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Abstract. In this paper, we provide a theoretical analysis of the recently introduced weakly
adversarial networks (WAN) method, used to approximate partial differential equations in high
dimensions. We address the existence and stability of the solution, as well as approximation bounds.
We also propose two new stabilized WAN-based formulas that avoid the need for direct normalization.
Furthermore, we analyze the method's effectiveness for the Dirichlet boundary problem that employs
the implicit representation of the geometry. We also devise a pseudotime XNODE neural network for
static PDE problems, yielding significantly faster convergence results than the classical deep neural
networks.
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1. Introduction. Recently there has been a vast interest in approximating par-
tial differential equations (PDE) using neural networks and machine learning tech-
niques. In this note, we will consider the weak adversarial networks (WAN) method
introduced by Zang et al. [22]. The idea is to rewrite the weak form of the PDE as
a saddle point problem whose solution is obtained by approximating both the trial
(primal) and the test (adversarial) space through neural networks. In [22], the method
was tested on various PDEs, tackling different challenging issues such as high dimen-
sion, nonlinearity, and nonconvexity of the domain. It was subsequently applied for
the inverse problems in high dimension [1] and for the parabolic problems [16], with
quite promising results.

However, as often happens for neural network methods for numerical PDEs, rig-
orous theoretical results on the capability of WANs to approximate the solution of
a given PDE still need to be improved. The most critical issues that must be ad-
dressed are the discrete solution's existence, stability, and approximation properties.
Due to the inherent nature of neural network function classes, even the issue of the
existence of a discrete solution is far from a trivial one. Indeed, fixed architecture
neural network classes are generally neither convex nor closed [18, 14]. Therefore, a
global minimum for a cost functional in one of such classes might not exist. Unsur-
prisingly, as we are ultimately dealing with a saddle point problem, a suitable choice
of the test (adversarial) network class will play a vital role in the analysis. The lack
of linearity of the trial (primal) network class will imply the need for a strengthened
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WAN DISCRETIZATION OF PDEs C689

inf-sup condition (see (2.14) in the following), which, however, will not, in general, be
enough to guarantee the existence and uniqueness of a global minimizer. Indeed, due
to the nonclosedness of neural network classes, it might not be possible to attain the
minimum with an element belonging to the class.

What we can prove, under suitable assumptions (see (2.6) and (2.14)), in a general
abstract framework, is (1) the existence of at least one weakly converging minimizing
sequence for the WAN cost functional, and (2) that all weak limits of weakly converg-
ing minimizing sequences satisfy a quasi-optimality bound similar to C\'ea's lemma.
More importantly, we further prove that a similar approximation bound will hold for
the elements of the minimizing sequences sufficiently close to convergence. Combined
with approximation bounds by the deep neural networks (DNNs) [10], this will guar-
antee that the WAN can, in principle, provide an arbitrarily good approximation to
the continuous PDE solution. Another crucial issue relates to the convergence of the
optimization scheme used to solve the minimization problem. Also this task is made
difficult by the inherent topological properties of neural network classes. It is worth
mentioning (see [18]) that the function class of DNNs lacks inverse stability in the Lp

andW s,p norms. In simple terms, the norm of the elements of the DNN function class
does not control the norm of the associated parameter vector. As the optimization
schemes indirectly act on the function class through the parameter space, this will
negatively affect the minimization process. In particular, when, the weak limit of the
minimizing sequence does not belong to the function class, it can be proved that the
sequence of the Euclidean norms of the corresponding parameter vectors explodes [18].

In the WAN framework, the aforementioned problems are integrated with the
problems related to the inexact evaluation of the cost functional, which is defined
as a supremum over the elements of the adversarial network and requires solving an
optimization problem that, for the classical WAN method, becomes ill-posed due to
the presence of direct normalization, and is therefore subject to a possibly relevant
error. If this error becomes comparable, or even dominant, compared to the value
of the cost functional itself, the overall optimization procedure will lose effectiveness
and likely display oscillations. To mitigate this phenomenon, developing more stable
and accurate methods for evaluating the operator norm is crucial. In the framework
of WAN, we propose two alternative ways of evaluating the operator that avoid direct
normalization and improve the overall convergence of the minimization procedure.

We then exploit the results for the second-order elliptic PDEs with essential
boundary conditions. These are notoriously challenging as the construction of neural
networks exactly vanishing on the boundary of a domain is extremely difficult, if not
impossible. On the other hand, standard techniques, such as Nitsche's method, that
impose Dirichlet boundary conditions weakly, rely on inverse inequalities that do not
generally hold in the neural network framework. Adapting a strategy introduced, for
finite elements, in [7], we propose to approximate the test space H1

0 (\Omega ) with a class of
functions obtained by multiplying the elements of a given neural network class with a
level set type weight, thus strongly enforcing the homogeneous boundary conditions
on the test function class. Nonhomogeneous boundary conditions are then imposed by
penalization with a suitable boundary norm. We can show that the resulting discrete
schemes fall in our abstract setting, thus obtaining C\'ea's lemma type quasi-optimal
H1 error bounds.

As the architecture of neural networks plays a crucial role in their performance, we
test the newly proposed methods on different function classes of various structures. In
particular, besides DNN, we focus on residual-related networks, whose usage [11] was
initially proposed to enhance image processing capabilities. These networks have also
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C690 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

found application in various domains, including numerical PDEs [13, 23]. In a recent
work by Oliva et al. [16], the XNODE network is proposed to solve parabolic equations.
Numerical experiments have demonstrated that, compared to classical DNN networks,
XNODE can substantially reduce the number of iterations required for optimization.
This rapid convergence can be attributed to the structure of the XNODE model,
which emulates a residual network, and to the direct incorporation of the initial
condition into the model. Besides testing our framework with XNODE architecture
on a parabolic problem, we also introduce a new variant of the XNODE network, which
we refer to as the pseudotime XNODE method for stationary problems. Remarkably
fast convergence is observed in the numerical results, even for nonlinear and high-
dimensional static elliptic PDEs.

The paper is organized as follows. In section 2, we prove quasi-best approximation
results, and in section 3 we propose two more stable equivalent formulations. In
section 4, we leverage our approach to allow for Dirichlet boundary conditions. Finally,
the numerical results are provided in section 6. We devote the remaining part of this
section to discussing the standard WAN in an abstract setting. Our framework covers
a large class of problems without symmetry or coercivity assumptions, allowing for
standard well-posed problems and certain nonstandard data assimilation problems.
We also cover a very general class of discretization spaces: while we have in mind
neural networks, the only a priori assumptions that we make on our trial and test
function classes is that they are function sets containing the identically vanishing
function so that our results potentially apply to a much wider range of methods,
provided that the inf-sup conditions (2.6) and (2.14) hold.

Throughout the paper, we assume that all forms, linear and bilinear, are eval-
uated exactly and that the resulting nonlinear optimization problems can be solved
with sufficient accuracy. Needless to say, these problems are crucial for the actual per-
formance of the method. Nevertheless, the quasi-best approximation results proved
herein are a cornerstone for its reliability.

1.1. The abstract setting. We consider a PDE set in some open, connected
set \Omega \subset \BbbR d (d\geq 1). We assume that the problem can be cast in the following general
abstract weak form. Let W and V be two reflexive separable Banach spaces. Define
a bounded bilinear form \scrA :W \times V \mapsto \rightarrow \BbbR , satisfying

\scrA (w,v)\leq M\| w\| W \| v\| V \forall w \in W,v \in V,(1.1)

and let \scrF : V \mapsto \rightarrow \BbbR be a bounded linear form. We consider the abstract problem: find
u\in W such that

\scrA (u, v) =\scrF (v) \forall v \in V.(1.2)

As in [1], we rewrite (1.2) as the following minimization problem:

u= argmin
w\in W

sup
v\in V,v \not =0

\scrF (v) - \scrA (w,v)

\| v\| V
= argmin

w\in W
\| u - w\| op,(1.3)

where we define

\| w\| op := sup
v\in V,v \not =0

\scrA (w,v)

\| v\| V
.(1.4)

We assume (1.2) admits a unique solution, satisfying the following stability estimate:

\| u\| W \leq C\| \scrF \| V \prime .(1.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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WAN DISCRETIZATION OF PDEs C691

This is, for instance, the case if the form satisfies the assumptions of the Banach--
Necas--Babuska theorem, or if it satisfies the more general condition of the Lions
theorem, complemented by suitable compatibility conditions on \scrF (see [8, Theorem
2.6 and Lemma A.40]). It is straightforward to show that, under such an assumption,
the solution of problem (1.2) coincides with the unique minimizer of (1.3).

In principle, for any function class W\bfittheta , parametrized by a parameter set \scrP \bfittheta , we
can approximate the solution u by solving the semidiscrete problem:

\~u\ast \bfittheta = argmin
w\bfittheta \in W\bfittheta 

\| u - w\bfittheta \| op.(1.6)

Note that allowing the test space V to be different from the space W , where the
solution is sought, makes the above formulation extremely flexible, allowing it to
cover a wide range of situations, such as the ones where a partial differential equation,
written in the form

a(u,w) = f(w) \forall w \in W0 \subset W(1.7)

(W0 denoting some closed subspace of W ), is complemented by a constraint,

b(u,\chi ) = g(\chi ) \forall \chi \in X,(1.8)

where X is a third reflexive separable Banach space. Such a situation falls in our
abstract framework, with V =W0 \times X, if we set, for v= (w0, \chi )\in V ,

\scrA (w,v) = a(w,w0) + \beta b(w,\chi ), \scrF (v) = f(w0) + \beta g(\chi )

(\beta being a parameter weighting the constraint with respect to the equation). In such
a case, the \| \cdot \| op norm satisfies

\| w\| op = sup
(v,\chi )\in W0\times X

\scrA (w, (v,\chi ))

(\| v\| 2W0
+ \| \chi \| 2X)1/2

\simeq sup
v\in W0

a(w,v)

\| v\| W0

+ \beta sup
\chi \in X

b(w,\chi )

\| \chi \| X
.

Typically, as we shall see below, (1.8) could represent the imposition of essential
boundary conditions. It could also represent some other form of constraint, such
as the ones encountered in data assimilation problems subject to the heat or wave
equation (see [2] or [3], where b is the L2-scalar product over some subset \omega \subset \Omega [4, 15]).

1.2. The WAN method. Let W denote, throughout this section, the H1(\Omega )
space with norm \| v\| W defined as \| v\| 2W = (\nabla v,\nabla v)\Omega +(v, v)\Omega , where (\cdot , \cdot )\Omega denotes the
L2(\Omega ) scalar product. We consider an elliptic partial differential equation, endowed
with a Dirichlet boundary condition, that we write in the form

A(u) = f, B(u) = g,(1.9)

where A is a second-order partial differential operator and B is the trace operator.
Bao et al. propose in [1] to rewrite (1.9) as a minimization problem in a suitable dual
space. To this aim, the so-called operator norm is introduced, defined as

\| A(v)\| H - 1(\Omega ),op := sup
\varphi \in H1

0 (\Omega )
\varphi \not =0

a(v,\varphi )

\| \varphi \| W
,(1.10)

where a :H1(\Omega )\times H1
0 (\Omega ) \mapsto \rightarrow \BbbR , a(w,\varphi ) = (A(u),\varphi )\Omega , is the bilinear form correspond-

ing to the operator A. We immediately see that, provided the form a is continuous on

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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C692 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

H1(\Omega )\times H1
0 (\Omega ), such a norm is well defined (indeed, it coincides with the standard

H - 1(\Omega ) norm). The idea of [1] was then to combine the residual in such a norm
with a boundary penalization term aimed at weakly imposing the boundary condi-
tions (rather than enforcing them exactly), and consider the following minimization
problem:

u\ast = argmin
w\in W

\bigl( 
\| A(u - w)\| H - 1(\Omega ),op + \beta \| g - w\| L2(\partial \Omega )

\bigr) 
.(1.11)

Setting V =H1
0 (\Omega )\times L2(\partial \Omega ), and

\scrA (w, [v,\chi ]) = a(w,v) + \beta (w,\chi )\partial \Omega , \scrF ([v,\chi ]) = (f, v)\Omega + \beta (g,\chi )\partial \Omega ,

this problem can be rewritten in the form (1.3). At the continuous level, problem
(1.11) is, in some sense, equivalent to (1.9). Indeed, we observe that the unique
solution of (1.9) annihilates both \| A(u - w)\| H - 1(\Omega ),op and \| g  - w\| L2(\partial \Omega ), implying
existence. Then, the value of the minimum is zero, and any otherH1(\Omega ) function min-
imizing the boundary penalized residual can be easily seen to be the solution to (1.9),
thus obtaining uniqueness. Trivially, as it coincides with the solution of (1.9), the solu-
tion of (1.11) satisfies \| u\ast \| W \lesssim \| f\| H - 1(\Omega )+\| g\| H1/2(\partial \Omega ) \lesssim \| f\| H - 1(\Omega )+C(g)\| g\| L2(\partial \Omega ),
with C(g) = \| g\| H1/2(\partial \Omega )/\| g\| L2(\partial \Omega ), which is a stability bound of the form (1.5),
though with a constant depending on g (whether such a constant is large or not de-
pends on the frequency content of g: if g is not oscillating, such a constant is of order
one, but it can be large if g presents high frequency oscillations). However, such
a formulation does not entirely fall in the abstract setting of section 1.1, since, for
V =H1

0 (\Omega )\times L2(\partial \Omega ), the bilinear form\scrA does not satisfy the boundedness assumption
(1.1). It is therefore natural to consider the following minimization problem, where
the boundary penalization term is measured in the H1/2(\partial (\Omega )) = (H - 1/2(\partial \Omega ))\prime norm:

u\ast = argmin
w\in W

\bigl( 
\| A(u - w)\| H - 1(\Omega ),op + \beta \| g - w\| H1/2(\partial \Omega )

\bigr) 
.(1.12)

It is not difficult to see that also this problem can be written in the form (1.3), this
time with V =H1

0 (\Omega )\times H - 1/2(\partial \Omega ). Thanks to the choice of the correct norm for the
boundary penalization term, problem (1.12) falls within our abstract framework of
subsection 1.1, it is well-posed, and it is equivalent to (1.9). It will serve as a starting
point for the boundary condition treatment we will propose in section 4.

Remark 1.1. In the very first version of the WAN method (see [22]), the authors
actually proposed a different definition of the operator norm, namely they defined the
dual norm involved in the minimization problem as

\| A(v)\| L2(\Omega ),op := sup
\varphi \in H1

0 (\Omega ),\varphi \not =0

a(v,\varphi )

\| \varphi \| L2(\Omega )
.

It should be noted that this norm is not generally well defined at the continuous level,
and to remedy this, the different normalization in (1.10) was proposed in [1]. We
remark that the notation used for such a norm in [22] was \| A(v)\| op, while we use the
notation \| \cdot \| op with a different meaning; see (1.4).

Remark 1.2. We remark that replacing the natural norms H1(\Omega ) and H1/2(\partial \Omega )
in, respectively, (1.10) and (1.11) with the corresponding L2-norm results in two
``variational crimes"" with fairly different features. In both cases, the natural norm
is replaced by a weaker norm, but in the first case the replacement happens in the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

6/
25

 to
 1

93
.6

0.
24

0.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



WAN DISCRETIZATION OF PDEs C693

denominator. The resulting term \| A(w)\| L2(\Omega ),op, w \in W , is not necessarily well de-
fined (as this would require w \in H2(\Omega )). This is essentially the same residual quantity
as that minimized in so-called PINN (physically informed neural networks) methods
[5, 19]. In the second case, the ``variational crime"" is somewhat less severe: all the
quantities involved in the minimization problem (1.11) are well defined, though, as
we already pointed out, the boundedness assumption (1.1) does not hold.

In the WAN method, the discretization for either (1.11) or (1.12) is performed
by replacing the spaces H1(\Omega ) and H1

0 (\Omega ) by, respectively, their discrete counterparts
W\bfittheta \subset H1(\Omega ) and V\bfiteta \subset H1

0 (\Omega ), whereW\bfittheta and V\bfiteta are two fixed architecture neural net-
work function classes, parameterized by parameter sets \scrP \bfittheta and \scrP \bfiteta . The discretization
is carried out via a discrete operator norm, defined, for any w \in H1(\Omega ), as

\| A(w)\| H - 1(\Omega ),op,\bfiteta := sup
v\bfiteta \in V\bfiteta 

\| v\bfiteta \| V \not =0

a(w,v\bfiteta )

\| v\bfiteta \| V
.(1.13)

The discrete method can then be written, for X being either L2(\partial \Omega ) or H1/2(\partial \Omega ),

u\ast \bfittheta = argmin
w\bfittheta \in W\bfittheta 

\bigl( 
\| A(u - w\bfittheta )\| H - 1(\Omega ),op,\bfiteta + \beta \| w\bfittheta  - g\| X

\bigr) 
.(1.14)

Exactly evaluating the functional on the right-hand side is very difficult since
functions in W\bfittheta and V\bfiteta may have very different geometric structures. In practice, the
integrals are approximated using fixed sample points or a Monte Carlo integration
method [12]. The optimization is then performed using a stochastic gradient descent
method, e.g., Adam, over the parameter sets \scrP \bfittheta and \scrP \bfiteta . We also note that, due to
the normalization in (1.13), when w is close to u, the maximization problem in v\bfiteta 
becomes ill-posed, resulting in increased undesirable oscillations. We will propose a
possible remedy in section 3.

2. Analysis of the WAN method. This section will frame and analyze the
WAN method in an abstract framework. We aim to provide insight into choosing the
approximation and adversarial networks to ensure the resulting method's stability
and optimality. For simplicity, we will perform the analysis based on (1.14) without
considering the errors caused by the Monte Carlo and gradient descent methods.

We define the WAN method in the abstract framework as follows. Letting V\bfiteta \subset V
denote a function class parametrized by a parameter set \scrP \bfiteta , we introduce the discrete
version of the \| \cdot \| op norm on W , defined as

\| w\| op,\bfiteta := sup
v\bfiteta \in V\bfiteta 

\| v\bfiteta \| V \not =0

\scrA (w,v\bfiteta )

\| v\bfiteta \| V
.(2.1)

We observe that for all w \in W we have that

\| w\| op,\bfiteta \leq \| w\| op \leq M\| w\| W .(2.2)

The fully discrete problem then reads

u\ast \bfittheta = argmin
w\bfittheta \in W\bfittheta 

\| u - w\bfittheta \| op,\bfiteta .(2.3)

In our analysis, a key role will be played by the function class of differences of
elements of the approximation network W\bfittheta :

S\bfittheta := \{ w1,\bfittheta  - w2,\bfittheta , w1,\bfittheta ,w2,\bfittheta \in W\bfittheta \} .(2.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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C694 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

We will first consider the case of coercive problems and then tackle problems only
known to satisfy the stability (1.5).

2.1. Coercive problems. Let us at first consider the case V =W , and assume
that the bilinear form \scrA is coercive, i.e., there exist \alpha > 0 such that

\alpha \| \phi \| 2W \leq \scrA (\phi ,\phi ).(2.5)

We make the following assumption on the networks W\bfittheta and V\bfiteta :

W\bfittheta \cup S\bfittheta \subseteq V\bfiteta .(2.6)

Observe that if 0 \in W\bfittheta , we have that W\bfittheta \cup S\bfittheta = S\bfittheta . We start by remarking that, as
the functional w\rightarrow \| u - w\| op,\bfiteta , with u \in W given, is bounded from below by 0, we
have that

\sigma \ast := inf
w\bfittheta \in W\bfittheta 

\| u - w\bfittheta \| op,\bfiteta \geq 0.

By the definition of infimum, there exist a sequence \{ wn
\bfittheta \} with wn

\bfittheta \in W\bfittheta such that

lim
n\rightarrow \infty 

\| u - wn
\bfittheta \| op,\bfiteta = inf

w\bfittheta \in W\bfittheta 

\| u - w\bfittheta \| op,\bfiteta .(2.7)

We call a sequence satisfying (2.7) a minimizing sequence for (2.3). We have the
following lemma, where clseqw (W\bfittheta )\subseteq W denotes the weak sequential closure of W\bfittheta in
W (see [17]).

Lemma 1. Let \{ wn
\bfittheta \} be a minimizing sequence for (2.3). Then, under assumption

(2.6), there exists a subsequence weakly converging to an element u\ast \bfittheta \in clseqw (W\bfittheta )
satisfying

\| u - u\ast \bfittheta \| op,\bfiteta \leq inf
w\bfittheta \in W\bfittheta 

\| u - w\bfittheta \| op,\bfiteta .

Proof. Thanks to (2.5) and (2.6) it is not difficult to see that the sequence \{ wn
\bfittheta \} 

is bounded in W , and it therefore admits a weakly convergent subsequence \{ \widetilde wn
\bfittheta \} .

We let u\ast \bfittheta \in W denote the weak limit of \{ \widetilde wn
\bfittheta \} . Let now AT :W \rightarrow W \prime be defined as

\langle AT v,w\rangle =\scrA (w,v), with \langle \cdot , \cdot \rangle denoting the duality pairing. We have, by the definition
of weak limit,

\| u - u\ast \bfittheta \| op,\bfiteta = sup
v\bfiteta \in V\bfiteta 
v\bfiteta \not =0

\langle AT v\bfiteta , u - u\ast \bfittheta \rangle 
\| v\bfiteta \| V

= sup
v\bfiteta \in V\bfiteta 
v\bfiteta \not =0

lim
n\rightarrow \infty 

\langle AT v\bfiteta , u - \widetilde wn
\bfittheta , \rangle 

\| v\bfiteta \| V
.(2.8)

Now, for any v\bfiteta \in V\bfiteta , v\bfiteta \not = 0, we have

lim
n\rightarrow \infty 

\langle AT v\bfiteta , u - \widetilde wn
\bfittheta \rangle 

\| v\bfiteta \| V
\leq lim

n\rightarrow \infty 
sup

v\prime 
\bfiteta \in V\bfiteta 

v\prime 
\bfiteta \not =0

\scrA (u - \widetilde wn
\bfittheta , v

\prime 
\bfiteta )

\| v\prime \bfiteta \| V
= lim

n\rightarrow \infty 
\| u - \widetilde wn

\bfittheta \| op,\bfiteta = \sigma \ast ,

whence \| u - u\ast \bfittheta \| op,\bfiteta \leq \sigma \ast .

We now prove Cea's lemma of best approximation for WAN on coercive problems.

Lemma 2. Let assumption (2.6) hold, and let u be the solutions to (1.2) and
u\ast \bfittheta \in clseqw (W\bfittheta ) be the weak limit of a weakly convergent minimizing sequence \{ \widetilde wn

\bfittheta \} 
for (2.3). Then we have the following error bound:

\| u - u\ast \bfittheta \| W \leq 
\biggl( 
1 +

2M

\alpha 

\biggr) 
inf

w\bfittheta \in W\bfittheta 

\| u - w\bfittheta \| W .(2.9)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

6/
25

 to
 1

93
.6

0.
24

0.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



WAN DISCRETIZATION OF PDEs C695

Proof. We start by observing that (2.6) implies that for any two elements w1,\bfittheta 

and w2,\bfittheta of W\bfittheta it holds that

\alpha \| w1,\bfittheta  - w2,\bfittheta \| W \leq sup
v\bfiteta \in V\bfiteta 
v\bfiteta \not =0

\scrA (w1,\bfittheta  - w2,\bfittheta , v\bfiteta )

\| v\bfiteta \| W
= \| w1,\bfittheta  - w2,\bfittheta \| op,\bfiteta .(2.10)

Let now e\ast = u - u\ast \bfittheta , and let w\bfittheta be an arbitrary element in W\bfittheta . Letting (\cdot , \cdot )W denote
the scalar product in W and R :W \rightarrow W \prime denote the Riesz isomorphism, we have

\| u\ast \bfittheta  - w\bfittheta \| W =
(u\ast \bfittheta  - w\bfittheta , u

\ast 
\bfittheta  - w\bfittheta )W

\| u\ast \bfittheta  - w\bfittheta \| W
=

\langle R(u\ast \bfittheta  - w\bfittheta ), u
\ast 
\bfittheta  - w\bfittheta \rangle 

\| u\ast \bfittheta  - w\bfittheta \| W

= lim
n\rightarrow \infty 

\langle R(u\ast \bfittheta  - w\bfittheta ), \widetilde wn
\bfittheta  - w\bfittheta \rangle 

\| u\ast \bfittheta  - w\bfittheta \| W
\leq lim

n\rightarrow \infty 
\| \widetilde wn

\bfittheta  - w\bfittheta \| W \leq \alpha  - 1 lim
n\rightarrow \infty 

\| \widetilde wn
\bfittheta  - w\bfittheta \| op,\bfiteta .

Note that we used (2.10) for the last bound. Adding and subtracting u in the right-
hand side and using (2.3) and (1.1), we have

\| u\ast \bfittheta  - w\bfittheta \| W \leq \alpha  - 1 lim
n\rightarrow \infty 

\| u - \widetilde wn
\bfittheta \| op,\bfiteta + \alpha  - 1\| u - w\bfittheta \| op,\bfiteta (2.11)

\leq \alpha  - 1 inf
w\prime 

\bfittheta \in W\bfittheta 

\| u - w\prime 
\bfittheta \| op,\bfiteta + \alpha  - 1\| u - w\bfittheta \| op,\bfiteta \leq 2

\alpha 
\| u - w\bfittheta \| op,\bfiteta .

Since w\bfittheta \in W\bfittheta is arbitrary, using (2.2) and a triangle inequality we get (2.9).

Generally, the weak solutions to (1.14), defined as the weak limits of minimizing
sequences for the right-hand side in W\bfittheta , are not necessarily unique. Moreover, the
solution of the minimization problem (2.3) itself might not lie in W\bfittheta , but only in its
weak sequential closure. In such a case, it can be proved (see [18]) that the sequence
of parameters in \scrP \bfittheta resulting from the minimization procedure is unbounded, which
results in numerical instability. A possible remedy (see [1]) is to restrict both max-
imization in V\bfiteta and minimization in W\bfittheta to subsets of V\bfiteta and W\bfittheta corresponding to
parameters in \scrP \bfiteta and \scrP \bfittheta with Euclidean norm bounded by a suitable constant B.
In such a case, one can apply standard calculus results to prove the existence of a
minimizer w\bfittheta \in W\bfittheta . However, finding an appropriate choice of B remains a challeng-
ing problem. A too-small value of B will result in poor approximation regardless of
the network's approximation capability, and if B is very large, it ultimately serves no
purpose. Lemma 2 does, instead, guarantee that even when multiple weak solutions
exist, they all provide a quasi-best approximation of u in W . Moreover, we can ob-
tain a quasi-best approximation to u within the approximation class W\bfittheta by taking
entries of any minimizing sequence sufficiently close to convergence. Indeed, for any
minimizing sequence \{ \widetilde wn

\bfittheta \} , given \varepsilon > 0 we can choose k such that

\| u - \widetilde wk
\bfittheta \| op,\bfiteta \leq inf

w\bfittheta \in W\bfittheta 

\| u - w\bfittheta \| op,\bfiteta + \varepsilon .

Then, by (2.9) and (2.11) we have

\| u - \widetilde wk
\bfittheta \| W \leq \| u - u\ast \bfittheta \| W + \| u\ast \bfittheta  - \widetilde wk

\bfittheta \| W \lesssim inf
w\bfittheta \in W\bfittheta 

\| u - w\bfittheta \| W + \varepsilon ,

meaning that any minimizing sequence does approximate the solution u in the norm
\| \cdot \| W within the accuracy allowed by the chosen neural network class architecture in
a finite number of steps. It is important to observe that, under proper assumptions,
the cost functional is equivalent to the W \prime norm of the residual, thus providing a
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C696 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

reliable a posteriori error bound. Moreover, by (2.11), the cost functional evaluated
on w\bfittheta provides an upper bound for the discrepancy, in W , between w\bfittheta and the weak
limit w\ast 

\theta , and can then be leveraged to devise a stopping criterion.

Remark 2.1. Since W\bfittheta is a function class and not a function space, (2.6) implies
that V\bfiteta should be a richer function class thanW\bfittheta . When \scrA is coercive and symmetric,
the Deep Ritz method can be interpreted as choosing, in our abstract formulation,
V\bfiteta = u  - W\bfittheta . It is not difficult to check that with such a definition of V\bfiteta , if \scrA is
coercive, both Lemma 1 and Lemma 2 still hold. However, in practice, numerical
evidence suggests that using a separate and more comprehensive space for V\bfiteta than
u - W\bfittheta enhances both numerical efficiency (faster convergence) and accuracy.

Remark 2.2. To fully exploit (2.9), we combine it with approximation results on
neural network classes. We refer to [10] for a survey of the different results available
in the literature and to the references therein. In particular, we recall that when W =
H1(\Omega ) and W\bfittheta is a function class of DNN network with ReLU activation function, it
was shown in [9] that for any function \varphi \in Hm(\Omega ),m> 1 and \Omega is Lipschitz,

min
\varphi \bfittheta \in V\bfittheta 

\| \varphi  - \varphi \bfittheta \| H1(\Omega ) \leq C(m,d)N
 - (m - 1)/d
\bfittheta \| \varphi \| Hm(\Omega ),(2.12)

where C(m,d) \geq 0 is a function that depends on (m,d) and N\bfittheta is the number of
neurons in the DNN network. Combining such a bound with the quasi-best approxi-
mation estimates allows us to deduce a priori error estimates of the WAN schemes.

Remark 2.3. While we focused our analysis on linear problems, the WAN method
can be, and is, applied also in the nonlinear framework. Indeed, under suitable as-
sumptions on the operator A (for instance, if A is monotone and Lipschitz continuous)
the existence of weakly converging minimizing sequences whose weak limit satisfies
the estimate of Lemma 2 carries over to the nonlinear case. A proof in the case of
monotone operators is given in the online supplementary material (SM Algorithms.pdf
[local/web 243KB], SM1.pdf [local/web 162KB]). Beyond that, also in cases where
monotonicity does not hold, numerical results will show the effectiveness of our ap-
proach (see subsections 6.1 and 6.2).

2.2. PDE without coercivity. We now drop the assumption that V =W , and
we assume instead that there exists an operator R : V \rightarrow W \prime such that

inf
w\in W

sup
v\in V
v \not =0

\langle Rv,w\rangle 
\| w\| W \| v\| V

\geq \alpha \ast > 0, \| Rv\| W \prime \leq M\ast \| v\| V .(2.13)

Note that, as we assume that problem (1.2) is well-posed, a possible choice for R is
R=AT , but choices with better stability constants \alpha \ast might exist. Moreover assume
that V\bfiteta \subset V can be chosen so that we have the discrete inf-sup condition:

\kappa \| w\bfittheta \| W \leq sup
v\bfiteta \in V\bfiteta 
v\bfiteta \not =0

\scrA (w\bfittheta , v\bfiteta )

\| v\bfiteta \| V
\forall w\bfittheta \in W\bfittheta \cup S\bfittheta (2.14)

with S\bfittheta defined in (2.4). It is easy to see that Lemma 1 holds with proof unchanged
also in this case, which gives us the existence of a (possibly not unique) element
u\ast \bfittheta \in clseqw (W\bfittheta ), weak limit of a minimizing sequence \{ \widetilde wn

\bfittheta \} of elements ofW\bfittheta , satisfying

\| u - u\ast \bfittheta \| op,\bfiteta \leq \| u - w\bfittheta \| op,\bfiteta \forall w\bfittheta \in W\bfittheta .
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Lemma 3. Let V\bfiteta be chosen in such a way that assumption (2.14) is satisfied for
some constant \kappa > 0, possibly depending on V\bfiteta . Let u be the solutions to (1.2) and
let u\ast \bfittheta \in clseqw (W\bfittheta ) be the weak limit of a weakly convergent minimizing sequence \{ \widetilde wn

\bfittheta \} 
for (2.3). Then we have the following error bound:

\| u - u\ast \bfittheta \| W \leq 
\biggl( 
1 + 2

M\ast 

\alpha \ast 

M

\kappa 

\biggr) 
inf

w\bfittheta \in W\bfittheta 

\| u - w\bfittheta \| W .(2.15)

Proof. Let w\bfittheta be an arbitrary element of W\bfittheta . Thanks to (2.13) and (2.14) we
can write

\alpha \ast \| u\ast \bfittheta  - w\bfittheta \| W \leq sup
v\in V
v \not =0

\langle Rv,u\ast \bfittheta  - w\bfittheta \rangle 
\| v\| V

= lim
n\rightarrow \infty 

sup
v\in V
v \not =0

\langle Rv, \widetilde wn
\bfittheta  - w\bfittheta \rangle 

\| v\| V

\leq M\ast lim
n\rightarrow \infty 

\| \widetilde wn
\bfittheta  - w\bfittheta \| W \leq M\ast 

\kappa 
lim

n\rightarrow \infty 
\| \widetilde wn

\bfittheta  - w\bfittheta \| op,\bfiteta .
(2.16)

By the same argument used for the proof of Lemma 2, we then obtain that

\| u\ast \bfittheta  - w\bfittheta \| W \leq 2
M\ast 

\alpha \ast 

1

\kappa 
\| u - w\bfittheta \| op,\bfiteta ,(2.17)

and, consequently, by the triangle inequality,

\| u - u\ast \bfittheta \| W \leq 
\biggl( 
1 + 2

M\ast 

\alpha \ast 

M

\kappa 

\biggr) 
\| u - w\bfittheta \| W ,(2.18)

which, thanks to the arbitrariness of w\bfittheta , gives (2.15).

Like the coercive case, we can have an almost best approximation in a finite
number of steps of any weakly converging minimizing sequence \{ \widetilde wn

\bfittheta \} . More precisely,
by the same argument as for the coercive case, for all \varepsilon > 0 there exists a k such that

\| u - \widetilde wk
\bfittheta \| W \lesssim inf

w\bfittheta \in W\bfittheta 

\| u - w\bfittheta \| W + \varepsilon .

We conclude this section by the following observation: let \scrJ (\cdot ) denote any func-
tional on W equivalent to the \| \cdot \| op,\bfiteta norm,

c\ast \| w\| op,\bfiteta \leq \scrJ (w)\leq C\ast \| w\| op,\bfiteta \forall w \in W,(2.19)

and consider the problem

u\ast \bfittheta = argmin
w\bfittheta \in W\bfittheta 

\scrJ (u - w\bfittheta ).(2.20)

Then there exists a possibly not unique w\flat 
\theta \in clseqw (W\bfittheta ) such that

\scrJ (u - u\flat \bfittheta )\leq inf
w\bfittheta \in W\bfittheta 

\scrJ (u - w\bfittheta ).

Moreover for all u\flat \bfittheta such that u\flat \bfittheta is the weak limit of a minimizing sequence \{ \widetilde wn
\bfittheta \} for

(2.20), it holds that

\| u - u\flat \bfittheta \| W \leq 
\biggl( 
1 + 2

C\ast 

c\ast 

M\ast 

\alpha \ast 

M

\kappa 

\biggr) 
inf

w\bfittheta \in W\bfittheta 

\| u - w\bfittheta \| W .

Indeed, by (2.19), all minimizing sequences are bounded with respect to the \| \cdot \| op,\bfiteta 
norm and, hence, with respect to the \| \cdot \| W norm. Any minimizing sequence does
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C698 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

then weakly converge to an element u\flat \bfittheta . Moreover, initially proceeding as in (2.16),
thanks to (2.19), we have, for w\bfittheta arbitrary,

\alpha \ast \| u\ast \bfittheta  - w\bfittheta \| W \leq M\ast 

\kappa 
lim
n\rightarrow \infty 

\| \widetilde wn
\bfittheta  - w\bfittheta \| op,\bfiteta 

\leq M\ast 

\kappa 

\Bigl( 
lim
n\rightarrow \infty 

\| \widetilde wn
\bfittheta  - u\| op,\bfiteta + \| u - w\bfittheta \| op,\bfiteta 

\Bigr) 
\leq M\ast 

\kappa c\ast 

\Bigl( 
lim
n\rightarrow \infty 

\scrJ ( \widetilde wn
\bfittheta  - u) +\scrJ (u - w\bfittheta )

\Bigr) 
\leq 2MM\ast C\ast 

\kappa c\ast 
\| u - w\bfittheta \| W .

3. Two novel stabilized loss functions. To mitigate undesirable oscillations
during the optimization procedure, resulting from the inexact solution of the max-
imization problem involved in the definition of the operator norm, we propose two
alternative definitions of the cost functional that yields the same minimum, while
avoiding direct normalization. More precisely, we introduce two new functionals on
the product space W \times V , such that the supremum over v \in V , for w \in W fixed,
also gives, up to a possible rescaling and translation, the operator norm of w, while
yielding a more favorable optimization problem under discretization.

3.1. Stabilized WAN method. Define

| | | w| | | 2op = sup
v\in V

\Bigl( 
\scrA (w,v) - \gamma d

2
\| v\| 2V

\Bigr) 
, | | | w| | | 2op,\bfiteta = sup

v\bfiteta \in V\bfiteta 

\Bigl( 
\scrA (w,v\bfiteta ) - 

\gamma d
2
\| v\bfiteta \| 2V

\Bigr) 
,

(3.1)

where \gamma d > 0 is a constant, and consider the following problem:

u\sharp \bfittheta = argmin
w\bfittheta \in W\bfittheta 

| | | u - w\bfittheta | | | op,\bfiteta .(3.2)

The following lemma shows that the norms defined in (3.1) coincide with the
operator norms defined in (1.4) and (2.1), up to a constant dependent on \gamma d.

Lemma 4. Assume that v\bfiteta \in V\bfiteta implies \lambda v\bfiteta \in V\bfiteta for all \lambda \in \BbbR +. Then, for any
w \in W , there holds

1

2\gamma d
\| w\| 2op = | | | w| | | 2op,

1

2\gamma d
\| w\| 2op,\bfiteta = | | | w| | | 2op,\bfiteta .(3.3)

Remark 3.1. From this lemma, it seems reasonable to choose, e.g., \gamma d = 1. How-
ever, experiments have shown that adjusting the value of \gamma can effectively control the
oscillations in experiments.

Proof. We prove the second of the two equalities. The first can be proved by the
same argument. For any fixed w \in W\bfittheta with w \not = 0, and for all \varepsilon > 0, there exists a
\varphi \varepsilon 
w \in V\bfiteta (depending on \varepsilon ) with \| \varphi \varepsilon 

w\| V = 1, such that

\scrA (w,\varphi \varepsilon 
w)\geq (1 - \varepsilon )\| w\| op,\bfiteta ,

which, setting \varphi w = \gamma  - 1
d \| w\| op,\bfiteta \varphi \varepsilon 

w, yields

sup
\varphi \bfiteta \in V\bfiteta 

\Bigl( 
\scrA (w,\varphi \bfiteta ) - 

\gamma d
2
\| \varphi \bfiteta \| 2V

\Bigr) 
\geq \scrA (w,\varphi w) - 

\gamma d
2
\| \varphi w\| 2V

= \gamma  - 1
d \| w\| op,\bfiteta \scrA (w,\varphi \varepsilon 

w) - 
1

2\gamma d
\| w\| 2op,\bfiteta \geq 

\biggl( 
1

2
 - \varepsilon 

\biggr) 
1

\gamma d
\| w\| 2op,\bfiteta .

(3.4)
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WAN DISCRETIZATION OF PDEs C699

By the arbitrariness of \varepsilon we then obtain that | | | w| | | 2op,\bfiteta \geq \| w\| 2op,\bfiteta /(2\gamma d). To prove
the converse inequality, using Young's equality gives

sup
\varphi \bfiteta \in V\bfiteta 

\Bigl( 
\scrA (w,\varphi \bfiteta ) - 

\gamma d
2
\| \varphi \bfiteta \| 2V

\Bigr) 
\leq sup

\varphi \bfiteta \in V\bfiteta 

\Bigl( 
\| w\| op,\bfiteta \| \varphi \bfiteta \| V  - \gamma d

2
\| \varphi \bfiteta \| 2V

\Bigr) 
\leq 1

2\gamma d
\| w\| 2op,\bfiteta .

The first part of (3.3) can be proved in a similar way.

The analysis of the minimization problem (2.3) then carries over to the minimiza-
tion problem (3.2). Then, there exists at least a minimizing sequence in W\bfittheta weakly
converging to a limit u\sharp \bfittheta \in clseqw (W\bfittheta ), and all weak limits of minimizing sequences sat-
isfy either bound (2.9) or bound (2.15), depending on whether \scrA is coercive or not.

Remark 3.2. When w approaches the true solution, we have that

v\ast (w) = argmax
v\in V

\Bigl( 
\scrA (u - w,v) - \gamma d

2
\| v\| 2V

\Bigr) 
\rightarrow 0.

As a consequence, depending on how large the space W\bfittheta is, the problem

u\ast \theta = argmin
w\bfittheta \in W\bfittheta 

\Bigl( 
\scrA (u - w\bfittheta , v

\ast (w\bfittheta )) - 
\gamma d
2
\| v\ast (w\bfittheta )\| 2V

\Bigr) 
might be close to the problem u\ast \theta = argminw\bfittheta \in W\bfittheta 

\scrA (u - w\bfittheta , v
\ast (w\bfittheta )), which, in turn,

if \| u - w\bfittheta \| W is small, might be ill-posed and too sensitive to the errors in evaluating
v\ast (w\bfittheta ). The following subsection introduces a further stabilized loss function that
mitigates this issue.

3.2. A further stabilized WAN method. We now define the alternative op-
erator norm | | | \cdot | | | + as\bigl( 

| | | w| | | +op
\bigr) 2

:= sup
v\in V

\Bigl( 
\scrA (w,v) - \gamma d

2
\| v\| 2V + \| v\| V

\Bigr) 
,\bigl( 

| | | w| | | +op,\bfiteta 
\bigr) 2

:= sup
v\bfiteta \in V\bfiteta 

\Bigl( 
\scrA (w,v\bfiteta ) - 

\gamma d
2
\| v\bfiteta \| 2V + \| v\bfiteta \| V

\Bigr) 
,

(3.5)

where \gamma d > 0 is a constant, and we define the following minimization problem:

u\ddagger \bfittheta = argmin
w\bfittheta \in W\bfittheta 

| | | u - w\bfittheta | | | +op,\bfiteta .(3.6)

The following lemma states the relation between the norms defined in (3.5) and
the operator norms.

Lemma 5. Assume that v\bfiteta \in V\bfiteta implies \lambda v\bfiteta \in V\bfiteta for all \lambda \in \BbbR +. For any w \in W ,
there holds

1\surd 
2\gamma d

(\| w\| op + 1) = | | | w| | | +op,
1\surd 
2\gamma d

(\| w\| op,\bfiteta + 1) = | | | w| | | +op,\bfiteta .(3.7)

Proof. We prove the second of the two equalities; the first can be proved by the
same argument. For any fixed w \in W with w \not = 0, and for all \varepsilon > 0, there exists
\varphi \varepsilon 
w \in V\bfiteta with \| \varphi \varepsilon 

w\| V = 1 that satisfies

\scrA (w,\varphi \varepsilon 
w)\geq (1 - \varepsilon )\| w\| op,\bfiteta ,(3.8)
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C700 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

which, setting \varphi w = \gamma  - 1
d s\| w\| op,\bfiteta \varphi \varepsilon 

w, for some s > 0 to be chosen, yields

sup
\varphi \bfiteta \in V\bfiteta 

\Bigl( 
\scrA (w,\varphi \bfiteta ) - 

\gamma d
2
\| \varphi \bfiteta \| 2V + \| \varphi \bfiteta \| V

\Bigr) 
\geq \scrA (w,\varphi w) - 

\gamma d
2
\| \varphi w\| 2V + \| \varphi w\| V

= \gamma  - 1
d s\| w\| op,\bfiteta \scrA (w,\varphi \varepsilon 

w) - 
s2

2\gamma d
\| w\| 2op,\bfiteta + \gamma  - 1

d s\| w\| op,\bfiteta 

\geq (1 - \varepsilon )
s

\gamma d
\| w\| 2op,\bfiteta  - s2

2\gamma d
\| w\| 2op,\bfiteta +

s

\gamma d
\| w\| op,\bfiteta .

We can choose s that maximizes the term on the right-hand side. By direct compu-
tations, we have

max
s\in \BbbR +

\biggl( 
(1 - \varepsilon )

s

\gamma d
\| w\| 2op,\bfiteta  - s2

2\gamma d
\| w\| 2op,\bfiteta +

s

\gamma d
\| w\| op,\bfiteta 

\biggr) 
=

1

2\gamma d
((1 - \varepsilon )\| w\| op,\bfiteta + 1)2.

Above we have used the fact that maxs\in \BbbR +( - as2 + bs) = b2/4a. By the arbitrariness
of \varepsilon we then obtain (| | | w| | | +op,\bfiteta )2 \geq (\| w\| op,\bfiteta +1)2/(2\gamma d). The converse inequality can
be proved by once again using Young's inequality.

Again, the analysis of the minimization problem (2.3), including the existence of
a weakly converging minimization sequence and a best approximation bound for all
weak limits of minimizing sequences, carries over to the minimization problem (3.2).

4. Imposition of Dirichlet boundary conditions. Herein we will adapt to
the case of WANs the technique introduced in [7] for dealing with Dirichlet boundary
conditions. The idea is to weigh the elements of the test adversarial network by mul-
tiplying a cutoff function \phi (see [21] and references therein), so that the resulting test
functions are forced to be zero on the boundary. The Dirichlet boundary condition
can then be imposed on the primal network using a penalty without violating the
consistency of the equation. For simplicity, we assume that the problem is a symmet-
ric second-order static elliptic PDE. We also assume that the boundary \partial \Omega is smooth
(C3 to be precise).

We first present the ideas in the simple framework of the Deep Ritz method for the
case of homogeneous boundary conditions. We assume the operator \scrA of (1.2) to be
symmetric under homogeneous Dirichlet boundary conditions. Then the continuous
Ritz method may be written as

u= argmin
v\in H1

0 (\Omega )

(0.5\scrA (v, v) - (f, v)\Omega ) .

Under the smoothness assumptions on \partial \Omega we know that, provided f is sufficiently
smooth, u \in Hm(\Omega ) for some m \geq 3 and \| u\| H3(\Omega ) \lesssim \| f\| H1(\Omega ). Assuming that
w\bfittheta \in H1

0 (\Omega ) for all w\bfittheta \in W\bfittheta , the Deep Ritz method takes the form

u\ast \bfittheta = argmin
w\bfittheta \in W\bfittheta 

(0.5\scrA (w\bfittheta ,w\bfittheta ) - f(w\bfittheta )) .

As we already mentioned, the problem with this formulation is that it appears to be
very difficult to design networks that satisfy boundary conditions by construction.
Instead, typically, a penalty term of the form \lambda \| Tw\bfittheta \| \partial \Omega is added to the functional on
the right-hand side [6]. The convergence to the solution u\in H1

0 (\Omega ) of the continuous
problem is obtained by letting \lambda \rightarrow \infty and enriching the network space. In the classical
numerical methods, e.g., the finite element method, \lambda is proportional to h - s, with
h being the mesh size and s > 0 a carefully chosen exponent. With neural network
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WAN DISCRETIZATION OF PDEs C701

methods, it is, however, not obvious how to match the dimension of the space to
the rate by which \lambda grows. In general, either the accuracy or the conditioning of the
nonlinear system suffers.

Our idea is to build the boundary conditions into the formulation by weighting
the network functions with the level set function \phi , where \phi | \partial \Omega = 0, \phi | \Omega > 0, and \phi 
behaves as a distance function in the vicinity of \partial \Omega . The solution we look for then
takes the form \phi w\bfittheta with w\bfittheta \in W\bfittheta . The Cut Deep Ritz method reads

\nu \ast \bfittheta = argmin
w\bfittheta \in W\bfittheta 

(0.5\scrA (\phi w\bfittheta , \phi w\bfittheta ) - f(\phi w\bfittheta )) .

It is straightforward to show that this is equivalent to

\nu \ast \bfittheta = argmin
w\bfittheta \in W\bfittheta 

(\scrA (u - \phi w\bfittheta , u - \phi w\bfittheta )) = argmin
w\bfittheta \in W\bfittheta 

\Biggl( 
sup

v\bfittheta \in W\bfittheta 

\scrA (u - \phi w\bfittheta , u - \phi v\bfittheta )\sqrt{} 
\scrA (u - \phi v\bfittheta , u - \phi v\bfittheta )

\Biggr) 
.

(4.1)

Following Remark 2.1, and assuming, for the sake of simplicity, that the mini-
mization problem (4.1) has a unique solution \nu \ast \bfittheta \in W\bfittheta , we then have that

\| u - \phi \nu \ast \bfittheta \| H1(\Omega ) \leq C inf
w\bfittheta \in W\bfittheta 

\| u - \phi w\bfittheta \| H1(\Omega ).

It remains to show that \phi w\bfittheta is capable of approximating u in H1
0 (\Omega ). To this end

let \scrO be some domain such that \Omega \subset \scrO , where \scrO is a box in \BbbR d and let \~u denote a
stable extension of u to \scrO [20]. We assume the following on the boundary \partial \Omega and \phi .

Assumption 4.1. Let \Omega be a bounded domain in \BbbR d. The boundary \partial \Omega can
be covered by open sets \scrO i, i = 1, . . . , I, and one can introduce on every \scrO i local
coordinates \xi 1, . . . , \xi d with \xi d = \phi such that all the partial derivatives \partial \xi \alpha i /\partial 

\alpha x and
\partial x\alpha /\partial \alpha \xi up to order k+1 are bounded by some C0 > 0. Moreover, \phi is of class Ck+1

on \scrO , where k+1\geq 3 is the smoothness of the domain, and | \phi | \geq M0 on \scrO \setminus \cup \scrO i with
some m> 0, and in \cup \scrO i, \phi is a signed distance function to \partial \Omega .

We further need the following Hardy type inequality (see [7, Lemma 3.1]).

Lemma 6. We assume that the domain \Omega is defined by the zero level set of the
smooth function \phi and that Assumption 4.1 is satisfied. Then for any v \in Hk+1(\scrO )
such that v| \partial \Omega = 0, there holds

\| v/\phi \| Hk(\Omega ) \leq C\| v\| Hk+1(\scrO ).

Then, as by assumption \| \phi \| W 1,\infty (\Omega ) <C, combining the quasi-best approximation
bound given by Lemma 2 with (2.12) we obtain the following estimate for the Cut
Deep Ritz method, with ReLU activation function:

\| u - \phi \nu \ast \bfittheta \| H1(\Omega ) \lesssim N
 - (m - 2)/d
\bfittheta | u| Hm .

In particular, when m = 3, using elliptic regularity, we can bound the H1(\Omega ) norm

of the error with N
 - 1/d
\bfittheta \| f\| H1(\Omega ). This shows that the method typically requires one

order more regularity of the data than typically expected.
We now introduce the cut weak adversarial network (CutWAN) method for prob-

lems not necessarily coercive and with nonhomogeneous Dirichlet boundary condi-
tions. We let

| | | w| | | op,\phi ,\bfiteta := sup
\varphi \bfiteta \in V\bfiteta 

\Bigl( 
\scrA (w,\phi \varphi \bfiteta ) - 

\gamma d
2
\| \phi \varphi \bfiteta \| 2H1(\Omega )

\Bigr) 
(4.2)
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C702 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

and set

u\diamond \bfittheta = argmin
w\bfittheta \in W\bfittheta 

\bigl( 
| | | u - w\bfittheta | | | op,\phi ,\bfiteta + \| w\bfittheta  - g\| H1/2(\partial \Omega )

\bigr) 
.(4.3)

Note that the cutoff function \phi only multiplies the test functions in the CutWAN
network method. The boundary condition is weakly imposed by adding a penalty
term on the primal network w\bfittheta | \partial \Omega . It is not difficult to check that this problem falls
in the abstract formulation considered at the end of subsection 2.2. Here, the role of
adversarial test network is played by the product space \phi V\bfittheta \times H - 1/2(\partial \Omega ), and the
inf-sup condition (2.14) becomes

\| w\| W \lesssim | | | w| | | op,\phi ,\bfiteta + \| w\| H1/2(\partial \Omega ) \forall w \in S\bfittheta .(4.4)

In particular, under such an assumption, we have the following best approximation
results for the CutWAN method.

Lemma 7. Assume that the inf-sup condition (4.4) holds. Let u\diamond \bfittheta be the weak limit
of a minimizing sequence for problem (4.3). Then there holds

\| u - u\diamond \bfittheta \| W \lesssim inf
w\bfittheta \in W\bfittheta 

\| u - w\bfittheta \| W .(4.5)

Note that the CutWAN method achieves optimal convergence rates even though
the test function class is multiplied by \phi . So the difficulty handled by the Hardy
inequality in the Cut Deep Ritz method does not appear. Indeed the difficulty of
controlling the level set weighted test function is hidden in the inf-sup assumption
(4.4). A study of this condition will be the topic of future work.

Similarly, we can also define the following algorithm. Define

| | | w| | | +op,\phi ,\bfiteta := sup
\varphi \bfiteta \in V\bfiteta 

\Bigl( 
\scrA (w,\phi \varphi \bfiteta ) - 

\gamma d
2
\| \phi \varphi \bfiteta \| 2V + \| \phi \varphi \bfiteta \| V

\Bigr) 
,(4.6)

and let

u\eth \bfittheta = argmin
w\bfittheta \in W\bfittheta 

\Bigl( 
| | | u - w\bfittheta | | | +op,\phi ,\bfiteta + \| w\bfittheta  - g\| H1/2(\partial \Omega )

\Bigr) 
.(4.7)

We refer to the above method as the shifted CutWAN method. One can also prove the
best approximation results for the shifted CutWAN method similarly as in Lemma 7.

Remark 4.2. For computational convenience, theH1/2(\partial \Omega ) norm in (4.3) and (4.7)
can be replaced by a suitable combination of the L2 norm of the function and of its
tangential derivative. Indeed, using the Gagliardo--Nirenberg inequality we have that

\| w\bfittheta  - g\| H1/2(\partial \Omega ) \leq \| w\bfittheta  - g\| 1/2L2(\partial \Omega )\| w\bfittheta  - g\| 1/2H1(\partial \Omega ).(4.8)

It is not difficult to ascertain that if we replace the H1/2 norm in (4.3) and (4.7)
with the right-hand side of (4.8), the analysis of section 2 holds with minor changes,
resulting in an error bound of the form

\| u - u\diamond \bfittheta \| \lesssim inf
w\bfittheta \in W\bfittheta 

\Bigl( 
\| u - w\bfittheta \| W + \| u - w\bfittheta \| 1/2L2(\partial \Omega )\| u - w\bfittheta \| 1/2H1(\partial \Omega )

\Bigr) 
.

We observe that an analogous result would hold for the plain L2(\partial \Omega ) penalization
as originally proposed by [22, 1] if an inverse estimate were to hold for W\bfittheta , allowing
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WAN DISCRETIZATION OF PDEs C703

to bound the H1(\partial \Omega ) norm of the boundary residual with its L2(\partial \Omega ) norm times a
constant depending on W\bfittheta . Unfortunately this is generally not true, and Lemma 2
does not hold when using such a stabilization, which is, however, computationally
convenient, and which we will test extensively in the forthcoming sections. We point
out that, thanks to the combination of (4.8) with a Cauchy--Schwarz inequality, sim-
ply adding \| g  - w\bfittheta \| H1(\partial \Omega ) to the L2(\partial \Omega ) penalized functional yields an a posteriori
error estimator. This can be evaluated upon convergence of the optimization proce-
dure, to check if the solution obtained with the cheaper L2 penalized functional is
satisfactory. If not, it can serve, in a two-stage strategy, as the starting point for
an additional optimization procedure relying on the more expensive functionals for
which our theoretical error analysis applies.

5. Neural network structures.

5.1. Deep neural network structure. A DNN structure is the composition
of multiple linear functions and nonlinear activation functions. We will use the DNN
structure for V\bfiteta . Specifically, the first component of DNN is a linear transformation
\bfitT l :\BbbR nl \rightarrow \BbbR nl+1 , l= 1, . . . ,L, defined as follows:

\bfitT l(\bfitx l) =\bfitW l\bfitx l + \bfitb l for \bfitx l \in \BbbR nl ,

where \bfitW l = (wl
i,j)\in \BbbR nl+1\times nl and \bfitb l \in \BbbR nl+1 are parameters in the DNN. The second

component is an activation function \psi :\BbbR \rightarrow \BbbR to be chosen, and typical examples of
the activation functions are tanh, Sigmoid, and ReLU. Application of \psi to a vector
\bfitx \in \BbbR n is defined componentwise, i.e., \psi (\bfitx ) = (\psi (xi)), i= 1,2, . . . , n. The lth layer of
the DNN is defined as the composition of the linear transform \bfitT l and the nonlinear
activation function \psi , i.e.,

\scrN l(\bfitx l) :=\psi (\bfitT l(\bfitx l)), l= 1, . . . ,L - 1.

For an input \bfitx \in \BbbR n1 , a general L-layer DNN is defined as follows:

\scrN \scrN (\bfitx ;\bfittheta ) := \bfitT L \circ \scrN L - 1 \circ \cdot \cdot \cdot \circ \scrN 2 \circ \scrN 1(\bfitx ),(5.1)

where \bfittheta \in \BbbR N stands for all the parameters in the DNN, i.e., \bfittheta = \{ \bfitW l,\bfitb l\} Ll=1.
For a fully connected DNN, the number of parameters corresponding to \bfittheta is N\bfittheta :=\sum L

l=1 nl+1(nl+1). We will refer to \scrN 1 as the input layer, \scrN i,1< i<L, as the hidden
layers, and TL as the output layer. We assume that every DNN neural network has
an input, an output, and at least one hidden layer. Note that for the outer layer,
there is no followed activation function. Figure 1 shows an example of a DNN model
with five hidden layers with [n1, n2, . . . , n7] = [6,20,10,10,10,20,1].

5.1.1. The recursive DNN model. In the case of a DNN model with consec-
utive hidden layers having an equal number of neurons, the weights and biases for
those hidden layers can be easily shared due to the same data structure. We define the
recursive DNN model as DNN models that share the parameters for all consecutive
hidden layers with the same number of neurons. Therefore, A recursive DNN model
could have significantly fewer total parameters than the corresponding nonrecursive
DNN model. For instance, the nonrecursive DNN model described in Figure 1 has
931 parameters, while its corresponding recursive model has only 711 parameters.
The contrast will become more pronounced when the number of hidden layers and
hidden neurons increases. Our numerical results show that a recursive DNN model
can benefit PDE solving.
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C704 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

Fig. 1. A DNN network structure with five hidden layers.

5.1.2. Comments about DNN. Although DNNs have been widely used as
the primary neural network for solving PDE problems, their performance often falls
short of expectations. When using DNNs within the PINN and Deep Ritz meth-
ods, achieving the desired accuracy typically requires thousands of iterations due to
oscillations and stagnation. The method of WAN helps the algorithm escape local
minima. However, despite this improvement, the number of iterations remains in the
range of several thousand, as reported in [22] and demonstrated in our numerical
results in section 6. To enhance convergence, we explore different neural structures
that approximate the trial functions with more efficacy.

5.2. XNODE model for parabolic PDE. It has been demonstrated in [16]
that for time-dependent parabolic problems, the XNODE model achieves much faster
convergence than traditional DNNs. We believe this rapid convergence is attributed
to the structure of the XNODE model, which emulates the residual network, and the
direct embedding of the initial condition in the model.

Consider the following parabolic PDE defined on an arbitrary bounded domain
\scrD \subset [0, T ]\times \BbbR d, possibly representing a time-dependent spatial domain:\left\{     

\partial tu - \nabla \cdot A(t,\bfitx )\nabla u+ \bfitb (t,\bfitx )\nabla u+ c(u,\bfitx )u - f(\bfitx ) = 0 for (t,\bfitx )\in \scrD ,
u(t,\bfitx ) = g(t,\bfitx ) on \partial \scrD ,
u(0,\bfitx ) - h(\bfitx ) = 0 on \Omega (0),

(5.2)

where A = \{ aij\} , \bfitb = \{ b1, b2, . . . , bn\} , f : \scrD \rightarrow \BbbR , c : \BbbR \times \scrD \rightarrow \BbbR , and h : \Omega (0) \rightarrow 
\BbbR are given, with \Omega (t) := \{ \bfitx | (t,\bfitx ) \in \scrD \} denoting the spatial domain of \scrD when
restricting time to be t. Note that c can be a nonlinear function with respect to the first
argument.

We now briefly introduce the XNODE model in [16]. For simplicity, we consider a
time-independent domain in this paper, i.e., \scrD = [0, T ]\times \Omega , where \Omega \subset \BbbR d is bounded.

The XNODE model maps an arbitrary input \bfitx \in \BbbR d to the output o\bfitx (t)t\in [0,T ] \in 
\scrC ([0, T ] by solving the following ODE problem:
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WAN DISCRETIZATION OF PDEs C705\left\{   
d\bfith (t)

dt
=\scrN vec

\bfittheta 2
(\bfith (t), t,\bfitx ), \bfith (0) =\scrN init

\bfittheta 1
(h(\bfitx ))\in \BbbR h,

o\bfitx (t) =\scrL \bfittheta 3
(\bfith (t)),

(5.3)

where \scrN vec
\bfittheta 2

and \scrN vec
\bfittheta 1

are DNN neural networks fully parameterized by \scrP \bfittheta 2 and \scrP \bfittheta 1

for the vector fields and the initial condition \bfith (0), respectively. \scrL \bfittheta 3 is a single linear
layer parameterized by \scrP \bfittheta 3

. By \Theta = (\bfittheta 1,\bfittheta 2,\bfittheta 3) we denote the set of all trainable
model parameters of the proposed XNODE model. Finally define

u\Theta (t,\bfitx ) := o\bfitx (t)\approx u(t,\bfitx ) \forall \bfitx \in \Omega .(5.4)

5.3. Pseudotime XNODE model for static PDEs. In this subsection, we
expand the XNODE model to handle stationary PDE problems. To simplify matters,
we will focus on the following form of stationary PDE problem:\Biggl\{ 

 - \nabla \cdot A(\bfitx )\nabla u(x) + \bfitb (\bfitx ) \cdot \nabla u(\bfitx ) + c(u,\bfitx )u - f(\bfitx ) = 0, \bfitx \in \Omega = [0,1]d,

u(\bfitx ) = g(\bfitx ) on \partial \Omega .
(5.5)

The idea is to introduce a pseudotime variable, which we choose from one of the spatial
variables, xi, to compensate for the absence of t, i.e., we let t= xi for some prefixed
i. For simplicity, we choose i= 1 without loss of generality. The remaining variables
xi, i= 2, . . . , d, will form the spatial variables in the XNODE model. More precisely,
the spatial input point for the pseudotime XNODE model should be modified as
\~\bfitx = \{ x2, . . . , xd\} . Similar to (5.4), we now define

u\Theta (\bfitx ) = u\bfittheta (x1, \~\bfitx ) := o\~\bfitx (x1)\approx u(x1, \~\bfitx ),(5.6)

where o\~\bfitx (x1) is the numerical solution of (5.3).

5.4. Loss functions. We first recall the classical WAN loss function used in
[16]:

Lwan(\bfittheta ,\bfiteta ) := log

\Biggl( 
| (\scrA (u\bfittheta ) - f,\phi v\bfiteta )| 2

\| \phi v\bfiteta \| 2L2(\scrD )

\Biggr) 
+ \alpha L2

init(\bfittheta ) + \beta L2
bdry(\bfittheta ),(5.7)

where \alpha , \gamma are hyperparameters as penalty terms and

Linit(\bfittheta ) = \| u\bfittheta (0,\bfitx ) - h(\bfitx )\| L2(\Omega ), Lbdry(\bfittheta ) = \| u\bfittheta (t,\bfitx ) - g(t,\bfitx )\| L2([0,T ]\times \partial \Omega ),

and \phi (\bfitx )| \partial \Omega = 0. Here u\bfittheta \in W\bfittheta and v\bfiteta \in V\bfiteta , where W\bfittheta and V\bfiteta are neural network
function classes parameterized by \bfittheta and \bfiteta , respectively. In this paper, we use the
classical DNN function class for V\bfiteta . For W\bfittheta , we will utilize and compare different
neural network structures, which will be specified in each experiment. When the PDE
problem is static, \alpha is set to 0.

We also define the loss functions for the respective CutWAN and shifted CutWAN
methods,

Lcwan(\bfittheta ,\bfiteta ) = | (\scrA (u\bfittheta ) - f,\phi v\bfiteta )|  - \gamma d\| \phi v\bfiteta \| 2V + \alpha L2
init(\bfittheta ) + \beta L2

bdry(\bfittheta ),

Lscwan(\bfittheta ,\bfiteta ) =Lcwan(\bfittheta ,\bfiteta ) + \| \phi v\bfiteta \| H1
0 (\Omega ).

(5.8)

During computation, the integrals are estimated using the Monte Carlo sampling.

6. Numerical results. The authors carried out the numerical results on a per-
sonal CPU device (Apple M1 Max chip with 32 GB memory and 10 total cores). The
Adam optimization method is used for all presented numerical experiments.
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C706 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

6.1. Parabolic equations.

Example 1. Following the numerical example in [22, 16], we consider the following
nonlinear PDE problem in the form of a d-dimensional nonlinear diffusion-reaction
equation (equation (6.1)) defined on a bounded domain \scrD \subset [0,1]\times [ - 1,1]d:\left\{     

\partial tu - \bigtriangleup u - u2  - f = 0 for (t,\bfitx )\in \scrD ,
u - g= 0 on \partial \scrD ,
u(0,\bfitx ) - h(\bfitx ) = 0 on \Omega (0),

(6.1)

where the exact solution is given by

u(t,\bfitx ) = 2sin
\Bigl( \pi 
2
x1

\Bigr) 
cos
\Bigl( \pi 
2
x2

\Bigr) 
e - t.(6.2)

The hyperparameters for the XNODE model for u and the DNN model for v
used in these experiments are listed in Table 1, and their meanings are explained in
Appendix A. The same hyperparameters were maintained across all experiments in
Example 1 for the XNODE model. The recursive (nonrecursive) XNODE model u\bfittheta 
has 1501 (2161) trainable parameters, while the recursive (nonrecursive) model of V\bfiteta 
has 5902 (23351) trainable parameters.

From Table 1, large penalty constants for \alpha and \beta are utilized. We hypothesize
that larger penalty constants can help strongly enforce initial and boundary condi-
tions, which is beneficial in PDE solving using neural networks.

When utilizing the XNODE model to compute u\bfittheta , the training process ceases
either when the relative training error drops below 1\% or after a maximum of 300
iterations. Conversely, if the DNNmodel is used to compute u\bfittheta , the maximum number
of iterations is set to 3000.

For a comparison, we first train the models using the PINN type loss function
defined as follows:

Lpinn(\theta ) = \| \partial tu\bfittheta  - \bigtriangleup u\bfittheta  - u2\bfittheta  - f\| L2(\Omega ) + \alpha Linit(\bfittheta ) + \beta Lbdry(\bfittheta ).(6.3)

The Lpinn type loss function was initially introduced in the physics-informed
neural network by Raissi, Perdikaris, and Karniadakis [19]. We have conducted ex-
periments on Lpinn with the random initialization, and the results are displayed in
Figure 2. We utilized the XNODE and DNN models for both the recursive and nonre-
cursive versions. We note that the PINN loss function requires computing higher-order
derivatives, which poses potential challenges. First, the loss function becomes invalid
when there is no strong solution, and second, computing these derivatives increases
the computational time. In each step, the relative error in Figure 2 and subsequent
figures is calculated using a randomly chosen test set, denoted as Xtest, that is the
same size as the training data sets. More precisely, the relative error is computed as\sum 

\bfitx \bfiti \in Xtest

\sum 
i(u(\bfitx \bfiti ) - u\theta (\bfitx \bfiti ))

2\sum 
i u(\bfitx \bfiti )2

.

Table 1
Hyperparameter setting for Example 1.

d Nr Nb nT Ku K\phi \alpha \beta 

5 4000 4000 20 2 1 107 105

\epsilon l\theta l\eta u\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\mathrm{s} u\mathrm{h}\mathrm{i}\mathrm{d}-\mathrm{d}\mathrm{i}\mathrm{m}1 u\mathrm{h}\mathrm{i}\mathrm{d}-\mathrm{d}\mathrm{i}\mathrm{m}2 v\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\mathrm{s} v\mathrm{h}\mathrm{i}\mathrm{d}-\mathrm{d}\mathrm{i}\mathrm{m}

10 - 2 .015 .04 8 20 10 9 50
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WAN DISCRETIZATION OF PDEs C707

Fig. 2. Example 1: Relative L2 error versus step for models using Lpinn.

It's worth noting that the test set is separate from the training set but has the
same size.

In Figure 2, the training time for the DNN and XNODE models is about 2 and 8
seconds per step. The ``(R)"" after the model denotes the recursive model. In terms of
Lpinn, it is evident that the DNN model exhibits slower convergence than the XNODE
model, whether in recursive or nonrecursive scenarios. When we compare figures in
the right column from the left column, it is apparent that the recursive DNN model
produces comparable results.

When using the XNODEmodel, from Figures 2(a) and 2(b), in both cases, relative
errors approach the 7\% threshold within the first 50 iterations. However, the errors
then oscillate with large amplitude, requiring various steps to achieve the next level
of accuracy.

In Figure 3, we then train the models using Lwan using the same models as in
Figure 2. The training time for the DNN and XNODE models is about 2 and 6 seconds
per step. After analyzing both Figures 3(c) and 3(d), it is apparent that the utilization
of (Lwan+ DNN) produces less desirable results compared to (Lpinn+ DNN) based
on Figure 2. However, the combination of (Lwan+ XNODE) produces comparable
results with (Lpinn+ XNODE). This indicates that XNODE is less sensitive to the
chosen objective function.

Based on the observations from Figures 2 and 3, we can deduce that the utiliza-
tion of the XNODE network for u\bfittheta outperforms the DNN network in both the Lwan

and Lpinn scenarios. However, it is noteworthy that when employing the XNODE
network, the loss function during the training exhibits significant oscillation after

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

6/
25

 to
 1

93
.6

0.
24

0.
99

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



C708 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

reaching a certain level of accuracy for both Lwan and Lpinn. Additionally, in every
scenario presented, the recursive model delivers comparable outcomes to its nonre-
cursive counterpart.

We now evaluate the XNODE network using the loss functions Lcwan and Lscwan

defined in (5.8) with the same models as shown in Figure 2. In each subfigure in
Figure 4, we present the results of five out of six consecutive and randomly initialized
experiments under the specific setting to show generality. Each training step takes
about 6 seconds.

Overall, after comparing Figures 2 and 3 with Figure 4, we have noticed that
Lcwan and Lscwan show uniformly faster and numerically more stable, i.e., less oscil-
lations, convergence than Lwan. Moreover, we observe consistent/robust performance
regardless of random initialization. In almost all experiments, the training relative
error reaches the 1\% relative error all within 200 steps.

When we compare the data in the right column to that of the left column, we
notice that the recursive model performs just as well, if not better. Specifically, in
the experiments depicted in Figure 4(a), the stopping criteria were met at an average
of 144 steps, with individual results of 137,85,177,132, and 190 for experiments 0 to
4, respectively. On the other hand, the nonrecursive counterpart met the stopping
criteria at an average of 164 steps, with individual results of 168,125,210,153, and
162 for experiments 0 to 4, respectively, as shown in Figure 4(b). We also note that
for the Lscwan, the comparison results for \gamma d = 0.5 and \gamma d = 0.001 are similar in this
example. However, with \gamma d = 0.001, we notice slightly more oscillaltions than the case
of \gamma d = 0.5.

Fig. 3. Example 1: Relative L2 error versus step for models using Lwan.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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WAN DISCRETIZATION OF PDEs C709

Fig. 4. Example 1: Relative L2 error for XNODE models on Lcwan and Lscwan.

In summary, the utilization of the XNODE network and the CutWAN and shifted
CutWAN loss functions, i.e., Lscwan and Lcscwanin (5.8), has demonstrated a highly
competitive model for solving high-dimensional parabolic PDE problem. In particu-
lar, solving the five-dimensional nonlinear parabolic problem in (6.1) takes only about
15 minutes for the training to reach the 1\% relative error on a personal computer. Fur-
thermore, the recursive model necessitates fewer parameters in contrast to nonrecur-
sive models. In comparison to classical numerical techniques such as the finite element
method, which grows exponentially in the number of unknowns as the dimension ex-
pands, the potential benefit of our approach becomes more prominent as the disk space
on a personal computer can rapidly become restricted with the classical approach.
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C710 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

Fig. 5. Example 1: The effect using \~Lbdry(\bfittheta ).

We now consider the effect using the H1/2 norm on the boundary based on (4.8).
Define

\~Lbdry(\bfittheta ) = \| u\| 1/2L2(0,T,\partial \Omega )\| \nabla \Gamma u\| 1/2L2(0,T,\partial \Omega ),

where \nabla \Gamma u=\nabla \bfitx u - (\nabla \bfitx u \cdot \bfitn )\bfitn is the tangential gradient of u and \bfitn is the unit outer
normal of \Omega . We test the results replacing Lbdry in (5.7) by \~Lbdry using the loss func-
tion Lscwan with \gamma d = 1/2 (see Figure 5). The results in Figure 5(a) (average iteration
number = 151) and Figure 5(b) (average iteration number = 173) are comparable
to Figure 4(c) (average iteration number = 132) and Figure 4(d) (average iteration
number = 161). However, using \~Lbdry resulted in an additional duration of approxi-
mately 1 s per iteration. For simplicity, we will use Lbdry for future experiments. It is
worth noting that one can use Lbdry for the former iterations and switch to the more
accurate \~Lbdry for better accuracy and time efficiency. This can be necessary when g
is of high frequency.

Remark 6.1 (How does V\bfiteta affect the method's performance?). In the proof, we
require V\bfiteta to be rich enough to satisfy the stability condition. In this example, we
tested multiple configurations for the V\bfiteta network, experimenting with different hidden
layers and varying numbers of neurons. The results are all consistent with Figure 4.
This indicates that the model is robust with V\bfiteta for this example.

6.2. Stationary PDE problems.

Example 2. We now test the following high-dimensional problem as in [22]:\Biggl\{ 
 - \bigtriangleup u(\bfitx ) = f, \bfitx \in \Omega ,

u(\bfitx ) = g(\bfitx ), \bfitx on \partial \Omega ,

where the true solution renders u(\bfitx ) =
\sum d

i=1 sin(
\pi 
2xi).

Observe that the boundary condition on the plane x1 = 0 and x1 = 1 now serves as
the initial and terminal conditions in the pseudotime XNODE model. Subsequently,
we adjust the initial loss and introduce the terminal loss as

Linit(\theta ) = | | u\theta (x1 = 0) - g(x1 = 0)| | L2(\Omega (0)),

Llast(\theta ) := | | u\theta (x1 = 1) - g(x1 = 1)| | L2(\Omega (1)),
(6.4)

where \Omega (t) := \{ \bfitx \in \Omega , x1 = t\} . We shall utilize the following loss functions for the
pseudotime XNODE model:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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WAN DISCRETIZATION OF PDEs C711

\~Lwan,cwan,scwan(\theta , \eta ) =Lwan,cwan,scwan(\theta , \eta ) + \gamma Llast(\theta ).(6.5)

We experimented with testing the pseudotime XNODE model with d = 5, using
the same parameters as in Table 1 except for the penalty parameters. A grid search
was performed to tune the hyperparameters \alpha , \beta , and \gamma , which were restricted to the
range [10,109]. Optimal values found were \alpha = \gamma = 105 and \beta = 107.

We established stopping criteria that ensured the relative training error was below
1\% or the maximum iteration number less than 300. Each training step takes about
8 seconds.

We have analyzed the loss functions \~Lwan, \~Lscwan with \gamma d = 0.5, and \~Lcwan with
\gamma d = 0.001, as described in (6.5). We conducted tests on both the recursive and
nonrecursive models for each setting, and the outcomes are displayed in Figure 6.
Each subfigure in Figure 6 showcases the results of three consecutive experiments
that were initialized randomly. The recursive and nonrecursive models are utilized in
the left and right columns, respectively.

For \~Lwan, the recursive model in Figure 6(a) reached the stopping criteria at steps
169,98, and 91 (with an average of 120). Meanwhile, the nonrecursive model in Figure
6(b) reached the stopping criteria at steps 277,119, and 93 (with an average of 163),
based on three experiments for each.

For \~Lcwan, the recursive model in Figure 6(c) reached the stopping criteria at
steps 237,174, and 200 (with an average of 203). Meanwhile, the nonrecursive model
in Figure 6(d) reached the stopping criteria at steps 293,149, and 153 (with an average
of 198), based on three experiments for each.

For \~Lscwan, the recursive model in Figure 6(e) reached the stopping criteria at
steps 172,144, and 117 (with an average of 144). Meanwhile, the nonrecursive model
in Figure 6(f) reached the stopping criteria at steps 151,132, and 115 (with an average
of 132), based on three experiments for each.

In all XNODE experiments, the relative error quickly reached the 2\% threshold
within the first 35 iterations. Although the relative error oscillations generated by
\~Lwan are still greater than those of \~Lcwan and \~Lscwan, it is worth noting that, in this
particular case, the stopping criterion was achieved with slightly fewer iterations on
average. We believe this faster convergence takes place thanks to the Poisson type
PDE used in this example. For the Poisson problem, it is easy to see that \| \cdot \| op is the
most natural norm to minimize. It has also been observed that the recursive model's
performance is almost comparable to that of the nonrecursive models in this example.

Example 3.

 - \nabla \cdot (a(x)\nabla u) + 1

2
| \nabla u| 2 = f(x), in \Omega = [0,1]d, u(x) = g(x)on \partial \Omega ,(6.6)

where a(x) = 1+ \| x\| 2. The true solution u(x) = sin(0.5\pi x21 + 0.5x22).

In this problem, the nonlinear term 1
2 | \nabla u| 

2 presents a significant challenge. We
will use the hyperparameter set from Table 2 in all numerical tests with the pseudotime
XNODE model. Our objective in this example is to evaluate the performance of the
pseudotime XNODE model using various loss functions. We established the stopping
criteria for the maximum number of iterations to be less than 600. The duration of
each iteration is approximately 8.5 seconds.

We first test the loss function \~Lwan by conducting three consecutive experiments
with random initialization. The results are presented in Figure 7. The left/right figure
in Figure 7 shows the relationship between the number of steps and the L2 relative
error/minimal L2 relative error based on test sets. After the stopping criteria have
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C712 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

Fig. 6. Example 2. Relative L2 error versus step using pseudotime XNODE.

Table 2
Hyperparameter setting for Example 3.

d Nr Nb nT Ku K\phi \alpha \beta \gamma 

5 4000 4000 20 2 1 6\times 107 12\times 107 12\times 107

\epsilon l\theta l\eta u\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\mathrm{s} u\mathrm{h}\mathrm{i}\mathrm{d}-\mathrm{d}\mathrm{i}\mathrm{m}1 u\mathrm{h}\mathrm{i}\mathrm{d}-\mathrm{d}\mathrm{i}\mathrm{m}2 v\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\mathrm{s} v\mathrm{h}\mathrm{i}\mathrm{d}-\mathrm{d}\mathrm{i}\mathrm{m}

10 - 2 .015 .03 12 20 10 9 50

been met, the minimal relative training L2 error is 0.024, 0.056, and 0.023, respec-
tively. We have observed a slower convergence rate compared to previous examples,
which can be attributed to the more challenging nonlinear term.
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Fig. 7. Example 3. Pseudotime XNODE + \~Lwan.

Fig. 8. Example 3. Pseudotime XNODE + \~Lcwan (\gamma d = 0.5).

Fig. 9. Example 3. Pseudotime XNODE + \~Lscwan (\gamma d = 0.5).

The results for \~Lcwan and \~Lscwan both with \gamma d = 0.5 are provided in Figures 8
and 9, respectively. For all three experiments, the minimal relative error calculated
from \~Lcwan was 0.013,0.016, and 0.016. Meanwhile, the minimal relative error calcu-
lated from \~Lscwan for the same experiments were 0.011,0.012, and 0.016. Therefore, in
comparison to Figure 7, using \~Lcwan and \~Lscwan provides a slight advantage over \~Lwan.
Due to the highly nonlinear nature of this problem, we believe that a more refined
approach to tuning the hyperparameters is necessary to achieve greater accuracy in
the results. We will consider this as a future work.

Appendix A. Model setup for XNODE-WAN algorithm. The hyperpa-
rameters for the neural networks are explained in Table 3. For V\bfiteta , we use a classical
DNN network. The activation is set to be Tanh for the last hidden layer and ReLU

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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C714 SILVIA BERTOLUZZA, ERIK BURMAN, AND CUIYU HE

Table 3
List of hyperparameters.

Notation Meaning

d Dimension for the physical domain (not including the time domain)
Nr Number of sampled collocation points of the spatial domain

Nb Number of sampled collocation points of the spatial domain boundary

nT Number of sampled time partitions
Ku Inner iteration to update weak solution u\theta or u\theta 

K\phi Inner iteration to update test function \phi \eta 

\alpha Weight parameter of boundary loss L\mathrm{b}\mathrm{d}\mathrm{r}\mathrm{y}

\gamma Weight parameter of initial and terminal losses L\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t} and L\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{t}

\epsilon Relative error tolerance
l\theta Learning rate for the primal network

l\eta Learning rate for network parameter \eta of test function \phi \eta 

u\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\mathrm{s} Number of hidden layers for \scrN \mathrm{v}\mathrm{e}\mathrm{c}
\theta 2

u\mathrm{h}\mathrm{i}\mathrm{d}-\mathrm{d}\mathrm{i}\mathrm{m}1 Intermediate and output dimension for \scrN \mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}
\theta 1

, input dimension for \scrN \mathrm{v}\mathrm{e}\mathrm{c}
\theta 2

u\mathrm{h}\mathrm{i}\mathrm{d}-\mathrm{d}\mathrm{i}\mathrm{m}2 Intermediate dimension for \scrN \mathrm{v}\mathrm{e}\mathrm{c}
\theta 2

v\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}\mathrm{s} Number of hidden layers for V\bfiteta 

v\mathrm{h}\mathrm{i}\mathrm{d}\mathrm{d}-\mathrm{d}\mathrm{i}\mathrm{m} Intermediate and output dimension for V\bfiteta .

for other hidden layers. Note that there is no activation function for the output layer.
\scrN init

\bfittheta 1
has one input layer, one hidden layer, and one output layer. The activation

function after both the input and the hidden layer is ReLU. \scrN vec
\bfittheta 2

has ulayers of hidden
dimensions and Tanh as the activation function.
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