN and state-of-the-art frame-based

methods on both Cholec80 and Sacrocolpopexy. The utilised baselines are

TeCNO [17], Trans-SVNet [31], which we implemented and trained ourselves.

Instead of simple ResNet50, we use the same feature averaging process as

the TRN for consistency.

For Cholec80, our full-coverage model (TRN41 RMI) surpasses the best

baseline (Trans-SVNet) in all frame-based metrics, while having significantly

better even-based metrics (event ratio, Ward event ratio). This can be ex-

plained by TRN’s immunity to frame-level noisy predictions, which can be

visualised on a sample test video in Fig. 14(a).

Still for Cholec80, our partial-coverage models (TRN21/41 FI) have frame-

based metrics below the state-of-the-art baselines, however, they have the

advantage of performing segmentation by only processing below 60% of the

video samples. The trade-off between coverage and accuracy can be observed.

Additionally, TRN21/41 FI also have substantially better event-based met-

rics than frame-based methods due to its formulation.
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(a) An example of video77 from Cholec80 processed by Trans-SV and TRN41
RMI
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(b) An example video from Sacrocolpopexy processed by Trans-SV and
TRN81 FI

Figure 14: Color-coded ribbon illustration for two complete surgical videos
from (a) Cholec80 and (b) Sacrocolpopexy processed by Trans-SV and TRN
models.

For sacrocolpopexy, we display a case where our partial-coverage models

(TRN21/41 FI) are at their best in terms of computational efficiency. These

are very long procedures and we are interested in only the suturing phases,

therefore, a huge proportion of the video can be ignored for a full segmenta-

tion. Our models slightly under perform all baselines in frame-based metrics,

but achieve this result by only looking at under 20% of the videos on average.

4.5 Conclusion

In this chapter, We proposed a new formulation for surgical workflow seg-

mentation based on phase transition retrieval (instead of frame-based classi-

fication), and a new solution to this problem based on multi-agent reinforce-

72



ment learning (TRN). This poses a number of advantages when compared

to the conventional frame-based methods. Firstly, we avoid any frame-level

noise in predictions, strictly enforcing phases to be continuous blocks. This

can be useful in practice if, for example, we are interested in time-stamping

phase transitions, or in detecting unusual surgical workflows (phases occur

in a non-standard order), both of which are challenging to obtain from noisy

frame-based classifications. In addition, our models with partial coverage

(TRN21/41/81 FI) are able to significantly reduce the number of frames

necessary to produce a complete segmentation result.

Nevertheless, the TRN model is limited to offline segmentation tasks, and be-

cause each agent corresponds to an individual model, it becomes significantly

more challenging to deploy on datasets with a larger number of phases. These

constraints will be addressed in the next chapter. Meanwhile, the evaluation

metric remains open for discussion. The Ward metric offers detailed insights

into the sequence’s segmental information, it is not as straightforward for

comparing different methods. More generalized and intuitive approaches

would be advantageous to adopt.
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5 ATRN: A multi-purpose model for retriev-

ing and anticipating surgical phase transi-

tions

In the previous chapter, a novel set-up for surgical workflow segmentation

was proposed, focusing on retrieving transitions rather than conducting

frame-level classification. Based on this set-up, a reinforcement learning-

based approach was developed, demonstrating results comparable to state-

of-the-art methods. However, enhancing the performance of the reinforce-

ment learning-based approach is challenging when advanced algorithms such

as PPO [85], SAC [37], or DDPG [88] are employed. Preliminary experi-

ments conducted with these models indicate that the sophisticated nature

of the input and continuous output action space making these models very

hard to converge in training.

Even though the advanced reinforcement learning algorithms did not yield

satisfactory performance, the network architecture remains highly beneficial

for the transition-retrieving configuration which guarantees continuity in the

predicted phases and obtains a favorable event-based metric by identifying

precise transition points between phases. In this chapter, we reverted to su-

pervised learning for algorithm training but retained the continuous output

action space to explore the potential of this configuration. Consequently,

the size of the receptive window step is no longer restricted to 1 frame and

can span an arbitrary number of frames. This new output format simul-

taneously enables the model to perform the surgical workflow anticipation

task. Surgical workflow anticipation is the task of predicting the timing of

relevant surgical events from live video data during a surgical procedure. As

it has been mentioned in Chapter 2, it is critical in Robotic-Assisted Surgery

(RAS) as it can enhance preparation and coordination within the surgical
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team, improving surgical safety and the efficiency of operating room usage.

Several improvements, including adapting the transition-retrieving configu-

ration for online applications, have also been made to the TRN architecture,

which will be detailed in this chapter. Additionally, while the Ward metric

offers a comprehensive understanding of the models’ segmental performance,

it is less intuitive to compare different methods. In this chapter, we employed

EDIT score and F1@k, the two most widely used benchmark metrics in gen-

eral activity segmentation tasks, to evaluate our method and compare it

with state-of-the-art techniques on three datasets: Sacro56, Cholec80, and

Cataract101.

5.1 Methodology

Figure 15 illustrates the new purpose architecture, the Aligned Transition

Retrieval Network (ATRN). The network is composed of three main steps

that are independently trained: video preparation and feature encoding,

ATRN transition retrieving agent (TRA) aggregation, and task-specific pipeline.

Depending on the specific usage of the network in offline, online, or antici-

pation mode, the output from the ATRN transition retrieving agents (TRA)

aggregation network will be interpreted differently and be processed with

different pipelines. This section provides details on the implementation of

ATRN.
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Figure 15: The overall architecture of ATRN. For each input video sequence,
the ResNet50 is used to encode frames into a feature sequence. Each Tran-
sition Retrieval Agent (TRA) collects the content within its own receptive
window and then feeds it into the ATRN policy network after concatenation.
This process aims to obtain the movement vectors of TRAs, which are used
to estimate movement/anticipation towards their target transitions based on
the specific tasks. The movement vectors can be further processed by three
different pipelines, each designed for a specific task (offline/online segmen-
tation and anticipation), in order to make a final prediction.
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5.1.1 Feature Encoding

We use ResNet50 as our base image feature encoder, which has been trained

by a self-knowledge distillation algorithm [104], and has an output feature

vector size of 2048. Instead of extracting features from every single video

frame, we let a set of Transition Retrieval Agents (TRAs) to decide which

frames are needed. This selection process is described in the remainder of

this section.

5.1.2 Transition Retrieving Agent (TRA)

The Transition Retrieving Agent (TRA) is the fundamental unit in our ar-

chitecture. Each TRA aims at detecting either the start or the end of each

phase. Therefore, for a surgery with P phases we consider I = 2P TRAs,

each with a corresponding target phase transition. A TRA Ai receives as

input a feature sequence xi from its receptive field, i. e. features extracted

from window of frames centred at index ti, with length L. It produces as

output the estimated distance yi between ti and the target transition.

yi = Ai(xi) (16)

During inference, the centre of the receptive field ti will be adjusted

automatically, while L is a fixed hyperparameter of the architecture. In our

implementation, the distance yi is bounded by a maximum value S and is

further normalised in the interval [−1, 1]. To better handle different receptive

field sizes, all extracted feature sequences f, regardless of their length L, are

downsampled to a fixed 21-length sequence xi, so that Ai has an input with

fixed size. The following equation outlines this downsampling process:
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xi(ti) =


[21
L

]
∑[ti−L

2
+

L(m+1)
21

]

j=[ti−L
2
+Lm

21
]
fj

...

...

[21
L

]
∑[ti−L

2
+

L(M+1)
21

]

j=[ti−L
2
+LM

21
]
fj

∀M ∈ [0, 21] (17)

In the downsampling stage outlined in equation 17, the receptive field of

length L is initially partitioned into 21 equal segments. The feature vectors

within each segment are then averaged, producing a single feature vector

for each segment, culminating in a final receptive window consisting of 21

feature vectors.

5.1.3 Aligned Transition Retrieving Network (ATRN)

Instead of having TRAs operating independently in a similar way in Chap-

ter 4.1.1, the Aligned Transition Retrieving Network (ATRN) processes the

information from all agents simultaneously, which enables modeling inter-

phase relationships. For this purpose, we concatenate all receptive windows

x0:I into a unified input X. ATRN contains a set of TRAs with receptive

fields of length L and centre positions ti as the elements of vector t. The

output of ATRN is a movement vector y of TRAs containing the distance

from each ti in to its corresponding target phase. Thus, equation (16) can

be rewritten as:

y = A(X) (18)

where dim(y) is (N, I), representing the batch number N and, the number

of transitions required for retrieval respectively.
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ATRN Policy Network

Reshape

2-layer MLP

GRU model output, dim=(N, 21 * I, 54) 

model input    , dim=(N, 21 * I, 2048) 

output movement vector   , dim=(N,I)

Figure 16: The detailed architecture of the ATRN policy network, this
network takes the concatenated features from TRAs X of dimension
(N,21*I,2048) and output the movement vector y with dimension (N,I) where
N represents the batch size used for ATRN training and I represents the num-
ber of transitions to retrieval.

In Figure 16, the architecture of ATRN policy network is shown, where

the network A consists of a BiGRU sequential backbone, followed by two

MLP layers and a tanh activation layer at the end. This final layer is used

to convert the output into the range [−1, 1]. The same ATRN backbone is

used for all 3 tasks (online/offline segmentation, anticipation), however, a

dedicated task-specific pipeline is proposed for each of them.

5.1.4 Task-specific pipelines

ATRN predicts the normalised distance of each agent to their target tran-

sition. However, this prediction requires further interpretation to convert it

into the desired format. We have designed three distinct pipelines for offline

segmentation, online segmentation, and anticipation tasks. The illustraion

of these three piplines can be found in Figure 17.
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(a) Offline Segmentation (b) Online Segmentation 

(c) Anticipation

Fixed initialization

Iterative Refinement

Gaussian Composition

Output

ATRN Policy Network

Stack movement 
vectors

...
0

1

t

Output

Initialization on
Current time

TCN model

ATRN Policy Network

Initialization on Current time

Start point anticipation

End point anticipation

Phase anticipation

Standardise Output

ATRN Policy Network

Output

Figure 17: Task-specific pipelines for ATRN include (a) an offline segmen-
tation pipeline with fixed initialization where TRAs are set at the average
percentage positions for their target transitions. ATRN is used recursively
to converge the TRAs to the target transitions, and Gaussian composition
synthesizes the transitions into phase predictions. (b) An online segmenta-
tion pipeline initializes all TRAs at the current time step, utilizing ATRN
output as features, which are then fed into a TCN model to predict phase
performance online. (c) An anticipation pipeline directly employs ATRN
output as anticipation predictions of transitions, transforming the transition
anticipation signals (beginning and end of phases) into anticipation of each
phase. 80



Offline phase segmentation We initialise the centre of receptive fields

with a prior t0 based on the average timestamp of each transition in the

training data. In the remainder of this paper, we denote this prior as fixed

initialization. Our TRAs then predict the distances from t0 to the target

transitions. We iteratively repeat this process according to

tk+1 = tk + S ∗ yk (19)

Vector t represents the positions of all agents, and k is the step index in

the iteration.

We expect that tk eventually converges to the correct position, and that

a good initial t0 reduces the number of iterations needed. In our implemen-

tations on inference, we employ up to 15 iterations, and in most instances,

our approach converges well before reaching this limit. The trajectory of the

receptive fields throughout this process defines which frames in the video

need to be passed through a ResNet for feature extraction, named activated

frames, which in general corresponds to a fraction of the whole video. This

is the main mechanism through which we reduce computational cost when

compared to standard frame-based segmentation approaches.

After 15 iterations, the end of one phase and the beginning of the next one

are not necessarily aligned due to estimation errors. To produce a workflow

with seamless transitions from one phase to another, we used the Gaussian

composition (shown in Figure 18) as explained in the previous Chapter 4.1.2.

predicted segments

Figure 18: Illustration of Gaussian Composition
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Online phase segmentation Unlike with our offline segmentation method,

here we do not run ATRN recursively to refine over phase timestamps. In-

stead, we sequentially run ATRN once for each video frame, setting the

receptive field of all TRAs to the current time step t. In addition, we feed

the frame-based predicitons y(t) to a temporal model B, a two-stage causal

TCN [17, 58]. B receives as input a sequence of past and present vectors

y0:t, with the identical input dimension as the original TCN study, where

the feature size is defined as the number of transitions. The output of B is

the phase classification from time 0 to t.

Y0:t = B(y0:t) (20)

Online phase anticipation For anticipation, we aim at estimating the

distance of each TRA from the current frame t to their target transition.

In a similar manner to online segmentation, our anticipation pipeline also

sequentially runs ATRN once at each frame, by setting the receptive field

of all TRAs to the current time t. Consequently, at each time step t, the

temporal distance to each phase transition can be computed as:

a(t) = y(t) ∗ S (21)

The anticipation result at time t of any phase occurring in the future is

defined as the temporal distance to its beginning transition, a value contained

in a(t). To be consistent with prior work on phase anticipation [46,80,102] we

bound our anticipation predictions by a maximum distance value T , smaller

or equal to S. Please note that the S bound is a tunable hyper-parameter

of our model, while the T bound is set to a fixed value that makes our

anticipation results comparable to prior work. While we could simplify our

formulation by making S = T , we observe empirically in our experiments

that having S > T achieves better performance. We further define that an

ongoing phase should have a zero value for anticipation, and that past phases
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that do not occur anymore should have a maximum value for anticipation

(T ). We therefore define our final anticipation result Ap(t) for phase p as:

Ap(t) =

min(a(t)bp, T ) a(t)bp > 0

0 a(t)bp ≤ 0
+

0 a(t)ep ≥ 0

T a(t)ep < 0
(22)

where a(t)bp, a(t)ep stand for anticipation of the beginning and end of phase

p respectively.

5.1.5 Training procedure

The training of our pipelines is done in the following order: 1) Training the

ResNet50 encoder using self-knowledge distillation [104]; 2) Training ATRN;

3) For online segmentation only, training the TCN temporal model.

For training the ATRN model, we define a training sample as randomly

selecting a video from the training set and then setting each TRA recep-

tive field to a random position within the video. We further define a batch

as 128 independent training samples. In each training iteration, a batch

is sampled and ATRN is updated according to the objective function de-

scribed in Section 5.1.5. For online phase segmentation, training the TCN

follows equivalent methodology to other works [17, 31, 94], using a negative

logarithmic likelihood loss function.

ATRNObjective Function Since ATRN distance predictions are bounded

by the interval [−S, S], any TRA outside this interval will output values sat-

urated at S or −S. Assuming that the length 2S is very small compared to

the entire length of the video, the random sampling of TRA receptive fields

(described in section 5.1.5) introduces a significant training data imbalance

towards saturated values. To counter this problem, we introduce a discount

factor d that reduces the loss of each sample as its output becomes further

from the interval [−S, S]. For a smooth loss function, we model this discount
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factor with a Gaussian function decay:

d = exp(− y2

2σ2
) (23)

where σ determines how quickly the loss decreases when the sample out-

put y increases. The choice of σ is directly dependent on the receptive field

length 2S. The complete ATRN objective function is the dot product of the

standard MSE error and the discount factor, multiplied by the square of the

maximum step size:

l(y,y) =
1

N

N∑
i=1

(y− y)2 · d · S2 (24)

where N is the training batch size.

5.1.6 Implementation details

We utilize the pytorch framework to deploy our model on a single NVIDIA

RTX A6000 48GB card for both training and inference. We train ResNet

(Section 5.1.1) for 100 epochs using the SGD optimiser with a momentum of

0.9, weight decay of 1e-5, learning rate of 5e-4, and batches of 64 randomly

sampled frames from all videos in the training set. Random clipping, color

jittering, and flipping are employed as augmentation [35]. After training the

ResNet, we proceeded to extract and save the features in order to expedite

the subsequent training processes. We train ATRN (Section 5.1.3) for 8000

epochs using the ADAM optimiser with a learning rate of 1e-4 and a batch

size of 128. This training takes around 24 hours on the above mentioned

hardware. We train TCN (Section 5.1.4) using the ADAM optimiser with a

learning rate of 1e-1, and a batch size of 1. The video input is randomly cut

into arbitrary length clips for trainining. It is worth noting that all settings

used for training this TCN are kept the same for training other state-of-the-

art methods reported in the experiments.For both training and inference,
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all videos are downsampled to 1fps and frames are resized into 224*224 for

saving memory and reducing network parameters.

5.2 Experiments

5.2.1 Evaluation Metric

For validating our phase segmentation methods, we report two types of evalu-

ation metrics: frame-wise (accuracy, F1 score) and segmental metrics (EDIT

score, F1@k), as described in Chapter 2.3. Same as in the TRN work, for

offline phase segmentation, we also report the coverage rate, i. e. the per-

centage of frames used as input to ATRN out of the total number of frames

in a video. This metric is calculated per video and then averaged. This is an

indicator of computational efficiency, since ATRN only requires extracting

ResNet features for this fraction of input frames instead of the whole video.

Please note that all conventional frame-based state-of-the-art methods have

by definition a coverage of 100% for all cases, as all individual frames are

processed by the feature extractor network. For brevity, the ablation exper-

iments (Section 5.2.2) only report accuracy, Edit score, and coverage rate,

while our comparisons with the state-of-the-art (Section 5.2.3) report all met-

rics. To evaluate phase anticipation, we report the same metrics utilised in

previous works [80,101], iMAE and eMAE, with a threshold h of 5 minutes.

The detailed equation is provided in Section 2.3.3.

5.2.2 Ablation and hyper parameter selection

For all 3 tasks (online/offline segmentation and anticipation), we perform

independent ablation experiments for the TRA receptive field length L, the

discount factor parameter σ, and the maximum TRA output distance S. All

reported results are on the validation set of Cholec80, which we then use to

select the best parameters for all following experiments on all datasets.
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Figure 19: Ablation study on TRA receptive field length L (Eq. ??)

TRA receptive field length (L) Figure 19 shows the ablation results

for L. In principle, a larger L allows ATRN to gather wider temporal in-

formation around each TRA, but at the cost of losing low-level temporal

resolution due to downsampling (as described in Euqation 17) and it also in-

creases computation time at both training and inference. Results show that

increasing L has little influence on accuracy, while increasing the Edit score

for online segmentation only. On the other hand, increasing L has a clear

impact in decreasing computational efficiency, as showed by the increasing

coverage rate of offline segmentation. As a trade-off between accuracy and

computational efficiency we pick a value L = 135 on the lower end of our

ablation range and it is used for the rest of the ablation study.
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Figure 20: Ablation study on the discount factor decay σ (Eq. 23)
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Discount factor decay (σ) Figure 20 shows the ablation results for σ.

A lower σ helps alleviate the data imbalance caused by ATRN output satu-

ration to the range [−S, S]. However, it also decreases prediction accuracy

whenever a TRA is distant from its target phase transition, since any sam-

ple in these conditions results in a severe discount factor. A high σ value is

especially beneficial for anticipation, since this pipeline is expected to per-

form accurate predictions when a TRA is still far away (up to time T ) from

its future target transition. On the other hand, phase segmentation models

are expected to perform accurate predictions when TRAs are closer to their

targets. In the offline case this is due to TRA positions iteratively converg-

ing to targets, and in the online case this is due to focusing only on the

present phase (i. e. TRAs with lowest distance to target). Therefore, we

observe that the optimal σ values for segmentation models are significantly

lower than for anticipation. However, both the online and offline accuracies

are largely degraded with the increase of the discount factor. Therefore, we

select two different models respectively with σ = 0.1 (optimised for segmen-

tation) and of σ = 0.5 (optimised for anticipation). In our remaining phase

segmentation experiments, we report results with the first model, while in

our phase segmentation experiments we report results with both models.
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Figure 21: Ablation study on S, which denotes the maximum iterative step
size for offline segmentation (eq. 19), and maximum predicted distance for
remaining models (eq. 21).
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Maximum distance (S) Figure 21 shows the ablation results for S. In

the offline segmentation case, it determines the farthest distance a TRA can

move in each iteration. For the other cases, it simply denotes the value range

for elements of vector a(t) by definition. in range of the ATRN output. We

observe from experimental results that S has limited influence on phase seg-

mentation performance. In the case of offline segmentation, this suggests

that our proposed fixed initialisation is a good prior, as TRAs converge well

to their targets with small iterative movements. For anticipation, increasing

S seems to have a positive effect in inMAE, but limited impact on eMAE.

Similar to σ, an S too small causes an anticipation performance drop for

distant phases. For all further experiments, we select S = 640, which corre-

sponds to the maximum accuracy in offline segmentation. While this is not

the optimal value for anticipation, only modest gains can be obtained with

a significantly larger S.

5.2.3 Comparison with State-of-the-art

For phase segmentation, we compare our method against state-of-the-art

surgical phase segmentation models (TeCNO [17], TransSV [31]), a general-

purpose temporal segmentation model (MSTCN [58]), and also a bi-directional

GRU model (BiGRU) [14]. For fairness, all methods use features from the

same ResNet encoder and we also report its standalone performance for

reference. All methods are trained utilising the same video pre-processing

pipeline described in 5.1.6.

All baselines are trained for 50 epochs using a learning rate of 1e − 3 and

employing a weighted cross-entropy loss that is weighted by the reciprocal

of the proportion of the frame number of each class in the total number of

frames. The model parameters that yield the highest F1 score on the vali-

dation set are chosen as the final parameters for the model.
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The architecture design hyper-parameters of each baseline are kept the same

as their respective publications. Noticeably, TeCNO and MSTCN corre-

spond to the same overall architecture, but with distinct hyper-parameters.

MSTCN consists of 2 stages with 10 layers of temporal blocks in each stage

and a feature mapping dimension of 64. In contrast, TeCNO also has 2

stages but with 8 layers of temporal blocks in a single stage and a feature

mapping dimension of 32. Also, the TeCNO network serves as the module

for encoding temporal features in TransSV, similar to the original work.

All baselines that incorporate TCN blocks (TeCNO, MSTCN, TransSV) are

implemented with non-causal and causal TCNs for offline and online infer-

ence respectively. BiGRU performs offline inference when we pass it through

all video frames in both directions. For online inference, we pass it only

through previous frames. For online inference, we also compare our method

with and without the final TCN refinement for ablation purposes. For antici-

pation, we compare our method against the original work of BayesianDL [80],

IIA-Net [101], and Trans-SVNet [46].
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Table 7: Offline Phase Segmentation Comparison
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(a) Cholec80 offline

(c) Sacro56 offline

(d) Sacro56 online
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(f) Cataract101 online
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Figure 22: Color-coded ribbon illustration for the comparisons of workflow
on three datasets, whose horizontal axis represents the time progression.The
offline plots for each datasets also contain extra plots for the activated fea-
tures used for ATRN predictions.
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Offline Phase Segmentation Table 7 presents comparisons for offline

workflow segmentation. BiGRU yields the best frame-wise performance on

two datasets (Cholec80 and Cataract101), despite being the simplest archi-

tecture in our comparison. MSTCN has the best frame-wise performance on

Sacro56. We note that this model has the same architecture of TeCNO, with

a different selection of hyperparameters.

Especially on Cholec80 and Sacro56, our proposed method ATRN signifi-

cantly outperforms all conventional frame-based methods on segmental met-

rics (f1@50 and Edit Score), at a cost of a slight under-performance in frame-

wise metrics (accuracy and f1 score). We acknowledge a limitation in frame-

wise evaluation. There is an inherent margin of error in frame-level ground

truth labels. The precise frame where each phase starts or ends is subject

to variations by human annotators. Consequently, when the performance

differences between methods are minimal (as seen in Cholec80), the impor-

tance of ”outperforming” or ”underperforming” in f1-score may be negligible.

Conversely, ground truth labels are much less prone to errors from a segmen-

tal perspective, as it would require an annotator to entirely miss or swap a

whole phase. We believe the higher segmental performance of ATRN is due

to its configuration, which considers phases or events as the basic units for

the network, unlike previous methods that focused on individual frames.

To illustrate why and when this trade-off may be advantageous, we pro-

vide examples of full-video workflow predictions in Figure 22. Results with

high Edit score correspond to predictions with the correct ordering of phase

transitions, while low edit scores produce incorrect phase transition events.

In Figure 22 (c) we can observe a case where ATRN has higher Edit score,

but lower accuracy than MSTCN. The end result is that while MSTCN clas-

sifies correctly a higher number of frames, it introduces several incorrect

transitions between phases 1 and 2, and between phases 2 and 3. ATRN
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has thus a more accurate picture of the high-level workflow and ordering of

phases. We therefore argue that for any end-applications where phase tran-

sitions matter (e. g. recognising normal vs. abnormal workflows) we need

to analyse the trade-off between segmental and frame-wise metrics. How-

ever, in Cataract101, the advantage of ATRN in segmental metrics is much

less pronounced. We believe this is a result of the much shorter phase dura-

tions in the procedure, which enable the baseline temporal models to capture

sufficient context and predominantly segment entire phases as contiguous in-

tervals.

In the context of surgery, challenging scenarios may arise in phase segmenta-

tion tasks, which we have classified into three types: missing phases, phase

swapping, and phase repetition. For these scenarios, we have noticed that

the model tends to predict transitions at the beginning and end of missing

phases to be adjacent or very close, resulting in a phase duration that is

zero or very short. It is important to note that such cases are present in

the Cholec80 dataset and are reflected in the reported performance metrics.

Therefore, missing phases have a minimal impact on the network’s overall

performance. Regarding phase swapping, ATRN demonstrates the ability

to recognize such cases using the Cholec80 dataset. However, our current

method cannot handle an arbitrary number of repeated phases, which is an

area for future improvement in ATRN.

The offline ATRN architecture also has significant computational efficiency

advantages since by design it only needs to extract image features for a frac-

tion of all video frames during inference (measured by coverage rate in Table

7). The duration of the procedure and its phases is highly correlated with

the magnitude of these computational gains. Sacro56 corresponds to the

longest procedure (3 phases over >3 hours) and also the largest computa-

tional gains with ATRN only needing to process less than half of the entire
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video on average (36%). In Cholec80 (7 phases over >30 minutes) ATRN

needs to process only slightly more than half the video (58%). And finally,

Catarac101 is the shortest procedure (10 phases over <20 minutes) and cor-

responds to marginal gains in computational efficiency, as ATRN processes

on average 97% of the entire video.

Online Phase Segmentation The observations for online segmentation

are similar to those of offline segmentation. Conventional frame-based base-

lines show little difference in performance when performing online inference.

As Table 8 shows, for the Chlec80 and Sacro56 datasets, ATRN (without

TCN) has a slight decrease in frame-wise metrics, while for Cataract101

there is a significant drop. We attribute this decrease in performance to the

cataract workflow characteristics, with large number of very short phases.

Coventional configurations typically display a low event-based metric, which

is attributed to the fragmentation in the predicted phases. Figure 22 il-

lustrates the presence of randomly distributed false negative predictions,

with ResNet, GRU, and MSTCN predictions generally exceeding those of

ATRN+TCN methods. It is surprising to observe that even without the

Gaussian composition, which enforces strict continuity on predictions, the

standalone ATRN network still boasts a superior event-based metric com-

pared to most other methods except for SAHC and achieves optimal perfor-

mance with the integration of an additional TCN network.

In online inference, ATRN (without TCN) has a relatively small short-term

temporal information. When online ATRN is combined with TCN, longer

temporal context becomes available to the model and thus ATRN’s frame-

wise performance becomes in line with state-of-the-art. Integrating TCN

with ATRN markedly enhances segmental metrics, surpassing all baseline

methods. In the architecture of our network, anticipation-related features

(outputs from ATRN) represent fine-level temporal information, while TCN
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Table 8: Online Phase Segmentation Comparison
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processes causal-level temporal data for segmentation. Combining anticipa-

tion and segmentation tasks into a hybrid model may be crucial to achieving

superior performance in online segmentation metrics, as anticipation-related

features could provide excellent guidance for the network in the phase seg-

mentation task. For Cholec80 and Cataract101 datasets, online and offline

segmental performance is similar, but for Sacro56 there is a performance

decrease from offline to online.
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Figure 23: The influence of increasing frame skipping size on online seg-
mentation performance for each dataset, where the x-axis denotes skipping
size(in frame).

Besides the standard approach of processing each frame for online mode,

our unique online segmentation pipeline enables the model to make predic-

tions without the need to analyze every frame. We propose a frame skipping

method with a skipping factor g, which involves using every gth frame as

input. This is akin to temporal downsampling of the video, thereby lowering

the computational load. We tested the influence of varying the frame skip-

ping size on network performance.

We used frame skipping factor g of 1, 2, 5, 10, 20, 40 frames for Cholec80 and

Cataract101, and two additional frame skipping size of 80 and 200 frames

for the longer videos in Sacro56. As illustrated in Figure 23, the impact

of adjusting the frame skipping size varies depending on the length of the
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Table 9: Computation Cost per Video

Method ResNet MSTCN TeCNO TransSV SAHC GRU ATRN(Offline) ATRN(Online)
Avg. offline processing
time per video (s)

14.2 14.4 14.4 14.4 14.7 14.4 8.74 14.7

sequence. In the case of short videos (Cataract101), changing the frame

skipping size significantly affects the performance. However, for moderate

length videos (Cholec80), increasing the frame skipping size has minimal

impact on the overall performance. Interestingly, for long videos (Sacro56),

using a sparser frame skipping size can actually enhance perfromance on seg-

mental metrics and significantly reduce the computational cost. Compared

to conventional methods, where the input length is always increasing, ATRN

can restrict the amount of data input to a predetermined size, thus reducing

the amount of computing power needed and allowing for quicker interaction

with online inference.

Computational cost The average processing times on Cholec80 for ATRN

and state-of-the-art methods are detailed in Table 9. As indicated in the ta-

ble, the offline version demonstrates superior computational efficiency com-

pared to all other methods, as the feature encoding process is the most

computationally intensive part, which the ATRN offline method avoids to

process all features. Consequently, our offline method is ’faster’ than the

online method when measured in average FPS over entire videos due to its

lower coverage rate.

It is worth to emphasize that Temporal Convolutional Networks (TCN)

and all TCN-related methods (such as Trans-SV) utilize causal convolu-

tion, which leverages the low-level hidden layers of the network to ensure

the model does not violate the ordering of the input data, thus enabling on-

line detection. However, no previous work has explicitly calculated the real

computational cost associated with online detection, as this is closely tied to
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Table 10: Anticipation Comparison

Comparison of state-of-the-art on Cholec80 ATRN performance on other datasets
Results

BayesianDL IIA-Net* Trans-SVNet ATRN(General) ATRN(anticipation) Cataract101 Sacro56
iMAE 1.17 1.08 1.07 0.905 0.427 1.68 0.321
eMAE 1.37 1.09 1.26 0.703 0.369 0.11 0.258

Note: The IIA-Net uses tool existing signal in trainning where other methods use pure vision
input

the low-level code implementation of the models. Theoretically, the online

computational cost should be comparable to the offline computational cost

for these models. Given this complexity in assessing online computational

costs and the lack of a universal standard, we have only provided the com-

putational cost for offline detection.

To evaluate online performance, we use the input sequence from time 0 to t to

make predictions at time t, thereby simulating an online processing scenario

for these techniques. It is important to note that some baseline methods

(such as BiGRU) are inherently offline and need to process all frames at

once. Consequently, their ’online’ version involves continuously increasing

the number of input frames until the entire video is available at the end.
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Figure 24: An example video of anticipation results for Cholec80 with a
threshold of 300 seconds (5 mins). The vertical axis is the anticipation
prediction in seconds and the horizontal axis is the time axis of the video

Anticipation We compare our anticipation model against the state-of-the-

art baselines on the Cholec80 dataset since we can directly compare with

results reported on [46, 80, 101] using the same test data. Table 10 shows

that our ATRN(general) model, i. e. with same hyperparameters as phase

segmentation models, already has slightly better performance than all base-

lines. It is important to note here that IIA-Net uses additional tool signal for

model supervision and inference, and thus requires additional labels to train

comparatively to all other models including ours. When we optimise hyper-

parameters for anticipation, as described in Section 5.2.2, the performance

significantly improves as denoted by the results of ATRN(anticipation). An

example output from our method’s anticipation results is shown in Figure

24. We also provide the anticipation performance of ATRN(general) on
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Cataract101 and Sacro56 datasets. The good performance of ATRN in phase

anticipation suggests that, unlike with online segmentation, we do not need

a very large temporal context of past frames, and thus an extra TCN model

is not needed in this case.

Model’s superior anticipation performance compared to the state-of-the-art

is its ability to simultaneously identifying all timestamps for all phases (both

past and future) at each time instance t, rather than just predicting a single

anticipation event. This method offers more contextual information for the

final prediction than other baselines.

5.3 Conclusion

In this chapter, we thoroughly extended the transition-retrieving configura-

tion with a new designed Aligned Transition Retrieval Network (ATRN). The

ATRN is an enhancement of the TRN, designed for online/offline phase seg-

mentation and phase anticipation, and has been evaluated in three distinct

surgical procedures. The model resulting from this design choice (ATRN)

closely follows the state-of-the-art in terms of low-level frame-level perfor-

mance (f1-score, accuracy), while showing significantly better performance

in detecting correct phase ordering and transitions (as measured by segmen-

tal metrics Edit score, F1@50). The ATRN offline segmentation model also

introduces computational advantages, by producing complete video results

while only using a fraction of its frames. We observe that the advantages of

ATRN (both in segmental accuracy and computational efficiency) is more

pronounced for procedures with larger phase durations.

As evidenced by our ablation study, ATRN’s performance is not significantly

affected by its key hyper-parameters, with a notable exception for the loss

function discount factor when performing phase anticipation. This may jus-

tify training separate ATRN weights for segmentation and anticipation for
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optimised performance. At present, ATRN does not handle instance segmen-

tation, where a phase can occur a variable number of times during a single

surgery. While this is not the case for any of the 3 datasets utilised in this

work, it could be a relevant scenario in other application contexts. Exploring

this extension is a potential future work avenue for further generalising our

method. It is important to highlight that surgical workflow analysis methods

have not yet been validated using clinically relevant metrics like complication

rates, blood loss rates, mortality rates, or readmission rates. Although these

metrics might be challenging to assess at present, they are worth considering

in future advances in surgical workflow analysis.
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6 Conclusions

This research explored surgical workflow analysis by comparing frame-based

and event-based approaches. Past studies mainly relied on frame-wise clas-

sification and metric evaluation. Chapter 3 evaluated various frame-wise

metrics using the public Cholec80 dataset and the in-house Sacro18 dataset,

which features longer videos of laparoscopic sacrocolpopexy surgeries not in-

cluded in public datasets. We employed both frame-based and event-based

metrics, noting that while frame-based methods yielded strong results, event-

based metrics struggled, especially with longer surgical videos.

In Chapter3, we introduced frame-based seq2seq models, such as LSTM and

Transformer networks, for surgical workflow segmentation at a coarse level.

This was the first time transformers, specifically TransSV, were used in this

field, reflecting their general rise in machine learning. We have identified the

drawback of frame-level detection, which generates numerous incorrect tran-

sitions. We then developed a direct method to detect transitions in Chapter

4, improving segmental performance by reducing frame-level noise and mak-

ing phases continuous. We presented the multi-agent reinforcement learning

model TRN for offline surgical workflow segmentation and expanded the

Sacro18 dataset to Sacro38, comprising 38 videos. This offline segmentation

method lowers computational costs since agents detect transitions using par-

tial sequence ranges, reducing the need to process all frames. Specifically,

less than 60% of frames were processed for Cholec80 and less than 20% for

Sacro38. However, this model is specifically created for offline surgical work-

flow segmentation. Chapter 5 explores the transition-retrieving mechanism

in detail, enhancing versatility and performance by introducing ATRN, a

model featuring a continuous action output space. ATRN surpasses TRN

by supporting both offline and online segmentation and anticipation, inte-

grating all agents into one network to tackle scalability issues. The Sacro-
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colpopexy dataset now has 56 videos. We use EDIT score and F1@k for

event-based metrics. Comparing ATRN with state-of-the-art methods across

three datasets (Cholec80, Cataract, and Sacro56), ATRN excelled in event-

based metrics and matched frame-based metrics, also outperforming other

models in anticipation tasks.

We point out that surgical workflow literature has almost exclusively focused

on frame-level metrics in the past. This is misaligned with state-of-the-art

in general activity segmentation outside the surgical field, where event-based

metrics have been proposed and are used more often.

This research examined performance discrepancies in surgical workflow anal-

ysis between frame-based and event-based metrics. Frame-based metrics al-

low for a rapid and straightforward assessment of a network’s performance.

However, this approach often disregards the continuity of events and long-

term temporal patterns. This omission is especially critical in surgical videos,

where phases or steps may be reordered or repeated several times. Event-

based evaluations effectively capture the accuracy of methods in detecting

such information. Some challenges have already begun incorporating event-

based evaluations into their result analyses [21]. We propose that evaluating

these extra metrics offers valuable insights crucial for downstream applica-

tions, where accurate phase ordering is as important, if not more so, than in-

dividual frame accuracy. This is especially true in scenarios where particular

phase sequences indicate the complexity of cases, the surgeon’s experience,

or potential complications.

In Chapters 4 and 5 of this study, a new methodology for detecting transi-

tions in surgical workflow segmentation has been explored. It reveals a clear

trade-off between transition-based detection and traditional frame-based ap-

proaches. Transition-based methods show superior performance in event-

103



based metrics, while frame-based methods excel in frame-based metrics. The

selection of method depends on which type of performance is prioritized for

the intended use. Notably, from Chapter 4 to Chapter 5, the frame-based

performance of our transition-based approach has seen significant improve-

ments. Moreover, transition-based detection aligns better with tasks involv-

ing surgical workflow anticipation. This approach can also be expanded into

hybrid models for multi-purpose applications.

We have also introduced a new surgical workflow analysis dataset, known as

the Sacrocolpopexy dataset. This specific surgery tends to be significantly

longer than the current benchmark datasets for surgical workflow analysis,

which exacerbates the issue of over-detecting transitions. The transition-

based detection method may provide a better model for this dataset. Ad-

ditionally, in clinical settings, suturing time serves as a crucial performance

metric for surgeons. Conventional frame-based approaches struggle with ac-

curately defining the start and end points of the suturing phases due to

random errors in detecting transition points. Conversely, transition-based

detection allows for a precise description of transition points, either during

or after the surgery. Therefore, to simplify the model in the initial study dis-

cussed in Chapter 4 of TRN, we concentrated solely on identifying the mesh

implant suturing phase within this dataset. After upgrading the model to

ATRN in Chapter 5, the scope was expanded to encompass three primary

phases: anatomy dissection, mesh implant suturing, and reperitonealisation.

6.1 Limitations and Future work

There are several improvements that can be pursued in future research. In

the current architecture, the convolution neural network and the following

transition-retrieving models are trained separately, but could be fine-tuned

in an end-to-end fashion. Modelling surgery-specific priors can improve pre-

dictions on Cholec80 (SV-RCNet+PKI [44]) and similar strategies could be
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developed for Sacrocolpopexy.

While it is uncommon in public datasets, there could be instances where

phases repeat an unknown number of times, making our formulation inad-

equate. A specialized mechanism or model architecture in the transition-

retrieving pipeline needs to be developed to address this issue. Furthermore,

ATRN is sensitive to agent initialization, as a closer initialization to the tar-

get transition results in more precise predictions. Though we propose two

working strategies (FI, RMI), they could be optimized further. Indeed, these

two constraints are linked by a common concept: the network should grasp

a more comprehensive global overview of the entire sequence instead of fo-

cusing solely on the local temporal characteristics near the target transition

location.

From a clinical perspective, integrating surgical workflow segmentation and

anticipation remains challenging. Firstly, surgeries are intricate and can ex-

hibit unexpected variations or accidents not represented in current datasets.

Furthermore, even when some rare instances are recorded, their infrequent

occurrence can prevent the model from learning these scenarios during train-

ing. Second, prolonged efforts and a substantial number of surgeries are

necessary to confirm if workflow segmentation effectively lessens surgeons’

workload and reduces complications, particularly when additional annotated

data might be essential for validation.

Finally, we have only evaluated partial performance with Sacrocolpopexy

on its combined phases. Given that our Sacrocolpopexy is a datasets still

in devleopment, with further cases being recorded. There may be some un-

usual phases or long rest times between phases in some videos that needed

further clinical consensus toward a complete classification of phases in the

procedure. It is necessary to explore a more detailed labeling strategy to
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systematically examine new phases and atypical workflows in the enlarged

Sacrocolpopexy dataset. In addition, robotic surgery has been integrated

into laparoscopic sacrocolpopexy [76], and recently, glue mesh fixation has

been adopted in place of sutures to secure the mesh in these procedures [56].

It is worthwhile to examine the behavior and performance of the network

in handling these previously unseen techniques without extensive further

training or with minimal transfer learning.
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