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Abstract
1.	 Species conservation relies heavily on population estimates derived from cap-

ture–recapture analyses, which are liable to produce biased results if individual 
animals are incorrectly identified. Captive and known-animal studies have shown 
that supplementing human observation with artificial intelligence (AI) has the 
potential to reduce these errors. However, no study has directly quantified the 
relationship between using AI for individual identification and the demographic 
estimates it produces for a threatened population in situ.

2.	 We compared the demographic estimates produced by capture–recapture analy-
ses of two distinct encounter histories constructed from the same survey data; 
one produced using individual identifications made by human observers alone (the 
‘human-only data set’), and one produced using AI software to aid individual identi-
fication (the ‘AI-supplemented data set’). This approach enabled us to address two 
key questions: (i) does the use of artificial intelligence software for individual identi-
fication influence demographic estimates for an in situ conservation programme? (ii) 
How has the population of our case study species, the critically endangered Kapitia 
skink, responded following an extreme weather event, cyclone Fehi?

3.	 We found that, without AI, human observers appeared prone to make reclassifi-
cation or ‘splitting’ errors, in which a recaptured animal was wrongly assigned as 
a new individual. Analysis of the AI-supplemented data set consistently produced 
lower estimates of population abundance over time, relative to the same analysis 
of the human-only data set. This provides new evidence that wild species moni-
toring efforts may be prone to underestimating the extinction risk of populations 
if they are dependent on individual identification methodologies with high poten-
tial for human errors.

4.	 Our case study species, the Kapitia skink, demonstrated a positive population 
trend in the period following cyclone Fehi. While promising, conservation inter-
vention is recommended to address persistent threats.
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1  |  INTRODUC TION

The identification of individual animals is fundamental in capture–
recapture modelling. For species that display consistent individu-
ally unique patterning, photographic records of captured animals 
enable human observers to distinguish between individuals while 
bypassing the practical and welfare issues associated with tradi-
tional marking methods (Belaud et al., 2022; Petso et al., 2022; Vidal 
et al., 2021). However, identifying individual animals by the human 
eye alone is time-consuming and prone to error; and simulation 
studies have demonstrated that errors in individual capture histo-
ries due to misidentification could significantly impact the reliability 
of demographic estimates (Cruickshank & Schmidt, 2017; Bohnett 
et al., 2023; Johansson et al., 2020; Morrison et al., 2011; Strampelli 
et al., 2022). This impact may be particularly significant for rare, elu-
sive species; estimate uncertainty is already high if elusivity results 
in low recapture rates. One solution is to account for misidentifi-
cation in model formulation, though complex models may be im-
practical for everyday conservation needs (Morrison et  al.,  2011; 
Tucker et al., 2019; Yoshizaki et  al., 2009). As robust estimates of 
demographic parameters are key for conservation planning, limiting 
sources of error is crucial, and research should promote user-friendly 
tools that increase confidence in parameter estimation.

Several studies have reviewed the use of artificial intelligence 
(AI) software to identify individual animals. AI can be trained to com-
pare patterns between images and highlight similarities, which may 
be presented in user-friendly packages such as HotSpotter, APHIS 
or WildID (Bolger et al., 2012; Crall et al., 2013; Moya et al., 2015; 
Schneider et  al.,  2019). Outcomes are promising, with research-
ers reporting greater resource efficiency and accuracy in trials 
using AI to correctly classify images of known individuals (Bardier 
et  al.,  2020; Cruickshank & Schmidt,  2017; Dawson et  al.,  2021; 
Dunbar et  al.,  2021; Nipko et  al.,  2020; Park et  al.,  2019; Renet 
et al., 2019). Notably, Bohnett et al.  (2023) reported that using AI 
software decreased reclassification errors, whereby observers mis-
takenly report a recaptured animal as a new individual. As this type 
of error is likely to lead to an overestimation of abundance, it has the 
potential to underestimate the extinction risk of threatened popula-
tions, suggesting a need for caution in interpreting demographic esti-
mates for conservation decision-making and for research to quantify 

these effects in situ (Johansson et al., 2020; Morrison et al., 2011; 
Yoshizaki et al., 2009). Here, we present a case study in the context 
of active conservation planning for a highly threatened reptile.

The Kapitia skink, Oligosoma salmo (Melzer et al., 2019), is a small 
lizard endemic to Aotearoa New Zealand. Like many skinks in the 
genus, O. salmo is viviparous and omnivorous, but is unusual in hav-
ing a prehensile tail (van Winkel et al., 2018). Following historic habi-
tat loss and modern land conversion to pasture, the species' only wild 
population persists within a narrow area of non-native coastal habitat 
less than 2 km2, warranting an IUCN Red List status of critically en-
dangered (Hitchmough, 2021). The species continues to be threatened 
by invasive predators, coastal erosion and extreme weather events 
(Nelson et al., 2016; van Winkel et al., 2018). In 2018, cyclone Fehi de-
stroyed over half the known contemporary habitat, and the occurrence 
of extreme weather is forecast to increase with changing climates 
(Fitzharris, 2007; Safaei Pirooz et al., 2019). As such, urgent action is 
required to prevent the species' extinction, and an initial understand-
ing of its demographics is desired to advise conservation management.

This study aimed to produce initial estimates of population abun-
dance and survival probability for the critically endangered Kapitia 
skink, and to quantify the impacts of using AI image recognition 
software on these estimates. We hypothesised that supplementing 
human observation with AI software would (a) reduce the rate of 
individual misidentification errors, and therefore (b) reduce bias in 
our population estimates.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The study site encompasses the extant range of the Kapitia skink on 
the West Coast of South Island, Aotearoa New Zealand (42°36′ 57″ 
S, 171°5′2″ W), a narrow strip of non-native grass and scrubby veg-
etation circa 1 km long and 5 m wide. It is flanked by a sandy beach 
and close-cropped pastureland to the west and east, respectively, 
with close-cropped grass and a stream delineating the north and 
south edges. A linear array of Artificial Cover Objects (ACOs) made 
of crenulated Onduline™ (30 × 30 cm) spaced, on average, 8 m apart 
was used to attract skinks for capture.

5.	 Practical implication. Supplementing human observation with AI software for 
individual identification could mitigate errors leading to the underestimation of 
extinction risk for endangered species. We encourage further development of AI 
software to increase its automation and accessibility and recommend that prac-
titioners consider its use in population monitoring based on the identification of 
individuals in imagery.

K E Y W O R D S
artificial intelligence, capture–recapture, individual identification, Kapitia skink, Oligosoma 
salmo, population estimation, reptile conservation, robust design
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2.2  |  Capture surveys

Data collection followed a robust design mark–recapture protocol in 
which surveys were divided into primary and secondary sampling oc-
casions. In a robust design structure, a population is assumed to be 
closed to gains or losses within a primary occasion, then open to popu-
lation change between primary occasions. Surveys were conducted 
between October and April, corresponding to warmer temperatures in 
the austral summer when the species is most active. Five primary sam-
pling periods were completed within a 3-year span (2019–2021) fol-
lowing cyclone Fehi in 2018. Each primary occasion spanned 12 days, 
allowing for poor weather but maintaining a reasonable assumption of 
population closure for the species, and the time between primary oc-
casions varied from 2 to 10 months depending on seasonality and sur-
veyor availability. Either 10 or 11 surveys (secondary occasions) were 
conducted within each primary sampling period.

Surveys lasted on average 1.5 h and commenced between 09:00 
and 13:00, having allowed the sun to warm ACOs to optimise the 
probability of skink captures. During each survey, every ACO was 
checked for skink presence. To aid capture, a bottomless plastic box 
was placed around the ACO before it was lifted, constraining any 
skinks present. Once captured, skinks were measured and photo-
graphed before being returned to their original location. Surveyors 
aimed to take consistent images of each skink; images of the left side 
were used for identification. Focus on a single side of each animal 
mitigated cataloguing and time constraints, while still utilising suf-
ficient distinguishing features for identification. Identification relied 
on the unique individual scale patterning of lizards (Figure 1).

2.3  |  Image processing

2.3.1  |  Human-only

Images were sorted into a physical catalogue in which distinct indi-
viduals were identified and assigned unique numbers. Each image 
taken at a capture event was compared to this catalogue by four ex-
perienced surveyors (LA; RH; LM; and one other) and designated as 
either a recapture or a new individual. Records of individual captures 
were then constructed into encounter histories, with 1 s or 0 s, re-
spectively, denoting the presence or absence of an individual during 

a sampling event. This collection of encounter histories, established 
using individual identifications made by human observation alone, is 
hereafter referred to as the ‘human-only’ data set.

2.3.2  |  AI-supplemented

Digital images were then compared using ‘HotSpotter’ image recog-
nition software (Crall et al., 2013) by an independent researcher (EJ). 
For this project, we favoured HotSpotter due to its reported high 
levels of accuracy (de Lorm et al., 2023; Dunbar et al., 2021; Monnet 
et  al.,  2022; Nipko et  al.,  2020) and ease of access (free at time of 
download). HotSpotter uses a feature-based approach, comparable to 
other popular wildlife recognition software including I3S-Pattern (van 
Tienhoven et al., 2007) and WILD-ID (Bolger et al., 2012), which ex-
tracts descriptors of key areas of animal markings to infer matches. The 
focus on unique markings, as opposed to a pixel-by-pixel comparison, 
enables greater flexibility when photographing wildlife under varying 
conditions; it is more robust in handling differences in factors such as 
lighting, scale and direction (de Lorm et al., 2023).

To run HotSpotter, each image was cropped to a rectangular ‘re-
gion of interest’, the left side of each skink between its fore- and 
hind limbs, which together formed a database for image comparison. 
A ‘query’ was run on every image individually, inducing HotSpotter 
to compare that image with the full database and calculate scores 
indicating the level of similarity between images. In contrast to re-
lated software packages, HotSpotter runs two algorithms, one-vs-
one and one-vs-many. In one-vs-one, the queried image is compared 
to each image in the database individually using the ‘SIFT’ method 
(Lowe, 2004), whereas in the one-vs-many algorithm each descriptor 
of the queried image is compared to every descriptor in the database 
using a nearest neighbour approach as in McCann and Lowe (2012). 
The similarity scores assigned to each individual are produced from 
the aggregated scores generated by both of these algorithms.

Following each run, the six highest scoring images were pre-
sented adjacent to the queried image and reviewed by the re-
searcher. ‘Hotspots’ of matching features between images were 
highlighted to aid comparison and the researcher decided whether 
compared images were from the same individual. A second encoun-
ter history data set was produced using the identifications of individ-
ual captures made with the aid of HotSpotter, hereafter referred to 
as the ‘AI-Supplemented’ data set.

2.3.3  |  Verification

Studies testing photographic methods for individual identification typi-
cally rely upon using tagged or otherwise previously known individuals 
to verify the accuracy of matches. In this case, to create a benchmark 
against which to verify the human-only and AI-supplemented data sets, 
we subjected all images on which human-only and AI-supplemented 
methods did not agree to additional inspection. This involved a further 
round of human scrutiny by the independent researcher, including with 

F I G U R E  1 Examples of catalogued images of distinct Oligosoma 
salmo individuals demonstrating the variation in scale patterning.
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the aid of comparison tools in Hotspotter. The outcome of each image 
review was then discussed, and the accurate match was agreed upon 
between the experienced surveyors and the independent researcher. 
While we cannot rule out some remaining mismatching in the outcome 
of this process, in no case was this felt to be a serious risk. We refer to 
this benchmark as the Verified data set.

2.3.4  |  Evaluating performance

To assess the relative performance of the image processing meth-
ods, we calculated their false acceptance rates (FAR), the frequency 
at which images of distinct individuals are recorded as matching 
pairs, and false rejection rates (FRR), the frequency at which im-
ages of the same individual are not matched (Jain, 2007), following 
Bardier et al. (2020):

The number of non-matching pairs pertains to every possible 
comparison between images in which the photographed individuals 
were discrete and was determined by the number of possible com-
parisons, given by n!/2 × (n − 2)! minus the number of true-matching 
pairs, where n is the number of images compared.

2.4  |  Capture–recapture analyses

Capture–recapture analyses were conducted in Program MARK 
using a robust design model, with a Huggins abundance estimator 
to derive estimates of population size N (Huggins, 1989, 1991; White 
& Burnham, 1999). The combination of open and closed periods in 
a robust design model enables the simultaneous estimation of sur-
vival and abundance, both important target parameters for conser-
vation planning, as well as the inclusion of a temporary emigration 
parameter. Including temporary emigration in capture–recapture 
analysis accounts for the probability that some individuals may be 
unavailable for capture at a sampling occasion, which otherwise 
might violate the model assumption of equal recapture probability 
across individuals and bias estimates (Barker & White, 2004; Bird 
et al., 2014; Hammond, 1990). For the Kapitia skink, it is unlikely that 
individuals leave and return to the survey area for elongated peri-
ods; the land surrounding their remnant habitat is unsuitable for a 
species that actively prefers cover, and anecdotally, individuals show 
limited capacity for dispersal. However, lizards are known to spend 
long periods in natural refuges alternative to ACOs, which would ex-
clude them from the surveyed population (Black et al., 2019; Lettink 
& Hare, 2016; Zhou et al., 2019).

As there is no formal goodness-of-fit test for robust design, 
data were collapsed into primary occasions and run as a fully 

parameterised Cormack–Jolly–Seber model to assess goodness of 
fit. This model was assessed using Program RELEASE Test 2 and 
Test 3, which test the assumptions that (a) the probability of recap-
ture is the same across individuals and (b) individuals have the same 
probability of surviving between a given time interval, regardless of 
the occasion at which they were first caught (Burnham et al., 1987). 
Time intervals between primary occasions were formatted to output 
annual survival probabilities.

In total, 24 models were built with varying constraints on the real 
estimable parameters: probability of survival ϕ (which could be con-
stant or time-varying); temporary emigration γ (which could follow 
a random or Markovian pattern or be absent); and the probability 
of capture c and recapture p (which could be equal to each other 
or distinct, constant or time-varying), Table  S1. Corrected Akaike 
information criterion (AICc) values were calculated for each model 
and used as weightings for model selection. The analyses were run 
twice, once using the human-only data set and once using the AI-
supplemented data set.

3  |  RESULTS

3.1  |  Image processing

Human-only image processing identified 402 unique individu-
als, whereas AI-supplemented image processing identified 360, 
Table 1. The verified data set inferred that our true sample con-
sisted of 360 individuals. No false acceptances were detected in 
either the human-only or AI-supplemented method; however, 88 
incidences of false rejections were highlighted within the human-
only data set (FRR = 0.17, Table 1). These corresponded to 42 re-
captured animals that had been assigned as new individuals, three 
of which were reassigned twice and one that was reassigned three 
times.

3.2  |  Capture–recapture analyses

Both data sets met the assumptions of model fit (Table S2). Although 
AICc model rankings altered marginally between data sets, in both 
analyses, the model with the lowest AICc value included constant 
survival, equal time-varying probability of capture and recapture and 
random temporary emigration (Model 5, Table 2) and was selected 

FAR =

Number of falsematches

Number of non-matching pairs
.

FRR =

Number of falsely rejectedmatches

Number of true-matching pairs
.

TA B L E  1 The total number of discrete individuals identified by 
the human-only and AI-supplemented image processing methods, 
alongside their respective false acceptance rate (FAR) and false 
rejection rate (FRR).

Human-only AI-supplemented

Total individuals 402 360

FAR 0 0

FRR 0.17 0

 26888319, 2025, 1, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1002/2688-8319.70018 by T

est, W
iley O

nline L
ibrary on [06/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  5 of 10JORDAN et al.

as the best model for comparison. As delta AICc intervals were nar-
row for models run with the human-only data set, we further con-
sidered model-averaged estimates but found no significant changes 
to our results, Table S3.

The model estimated consistently lower population abun-
dance values for each primary occasion when run with the AI-
supplemented data set (Figure 2). Both data sets demonstrate an 
overall trend of increasing population size in the monitoring period 
following cyclone Fehi, with a notable increase after the first pri-
mary occasion.

The annual survival probability predicted by the AI-supplemented 
data set (ϕ = 0.51 ± SE 0.07) was higher than predicted by the 
human-only data set (ϕ = 0.46 ± SE 0.08). The human-only data set 
predicted higher probabilities of temporary emigration between pri-
mary sampling occasions, Table 3. Capture probabilities across sec-
ondary occasions varied between 0.01 and 0.037 for each data set. 
A full table of capture probabilities can be found in the Supporting 
Information (Table S4).

4  |  DISCUSSION

This study provides evidence that using AI software to identify in-
dividual animals can influence multiple parameter estimates in the 
demographic analysis of a wild population. Here, the use of the 
HotSpotter package specifically produced a data set with a lower 
FRR relative to human-only image processing, reducing the overin-
flation of population abundance estimates and underestimation of 
the survival rate. The results further indicate an overall pattern of 
population increase for our focal species, the Kapitia skink, and we 
suggest the use of the estimates produced by our AI-supplemented 
data set to inform its conservation.

TA B L E  2 The top five models weighted by AICc for the human-
only and AI-supplemented data sets.

Model AICc ΔAICc AICc weights

Human-only

5 �(.) � �(t) = � ��
(t)

 p(t) = c(t) 4470.39 0 0.259

3 �(t) � � = � �� = 0 p(t) = c(t) 4470.47 0.08 0.249

2 �(t) � �(t) = � ��
(t)

 p(t) = c(t) 4470.65 0.26 0.228

4 �(.) � �(t) ≠ � ��
(t)

 p(t) = c(t) 4470.73 0.33 0.219

1 �(t) � �(t) ≠ � ��
(t)

 p(t) = c(t) 4473.90 3.50 0.045

AI-supplemented

5 �(.) � �(t) = � ��
(t)

 p(t) = c(t) 4511.12 0 0.742

2 �(t) � �(t) = � ��
(t)

 p(t) = c(t) 4514.27 3.15 0.154

4 �(.) � �(t) ≠ � ��
(t)

 p(t) = c(t) 4515.84 4.71 0.070

1 �(t) � �(t) ≠ � ��
(t)

 p(t) = c(t) 4517.77 6.65 0.0267

3 �(t) � � = � �� = 0 p(t) = c(t) 4520.29 9.17 0.008

Note: Survival �, capture c and recapture p could be constant (. ) or 
time-varying (t). � �

(t)
= � ��

(t)
 denotes random movement, � �

(t)
≠ � ��

(t)
 denotes 

Markovian movement and � � = � �� = 0 denotes no movement. The best 
model for both data sets (Model 5) is highlighted in bold.

F I G U R E  2 Comparison of population 
abundance estimates produced by 
analysis of the human-only data set (blue, 
left) and of the AI-supplemented data set 
(orange, right) with standard error bars. 
Percentage values show the difference in 
mean population estimates produced by 
the AI-supplemented data set relative to 
estimates produced by the human-only 
data set at each primary survey occasion.

TA B L E  3 Estimated probability of temporary emigration γ, ±SE 
between each primary sampling occasion.

Period Human-only AI-supplemented

January 2019 to March 2019 0.03 ± 0.22 0 ± 0

March 2019 to January 2020 0.23 ± 0.16 0.21 ± 0.14

January 2020 to November 
2020

0.48 ± 0.10 0.43 ± 0.10

November 2020 to February 
2021

0.73 ± 0.07 0.63 ± 0.08
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Previous studies have concluded that multiple AI software pack-
ages can aid the recognition of individual animals (Bardier et al., 2020; 
Dalibard et al., 2021; Dunbar et al., 2021; Hou et al., 2020; Rotger 
et al., 2019) or have used known animal data or simulations to evi-
dence that even small errors in encounter history data sets can bias 
demographic estimates (Bohnett et al., 2023; Johansson et al., 2020; 
Morrison et al., 2011; Rakhimberdiev et al., 2022; Yoshizaki et al., 
2009). However, to our knowledge, this is the first in situ case study 
directly demonstrating the impact of using an AI image recognition 
software package on estimates that will influence an active conser-
vation programme.

4.1  |  Image processing

When comparing numerous images of individual animals purely 
‘by-eye’, even experienced species practitioners are liable to error 
(Bohnett et al., 2023; Cruickshank & Schmidt, 2017). Here, the use 
of HotSpotter image recognition software highlighted several false 
rejections made by human observers, in which skinks were recorded 
as new individuals despite being captured on previous occasions. 
These missed matches likely occurred due to the difficult and fatigu-
ing nature of comparing an image with a large catalogue of individual 
animals. In contrast, HotSpotter presented a narrowed field of prob-
able matches to a target image, streamlining the process for observ-
ers to improve the probability that a recaptured individual would be 
identified.

No false acceptances, where unique individuals may be recorded 
as a single individual, were detected in either data set. False matches 
are more rarely reported in assessments of photographic individual 
identification approaches: They may be difficult to identify or a less 
common error (Bardier et al., 2020; Cruickshank & Schmidt, 2017; 
Johansson et  al.,  2020). It is plausible that human observers are 
more inclined to split individuals when it is felt a match is uncer-
tain; discussions with observers suggested that wrongly matching 
two unique individuals could feel more like an ‘active’ rather than 
‘passive’ mistake. In addition, research reliant on methods such as 
camera-trapping or sampling at a distance is likely to contend with 
inconsistent and poor quality images which distort an animal's rec-
ognisable features, making them difficult to attribute to previously 
caught individuals and therefore more likely to be falsely split (Kodi 
et al., 2024; Stevick et al., 2001).

It is important to acknowledge that this study could not rely 
upon a data set of known individuals to fully validate the accuracy of 
matches made; therefore, unidentified errors may still be present in 
both the human-only and AI-supplemented data sets. However, our 
verification process indicated that the AI-supplemented data set is a 
more accurate reflection of the true individual encounter histories: 
images assigned alternate identifications by the human-only and 
AI-supplemented approaches were further evaluated, and for each, 
the identification deemed accurate corresponded unanimously to 
the AI-supplemented data set. Furthermore, studies conducted 
using data sets of known individuals have consistently reported 

increased accuracy when AI software is used to assist individual 
identification (Bardier et  al., 2020; Cruickshank & Schmidt,  2017; 
Dalibard et al., 2021; Dunbar et al., 2021; Hou et al., 2020; Rotger 
et al., 2019). We therefore advise that estimates produced by our 
AI-supplemented data set is favoured to inform population manage-
ment of the Kapitia skink.

4.2  |  Impact on parameter estimates

Parameter estimates differed dependent on the method used to 
identify individual capture histories. A FRR of 0.17 was observed 
in the human-only data set, greater than the 0.10 threshold sug-
gested by Morrison et  al.  (2011) above which population es-
timates are likely to experience significant bias. In contrast, the 
AI-supplemented data set had an FRR of 0 and produced lower 
abundance estimates than the human-only data set, suggesting 
that relying on human observation alone may have resulted in 
overestimates of population size. As FRRs are higher in human 
observation methods than those that utilise AI, commonly >0.10, 
it is likely that human-only approaches are disposed to overesti-
mating population abundance (Bardier et al., 2020; Cruickshank & 
Schmidt, 2017). Mechanistically, this divergence is a direct result 
of missed matches falsely inflating the number of observed individ-
uals. Similarly, estimates of survival probability were higher when 
missed matches were accounted for in the AI-supplemented data 
set; the model otherwise considering that these individuals may 
have experienced mortality.

The biases demonstrated in our analysis correspond to those 
predicted by studies simulating errors in encounter histories and 
demonstrated in camera trap analyses of captive snow leopards 
(Bohnett et al., 2023; Johansson et al., 2020; Morrison et al., 2011; 
Renet et al., 2019; Yoshizaki, 2009). This study contributes new ev-
idence that these effects are applicable to in  situ conservation in 
divergent taxa.

These findings are significant as even small biases in survival 
and abundance estimates can have a substantial effect when man-
aging threatened populations (Bickerton et  al.,  2023; Lloyd-Jones 
et  al.,  2023). Demographic information often informs planning in-
terventions such as reintroductions, threat mitigation and habitat 
management, and skewed estimates may impact their effectiveness 
(Bird et al., 2021; Callaghan et al., 2024; Conde et al., 2019; Morrison 
et al., 2021; Volis & Deng, 2020). In addition, misevaluation of ex-
tinction risk can lead to poor resource allocation or a lack of urgency 
that could prove crucial to rare species. Underestimation of extinc-
tion risk is of particular concern as evidence suggests that ‘splitting’ 
errors, which inflate population estimates, are most common in 
capture–recapture data sets constructed from photographic iden-
tification (Bardier et al., 2020; Bohnett et al., 2023; Cruickshank & 
Schmidt, 2017; Johansson et al., 2020; Kodi et al., 2024). Due to the 
potential of AI to reduce bias in population estimates, it is desirable 
that more conservation projects consider implementing the use of 
image recognition software in monitoring programmes.
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4.3  |  Caveats and considerations

In this study, we used a single AI image recognition software, 
HotSpotter, in our AI-supplemented approach to identifying indi-
vidual animals. It is possible that using alternate packages to process 
images of the Kapitia skink may have produced different outcomes, 
given that the underlying mechanics of image sorting can differ 
variously. However, given the overall trend towards FRR reduction 
seen across studies comparing relevant packages, it is reasonable 
to assume that the reduction of inflated estimates observed with 
HotSpotter would likely extend to comparable software.

Although software packages for individual identification are 
broadly efficient and accessible, projects should review the resources 
required for set-up and implementation. For instance, human input 
remains necessary to build a database of digital images, run the soft-
ware and make final decisions on identification. Although improved 
automation of image data handling may become increasingly acces-
sible to practitioners as machine learning frameworks continue to be 
developed (Bogucki et al., 2019; de Lorm et al., 2023; Hou et al., 2020; 
Norouzzadeh et al., 2018; Petso et al., 2022; Schneider et al., 2019).

Project managers should further consider which software is the 
most appropriate for use in the context of the project needs. Some 
initiatives develop and maintain efficient species-specific individual 
identification software with simplified interfaces, but these incur 
high costs that may be prohibitive to smaller programmes (McClure 
et al., 2020). Yet some free software can experience limited main-
tenance, and therefore reduced longevity, which limits its scope for 
longer term monitoring (Crall et al., 2013).

Finally, both human- and machine-induced errors can persist in 
AI-supplemented data sets: There is no guarantee that any field data, 
however processed, will be error free. Integrating a misidentification 
framework into capture–recapture models may improve the reliability 
of estimates in analyses where it is reasonable to assume that mis-
identification rates remain significant. Although conversely, when ei-
ther recapture probabilities or misidentifications are small, simulations 
indicate that standard model approaches are more reliable (Morrison 
et al., 2011; Yoshizaki et al., 2009). In addition to our own, many stud-
ies assessing the accuracy of AI-supplemented individual identification 
have reported low rates of misidentification errors of <0.05, indicating 
that this approach could negate the need to incorporate misidentifica-
tion into a model (Bardier et al., 2020; Cruickshank & Schmidt, 2017; 
Monnet et al., 2022; Nipko et al., 2020; Rotger et al., 2019). Reported 
accuracies, however, varied with factors such as the quality or consis-
tency of images and the software used, and it is plausible that some 
taxa and survey methods could incur higher rates of misidentification; 
thus, the context of a data set should be considered when selecting 
the optimal approach for analysis.

5  |  CONCLUSIONS

Our analyses provide a case study demonstrating that an AI tool can 
mitigate bias in demographic estimates for in situ conservation. Here, 

errors in a human-only individual identification data set led to the 
likely overestimation of population size for the critically endangered 
Kapitia skink, of up to −11%, and we advise that urgent conservation 
intervention for this species is informed by the estimates produced 
using AI-supplemented individual identification. More generally, this 
study recommends that photographic individual identification meth-
ods for capture–recapture are best complemented with AI software 
to reduce false or missed matches that skew population estimates. 
Efforts should continue to facilitate the automation and accessibil-
ity of individual identification software to aid practitioners, with 
the potential to prevent the underestimation of extinction risk for 
threatened species.
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Table  S1: List of candidate models. Survival ϕ, capture p, and 
recapture c, could be constant (.) or vary with time (t).
Table S2: Results of Program RELEASE goodness of fit tests 2, 3, and 
combined 2+3 for each data set analysed.
Table  S3: A comparison of model-averaged and model 5 results 
produced by the Human-Only data set.
Table  S4: The capture probabilities for each secondary occasion 
across all primary occasions, produced by the analysis of the 
‘Human-Only’ and ‘AI-Supplemented’ data sets.
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