
Abstract  The early Eocene (∼56–48 Myr ago) is characterized by high CO2 estimates (1,200–2,500 ppmv) 
and elevated global temperatures (∼10°C–16°C higher than modern). However, the response of the hydrological 
cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g., 
Africa). Here, we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble 
of state-of-the-art climate models in the Deep-time Model Intercomparison Project (DeepMIP). A comparison 
between the DeepMIP pre-industrial simulations and modern observations suggests that model biases are 
model- and geographically dependent, however, these biases are reduced in the model ensemble mean. A 
comparison between the Eocene simulations and the pre-industrial suggests that there is no obvious wetting or 
drying trend as the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in 
the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa. There 
is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as 
CO2 rises. There are also important dynamical changes, with evidence that anticyclonic low-level circulation 
is replaced by increased south-westerly flow at high CO2 levels. Lastly, a model-data comparison using newly 
compiled quantitative climate estimates from paleobotanical proxy data suggests a marginally better fit with the 
reconstructions at lower levels of CO2.

Plain Language Summary  Approximately 50 Myr ago, a period known as the early Eocene, 
atmospheric carbon dioxide levels were significantly higher than today, and were more similar to what they 
could be in the future, if efforts to reduce human greenhouse gas emissions are unsuccessful. However, rainfall 
changes during this period are less well understood, especially over data-sparse regions such as Africa. Here, 
a collection of state-of-the-art climate models are used to study African rainfall during this period, comparing 
the simulations first to present-day African rainfall (to validate the models), second to varying levels of 
atmospheric carbon dioxide, and lastly to newly compiled reconstructions of early Eocene rainfall (from plant 
fossils). The main findings are that although the models can reproduce present-day rainfall over Africa, and 
compare reasonably well with the reconstructions, there is no clear rainfall signal when atmospheric carbon 
dioxide is increased. Nevertheless, the combination of a different continental configuration, vegetation, 
topography, and atmospheric carbon dioxide leads to changing rainfall patterns, connected to temperature and 
low-level wind changes.
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1.  Introduction
One of the ways to better understand future anthropogenic-induced climate change is to simulate past climates, 
using these as partial analogs for the future and allowing the testing of climate models to simulate climates very 
different from today (Braconnot et al., 2011; Tierney et al., 2020). Simulating past climates allows not only an 
interrogation of the mechanisms of past climate change (Haywood et al., 2020; Lunt et al., 2021), but if a robust 
comparison with available proxy data can be produced, this allows confidence in future climate change projec-
tions that are often based on models tuned to a modern climate state (Harrison et al., 2014; Taylor et al., 2011; 
Williams et al., 2020, 2021; Zhu et al., 2020).

It has long been known that African precipitation, and in particular that over West Africa, is of vital importance 
to the more than one billion people in sub-Saharan Africa who survive predominantly on rain-fed agriculture and, 
concurrently, are highly vulnerable to extreme precipitation events causing both flooding and drought (Williams 
& Kniveton, 2011). However, a lack of weather and climate data across much of the continent has resulted in 
a high level of uncertainty concerning both present day and future climate trends (Salerno et  al.,  2019), and 
although it is expected that both average temperature and precipitation will increase across Africa along with the 
rest of the world (IPCC, 2021), regional variation is particularly high across Africa.

Due to their particular relevance to African precipitation, two Quaternary time periods have recently been inves-
tigated by Williams et al. (2020) under the Paleoclimate Modeling Intercomparison Project (PMIP, Braconnot 
et al., 2007), now in its 4th phase and itself under the umbrella of the Coupled Model Intercomparison Project, 
now in its 6th phase (CMIP6, Eyring et al., 2016). These time periods are the mid-Holocene (6,000 yr ago, 6 ka) 
and Last Interglacial (127 ka). However, excess warmth and enhancement of the Northern Hemisphere during 
these periods is caused primarily by changes to the orbital configuration of Earth, rather than elevated greenhouse 
gases (Kageyama et  al.,  2018). To investigate substantial greenhouse gas-induced warming, and its result on 
regional hydroclimate such as across Africa, periods further back in time are needed, and two such candidates in 
the context of PMIP are the mid-Pliocene (∼3 Myr ago, 3 Ma) and the early Eocene (∼56.05–47.8 Ma). However, 
with CO2 levels ranging from 316 to 420 ppmv during the mid-Pliocene (Martínez-Botí et al., 2015), this is more 
similar to modern levels rather than being a suitable analog for future projections by the end of the 21st century; 
using the previous RCP 8.5 scenario, this could be over 1,000 ppmv (IPCC, 2013). The early Eocene, with CO2 
levels ranging between 1,200 and 2,500 ppmv (Anagnostou et al., 2020, 2016; Lunt et al., 2021), is comparable to 
the current future projections, and in particular for the extended high-emissions/low-mitigation scenarios such as 
in the year 2,300 under SSP5-8.5 (Arias et al., 2021). As a result of this high CO2, the early Eocene was a period 
characterized by temperatures up to ∼5°C higher than today in the tropics (e.g., Cramwinckel et al., 2018; Gaskell 
et al., 2022, Inglis et al., 2020; Pearson & Wade, 2007), and much greater polar amplification with temperatures 
reaching ∼20°C warmer than today at terrestrial high latitudes (e.g., Huber & Caballero, 2011; Naafs et al., 2018; 
van Dijk et al., 2020).

Despite being a partial analog for future climate change, until the last few years climate model simulations of high 
CO2 periods such as the early Eocene have not been evaluated within a consistent framework (Lunt et al., 2017); 
the closest to this was an informal model-data comparison, considering four climate models, known as the Eocene 
Model Intercomparison Project (EoMIP), undertaken by Lunt et  al.  (2012). This work focused on tempera-
ture-based metrics, however, another study by Carmichael et al. (2016) used the same EoMIP ensemble to look at 
the hydrological cycle and hydroclimate changes in response to the elevated CO2 levels in the early Eocene. The 
results focusing specifically on Africa are discussed in more detail below but, globally, when compared to proxy 
data it was found that the models generally underestimated precipitation over high latitudes, and those models 
showing the most warming in these regions gave the best match to the data (Carmichael et al., 2016). Concerning 
the impact of elevated CO2, it was found that all early Eocene simulations showed a more intense hydrologi-
cal cycle (relative to the pre-industrial era, hereafter PI), with enhanced global precipitation and evaporation, 
and that this was generally directly related to the elevated temperatures resulting from higher CO2 (Carmichael 
et al., 2016). At any given level of CO2, global precipitation changes varied widely between models, and certain 
regions (such as tropical Africa, discussed further below) were found to be sensitive to which model was assessed 
(Carmichael et al., 2016).

However, a disadvantage (albeit unavoidable) to EoMIP was that there was no consistent framework to the models' 
experimental design; each used different boundary conditions (e.g., paleogeography) and different levels of CO2 
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(Lunt et  al., 2012). To resolve this problem, therefore, more recently the Deep Time Model Intercomparison 
Project (DeepMIP) was envisaged and conducted, using CMIP3 and CMIP5 models as well as some of the most 
recent state-of-the-art CMIP6-class models (Lunt et al., 2017). The large-scale features coming out of the simu-
lations are discussed in Lunt et al. (2021), with several conclusions being drawn. First, boundary conditions other 
than CO2, discussed in Section 2.1, contributed between 3°C and 5°C of the global mean early Eocene warming, 
relative to the PI (Lunt et al., 2021). Second, the DeepMIP simulations showed less of a temperature spread than 
the models in EoMIP, and an increase in climate sensitivity (Lunt et al., 2021). Lastly, when compared to proxy 
SST data, most models reproduced the large-scale spatial patterns of the reconstructions but still struggled at the 
regional scale, such as in the south-west Pacific (Lunt et al., 2021).

Similar to Lunt et al. (2012), Lunt et al. (2021) only focused on temperature and CO2-based metrics. The majority 
of recent studies looking at Eocene hydroclimate have focused on reconstructing evidence for the Asian monsoon 
(e.g., Farnsworth et al., 2019; Licht et al., 2014; Ma et al., 2019; Quan et al., 2012; Xie et al., 2019). There are 
very few studies, and in particular modeling studies, focusing on Africa. The aforementioned study by Carmi-
chael et al. (2016) using the EoMIP ensemble found that tropical Africa was particularly sensitive to the model in 
question, and that the models varied in skill (when reproducing precipitation, relative to observations) in regions 
of relatively low precipitation such as over northern Africa's Sahel region. Moreover, although some models 
showed similar PI precipitation over tropical Africa, under early Eocene conditions they were quite different 
(Carmichael et al., 2016). It should be noted, however, that this study did not actually include any early Eocene 
mean annual precipitation (MAP) reconstructions from Africa, only some Lutetian samples (∼41–47 Ma). More 
recently, Carmichael et al. (2018) ran several CO2 simulations using just the UK Met Office Hadley Centre model 
HadCM3L, finding an increase in both the size and frequency of extreme precipitation events over equatorial and 
East Africa. Although MAP changes were relatively small, extreme rainfall increased by up to 70% over parts 
of tropical Africa, with summer precipitation events dominating the regime over southern Africa (Carmichael 
et al., 2018). Another example of Eocene African work is that of X. D. Liu et al. (2019), who looked at the Asian, 
African and Australian monsoons across five different time periods and found that precipitation from the African 
monsoon existed as early as the mid-Paleocene. Keery et al. (2018) found the variability of Asian and African 
precipitation during the Eocene was predominantly accounted for by orbital configuration changes such as the 
precession and obliquity; in DeepMIP, however, these were kept at PI values and so, here, the impact on Afri-
can  precipitation will only be down to the CO2 or the other boundary condition changes.

In this paper four main questions are addressed:

�1.	� How well do the DeepMIP models' PI simulations reproduce modern observations of African precipitation?
�2.	� What is the impact of CO2 and other early Eocene boundary conditions on African precipitation in the Deep-

MIP models' early Eocene simulations?
�3.	� What are the physical mechanisms behind this precipitation response?
�4.	� How do the DeepMIP models' early Eocene simulations compare with proxy data of African precipitation?

Section 2 of this article briefly describes the experimental design followed by the DeepMIP models, gives a 
brief introduction to the models themselves, and describes the observational and proxy data used for compara-
tive purposes. Section 3 presents the results, addressing each of the above questions. Section 4 summarizes and 
concludes.

2.  Experiment Design, Models, and Proxy Data
2.1.  Experiment Design

The full experimental design, which all DeepMIP modeling groups were required to follow as closely as possible, 
is detailed extensively in Lunt et al. (2017) and so will only be briefly outlined here. In addition to the various 
CO2 experiments, all modeling groups were required to carry out a PI simulation for comparison purposes, which 
was to be as close as possible to the CMIP6 standard piControl simulation (Eyring et al., 2016).

For the early Eocene simulations, a number of boundary conditions needed to be changed, the key ones for the 
African region of which are shown in Figure 1.
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First, the land sea mask (LSM) was based on the paleogeographic heights (discussed further below), with possi-
ble manual manipulation required in some models to maintain the various gateways (Lunt et al., 2017). The new 
LSM produced a geographically smaller Africa relative to the PI, with much of the present-day landmass north 
of 20°N being ocean in the early Eocene due to the increased sea level (Figure 1a). Second, the paleogeography 
(including topography and bathymetry) was based on the digital reconstruction of the early Eocene from Herold 
et al. (2014), with the topography (and sub-grid scale topography) being applied as an absolute value rather than 
as an anomaly (Lunt et al., 2017). Over Africa, the most pronounced changes were over southern and eastern 
Africa, with generally larger areas of raised topography in the early Eocene, relative to the PI (Figure 1b). This 
can be seen more clearly in the Supporting Information, where the differences in topography are shown; there is 
clearly a large increase in elevation over western Africa where there is land in the early Eocene but ocean in the 
PI, but apart from this (where the landmasses coincide) the largest changes are over southern and eastern Africa 
(Figure S1 in Supporting Information S1). Third, concerning the land surface, vegetation and river run-off routing 
was also based on the data set of Herold et al. (2014), using an appropriate lookup table to convert the vegetation 
megabiomes into whatever format was required by the model (Lunt et al., 2017). The early Eocene vegetation was 
created by running the dynamic vegetation model BIOME4 (Kaplan et al., 2003), with the resulting 27 biomes 
being consolidated into 10 megabiomes following the procedure of Harrison and Prentice  (2003); please see 
Table 3 in Harrison and Prentice (2003) for a distinction between these megabiomes. BIOME4 itself was forced 
by Eocene topography, bathymetry and CO2 coming out of an early Eocene simulation from the CESM climate 

Figure 1.  Main boundary conditions changed in Deep-time Model Intercomparison Project (DeepMIP) simulations, where top row = PI and bottom row = early 
Eocene: (a) land sea mask; (b) topography/bathymetry; (c) vegetation, expressed as megabiomes according to Harrison and Prentice (2003) (where 1 = tropical, 
2 = warm-temperate, 3 = temperate, 4 = boreal, 5 = savanna, 6 = grassland and 7 = desert). The PI topography/bathymetry is taken from ETOPO5, re-gridded to 
1° × 1° resolution, whereas the other fields are from Herold et al. (2014).
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model. Concerning how well the simulated vegetation compares with reconstructions, Herold et al. (2014) state 
that it compares well with vegetation inferred from Paleocene and Eocene palynoflora (Morley, 2007; Utescher 
& Mosbrugger, 2007), and is consistent with geological indicators of climate (Crowley, 2012). Although Herold 
et  al.  (2014) highlight a dry bias in vegetation over South America, there is no specific mention of Africa, 
primarily because there is currently little or no paleobotanical data for Africa, meaning validation was not possi-
ble. Although it is beyond the scope of this study to modify the vegetation boundary conditions, previous work 
has suggested a high sensitivity to vegetation, showing for example, dramatically increased global annual mean 
temperatures when interactive vegetation is used, compared to fixed vegetation (Loptson et al., 2014).

When compared to the PI, over Africa the new vegetation resulted in: (a) a loss of the desert regions over the pres-
ent-day Sahara, primarily because this is ocean in the early Eocene; (b) a latitudinal expansion (relative to the PI) 
of tropical rainforest across central Africa; and (c) an addition of a large area of tropical rainforest over southern 
Africa, which is savanna or grassland in the PI (Figure 1c). However, some features remained similar in the early 
Eocene relative to the PI, such as the region of tropical rainforest across central Africa being bordered by savan-
nah to the north and south, and the Namib Desert (Figure 1c). The impact on precipitation of these three boundary 
condition changes is discussed below. Soil parameters, including soil dust fields, were given a globally constant 
value, and (given the lack of paleodata) no lakes were prescribed unless dynamically predicted (Lunt et al., 2017). 
Concerning greenhouse gas concentrations, the CO2 experiments were divided into a set of standard experiments 
(which all modeling groups should ideally have conducted) and a set of sensitivity experiments (which were 
optional). All of these were expressed as multiples of the PI simulation, typically with a CO2 of 280 ppmv, and 
were as follows: 3x and 6x the PI for the standard experiments, and 1x, 1.5x, 2x, 4x, and 9x the PI for the sensi-
tivity experiments (Lunt et al., 2017). See Table 1 for which modeling groups conducted which experiments. All 
other greenhouse gases were kept as PI, the justification for which is given in Lunt et al. (2017). Concerning aero-
sols, given the rapid development of representation of aerosols in models the experimental design was flexible 
here and allowed modeling groups to either leave these as PI, treat aerosols interactively (if possible), prescribe 
aerosols from Herold et al. (2014), or a combination of the above (Lunt et al., 2017). The solar constant and astro-
nomical parameters were kept identical to the PI, the justification for which is again given in Lunt et al. (2017).

Lastly, the experimental design provided some advice on practical matters such as simulation length and output 
format. The simulations varied in length (see Table 1) but were all at least 1,000 yr in length, with the climatol-
ogies, comprising the results discussed here, being calculated over the final 100 yr. At that point, all simulations 
should have had a global mean top-of-the-atmosphere net radiation balance of less than 0.3 W m −2 (or a similar 
balance to that of the PI) and an SST trend of less than 0.1°C century −1 (Lunt et al., 2017). All of the output, 
details of which are given in Lunt et al. (2017), were uploaded to a centralized DeepMIP database.

Modeling group responsible Model
Atmospheric resolution 

(lon x lat)
CO2 experiments 

undertaken
Run length 

(years) References

University of Michigan, US CESM1.2_CAM5 2.5° × 1.89° 1x, 3x, 6x, 9x 2,000 Hurrell et al. (2013)

Alfred Wegener Institute, Germany/
Polish Academy of Sciences, Poland

COSMOS-landveg_r2413 3.75° × 3.71° 1x, 3x, 4x 9,500 Jungclaus 
et al. (2006)

Stockholm University, Sweden GFDL_CM2.1 3.75° × 3.05° 1x, 2x, 3x, 4x, 6x 6,000 Delworth et al. (2006)

University of Bristol, UK HadCM3B_M2.1aN 3.75° × 2.5° 1x, 2x, 3x 7,800 Valdes et al. (2017)

University of Bristol, UK HadCM3BL_M2.1aN 3.75° × 2.5° 1x, 2x, 3x 7,800 Valdes et al. (2017)

National Academy of Sciences, Russia INM-CM4-8 2° × 1.5° 6x 1,050 Volodin et al. (2018)

Laboratoire des Sciences du Climat et 
de l'Environnement, France

IPSLCM5A2 3.75° × 1.89° 1.5x, 3x 4,000 Sepulchre 
et al. (2020)

University of Tokyo, Japan MIROC4m 2.8125° × 2.79° 1x, 2x, 3x 5,000 Chan et al. (2011)

University of Bergen, Norway NorESM1_F 2.5° × 1.89° 2x, 4x 2,100 Guo et al. (2019)

Table 1 
Models Taking Part in DeepMIP, Including Relevant Details and References
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2.2.  Models

Extensive details on each model, and how the experimental design was implemented in their simulations, are 
given in Lunt et al. (2021) and references therein and will therefore only briefly be discussed here; those aspects 
likely to affect precipitation (e.g., convection and land-surface schemes) will be focused upon here. In total, nine 
models were included in DeepMIP, although it should be noted that two of these are different configurations 
of the same model. See Table 1 for a list of the models, along with their atmospheric spatial resolutions and 
appropriate references (particularly relating to the atmospheric component of the models and elements relating to 
hydroclimate, where available). In detail, these are as follows.
�1. CESM1.2_CAM5: The Community Earth System Model version 1.2 (CESM1.2) is comprised of the Commu-

nity Atmosphere Model version 5.3 (CAM5), the Community Land Model version 4.0, the Community Ice 
Code version 4.0, and the Parallel Ocean Program version 2 (Hurrell et al., 2013). CAM5 uses the finite-vol-
ume dynamical core and physical parameterizations of deep convection (G. J. Zhang & McFarlane, 1995), 
shallow convection and moist turbulence (Park & Bretherton, 2009), and cloud microphysics (Morrison & 
Gettelman, 2008). This version contains new physical parameterizations in the atmosphere, such as the cloud 
microphysics, which is critical for the simulation of the large-scale climate features of the early Eocene (W. 
Liu et al., 2017).

�2. COSMOS-landveg_r2413: For an atmospheric general circulation model, ECHAM5 (the European Centre 
Hamburg Model) is used (Roeckner et al., 2003), and this is coupled to the Max-Planck-Institute for Mete-
orology Ocean Model (Marsland et al., 2003); the coupled model is described by Jungclaus et al.  (2006). 
COSMOS-landveg_r2413 simulates cumulus convection using a mass flux scheme. The orography is repre-
sented in spectral domain by surface geopotential (see Stepanek & Lohmann, 2012 for more details regarding 
model description). The land surface conditions for each biome are based on Hagemann (2002); additionally, 
parameters with a seasonal cycle (i.e., leaf area index and vegetation ratio) in the latitude belt of ∼20°S–20°N 
were smoothed and an annual average for each biome was prescribed.

�3. GFDL_CM2.1: This uses the Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 model (Delworth 
et al., 2006), with modifications as described in Hutchinson et al. (2018), and comprising the Atmosphere 
Model 2, Land Model 2 and the Sea Ice Simulator 1, coupled to the ocean component from the modular ocean 
model version 5.1 (MOM5.1). The atmosphere uses a finite-volume discretization, and a 3° latitude x 3.75° 
longitude resolution with 24 vertical levels, following the configuration of CM2Mc (Galbraith et al., 2011). 
Convection is parameterized by the relaxed Arakawa-Schubert scheme of Moorthi and Suarez (1992), with 
a lower-bound on entrainment as specified in Tokioka et al. (1988). Cloud microphysics are parameterized 
using the scheme of Rotstayn (1997), while cloud macrophysics use the parameterization of Tiedtke (1993). 
Full details of the convection and cloud parameterizations are given in Delworth et al. (2006). Of possible 
relevance to the simulation of precipitation, the topography is smoothed using a three-point mean filter to 
allow a smoother interaction with the wind field (Lunt et al., 2021).

�4. HadCM3B_M2.1aN: This Hadley Centre Climate Model (HadCM3) version is documented extensively in 
Valdes et al. (2017). In particular, the model uses a single “bulk” cloud model to parameterize dry as well 
as shallow and deep moist convection (Grant,  1998). The cloud scheme uses a statistical parametrization 
via a probability density function over the grid-box total water content (Bushell, 1998). Six short-wave and 
eight long-wave radiation bands are represented by the scheme of Edwards and Slingo (1996). Static fields 
for the nine surface types of the MOSES2.1 land surface scheme (Cox et al., 1999) are derived from the 10 
megabiomes of the DeepMIP vegetation boundary conditions (Herold et al., 2014) via a lookup table. The 
atmosphere uses a Cartesian grid with a horizontal resolution of 3.75 × 2.5° (longitude x latitude) and 19 
hybrid vertical levels.

�5. HadCM3BL_M2.1aN: The only difference between this version of HadCM3 and the one described above 
is the horizontal resolution of the ocean component (Cox, 1984), at 1.25° × 1.25° for HadCM3B_M2.1aN 
and 3.75° × 2.5° for HadCM3BL_M2.1aN, and associated diffusion parameters (Valdes et al., 2017). Both 
versions use 20 unequally spaced vertical levels in the ocean ranging between 10 and 616 m.

�6. INM-CM4-8: This version of the Institute of Numerical Mathematics (INM) model is described in Volo-
din et al.  (2018), but the parameterizations of physical processes are the same as in the previous version, 
INM-CM5, and described more detail in Volodin et al. (2017). Parameterization of condensation and cloud 
formation follows Tiedtke (1993), and cloud water is a prognostic variable. Parameterization of cloud frac-
tion follows Smagorinsky (1963); cloud fraction is a diagnostic variable, independent of the calculation of 
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condensation, and depended on the relative humidity. The surface, soil, and vegetation scheme follow Volodin 
and Lykossov (1998), with the evolution of the equations for temperature, soil water, and soil ice being solved 
at 23 levels from the surface to 10 m depth (Volodin et al., 2018). The fractional area of 13 types of potential 
vegetation is specified, and actual vegetation as well as LAI is calculated according to the soil water content 
in the root zone and soil temperature (Volodin et al., 2018).

�7. IPSLCM5A2: The IPSL-CM5A2 Earth system model from the Institut Pierre Simon Laplace (IPSL) is docu-
mented by Sepulchre et al. (2020), and is based on the previous generation IPSL Earth system model (IPSL-
CM5A, Dufresne et al., 2013) but with new revisions such as a re-tuning of global temperature. It comprises 
the LMDZ5 (Laboratoire de Météorologie Dynamique Zoom) atmosphere model, the Organizing Carbon 
and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface and vegetation model and the Nucleus 
for European Modeling of the Ocean (NEMOv3.6) ocean model, which includes the LIM2 sea ice model 
and the Pelagic Interactions Scheme for Carbon and Ecosystem Studies (PISCESv2) biogeochemical model 
(Lunt et  al.,  2021). LMDZ5 runs at a horizontal resolution of 1.9°  ×  2.5° (latitude × longitude) with 39 
hybrid sigma-pressure levels. The LMDZ5 radiation scheme is inherited from the European Center for Medi-
um-Range Weather Forecasts (Fouquart & Bonnel, 1980; Morcrette et al., 1986), and the dynamical effects of 
the subgrid-scale orography are parameterized according to Lott (1999). Turbulent transport in the planetary 
boundary layer is treated as a vertical eddy diffusion (Laval et al., 1981), with counter-gradient correction and 
dry convective adjustment, and the surface boundary layer is treated according to Louis (1979). Cloud cover 
and cloud water content are computed using a statistical scheme (Bony & Emanuel, 2001). For deep convec-
tion, the LMDZ5A version uses the “episodic mixing and buoyancy sorting” scheme originally developed by 
Emanuel (1991).

�8. MIROC4m: This version of the Model for Interdisciplinary Research on Climate (MIROC) is documented 
by K-1 model developers (2004) and summarized in Chan et al. (2011). In the atmosphere model, cumulus 
parameterization is based on Arakawa and Schubert  (1974), with some simplifications and the cloud base 
mass flux is treated as a prognostic variable. Cumulus convection is suppressed when the cloud-mean ambient 
relative humidity is less than the critical value of 0.8. The land surface model (Minimal Advanced Treatments 
of Surface Interaction and Runoff, MATSIRO) is documented by Takata et al. (2003), where prognostic vari-
ables include canopy temperature, canopy water content, snow amount, soil moisture content, and frozen soil 
moisture content. Fixed vegetation types are specified over ice-sheet-free. The ocean component is version 
3.4 of the CCSR (Center for Climate System Research) Ocean Component Model (COCO), documented in 
Hasumi (2000).

�9. NorESM1_F: This version of the Norwegian Earth System Model (NorESM) is described in detail in Guo 
et al. (2019) and Li et al. (2020), and differs from the previous version (NorESM1-M) in that while it has the 
same atmosphere-land grid, the ocean and sea ice components use a tripolar grid (rather than the bipolar grid 
in NorESM1-M), resulting in a more realistic Atlantic Meridional Overturning Circulation (Lunt et al., 2021). 
NorESM1_F couples the Miami Isopycnic Coordinate Ocean Model (MICOM) and the spectral Commu-
nity Atmosphere Model (CAM4) (Eaton, 2010; Neale et al., 2008, 2013). CAM4 includes the G. J. Zhang 
and McFarlane (1995) deep convection scheme, the Hack (1994) shallow convection scheme, the nonlocal 
boundary layer scheme of Holtslag and Boville  (1993) and the representation of cloud microphysics and 
macrophysics by Rasch and Kristjánsson (1998) and M. Zhang et al. (2003). Instead of using the undiluted 
convective available potential energy (CAPE) in the original deep convection scheme, the diluted CAPE 
through an explicit representation of entrainment has been used to close the cumulus parameterization (Neale 
et al., 2008). The convective momentum transport has also been included in the parameterization of deep 
convection (Richter & Rasch, 2008). Additionally, NorESM1_F adopts energy updates and energy conser-
vation. Compared to NorESM1-M, NorESM1_F has several important improvements on how precipitation 
is simulated, such as improvements in seasonality, a reduced wet bias and mitigation of the common double 
intertropical convergence zone (ITCZ) problem (Li et al., 2020).

2.3.  Observational and Proxy Data

Here, the observational and proxy data are described; first there is a description of the modern, satellite-derived 
data used to assess and evaluate the PI simulations, and second there is a description of the early Eocene proxy 
data used to evaluate the Eocene simulations.
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2.3.1.  Satellite-Derived Rainfall Estimates From the Modern Period

Even in the 21st century, there is a severe lack of in-situ rain gauge data over Africa; South Africa is probably the 
best populated in terms of rainfall measurements, but in other countries such as Angola or Namibia rain gauge 
data are sparse or non-existent (e.g., Williams et al., 2007, 2008, 2010). The CenTrends precipitation data set 
(Funk et al., 2015) contains measurements going back to 1900, but only for a small number of countries in East 
Africa. Likewise, although the Global Historical Climate Network database (Durre et al., 2010, 2008; Menne 
et  al., 2012) does contain temperature measurements going back to 1861, precipitation measurements do not 
begin until the 1950s and are again relatively sparse in Africa. Therefore, a possible solution to the problem of 
data unavailability is to use satellite-derived rainfall estimates (SREs), which offer near-uniform coverage at 
relatively high spatial resolution from the 1980s onwards.

Several data sets of SREs currently exist, but here the Tropical Applications of Meteorology using SATellite data 
and ground-based observations (TAMSAT) is used. TAMSAT (version 3.1) provides daily, 10-daily, monthly and 
seasonal precipitation estimates over Africa at 4 km resolution, and extends from 1983 to the present-day. The 
data are publicly available; please see Open Research section, and Maidment et al. (2014, 2017) and Tarnavsky 
et al. (2014) for details. Here, TAMSAT is used as a comparative tool for evaluating the PI simulations of the 
DeepMIP models. A caveat here is that the models are showing precipitation simulated under PI boundary condi-
tions, whereas TAMSAT is showing precipitation from the late 20th and early 21st century (referred to here as 
modern) and will therefore contain an anthropogenic signal; this, however, is unavoidable given the lack of PI 
precipitation observations. It is expected that the biases between comparing the models to PI precipitation vs. 
comparing them to modern precipitation will be less than the biases between the models themselves (i.e., the 
inter-model spread), and indeed much less than the uncertainty associated with the Eocene reconstructions.

2.3.2.  Paleobotanical Eocene Precipitation Estimates

The distribution and physiognomy of land plants are sensitive to precipitation (Wright et al., 2017). Therefore, the 
taxonomic affinity and the morphology of leaf fossils can be used to generate paleo-precipitation estimates (e.g., 
Utescher et al., 2014; Wilf et al., 1998). For this study, previously established Paleocene-Eocene (∼41–56 Ma) 
paleobotanical records from Africa were compiled (see Supporting Information for age ranges for individual 
sites, Table S1 in Supporting Information S1). The distribution of the nearest living relatives (NLR) of these taxa 
was then analyzed using the bioclimatic analysis approach to find the highest probability precipitation range in 
which all taxa could co-occur (e.g., West et al., 2020; Willard et al., 2019).

Geodetic coordinates of occurrences were obtained for the NLR of each plant group from the Global Biodiversity 
Information Facility (see Table S2 in Supporting Information S1). These occurrence data sets were then filtered 
for uncertain, exotic, and superfluous occurrences, as well as subjected to a random resampling to avoid regional 
overrepresentation of densely sampled areas. A climatic envelope for each plant group (see Table S2 in Support-
ing Information S1) was then generated by extracting precipitation data (MAP, wettest month (WMP), driest 
month (DMP), warmest and coldest quarter precipitation (WQP and CQP, respectively) and the precipitation 
seasonality coefficient [PS]) using the DISMO package in R (Hijmans et al., 2005). A probability density func-
tion was then generated for each co-occurring plant group by testing the likelihood of the plant group occurring 
at 100,000 unique extant combinations of MAP, WMP, DMP, PS, WQP, and CQP. As shown in Equation 1, the 
product of probabilities (f) was calculated for each plant group (t) at each climatic combination (x), using the 
means (μ) and standard deviations (σ) of their modern-day bioclimatic envelope, for each climatic variable (c).

𝑓𝑓 (𝑡𝑡𝑛𝑛) =

6
∏

𝑖𝑖=1

1
√

2𝜎𝜎2
𝑐𝑐 × 𝜋𝜋

𝑒𝑒𝑥𝑥𝑐𝑐−𝜇𝜇𝑐𝑐∕2𝜎𝜎
2
𝑐𝑐� (1)

A combined likelihood for all plant groups in the assemblage combined can then be calculated with the product 
of all likelihoods (n), shown in Equation 2.

𝑓𝑓 (𝑧𝑧) =
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The combination of MAP, WMP, DMP, PS, WQP, and CQP with the highest likelihood is the value reported here 
as most representative for the assemblage, and the highest and lowest values of the metrics with f(z) ≥ 5% of the 
maximum f(z) is represented as the uncertainty (using the 95% confidence interval).

Eleven plant assemblages from South Africa, Tanzania, South Sudan, Cameroon, Côte d’Ivoire, Ghana, and 
Nigeria were analyzed with the bioclimatic analysis NLR method (Adeonipekun et  al.,  2012; Atta-Peters & 
Salami, 2004; Cantrill et al., 2013; Chiaghanam et al., 2017; de Villiers, 1997; Eisawi & Schrank, 2008; Goha 
et al., 2016; Okeke & Umeji, 2016; Salami, 1984; Salard-Cheboldaeff, 1979; Uzodimma, 2013); see Table S1 in 
Supporting Information S1 for age ranges of individual sites.

The NLR generated precipitation values were supplemented with an additional value based on leaf area analysis 
derived data by Jacobs and Herendeen (2004) and Kaiser et al. (2006), also from Tanzania (from the Lutetian). 
In locations where the final results are in the same geographical location, the reconstructions were averaged. The 
final results of this analysis are shown in Table 2, with Eocene MAP expressed as ranges and modern MAP taken 
from TAMSAT. It should be noted that, for the results other than the model-data comparison, precipitation during 
June–August (JJA) is focused upon, rather than using MAP. Previous work has suggested that for much of the 
continent, over 80% of the annual total of precipitation is accounted for by a given region's wet season and, over 
West Africa (the wet season of which is JJA), this increases to 95% or higher (Liebmann et al., 2012). Given that 
the primary driver of this wet season is the seasonal progression of the ITCZ, it is likely that this relationship will 
hold during the early Eocene. It was therefore deemed appropriate to focus on this season for the majority of the 
analysis (i.e., Sections 3.1, 3.2 and 3.3), only using MAP for the model-data comparison (Section 3.4), for which 
seasonal proxy data are not available.

Site name Latitude (°N) Longitude (°E)

MAP (mm yr −1)

Early Eocene Modern

Koningsnaas, South Africa −30.2 17.3 1,318–1,738 101

Shagamu, Nigeria 6.7 3.7 1,148–2,089 1,762

Melut Basin, South Sudan 10 33 1,175–1,905 757

Kwakwa, Cameroon 4.5 9.1 1,175–1,905 2,524

Mwadui, Tanzania −3.9 33.5 813–1,738 754

Tano, Ghana 4.7 −3 1,514–2,344 -

Nanka, Nigeria 6.12 7 1,380–2,291 1,683

Abidjan margin, Côte d’Ivoire 5 −4.1 1,660–1,950 -

Okigwe, Nigeria 5.82 7.34 1,175–1,862 2,311

Bende - Umuahia, Nigeria 5.47 7.45 1,514–2,291 2,311

Araromi, Nigeria 7.7 3.5 1,072–1,738 1,179

Mahenge, Tanzania −4.79 34.26 720–800 707

Mahenge, Tanzania −4.79 34.26 630–690 707

Mahenge, Tanzania −4.79 34.26 737–815 707

Mahenge, Tanzania −4.79 34.26 644–708 707

Mahenge, Tanzania −4.79 34.26 710–790 707

Mahenge, Tanzania −4.79 34.26 610–680 707

Mahenge, Tanzania −4.79 34.26 610–680 707

Mahenge, Tanzania −4.79 34.26 740–820 707

Note. Early Eocene ranges of MAP are expressed as the 95% confidence interval for all locations except Mahenge, where 
ranges are expressed as +/−1 standard deviation. Modern values of MAP taken from TAMSAT; missing values indicate 
ocean regions, as TAMSAT MAP is land only.

Table 2 
Locations and Mean Annual Precipitation (MAP) From Early Eocene Paleobotanical Records From Africa, and Modern 
Values
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3.  Results
Here, the results of different comparisons are described: (a) a model validation exercise, where the models' PI 
simulations are compared to modern observations (Section 3.1); (b) a simulation comparison, where precipitation 
from the models' early Eocene simulations, at varying levels of CO2, is compared (Section 3.2); (c) a simulation 
comparison, where the physical mechanisms behind the precipitation response are investigated (Section 3.3); 
and (d) a model-data comparison, where precipitation from the models' early Eocene simulations is compared to 
available proxy data (Section 3.4).

3.1.  DeepMIP Models' Preindustrial Simulations vs. Modern Observations

Here, the focus is on mean precipitation differences between the various DeepMIP PI simulations (including the 
multi-model ensemble mean, MME) and precipitation observations from TAMSAT (see Section 2.3.1). Here, the 
MME is calculated for a given variable as the simple mean across all available models. Precipitation anomalies 
(PI simulations-TAMSAT) during JJA are shown in Figure 2, where the models have been ordered according to 
the root mean square error (RMSE), relative to TAMSAT. Two observations are noteworthy. First, the MME is 
showing by far the closest agreement to TAMSAT, with a much lower RMSE (by ∼10 mm month −1 less than even 
the next lowest individual model), highlighting the importance of using the MME to counterbalance individual 
models' biases (whether they be under or overestimating). The MME will therefore subsequently be used when 
discussing the various Eocene simulations. Second, there appears to be a divide between: (a) models such as 
IPSLCM5A2, INM-CM4-8, and COSMOS-landveg_r2413 that are underestimating African precipitation (i.e., 
are showing drier conditions across West Africa at ∼10°N), which have relatively low RMS error compared with 
TAMSAT; and (b) models such as HadCM3BL_M2.1aN, MIROC4m and GFDL_CM2.1 that are overestimating 
African precipitation, which have relatively high RMS error compared with TAMSAT. For example, the model 
with the least agreement (GFDL_CM2.1, RMSE = 70.6 mm month −1) is overestimating precipitation over West 
Africa by more than 100 mm month −1.

Concerning the seasonal and latitudinal distribution of African precipitation, Figure 3 shows the annual cycle of 
West African (defined here as land points only encompassing 20°W–15°E, 0°–20°N) precipitation and the zonal 
mean of JJA West African precipitation (Figures 3a and 3b, respectively). Outside of JJA, the majority of models 
are overestimating precipitation throughout the year (Figure 3a), with the model closest to TAMSAT (in terms of 
the seasonal cycle i.e., precipitation timings) being CESM1.2_CAM5, although even this model overestimates 
precipitation during the first half of the year. When averaged over this region, only one model (INM-CM4-8) 
underestimates precipitation throughout the year, but is nevertheless closer to TAMSAT than those which over-
estimate, in agreement with that discussed above and shown in Figure 2. One model (GFDL_CM2.1) greatly 
overestimates precipitation especially during JJA, and others (such as INM-CM4-8) underestimate precipitation 
during JJA and therefore do not correctly reproduce the strong seasonality (i.e., the precipitation curve is flatter); 
for example, the difference between the wettest and driest month in this model is 136 mm month −1, whereas it 
is 161 mm month −1 in TAMSAT and 181 mm month −1 in the MME (Figure 3a). The MME also overestimates 
precipitation throughout the year but is nevertheless closer to TAMSAT in terms of seasonality than many of 
the wetter models (Figure 3a). Latitudinally, most models are showing a much wider (in terms of latitudinal 
extent) rain belt relative to TAMSAT, with GFDL_CM2.1 and the HadCM3 family in particular not reproducing 
the observed rapid drop-off in precipitation either near the Equator or north of 15°N (Figure 3b). In part due to 
some drier models approaching the Equator (such as CESM1.2_CAM5 and INM-CM4-8), the MME is showing 
a similar latitudinal extent of precipitation compared to TAMSAT, and while it is still too wet at low latitudes it 
does correctly drop off north of 15°N (Figure 3b).

3.2.  DeepMIP Models' Early Eocene Simulations Relative to Preindustrial Simulations and Each Other

Here, the focus is on mean precipitation differences between various DeepMIP early Eocene CO2 sensitivity 
experiments, in which all boundary conditions other than CO2 were kept identical. The focus is not only on 
the precipitation response to varying CO2 concentrations relative to the PI simulations, but also from each CO2 
experiment individually (relative to each other). Precipitation anomalies of all the CO2 experiments vs. PI are first 
briefly presented (Section 3.2.1), and then the experiment results are divided into a CO2 component (Section 3.2.2) 
and a non-CO2 component (i.e., the impact of the other boundary condition changes, Section 3.2.3).
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Before these results are presented, however, a brief introduction to the early Eocene precipitation over Africa 
is needed. Mean JJA precipitation over PI and early Eocene Africa (using the 1x CO2 simulation) is shown in 
the Supporting Information, where it is clear that, during the PI, all models are showing a band of precipitation 
between approximately the Equator and 10°N that extends from the central equatorial Atlantic all the way across 
Africa (Figure S2a in Supporting Information S1). How far east this rain belt extends is dependent on model, but 
the majority (and the MME) show it extending up to 40°E. During the early Eocene, although this rain belt is still 
present over West Africa, most models agree that it does not extend across the continent, instead ending at ∼20°E 
and being replaced by relatively drier conditions (Figure S2b in Supporting Information S1). Wetter conditions 
are shown further east, over the early Eocene Indian Ocean, but concerning Africa these results would suggest 
that although the rain belt is latitudinally similar to the PI, it does not have the longitudinal extent.

Figure 2.  June-August (JJA) precipitation climatology differences (PI simulations-TAMSAT), re-gridded to lowest common spatial resolution (that of COSMOS-
landveg_r2413) and ordered according to root mean squared error (RMSE, in mm month −1, see insert). RMSE calculated over 20°W–50°E, 40°N–40°S, land points 
only.
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Figure 3.  Precipitation climatology from TAMSAT and PI simulations, averaged over West Africa (20°W–15°E, 0°–20°N-land points only): (a) Mean seasonal cycle, 
at each model's individual spatial resolution; (b) Zonal mean of June–August (JJA) precipitation, re-gridded to lowest common spatial resolution.
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3.2.1.  All CO2 Experiments vs. Preindustrial

The precipitation anomalies (early Eocene-PI), for each CO2 experiment and for each model during JJA are shown 
in Figure 4. This is only briefly presented, because the combination of a paleogeographic forcing and a CO2 forc-
ing makes interpretation difficult; this is why the results are broken down into a CO2 component and non-CO2 
component below. It should be noted that when the MME is discussed below (see Sections 3.2.2  and 3.2.3), only 
models that participated in the particular experiment are included.

There is no clear linear trend in either wetting or drying across early Eocene Africa as the CO2 concentrations 
increase (Figure 4). Although many models show drying (relative to the PI) of up to ∼180 mm month −1 across 
northern and western Africa in the 1x, 2x, and 3x experiments, this gradually disappears as higher CO2 concen-
trations are applied, with some models showing precipitation increases of over 200 mm month −1 (Figure 4). Some 
models disagree regardless of experiment, such as GFDL_CM2.1 which shows drying over northern Africa in 
all CO2 experiments contrasting with IPSLCM5A2 which shows wetting over northern Africa in all CO2 experi-
ments. Further south, none of the models in any of the experiments are showing a large precipitation response. In 
very general terms, however, at the lower levels of CO2 concentrations (i.e., up to 4x) the majority of models are 
showing the same region of drying over northern and western Africa.

3.2.2.  Lower and Higher CO2 Experiments: Impact of CO2

To investigate the impact of increasing CO2 on precipitation, when all other boundary conditions are constant, 
the experiments have been divided into two samples, each containing a different number of models going into the 

Figure 4.  June–August (JJA) precipitation climatology differences (early Eocene-PI), for each CO2 simulation from each 
model.
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MME: (a) “lower-level CO2”, namely the 1x, 2x, and 3x experiments, comprising four models (GFDL_CM2.1, 
HadCM3B_M2.1aN, HadCM3BL_M2.1aN, and MIROC4m); and (b) “higher-level CO2”, namely the 3x and 6x 
experiments, comprising two models (CESM1.2_CAM5 and GFDL_CM2.1); see Table 1. Note that the MMEs 
for the two 3x experiments are slightly different because they contain a different number of models. Here, both 
absolute precipitation values and anomalies are shown, where the anomalies are of a certain CO2 experiment vs. 
another CO2 experiment, rather than early Eocene vs. PI.

The MME absolute precipitation and anomalies for the lower-level sample of CO2 experiments, are shown in 
Figure 5a. When the absolute values are considered (Figure 5a, top row), all experiments show regions of precip-
itation maxima over the equatorial Atlantic (north of the Equator) and West Africa. Over the same West African 
region as described above (20°W–15°E, 0°–20°N, land points only), mean JJA precipitation is 192, 201, and 
207 mm month −1 for the 1x, 2x, and 3x experiments, respectively, implying a small increase as CO2 increases. 
This becomes more evident when the anomalies are considered (Figure 5a, second row). If the 1x and 2x exper-
iments are compared, the largest change is over the equatorial Atlantic, with a small increase in precipitation of 
up to 50 mm month −1 over the Equator and a decrease of over 50 mm month −1 further north, suggesting a south-
ward displacement of the Atlantic ITCZ. Precipitation is also increased over western Africa. The same pattern 
is evident when the 1x and 3x experiments are compared, but more pronounced, with both the increases and 
decreases approaching 100 mm month −1 in their respective areas.

The MME absolute precipitation and anomalies for the higher-level sample of CO2 experiments are shown in 
Figure 5b. When the absolute values are considered (Figure 5b, top row), the region of precipitation maxima in 
the equatorial Atlantic is larger in the 6x experiment. Over the same West African region, mean JJA precipitation 
is 186 and 232 mm month −1 for the 3x and 6x experiments, respectively, implying a large mean increase as CO2 
increases, and this is further confirmed when the anomalies are considered (Figure 5b, second row). Precipita-
tion increases of over 100 mm month −1 are shown over the equatorial Atlantic (north of the Equator) and West 
Africa in the 6x relative to the 3x experiment, but the large region of drying seen at the lower levels of CO2 is less 
evident (Figure 5b, second row). This suggests that, whilst West African precipitation is still (and more so here) 
enhanced as CO2 rises, it is perhaps less related to Atlantic ITCZ displacement and more related to an increase in 
south-westerly flow (discussed further in Section 3.3).

3.2.3.  1x CO2 Experiment vs. Preindustrial: Impact of Non-CO2 Boundary Conditions

The 1x CO2 experiment vs. PI is of particular interest, because this shows the impact of the other boundary 
conditions rather than that from CO2 concentrations. When CO2 concentrations are kept as PI (as in the 1x exper-
iment), the boundary conditions (see Section 2.1) likely to have the largest impact on regional precipitation are 
the LSM, topography, and vegetation (see Figure 1). Although land ice changes, the largest of which during the 
early Eocene were over the Antarctic Ice Sheet (AIS), do cause a precipitation response (e.g., Kennedy-Asser 
et al., 2019), this is thought to be a mainly local signal and further afield, such as over northern and western 
Africa during JJA, there is little or no precipitation change when the AIS is either imposed or removed (Kenne-
dy-Asser, pers. comm.).

The MME precipitation anomaly for this experiment is shown in Figure 6a; it should be noted that, although six 
models conducted this experiment (CESM1.2_CAM5, COSMOS-landveg_r2413, GFDL_CM2.1, HadCM3B_
M2.1aN, HadCM3BL_M2.1aN, and MIROC4m), only the latter four are included here in the MME, to be 
consistent with the analysis of the CO2 component (Section 3.2.2). From the available DeepMIP results, it is 
impossible to disentangle the boundary conditions and ascertain which is dominant in causing the precipitation 
response; in an ideal world, sensitivity experiments would be conducted to introduce each boundary condition 
individually, but this is not possible with the results currently available on the DeepMIP database. Nevertheless, 
based on the results it is possible to theorize which of these boundary conditions might be causing this MME 
precipitation response. The largest precipitation changes relative to the PI are a small increase in precipitation to 
the north of early Eocene Africa and in the western Indian Ocean, and a decrease in precipitation over western 
and northern equatorial Eocene Africa (Figure 6a). It is likely that the northern increases are caused by the change 
in the LSM (Figure 1a) as this region comprises the preindustrial (and modern) Sahara but is ocean in the early 
Eocene and therefore would have been a much greater moisture source. Likewise, the increase over the western 
Indian Ocean is likely because preindustrial Africa extends much further East than during the early Eocene, again 
giving much less of a moisture source during the PI (Figure 1a). Moreover, an examination of SST from the early 
Eocene and PI simulations (from each individual model and the MME) shows that these exposed regions of ocean 
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Figure 5.  JJA precipitation multi-model ensemble mean (MME) climatology absolutes and anomalies for the 1x, 2x, 3x, and 6x CO2 experiments, using both 
samples: (a) Lower-level sample of CO2 experiments (comprising the four models that conducted these: GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN, 
and MIROC4m), absolutes (top row) and anomalies (second row); (b) Higher-level sample of CO2 experiments (comprising the two models that conducted these: 
CESM1.2_CAM5 and GFDL_CM2.1), absolutes (top row) and anomalies (second row).
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are characterized by warmer SSTs in the early Eocene; for example, in the Indian Ocean absolute values are up 
to 32°C in the early Eocene MME compared to up to 28°C in the PI MME, thereby providing a greater source 
of evaporation during the Eocene see (see Figure S3 in Supporting Information  S1). Concerning the drying 
over equatorial early Eocene Africa, this is more difficult to interpret and does not seem likely to be related to 
the LSM or the changes in vegetation. For the LSM, this region of drying coincides with land during both time 
periods. For the vegetation, although there is a shift in biome between the PI and early Eocene, the region of 
drying (at approximately 10°–20°N) coincides with an increase (or slightly northward shift) in tropical rainforest 
during the early Eocene, rather than mostly being savanna and grassland in the PI (Figure 1c). This might be 
expected to result in an increase in precipitation during the early Eocene, rather than a drying. However, this 
response might be explained by the difference in orographic heights over this region (i.e., over central equatorial 
Africa), where early Eocene Africa is considerably lower (up to 400 m) than in the PI (up to 1,000 m). Finally, 
over southern Africa, although there is a large increase in orographic heights (of over 1,000 m) during the early 
Eocene (Figure 1b and Figure S1 in Supporting Information S1), this does not appear to be having a large impact 
on African precipitation, with minimal precipitation differences in the south (Figure 6a).

However, a caveat of the above analysis is that, because of the plate rotation differences during the early Eocene, 
Figure 6a is showing precipitation anomalies that may simply be due to differing geographical locations, rather 
than any change to the climate state. Therefore, Figure 6b shows the same results, but this time with the early 
Eocene precipitation rotated forwards (based on the rotations supplied in Herold et al., 2014 Supporting Informa-
tion) to where it is in the PI. However, despite these rotational differences, the overall picture remains the same 
(i.e., increases in precipitation over northern Africa and a decrease in precipitation over western and equatorial 
Africa) but much more pronounced (Figure 6b). The increases and decreases in precipitation exceed 200 mm 
month −1 in some places, suggesting a northward displacement of the Atlantic ITCZ; this difference between the 
early Eocene and the PI is in contrast to when the Eocene CO2 experiments are compared with each other, to 
assess the impact of increasing CO2 (discussed previously in Section 3.2.2).

Figure 6.  June–August (JJA) precipitation multi-model ensemble mean (MME) climatology differences (early Eocene-PI) for the 1x CO2 experiment (comprising the 
four models that conducted this experiment, in addition to the others considered here: GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_M2.1aN, and MIROC4m): 
(a) Original (i.e., unrotated) differences; (b) Rotated differences that is, Charlie Eocene precipitation rotated forward to where it is in the PI. Note that in (a), solid lines 
show the PI mask and dashed lines show the Eocene mask.
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3.3.  Physical Mechanisms Behind the Precipitation Response

Here, the focus is on the possible dynamic and thermodynamic mechanisms causing the observed precipitation 
responses, again using the MME absolute values and anomalies from the aforementioned lower-and higher-level 
samples of CO2 experiments.

The MME absolute 1.5 m surface air temperature (SAT) and anomalies for the lower- and higher-level sample of 
CO2 experiments are shown in Figure 7. In line with general understanding, there is a clear increase in absolute 
SAT, everywhere, as the CO2 increases, with the largest signal (of up to 40°C in the 3x experiment) occurring 
over the main landmass of central and northern Africa (Figure 7a, top row). This is more obvious when the anom-
alies are considered, although the largest increases are occurring further south (Figure 7a, second row). This is 
even more pronounced in the higher-level sample of CO2 experiments (Figure 7b), and in all experiments, the 
largest increase in SAT, either between the 3x and 1x experiments or the 6x and 3x the experiments, is occur-
ring over southern Africa, away from the largest precipitation changes discussed above. Moreover, the largest 
increases in precipitation as CO2 increases (Figure 5) are shown over ocean regions, such as the equatorial Atlan-
tic and off the coast of West early Eocene Africa, whereas the largest increases in SAT (Figure 7) are shown over 
the landmass. It is likely that these precipitation increases are connected to the warmer SSTs (see Section 3.2.3), 
or changes to the low-level circulation (discussed below), rather than a direct response to the heating landmass. 
The precipitation-evaporation (P-E) balance (Figure 8) is positive over West Africa in all experiments regardless 
of sample, corresponding well with the region of increased precipitation (Figure 6), as does cloud cover which is 
also increasing with CO2 over these regions (not shown). Further south, over the Atlantic, the balance is negative 
implying increased evaporation corresponding to the increased oceanic SAT. Concerning low-level circulation, 
as shown by 850 mb vector winds (Figure 9), when the anomalies are considered (and in particular the 3x vs. 1x), 
there is a small (of up to 5 ms −1) increase in northerly and westerly winds (i.e., clockwise flow) in the equatorial 
Atlantic north of the Equator (Figure 9a, second row). However, in the higher-level CO2 sample (and in particular 
the anomalies of 6x vs. 3x, Figure 9b, second row), this increase in anticyclonic flow is less evident and is instead 
replaced by a widespread area of increased southwesterly flow across most of the equatorial Atlantic and central 
Africa. For SAT, P-E and 850 vector winds from each individual model, rather than the MME, see the Supporting 
Information (Figures S4a–S4c in Supporting Information S1, respectively); here, similar to Figure 4, there is no 
obvious linear change in either P-E or low-level circulation as CO2 increases, but a clear increase in SAT from all 
models, in line with current understanding (Figure S4a in Supporting Information S1).

Both the region of enhanced precipitation over West Africa, and the region of drying in the equatorial Atlantic 
around 10°N, may be explained by these low-level circulation changes. Up to 3x that of the PI CO2, clockwise 
low-level circulation increases with CO2, drawing in more moisture from the equatorial Atlantic and causing a 
relative drying further north, hence the appearance of a southward displacement of the Atlantic ITCZ. At higher 
levels of CO2, however, where increases in West African precipitation are shown but the region of drying around 
10°N is not, the increased clockwise low-level circulation is replaced by increased south-westerly flow; here, 
therefore, precipitation is being enhanced by more moisture being drawn in by this south-westerly flow from the 
warm South Atlantic.

3.4.  DeepMIP Models' Eocene Simulations vs. Proxy Data

In this final section, the focus is on comparing precipitation from selected DeepMIP early Eocene simulations 
(using the MME from the same two samples as discussed above) with newly available precipitation reconstruc-
tions (described in Section 2.3.2). Before the results are presented, however, several sources of uncertainty in 
the proxies and models must be noted, aside from analytical uncertainty that is expressed in the reconstructed 
confidence intervals. First, the fossil plant assemblages analyzed here have broad age constraints. Paleofloral 
assemblages may capture a snapshot within those age constraints that deviated climatically from the average 
climatic conditions of a specific age that the model was calibrated on. In addition, fossil plant assemblages 
tend to preserve better in wetter climates, with drier climates lacking the water bodies needed to preserve plant 
fossils. Second, the DeepMIP models are calibrated on atmospheric CO2 proxy reconstructions to cover the 
uncertainty of the entire Eocene; the lower CO2 levels may be more representative of the late Eocene, but that 
was not the purpose or interpretation when it came to deciding the experiments. Independent proxies within those 
ages produce widely variable atmospheric CO2 reconstructions (e.g., Rae et al., 2021), with <500 ppmv from 
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Figure 7.  Same as Figure 5 but for June–August (JJA) 1.5 m surface air temperature.
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Figure 8.
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some paleosol and stomatal reconstructions (Beerling et al., 2009; Hyland et al., 2013) to >2,000 ppmv from 
boron isotopes and alkenone δ 13C (e.g., Anagnostou et al., 2020; Bijl et al., 2010). It should be noted, however, 
that there is high uncertainty in these reconstructions; see Hollis et al. (2019) for a full discussion. For example, 
based on a variety of reconstructions compiled as part of the Paleo-CO2 project (including phytoplankton, boron 

Figure 8.  June–August (JJA) precipitation-evaporation (P-E) multi-model ensemble mean (MME) climatology absolutes for the 1x, 2x, 3x, and 6x CO2 experiments, 
using both samples: (a) lower-level sample of CO2 experiments (comprising the four models that conducted these: GFDL_CM2.1, HadCM3B_M2.1aN, HadCM3BL_
M2.1aN, and MIROC4m), PI (top row) and early Eocene (bottom row); (b) higher-level sample of CO2 experiments (comprising the two models that conducted these: 
CESM1.2_CAM5 and GFDL_CM2.1), PI (top row) and early Eocene (bottom row). Note that the PI panels are identical in each sample because they contain the same 
models, but are simply replicated here for ease of comparison.

Figure 9.  Same as Figure 5 but for June–August (JJA) 850 mb wind.



Paleoceanography and Paleoclimatology

WILLIAMS ET AL.

10.1029/2022PA004419

21 of 29

proxies, leaf gas exchange, liverworts, and nahcolite), atmospheric CO2 during 55–50 Ma ranges from 500 to 
2,000 ppmv (Anagnostou et al., 2020; Hollis et al., 2019; Westerhold et al., 2020). Potentially, these differences 
in reconstructed atmospheric CO2 reflect transient climate states (e.g., Reichgelt et al., 2016), but regardless, the 
disagreement between proxy reconstructions makes it problematic to associate a single atmospheric CO2 level 
for model-data comparison (Hollis et al., 2019). Lastly, a major source of uncertainty is the paucity of proxy data 
across Africa; as mentioned above, even today there is a lack of long-term climate data over much of Africa, and 
the same is true for paleofloras. This sparsity, therefore, is likely responsible for some of the results discussed 
below, and this is why some of the following results are necessarily partly speculative.

With these caveats in mind, MME MAP at each of the individual locations is shown in Figure  10, ordered 
according to the reconstructions' values, including uncertainty estimates for the reconstructions (as measured 
by ±1 standard deviation for the locations in Mahenge, Tanzania and the 95% confidence interval for the other 11 
locations; see Table 2 for details). The approximate geographical locations can be seen in the Supporting Infor-
mation (Figure S5 in Supporting Information S1). First it is worth noting that for the majority of reconstructions, 
uncertainty is high, with a range of up to +/−1,000 mm yr −1 at some of the locations such as Mwadui, Tanza-
nia (Figure 10). Second, whether or not the CO2 experiments over- or underestimate MAP appears to depend 
heavily on geographical location, with none of the CO2 experiments (not even the 6x experiment) reproducing 
the precipitation amounts of the proxy reconstructions in some locations, such as Koningsnaas, South Africa, 
Okigwe, Nigeria or Tano, Ghana (Figure 10). Elsewhere, the simulations lie within the uncertainty range of the 
reconstructions (such as Sagamu or Bende-Umuahia, both in Nigeria), and yet in other places (such as across 
Kwakwa, Cameroon, and all of the locations at Mahenge, Tanzania) all of the simulations are too wet, by between 
∼760 and 1,040 mm yr −1 depending on location and CO2 experiment (Figure 10).

Spatially, MME MAP is shown in Figure 11 (see Figure S6 in Supporting Information S1 for each individual 
model), showing the uncertainty estimates as concentric circles. As already discussed, the simulations' precipita-
tion is clearly too high or too low compared to proxy reconstructions in different parts of Africa. Qualitatively, in 
very general terms all of the CO2 experiments are showing wetter conditions over Western early Eocene Africa 
(relative to elsewhere), agreeing with Figure 10 where in many of these locations the models are either within, 
or at the higher end of, the reconstructions' uncertainty ranges (Figure 11). Importantly, simulated precipitation 

Figure 10.  Annual mean precipitation from reconstructions (black) and CO2 experiments multi-model ensemble mean (MME, colors) at each individual location. 
Uncertainty in reconstructions is measured by 95% confidence interval for all sites except Mahenge, where they show +/−1 standard deviation. Locations have been 
ordered according to the reconstructions' values, lowest to highest. Note that locations 1–4 and 6–8 are all in the same location, but from different stages during the 
Lutetian (∼41–47 Ma), and so have been re-sampled and averaged into one overall mean (location 5).
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over West Africa appears to be increasing as the CO2 concentration increases and, in particular for the 6x exper-
iment (Figure 11e), in this region simulated precipitation exceeds even the upper range of uncertainty of the 
reconstructions.

Quantitatively, the root mean squared error (RMSE) between each model (as well as the MME) and the recon-
structions at every location is shown in Table 3 and, similar to the anomalies from each model as discussed above, 
there is no clear relationship between changing CO2 and a better match to the reconstructions. Most models 
suggest a better fit to the reconstructions at lower levels of CO2, such as CESM1.2_CAM5 where there is a 
general increase in RMSE as the CO2 increases; however, this is not the case for every model, with for example, 
GFDL_CM2.1 showing a better fit with reconstructions at 2x and 4x CO2, rather than higher or lower levels 
(Table 3). For many of the models and the MME, the 3x CO2 experiments are showing the least fit with recon-
structions. The MME, from the lower-level (but not in the higher-level) CO2 sample, agrees with this conclusion 
that lower CO2 is giving a slightly better match to the reconstructions, with RMSE values of 758  mm yr −1, 
831 mm yr −1, 1,385 mm yr −1, 889 mm yr −1 and 839 mm yr −1 for the 1x, 2x, 3x (lower-level CO2 sample), 3x 
(higher-level CO2 sample) and 6x experiments, respectively (Table 3).

Figure 11.  Annual mean precipitation from reconstructions (circles) and CO2 experiments multi-model ensemble mean (MME, background gridded data): (a) 1x; (b) 
2x; (c) 3x (lower-level CO2 sample); (d) 3x (higher-level CO2 sample); (e) 6x. Concentric circles show 95% confidence interval for all sites except Mahenge, where 
they show +/−1 standard deviation: outer circle = lower range (or −1 standard deviation), middle circle = average (or, for Mahenge, mode) and inner circle = upper 
range (or +1 standard deviation). Reconstructions have been rotated forwards to where they are in the PI. Solid lines show the PI mask and dashed lines show the 
early Eocene mask. Note that, using the common spatial resolution of the MME, 3 reconstructions are all in the same location in West Africa (even though they are in 
different locations in reality); here, therefore, only the top-most reconstruction is shown.
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4.  Discussion and Conclusions
This study has investigated African precipitation during the early Eocene, as simulated by the DeepMIP models. 
This study is novel, because it investigates the relatively little-studied subject of African hydroclimate during 
the early Eocene. The results of this study have been divided into four separate sections, corresponding to the 
four questions posed in Section 1. First, in Section 3.1 the DeepMIP models' PI simulations have been compared 
to satellite-derived estimates of precipitation, to ascertain how well the models are able to reproduce African 
precipitation under “modern” conditions (please see Section 2.3.1 for a discussion of the caveat that here the 
term “modern” is actually a combination of both pre-industrial and 20th-21st century). Second, in Section 3.2 
the DeepMIP models' early Eocene simulations have been compared to both the PI simulations and each other, to 
investigate the impact of CO2 components (i.e., increasing CO2) and non-CO2 components (i.e., other boundary 
condition changes, such as to the LSM) on African precipitation. Third, in Section 3.3 the CO2 driven response has 
been investigated further by looking at a number of dynamic and thermodynamic fields simulated by the models, 
to ascertain possible physical mechanisms behind the observed precipitation response. Lastly, in Section 3.4 the 
DeepMIP models' early Eocene simulations have been compared to newly available proxy data, to indicate how 
well the models agree with current best precipitation estimates from the Eocene.

The comparison between the DeepMIP PI simulations and modern observations (from TAMSAT) suggest that 
individual models are both underestimating or overestimating the spatial patterns of African precipitation; this 
is consistent with Monerie et  al.  (2020), who analyzed a number of historical simulations from both CMIP5 
and CMIP6 and found that the models' ability to reproduce observations was first model dependent and second 
geographically dependent, with many models underestimating precipitation over the Sahel and overestimating 
it over the Guinea coast and tropical Atlantic. However, here the MME is reducing these biases and is showing 
the best agreement with TAMSAT in terms of precipitation spatial patterns, highlighting the utility of the MME 
as a best estimate of the actual precipitation. This has been found elsewhere, such as by Ayugi et al. (2021) who 
looked at East African precipitation in both CMIP5 and CMIP6 models and again found a better performance of 
the MME relative to individual models, due to systematic errors in individual models being canceled out. More-
over, Rougier et al. (2013) show that it is actually a statistical property of this type of analysis that the ensemble 
mean will always provide the best match to the data for example, have the lowest RMSE. It should be noted, 
however, that a potential caveat of using the MME is that although it eliminates extreme biases, the same models 
are then being used to run the Eocene simulations, for which the correct (i.e., true) precipitation is less well 
known and based only on paleodata, which themselves have uncertainties. Therefore, even using the MME may 
be propagating its own unknown errors. Concerning the latitudinal extent and seasonal timings of African precip-
itation, most models show a much wider (latitudinally) West African rain belt compared to TAMSAT and are not 
reproducing the rapid drop-off in precipitation near the Equator or north of 15°N. This is somewhat in contrast 
to Monerie et al. (2020), who noted that the majority of CMIP5 and CMIP6 models did not have the monsoon 

1x CO2 1.5x CO2 2x CO2 3x CO2 4x CO2 6x CO2 9x CO2

CESM1.2_CAM5 681 750 704 822

COSMOS-landveg_r2413 699 1,424 713

GFDL_CM2.1 803 762 1,027 786 975

HadCM3B_M2.1aN 796 884 1,988

HadCM3BL_M2.1aN 816 1,018 1,742

INM-CM4-8 966

IPSLCM5A2 744 669

MIROC4m 614 662 785

NorESM1_F 1,149 1,522

MME (lower-level CO2 sample) 758 831 1,385

MME (higher-level CO2 sample) 889 839

Table 3 
Root Mean Squared Error (RMSE) for Mean Annual Precipitation (MAP) Between Each Model (and Multi-Model 
Ensemble Mean, MME, Using Both Samples) and Reconstructions, for Each CO2 Experiment
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extending far enough to the north and were instead showing a southward displacement of precipitation maxima, 
relative to observations; however, that particular study used the models' historical simulations (as well as a differ-
ent MME), not pre-industrial as shown here, which may explain the discrepancy. Outside of JJA most models are 
too wet, but within JJA the results suggest that the drier models (i.e., those underestimating African precipitation) 
are closer to modern observations than those that are too wet (i.e., overestimating African precipitation).

The comparison between the DeepMIP early Eocene simulations and the PI suggests that, when all individual 
models are considered separately, there is no obvious wetting or drying trend (relative to the PI) as the CO2 
increases. This is another reason to focus on the MME, which allows easier interpretation as the large model 
spread is removed. Concerning the non-CO2 component of precipitation change (i.e., the impact of other bound-
ary conditions when CO2 is kept at PI levels), the results suggest that changes to the LSM may be responsible for 
the increases in precipitation (relative to the PI) to the north of early Eocene Africa and the western Indian Ocean, 
given that these are “newly exposed” regions of ocean in the early Eocene, thereby providing a larger moisture 
source. In contrast, it is likely that changes in orographic heights are responsible for the region of drying (relative 
to the PI) over equatorial early Eocene Africa, where early Eocene Africa is considerably lower (up to 400 m) 
than in the PI (up to 1,000 m). When the early Eocene precipitation is rotated forwards in time to where it is in  the 
PI, a similar pattern is shown but is more pronounced, and suggests a northward displacement of the primary rain 
belt (relative to today), which is consistent with previous work (e.g., Carmichael et al., 2016). Concerning the 
CO2 component of precipitation change, at the lower levels of increased CO2 (such as 2x and 3x that of the PI) 
precipitation over the equatorial Atlantic and West Africa appears to be increasing in response to rising CO2, with 
the concomitant decrease in precipitation north of the equator suggesting a possible displacement of the Atlantic 
ITCZ toward the south. This therefore suggests that the boundary condition changes imposed for the Eocene 
are resulting in a northward displacement of the primary rain belt, but increasing CO2 (with the same boundary 
conditions) is resulting in a southward displacement of the primary rain belt. At even higher levels of CO2 (such 
as 6x that of the PI), precipitation over West Africa is more enhanced relative to the lower levels, but the region 
of drying is less evident. The enhancement of Northern Hemisphere summer West African precipitation at the 
highest levels of CO2 is again consistent with previous work, such as that of Carmichael et al. (2016) who showed 
a generally more intense hydrological cycle at higher CO2 levels and that of Carmichael et al. (2018) who demon-
strated an increase in precipitation extremes over tropical Africa at higher CO2 levels.

Consistent with Carmichael et al. (2016), the precipitation increases over West Africa as CO2 concentrations rise 
are associated with increased SAT, a strongly positive the P-E balance and cloud cover increases and, concerning 
temperature, as such are consistent with the idea that a generally warmer world results in a generally wetter world; 
the “wet-gets-wetter and dry-gets-drier” hypothesis (e.g., Held & Soden, 2006). However, the largest increases 
in SAT shown here are over southern Africa, not where the largest precipitation increases are seen, suggesting 
factors other than a generally warming world (i.e., dynamical changes) are responsible for the localized precipita-
tion response (see Section 3.3). A caveat to mention here is that, because the DeepMIP simulations use prescribed 
vegetation rather than interactive, there is no impact on the vegetation types or distribution of these enhanced 
SATs or precipitation, therefore it is not possible to say whether any enhanced precipitation would be enough to 
support a certain type of vegetation in the presence of extreme temperatures. Whilst it is likely that the impacts 
of elevated temperatures and precipitation (whether combined or individually) would be substantial on plant 
physiology, it is beyond the scope of this study to test this. Sensitivity studies, using interactive vegetation, are 
currently underway to address these questions.

Lastly, the results from the model-data comparison suggests that whether the early Eocene simulations (regard-
less of CO2 experiment) over- or underestimate African precipitation is highly geographically dependent, with 
some of the CO2 experiments at some of the locations lying within the uncertainty range of the reconstructions 
but others being too wet or too dry. There is some suggestion of a latitudinal relationship, with the simulations 
overestimating precipitation near the Equator and underestimating precipitation in high latitude regions, such as 
South Africa; this latter point is consistent with the findings of Carmichael et al. (2016). Whether the models are 
considered independently or whether the MME is used, the results suggest a marginally better fit with the recon-
structions at lower levels of CO2, and this is in contrast (indirectly) to the findings of Carmichael et al. (2016) 
who suggested the warmest models in the regions of increased precipitation best matched the data; it should be 
noted, however, that this was a global study. There is no evidence for this here, and indeed the finding of a better 
match at lower levels of CO2 is in contrast to that of Reichgelt et al. (2022) who focused on Australia and found 
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that the higher, 6x CO2 experiment was the best match to reconstructions. However, given the uncertainties 
associated with both the reconstructions (discussed above) and the boundary conditions used to force the models, 
it is difficult to draw firm conclusions from a model-data comparison of this type. Moreover, a particularly big 
problem is that, despite the newly compiled reconstructions presented here, there is still a lack of data across 
Africa, hindering any firm conclusions. The uncertainties discussed above are likely contributing to the lack of 
consistency presented in some of these model-data comparisons, such as the MME showing better agreement 
with the reconstructions at lower and higher levels of CO2, but not in between (e.g., the 3x simulation), but this 
is, at present and given the data sparsity, unavoidable.

In conclusion, therefore, this study has shown that the DeepMIP models are able to approximately reproduce 
the modern African precipitation and, in response to rising CO2, suggest an enhancement of precipitation in this 
region associated with increasing temperatures and changes to low-level circulation. At very high levels of CO2 
the models may be too wet, relative to proxy reconstructions. However, this might be because the NLR proxy 
approach has difficulty generating MAP values above modern, or connected to the relatively few early Eocene-
aged data points within the reconstructions (meaning some of the comparisons here were necessarily made with 
data from the middle or late Eocene). Using the MME provides the clearest suggestion of this, but the large 
amount of model spread means that when individual models are considered, either relative to their corresponding 
PI simulations or reconstructions, no clear relationship is shown.
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