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In brief

Xu Landén and colleagues conducted a
unique study on human skin wound
healing by inducing wounds in healthy
donors and collecting wound-edge
tissues at three healing stages.
Transcriptome profiling from this study
deepens our understanding of tissue
repair mechanisms, paving the way for
novel therapeutic targets to treat chronic
wounds.
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SUMMARY

Wound healing is vital for human health, yet the details of cellular dynamics and coordination in human wound
repair remain largely unexplored. To address this, we conducted single-cell multi-omics analyses on human
skin wound tissues through inflammation, proliferation, and remodeling phases of wound repair from the
same individuals, monitoring the cellular and molecular dynamics of human skin wound healing at an unprec-
edented spatiotemporal resolution. This singular roadmap reveals the cellular architecture of the wound
margin and identifies FOSL1 as a critical driver of re-epithelialization. It shows that pro-inflammatory macro-
phages and fibroblasts sequentially support keratinocyte migration like a relay race across different healing
stages. Comparison with single-cell data from venous and diabetic foot ulcers uncovers a link between failed
keratinocyte migration and impaired inflammatory response in chronic wounds. Additionally, comparing
human and mouse acute wound transcriptomes underscores the indispensable value of this roadmap in
bridging basic research with clinical innovations.

INTRODUCTION

Wound healing is a vital process for skin integrity, progressing
through three overlapping phases: inflammation, proliferation,
and remodeling.’* These stages are driven by complex interac-
tions among diverse cell types. Re-epithelialization, crucial
during the proliferation phase, requires the migration and prolif-
eration of epidermal keratinocytes to cover the wound. Failed
re-epithelialization is a common issue in chronic wounds like dia-
betic foot ulcers (DFUs) and venous ulcers (VUs), impacting mil-
lions globally each year.® There’s an urgent need for more effec-
tive wound therapies, yet progress is hindered by limited
knowledge of human skin wound healing. While animal models,

mainly rodents, have provided foundational insights, significant
anatomical and physiological differences between humans and
rodents limit their applicability, often resulting in high clinical trial
failure rates for treatments.*°

Significant efforts have been made to analyze pathological
wounds, such as pressure ulcers® and DFUs’® as well as path-
ological scars,”'" using single-cell RNA sequencing (scRNA-
seq) and spatial transcriptomic sequencing (ST-seq), as these
samples are more readily obtained during treatment. However,
a comprehensive cellular atlas detailing normal skin wound heal-
ing in humans over time is still missing. This knowledge gap is
crucial for identifying critical cellular and molecular mediators
of wound healing, understanding obstacles to healing in chronic
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Figure 1. A spatiotemporal map of human skin wound healing

(A) Schematic outline of the study.

(B) UMAP of human acute wound (ACW) scRNA-seq.

(C) Dendrogram illustrating cell clusters’ relatedness based on gene expression.

(D) UMAP of human ACW ST-seq.

(E) Spatial projection of cell types onto hematoxylin and eosin (H&E) images of human ACWs. Donor 2 is shown.

(legend continued on next page)
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wounds, and validating the clinical relevance of findings from an-
imal and in vitro models.

In this study, we utilized scRNA-seq and ST-seq to monitor
gene expression dynamics at the single-cell level across
different healing phases. These efforts led to the development
of a comprehensive spatiotemporal cell atlas of human skin
wound healing, accessible for interactive exploration online
(https://www.xulandenlab.com/tools). Through this atlas, we
identified an epidermal wound margin structure and fundamental
regulatory mechanisms driving re-epithelialization in humans.
Our comparative studies with chronic wounds revealed diverse
pathological changes specific to their causes and prognoses.
Additionally, the comparison of human and mouse acute wound
transcriptomes showed both shared and unique healing mecha-
nisms, highlighting this atlas’s crucial role in translating funda-
mental discoveries into therapeutic approaches.

RESULTS

A spatiotemporal map of human skin wound healing

In this study, we collected samples from pre-wound intact skin
and the entire concentric wound-edge 1 (Wound1), 7 (Wound7),
and 30 days (Wound30) post-injury, all from the same individuals
(Figure 1A; Table S1). This approach ensures that the data reflect
the healing process consistently within individual biological con-
texts rather than introducing variability by comparing different
stages from different donors. We analyzed serial human acute
wound samples from three donors using scRNA-seq and four
donors using Visium ST-seq. Biopsies from two donors were
analyzed using both techniques. Using pseudo-bulk principal
component analysis and sample similarity analysis in scRNA-
seq (Figure S1A) and between scRNA-seq and ST-seq data (Fig-
ure S2A) without batch correction, we found that samples cluster
by conditions rather than by donors or experimental methods.
This indicates low patient heterogeneity in the study, making it
suitable for analyzing biological differences across healing
stages.

Next, we defined the healing stages of each acute wound
sample based on key biological events in wound repair.” Gene
Ontology (GO) analysis of differentially expressed genes
(DEGs) in our scRNA-seq data showed that Wound1 was en-
riched in granulocyte chemotaxis, RNA metabolism, and ATP
biosynthesis, indicating inflammation (Figure S1B). By day 7,
DEGs related to nuclear division and extracellular matrix (ECM)
organization marked the proliferative phase, while Wound30
DEGs involved in ECM, neuron, and sensory system develop-
ment indicated tissue remodeling. These findings align with our
previous bulk RNA-seq'? results and histological analysis (Fig-
ure S2F). Comparing our scRNA-seq data with public bulk
RNA-seq and microarray datasets of human and mouse skin
wounds'®"® confirmed similar sequential wound-healing re-
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sponses (Figures S1C and S1D). Thus, Wound1, Wound7, and
Wound30 represent the inflammatory, proliferative, and remod-
eling phases, respectively.

After removing doublets and low-quality cells, a total of
58,823 cells from human acute wounds remained (Figures
S1E-S1G). Using graph-based clustering with Louvain algo-
rithm,'® we identified 27 cell clusters, which were further group-
ed into nine main cell types based on DEGs and known
markers'%?°: keratinocytes (KRT5™M" or KRT10 M9"), fibroblasts
(FBs) (COL1AT1"), myeloid cells (LYZ* and HLA-DRA"), lymphoid
cells (CD3D* or NKG7*), endothelial cells (PECAM1*), mast cells
(TPSAB1* and TPSB2*), pericytes and smooth muscle cells
(ACTA2* and MYH11"), melanocytes (TYRP1* and PMEL™),
and Schwann cells (SOX70* and SOX2*) (Figures 1B, 1C, and
S1H; Table S2). Integration and comparison with public
scRNA-seq data from human adult skin confirmed the accuracy
and comprehensiveness of our cell-type annotations (Figures
Siland $1J).%°

ST-seq analysis of human acute wounds identified 22,915
spots, clustered into 17 populations (Figures 1D, 1E, and S2B-
S2E; Table S2). The epidermal compartment included basal kera-
tinocytes (KRT715" and COL17A1"), suprabasal cells (KRT1*,
KRT2", and LORICRIN"), hair follicles (HR*, FZD7*, and
KRT75%,2"?? and a wound-edge cluster (KRT6A/B/C*, KRT16",
KRT17*, and S7100A8/9"%). The dermal clusters comprised FBs
(ADAM12*, POSTN*, MMP2*, and FBLN1%),°*?* sweat glands
(KRT77+, DCD*, SCGB1D2*, and MUCL1*),>® sebaceous glands
(MGS11*, FADS2*, and KRT79%),°"%? immune cells (FABP4",
CD36", and CD163*), endothelial cells (VWF*, CD74", CCL21",
and LYVET"), smooth muscle cells (MYL9* and TAGLN*),*® and
a mast cell cluster (TPSB2* and MS4A2™).

To map the spatial positions of scRNA-seg-identified cells in
their native environments, we performed Cell2location analysis®”
in ST-seq, creating a spatiotemporal atlas of human skin wound
healing. Non-negative matrix factorization allowed us to distin-
guish epidermal and dermal niches, revealing cell colocalization
at different healing stages (Figures 1F and S2F). For example,
niches 6, 7, and 8 mark the re-epithelialization process, peaking
at Wound1 and Wound7; niche 13 reflects granulation tissue,
peaking at Wound7; niche 11 increases at Wound30, indicating
scar formation; and niche 15, involved in angiogenesis, peaks
at Wound7 and Wound30. These microenvironments highlight
spatially restricted cell-to-cell communication during healing,
particularly interactions between macrophages and both
migrating keratinocytes (niches 7 and 8) and proliferating FBs
(niche 13), underscoring the role of wound inflammation in repair
beyond infection defense and debris clearance.

Furthermore, to deepen our understanding of chronic wound
pathology, we performed scRNA-seq on VU biopsies from four
patients, with each biopsy consisting of 50% wound-edge and
50% wound-bed tissues (Figure 1A; Table S1), as well as five

16,17

(F) Dot plot showing spatial co-occurrence analysis of deconvoluted cell types using non-negative matrix factorization (NMF) method. Dot size and color

represent cell fractions normalized across niches for each cell type.

(G) UMAP of main cell types in integrated human acute and chronic wound scRNA-seq datasets. Bas-/Spi-/Gra-, basal/spinous/granular keratinocyte; -prolif/-
mig, proliferating/migrating cells; HF, hair follicle; MEL, melanocyte; FB, fibroblast; Mono-mac, monocyte and macrophage; Mac_inf: inflammatory macrophage;
cDC/pDC, conventional/plasmacytoid dendritic cell; LC, Langerhans cell; NK-cell, natural killer cell; Th, T helper cell; Treg/Tc/Ttol, regulatory/cytotoxic/tolerant
T cell; ILC, innate lymphoid cell; PC-vSMC, pericyte and vascular smooth muscle cell; LE/VE, lymphatic/vascular endothelial cell.

See also Tables S1 and S2.
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Figure 2. Spatiotemporal dissection of human wound re-epithelialization

(A) UMAP of keratinocyte (KC) subclusters.
(B) Dot plot of marker gene expression.
(C) Cell proportions of each sub-cluster.

(D) Milo analysis of keratinocyte abundance difference between Wound1 and skin. Left panel shows the graph representation of neighborhoods. The node size
and edges are proportional to the number of cells and overlapped cell numbers between any two nodes, respectively. Nodes are colored by log,(fold changes) of
cell abundance between conditions. Right panel shows the distribution of neighborhood abundance in cell types by beeswarm plot. Blue and red dots indicate
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control skin samples. We integrated scRNA-seq data from hu-
man acute wounds with data from VU and public DFU data’using
Harmony?® (Figures 1G, S1K, and S1L). Notably, the DFU study
compared foot skin from nine non-diabetic individuals to DFU
wound-edge tissues from 11 diabetic patients. These DFU cases
were divided into two groups based on 12-week healing
outcomes: healed (DFU_H, n = 7) and non-healed (DFU_NH,
n = 4).” This integration allows us to directly compare human
acute wounds to chronic wounds of different etiologies and iden-
tify pathological barriers that hinder wound closure.

Spatiotemporal dissection of human wound re-
epithelialization

Recognizing that impaired re-epithelialization is a common chal-
lenge in pathological wounds,® our study aimed to better under-
stand this process in human wounds. Using scRNA-seq, we
classified keratinocytes from human acute wounds into nine
subclusters (Figures 2A and 2B; Table S3), including three basal
types: Bas-I cells (ASS7* and POSTN™), a proliferating type (Bas-
prolif: STMN1* and TOP2A"), and a migrating type (Bas-mig) ex-
pressing matrix metalloproteinases (MMPs) and FGFBP1; five
spinous (Spi) types: ranging from Spi-I/lla/b with metallothionein
expression to Spi-lll with immune response genes (TNFSF10,
IRF, and CCL27), and a migrating spinous cluster (Spi-mig)
expressing KRT6 genes and S100 proteins; a granular cluster
(Gra) displaying late differentiation markers (FLG and
LORICRIN). Analysis of cell proportions and graph-based differ-
ential abundance testing using Milo® revealed a notable early in-
crease in migrating keratinocytes (Bas-mig and Spi-mig) during
the initial inflammatory phase of wound healing (Wound1). This
increase is contrasted by a decrease in differentiated keratino-
cytes (Spi-Il and Gra), compared with normal skin (Figures 2C,
2D, and S3A). These observations were supported by deconvo-
lution analysis of our prior bulk RNA-seq data using the same
in vivo human wound-healing model'® (Figures 2E and S3B).
Additionally, we noted increased proliferating keratinocytes at
Wound7, suggesting a robust proliferative response to facilitate
wound healing (Figures 2C and S3C).

Upon examining the migrating keratinocytes, we found that
both Bas-mig and Spi-mig clusters expressed genes essential
for epithelial cell migration (e.g., HBEGF, ANXA3, PRSS3,
S100A2, and FGFBP1) and neutrophil activation (e.g., SER-
PINB1/3/4 and S100A7/8/9/11), as shown by GO analysis (Fig-
ure 2F; Table S8). These genes peaked during the inflammatory
phase (Wound1) (Figure 2G). In the subsequent proliferative
phase (Wound7), Bas-mig keratinocytes exhibited increased
expression of ECM organization and cell adhesion-related genes
(e.g., laminin 5, integrins, and collagen), indicative of late stages
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of re-epithelialization where cell-to-cell and cell-to-matrix adhe-
sions are re-established (Figure 2G). Deconvolution results re-
vealed Spi-mig overlaying Bas-mig at the wound leading edge,
surrounded by Bas-prolif (Figure 2H). This cellular arrangement
forms rapidly post-injury, intensifies during the proliferative
phase, and recedes by the remodeling phase (Wound30) (Fig-
ure 2H). This pattern was further confirmed in additional human
wound tissues through RNA-fluorescence in situ hybridization
(FISH) and spatial gene expression (Figures 21 and S3D).

To identify keratinocytes directly involved in wound repair, we
sorted all scRNA-seg-analyzed keratinocytes from acute
wounds into two groups using a Gaussian mixture model:
10,064 wound-associated (KRT6A*) and 17,041 non-wound
(KRTBA~?™) cells (Figure S3E). We targeted KRT6A expression
as a marker for post-injury keratinocytes,**>' which was vali-
dated by pronounced KRT6A expression in wound-edge kerati-
nocytes observed in ST-seq, in contrast to its absence in intact
skin (Figure S3F). Pseudotemporal analysis traced a differentia-
tion pathway from basal to spinous and then to granular kerati-
nocytes for both wound and non-wound cells (Figures 3A and
3B). Notably, within the wound-associated group, two additional
branches emerged: one transitioning from Bas-I to Bas-mig and
another from Spi-Il to Spi-mig, suggesting that these migrating
cells originate from wound-edge keratinocytes with respective
differentiation states (Figure 3B).

In summary, our study suggests a model of re-epithelialization
in human wounds, characterized by organized keratinocyte pro-
liferation, differentiation, and migration. Mirroring recent findings
in murine skin,®>>® we identified two distinct zones of epidermal
cells around the wound: a non-proliferative migrating front
surrounded by a highly proliferative hub. In contrast to murine
wounds, where migrating keratinocytes often proliferate,
creating a mixed zone,**** human wounds show a distinct
separation between keratinocyte proliferation and migration
(Figure S3G).

Gene network interference identifies FOSL1 as a key
driver of keratinocyte migration

To compare gene regulatory networks in various keratinocyte
states during homeostasis and wound repair, we analyzed genes
showing significant expression changes along trajectories of
wound and non-wound keratinocytes, categorizing them by their
expression pattern (Figure 3C). GO analysis revealed that both
wound and non-wound keratinocytes share several GO term
patterns, including cell-substrate adhesion (l), nuclear division
(1), ribosome biogenesis/epidermal development (Ill), and kera-
tinization (V), indicating a common differentiation path. Notably,
non-wound keratinocytes, especially toward the end of their

significantly (SpatialFDR < 0.1) decreased (logFC < 0) and increased (logFC > 0) cell abundance, respectively. Color intensity indicates the degree of significance

for each neighborhood.

E) Cellular proportions of deconvoluted Bas-/Spi-mig in public bulk RNA-seq data (GSE174661).
F) GO plot of biological process (BP) terms enriched in Bas-mig and Spi-mig using the top 200 markers.

(
(
(G) Dot plots showing the expression of genes in (F) GO terms.
(

H) Deconvoluted Bas-prolif, Bas-mig, and Spi-mig in ST-seq showing distinctive migration and proliferation zones at wound edges. Donor 2 is shown.
(I) Fluorescence in situ hybridization (FISH) images of MMP3 (upper) and KRT6B (lower) expressions during wound healing. Scale bar, 500 pm, inset plot scale bar,
200 pm. Significance was assessed using generalized linear modeling on a quasi-binomial distribution (C) and Mann-Whitney U test (E), *p < 0.05,

**p < 0.01, **p < 0.001.
See also Table S3.

Cell Stem Cell 32, 1-20, March 6, 2025 5




Please cite this article in press as: Liu et al., Spatiotemporal single-cell roadmap of human skin wound healing, Cell Stem Cell (2024), https://doi.org/

10.1016/j.stem.2024.11.013

¢? CellPress

OPEN ACCESS

Cell Stem Cell

Non-wound cells Wound cells Bas-mig
GO Terms
Non-wound cells CellTypes CellTypes "” e
1 . | +
5 = Cell-substrate adhesion 279 §E?§#1(_+()+)
= Integrin-mediated signaling —
/T MEF2A - Ameboidal-type cell migrati 11 EHS )
CelTypes - Sox6 meboidal-type cell migration E ERG_(+)
- MYBL2 ASCL2 —
M Bas-| ) " — IRX4 ol _
12 Bas-prolif Chromosome segregation §
;Bas-mig _ Foxm1  Nuclear division = MYBL2 - 2
Spi-l - = 14
pi -] 8
Spi-ll_a - E2F7 c
Spiil b "\ MXD3 m = = >
Spi-lll Cytoplasmic translation = g 24
{ Ispi-mig Ribosome biogenesis == g 0 100 200 300
~ Gra | hes Epidermis development - N Rank
— >
“SRORA 5 i-mi
GRHL1 N 2 Spi-mig
L AR v g —IRF7_(+
L LESE’E?; Establishment of skin barrier & 10 _(+)
Cell-cell junction organization 5 o—RELA (+)
E FOSLA1_(+)
o
& 054 % SIRT6_(+)
R~ NFE2 Epidermal cell differentiation \ BANP_(+)
SP6 Keratinization GRHL1
NFE2L3 0.0 T
PRDM!1
zZ-score EGR3
B vi 05
1 Actin filament organization FOSL1
0 Epithelial cell migration BNGH
.; Response to oxidative stress = 0 100 200 300
Pseudotime Pseudotime Rank
F ) G FOSL1-mediated gene network H
Regulon_FOSLA1(+) activity FOSL1 expression PRNT SPRRB _ -
» TMSBaX TNC Kl SULT2B1 o ] S
8 . . Q5D o] stooatelBAMC ,g
° Activit 15 Bas-mig Spi-mig LivAT TPME ST00A14TUBA4A © 5
3 E, Yy HSPAS 7 =2
° ¥ g 3.0 ACTG1 _LAMB3 z g|°
E : y 2' s 10 ACTN1 .ITGBA e H g é
(ZD .5 ? CCND2 “ i < i76B1 é’v E g § 5
20 g 5 DST  “AnxA3“1TGAG “KRT6A ~ CSTB _8’ = § S é
2 15 I.T.I< i ARPCIE ITGAS KRT17  “CTsC ~ o3 3 E g
3 10 FLNA © ANXAT M ‘ersL E|E Kl E e
2 0 FSCNi AREG [ v i o FSDSCZ EEHE ”&:1’
T T v Y P TNFRSF12AS100A10 =
3 0 10 20 30 40 °
= pseudotime Top 50 marker genes GO terms
Bas-mig Spi-mig -« Overlap

I In silico FOSL1 Knockout J In silico FOSL1 Overexpression K
= 80
1] )
« T 60 s!FOSL1
o -@-siCtrl .
® 40 %
=)
£ 20
3
I O0f--®----------
Perturbation score 5 20
e ) 8 oh 18h  24h
Negative o Positive hd
(Inhibition) (Promotion) K

FOSL1/MKI67/DAPI

Wound1

Wound edge Wound7

Wound edge

Wound30

Figure 3. Gene network interference identifies FOSL1 as a key driver of keratinocyte migration
(A and B) UMAP of cell clusters (upper) and pseudotime trajectories (lower) in non-wound (A) and wound keratinocytes (B).
(C) Heatmaps of driving gene expressions along the pseudotime. Transcription factors (TFs) are labeled on the right. GO terms of different patterns are shown in
the middle.
(D) Scatter plots of top 5 TF regulons based on specificity Z scores in Bas-mig (top) and Spi-mig (bottom).
(E) UMAP of FOSL1 regulon activity in non-wound and wound cells.
(F) FOSL1 gene expression along with pseudotime.
(legend continued on next page)
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trajectory (e.g., Spi-1l/Gra), expressed genes linked to skin bar-
rier formation and cell-to-cell junctions (IV), which were absent
in wound keratinocytes. Conversely, wound keratinocytes dis-
played a unique expression pattern (V1) involving epithelial migra-
tion, actin organization, and oxidative stress response, promi-
nently seen in Bas-mig and Spi-mig at the trajectory’s start
and end, respectively (Figure 3C).

Combining pseudotime analysis with SCENIC analysis® to
explore gene regulatory networks driving the migrating keratino-
cyte phenotype, we identified FOSL1 as a critical master regu-
lator in both Bas-mig and Spi-mig clusters (Figures 3C and 3D;
Table S3). FOSL1, a vital component of the AP1 transcriptional
complex, is involved in cell differentiation, stress response,
and cancer metastasis®®*"; however, its specific role in keratino-
cyte behavior during wound healing was unclear.®® We observed
that FOSL 1 exhibited high regulatory and expression specificity
in migrating cells (Figures 3E and 3F), and GO analysis of FOSL1-
targeted genes in these clusters underscored their crucial role in
cell migration (Figures 3G and 3H; Table S3).

To better understand the impact of FOSL1 perturbations on
keratinocyte cell states in human wounds, we used the
CellOracle package.®® Our in silico analysis showed that disrupt-
ing FOSL1 impeded the migratory state of keratinocytes
while enhancing FOSL1 promoted their migratory phenotype
(Figures 3l and 3J). These computational predictions were
experimentally validated: silencing FOSL1 with siRNA signifi-
cantly reduced the motility of human keratinocyte progenitors
in a scratch assay (Figures 3K and S3H). Together, both in silico
and experimental findings highlight FOSL1’s crucial role in regu-
lating keratinocyte mobility.

Consistent with its role in cell migration, FOSL1 was transiently
upregulated in basal and suprabasal keratinocytes at wound
edges compared with the intact skin, as shown by our scRNA-
seq and ST-seq data and confirmed by immunofluorescence
(IF) staining (Figures 3L, S3I, and S3J). This upregulation also
occurred in the wound-edge keratinocytes in a mouse acute
wound model, suggesting an evolutionarily conserved role in
keratinocyte migration (Figure S3K).

Pro-inflammatory macrophages support re-

epithelialization at the inflammatory phase

Our combined scRNA-seq and ST-seq analysis extends beyond
keratinocytes, revealing the dynamic gene expression and cellular
diversity ofimmune cells, FBs, and angiogenic cells throughout hu-
man skin wound healing. We identified 11 myeloid cell types in
acute wounds, including four macrophage clusters: Mac_inf
(APOE* and CXCL1"), Mac1 (IL1B*, THBS1*, and EREG"), Mac2
(DAB2* and C1QA/B*), and Mac3 (MMP19*, MMP9*, and
VEGFA*)***"; four dendritic cell clusters: plasmacytoid DC (pDC,
ACOT7*, LTB", and IGKC"), conventional DC1 (cDC1, CLEC9A™,
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and WDFY4), cDC2 (CD1C*, IL1R2*, and CLEC10A"), and DC3
(CCR7* and LAMP3*); Langerhans cells (LC: CD207* and
CD1A"); and subsets of apoptotic (DNAJB1* and HSPA1B*) and
cycling (PCLAF" and H4C3") cells (Figures 4A, 4B, and S4A;
Table S4). Additionally, we identified neutrophils (CSF3R*,
FCGR3B*, CXCR2*, and CMTM2"),** which were initially missed
in standard scRNA-seq analysis due to their low RNA content
and high RNase levels (Figures S4B-S4H). We also identified
nine clusters of lymphoid cells, including regulatory T cells (Treg:
TIGIT*, BATF*, and FOXP3*), helper T cells (Th: LDHB*, KLF2*,
and GIMAP7"), innate lymphoid cells (ILC: AHR*, CCR6*, and
PTGERA4"), cytotoxic T cells (Tc: TRGC2* and KLRC2/3"), ILC1/
natural killer cells (XCL1/2* and FCER1G"), NK cells (GZMA/K*),
tolerant T cells (Ttol: DNAJBT* and NR4A1%),** plasma cells
(PTGDS*, JCHAIN*, and IL3RA™), and B cells (IGHM*, MS4AT1",
and CD79A*?%*%4* (Figures 4F, 4G, and S4l; Table S4).

Macrophages are highly plastic, showing phase-specific acti-
vation during wound repair.*>*® Across healing stages, we
observed a mix of pro-inflammatory and pro-resolution macro-
phages, with varying proportions and functions (Figures S4L
and S4M). The relative proportion of pro-inflammatory macro-
phages (Mac_inf and Mac1) increased transiently in Wound1
and Wound7, marked by upregulation of HIF1a and pro-inflam-
matory cytokines (tumor necrosis factor alpha [TNF-q«], IL-18
and CCL2) (Figure S4N).*® In contrast, markers of pro-resolution
macrophages (MRC1, IL-10, transforming growth factor B [TGF-
8], and PDGFB) were downregulated early on (Figure S40).°
Recent studies have shown that macrophage metabolic reprog-
ramming is key to wound healing.*” Gene set enrichment analysis
confirmed that early-phase macrophages (Wound1 and Wound7)
were glycolytic, with a deficient tricarboxylic acid (TCA) cycle and
enrichment in oxidative phosphorylation genes (Figure S4P). This
enhanced glucose metabolism supports antibacterial functions
like phagocytosis and reactive oxygen species production.’® By
Wound30, macrophages shifted from glycolysis to upregulate
TCA cycle genes (Figure S4P).*” This metabolic reprogramming
was also reflected in four macrophage subtypes: pro-inflamma-
tory macrophages favored glycolysis and oxidative phosphoryla-
tion, while pro-resolution macrophages were enriched in TCA cy-
cle and amino acid metabolism genes, aligning with their roles in
different healing stages (Figure S4Q).

Cell proportion and Milo®® analyses highlighted several immune
cells peaking during the inflammatory phase of wound repair: (1)
pro-inflammatory macrophages (Mac_inf and Mac1) located
in the upper dermis adjacent to migrating epithelial cells
(Figures 4C-4E); (2) neutrophils, known as the first myeloid cells
recruited from circulation (Figures S4G and S4H); (3) DC3 cells,
noted for their maturity and migratory capabilities, with significant
cytokine™ (Figures 4C and 4D); and (4) Th cells, which lack clear
differentiation markers but are unified by high expression of

(G) Top 50 marker genes of Bas-mig (light green), Spi-mig (green), and shared in clusters (blue) regulated by FOSL1.

(H-J) (H) GO terms of FOSL1-regulated genes shown in (G). Perturbation simulation vector fields in wound keratinocytes with in silico FOSL1 knockout (1) or
overexpression (J). The positive (green) and negative (purple) perturbation scores indicate promotion and inhibition of cell state change, respectively.

(K) Scratch wound assay of human primary keratinocytes with FOSL1 expression silencing. Significance was determined using a one-way ANOVA

test, **p < 0.001.

(L) Immunofluorescence staining of FOSL1 and MKI67 in human acute wound healing. Dotted lines represent the boundary of the epidermis and dermis. DAPI

stains the nuclei. Arrows represent wound edges. Scale bar, 50 pm.
See also Table S3.
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Figure 4. Pro-inflammatory macrophages support re-epithelialization at the inflammatory phase

(A) UMAP of myeloid subpopulations.

(B) Feature plots showing macrophage markers of APOE (Mac_inf), IL1B (Mac1), DAB2 (Mac2), and MMP19 (Mac3).

(C) Cell proportions of myeloid cell types.

(D) Milo beeswarm plot showing the differential abundance of cell types between Wound1 and skin. Blue and red dots indicate significantly decreased and

increased cell abundance, respectively.
(E) Deconvoluted macrophages in ST-seq. Donor 3 is shown.
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KLF2, a transcription factor regulating T cell migration and differ-
entiation (Figures 4H, 41, S4J, and S4K).50 The lineage-negative
KLF2* Th cells are crucial for maintaining commensal tolerance
and preventing microbiota-driven intestinal inflammation.®’
Whether they play a similar immune-suppressive role in skin
wound healing requires further investigation. Plasma and B cells
also increase during the inflammatory phase and peak during
the proliferative phase, which has been shown to support wound
healing (Figures 4H and 4l1).> Conversely, cDC1 and cDC2 pro-
portions initially decrease at the onset of inflammation but
rebound as healing progresses, paralleling the reduction in neu-
trophils and macrophages (Figures 4C and 4D).

During the inflammatory phase of wound repair, keratinocytes
began migrating rapidly, coinciding with peak activities of im-
mune cells (Figure 4J). To explore whether immune cells commu-
nicate with keratinocytes to promote re-epithelialization, we
used the MultiNicheNet R package®® to analyze cell-to-cell
communication. Top 50 ligand-receptor interactions influencing
migrating keratinocytes were identified, which included many
signals previously known to enhance keratinocyte motility,
such as THBS1,°* LGALS3,%® and TNF°® (Figure 4K; Table S5).
Notably, CXCL1 and CXCL5, typically involved in recruiting in-
flammatory cells,”” also promoted keratinocyte migration in a
FOSL1-dependent manner (Figures 4L, S5A, and S5B). While
CXCL1 did not alter FOSL1 mRNA levels (Figure 4M), it triggered
the phosphorylation of Ser265 in FOSL1’s C-terminal destabil-
izer region, enhancing FOSL1 stability®® (Figures 4N, 40, and
S5C). This effect was reversed by the ERK pathway inhibitor
U0126, highlighting the role of ERK signaling in this regulatory
process (Figure 40).

Furthermore, CellChat®® was used to compare cell-to-cell
communication between skin and wounds, identifying EGFR
signaling as a wound-specific pathway influencing both Bas-
mig and Spi-mig (Figures 4P, S5D, and S5E). Intriguingly, while
epidermal growth factor (EGF) receptors (EGFR and ERBB2)
were highly expressed on keratinocytes and FBs, the expected
EGF ligand was absent in our scRNA-seq and ST-seq data,
questioning its assumed role in wound healing. Instead, ligands
such as TGFA, AREG, and HB-EGF were rapidly upregulated in
migrating keratinocytes, likely serving as autocrine signals dur-
ing the inflammatory phase, whereas EREG was predominantly
expressed by wound macrophages (Figure 4P). These EGFR li-
gands significantly enhanced keratinocyte migration and
induced mRNA expression of FOSL1, a key regulator of keratino-
cyte motility (Figures 4L, 4M, and S5A).
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Considering cellular sources of these pro-migratory signals,
we analyzed the spatial co-occurrence of cell types in ST-seq,
noting that cell-to-cell communication, particularly juxtacrine
and paracrine signaling, was spatially restricted. In niches with
migrating keratinocytes (niches 7 and 8), we observed their close
associations with pro-inflammatory macrophages and plasma
cells at the wound edge (Figures 1F and S2F), further confirmed
by IF staining (Figure 6C).

Our study thus outlines a detailed framework for understand-
ing cell-to-cell communication signals directing re-epithelializa-
tion: in the early inflammatory phase, keratinocytes generate
autocrine EGF signals (TGFA, AREG, and HBEGF), while
nearby pro-inflammatory macrophages contribute paracrine
EGF (EREG) and chemokine signals (CXCL1 and CXCL5), collab-
oratively enhancing FOSL1 expression at both mRNA and pro-
tein levels and promoting keratinocyte migration.

FBs play a major role in promoting re-epithelialization at
the proliferative phase
Our scRNA-seq identified four main FB clusters consistent
with previous studies®®’: mesenchymal (FB-l: POSTN*), pro-
inflammatory (FB-ll: C3*), papillary (FB-Ill: ELN*LEPR"), and
proliferating (FB-prolif: MKI67") FBs (Figures 5A-5C and S5F;
Table S4). FB-I was subdivided into four subclusters with distinct
markers (COL11A1*, MMP11*, COL4A1*, and SFRP4*COMP"),
while FB-Il was split into two subclusters differentiated by apolipo-
proteins (APOD* or APOE") and immune genes (ITM2A* or
CCL19%). Two additional FB clusters were identified: one adjacent
to hair follicles (SFRP1*CRABP1") and another similar to papillary
FBs (ELN*SFRP4*), as shown in ST-seq deconvolution and
dendrogram analysis, respectively (Figures 5C and S5G). RNA ve-
locity analysis®' depicted two FB trajectories: one from FB-
I(SFRP4*COMP™) to FB-I(APOE*CCL19") and another from FB-
I(POSTN*COL11A1") to FB-IIELN*LEPR*) (Figure S5H). Cells in
the initial state of the first trajectory highly expressed PI16, a pro-
genitor FB marker® (Figure S5I). Cellular proportion and Milo anal-
ysis showed that proliferating FBs were specifically present during
the proliferative phase (Wound7), mesenchymal FBs (FB-I)
increased and dominated the wound bed in the remodeling phase
(Wound30), and pro-inflammatory (FB-Il) and papillary (FB-IIl) FBs
declined as healing progressed (Figures 5D, 5E, and S5J). These
shifts in FB heterogeneity were validated by ST-seq deconvolution
and further confirmed by FISH (Figures 5F and 5G).

Upon comparing signals influencing keratinocyte migration
across the inflammatory and proliferative phases, we noted a

F) UMAP of lymphoid subpopulations.
G) Dot plot of marker gene expression in lymphoid clusters.

1) Milo beeswarm plot showing the differential abundance of cell types between Wound1 and skin.
J) The dynamics of immune cells and migrating keratinocytes during wound healing.

(
(
(H) Cell proportions of lymphoid cell types.
(
(

(K-M) (K) Circos plot showing top 50 cell-cell interactions between cell types (ligand) and migrating keratinocytes (receptor) in Wound1. Cell migration assay
(L) and FOSL1 mRNA expression (M) in primary human keratinocytes treated with growth factors or cytokines.
(N) Western blot of FOSL1 protein in keratinocytes treated with CXCL1 for 4 and 8 h.

(O) Western blot of phosphorylated and total ERK and FOSL1 proteins in keratinocytes treated with CXCL1 for 30 min, with or without ERK pathway inhibitor

U0126. GAPDH was used as a loading control.

(P) Violin plot showing EGF signaling ligand and receptor expression in each cell type. Significances were determined using generalized linear modeling on a
quasi-binomial distribution (C and H), one-way ANOVA test (L and M), and Mann-Whitney U test (P), comparing other conditions with normal skin/control group,

*p < 0.05, *p < 0.01, **p < 0.001.
See also Tables S4 and S5.
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Figure 5. Fibroblasts play a major role in promoting re-epithelialization at the proliferative phase

(A) UMAP of fibroblast subpopulations.

(B) Dot plot of marker gene expression in clusters.

(C) Dendrogram illustrating cell clusters’ relatedness based on gene expression.

(D) Cell proportions of FB clusters.

(E) Milo beeswarm plot showing the differential abundance of cell types between Wound7 and Wound1. Blue and red dots indicate significantly decreased and
increased cell abundance, respectively.

(F) Deconvolution of fibroblast subpopulations in ST-seq. Donor 2 is shown.

(G) FISH images of ADAM12 expression (marker of mesenchymal FB) in skin and Wound30. Scale bar, 500 pm.

(H) Circos plot of top 50 cell-cell interactions between cell types (ligand) and migrating keratinocytes (receptor) in Wound7.
() UMAP of angiogenic subpopulations.

(J) Dot plot of marker gene expression in clusters.

(K) Deconvolution of endothelial populations in Wound7 ST-seq. Donor 1 is shown.

(legend continued on next page)
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shift from macrophages as primary influencers during the in-
flammatory phase to FBs playing a pivotal role in the prolifera-
tive phase (Figures 4K and 5H). Proliferating FBs increased
the production of growth factors such as HGF, FGF2, and
TGFB1 during the proliferative phase, boosting keratinocyte
motility®>®° (Figures 5H and 4L; Table S5). HGF also upregu-
lated FOSL1 expression in keratinocytes, a critical factor in
cell motility (Figure 4M; Table S5). Additionally, ST-seq revealed
close associations between FB-prolif and Bas-mig (niche 7), as
well as inflammatory macrophages (niche 13) at the wound
edge, highlighting FBs’ role in re-epithelialization (Figures 1F
and S2F). Thus, our findings suggest that pro-inflammatory
macrophages and FBs sequentially support keratinocyte
migration during different healing stages, functioning like a
relay race.

Macrophage interactions with FBs and endothelial cells
during wound healing

Our scRNA-seq analysis identified seven angiogenic cell types
in human acute wounds, including various endothelial cells
(lymphatic, arteriole, and capillary) and two venule endothelial
subsets, along with associated smooth muscle cells and peri-
cytes (Figures 51 and 5J; Table S4). Deconvolution of ST-seq
highlighted well-defined vascular structures formed by these
cells in the dermis (Figures 5K, S5K, and S5L). Post-injury,
cellular proportion and Milo analysis showed a decrease in
smooth muscle cells and lymphatic endothelial populations,
while capillary endothelial cells notably increased during the pro-
liferative phase, indicating active angiogenesis (Figures 5L and
5M). Additionally, ST-seq revealed close associations between
capillary endothelial cells, proliferating FBs, and pro-inflamma-
tory macrophages (niche 13) during the proliferative phase,
characterizing the newly formed granulation tissue (Figures 1F
and S2F).

During wound healing, macrophages interact with FB and
vascular endothelial cells (VE) at different stages.® Cell-cell
crosstalk reveals that inflammatory macrophages dominate the
early stages (Wound1), while pro-resolution macrophages
become more active in later phases (Wound7, Wound30)
(Figures S5M and S5N). In Wound1, inflammatory macrophages
release CCL7 and IL1A/B, targeting VE and FB, respectively.
CCL7 activates inflammatory pathways, increasing vascular
permeability and immune cell infiltration,®®®” while IL1A/B pro-
motes FB proliferation, migration, and collagen and MMP pro-
duction.®® By day 7, TGF-8 from Mac_inf and Mac3 act on VE,
and C7QB from Mac2 influences FB, promoting FB proliferation,
collagen synthesis, and angiogenesis.®®”" In Wound30, /GF-1
from Mac?2 targets VE and FB, while ITGB2 and C71QB from
Mac2 and Mac_inf interact with FB, enhancing angiogenesis,
FB activation, myofibroblast differentiation, and wound
strength.”>"® Therefore, pro-inflammatory and pro-resolution
macrophages play key roles in wound repair by interacting
with keratinocytes, FBs, and endothelial cells.
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Multi-facet pathological changes in chronic wounds

To advance our research on chronic wound pathology, we inte-
grated scRNA-seq data from acute human wounds with VUs
and DFU data®® (Figure 1G). We identified distinct pathological
changes between chronic wound types, differing by prognosis
and etiology.

We found significant reductions in migratory keratinocytes in
DFUs and their complete absence in VUs, correlating with re-
epithelialization failure in chronic wounds®”* (Figure 6A). Consis-
tent with this, scRNA-seq data revealed fewer FOSL1* keratino-
cytes in both DFUs and VUs compared with acute wounds, a
trend more evident at the protein level as shown by IF analysis
(Figures 6B and 6C). In a mouse model, increased FOSL1
expression was observed at the wound edges of normal mice
but not in diabetic (db/db) mice, indicating that FOSL1 deficiency
hinders re-epithelialization (Figure 6D). Unlike acute wounds,
where keratinocyte proliferation increases, non-healing DFUs
show reduced keratinocyte proliferation, while VUs display
highly proliferative keratinocytes at wound edges, consistent
with the hyperproliferative epidermis observed in VU edges’®
(Figures S3C and S6A).

In human chronic wounds, we also analyzed cell-to-cell sig-
nals crucial for re-epithelialization, including CXCL1, EGFR li-
gands, and HGF. Analysis using single-cell data (Theocharidis
et al.” and ours), bulk RNA-seq (GSE174661'?), and microarray
data (GSE801787%) showed that CXCL7 was upregulated in
VUs, similar to acute wounds, but not in DFUs (Figures 6E-6G).
RT-gPCR confirmed these results, indicating higher CXCL1
levels in VUs and lower in DFUs (Figure 6H). Additionally,
scRNA-seq data demonstrated abundant EGF ligands and re-
ceptors expression in acute wounds, but this was reduced or
weakly induced in non-healing DFU and VU compared with
normal skin (Figure 6l). HGF and its receptor MET also displayed
low expression in DFUs, while in VUs, their levels were similar to
those in acute wounds (Figure 6l). Therefore, lacking FOSL1*
migrating keratinocytes in VUs may be linked to inadequate
EGF signaling, while diminished CXCL1, EGF, and HGF signals
may collectively hinder healing in DFUs.

Our research highlights the critical role of inflammation in tissue
repair.”” In contrast to the significant increase of pro-inflammatory
Mac, DC3, plasma cells, and Th cells in acute wounds, these cells
were notably scarce in DFUs and VUs. Specifically, VUs exhibited
a marked deficiency in pro-inflammatory macrophages (Figures
6J, 6K, and S6B). Although DFUs maintained similar proportions
of Mac_inf and Mac1 as acute wounds, their macrophages dis-
played a significant reduction in gene expression crucial for cellular
functions,*® such as cytokine signaling (CXCL1, CXCL5, and
CCL20), lipopolysaccharide (LPS) response, and oxidative stress
(Figure 6L). These findings suggest an impaired inflammatory
response in chronic wounds, which may revise the conventional
view of sustained inflammation in these conditions.”®"®

Furthermore, we observed a notable absence of proliferating
and mesenchymal FBs in chronic wounds, suggesting a

(L) Cell proportions of angiogenic clusters.

(M) Milo beeswarm plot showing the differential abundance of cell types between wounds and skin. Significance was assessed using generalized linear modeling
on a quasi-binomial distribution (D and L), comparing other conditions to normal skin, *p < 0.05, *p < 0.01, ***p < 0.001.

See also Tables S4 and S5.
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Figure 6. Multi-facet pathological changes in chronic wounds
(A) Cell proportions of Bas-mig (upper) and Spi-mig (lower) in acute and chronic wounds. DFU_H/_NH, healed/non-healed diabetic foot ulcers; VU, venous ulcer.
(B) Bar charts of FOSL1* cell proportion in total keratinocytes normalized to skin. The fold changes (FCs) or logFC of cell proportions normalized to their skin were

used in comparisons.
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deficiency in FB proliferation and a reduced mesenchymal stem
cell response®®®’ (Figures 6M-60). Neither DFUs nor VUs ex-
hibited the expected increase in VE_capillary cells characteristic
of the proliferative phase of acute wounds, suggesting impeded
angiogenesis, in line with previous studies®? (Figure 6P). Specif-
ically, VUs displayed increased venule endothelial cells, reflect-
ing the vascular abnormalities associated with chronic venous
insufficiency®® (Figure S6C).

Taken together, we identified critical pathological changes in
chronic wounds compared with acute wounds, including
compromised re-epithelialization, altered inflammatory re-
sponses, impaired granulation tissue formation, and hindered
angiogenesis. Notably, DFUs with better healing outcomes dis-
played less severe pathological changes, characterized by
increased presence of Bas-mig keratinocytes, inflammatory
macrophages, mesenchymal FBs, and enhanced CXCL1, EGF,
and HGF signaling, highlighting the critical role of these pro-
cesses in wound healing.

Comparison of human and murine skin wound healing
While studying cellular heterogeneity in skin wounds of mouse
models has enhanced our understanding of wound healing dy-
namics,”>**%” human wound healing mechanisms differ signifi-
cantly due to variations in skin structure and healing pro-
cesses.®® To bridge this gap, we compared human and mouse
wounds by integrating scRNA-seq data from both species.'®
We first compared our human Wound1 data with mouse acute
wounds at 3 days post-injury (Figures 7A and S7A), followed
by a broader comparison between our human time-course
data and a mouse scRNA-seq dataset at 2, 4, and 7 days
post-injury (PWD2, 4, 7)%° to better understand cross-species
wound healing dynamics (Figures S7C and S7D). We identified
similar cell types across species, such as migrating keratino-
cytes with shared markers like NRG1, IL24, FOSL1, AREG, and
GJB2, suggesting a conserved regulatory mechanism for kerati-
nocyte migration (Figures 7A-7C, S7D, and S7E; Table S6). We
have validated that FOSL1 was highly expressed in wound-
edge migrating keratinocytes in both human and mouse acute
wounds by IF staining (Figures 3L and S3K). Notably, recent
research has shown that IL-24, upregulated in epithelial stem
cells, promotes wound repair by enhancing re-epithelialization,
vascular regeneration, and FB activation, acting independently
of microbial and adaptive immune factors.”’

Our scRNA-seq data reveal key structural differences be-
tween murine and human skin: humans have a thicker epidermis
with more spinous keratinocytes (integrated clusters 4-6), mice
possess abundant hair follicles (clusters 7 and 8), and a unique
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panniculus carnosus structure (cluster 11 MYF6/Mrf4*)*"
(Figures 7A, S7B, and S7D). These structural variances affect
wound healing mechanisms: mice primarily heal through panni-
culus carnosus contraction, whereas humans rely on re-epithe-
lialization and granulation tissue formation.?® Additionally, hu-
man wounds show a higher presence of mast cells (cluster 17),
aligning with findings of greater mast cell heterogeneity in hu-
mans than in mice®® (Figures 7A and S7D). Murine wounds
also have more proliferating cells at the G2/M phase of the cell
cycle, consistent with their more robust healing capabilities
(Figures 7D and S7F).

Beyond cellular composition, gene expression differences be-
tween mice and humans were even more striking (Figure 7E;
Table S6). For instance, migration-related genes such as
MMP1, S100A2/7/8/9, and SERPINB3/4 are highly expressed
in humans but barely in mice (Figures 7E, 7F, S7G, and S7I).
MMP1 supports human keratinocyte migration by breaking
down dermal collagen, a role filled by MMP13 in mice, indicating
species-specific proteolysis mechanisms for re-epithelializa-
tion.°*%® S100A proteins contribute to antimicrobial defense
and tissue repair,® while SERPINB3/4 play a crucial role in ker-
atinocyte inflammatory responses.®” The distinct gene expres-
sions likely reflect differing adaptations to microbial threats.
Further, GO analysis of DEGs showed that human migrating ker-
atinocytes are enriched with genes related to mitochondrial ac-
tivity, which support wound healing functions such as energy
provision and inflammation regulation®® (Figure 7G; Table S6).
In contrast, murine migrating keratinocytes show a prolifera-
tion-focused gene expression, supporting their dual role in cell
proliferation and migration, as validated by FOSL1/MKI67 cos-
taining in murine wounds (Figures 7G, S3G, and S3K).%%3*

Temporal changes in cell-type proportions during wound
repair in humans and mice show increases in proliferating
keratinocytes and FBs, migrating keratinocytes, plasma/B cells,
monocytes/macrophages, and neutrophils in acute wounds
(Figure S7H).

However, mesenchymal FBs (FB_I) increase over time in hu-
mans but decrease in mice, while T cells rise early in human
wounds and decline in mice during the initial healing stage.

Additionally, cell-to-cell communication during wound healing
differs between species. In human wounds, EGFR ligands are
produced by macrophages, dendritic cells, endothelial cells,
and migrating keratinocytes (Figure 4P), while in mouse wounds,
they are mainly expressed by keratinocytes and FBs, not im-
mune cells.’® IF analysis confirmed that EREG, an EGFR ligand,
is produced by both macrophages and keratinocytes in human
wounds, but primarily by keratinocytes in mouse wounds

(C) Immunofluorescence staining of FOSL1 (migrating keratinocyte marker), IL1b, and CD68 (pro-inflammatory macrophage markers) in human skin, acute, and
chronic wounds. DAPI stains the nuclei. Scale bars: 100 pm in low-magnification images and 20 um in high-magnification images. The signal intensity of
epidermal FOSL1 was quantified.

(D-G) (D) Relative gene expression of Fos/1 in the epidermis of wild-type (WT) and diabetic (DB) mouse skin and wounds. n = 5. Boxplots showing CXCL1
expression in our ST-seq (acute wounds) and scRNA-seq (DFU and VU) datasets (E), public bulk RNA-seq data of skin and acute wounds from 5 donors and
5 VUs (F), and microarray data of skin (n = 6) and DFU (n = 6) (G).

(H) RT-gPCR of CXCL1 in human acute wounds from 7 donors, 16 VUs, and 27 DFUs.

(I-P) (1) Dot plot showing the fold changes of ligands and receptors of EGF and HGF signals in acute and chronic wounds normalized to the control skin. Cell
proportions of myeloid cells (J), lymphoid cells (K), proliferating FB (M), FB-I(POSTN*MMP11*) (N), FB-I(POSTN*COL11A1*) (O), and VE-capillary (P) in acute and
chronic wounds. (L) Dot plots showing scaled expression of DEGs between acute wounds and DFU in Mac_inf (upper) and Mac1 (lower).

Genes enriched in relevant GO terms were plotted. Significances were assessed using generalized linear modeling on a quasi-binomial distribution (A, B, J, K,
M-P), one-way ANOVA test (C and D), and Mann-Whitney U test (E-H), *p < 0.05, *p < 0.01, **p < 0.001, n.s.: no significance.
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(Figure S7J). These findings underline the limitations of using
mouse models to study the human wound healing process.

Furthermore, our scRNA-seq dataset provides a unique plat-
form to investigate human-specific genes in wound repair, iden-
tifying two protein-coding genes (IL32 and ARHGEF35)'°° and
49 non-conserved human long non-coding RNAs'®" with cell-
type-specific expression in human wounds (Figure S7K).
Although most of these IncRNAs have demonstrated function-
ality in other tissues and diseases, their roles in skin and wound
healing remain to be further investigated.

In summary, our study shows that although humans and mice
share many wound-healing processes, there are significant dif-
ferences in cellular diversity and gene expression. This under-
scores the importance of assessing the clinical relevance of
mouse model data against the spatiotemporal roadmap of hu-
man skin wound healing our study provides.
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this spatiotemporal cell atlas of human

skin wound healing, we delve into re-
epithelialization, illuminating the cellular architecture of the hu-
man wound tongue, its gene regulatory networks, and the cell-
to-cell communication that promotes keratinocyte motility. The
study also highlights cellular and molecular discrepancies in
chronic wounds and identifies potential therapeutic targets.
This pivotal dataset is a vital resource for validating the relevance
of animal model findings and stimulates further research
into human wound healing mechanisms. To facilitate global
research collaboration and drive further discoveries, we have
made this groundbreaking roadmap of human skin wound heal-
ing accessible for interactive exploration online (https://www.
xulandenlab.com/tools).

Cell-to-cell communication signals are promising therapeutic
targets for enhancing tissue repair. Our study on human wounds
challenges established paradigms, particularly in ligand-receptor
signaling. Keratinocytes are pivotal in initiating immune responses
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through cytokines, chemokines, and growth factors, and their ac-
tivity varies with the stimulus and context.'®> We identified /L8,
CCL27, and CXCL14 as the primary cytokines/chemokines pro-
duced by keratinocytes in acute human wounds (Figure S7L).
IL-18 is critical in starting inflammation during bacterial infec-
tions,'®® CCL27 aids T cell-mediated inflammation'®® and skin
regeneration,'® and CXCL14 recruits immune cells, inhibits
angiogenesis, and has antimicrobial properties.'®>'% Despite
their significant roles, these cytokines are often overlooked in
wound repair studies. Additionally, some cytokines are produced
by specific keratinocyte clusters (Figure S7L). For example, basal
migrating keratinocytes express IL-20 and IL-24, targeting the IL-
22R receptor; granular keratinocytes produce IL36G and IL36RN,
supporting wound healing.'®"*'°® Furthermore, our findings reveal
that, while IL1A/B/RN, IL6, and CXCL1/5/8 are commonly associ-
ated with keratinocytes in vitro, in human wounds in vivo, these cy-
tokines and chemokines are primarily produced by macrophages,
dendritic cells, and FBs, not by keratinocytes (Figure S7L). This
insight challenges previous assumptions based on in vitro studies
and highlights the complexity of cellular interactions in actual
wound environments.

Many molecular signals have been previously reported to
regulate keratinocyte motility, and our study evaluated the phys-
iological relevance of these signals in human skin wound repair.
During the early inflammatory phase, keratinocytes initiate auto-
crine EGFR signaling, while pro-inflammatory macrophages
enhance cell migration by contributing additional EGFR and
CXCL1 signals. Although CXCL1 is typically associated with re-
cruiting inflammatory cells such as neutrophils, it also plays a
critical role in promoting keratinocyte migration,'® and blocking
its receptor, CXCR2, can impede re-epithelialization indepen-
dently of neutrophils.'®® Our observations of reduced pro-inflam-
matory macrophage activity in chronic wounds align with the
longstanding theory that inflammation is essential for tissue
repair.”” The current perspective on inflammation in chronic
wounds is shifting from being viewed as persistently exces-
sive''? to dysfunctional, characterized by impaired monocyte
recruitment and macrophage and neutrophil dysfunction.''" "2
Therefore, precise modulation of pathological inflammation,
rather than its inhibition, may be crucial for effective chronic
wound therapy.

Limitations of the study

Our study has some limitations. The Visum ST data lack single-
cell resolution. Higher-resolution ST needed in future studies
could shed light on the spatial arrangement of cell states at the
cellular or subcellular level. Additionally, our sampling of human
acute wounds at days 1, 7, and 30 post-injury captures key heal-
ing phases, but the limited time points may overlook transient
cell states and ephemeral cell-to-cell interactions; hence, a
higher temporal resolution would be advantageous. The
anatomical diversity of skin, recognized at histological,"® func-
tional,"'*""® and gene expression levels,''®""" may influence
wound healing. Therefore, the different wound locations could
be a significant confounding factor in this study’s comparison.
Moreover, limited tissue availability and high costs of single-
cell and spatial omics technologies constrained the total cell
number in this study, potentially limiting the discovery of rare
cell types. Given the variability of human chronic wounds,
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more extensive cohort studies and cross-dataset comparisons
are crucial to confirm our findings and aid in the molecular strat-
ification of complex chronic wounds.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be
directed to and will be fulfilled by the lead contact, Ning Xu Landén (ning.
Xu@Kki.se).

Materials availability
This study did not generate new, unique reagents.

Data and code availability

Data sequenced in this study have been deposited in GEO under accession
numbers: GSE241132, GSE265972, GSE241124, and GSE218430. All original
code for reproducible results has been deposited at GitHub with the DOI:
https://doi.org/10.5281/zenodo.14176654. The scRNA-seq and ST-seq data
can be explored at the web porter https://www.xulandenlab.com/tools. Any
additional information required to reanalyze the data reported in this paper is
available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human wound sample collection

Five healthy volunteers were enrolled at the Karolinska University Hospital, Stockholm, Sweden. Three full-thickness skin wounds
were created on the upper buttock area of each donor using a 4-mm biopsy punch. Wound edge tissues were collected on days
1, 7, and 30 using a 6-mm biopsy punch. The samples were transferred to the laboratory for single-cell RNA sequencing (10X Ge-
nomics) or snap-frozen for spatial transcriptomics (10X Genomics). Written informed consent was obtained from all donors for the
collection and use of tissues for research. This study was approved by the Stockholm Regional Ethics Committee and conducted

according to the Declaration of Helsinki’s principles.

Venous ulcer samples and age- and body-location-matched healthy control samples from nine donors were collected at the
Dermatology Hospital of Chinese Academy of Medical Sciences, Nanjing, China. Patients with apparent soft tissue infections or
requiring systemic antibiotic treatment were excluded. After obtaining written informed consent from the patients, chronic wound
edge tissue samples were collected using a 4-mm biopsy punch following a local lidocaine injection. This study was approved by
the Ethics Committee of Institute of Dermatology, Chinese Academy of Medical Sciences (Ethic permission number: 2021-KY-059).

Mice wound sample collection

C57BL/6J wild-type mice were obtained from Charles River Laboratories (Sulzfeld, Germany) and housed under pathogen-free con-
ditions at the Comparative Medicine Biomedicum (KMB) facility, Karolinska Institutet. They were maintained under standard condi-
tions with free access to food and water, a 12-hour light/dark cycle, controlled temperature (20-22°C), and humidity (40-60%). Mice
aged 8-10 weeks were used for the experiments, approved by the Swedish Board of Agriculture’s Committee on Animal Experimen-

tation (Jordbruksverket).

Prior to wounding, 8-week-old mice with back skin in the telogen (resting) phase of the hair cycle were shaved and treated with
depilatory cream. A 4-mm full-thickness wound, extending through the panniculus carnosus, was created on the back using a biopsy
punch. Post-surgery, mice were housed individually to prevent interference. Buprenorphine (0.03 mg/kg, subcutaneous) was admin-
istered twice daily for the first two days to manage pain. On day 3 post-wounding, wound-edge and intact skin samples (at least
1.5 cm from the wound) were collected using a 6-mm biopsy punch for single-cell sequencing.
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METHOD DETAILS

Human and mouse single-cell RNA sequencing

We followed the same protocol to prepare single-cell suspensions from human and mouse skin and wound samples. Briefly, tissues
were incubated in 5 U/ml Dispase Il at 4°C overnight. The epidermis was then gently separated from the dermis and incubated in
0.025% Trypsin/EDTA (Thermo Fisher) for 10-15 minutes at 37°C. The dermal cell suspension was prepared using the Whole Skin
Dissociation Kit (Miltenyi Biotec) per the manufacturer’s instructions. To capture a broad range of cell types, equal amounts of
epidermal and dermal cells were mixed. Red blood cells and dead cells were removed using the Red Blood Cell Removal Solution
and Dead Cell Removal Kit (both from Miltenyi Biotec). After purification, viable cells were loaded onto the Chromium Controller (10X
Genomics) for single-cell encapsulation and cDNA library generation using the Chromium Next GEM Single Cell 3' Reagent Kits v3.1
(10x Genomics). Libraries were sequenced on an lllumina NovaSeq6000 platform, with an average of 50K read-pairs per cell.

Spatial transcriptomic sequencing

Fresh frozen skin and acute wound tissues were embedded in the Optimal Cutting Temperature compound (OCT, Sakura Tissue-
TEK) on dry ice. Sections were fixed in methanol and imaged after hematoxylin and eosin (H&E) staining to assess the morphology
and quality of the tissues. The optimal permeabilization time for wound sections was determined to be 15 minutes following the man-
ufacturer’s instructions (10x Genomics, Visium Spatial Tissue Optimization). Spatial gene expression libraries from 16 wound skin
sections were then generated according to the instructions of the Visum Spatial Gene Expression Kit from 10X Genomics. The li-
braries were sequenced using the lllumina NovaSeq6000 platform to generate approximately 150 M read-pairs per section.

Human scRNA-seq data processing

The single-cell sequence data were mapped with CellRanger (version 5.0.1) to a manually built human reference genome GRCh38
with the annotation file GENCODE version 38. The raw gene expression matrix contained 65,462 cells and 27,973 genes. The low-
quality cells expressing <500 genes, >20% mitochondrial genes, and <1000 gene counts were filtered out. Mitochondrial and hemo-
globin genes, as well as genes expressed in fewer than ten cells, were excluded. Potential doublets were detected using Scrublet'®
(v0.2.3) and DoubletFinder'” (v2.0.3). Cells identified as doublets by both tools or those in clusters with multiple distinct cell type
markers were excluded. In total, 58,823 cells and 25,778 genes from 12 samples of acute wounds were retained for downstream
analysis.

Data normalization and scaling were performed using the SCTransform'?® package, regressing out mitochondrial percentage and
cell cycle effects. Cell cycle analysis was conducted using the CellCycleScoring function based on the normalized gene expression.
The top 4000 variable genes were used for principal component analysis (PCA). During data integration, sample-to-sample batch
effects were corrected using top 40 PCs as input for the RunHarmony?® function. Uniform Manifold Approximation and Projection
(UMAP) and k-nearest neighbors graph were generated using the RunUMAP and FindNeighbors functions in Seurat'® (v4), respec-
tively. Major cell clusters were identified using the Louvain graph-based algorithm with a resolution of 0.8, resulting in 27 clusters.
Differentially expressed genes among clusters were calculated using the FindAllMarkers functions with the MAST method. Genes
with adjusted Pvalue<0.05, log fold change>0.25, and detected in at least 25 percent of cells were considered significantly high
in the cluster. Clusters were annotated based on each cluster’s top marker genes ranked by fold changes and well-documented
signature genes of distinct cell types.

Before sub-clustering analysis, cells of low-quality keratinocyte cluster Bas-Il from major clusters were filtered out. Subpopulation
analyses of keratinocytes, fibroblasts, angiogenic cells, myeloid cells, and lymphoid cells were performed individually using the same
pipeline as for major cluster identification, including normalization, variable feature selection, batch correction, dimensionality reduc-
tion, and unsupervised clustering, but with a resolution of 0.5.

Neutrophil analysis was performed using unfiltered count matrices of samples after running CellRanger. Cells with fewer than 100
expressed genes were filtered out, retaining only those not included in the above analysis. Initial neutrophils were selected based on
the expression profiles of well-known markers (FCGR3B, CMTM2, CXCR2, PROK2, LINCO1 506).42 Cells were further filtered after
clustering analysis based on the neutrophil scores of each cluster. The refined neutrophils were extracted and re-ran the normaliza-
tion, scaling, and clustering steps with a resolution of 0.3.

Mouse single-cell sequencing data processing

The mouse single-cell data were processed using a protocol similar to the one used for human data. Raw sequencing data were
analyzed with the 10x Cell Ranger (v5.0.1) pipeline, which included demultiplexing, alignment to the GRCm39 (mm39) mouse
genome, barcode counting, and unique molecular identifier (UMI) quantification. Predicted doublets were removed based on Scrub-
let analysis. The filtered feature-barcode matrices were further processed using the Seurat pipeline. Cells expressing fewer than 500
genes, fewer than 1000 UMls, or more than 10% mitochondrial genes, as well as mitochondrial, hemoglobin, ribosomal genes, and
genes expressed in fewer than 10 cells, were excluded. Data normalization was performed using SCTransform. Principal component
analysis (PCA) was applied to the top 4000 variable genes, and the first 40 principal components (PCs), as determined by ElbowPlot,
were used in the RunHarmony function to correct for batch effects across libraries. Uniform manifold approximation and projection
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(UMAP) plots were generated using RunUMAP with the first 40 harmonized PCs. Clustering was performed using FindNeighbors and
FindClusters with a resolution of 0.8, and cluster markers were identified with FindAlIMarkers. Cell types were annotated based on
known signature genes from previous studies.

Differential abundance testing with Milo

We tested for differential cell-state abundances of subpopulations across wound healing using the MiloR package (v1.6.0).>° Spe-
cifically, a K-nearest neighbors (KNN) graph was built using the graph ‘HARMONY” slot from the adjacency matrix of the processed
Seurat object with the parameters: k = 40 and d=30. Cells were assigned to the neighborhoods based on the KNN graph using the
‘makeNhoods’ function (prop=0.1). To explore variations in cell counts between neighboring wound healing points (pairwise compar-
isons), cells from each sample in each neighborhood were counted. Differential neighborhood abundance testing was performed us-
ing a generalized linear model (GLM). Differentially abundant cell neighborhoods with SpatialFDR < 0.1 were plotted using the
‘plotNhoodGraphDA’ function.

SCENIC and CellOracle analyses

The pySCENIC (v0.11.2)*° was utilized to investigate the role of transcriptional regulators in human skin wound healing, following the
package’s tutorial. Raw count expression matrices of cell types were first prepared to construct co-expression modules between
transcription factors (TFs hg38) and potential target genes ranked by importance. Modules showing significant motif enrichment re-
mained, and TFs with directed targets in these modules were defined as regulons. Each regulon was then assigned an activity score
using the AUcell function. The top 5 regulons for each cell type were highlighted based on the scaled activity Z-scores across other
cell types. The regulon network was visualized using Cytoscape'?” (v3.8.2) software.

In silico TF perturbation of gene regulatory networks (GRNs) was performed using CellOracle (v0.10.14)*° package. Based on a
pre-built GRN of human (hg38) from curated transposase-accessible chromatin with sequencing (ATAC-seq) data, we simulated
cell identity shifts in response to TF FOSL1 knockout and overexpression, setting the expression value to 0 and 2, respectively.
The simulated overexpression value exceeded the detected gene expression. Subsequently, we compared the simulated TF pertur-
bation vector field with the natural development vector field by calculating the perturbation score (PS). Positive and negative PSs
denoted the promotion and inhibition of cell differentiation, respectively.

Trajectory analysis of keratinocytes and fibroblasts
To infer the differences in epidermal cell trajectories between intact skin and wound conditions, we separated all keratinocytes into
wound and non-wound cells using a Gaussian mixture model (GMM) in the ‘scikit-learn’ Python package.'* We first filtered out cells
that did not express KRT6A, a strong marker of wound-induced cells.***! The positive cells were categorized into ‘0’ and ‘1’ classes,
representing low- (KRT6AY™ and high-expressing (KRT6A*) cells. The wound cells comprised KRT6A* cells, while the rest of the
keratinocytes (KRT6A“™/KRT6A") were defined as non-wound cells. Pseudotime trajectory analysis of wound and non-wound ker-
atinocytes was performed using Monocle3''® package. The basal cell cluster (Bas-I) was selected as a starting point of the pseudo-
time trajectory. The differentially expressed driving genes along the trajectory were determined using Moran’s | test in the ‘graph_t-
est’ function, with the filtering criteria: g_value<0.00001 and morans_I>0.25.

RNA velocity analysis of fibroblasts was carried out using the CellRank (version 1)°' package, which predicted the cell differenti-
ation trajectory and its directionality based on the spliced and unspliced mMRNA content. The initial and terminal states were identified
using a deterministic mode in ‘cr.tl.initial_states’ and ‘cr.tl.terminal_states’ functions.

Gene ontology analysis
Gene ontology (GO) analysis of all gene clusters was computed using the Fisher exact test in the clusterProfiler'?° package. GO bio-
logical process (BP) terms were filtered by the adjusted Pvalue<0.05 and enriched gene count>5.

M1 and M2 signature

Pro-inflammatory macrophage (M1) and anti-inflammatory macrophage (M2) signatures were derived from Table 1 published by
Martinez et al.*® Those in common with top marker genes of macrophage clusters were used to calculate the M1- and M2-like scores
using the ‘AddModuleScore’ function in the Seurat package.'®

Cell-to-cell communication analysis
To study putative cell-cell interactions across the wound healing process, we used the MultiNicheNet>® R package to infer the ligand-
receptor pairs in the acute wound scRNA-seq dataset. The MutiNicheNet is a framework based on prior knowledge of ligand-recep-
tor and ligand-target networks (version 2) that better explores cell-cell communications from multi-sample, multi-condition scRNA-
seq data. Significant ligand-receptor pairs between cell types were determined by the high expression of each pair, as well as
differentially expressed target genes of ligands in receiving cell types of different conditions, using the ‘multi_nichenet_analysis’ func-
tion with criteria: min_cells=10, logFC_threshold=0.50, p_val_threshold=0.05, fraction_cutoff=0.05, top_n_tatget=250.

In addition, we applied the CellChat® package to perform differential signaling changes within basal and spinous migrating ker-
atinocytes between intact skin and wound conditions. Cells from each condition were imported into the CellChat analysis individually.
The major signaling contributors of each cell type were calculated based on signaling network likelihoods using the
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‘netAnalysis_computeCentrality’ function with a threshold of p-value<0.05. The differential outgoing and incoming interaction
strengths of each cell population in the cell-cell communication network between the two conditions were computed using the ‘ne-
tAnalysis_signalingRole_scatter’ function.

ST-seq data processing

Spatial sequencing data of human acute wounds was mapped to the GRCh38 human genome using Space Ranger (v1.2). Spots with
less than 100 genes expressed and in low-quality clusters were excluded. We also filtered out MALAT1, mitochondrial, and hemo-
globin-related genes. In total, 22,915 spots and 36,578 genes from 16 sections remained. The data normalization and batch correc-
tion were performed using SCTransform'?® and Harmony,?® respectively. Dimensionality reduction, clustering (res=0.5), UMAP, and
differentially expressed genes (DEGs) were carried out using the Seurat (v4)'® package. Spot clusters were annotated based on
DEGs and markers of distinct cell types from scRNA-seq. Spatial cell type distribution and gene expression were visualized using
the ‘SpatialDimPlot’ and ‘SpatialFeaturePlot’ functions, respectively.

Pseudobulk analysis of scRNA-seq and ST-seq

To examine the sample or donor heterogeneity in scRNA-seq and ST-seq, we performed the similarity analysis using the gene counts
generated from converting the gene expression of single-cell and spatial data to pseudobulk sequencing data. The principal compo-
nent and distance among samples were calculated using the R DESeq2 package.'?° Pseudobulk differential expression analysis was
carried out using DESeq2'2® and limma'?® R packages. Significantly expressed genes were defined with avg_log2FC > 1 and p_val-
ue_adj < 0.05. The top 500 (ranked by fold changes) significant DE genes were used for GO analysis.

Deconvolution of ST-seq data and wound bulk RNA-seq data

To spatially map wound cell states defined by scRNA-seq data profiles in the Visum data, we used the Cell2location®” package. In
brief, we trained a negative binomial regression model to estimate reference transcriptomic signatures based on each cell type’s top
100 marker genes profiled by scRNA-seq. We estimated the abundance of every cell type in each Visum spot using the inferred refer-
ence cell type signatures by decomposing spot mMRNA counts. All parameters were set to default except for two: 1) the expected cell
abundance (N_cells_per_location=20) determined by approximately counting the average numbers of nuclei of each spot in H&E im-
ages, and 2) regularisation of per-location normalization (detection_alpha = 20) to account for large variations in RNA detection sensi-
tivity across different spots on Visium slides. The posterior distribution of cell abundance for each cell type in each spot was sum-
marized as 5% quantile, representing high confidence, which was used for visualization and colocalization analysis. To identify
microenvironments of spatial co-occurrence of cell types, we performed a non-negative matrix factorization (NMF) analysis of the
high-confidence cell type abundances, setting the number of factors to R=15. A cell type was considered localized in a microenvi-
ronment if its fraction was over 0.1.

Bulk RNA sequencing data of intact skin and wounds (Day 1 and Day 7 post-wounding) from our previous study'? (GSE174661)
was deconvoluted using the AutoGeneS'?' package. Centroids of cell types were first constructed from our scRNA-seq data of acute
wounds using the top 4000 highly variable genes and distinct makers of each cell type. The bulk data was then deconvoluted based
on these centroids using a regression method of Nu-support vector machine (Nu-SVR).

Venous ulcer scRNA-seq analysis

scRNA-seq data from cells with <500 genes expressed, >20% mitochondrial genes, or <1000 gene counts were excluded. After
quality control, a total of 48,346 cells from four venous ulcers (VU) and five matched healthy controls were analyzed using the
same workflow and criteria as for acute wound scRNA-seq.

Integration of wounded skin scRNA-seq datasets

We retrieved public scRNA-seq datasets of healthy adult skin from Reynolds et al.?° (2021, E-MTAB-8142) and diabetic foot ulcers
(DFU) from Theocharidis et al.” (2022, GSE165816). For the DFU scRNA-seq, we included 9 healthy controls and two subgroups of
DFU patients: those who healed the ulcers (Healer, DFU_H n=7) and those who failed to heal within 12 weeks post-surgery (Non-heal-
er, DFU_NH n=4). Data integration across different scRNA-seq datasets, including acute wounds, VU, DFU, and human adult skin,
was carried out using the Harmony?® algorithm, setting each sample as a group variable.

Cell label transfer was performed using the ‘FindTransferAnchors’ and ‘MapQuery’ functions in Seurat,'® setting the cell types
generated from our acute wound dataset as a reference. The average predicted scores of each cell type were used to assess the
correlation of cell types across different scRNA-seq datasets. Furthermore, we refined cell labels using integrated unsupervised clus-
tering results, resolving ambiguous assignments by aligning them with the majority cell type in each population to enable a precise
comparison of cellular heterogeneity between acute and chronic wounds.

Cross-species comparison of human and mouse wound healing

To compare human and mouse wound healing, we integrated scRNA-seq data of human and mouse acute wounds at the inflamma-
tory phase (GSE218430) using canonical correlation analysis (CCA). Before integration, we sampled the same number of cells from
each sample in both datasets. The overlapped homologous genes of humans and mice were kept for integration. CCA''® in Seurat
(v4)'® was used to integrate the human and mouse scRNA-seq datasets using the top 3000 variable genes and each sample as an
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integration anchor. The dynamic changes of cellular proportions of human-mouse joint clusters were traced according to the original
cell-type assignments using the Sankey diagram. Conserved markers of integrated clusters were identified using the Seurat ‘Find-
ConservedMarkers’ function. Differential expression analysis between human and mouse migrating keratinocytes was performed
using the MAST test in Seurat ‘FindMarkers’ function.'® Functional enrichment of DEGs in humans and mice was carried out using
clusterProfiler,'?° and the top 6 significant BP terms (adjusted Pvalue<0.05 and enriched gene count>5) were plotted. Cross-species
comparison of migration and proliferation scores in integrated migrating and proliferating clusters was calculated based on the top 10
conserved marker genes across species using the Seurat ‘AddModuleScore’ function.

To further investigate the dynamic spatiotemporal changes across human and mouse wound healing, we used another publicly
available mouse wound data® (accession number: GSA: CRA010641) that contained the unwounded skin (UW), post-wounding
day 2, 4, and 7 (PWD2, PWD4, PWD?7). After sampling the cell numbers for each condition across species, the integrated data
were analyzed using the same pipeline as above described.

Human-specific coding and non-coding genes were retrieved from previous literature,
using the Seurat ‘DoHeatmap’ function.

100101 gnd their expression was visualized

Fluorescent in situ hybridization (FISH)

Probes for MMP3, KRT6B, and ADAM12 (Hs-MMP3:#403421, Hs-KRT6B:#805641, Hs-ADAM12:#432561) were designed by
Advanced Cell Diagnostics (ACD) in Silicon Valley, CA. Human skin and wound slides were prepared according to the manufacturer’s
instructions. After fixation and dehydration using 50%, 70%, and 100% ethanol, the slides were treated with Protease IV (ACD) and
incubated at room temperature for 30 minutes. Subsequently, the slides were incubated with the probes for two hours at 40 °C, using
the HybEZ™ || Hybridization System and the RNAscope® Multiplex Fluorescent Reagent Kit v2 (ACD). The hybridization signals were
amplified per the manufacturer’s instructions and captured using a Zeiss Axio Scan Z1 slide scanner.

Immunofluorescence staining and microscopy

Paraffin-embedded tissue sections were deparaffinized and rehydrated using xylene and a series of graded ethanol solutions. An-
tigen retrieval was performed in citric acid buffer (10 mM, pH 6.0). The sections were then blocked with 2.5% bovine serum albumin
(BSA) in Tris-buffered saline with 0.1% Tween-20 (TBST). Next, the sections were incubated overnight at 4°C with primary antibodies
specific to the anti-human FOSL1 (1:100 dilution, Thermofisher, #PA5-40361), anti-human IL1b (1:150 dilution, Abcam, ab156791),
anti-human CD68 (1:100 dilution, Conjugated with Alexa Fluor® 488, Abcam, ab222914), anti-human EREG (1:200 dilution,
ThermoFisher, PA5-46969), anti-human MKI67 (1:400 dilution, CST, 9449) and anti-human S100A7 (1:200, Abcam, ab13680),
anti-mouse EREG (1:100 dilution, R&D, AF1068), anti-mouse F4/80 (1:150 dilution, Santa Cruz, Sc-52664), anti-mouse MKI67
(1:150 dilution, Thermo Fisher, MA5-14520), anti-mouse FOSL1 (1:110 dilution, Novus Biologicals, NBP1-47757) and anti-mouse
S100A7 (1:200, Boster Biological Technology, A02369). After primary antibody incubation, the sections were treated with Alexa Fluor
555 Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed secondary antibody (cat. A-31572, ThermoFisher Scientific) or Goat anti-
Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 647 (cat. A-32728, ThermoFisher Scientific) or Alexa
Fluor™ 488 Donkey anti-Rat IgG (H+L) Highly Cross-Adsorbed secondary antibody (A-21208, ThermoFisher Scientific) or Alexa
Fluor™ 555 Donkey anti-Goat IgG (H+L) Cross-Adsorbed Secondary Antibody (A-21432, ThermoFisher Scientific) diluted at
1:1000 in TBST. To visualize cell nuclei, we counter-stained the sections with DAPI and mounted them using an anti-fading polyvinyl
alcohol mounting medium (ThermoFisher Scientific). Immunofluorescence staining was observed using a Confocal fluorescence
microscope.

RNA extraction and qRT-PCR

Total RNA was isolated from human in vivo wounds using the miRNeasy mini kit (Qiagen), followed by cDNA synthesis using the
RevertAid First Strand cDNA Synthesis Kit (ThermoFisher Scientific). Specific premixed primers and probes for CXCL1 and
GAPDH were designed by Integrated DNA Technologies (IDT, Leuven, Belgium). Gene expression levels were quantified using
TagMan expression assays (ThermoFisher Scientific) and normalized to the housekeeping gene GAPDH. The comparative 2744¢T
method was used for gene expression quantification, and all reactions were conducted on QuantStudio 6 or 7 platforms (Applied
Biosystems, Waltham, MA).

Keratinocyte culture, treatment, RNA extraction, and qRT-PCR

Human adult primary keratinocytes (Lifeline® Cell Technology) were cultured in Dermalife Basal Medium supplement with DermalLife
K LifeFactors® Kit and antibiotics [penicillin (100 U/ml), streptomycin (100 U/ml); Thermo Fisher Scientific] at 37°C, 5% CO2. For
keratinocyte treatment, the cells were plated into 24-well plates and treated with growth factors or cytokines as described in the
key resources table when reaching about 70% confluency. After incubation with growth factors or cytokines for 24 hours, cells
were lysed in RNAiso Plus (Takara,9109). RNA was isolated and reverse transcribed into complementary DNA using
PrimeScript™ RT Master Mix (Takara, RRO36A) according to the manufacturer’s instructions. gqRT-PCR was performed using TB
Green® Premix Ex Tag™ Il (Tli RNaseH Plus) (Takara, RR820A) on a Roche LightCycler®96 system. GAPDH was used as the internal
control. Results were normalized to the internal control, and the comparative 22T method was used to quantify gene expression.
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Cell migration assay

Keratinocytes were plated into 6-well plates and treated with growth factors or cytokines as described in the key resources table
when reaching about 70% confluency. After incubation with growth factors or cytokines for 24 hours, cells (95-100% confluency)
were scratched using a 200ul pipette tip. The cells were cultured in a supplement-free medium and allowed to grow for 24 hours.
Cell images at 0 h and 24 h were taken under a microscope at a magnification of x 10. The cell migration rate was analyzed by
measuring the healed area of the scratch using the Image J software.

Western blotting

Primary keratinocytes were plated into 6-well plates and incubated for at least 24 hours. When they reached about 70% confluency,
cells were treated with 20uM U0126 or DMSO for 30 minutes, and then 2 ng/mL CXCL1 was added and incubated for the indicated
time. Cells were lysed by RIPA lysis buffer (P0013C, Beyotime) supplemented with protease and phosphatase inhibitors on ice for
10 minutes, and the cell debris was removed by centrifugation at 12,000 rpm at 4°C for 5 minutes. The lysate was boiled with
SDS loading buffer, and equal amounts of protein were loaded onto 4-20% precast polyacrylamide gels (Tanon, 180-9110H) and
then transferred onto nitrocellulose membranes (Pall Corporation, 66485). The membrane was blocked with 5% non-fat powdered
milk in tris-buffered saline with tween-20 (TBST). After blocking, the membrane was incubated with primary antibodies (1:1000) at 4°C
overnight, washed with TBST, and incubated with HRP-labeled goat anti-rabbit secondary antibody (1:2000) (Cell Signaling Tech-
nology, 7074). Protein bands were visualized using Clarity™ Western ECL Substrate (Bio-Rad Laboratories, 170-5061). The density
of protein bands was quantified using Imaged software. GAPDH served as the loading control.

QUANTIFICATION AND STATISTICAL ANALYSIS

Softwares and statistics

The tool used to visualize acute wound scRNA-seq was adapted from the R package ShinyCell."?” The visualization tool for the
spatial data was created using the WebAtlas pipeline.'?® The workflow and schematic summary of this study were created using
BioRender. Statistical significances in migration assay and immunofluorescence staining quantification between groups were deter-
mined using either a two-tailed Student’s t-test or ANOVA analysis facilitated by GraphPad Prism 8 (GraphPad Software Inc, Cali-
fornia, USA). Cell proportion and gene expression were compared between groups using a quasi-binomial distribution model and
Mann-Whitney U test in R, respectively. A significance threshold of P<0.05 was applied for all statistical tests. Data were presented
as mean + standard deviation (SD) or mean + standard error of the mean (SEM).
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