'.) Check for updates

A p_d [ ADVANCING
I"UU :::J: sé?e?qcs

Paleoceanography and

Paleoclimatology

RESEARCH ARTICLE
10.1029/2022PA004419

Special Section:

DeepMIP in the Hothouse
Earth: late Paleocene a early
Eocene climates and their
lessons for the future

Key Points:

e State-of-the-art climate models
are used to study African
hydroclimate during the early Eocene
(approximately 50 Myr ago)

e With increasing levels of CO,, there
are changes to African precipitation,
due to dynamical changes such as
low-level circulation

e A comparison between the models
and newly compiled climate estimates
shows a marginally better match at
lower levels of CO,

Supporting Information:

Supporting Information may be found in
the online version of this article.

Correspondence to:

C.J. R. Williams,
c.j.r.williams @bristol.ac.uk

Citation:

Williams, C.J. R., Lunt, D. J.,

Salzmann, U., Reichgelt, T., Inglis, G.
N., Greenwood, D. R., et al. (2022).
African hydroclimate during the early
Eocene from the DeepMIP simulations.
Paleoceanography and Paleoclimatology,
37, €2022PA004419. https://doi.
org/10.1029/2022PA004419

Received 25 JAN 2022
Accepted 26 APR 2022

Author Contributions:

Conceptualization: Daniel J. Lunt,
Matthew Huber, Bette L. Otto-Bliesner
Data curation: Charles J. R. Williams,
Ulrich Salzmann, Tammo Reichgelt,
Gordon N. Inglis, David R. Greenwood,
Wing-Le Chan, Ayako Abe-Ouchi,
Yannick Donnadieu, David K.

© 2022. The Authors.

This is an open access article under

the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

ok

African Hydroclimate During the Early Eocene From the
DeepMIP Simulations

Charles J. R. Williams'*
Gordon N. Inglis®
Ayako Abe-Ouchi’
Agatha M. de Boer®
Igor Niezgodzki!>!4
Jiang Zhu'¢

, Daniel J. Lunt! ), Ulrich Salzmann? ©/, Tammo Reichgelt* (),
, David R. Greenwood® ©, Wing-Le Chan’ (2,
, Yannick Donnadieu®, David K. Hutchinson®!?
, Jean-Baptiste Ladant!! (2, Polina A. Morozova'?,
, Gregor Knorr'* (), Sebastian Steinig!, Zhongshi Zhang's (2,

, Matthew Huber!’” (), and Bette L. Otto-Bliesner'®

ISchool of Geographical Sciences, University of Bristol, Bristol, UK, 2NCAS/Department of Meteorology, University

of Reading, Reading, UK, 3Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne,

UK, *Department of Geosciences, University of Connecticut, Mansfield, CT, USA, 3School of Ocean and Earth Science,
University of Southampton, Southampton, UK, *Department of Biology, Brandon University, Brandon, MB, Canada,
7Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan, 8Centre Européen de Recherche et
d’Enseignement des Géosciences de I'Environnement, Aix-en-Provence, France, Department of Geological Sciences,
Stockholm University, Stockholm, Sweden, '°Climate Change Research Centre, University of New South Wales, Sydney,
NSW, Australia, ''Laboratoire des Sciences du Climat et de I’Environnement, Gif-sur-Yvette, France, "?Institute of
Geography, Russian Academy of Sciences, Moscow, Russia, *Institute of Geological Sciences, Polish Academy of Sciences,
Warsaw, Poland, '“Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, Bjerknes Centre for
Climate Research, University of Bergen, Bergen, Norway, '*Climate and Global Dynamics Laboratory, National Center for
Atmospheric Research, Boulder, CO, USA, "Department of Earth, Atmospheric and Planetary Sciences, Purdue University,
West Lafayette, IN, USA

Abstract The early Eocene (~56—48 Myr ago) is characterized by high CO, estimates (1,200-2,500 ppmv)
and elevated global temperatures (~10°C-16°C higher than modern). However, the response of the hydrological
cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g.,
Africa). Here, we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble
of state-of-the-art climate models in the Deep-time Model Intercomparison Project (DeepMIP). A comparison
between the DeepMIP pre-industrial simulations and modern observations suggests that model biases are
model- and geographically dependent, however, these biases are reduced in the model ensemble mean. A
comparison between the Eocene simulations and the pre-industrial suggests that there is no obvious wetting or
drying trend as the CO, increases. The results suggest that changes to the land sea mask (relative to modern) in
the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa. There
is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as
CO, rises. There are also important dynamical changes, with evidence that anticyclonic low-level circulation

is replaced by increased south-westerly flow at high CO, levels. Lastly, a model-data comparison using newly
compiled quantitative climate estimates from paleobotanical proxy data suggests a marginally better fit with the
reconstructions at lower levels of CO,.

Plain Language Summary Approximately 50 Myr ago, a period known as the early Eocene,
atmospheric carbon dioxide levels were significantly higher than today, and were more similar to what they
could be in the future, if efforts to reduce human greenhouse gas emissions are unsuccessful. However, rainfall
changes during this period are less well understood, especially over data-sparse regions such as Africa. Here,
a collection of state-of-the-art climate models are used to study African rainfall during this period, comparing
the simulations first to present-day African rainfall (to validate the models), second to varying levels of
atmospheric carbon dioxide, and lastly to newly compiled reconstructions of early Eocene rainfall (from plant
fossils). The main findings are that although the models can reproduce present-day rainfall over Africa, and
compare reasonably well with the reconstructions, there is no clear rainfall signal when atmospheric carbon
dioxide is increased. Nevertheless, the combination of a different continental configuration, vegetation,
topography, and atmospheric carbon dioxide leads to changing rainfall patterns, connected to temperature and
low-level wind changes.
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1. Introduction

One of the ways to better understand future anthropogenic-induced climate change is to simulate past climates,
using these as partial analogs for the future and allowing the testing of climate models to simulate climates very
different from today (Braconnot et al., 2011; Tierney et al., 2020). Simulating past climates allows not only an
interrogation of the mechanisms of past climate change (Haywood et al., 2020; Lunt et al., 2021), but if a robust
comparison with available proxy data can be produced, this allows confidence in future climate change projec-
tions that are often based on models tuned to a modern climate state (Harrison et al., 2014; Taylor et al., 2011;
Williams et al., 2020, 2021; Zhu et al., 2020).

It has long been known that African precipitation, and in particular that over West Africa, is of vital importance
to the more than one billion people in sub-Saharan Africa who survive predominantly on rain-fed agriculture and,
concurrently, are highly vulnerable to extreme precipitation events causing both flooding and drought (Williams
& Kniveton, 2011). However, a lack of weather and climate data across much of the continent has resulted in
a high level of uncertainty concerning both present day and future climate trends (Salerno et al., 2019), and
although it is expected that both average temperature and precipitation will increase across Africa along with the
rest of the world (IPCC, 2021), regional variation is particularly high across Africa.

Due to their particular relevance to African precipitation, two Quaternary time periods have recently been inves-
tigated by Williams et al. (2020) under the Paleoclimate Modeling Intercomparison Project (PMIP, Braconnot
et al., 2007), now in its 4th phase and itself under the umbrella of the Coupled Model Intercomparison Project,
now in its 6th phase (CMIP6, Eyring et al., 2016). These time periods are the mid-Holocene (6,000 yr ago, 6 ka)
and Last Interglacial (127 ka). However, excess warmth and enhancement of the Northern Hemisphere during
these periods is caused primarily by changes to the orbital configuration of Earth, rather than elevated greenhouse
gases (Kageyama et al., 2018). To investigate substantial greenhouse gas-induced warming, and its result on
regional hydroclimate such as across Africa, periods further back in time are needed, and two such candidates in
the context of PMIP are the mid-Pliocene (~3 Myr ago, 3 Ma) and the early Eocene (~56.05-47.8 Ma). However,
with CO, levels ranging from 316 to 420 ppmv during the mid-Pliocene (Martinez-Boti et al., 2015), this is more
similar to modern levels rather than being a suitable analog for future projections by the end of the 21st century;
using the previous RCP 8.5 scenario, this could be over 1,000 ppmv (IPCC, 2013). The early Eocene, with CO,
levels ranging between 1,200 and 2,500 ppmv (Anagnostou et al., 2020, 2016; Lunt et al., 2021), is comparable to
the current future projections, and in particular for the extended high-emissions/low-mitigation scenarios such as
in the year 2,300 under SSP5-8.5 (Arias et al., 2021). As a result of this high CO,, the early Eocene was a period
characterized by temperatures up to ~5°C higher than today in the tropics (e.g., Cramwinckel et al., 2018; Gaskell
et al., 2022, Inglis et al., 2020; Pearson & Wade, 2007), and much greater polar amplification with temperatures
reaching ~20°C warmer than today at terrestrial high latitudes (e.g., Huber & Caballero, 2011; Naafs et al., 2018;
van Dijk et al., 2020).

Despite being a partial analog for future climate change, until the last few years climate model simulations of high
CO, periods such as the early Eocene have not been evaluated within a consistent framework (Lunt et al., 2017);
the closest to this was an informal model-data comparison, considering four climate models, known as the Eocene
Model Intercomparison Project (EoMIP), undertaken by Lunt et al. (2012). This work focused on tempera-
ture-based metrics, however, another study by Carmichael et al. (2016) used the same EoMIP ensemble to look at
the hydrological cycle and hydroclimate changes in response to the elevated CO, levels in the early Eocene. The
results focusing specifically on Africa are discussed in more detail below but, globally, when compared to proxy
data it was found that the models generally underestimated precipitation over high latitudes, and those models
showing the most warming in these regions gave the best match to the data (Carmichael et al., 2016). Concerning
the impact of elevated CO,, it was found that all early Eocene simulations showed a more intense hydrologi-
cal cycle (relative to the pre-industrial era, hereafter PI), with enhanced global precipitation and evaporation,
and that this was generally directly related to the elevated temperatures resulting from higher CO, (Carmichael
et al., 2016). At any given level of CO,, global precipitation changes varied widely between models, and certain
regions (such as tropical Africa, discussed further below) were found to be sensitive to which model was assessed
(Carmichael et al., 2016).

However, a disadvantage (albeit unavoidable) to EOMIP was that there was no consistent framework to the models'
experimental design; each used different boundary conditions (e.g., paleogeography) and different levels of CO,
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(Lunt et al., 2012). To resolve this problem, therefore, more recently the Deep Time Model Intercomparison
Project (DeepMIP) was envisaged and conducted, using CMIP3 and CMIP5 models as well as some of the most
recent state-of-the-art CMIP6-class models (Lunt et al., 2017). The large-scale features coming out of the simu-
lations are discussed in Lunt et al. (2021), with several conclusions being drawn. First, boundary conditions other
than CO,, discussed in Section 2.1, contributed between 3°C and 5°C of the global mean early Eocene warming,
relative to the PI (Lunt et al., 2021). Second, the DeepMIP simulations showed less of a temperature spread than
the models in EOMIP, and an increase in climate sensitivity (Lunt et al., 2021). Lastly, when compared to proxy
SST data, most models reproduced the large-scale spatial patterns of the reconstructions but still struggled at the
regional scale, such as in the south-west Pacific (Lunt et al., 2021).

Similar to Lunt et al. (2012), Lunt et al. (2021) only focused on temperature and CO,-based metrics. The majority
of recent studies looking at Eocene hydroclimate have focused on reconstructing evidence for the Asian monsoon
(e.g., Farnsworth et al., 2019; Licht et al., 2014; Ma et al., 2019; Quan et al., 2012; Xie et al., 2019). There are
very few studies, and in particular modeling studies, focusing on Africa. The aforementioned study by Carmi-
chael et al. (2016) using the EoOMIP ensemble found that tropical Africa was particularly sensitive to the model in
question, and that the models varied in skill (when reproducing precipitation, relative to observations) in regions
of relatively low precipitation such as over northern Africa's Sahel region. Moreover, although some models
showed similar PI precipitation over tropical Africa, under early Eocene conditions they were quite different
(Carmichael et al., 2016). It should be noted, however, that this study did not actually include any early Eocene
mean annual precipitation (MAP) reconstructions from Africa, only some Lutetian samples (~41-47 Ma). More
recently, Carmichael et al. (2018) ran several CO, simulations using just the UK Met Office Hadley Centre model
HadCM3L, finding an increase in both the size and frequency of extreme precipitation events over equatorial and
East Africa. Although MAP changes were relatively small, extreme rainfall increased by up to 70% over parts
of tropical Africa, with summer precipitation events dominating the regime over southern Africa (Carmichael
et al., 2018). Another example of Eocene African work is that of X. D. Liu et al. (2019), who looked at the Asian,
African and Australian monsoons across five different time periods and found that precipitation from the African
monsoon existed as early as the mid-Paleocene. Keery et al. (2018) found the variability of Asian and African
precipitation during the Eocene was predominantly accounted for by orbital configuration changes such as the
precession and obliquity; in DeepMIP, however, these were kept at PI values and so, here, the impact on Afri-
can precipitation will only be down to the CO, or the other boundary condition changes.

In this paper four main questions are addressed:

1. How well do the DeepMIP models' PI simulations reproduce modern observations of African precipitation?

2. What is the impact of CO, and other early Eocene boundary conditions on African precipitation in the Deep-
MIP models' early Eocene simulations?

3. What are the physical mechanisms behind this precipitation response?

4. How do the DeepMIP models' early Eocene simulations compare with proxy data of African precipitation?

Section 2 of this article briefly describes the experimental design followed by the DeepMIP models, gives a
brief introduction to the models themselves, and describes the observational and proxy data used for compara-
tive purposes. Section 3 presents the results, addressing each of the above questions. Section 4 summarizes and
concludes.

2. Experiment Design, Models, and Proxy Data
2.1. Experiment Design

The full experimental design, which all DeepMIP modeling groups were required to follow as closely as possible,
is detailed extensively in Lunt et al. (2017) and so will only be briefly outlined here. In addition to the various
CO, experiments, all modeling groups were required to carry out a PI simulation for comparison purposes, which
was to be as close as possible to the CMIP6 standard piControl simulation (Eyring et al., 2016).

For the early Eocene simulations, a number of boundary conditions needed to be changed, the key ones for the
African region of which are shown in Figure 1.
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Figure 1. Main boundary conditions changed in Deep-time Model Intercomparison Project (DeepMIP) simulations, where top row = PI and bottom row = early
Eocene: (a) land sea mask; (b) topography/bathymetry; (c) vegetation, expressed as megabiomes according to Harrison and Prentice (2003) (where 1 = tropical,
2 = warm-temperate, 3 = temperate, 4 = boreal, 5 = savanna, 6 = grassland and 7 = desert). The PI topography/bathymetry is taken from ETOPOS, re-gridded to
1° X 1° resolution, whereas the other fields are from Herold et al. (2014).

First, the land sea mask (LSM) was based on the paleogeographic heights (discussed further below), with possi-
ble manual manipulation required in some models to maintain the various gateways (Lunt et al., 2017). The new
LSM produced a geographically smaller Africa relative to the PI, with much of the present-day landmass north
of 20°N being ocean in the early Eocene due to the increased sea level (Figure 1a). Second, the paleogeography
(including topography and bathymetry) was based on the digital reconstruction of the early Eocene from Herold
et al. (2014), with the topography (and sub-grid scale topography) being applied as an absolute value rather than
as an anomaly (Lunt et al., 2017). Over Africa, the most pronounced changes were over southern and eastern
Africa, with generally larger areas of raised topography in the early Eocene, relative to the PI (Figure 1b). This
can be seen more clearly in the Supporting Information, where the differences in topography are shown; there is
clearly a large increase in elevation over western Africa where there is land in the early Eocene but ocean in the
PI, but apart from this (where the landmasses coincide) the largest changes are over southern and eastern Africa
(Figure S1 in Supporting Information S1). Third, concerning the land surface, vegetation and river run-off routing
was also based on the data set of Herold et al. (2014), using an appropriate lookup table to convert the vegetation
megabiomes into whatever format was required by the model (Lunt et al., 2017). The early Eocene vegetation was
created by running the dynamic vegetation model BIOME4 (Kaplan et al., 2003), with the resulting 27 biomes
being consolidated into 10 megabiomes following the procedure of Harrison and Prentice (2003); please see
Table 3 in Harrison and Prentice (2003) for a distinction between these megabiomes. BIOME4 itself was forced
by Eocene topography, bathymetry and CO, coming out of an early Eocene simulation from the CESM climate
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Table 1
Models Taking Part in DeepMIP, Including Relevant Details and References
Atmospheric resolution CO, experiments Run length
Modeling group responsible Model (lon x lat) undertaken (years) References
University of Michigan, US CESM1.2_CAM5 2.5° % 1.89° 1x, 3x, 6%, 9x 2,000 Hurrell et al. (2013)
Alfred Wegener Institute, Germany/ COSMOS-landveg_r2413 3.75° x 3.71° 1x, 3x, 4x 9,500 Jungclaus
Polish Academy of Sciences, Poland et al. (2006)
Stockholm University, Sweden GFDL_CM2.1 3.75° x 3.05° 1x, 2x, 3x, 4x, 6x 6,000 Delworth et al. (2006)
University of Bristol, UK HadCM3B_M2.1aN 3.75° x 2.5° 1x, 2x, 3x 7,800 Valdes et al. (2017)
University of Bristol, UK HadCM3BL_M2.1aN 3.75° x 2.5° 1x, 2x, 3x 7,800 Valdes et al. (2017)
National Academy of Sciences, Russia INM-CM4-8 2° % 1.5° 6x 1,050 Volodin et al. (2018)
Laboratoire des Sciences du Climat et IPSLCM5A2 3.75° x 1.89° 1.5x, 3x 4,000 Sepulchre
de I'Environnement, France et al. (2020)
University of Tokyo, Japan MIROC4m 2.8125° x 2.79° 1x, 2x, 3x 5,000 Chan et al. (2011)
University of Bergen, Norway NorESM1_F 2.5° % 1.89° 2x, 4x 2,100 Guo et al. (2019)

model. Concerning how well the simulated vegetation compares with reconstructions, Herold et al. (2014) state
that it compares well with vegetation inferred from Paleocene and Eocene palynoflora (Morley, 2007; Utescher
& Mosbrugger, 2007), and is consistent with geological indicators of climate (Crowley, 2012). Although Herold
et al. (2014) highlight a dry bias in vegetation over South America, there is no specific mention of Africa,
primarily because there is currently little or no paleobotanical data for Africa, meaning validation was not possi-
ble. Although it is beyond the scope of this study to modify the vegetation boundary conditions, previous work
has suggested a high sensitivity to vegetation, showing for example, dramatically increased global annual mean
temperatures when interactive vegetation is used, compared to fixed vegetation (Loptson et al., 2014).

When compared to the PI, over Africa the new vegetation resulted in: (a) a loss of the desert regions over the pres-
ent-day Sahara, primarily because this is ocean in the early Eocene; (b) a latitudinal expansion (relative to the PI)
of tropical rainforest across central Africa; and (c) an addition of a large area of tropical rainforest over southern
Africa, which is savanna or grassland in the PI (Figure 1c). However, some features remained similar in the early
Eocene relative to the PI, such as the region of tropical rainforest across central Africa being bordered by savan-
nah to the north and south, and the Namib Desert (Figure 1c). The impact on precipitation of these three boundary
condition changes is discussed below. Soil parameters, including soil dust fields, were given a globally constant
value, and (given the lack of paleodata) no lakes were prescribed unless dynamically predicted (Lunt et al., 2017).
Concerning greenhouse gas concentrations, the CO, experiments were divided into a set of standard experiments
(which all modeling groups should ideally have conducted) and a set of sensitivity experiments (which were
optional). All of these were expressed as multiples of the PI simulation, typically with a CO, of 280 ppmv, and
were as follows: 3x and 6x the PI for the standard experiments, and 1x, 1.5x, 2x, 4x, and 9x the PI for the sensi-
tivity experiments (Lunt et al., 2017). See Table 1 for which modeling groups conducted which experiments. All
other greenhouse gases were kept as PI, the justification for which is given in Lunt et al. (2017). Concerning aero-
sols, given the rapid development of representation of aerosols in models the experimental design was flexible
here and allowed modeling groups to either leave these as PI, treat aerosols interactively (if possible), prescribe
aerosols from Herold et al. (2014), or a combination of the above (Lunt et al., 2017). The solar constant and astro-
nomical parameters were kept identical to the PI, the justification for which is again given in Lunt et al. (2017).

Lastly, the experimental design provided some advice on practical matters such as simulation length and output
format. The simulations varied in length (see Table 1) but were all at least 1,000 yr in length, with the climatol-
ogies, comprising the results discussed here, being calculated over the final 100 yr. At that point, all simulations
should have had a global mean top-of-the-atmosphere net radiation balance of less than 0.3 W m~2 (or a similar
balance to that of the PI) and an SST trend of less than 0.1°C century~! (Lunt et al., 2017). All of the output,
details of which are given in Lunt et al. (2017), were uploaded to a centralized DeepMIP database.
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2.2. Models

Extensive details on each model, and how the experimental design was implemented in their simulations, are
given in Lunt et al. (2021) and references therein and will therefore only briefly be discussed here; those aspects
likely to affect precipitation (e.g., convection and land-surface schemes) will be focused upon here. In total, nine
models were included in DeepMIP, although it should be noted that two of these are different configurations
of the same model. See Table 1 for a list of the models, along with their atmospheric spatial resolutions and
appropriate references (particularly relating to the atmospheric component of the models and elements relating to
hydroclimate, where available). In detail, these are as follows.

1. CESM1.2_CAMS5: The Community Earth System Model version 1.2 (CESM1.2) is comprised of the Commu-
nity Atmosphere Model version 5.3 (CAMS), the Community Land Model version 4.0, the Community Ice
Code version 4.0, and the Parallel Ocean Program version 2 (Hurrell et al., 2013). CAMS5 uses the finite-vol-
ume dynamical core and physical parameterizations of deep convection (G. J. Zhang & McFarlane, 1995),
shallow convection and moist turbulence (Park & Bretherton, 2009), and cloud microphysics (Morrison &
Gettelman, 2008). This version contains new physical parameterizations in the atmosphere, such as the cloud
microphysics, which is critical for the simulation of the large-scale climate features of the early Eocene (W.
Liu et al., 2017).

2. COSMOS-landveg_r2413: For an atmospheric general circulation model, ECHAMS (the European Centre
Hamburg Model) is used (Roeckner et al., 2003), and this is coupled to the Max-Planck-Institute for Mete-
orology Ocean Model (Marsland et al., 2003); the coupled model is described by Jungclaus et al. (2006).
COSMOS-landveg_r2413 simulates cumulus convection using a mass flux scheme. The orography is repre-
sented in spectral domain by surface geopotential (see Stepanek & Lohmann, 2012 for more details regarding
model description). The land surface conditions for each biome are based on Hagemann (2002); additionally,
parameters with a seasonal cycle (i.e., leaf area index and vegetation ratio) in the latitude belt of ~20°S-20°N
were smoothed and an annual average for each biome was prescribed.

3. GFDL_CM2.1: This uses the Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 model (Delworth
et al., 2006), with modifications as described in Hutchinson et al. (2018), and comprising the Atmosphere
Model 2, Land Model 2 and the Sea Ice Simulator 1, coupled to the ocean component from the modular ocean
model version 5.1 (MOMS.1). The atmosphere uses a finite-volume discretization, and a 3° latitude x 3.75°
longitude resolution with 24 vertical levels, following the configuration of CM2Mc (Galbraith et al., 2011).
Convection is parameterized by the relaxed Arakawa-Schubert scheme of Moorthi and Suarez (1992), with
a lower-bound on entrainment as specified in Tokioka et al. (1988). Cloud microphysics are parameterized
using the scheme of Rotstayn (1997), while cloud macrophysics use the parameterization of Tiedtke (1993).
Full details of the convection and cloud parameterizations are given in Delworth et al. (2006). Of possible
relevance to the simulation of precipitation, the topography is smoothed using a three-point mean filter to
allow a smoother interaction with the wind field (Lunt et al., 2021).

4. HadCM3B_M2.1aN: This Hadley Centre Climate Model (HadCM3) version is documented extensively in
Valdes et al. (2017). In particular, the model uses a single “bulk” cloud model to parameterize dry as well
as shallow and deep moist convection (Grant, 1998). The cloud scheme uses a statistical parametrization
via a probability density function over the grid-box total water content (Bushell, 1998). Six short-wave and
eight long-wave radiation bands are represented by the scheme of Edwards and Slingo (1996). Static fields
for the nine surface types of the MOSES2.1 land surface scheme (Cox et al., 1999) are derived from the 10
megabiomes of the DeepMIP vegetation boundary conditions (Herold et al., 2014) via a lookup table. The
atmosphere uses a Cartesian grid with a horizontal resolution of 3.75 X 2.5° (longitude x latitude) and 19
hybrid vertical levels.

5. HadCM3BL_M2.1aN: The only difference between this version of HadCM3 and the one described above
is the horizontal resolution of the ocean component (Cox, 1984), at 1.25° x 1.25° for HadCM3B_M2.1aN
and 3.75° x 2.5° for HadCM3BL_M2.1aN, and associated diffusion parameters (Valdes et al., 2017). Both
versions use 20 unequally spaced vertical levels in the ocean ranging between 10 and 616 m.

6. INM-CM4-8: This version of the Institute of Numerical Mathematics (INM) model is described in Volo-
din et al. (2018), but the parameterizations of physical processes are the same as in the previous version,
INM-CMS5, and described more detail in Volodin et al. (2017). Parameterization of condensation and cloud
formation follows Tiedtke (1993), and cloud water is a prognostic variable. Parameterization of cloud frac-
tion follows Smagorinsky (1963); cloud fraction is a diagnostic variable, independent of the calculation of
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condensation, and depended on the relative humidity. The surface, soil, and vegetation scheme follow Volodin
and Lykossov (1998), with the evolution of the equations for temperature, soil water, and soil ice being solved
at 23 levels from the surface to 10 m depth (Volodin et al., 2018). The fractional area of 13 types of potential
vegetation is specified, and actual vegetation as well as LAI is calculated according to the soil water content
in the root zone and soil temperature (Volodin et al., 2018).

7. IPSLCMS5AZ2: The IPSL-CM5A2 Earth system model from the Institut Pierre Simon Laplace (IPSL) is docu-

mented by Sepulchre et al. (2020), and is based on the previous generation IPSL Earth system model (IPSL-
CMS5A, Dufresne et al., 2013) but with new revisions such as a re-tuning of global temperature. It comprises
the LMDZS5 (Laboratoire de Météorologie Dynamique Zoom) atmosphere model, the Organizing Carbon
and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface and vegetation model and the Nucleus
for European Modeling of the Ocean (NEMOV3.6) ocean model, which includes the LIM2 sea ice model
and the Pelagic Interactions Scheme for Carbon and Ecosystem Studies (PISCESv2) biogeochemical model
(Lunt et al., 2021). LMDZS5 runs at a horizontal resolution of 1.9° x 2.5° (latitude X longitude) with 39
hybrid sigma-pressure levels. The LMDZS5 radiation scheme is inherited from the European Center for Medi-
um-Range Weather Forecasts (Fouquart & Bonnel, 1980; Morcrette et al., 1986), and the dynamical effects of
the subgrid-scale orography are parameterized according to Lott (1999). Turbulent transport in the planetary
boundary layer is treated as a vertical eddy diffusion (Laval et al., 1981), with counter-gradient correction and
dry convective adjustment, and the surface boundary layer is treated according to Louis (1979). Cloud cover
and cloud water content are computed using a statistical scheme (Bony & Emanuel, 2001). For deep convec-
tion, the LMDZS5A version uses the “episodic mixing and buoyancy sorting” scheme originally developed by
Emanuel (1991).

8. MIROC4m: This version of the Model for Interdisciplinary Research on Climate (MIROC) is documented

by K-1 model developers (2004) and summarized in Chan et al. (2011). In the atmosphere model, cumulus
parameterization is based on Arakawa and Schubert (1974), with some simplifications and the cloud base
mass flux is treated as a prognostic variable. Cumulus convection is suppressed when the cloud-mean ambient
relative humidity is less than the critical value of 0.8. The land surface model (Minimal Advanced Treatments
of Surface Interaction and Runoff, MATSIRO) is documented by Takata et al. (2003), where prognostic vari-
ables include canopy temperature, canopy water content, snow amount, soil moisture content, and frozen soil
moisture content. Fixed vegetation types are specified over ice-sheet-free. The ocean component is version
3.4 of the CCSR (Center for Climate System Research) Ocean Component Model (COCO), documented in
Hasumi (2000).

9. NorESM1_F: This version of the Norwegian Earth System Model (NorESM) is described in detail in Guo

et al. (2019) and Li et al. (2020), and differs from the previous version (NorESM1-M) in that while it has the
same atmosphere-land grid, the ocean and sea ice components use a tripolar grid (rather than the bipolar grid
in NorESM1-M), resulting in a more realistic Atlantic Meridional Overturning Circulation (Lunt et al., 2021).
NorESM1_F couples the Miami Isopycnic Coordinate Ocean Model (MICOM) and the spectral Commu-
nity Atmosphere Model (CAM4) (Eaton, 2010; Neale et al., 2008, 2013). CAM4 includes the G. J. Zhang
and McFarlane (1995) deep convection scheme, the Hack (1994) shallow convection scheme, the nonlocal
boundary layer scheme of Holtslag and Boville (1993) and the representation of cloud microphysics and
macrophysics by Rasch and Kristjansson (1998) and M. Zhang et al. (2003). Instead of using the undiluted
convective available potential energy (CAPE) in the original deep convection scheme, the diluted CAPE
through an explicit representation of entrainment has been used to close the cumulus parameterization (Neale
et al., 2008). The convective momentum transport has also been included in the parameterization of deep
convection (Richter & Rasch, 2008). Additionally, NorESM1_F adopts energy updates and energy conser-
vation. Compared to NorESM1-M, NorESM1_F has several important improvements on how precipitation
is simulated, such as improvements in seasonality, a reduced wet bias and mitigation of the common double
intertropical convergence zone (ITCZ) problem (Li et al., 2020).

2.3. Observational and Proxy Data

Here, the observational and proxy data are described; first there is a description of the modern, satellite-derived
data used to assess and evaluate the PI simulations, and second there is a description of the early Eocene proxy
data used to evaluate the Eocene simulations.
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2.3.1. Satellite-Derived Rainfall Estimates From the Modern Period

Even in the 21st century, there is a severe lack of in-situ rain gauge data over Africa; South Africa is probably the
best populated in terms of rainfall measurements, but in other countries such as Angola or Namibia rain gauge
data are sparse or non-existent (e.g., Williams et al., 2007, 2008, 2010). The CenTrends precipitation data set
(Funk et al., 2015) contains measurements going back to 1900, but only for a small number of countries in East
Africa. Likewise, although the Global Historical Climate Network database (Durre et al., 2010, 2008; Menne
et al., 2012) does contain temperature measurements going back to 1861, precipitation measurements do not
begin until the 1950s and are again relatively sparse in Africa. Therefore, a possible solution to the problem of
data unavailability is to use satellite-derived rainfall estimates (SREs), which offer near-uniform coverage at
relatively high spatial resolution from the 1980s onwards.

Several data sets of SREs currently exist, but here the Tropical Applications of Meteorology using SATellite data
and ground-based observations (TAMSAT) is used. TAMSAT (version 3.1) provides daily, 10-daily, monthly and
seasonal precipitation estimates over Africa at 4 km resolution, and extends from 1983 to the present-day. The
data are publicly available; please see Open Research section, and Maidment et al. (2014, 2017) and Tarnavsky
et al. (2014) for details. Here, TAMSAT is used as a comparative tool for evaluating the PI simulations of the
DeepMIP models. A caveat here is that the models are showing precipitation simulated under PI boundary condi-
tions, whereas TAMSAT is showing precipitation from the late 20th and early 21st century (referred to here as
modern) and will therefore contain an anthropogenic signal; this, however, is unavoidable given the lack of PI
precipitation observations. It is expected that the biases between comparing the models to PI precipitation vs.
comparing them to modern precipitation will be less than the biases between the models themselves (i.e., the
inter-model spread), and indeed much less than the uncertainty associated with the Eocene reconstructions.

2.3.2. Paleobotanical Eocene Precipitation Estimates

The distribution and physiognomy of land plants are sensitive to precipitation (Wright et al., 2017). Therefore, the
taxonomic affinity and the morphology of leaf fossils can be used to generate paleo-precipitation estimates (e.g.,
Utescher et al., 2014; Wilf et al., 1998). For this study, previously established Paleocene-Eocene (~41-56 Ma)
paleobotanical records from Africa were compiled (see Supporting Information for age ranges for individual
sites, Table S1 in Supporting Information S1). The distribution of the nearest living relatives (NLR) of these taxa
was then analyzed using the bioclimatic analysis approach to find the highest probability precipitation range in
which all taxa could co-occur (e.g., West et al., 2020; Willard et al., 2019).

Geodetic coordinates of occurrences were obtained for the NLR of each plant group from the Global Biodiversity
Information Facility (see Table S2 in Supporting Information S1). These occurrence data sets were then filtered
for uncertain, exotic, and superfluous occurrences, as well as subjected to a random resampling to avoid regional
overrepresentation of densely sampled areas. A climatic envelope for each plant group (see Table S2 in Support-
ing Information S1) was then generated by extracting precipitation data (MAP, wettest month (WMP), driest
month (DMP), warmest and coldest quarter precipitation (WQP and CQP, respectively) and the precipitation
seasonality coefficient [PS]) using the DISMO package in R (Hijmans et al., 2005). A probability density func-
tion was then generated for each co-occurring plant group by testing the likelihood of the plant group occurring
at 100,000 unique extant combinations of MAP, WMP, DMP, PS, WQP, and CQP. As shown in Equation 1, the
product of probabilities (f) was calculated for each plant group () at each climatic combination (x), using the
means (1) and standard deviations (o) of their modern-day bioclimatic envelope, for each climatic variable (c).

6

1 2
ft) = || ——=er/ (1)
,1:11 V262X

A combined likelihood for all plant groups in the assemblage combined can then be calculated with the product
of all likelihoods (n), shown in Equation 2.

f@=[1n @)
i=1
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Table 2
Locations and Mean Annual Precipitation (MAP) From Early Eocene Paleobotanical Records From Africa, and Modern
Values

MAP (mm yr~')

Site name Latitude (°N) Longitude (°E) Early Eocene Modern
Koningsnaas, South Africa -30.2 17.3 1,318-1,738 101
Shagamu, Nigeria 6.7 3.7 1,148-2,089 1,762
Melut Basin, South Sudan 10 33 1,175-1,905 757
Kwakwa, Cameroon 4.5 9.1 1,175-1,905 2,524
Mwadui, Tanzania -39 33.5 813-1,738 754
Tano, Ghana 4.7 -3 1,514-2,344 -
Nanka, Nigeria 6.12 7 1,380-2,291 1,683
Abidjan margin, Cote d’Ivoire 5 —4.1 1,660-1,950 -
Okigwe, Nigeria 5.82 7.34 1,175-1,862 2,311
Bende - Umuahia, Nigeria 5.47 7.45 1,514-2,291 2,311
Araromi, Nigeria 7.7 3.5 1,072-1,738 1,179
Mahenge, Tanzania —4.79 34.26 720-800 707
Mahenge, Tanzania —4.79 34.26 630-690 707
Mahenge, Tanzania —4.79 34.26 737-815 707
Mahenge, Tanzania —4.79 34.26 644-708 707
Mahenge, Tanzania —4.79 34.26 710-790 707
Mahenge, Tanzania -4.79 34.26 610-680 707
Mahenge, Tanzania —4.79 34.26 610-680 707
Mahenge, Tanzania —4.79 34.26 740-820 707

Note. Early Eocene ranges of MAP are expressed as the 95% confidence interval for all locations except Mahenge, where
ranges are expressed as +/—1 standard deviation. Modern values of MAP taken from TAMSAT; missing values indicate
ocean regions, as TAMSAT MAP is land only.

The combination of MAP, WMP, DMP, PS, WQP, and CQP with the highest likelihood is the value reported here
as most representative for the assemblage, and the highest and lowest values of the metrics with f{z) > 5% of the
maximum f{z) is represented as the uncertainty (using the 95% confidence interval).

Eleven plant assemblages from South Africa, Tanzania, South Sudan, Cameroon, Cote d’Ivoire, Ghana, and
Nigeria were analyzed with the bioclimatic analysis NLR method (Adeonipekun et al., 2012; Atta-Peters &
Salami, 2004; Cantrill et al., 2013; Chiaghanam et al., 2017; de Villiers, 1997; Eisawi & Schrank, 2008; Goha
et al., 2016; Okeke & Umeji, 2016; Salami, 1984; Salard-Cheboldaeff, 1979; Uzodimma, 2013); see Table S1 in
Supporting Information S1 for age ranges of individual sites.

The NLR generated precipitation values were supplemented with an additional value based on leaf area analysis
derived data by Jacobs and Herendeen (2004) and Kaiser et al. (2006), also from Tanzania (from the Lutetian).
In locations where the final results are in the same geographical location, the reconstructions were averaged. The
final results of this analysis are shown in Table 2, with Eocene MAP expressed as ranges and modern MAP taken
from TAMSAT. It should be noted that, for the results other than the model-data comparison, precipitation during
June—August (JJA) is focused upon, rather than using MAP. Previous work has suggested that for much of the
continent, over 80% of the annual total of precipitation is accounted for by a given region's wet season and, over
West Africa (the wet season of which is JJA), this increases to 95% or higher (Liebmann et al., 2012). Given that
the primary driver of this wet season is the seasonal progression of the ITCZ, it is likely that this relationship will
hold during the early Eocene. It was therefore deemed appropriate to focus on this season for the majority of the
analysis (i.e., Sections 3.1, 3.2 and 3.3), only using MAP for the model-data comparison (Section 3.4), for which
seasonal proxy data are not available.
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3. Results

Here, the results of different comparisons are described: (a) a model validation exercise, where the models' PI
simulations are compared to modern observations (Section 3.1); (b) a simulation comparison, where precipitation
from the models' early Eocene simulations, at varying levels of CO,, is compared (Section 3.2); (c) a simulation
comparison, where the physical mechanisms behind the precipitation response are investigated (Section 3.3);
and (d) a model-data comparison, where precipitation from the models' early Eocene simulations is compared to
available proxy data (Section 3.4).

3.1. DeepMIP Models' Preindustrial Simulations vs. Modern Observations

Here, the focus is on mean precipitation differences between the various DeepMIP PI simulations (including the
multi-model ensemble mean, MME) and precipitation observations from TAMSAT (see Section 2.3.1). Here, the
MME is calculated for a given variable as the simple mean across all available models. Precipitation anomalies
(PI simulations-TAMSAT) during JJA are shown in Figure 2, where the models have been ordered according to
the root mean square error (RMSE), relative to TAMSAT. Two observations are noteworthy. First, the MME is
showing by far the closest agreement to TAMSAT, with a much lower RMSE (by ~10 mm month~! less than even
the next lowest individual model), highlighting the importance of using the MME to counterbalance individual
models' biases (whether they be under or overestimating). The MME will therefore subsequently be used when
discussing the various Eocene simulations. Second, there appears to be a divide between: (a) models such as
IPSLCM5A2, INM-CM4-8, and COSMOS-landveg_r2413 that are underestimating African precipitation (i.e.,
are showing drier conditions across West Africa at ~10°N), which have relatively low RMS error compared with
TAMSAT; and (b) models such as HaddCM3BL_M2.1aN, MIROC4m and GFDL_CM2.1 that are overestimating
African precipitation, which have relatively high RMS error compared with TAMSAT. For example, the model
with the least agreement (GFDL_CM?2.1, RMSE = 70.6 mm month~!) is overestimating precipitation over West
Africa by more than 100 mm month~'.

Concerning the seasonal and latitudinal distribution of African precipitation, Figure 3 shows the annual cycle of
West African (defined here as land points only encompassing 20°W-15°E, 0°-20°N) precipitation and the zonal
mean of JJA West African precipitation (Figures 3a and 3b, respectively). Outside of JJA, the majority of models
are overestimating precipitation throughout the year (Figure 3a), with the model closest to TAMSAT (in terms of
the seasonal cycle i.e., precipitation timings) being CESM1.2_CAMS, although even this model overestimates
precipitation during the first half of the year. When averaged over this region, only one model (INM-CM4-8)
underestimates precipitation throughout the year, but is nevertheless closer to TAMSAT than those which over-
estimate, in agreement with that discussed above and shown in Figure 2. One model (GFDL_CM2.1) greatly
overestimates precipitation especially during JJA, and others (such as INM-CM4-8) underestimate precipitation
during JJA and therefore do not correctly reproduce the strong seasonality (i.e., the precipitation curve is flatter);
for example, the difference between the wettest and driest month in this model is 136 mm month~!, whereas it
is 161 mm month~! in TAMSAT and 181 mm month~! in the MME (Figure 3a). The MME also overestimates
precipitation throughout the year but is nevertheless closer to TAMSAT in terms of seasonality than many of
the wetter models (Figure 3a). Latitudinally, most models are showing a much wider (in terms of latitudinal
extent) rain belt relative to TAMSAT, with GFDL_CM2.1 and the HadCM3 family in particular not reproducing
the observed rapid drop-off in precipitation either near the Equator or north of 15°N (Figure 3b). In part due to
some drier models approaching the Equator (such as CESM1.2_CAMS and INM-CM4-8), the MME is showing
a similar latitudinal extent of precipitation compared to TAMSAT, and while it is still too wet at low latitudes it
does correctly drop off north of 15°N (Figure 3b).

3.2. DeepMIP Models' Early Eocene Simulations Relative to Preindustrial Simulations and Each Other

Here, the focus is on mean precipitation differences between various DeepMIP early Eocene CO, sensitivity
experiments, in which all boundary conditions other than CO, were kept identical. The focus is not only on
the precipitation response to varying CO, concentrations relative to the PI simulations, but also from each CO,
experiment individually (relative to each other). Precipitation anomalies of all the CO, experiments vs. PI are first
briefly presented (Section 3.2.1), and then the experiment results are divided into a CO, component (Section 3.2.2)
and a non-CO, component (i.e., the impact of the other boundary condition changes, Section 3.2.3).
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Figure 2. June-August (JJA) precipitation climatology differences (PI simulations-TAMSAT), re-gridded to lowest common spatial resolution (that of COSMOS-
landveg_r2413) and ordered according to root mean squared error (RMSE, in mm month~!, see insert). RMSE calculated over 20°W-50°E, 40°N-40°S, land points

only.

Before these results are presented, however, a brief introduction to the early Eocene precipitation over Africa
is needed. Mean JJA precipitation over PI and early Eocene Africa (using the 1x CO, simulation) is shown in
the Supporting Information, where it is clear that, during the PI, all models are showing a band of precipitation
between approximately the Equator and 10°N that extends from the central equatorial Atlantic all the way across
Africa (Figure S2a in Supporting Information S1). How far east this rain belt extends is dependent on model, but
the majority (and the MME) show it extending up to 40°E. During the early Eocene, although this rain belt is still
present over West Africa, most models agree that it does not extend across the continent, instead ending at ~20°E
and being replaced by relatively drier conditions (Figure S2b in Supporting Information S1). Wetter conditions
are shown further east, over the early Eocene Indian Ocean, but concerning Africa these results would suggest
that although the rain belt is latitudinally similar to the PI, it does not have the longitudinal extent.
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Figure 3. Precipitation climatology from TAMSAT and PI simulations, averaged over West Africa (20°W-15°E, 0°-20°N-land points only): (a) Mean seasonal cycle,
at each model's individual spatial resolution; (b) Zonal mean of June—August (JJA) precipitation, re-gridded to lowest common spatial resolution.
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Figure 4. June-August (JJA) precipitation climatology differences (early Eocene-PI), for each CO, simulation from each
model.

3.2.1. All CO, Experiments vs. Preindustrial

The precipitation anomalies (early Eocene-PI), for each CO, experiment and for each model during JJA are shown
in Figure 4. This is only briefly presented, because the combination of a paleogeographic forcing and a CO, forc-
ing makes interpretation difficult; this is why the results are broken down into a CO, component and non-CO,
component below. It should be noted that when the MME is discussed below (see Sections 3.2.2 and 3.2.3), only
models that participated in the particular experiment are included.

There is no clear linear trend in either wetting or drying across early Eocene Africa as the CO, concentrations
increase (Figure 4). Although many models show drying (relative to the PI) of up to ~180 mm month~! across
northern and western Africa in the 1x, 2x, and 3x experiments, this gradually disappears as higher CO, concen-
trations are applied, with some models showing precipitation increases of over 200 mm month~! (Figure 4). Some
models disagree regardless of experiment, such as GFDL_CM?2.1 which shows drying over northern Africa in
all CO, experiments contrasting with IPSLCMS5A?2 which shows wetting over northern Africa in all CO, experi-
ments. Further south, none of the models in any of the experiments are showing a large precipitation response. In
very general terms, however, at the lower levels of CO, concentrations (i.e., up to 4x) the majority of models are
showing the same region of drying over northern and western Africa.

3.2.2. Lower and Higher CO, Experiments: Impact of CO,

To investigate the impact of increasing CO, on precipitation, when all other boundary conditions are constant,
the experiments have been divided into two samples, each containing a different number of models going into the
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MME: (a) “lower-level CO,”, namely the 1x, 2x, and 3x experiments, comprising four models (GFDL_CM2.1,
HadCM3B_M2.1aN, HadCM3BL_M2.1aN, and MIROC4m); and (b) “higher-level CO,”, namely the 3x and 6x
experiments, comprising two models (CESM1.2_CAMS5 and GFDL_CM2.1); see Table 1. Note that the MMEs
for the two 3x experiments are slightly different because they contain a different number of models. Here, both
absolute precipitation values and anomalies are shown, where the anomalies are of a certain CO, experiment vs.
another CO, experiment, rather than early Eocene vs. PIL.

The MME absolute precipitation and anomalies for the lower-level sample of CO, experiments, are shown in
Figure 5a. When the absolute values are considered (Figure 5a, top row), all experiments show regions of precip-
itation maxima over the equatorial Atlantic (north of the Equator) and West Africa. Over the same West African
region as described above (20°W-15°E, 0°-20°N, land points only), mean JJA precipitation is 192, 201, and
207 mm month~! for the 1x, 2x, and 3x experiments, respectively, implying a small increase as CO, increases.
This becomes more evident when the anomalies are considered (Figure 5a, second row). If the 1x and 2x exper-
iments are compared, the largest change is over the equatorial Atlantic, with a small increase in precipitation of
up to 50 mm month~! over the Equator and a decrease of over 50 mm month~" further north, suggesting a south-
ward displacement of the Atlantic ITCZ. Precipitation is also increased over western Africa. The same pattern
is evident when the 1x and 3x experiments are compared, but more pronounced, with both the increases and
decreases approaching 100 mm month~" in their respective areas.

The MME absolute precipitation and anomalies for the higher-level sample of CO, experiments are shown in
Figure 5b. When the absolute values are considered (Figure 5b, top row), the region of precipitation maxima in
the equatorial Atlantic is larger in the 6x experiment. Over the same West African region, mean JJA precipitation
is 186 and 232 mm month~! for the 3x and 6x experiments, respectively, implying a large mean increase as CO,
increases, and this is further confirmed when the anomalies are considered (Figure 5b, second row). Precipita-
tion increases of over 100 mm month~! are shown over the equatorial Atlantic (north of the Equator) and West
Africa in the 6x relative to the 3x experiment, but the large region of drying seen at the lower levels of CO, is less
evident (Figure 5b, second row). This suggests that, whilst West African precipitation is still (and more so here)
enhanced as CO, rises, it is perhaps less related to Atlantic ITCZ displacement and more related to an increase in
south-westerly flow (discussed further in Section 3.3).

3.2.3. 1x CO, Experiment vs. Preindustrial: Impact of Non-CO, Boundary Conditions

The 1x CO, experiment vs. PI is of particular interest, because this shows the impact of the other boundary
conditions rather than that from CO, concentrations. When CO, concentrations are kept as PI (as in the 1x exper-
iment), the boundary conditions (see Section 2.1) likely to have the largest impact on regional precipitation are
the LSM, topography, and vegetation (see Figure 1). Although land ice changes, the largest of which during the
early Eocene were over the Antarctic Ice Sheet (AIS), do cause a precipitation response (e.g., Kennedy-Asser
et al., 2019), this is thought to be a mainly local signal and further afield, such as over northern and western
Africa during JJA, there is little or no precipitation change when the AIS is either imposed or removed (Kenne-
dy-Asser, pers. comm.).

The MME precipitation anomaly for this experiment is shown in Figure 6a; it should be noted that, although six
models conducted this experiment (CESM1.2_CAMS, COSMOS-landveg_r2413, GFDL_CM2.1, HadCM3B_
M2.1aN, HadCM3BL_M2.1aN, and MIROC4m), only the latter four are included here in the MME, to be
consistent with the analysis of the CO, component (Section 3.2.2). From the available DeepMIP results, it is
impossible to disentangle the boundary conditions and ascertain which is dominant in causing the precipitation
response; in an ideal world, sensitivity experiments would be conducted to introduce each boundary condition
individually, but this is not possible with the results currently available on the DeepMIP database. Nevertheless,
based on the results it is possible to theorize which of these boundary conditions might be causing this MME
precipitation response. The largest precipitation changes relative to the PI are a small increase in precipitation to
the north of early Eocene Africa and in the western Indian Ocean, and a decrease in precipitation over western
and northern equatorial Eocene Africa (Figure 6a). It is likely that the northern increases are caused by the change
in the LSM (Figure 1a) as this region comprises the preindustrial (and modern) Sahara but is ocean in the early
Eocene and therefore would have been a much greater moisture source. Likewise, the increase over the western
Indian Ocean is likely because preindustrial Africa extends much further East than during the early Eocene, again
giving much less of a moisture source during the PI (Figure 1a). Moreover, an examination of SST from the early
Eocene and PI simulations (from each individual model and the MME) shows that these exposed regions of ocean
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Figure 5. JJA precipitation multi-model ensemble mean (MME) climatology absolutes and anomalies for the 1x, 2x, 3x, and 6x CO, experiments, using both
samples: (a) Lower-level sample of CO, experiments (comprising the four models that conducted these: GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN,
and MIROC4m), absolutes (top row) and anomalies (second row); (b) Higher-level sample of CO, experiments (comprising the two models that conducted these:
CESM1.2_CAMS and GFDL_CM2.1), absolutes (top row) and anomalies (second row).
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Figure 6. June—August (JJA) precipitation multi-model ensemble mean (MME) climatology differences (early Eocene-PI) for the 1x CO, experiment (comprising the
four models that conducted this experiment, in addition to the others considered here: GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN, and MIROC4m):
(a) Original (i.e., unrotated) differences; (b) Rotated differences that is, Charlie Eocene precipitation rotated forward to where it is in the PI. Note that in (a), solid lines
show the PI mask and dashed lines show the Eocene mask.

are characterized by warmer SSTs in the early Eocene; for example, in the Indian Ocean absolute values are up
to 32°C in the early Eocene MME compared to up to 28°C in the PI MME, thereby providing a greater source
of evaporation during the Eocene see (see Figure S3 in Supporting Information S1). Concerning the drying
over equatorial early Eocene Africa, this is more difficult to interpret and does not seem likely to be related to
the LSM or the changes in vegetation. For the LSM, this region of drying coincides with land during both time
periods. For the vegetation, although there is a shift in biome between the PI and early Eocene, the region of
drying (at approximately 10°-20°N) coincides with an increase (or slightly northward shift) in tropical rainforest
during the early Eocene, rather than mostly being savanna and grassland in the PI (Figure 1c). This might be
expected to result in an increase in precipitation during the early Eocene, rather than a drying. However, this
response might be explained by the difference in orographic heights over this region (i.e., over central equatorial
Africa), where early Eocene Africa is considerably lower (up to 400 m) than in the PI (up to 1,000 m). Finally,
over southern Africa, although there is a large increase in orographic heights (of over 1,000 m) during the early
Eocene (Figure 1b and Figure S1 in Supporting Information S1), this does not appear to be having a large impact
on African precipitation, with minimal precipitation differences in the south (Figure 6a).

However, a caveat of the above analysis is that, because of the plate rotation differences during the early Eocene,
Figure 6a is showing precipitation anomalies that may simply be due to differing geographical locations, rather
than any change to the climate state. Therefore, Figure 6b shows the same results, but this time with the early
Eocene precipitation rotated forwards (based on the rotations supplied in Herold et al., 2014 Supporting Informa-
tion) to where it is in the PI. However, despite these rotational differences, the overall picture remains the same
(i.e., increases in precipitation over northern Africa and a decrease in precipitation over western and equatorial
Africa) but much more pronounced (Figure 6b). The increases and decreases in precipitation exceed 200 mm
month~! in some places, suggesting a northward displacement of the Atlantic ITCZ; this difference between the
early Eocene and the PI is in contrast to when the Eocene CO, experiments are compared with each other, to
assess the impact of increasing CO, (discussed previously in Section 3.2.2).
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3.3. Physical Mechanisms Behind the Precipitation Response

Here, the focus is on the possible dynamic and thermodynamic mechanisms causing the observed precipitation
responses, again using the MME absolute values and anomalies from the aforementioned lower-and higher-level
samples of CO, experiments.

The MME absolute 1.5 m surface air temperature (SAT) and anomalies for the lower- and higher-level sample of
CO, experiments are shown in Figure 7. In line with general understanding, there is a clear increase in absolute
SAT, everywhere, as the CO, increases, with the largest signal (of up to 40°C in the 3x experiment) occurring
over the main landmass of central and northern Africa (Figure 7a, top row). This is more obvious when the anom-
alies are considered, although the largest increases are occurring further south (Figure 7a, second row). This is
even more pronounced in the higher-level sample of CO, experiments (Figure 7b), and in all experiments, the
largest increase in SAT, either between the 3x and 1x experiments or the 6x and 3x the experiments, is occur-
ring over southern Africa, away from the largest precipitation changes discussed above. Moreover, the largest
increases in precipitation as CO, increases (Figure 5) are shown over ocean regions, such as the equatorial Atlan-
tic and off the coast of West early Eocene Africa, whereas the largest increases in SAT (Figure 7) are shown over
the landmass. It is likely that these precipitation increases are connected to the warmer SSTs (see Section 3.2.3),
or changes to the low-level circulation (discussed below), rather than a direct response to the heating landmass.
The precipitation-evaporation (P-E) balance (Figure 8) is positive over West Africa in all experiments regardless
of sample, corresponding well with the region of increased precipitation (Figure 6), as does cloud cover which is
also increasing with CO, over these regions (not shown). Further south, over the Atlantic, the balance is negative
implying increased evaporation corresponding to the increased oceanic SAT. Concerning low-level circulation,
as shown by 850 mb vector winds (Figure 9), when the anomalies are considered (and in particular the 3x vs. 1x),
there is a small (of up to 5 ms~!) increase in northerly and westerly winds (i.e., clockwise flow) in the equatorial
Atlantic north of the Equator (Figure 9a, second row). However, in the higher-level CO, sample (and in particular
the anomalies of 6x vs. 3x, Figure 9b, second row), this increase in anticyclonic flow is less evident and is instead
replaced by a widespread area of increased southwesterly flow across most of the equatorial Atlantic and central
Africa. For SAT, P-E and 850 vector winds from each individual model, rather than the MME, see the Supporting
Information (Figures S4a—S4c in Supporting Information S1, respectively); here, similar to Figure 4, there is no
obvious linear change in either P-E or low-level circulation as CO, increases, but a clear increase in SAT from all
models, in line with current understanding (Figure S4a in Supporting Information S1).

Both the region of enhanced precipitation over West Africa, and the region of drying in the equatorial Atlantic
around 10°N, may be explained by these low-level circulation changes. Up to 3x that of the PI CO,, clockwise
low-level circulation increases with CO,, drawing in more moisture from the equatorial Atlantic and causing a
relative drying further north, hence the appearance of a southward displacement of the Atlantic ITCZ. At higher
levels of CO,, however, where increases in West African precipitation are shown but the region of drying around
10°N is not, the increased clockwise low-level circulation is replaced by increased south-westerly flow; here,
therefore, precipitation is being enhanced by more moisture being drawn in by this south-westerly flow from the
warm South Atlantic.

3.4. DeepMIP Models' Eocene Simulations vs. Proxy Data

In this final section, the focus is on comparing precipitation from selected DeepMIP early Eocene simulations
(using the MME from the same two samples as discussed above) with newly available precipitation reconstruc-
tions (described in Section 2.3.2). Before the results are presented, however, several sources of uncertainty in
the proxies and models must be noted, aside from analytical uncertainty that is expressed in the reconstructed
confidence intervals. First, the fossil plant assemblages analyzed here have broad age constraints. Paleofloral
assemblages may capture a snapshot within those age constraints that deviated climatically from the average
climatic conditions of a specific age that the model was calibrated on. In addition, fossil plant assemblages
tend to preserve better in wetter climates, with drier climates lacking the water bodies needed to preserve plant
fossils. Second, the DeepMIP models are calibrated on atmospheric CO, proxy reconstructions to cover the
uncertainty of the entire Eocene; the lower CO, levels may be more representative of the late Eocene, but that
was not the purpose or interpretation when it came to deciding the experiments. Independent proxies within those
ages produce widely variable atmospheric CO, reconstructions (e.g., Rae et al., 2021), with <500 ppmv from
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Figure 7. Same as Figure 5 but for June—August (JJA) 1.5 m surface air temperature.
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Figure 9. Same as Figure 5 but for June—August (JJA) 850 mb wind.

some paleosol and stomatal reconstructions (Beerling et al., 2009; Hyland et al., 2013) to >2,000 ppmv from
boron isotopes and alkenone 5°C (e.g., Anagnostou et al., 2020; Bijl et al., 2010). It should be noted, however,
that there is high uncertainty in these reconstructions; see Hollis et al. (2019) for a full discussion. For example,
based on a variety of reconstructions compiled as part of the Paleo-CO, project (including phytoplankton, boron

Figure 8. June—August (JJA) precipitation-evaporation (P-E) multi-model ensemble mean (MME) climatology absolutes for the 1x, 2x, 3x, and 6x CO, experiments,
using both samples: (a) lower-level sample of CO, experiments (comprising the four models that conducted these: GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL _
M2.1aN, and MIROC4m), PI (top row) and early Eocene (bottom row); (b) higher-level sample of CO, experiments (comprising the two models that conducted these:
CESM1.2_CAMS and GFDL_CM2.1), PI (top row) and early Eocene (bottom row). Note that the PI panels are identical in each sample because they contain the same
models, but are simply replicated here for ease of comparison.
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Figure 10. Annual mean precipitation from reconstructions (black) and CO, experiments multi-model ensemble mean (MME, colors) at each individual location.
Uncertainty in reconstructions is measured by 95% confidence interval for all sites except Mahenge, where they show +/—1 standard deviation. Locations have been
ordered according to the reconstructions' values, lowest to highest. Note that locations 1-4 and 6-8 are all in the same location, but from different stages during the
Lutetian (~41-47 Ma), and so have been re-sampled and averaged into one overall mean (location 5).

proxies, leaf gas exchange, liverworts, and nahcolite), atmospheric CO, during 55-50 Ma ranges from 500 to
2,000 ppmv (Anagnostou et al., 2020; Hollis et al., 2019; Westerhold et al., 2020). Potentially, these differences
in reconstructed atmospheric CO, reflect transient climate states (e.g., Reichgelt et al., 2016), but regardless, the
disagreement between proxy reconstructions makes it problematic to associate a single atmospheric CO, level
for model-data comparison (Hollis et al., 2019). Lastly, a major source of uncertainty is the paucity of proxy data
across Africa; as mentioned above, even today there is a lack of long-term climate data over much of Africa, and
the same is true for paleofloras. This sparsity, therefore, is likely responsible for some of the results discussed
below, and this is why some of the following results are necessarily partly speculative.

With these caveats in mind, MME MAP at each of the individual locations is shown in Figure 10, ordered
according to the reconstructions' values, including uncertainty estimates for the reconstructions (as measured
by +1 standard deviation for the locations in Mahenge, Tanzania and the 95% confidence interval for the other 11
locations; see Table 2 for details). The approximate geographical locations can be seen in the Supporting Infor-
mation (Figure S5 in Supporting Information S1). First it is worth noting that for the majority of reconstructions,
uncertainty is high, with a range of up to +/—1,000 mm yr~! at some of the locations such as Mwadui, Tanza-
nia (Figure 10). Second, whether or not the CO, experiments over- or underestimate MAP appears to depend
heavily on geographical location, with none of the CO, experiments (not even the 6x experiment) reproducing
the precipitation amounts of the proxy reconstructions in some locations, such as Koningsnaas, South Africa,
Okigwe, Nigeria or Tano, Ghana (Figure 10). Elsewhere, the simulations lie within the uncertainty range of the
reconstructions (such as Sagamu or Bende-Umuahia, both in Nigeria), and yet in other places (such as across
Kwakwa, Cameroon, and all of the locations at Mahenge, Tanzania) all of the simulations are too wet, by between
~760 and 1,040 mm yr~' depending on location and CO, experiment (Figure 10).

Spatially, MME MAP is shown in Figure 11 (see Figure S6 in Supporting Information S1 for each individual
model), showing the uncertainty estimates as concentric circles. As already discussed, the simulations' precipita-
tion is clearly too high or too low compared to proxy reconstructions in different parts of Africa. Qualitatively, in
very general terms all of the CO, experiments are showing wetter conditions over Western early Eocene Africa
(relative to elsewhere), agreeing with Figure 10 where in many of these locations the models are either within,
or at the higher end of, the reconstructions' uncertainty ranges (Figure 11). Importantly, simulated precipitation

WILLIAMS ET AL.

21 of 29



A7t |

M\\JI Paleoceanography and Paleoclimatology 10.1029/2022PA004419
50N 50N 50N
40N 40N 40N
30N A 30N + 30N A
20N - 20N 20N
10N 10N - 10N

B 108 = B 108 1 B 10S n
208 H 20S 208 +
30S 30S 1 30S
408 - 408 408
508 508 508

T T T
30W 20W 10W 0

T T T T T
10E 20E 30E 40E 50E 60E

T T
30W 20W 10W

T
0

T T T T T
10E 20E 30E 40E 50E 60E

T T
30W 20W 10w

T
0

T T T T T
10E 20E 30E 40E 50E 60E

Longitude Longitude Longitude
50N | L ) L | | | | 50N | ) | L | |
40N + 40N +
30N - r 30N -
20N - 20N - L
10N - + 10N 4 L
9 )
- = °
£ 0 , 2 04
« @
- . . | L
10S ) 108
20S o 20S o |
5 o8
30S - J ( = 308 - Jr) L
4 7 N \ ¢
408 - + 408 . +
i Y-
508 T 508 T

T T
30W 20W 10W 0

T T T T T
10E 20E 30E 40E S50E 60E

Longitude

T T
30W 20W 10W

I

I

I

I

0

600

1200

1800

2400

0

T T T T T
10E 20E 30E 40E S50E 60E

Longitude

Rainfall (mm yr")

Figure 11. Annual mean precipitation from reconstructions (circles) and CO, experiments multi-model ensemble mean (MME, background gridded data): (a) 1x; (b)
2x; (¢) 3x (lower-level CO, sample); (d) 3x (higher-level CO, sample); (e) 6x. Concentric circles show 95% confidence interval for all sites except Mahenge, where
they show +/—1 standard deviation: outer circle = lower range (or —1 standard deviation), middle circle = average (or, for Mahenge, mode) and inner circle = upper
range (or +1 standard deviation). Reconstructions have been rotated forwards to where they are in the PI. Solid lines show the PI mask and dashed lines show the
early Eocene mask. Note that, using the common spatial resolution of the MME, 3 reconstructions are all in the same location in West Africa (even though they are in
different locations in reality); here, therefore, only the top-most reconstruction is shown.

over West Africa appears to be increasing as the CO, concentration increases and, in particular for the 6x exper-
iment (Figure 11e), in this region simulated precipitation exceeds even the upper range of uncertainty of the
reconstructions.

Quantitatively, the root mean squared error (RMSE) between each model (as well as the MME) and the recon-
structions at every location is shown in Table 3 and, similar to the anomalies from each model as discussed above,
there is no clear relationship between changing CO, and a better match to the reconstructions. Most models
suggest a better fit to the reconstructions at lower levels of CO,, such as CESM1.2_CAMS where there is a
general increase in RMSE as the CO, increases; however, this is not the case for every model, with for example,
GFDL_CM2.1 showing a better fit with reconstructions at 2x and 4x CO,, rather than higher or lower levels
(Table 3). For many of the models and the MME, the 3x CO, experiments are showing the least fit with recon-
structions. The MME, from the lower-level (but not in the higher-level) CO, sample, agrees with this conclusion
that lower CO, is giving a slightly better match to the reconstructions, with RMSE values of 758 mm yr~!,
831 mm yr~!, 1,385 mm yr~', 889 mm yr~' and 839 mm yr~!' for the 1x, 2x, 3x (lower-level CO, sample), 3x
(higher-level CO, sample) and 6x experiments, respectively (Table 3).
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Table 3
Root Mean Squared Error (RMSE) for Mean Annual Precipitation (MAP) Between Each Model (and Multi-Model
Ensemble Mean, MME, Using Both Samples) and Reconstructions, for Each CO, Experiment

1xCO, 15xCO, 2xCO, 3xCO, 4xCO, 6xCO, 9xCO,

CESM1.2_CAMS 681 750 704 822
COSMOS-landveg_r2413 699 1,424 713
GFDL_CM2.1 803 762 1,027 786 975
HadCM3B_M2.1aN 796 884 1,988

HadCM3BL_M2.1aN 816 1,018 1,742

INM-CM4-8 966
IPSLCMS5A2 744 669

MIROC4m 614 662 785

NorESM1_F 1,149 1,522

MME (lower-level CO, sample) 758 831 1,385

MME (higher-level CO, sample) 889 839

4. Discussion and Conclusions

This study has investigated African precipitation during the early Eocene, as simulated by the DeepMIP models.
This study is novel, because it investigates the relatively little-studied subject of African hydroclimate during
the early Eocene. The results of this study have been divided into four separate sections, corresponding to the
four questions posed in Section 1. First, in Section 3.1 the DeepMIP models' PI simulations have been compared
to satellite-derived estimates of precipitation, to ascertain how well the models are able to reproduce African
precipitation under “modern” conditions (please see Section 2.3.1 for a discussion of the caveat that here the
term “modern” is actually a combination of both pre-industrial and 20th-21st century). Second, in Section 3.2
the DeepMIP models' early Eocene simulations have been compared to both the PI simulations and each other, to
investigate the impact of CO, components (i.e., increasing CO,) and non-CO, components (i.e., other boundary
condition changes, such as to the LSM) on African precipitation. Third, in Section 3.3 the CO, driven response has
been investigated further by looking at a number of dynamic and thermodynamic fields simulated by the models,
to ascertain possible physical mechanisms behind the observed precipitation response. Lastly, in Section 3.4 the
DeepMIP models' early Eocene simulations have been compared to newly available proxy data, to indicate how
well the models agree with current best precipitation estimates from the Eocene.

The comparison between the DeepMIP PI simulations and modern observations (from TAMSAT) suggest that
individual models are both underestimating or overestimating the spatial patterns of African precipitation; this
is consistent with Monerie et al. (2020), who analyzed a number of historical simulations from both CMIP5
and CMIP6 and found that the models' ability to reproduce observations was first model dependent and second
geographically dependent, with many models underestimating precipitation over the Sahel and overestimating
it over the Guinea coast and tropical Atlantic. However, here the MME is reducing these biases and is showing
the best agreement with TAMSAT in terms of precipitation spatial patterns, highlighting the utility of the MME
as a best estimate of the actual precipitation. This has been found elsewhere, such as by Ayugi et al. (2021) who
looked at East African precipitation in both CMIP5 and CMIP6 models and again found a better performance of
the MME relative to individual models, due to systematic errors in individual models being canceled out. More-
over, Rougier et al. (2013) show that it is actually a statistical property of this type of analysis that the ensemble
mean will always provide the best match to the data for example, have the lowest RMSE. It should be noted,
however, that a potential caveat of using the MME is that although it eliminates extreme biases, the same models
are then being used to run the Eocene simulations, for which the correct (i.e., true) precipitation is less well
known and based only on paleodata, which themselves have uncertainties. Therefore, even using the MME may
be propagating its own unknown errors. Concerning the latitudinal extent and seasonal timings of African precip-
itation, most models show a much wider (latitudinally) West African rain belt compared to TAMSAT and are not
reproducing the rapid drop-off in precipitation near the Equator or north of 15°N. This is somewhat in contrast
to Monerie et al. (2020), who noted that the majority of CMIP5 and CMIP6 models did not have the monsoon
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extending far enough to the north and were instead showing a southward displacement of precipitation maxima,
relative to observations; however, that particular study used the models' historical simulations (as well as a differ-
ent MME), not pre-industrial as shown here, which may explain the discrepancy. Outside of JJA most models are
too wet, but within JJA the results suggest that the drier models (i.e., those underestimating African precipitation)
are closer to modern observations than those that are too wet (i.e., overestimating African precipitation).

The comparison between the DeepMIP early Eocene simulations and the PI suggests that, when all individual
models are considered separately, there is no obvious wetting or drying trend (relative to the PI) as the CO,
increases. This is another reason to focus on the MME, which allows easier interpretation as the large model
spread is removed. Concerning the non-CO, component of precipitation change (i.e., the impact of other bound-
ary conditions when CO, is kept at PI levels), the results suggest that changes to the LSM may be responsible for
the increases in precipitation (relative to the PI) to the north of early Eocene Africa and the western Indian Ocean,
given that these are “newly exposed” regions of ocean in the early Eocene, thereby providing a larger moisture
source. In contrast, it is likely that changes in orographic heights are responsible for the region of drying (relative
to the PI) over equatorial early Eocene Africa, where early Eocene Africa is considerably lower (up to 400 m)
than in the PI (up to 1,000 m). When the early Eocene precipitation is rotated forwards in time to where it is in the
PI, a similar pattern is shown but is more pronounced, and suggests a northward displacement of the primary rain
belt (relative to today), which is consistent with previous work (e.g., Carmichael et al., 2016). Concerning the
CO, component of precipitation change, at the lower levels of increased CO, (such as 2x and 3x that of the PI)
precipitation over the equatorial Atlantic and West Africa appears to be increasing in response to rising CO,, with
the concomitant decrease in precipitation north of the equator suggesting a possible displacement of the Atlantic
ITCZ toward the south. This therefore suggests that the boundary condition changes imposed for the Eocene
are resulting in a northward displacement of the primary rain belt, but increasing CO, (with the same boundary
conditions) is resulting in a southward displacement of the primary rain belt. At even higher levels of CO, (such
as 6x that of the PI), precipitation over West Africa is more enhanced relative to the lower levels, but the region
of drying is less evident. The enhancement of Northern Hemisphere summer West African precipitation at the
highest levels of CO, is again consistent with previous work, such as that of Carmichael et al. (2016) who showed
a generally more intense hydrological cycle at higher CO, levels and that of Carmichael et al. (2018) who demon-
strated an increase in precipitation extremes over tropical Africa at higher CO, levels.

Consistent with Carmichael et al. (2016), the precipitation increases over West Africa as CO, concentrations rise
are associated with increased SAT, a strongly positive the P-E balance and cloud cover increases and, concerning
temperature, as such are consistent with the idea that a generally warmer world results in a generally wetter world;
the “wet-gets-wetter and dry-gets-drier” hypothesis (e.g., Held & Soden, 2006). However, the largest increases
in SAT shown here are over southern Africa, not where the largest precipitation increases are seen, suggesting
factors other than a generally warming world (i.e., dynamical changes) are responsible for the localized precipita-
tion response (see Section 3.3). A caveat to mention here is that, because the DeepMIP simulations use prescribed
vegetation rather than interactive, there is no impact on the vegetation types or distribution of these enhanced
SATs or precipitation, therefore it is not possible to say whether any enhanced precipitation would be enough to
support a certain type of vegetation in the presence of extreme temperatures. Whilst it is likely that the impacts
of elevated temperatures and precipitation (whether combined or individually) would be substantial on plant
physiology, it is beyond the scope of this study to test this. Sensitivity studies, using interactive vegetation, are
currently underway to address these questions.

Lastly, the results from the model-data comparison suggests that whether the early Eocene simulations (regard-
less of CO, experiment) over- or underestimate African precipitation is highly geographically dependent, with
some of the CO, experiments at some of the locations lying within the uncertainty range of the reconstructions
but others being too wet or too dry. There is some suggestion of a latitudinal relationship, with the simulations
overestimating precipitation near the Equator and underestimating precipitation in high latitude regions, such as
South Africa; this latter point is consistent with the findings of Carmichael et al. (2016). Whether the models are
considered independently or whether the MME is used, the results suggest a marginally better fit with the recon-
structions at lower levels of CO,, and this is in contrast (indirectly) to the findings of Carmichael et al. (2016)
who suggested the warmest models in the regions of increased precipitation best matched the data; it should be
noted, however, that this was a global study. There is no evidence for this here, and indeed the finding of a better
match at lower levels of CO, is in contrast to that of Reichgelt et al. (2022) who focused on Australia and found
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that the higher, 6x CO, experiment was the best match to reconstructions. However, given the uncertainties
associated with both the reconstructions (discussed above) and the boundary conditions used to force the models,
it is difficult to draw firm conclusions from a model-data comparison of this type. Moreover, a particularly big
problem is that, despite the newly compiled reconstructions presented here, there is still a lack of data across
Africa, hindering any firm conclusions. The uncertainties discussed above are likely contributing to the lack of
consistency presented in some of these model-data comparisons, such as the MME showing better agreement
with the reconstructions at lower and higher levels of CO,, but not in between (e.g., the 3x simulation), but this
is, at present and given the data sparsity, unavoidable.

In conclusion, therefore, this study has shown that the DeepMIP models are able to approximately reproduce
the modern African precipitation and, in response to rising CO,, suggest an enhancement of precipitation in this
region associated with increasing temperatures and changes to low-level circulation. At very high levels of CO,
the models may be too wet, relative to proxy reconstructions. However, this might be because the NLR proxy
approach has difficulty generating MAP values above modern, or connected to the relatively few early Eocene-
aged data points within the reconstructions (meaning some of the comparisons here were necessarily made with
data from the middle or late Eocene). Using the MME provides the clearest suggestion of this, but the large
amount of model spread means that when individual models are considered, either relative to their corresponding
PI simulations or reconstructions, no clear relationship is shown.
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