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In brief

Xu Landén and colleagues conducted a

unique study on human skin wound

healing by inducing wounds in healthy

donors and collecting wound-edge

tissues at three healing stages.

Transcriptome profiling from this study

deepens our understanding of tissue

repair mechanisms, paving the way for

novel therapeutic targets to treat chronic

wounds.
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SUMMARY

Wound healing is vital for human health, yet the details of cellular dynamics and coordination in humanwound
repair remain largely unexplored. To address this, we conducted single-cell multi-omics analyses on human
skin wound tissues through inflammation, proliferation, and remodeling phases of wound repair from the
same individuals, monitoring the cellular andmolecular dynamics of human skin wound healing at an unprec-
edented spatiotemporal resolution. This singular roadmap reveals the cellular architecture of the wound
margin and identifies FOSL1 as a critical driver of re-epithelialization. It shows that pro-inflammatory macro-
phages and fibroblasts sequentially support keratinocyte migration like a relay race across different healing
stages. Comparison with single-cell data from venous and diabetic foot ulcers uncovers a link between failed
keratinocyte migration and impaired inflammatory response in chronic wounds. Additionally, comparing
human and mouse acute wound transcriptomes underscores the indispensable value of this roadmap in
bridging basic research with clinical innovations.

INTRODUCTION

Wound healing is a vital process for skin integrity, progressing

through three overlapping phases: inflammation, proliferation,

and remodeling.1,2 These stages are driven by complex interac-

tions among diverse cell types. Re-epithelialization, crucial

during the proliferation phase, requires the migration and prolif-

eration of epidermal keratinocytes to cover the wound. Failed

re-epithelialization is a common issue in chronic wounds like dia-

betic foot ulcers (DFUs) and venous ulcers (VUs), impacting mil-

lions globally each year.3 There’s an urgent need for more effec-

tive wound therapies, yet progress is hindered by limited

knowledge of human skin wound healing. While animal models,

mainly rodents, have provided foundational insights, significant

anatomical and physiological differences between humans and

rodents limit their applicability, often resulting in high clinical trial

failure rates for treatments.4,5

Significant efforts have been made to analyze pathological

wounds, such as pressure ulcers6 and DFUs7,8 as well as path-

ological scars,9–11 using single-cell RNA sequencing (scRNA-

seq) and spatial transcriptomic sequencing (ST-seq), as these

samples are more readily obtained during treatment. However,

a comprehensive cellular atlas detailing normal skin wound heal-

ing in humans over time is still missing. This knowledge gap is

crucial for identifying critical cellular and molecular mediators

of wound healing, understanding obstacles to healing in chronic

Cell Stem Cell 32, 1–20, March 6, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. A spatiotemporal map of human skin wound healing

(A) Schematic outline of the study.

(B) UMAP of human acute wound (ACW) scRNA-seq.

(C) Dendrogram illustrating cell clusters’ relatedness based on gene expression.

(D) UMAP of human ACW ST-seq.

(E) Spatial projection of cell types onto hematoxylin and eosin (H&E) images of human ACWs. Donor 2 is shown.

(legend continued on next page)
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wounds, and validating the clinical relevance of findings from an-

imal and in vitro models.

In this study, we utilized scRNA-seq and ST-seq to monitor

gene expression dynamics at the single-cell level across

different healing phases. These efforts led to the development

of a comprehensive spatiotemporal cell atlas of human skin

wound healing, accessible for interactive exploration online

(https://www.xulandenlab.com/tools). Through this atlas, we

identified an epidermal woundmargin structure and fundamental

regulatory mechanisms driving re-epithelialization in humans.

Our comparative studies with chronic wounds revealed diverse

pathological changes specific to their causes and prognoses.

Additionally, the comparison of human and mouse acute wound

transcriptomes showed both shared and unique healing mecha-

nisms, highlighting this atlas’s crucial role in translating funda-

mental discoveries into therapeutic approaches.

RESULTS

A spatiotemporal map of human skin wound healing
In this study, we collected samples from pre-wound intact skin

and the entire concentric wound-edge 1 (Wound1), 7 (Wound7),

and 30 days (Wound30) post-injury, all from the same individuals

(Figure 1A; Table S1). This approach ensures that the data reflect

the healing process consistently within individual biological con-

texts rather than introducing variability by comparing different

stages from different donors. We analyzed serial human acute

wound samples from three donors using scRNA-seq and four

donors using Visium ST-seq. Biopsies from two donors were

analyzed using both techniques. Using pseudo-bulk principal

component analysis and sample similarity analysis in scRNA-

seq (Figure S1A) and between scRNA-seq and ST-seq data (Fig-

ure S2A) without batch correction, we found that samples cluster

by conditions rather than by donors or experimental methods.

This indicates low patient heterogeneity in the study, making it

suitable for analyzing biological differences across healing

stages.

Next, we defined the healing stages of each acute wound

sample based on key biological events in wound repair.2 Gene

Ontology (GO) analysis of differentially expressed genes

(DEGs) in our scRNA-seq data showed that Wound1 was en-

riched in granulocyte chemotaxis, RNA metabolism, and ATP

biosynthesis, indicating inflammation (Figure S1B). By day 7,

DEGs related to nuclear division and extracellular matrix (ECM)

organization marked the proliferative phase, while Wound30

DEGs involved in ECM, neuron, and sensory system develop-

ment indicated tissue remodeling. These findings align with our

previous bulk RNA-seq12 results and histological analysis (Fig-

ure S2F). Comparing our scRNA-seq data with public bulk

RNA-seq and microarray datasets of human and mouse skin

wounds13–15 confirmed similar sequential wound-healing re-

sponses (Figures S1C and S1D). Thus, Wound1, Wound7, and

Wound30 represent the inflammatory, proliferative, and remod-

eling phases, respectively.

After removing doublets16,17 and low-quality cells, a total of

58,823 cells from human acute wounds remained (Figures

S1E–S1G). Using graph-based clustering with Louvain algo-

rithm,18 we identified 27 cell clusters, which were further group-

ed into nine main cell types based on DEGs and known

markers19,20: keratinocytes (KRT5high or KRT10 high), fibroblasts

(FBs) (COL1A1+), myeloid cells (LYZ+ and HLA-DRA+), lymphoid

cells (CD3D+ or NKG7+), endothelial cells (PECAM1+), mast cells

(TPSAB1+ and TPSB2+), pericytes and smooth muscle cells

(ACTA2+ and MYH11+), melanocytes (TYRP1+ and PMEL+),

and Schwann cells (SOX10+ and SOX2+) (Figures 1B, 1C, and

S1H; Table S2). Integration and comparison with public

scRNA-seq data from human adult skin confirmed the accuracy

and comprehensiveness of our cell-type annotations (Figures

S1I and S1J).20

ST-seq analysis of human acute wounds identified 22,915

spots, clustered into 17 populations (Figures 1D, 1E, and S2B–

S2E; Table S2). The epidermal compartment included basal kera-

tinocytes (KRT15+ and COL17A1+), suprabasal cells (KRT1+,

KRT2+, and LORICRIN+), hair follicles (HR+, FZD7+, and

KRT75+),21,22 and a wound-edge cluster (KRT6A/B/C+, KRT16+,

KRT17+, and S100A8/9+). The dermal clusters comprised FBs

(ADAM12+, POSTN+, MMP2+, and FBLN1+),23,24 sweat glands

(KRT77+, DCD+, SCGB1D2+, and MUCL1+),25 sebaceous glands

(MGS11+, FADS2+, and KRT79+),21,22 immune cells (FABP4+,

CD36+, and CD163+), endothelial cells (VWF+, CD74+, CCL21+,

and LYVE1+), smooth muscle cells (MYL9+ and TAGLN+),26 and

a mast cell cluster (TPSB2+ and MS4A2+).

To map the spatial positions of scRNA-seq-identified cells in

their native environments, we performed Cell2location analysis27

in ST-seq, creating a spatiotemporal atlas of human skin wound

healing. Non-negative matrix factorization allowed us to distin-

guish epidermal and dermal niches, revealing cell colocalization

at different healing stages (Figures 1F and S2F). For example,

niches 6, 7, and 8 mark the re-epithelialization process, peaking

at Wound1 and Wound7; niche 13 reflects granulation tissue,

peaking at Wound7; niche 11 increases at Wound30, indicating

scar formation; and niche 15, involved in angiogenesis, peaks

at Wound7 and Wound30. These microenvironments highlight

spatially restricted cell-to-cell communication during healing,

particularly interactions between macrophages and both

migrating keratinocytes (niches 7 and 8) and proliferating FBs

(niche 13), underscoring the role of wound inflammation in repair

beyond infection defense and debris clearance.

Furthermore, to deepen our understanding of chronic wound

pathology, we performed scRNA-seq on VU biopsies from four

patients, with each biopsy consisting of 50% wound-edge and

50% wound-bed tissues (Figure 1A; Table S1), as well as five

(F) Dot plot showing spatial co-occurrence analysis of deconvoluted cell types using non-negative matrix factorization (NMF) method. Dot size and color

represent cell fractions normalized across niches for each cell type.

(G) UMAP of main cell types in integrated human acute and chronic wound scRNA-seq datasets. Bas-/Spi-/Gra-, basal/spinous/granular keratinocyte; -prolif/-

mig, proliferating/migrating cells; HF, hair follicle; MEL, melanocyte; FB, fibroblast; Mono-mac, monocyte andmacrophage; Mac_inf: inflammatory macrophage;

cDC/pDC, conventional/plasmacytoid dendritic cell; LC, Langerhans cell; NK-cell, natural killer cell; Th, T helper cell; Treg/Tc/Ttol, regulatory/cytotoxic/tolerant

T cell; ILC, innate lymphoid cell; PC-vSMC, pericyte and vascular smooth muscle cell; LE/VE, lymphatic/vascular endothelial cell.

See also Tables S1 and S2.
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Figure 2. Spatiotemporal dissection of human wound re-epithelialization

(A) UMAP of keratinocyte (KC) subclusters.

(B) Dot plot of marker gene expression.

(C) Cell proportions of each sub-cluster.

(D) Milo analysis of keratinocyte abundance difference between Wound1 and skin. Left panel shows the graph representation of neighborhoods. The node size

and edges are proportional to the number of cells and overlapped cell numbers between any two nodes, respectively. Nodes are colored by log2(fold changes) of

cell abundance between conditions. Right panel shows the distribution of neighborhood abundance in cell types by beeswarm plot. Blue and red dots indicate

(legend continued on next page)
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control skin samples. We integrated scRNA-seq data from hu-

man acutewoundswith data fromVU and public DFUdata7using

Harmony28 (Figures 1G, S1K, and S1L). Notably, the DFU study

compared foot skin from nine non-diabetic individuals to DFU

wound-edge tissues from 11 diabetic patients. These DFU cases

were divided into two groups based on 12-week healing

outcomes: healed (DFU_H, n = 7) and non-healed (DFU_NH,

n = 4).7 This integration allows us to directly compare human

acute wounds to chronic wounds of different etiologies and iden-

tify pathological barriers that hinder wound closure.

Spatiotemporal dissection of human wound re-
epithelialization
Recognizing that impaired re-epithelialization is a common chal-

lenge in pathological wounds,3 our study aimed to better under-

stand this process in human wounds. Using scRNA-seq, we

classified keratinocytes from human acute wounds into nine

subclusters (Figures 2A and 2B; Table S3), including three basal

types: Bas-I cells (ASS1+ andPOSTN+), a proliferating type (Bas-

prolif: STMN1+ and TOP2A+), and a migrating type (Bas-mig) ex-

pressing matrix metalloproteinases (MMPs) and FGFBP1; five

spinous (Spi) types: ranging from Spi-I/IIa/b with metallothionein

expression to Spi-III with immune response genes (TNFSF10,

IRF, and CCL27), and a migrating spinous cluster (Spi-mig)

expressing KRT6 genes and S100 proteins; a granular cluster

(Gra) displaying late differentiation markers (FLG and

LORICRIN). Analysis of cell proportions and graph-based differ-

ential abundance testing usingMilo29 revealed a notable early in-

crease in migrating keratinocytes (Bas-mig and Spi-mig) during

the initial inflammatory phase of wound healing (Wound1). This

increase is contrasted by a decrease in differentiated keratino-

cytes (Spi-II and Gra), compared with normal skin (Figures 2C,

2D, and S3A). These observations were supported by deconvo-

lution analysis of our prior bulk RNA-seq data using the same

in vivo human wound-healing model12 (Figures 2E and S3B).

Additionally, we noted increased proliferating keratinocytes at

Wound7, suggesting a robust proliferative response to facilitate

wound healing (Figures 2C and S3C).

Upon examining the migrating keratinocytes, we found that

both Bas-mig and Spi-mig clusters expressed genes essential

for epithelial cell migration (e.g., HBEGF, ANXA3, PRSS3,

S100A2, and FGFBP1) and neutrophil activation (e.g., SER-

PINB1/3/4 and S100A7/8/9/11), as shown by GO analysis (Fig-

ure 2F; Table S3). These genes peaked during the inflammatory

phase (Wound1) (Figure 2G). In the subsequent proliferative

phase (Wound7), Bas-mig keratinocytes exhibited increased

expression of ECMorganization and cell adhesion-related genes

(e.g., laminin 5, integrins, and collagen), indicative of late stages

of re-epithelialization where cell-to-cell and cell-to-matrix adhe-

sions are re-established (Figure 2G). Deconvolution results re-

vealed Spi-mig overlaying Bas-mig at the wound leading edge,

surrounded by Bas-prolif (Figure 2H). This cellular arrangement

forms rapidly post-injury, intensifies during the proliferative

phase, and recedes by the remodeling phase (Wound30) (Fig-

ure 2H). This pattern was further confirmed in additional human

wound tissues through RNA-fluorescence in situ hybridization

(FISH) and spatial gene expression (Figures 2I and S3D).

To identify keratinocytes directly involved in wound repair, we

sorted all scRNA-seq-analyzed keratinocytes from acute

wounds into two groups using a Gaussian mixture model:

10,064 wound-associated (KRT6A+) and 17,041 non-wound

(KRT6A�/dim) cells (Figure S3E). We targeted KRT6A expression

as a marker for post-injury keratinocytes,30,31 which was vali-

dated by pronounced KRT6A expression in wound-edge kerati-

nocytes observed in ST-seq, in contrast to its absence in intact

skin (Figure S3F). Pseudotemporal analysis traced a differentia-

tion pathway from basal to spinous and then to granular kerati-

nocytes for both wound and non-wound cells (Figures 3A and

3B). Notably, within the wound-associated group, two additional

branches emerged: one transitioning from Bas-I to Bas-mig and

another from Spi-II to Spi-mig, suggesting that these migrating

cells originate from wound-edge keratinocytes with respective

differentiation states (Figure 3B).

In summary, our study suggests a model of re-epithelialization

in human wounds, characterized by organized keratinocyte pro-

liferation, differentiation, and migration. Mirroring recent findings

in murine skin,32,33 we identified two distinct zones of epidermal

cells around the wound: a non-proliferative migrating front

surrounded by a highly proliferative hub. In contrast to murine

wounds, where migrating keratinocytes often proliferate,

creating a mixed zone,33,34 human wounds show a distinct

separation between keratinocyte proliferation and migration

(Figure S3G).

Gene network interference identifies FOSL1 as a key
driver of keratinocyte migration
To compare gene regulatory networks in various keratinocyte

states during homeostasis andwound repair, we analyzed genes

showing significant expression changes along trajectories of

wound and non-wound keratinocytes, categorizing them by their

expression pattern (Figure 3C). GO analysis revealed that both

wound and non-wound keratinocytes share several GO term

patterns, including cell-substrate adhesion (I), nuclear division

(II), ribosome biogenesis/epidermal development (III), and kera-

tinization (V), indicating a common differentiation path. Notably,

non-wound keratinocytes, especially toward the end of their

significantly (SpatialFDR < 0.1) decreased (logFC < 0) and increased (logFC > 0) cell abundance, respectively. Color intensity indicates the degree of significance

for each neighborhood.

(E) Cellular proportions of deconvoluted Bas-/Spi-mig in public bulk RNA-seq data (GSE174661).

(F) GO plot of biological process (BP) terms enriched in Bas-mig and Spi-mig using the top 200 markers.

(G) Dot plots showing the expression of genes in (F) GO terms.

(H) Deconvoluted Bas-prolif, Bas-mig, and Spi-mig in ST-seq showing distinctive migration and proliferation zones at wound edges. Donor 2 is shown.

(I) Fluorescence in situ hybridization (FISH) images ofMMP3 (upper) andKRT6B (lower) expressions duringwound healing. Scale bar, 500 mm, inset plot scale bar,

200 mm. Significance was assessed using generalized linear modeling on a quasi-binomial distribution (C) and Mann-Whitney U test (E), *p < 0.05,

**p < 0.01, ***p < 0.001.

See also Table S3.
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Figure 3. Gene network interference identifies FOSL1 as a key driver of keratinocyte migration

(A and B) UMAP of cell clusters (upper) and pseudotime trajectories (lower) in non-wound (A) and wound keratinocytes (B).

(C) Heatmaps of driving gene expressions along the pseudotime. Transcription factors (TFs) are labeled on the right. GO terms of different patterns are shown in

the middle.

(D) Scatter plots of top 5 TF regulons based on specificity Z scores in Bas-mig (top) and Spi-mig (bottom).

(E) UMAP of FOSL1 regulon activity in non-wound and wound cells.

(F) FOSL1 gene expression along with pseudotime.

(legend continued on next page)
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trajectory (e.g., Spi-II/Gra), expressed genes linked to skin bar-

rier formation and cell-to-cell junctions (IV), which were absent

in wound keratinocytes. Conversely, wound keratinocytes dis-

played a unique expression pattern (VI) involving epithelial migra-

tion, actin organization, and oxidative stress response, promi-

nently seen in Bas-mig and Spi-mig at the trajectory’s start

and end, respectively (Figure 3C).

Combining pseudotime analysis with SCENIC analysis35 to

explore gene regulatory networks driving the migrating keratino-

cyte phenotype, we identified FOSL1 as a critical master regu-

lator in both Bas-mig and Spi-mig clusters (Figures 3C and 3D;

Table S3). FOSL1, a vital component of the AP1 transcriptional

complex, is involved in cell differentiation, stress response,

and cancer metastasis36,37; however, its specific role in keratino-

cyte behavior during wound healing was unclear.38We observed

that FOSL1 exhibited high regulatory and expression specificity

inmigrating cells (Figures 3E and 3F), andGO analysis of FOSL1-

targeted genes in these clusters underscored their crucial role in

cell migration (Figures 3G and 3H; Table S3).

To better understand the impact of FOSL1 perturbations on

keratinocyte cell states in human wounds, we used the

CellOracle package.39 Our in silico analysis showed that disrupt-

ing FOSL1 impeded the migratory state of keratinocytes

while enhancing FOSL1 promoted their migratory phenotype

(Figures 3I and 3J). These computational predictions were

experimentally validated: silencing FOSL1 with siRNA signifi-

cantly reduced the motility of human keratinocyte progenitors

in a scratch assay (Figures 3K and S3H). Together, both in silico

and experimental findings highlight FOSL1’s crucial role in regu-

lating keratinocyte mobility.

Consistent with its role in cell migration, FOSL1was transiently

upregulated in basal and suprabasal keratinocytes at wound

edges compared with the intact skin, as shown by our scRNA-

seq and ST-seq data and confirmed by immunofluorescence

(IF) staining (Figures 3L, S3I, and S3J). This upregulation also

occurred in the wound-edge keratinocytes in a mouse acute

wound model, suggesting an evolutionarily conserved role in

keratinocyte migration (Figure S3K).

Pro-inflammatory macrophages support re-
epithelialization at the inflammatory phase
Our combined scRNA-seq and ST-seq analysis extends beyond

keratinocytes, revealing the dynamic gene expression and cellular

diversityof immunecells,FBs,andangiogeniccells throughouthu-

man skin wound healing. We identified 11 myeloid cell types in

acute wounds, including four macrophage clusters: Mac_inf

(APOE+ and CXCL1+), Mac1 (IL1B+, THBS1+, and EREG+), Mac2

(DAB2+ and C1QA/B+), and Mac3 (MMP19+, MMP9+, and

VEGFA+)40,41; four dendritic cell clusters: plasmacytoid DC (pDC,

ACOT7+, LTB+, and IGKC+), conventional DC1 (cDC1, CLEC9A+,

and WDFY4), cDC2 (CD1C+, IL1R2+, and CLEC10A+), and DC3

(CCR7+ and LAMP3+); Langerhans cells (LC: CD207+ and

CD1A+); and subsets of apoptotic (DNAJB1+ and HSPA1B+) and

cycling (PCLAF+ and H4C3+) cells (Figures 4A, 4B, and S4A;

Table S4). Additionally, we identified neutrophils (CSF3R+,

FCGR3B+, CXCR2+, and CMTM2+),42 which were initially missed

in standard scRNA-seq analysis due to their low RNA content

and high RNase levels (Figures S4B–S4H). We also identified

nine clusters of lymphoid cells, including regulatory T cells (Treg:

TIGIT+, BATF+, and FOXP3+), helper T cells (Th: LDHB+, KLF2+,

and GIMAP7+), innate lymphoid cells (ILC: AHR+, CCR6+, and

PTGER4+), cytotoxic T cells (Tc: TRGC2+ and KLRC2/3+), ILC1/

natural killer cells (XCL1/2+ and FCER1G+), NK cells (GZMA/K+),

tolerant T cells (Ttol: DNAJB1+ and NR4A1+),43 plasma cells

(PTGDS+, JCHAIN+, and IL3RA+), and B cells (IGHM+, MS4A1+,

and CD79A+)20,43,44 (Figures 4F, 4G, and S4I; Table S4).

Macrophages are highly plastic, showing phase-specific acti-

vation during wound repair.45,46 Across healing stages, we

observed a mix of pro-inflammatory and pro-resolution macro-

phages, with varying proportions and functions (Figures S4L

and S4M). The relative proportion of pro-inflammatory macro-

phages (Mac_inf and Mac1) increased transiently in Wound1

and Wound7, marked by upregulation of HIF1a and pro-inflam-

matory cytokines (tumor necrosis factor alpha [TNF-a], IL-1b

and CCL2) (Figure S4N).46 In contrast, markers of pro-resolution

macrophages (MRC1, IL-10, transforming growth factor b [TGF-

b], and PDGFB) were downregulated early on (Figure S4O).46

Recent studies have shown that macrophage metabolic reprog-

ramming is key to wound healing.47 Gene set enrichment analysis

confirmed that early-phase macrophages (Wound1 and Wound7)

were glycolytic, with a deficient tricarboxylic acid (TCA) cycle and

enrichment in oxidative phosphorylation genes (Figure S4P). This

enhanced glucose metabolism supports antibacterial functions

like phagocytosis and reactive oxygen species production.48 By

Wound30, macrophages shifted from glycolysis to upregulate

TCA cycle genes (Figure S4P).47 This metabolic reprogramming

was also reflected in four macrophage subtypes: pro-inflamma-

tory macrophages favored glycolysis and oxidative phosphoryla-

tion, while pro-resolution macrophages were enriched in TCA cy-

cle and amino acid metabolism genes, aligning with their roles in

different healing stages (Figure S4Q).

Cell proportion andMilo29 analyses highlighted several immune

cells peaking during the inflammatory phase of wound repair: (1)

pro-inflammatory macrophages (Mac_inf and Mac1) located

in the upper dermis adjacent to migrating epithelial cells

(Figures 4C–4E); (2) neutrophils, known as the first myeloid cells

recruited from circulation (Figures S4G and S4H); (3) DC3 cells,

noted for their maturity and migratory capabilities, with significant

cytokine49 (Figures 4C and 4D); and (4) Th cells, which lack clear

differentiation markers but are unified by high expression of

(G) Top 50 marker genes of Bas-mig (light green), Spi-mig (green), and shared in clusters (blue) regulated by FOSL1.

(H–J) (H) GO terms of FOSL1-regulated genes shown in (G). Perturbation simulation vector fields in wound keratinocytes with in silico FOSL1 knockout (I) or

overexpression (J). The positive (green) and negative (purple) perturbation scores indicate promotion and inhibition of cell state change, respectively.

(K) Scratch wound assay of human primary keratinocytes with FOSL1 expression silencing. Significance was determined using a one-way ANOVA

test, ***p < 0.001.

(L) Immunofluorescence staining of FOSL1 and MKI67 in human acute wound healing. Dotted lines represent the boundary of the epidermis and dermis. DAPI

stains the nuclei. Arrows represent wound edges. Scale bar, 50 mm.

See also Table S3.
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Figure 4. Pro-inflammatory macrophages support re-epithelialization at the inflammatory phase

(A) UMAP of myeloid subpopulations.

(B) Feature plots showing macrophage markers of APOE (Mac_inf), IL1B (Mac1), DAB2 (Mac2), and MMP19 (Mac3).

(C) Cell proportions of myeloid cell types.

(D) Milo beeswarm plot showing the differential abundance of cell types between Wound1 and skin. Blue and red dots indicate significantly decreased and

increased cell abundance, respectively.

(E) Deconvoluted macrophages in ST-seq. Donor 3 is shown.

(legend continued on next page)
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KLF2, a transcription factor regulating T cell migration and differ-

entiation (Figures 4H, 4I, S4J, and S4K).50 The lineage-negative

KLF2+ Th cells are crucial for maintaining commensal tolerance

and preventing microbiota-driven intestinal inflammation.51

Whether they play a similar immune-suppressive role in skin

wound healing requires further investigation. Plasma and B cells

also increase during the inflammatory phase and peak during

the proliferative phase, which has been shown to support wound

healing (Figures 4H and 4I).52 Conversely, cDC1 and cDC2 pro-

portions initially decrease at the onset of inflammation but

rebound as healing progresses, paralleling the reduction in neu-

trophils and macrophages (Figures 4C and 4D).

During the inflammatory phase of wound repair, keratinocytes

began migrating rapidly, coinciding with peak activities of im-

mune cells (Figure 4J). To explore whether immune cells commu-

nicate with keratinocytes to promote re-epithelialization, we

used the MultiNicheNet R package53 to analyze cell-to-cell

communication. Top 50 ligand-receptor interactions influencing

migrating keratinocytes were identified, which included many

signals previously known to enhance keratinocyte motility,

such as THBS1,54 LGALS3,55 and TNF56 (Figure 4K; Table S5).

Notably, CXCL1 and CXCL5, typically involved in recruiting in-

flammatory cells,57 also promoted keratinocyte migration in a

FOSL1-dependent manner (Figures 4L, S5A, and S5B). While

CXCL1 did not alter FOSL1 mRNA levels (Figure 4M), it triggered

the phosphorylation of Ser265 in FOSL1’s C-terminal destabil-

izer region, enhancing FOSL1 stability58 (Figures 4N, 4O, and

S5C). This effect was reversed by the ERK pathway inhibitor

U0126, highlighting the role of ERK signaling in this regulatory

process (Figure 4O).

Furthermore, CellChat59 was used to compare cell-to-cell

communication between skin and wounds, identifying EGFR

signaling as a wound-specific pathway influencing both Bas-

mig and Spi-mig (Figures 4P, S5D, and S5E). Intriguingly, while

epidermal growth factor (EGF) receptors (EGFR and ERBB2)

were highly expressed on keratinocytes and FBs, the expected

EGF ligand was absent in our scRNA-seq and ST-seq data,

questioning its assumed role in wound healing. Instead, ligands

such as TGFA, AREG, and HB-EGF were rapidly upregulated in

migrating keratinocytes, likely serving as autocrine signals dur-

ing the inflammatory phase, whereas EREG was predominantly

expressed by wound macrophages (Figure 4P). These EGFR li-

gands significantly enhanced keratinocyte migration and

inducedmRNA expression of FOSL1, a key regulator of keratino-

cyte motility (Figures 4L, 4M, and S5A).

Considering cellular sources of these pro-migratory signals,

we analyzed the spatial co-occurrence of cell types in ST-seq,

noting that cell-to-cell communication, particularly juxtacrine

and paracrine signaling, was spatially restricted. In niches with

migrating keratinocytes (niches 7 and 8), we observed their close

associations with pro-inflammatory macrophages and plasma

cells at the wound edge (Figures 1F and S2F), further confirmed

by IF staining (Figure 6C).

Our study thus outlines a detailed framework for understand-

ing cell-to-cell communication signals directing re-epithelializa-

tion: in the early inflammatory phase, keratinocytes generate

autocrine EGF signals (TGFA, AREG, and HBEGF), while

nearby pro-inflammatory macrophages contribute paracrine

EGF (EREG) and chemokine signals (CXCL1 andCXCL5), collab-

oratively enhancing FOSL1 expression at both mRNA and pro-

tein levels and promoting keratinocyte migration.

FBs play amajor role in promoting re-epithelialization at
the proliferative phase
Our scRNA-seq identified four main FB clusters consistent

with previous studies9,60: mesenchymal (FB-I: POSTN+), pro-

inflammatory (FB-II: C3+), papillary (FB-III: ELN+LEPR+), and

proliferating (FB-prolif: MKI67+) FBs (Figures 5A–5C and S5F;

Table S4). FB-I was subdivided into four subclusters with distinct

markers (COL11A1+, MMP11+, COL4A1+, and SFRP4+COMP+),

while FB-II was split into two subclusters differentiatedbyapolipo-

proteins (APOD+ or APOE+) and immune genes (ITM2A+ or

CCL19+). Two additional FB clusters were identified: one adjacent

to hair follicles (SFRP1+CRABP1+) and another similar to papillary

FBs (ELN+SFRP4+), as shown in ST-seq deconvolution and

dendrogram analysis, respectively (Figures 5C and S5G). RNA ve-

locity analysis61 depicted two FB trajectories: one from FB-

I(SFRP4+COMP+) to FB-II(APOE+CCL19+) and another from FB-

I(POSTN+COL11A1+) to FB-III(ELN+LEPR+) (Figure S5H). Cells in

the initial state of the first trajectory highly expressed PI16, a pro-

genitor FBmarker62 (FigureS5I). Cellular proportion andMilo anal-

ysis showed that proliferating FBswere specifically present during

the proliferative phase (Wound7), mesenchymal FBs (FB-I)

increased and dominated the wound bed in the remodeling phase

(Wound30), and pro-inflammatory (FB-II) and papillary (FB-III) FBs

declined as healing progressed (Figures 5D, 5E, and S5J). These

shifts in FBheterogeneitywere validated byST-seqdeconvolution

and further confirmed by FISH (Figures 5F and 5G).

Upon comparing signals influencing keratinocyte migration

across the inflammatory and proliferative phases, we noted a

(F) UMAP of lymphoid subpopulations.

(G) Dot plot of marker gene expression in lymphoid clusters.

(H) Cell proportions of lymphoid cell types.

(I) Milo beeswarm plot showing the differential abundance of cell types between Wound1 and skin.

(J) The dynamics of immune cells and migrating keratinocytes during wound healing.

(K–M) (K) Circos plot showing top 50 cell-cell interactions between cell types (ligand) and migrating keratinocytes (receptor) in Wound1. Cell migration assay

(L) and FOSL1 mRNA expression (M) in primary human keratinocytes treated with growth factors or cytokines.

(N) Western blot of FOSL1 protein in keratinocytes treated with CXCL1 for 4 and 8 h.

(O) Western blot of phosphorylated and total ERK and FOSL1 proteins in keratinocytes treated with CXCL1 for 30 min, with or without ERK pathway inhibitor

U0126. GAPDH was used as a loading control.

(P) Violin plot showing EGF signaling ligand and receptor expression in each cell type. Significances were determined using generalized linear modeling on a

quasi-binomial distribution (C and H), one-way ANOVA test (L and M), and Mann-Whitney U test (P), comparing other conditions with normal skin/control group,

*p < 0.05, **p < 0.01, ***p < 0.001.

See also Tables S4 and S5.
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Figure 5. Fibroblasts play a major role in promoting re-epithelialization at the proliferative phase

(A) UMAP of fibroblast subpopulations.

(B) Dot plot of marker gene expression in clusters.

(C) Dendrogram illustrating cell clusters’ relatedness based on gene expression.

(D) Cell proportions of FB clusters.

(E) Milo beeswarm plot showing the differential abundance of cell types between Wound7 and Wound1. Blue and red dots indicate significantly decreased and

increased cell abundance, respectively.

(F) Deconvolution of fibroblast subpopulations in ST-seq. Donor 2 is shown.

(G) FISH images of ADAM12 expression (marker of mesenchymal FB) in skin and Wound30. Scale bar, 500 mm.

(H) Circos plot of top 50 cell-cell interactions between cell types (ligand) and migrating keratinocytes (receptor) in Wound7.

(I) UMAP of angiogenic subpopulations.

(J) Dot plot of marker gene expression in clusters.

(K) Deconvolution of endothelial populations in Wound7 ST-seq. Donor 1 is shown.

(legend continued on next page)
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shift from macrophages as primary influencers during the in-

flammatory phase to FBs playing a pivotal role in the prolifera-

tive phase (Figures 4K and 5H). Proliferating FBs increased

the production of growth factors such as HGF, FGF2, and

TGFb1 during the proliferative phase, boosting keratinocyte

motility63–65 (Figures 5H and 4L; Table S5). HGF also upregu-

lated FOSL1 expression in keratinocytes, a critical factor in

cell motility (Figure 4M; Table S5). Additionally, ST-seq revealed

close associations between FB-prolif and Bas-mig (niche 7), as

well as inflammatory macrophages (niche 13) at the wound

edge, highlighting FBs’ role in re-epithelialization (Figures 1F

and S2F). Thus, our findings suggest that pro-inflammatory

macrophages and FBs sequentially support keratinocyte

migration during different healing stages, functioning like a

relay race.

Macrophage interactions with FBs and endothelial cells
during wound healing
Our scRNA-seq analysis identified seven angiogenic cell types

in human acute wounds, including various endothelial cells

(lymphatic, arteriole, and capillary) and two venule endothelial

subsets, along with associated smooth muscle cells and peri-

cytes (Figures 5I and 5J; Table S4). Deconvolution of ST-seq

highlighted well-defined vascular structures formed by these

cells in the dermis (Figures 5K, S5K, and S5L). Post-injury,

cellular proportion and Milo analysis showed a decrease in

smooth muscle cells and lymphatic endothelial populations,

while capillary endothelial cells notably increased during the pro-

liferative phase, indicating active angiogenesis (Figures 5L and

5M). Additionally, ST-seq revealed close associations between

capillary endothelial cells, proliferating FBs, and pro-inflamma-

tory macrophages (niche 13) during the proliferative phase,

characterizing the newly formed granulation tissue (Figures 1F

and S2F).

During wound healing, macrophages interact with FB and

vascular endothelial cells (VE) at different stages.46 Cell-cell

crosstalk reveals that inflammatory macrophages dominate the

early stages (Wound1), while pro-resolution macrophages

become more active in later phases (Wound7, Wound30)

(Figures S5M and S5N). In Wound1, inflammatory macrophages

release CCL7 and IL1A/B, targeting VE and FB, respectively.

CCL7 activates inflammatory pathways, increasing vascular

permeability and immune cell infiltration,66,67 while IL1A/B pro-

motes FB proliferation, migration, and collagen and MMP pro-

duction.68 By day 7, TGF-b from Mac_inf and Mac3 act on VE,

and C1QB fromMac2 influences FB, promoting FB proliferation,

collagen synthesis, and angiogenesis.69–71 In Wound30, IGF-1

from Mac2 targets VE and FB, while ITGB2 and C1QB from

Mac2 and Mac_inf interact with FB, enhancing angiogenesis,

FB activation, myofibroblast differentiation, and wound

strength.72,73 Therefore, pro-inflammatory and pro-resolution

macrophages play key roles in wound repair by interacting

with keratinocytes, FBs, and endothelial cells.

Multi-facet pathological changes in chronic wounds
To advance our research on chronic wound pathology, we inte-

grated scRNA-seq data from acute human wounds with VUs

and DFU data28 (Figure 1G). We identified distinct pathological

changes between chronic wound types, differing by prognosis

and etiology.

We found significant reductions in migratory keratinocytes in

DFUs and their complete absence in VUs, correlating with re-

epithelialization failure in chronic wounds3,74 (Figure 6A). Consis-

tent with this, scRNA-seq data revealed fewer FOSL1+ keratino-

cytes in both DFUs and VUs compared with acute wounds, a

trend more evident at the protein level as shown by IF analysis

(Figures 6B and 6C). In a mouse model, increased FOSL1

expression was observed at the wound edges of normal mice

but not in diabetic (db/db) mice, indicating that FOSL1 deficiency

hinders re-epithelialization (Figure 6D). Unlike acute wounds,

where keratinocyte proliferation increases, non-healing DFUs

show reduced keratinocyte proliferation, while VUs display

highly proliferative keratinocytes at wound edges, consistent

with the hyperproliferative epidermis observed in VU edges75

(Figures S3C and S6A).

In human chronic wounds, we also analyzed cell-to-cell sig-

nals crucial for re-epithelialization, including CXCL1, EGFR li-

gands, and HGF. Analysis using single-cell data (Theocharidis

et al.7 and ours), bulk RNA-seq (GSE17466112), and microarray

data (GSE8017876) showed that CXCL1 was upregulated in

VUs, similar to acute wounds, but not in DFUs (Figures 6E–6G).

RT-qPCR confirmed these results, indicating higher CXCL1

levels in VUs and lower in DFUs (Figure 6H). Additionally,

scRNA-seq data demonstrated abundant EGF ligands and re-

ceptors expression in acute wounds, but this was reduced or

weakly induced in non-healing DFU and VU compared with

normal skin (Figure 6I). HGF and its receptorMET also displayed

low expression in DFUs, while in VUs, their levels were similar to

those in acute wounds (Figure 6I). Therefore, lacking FOSL1+

migrating keratinocytes in VUs may be linked to inadequate

EGF signaling, while diminished CXCL1, EGF, and HGF signals

may collectively hinder healing in DFUs.

Our research highlights the critical role of inflammation in tissue

repair.77 In contrast to the significant increase of pro-inflammatory

Mac, DC3, plasma cells, and Th cells in acute wounds, these cells

were notably scarce in DFUs and VUs. Specifically, VUs exhibited

a marked deficiency in pro-inflammatory macrophages (Figures

6J, 6K, and S6B). Although DFUs maintained similar proportions

of Mac_inf and Mac1 as acute wounds, their macrophages dis-

playedasignificant reduction ingeneexpressioncrucial for cellular

functions,46 such as cytokine signaling (CXCL1, CXCL5, and

CCL20), lipopolysaccharide (LPS) response, and oxidative stress

(Figure 6L). These findings suggest an impaired inflammatory

response in chronic wounds, which may revise the conventional

view of sustained inflammation in these conditions.78,79

Furthermore, we observed a notable absence of proliferating

and mesenchymal FBs in chronic wounds, suggesting a

(L) Cell proportions of angiogenic clusters.

(M) Milo beeswarm plot showing the differential abundance of cell types betweenwounds and skin. Significance was assessed using generalized linear modeling

on a quasi-binomial distribution (D and L), comparing other conditions to normal skin, *p < 0.05, **p < 0.01, ***p < 0.001.

See also Tables S4 and S5.
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Figure 6. Multi-facet pathological changes in chronic wounds

(A) Cell proportions of Bas-mig (upper) and Spi-mig (lower) in acute and chronic wounds. DFU_H/_NH, healed/non-healed diabetic foot ulcers; VU, venous ulcer.

(B) Bar charts of FOSL1+ cell proportion in total keratinocytes normalized to skin. The fold changes (FCs) or logFC of cell proportions normalized to their skin were

used in comparisons.

(legend continued on next page)
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deficiency in FB proliferation and a reduced mesenchymal stem

cell response80,81 (Figures 6M–6O). Neither DFUs nor VUs ex-

hibited the expected increase in VE_capillary cells characteristic

of the proliferative phase of acute wounds, suggesting impeded

angiogenesis, in line with previous studies82 (Figure 6P). Specif-

ically, VUs displayed increased venule endothelial cells, reflect-

ing the vascular abnormalities associated with chronic venous

insufficiency83 (Figure S6C).

Taken together, we identified critical pathological changes in

chronic wounds compared with acute wounds, including

compromised re-epithelialization, altered inflammatory re-

sponses, impaired granulation tissue formation, and hindered

angiogenesis. Notably, DFUs with better healing outcomes dis-

played less severe pathological changes, characterized by

increased presence of Bas-mig keratinocytes, inflammatory

macrophages, mesenchymal FBs, and enhanced CXCL1, EGF,

and HGF signaling, highlighting the critical role of these pro-

cesses in wound healing.

Comparison of human and murine skin wound healing
While studying cellular heterogeneity in skin wounds of mouse

models has enhanced our understanding of wound healing dy-

namics,23,84–87 human wound healing mechanisms differ signifi-

cantly due to variations in skin structure and healing pro-

cesses.88 To bridge this gap, we compared human and mouse

wounds by integrating scRNA-seq data from both species.18

We first compared our human Wound1 data with mouse acute

wounds at 3 days post-injury (Figures 7A and S7A), followed

by a broader comparison between our human time-course

data and a mouse scRNA-seq dataset at 2, 4, and 7 days

post-injury (PWD2, 4, 7)89 to better understand cross-species

wound healing dynamics (Figures S7C and S7D). We identified

similar cell types across species, such as migrating keratino-

cytes with shared markers like NRG1, IL24, FOSL1, AREG, and

GJB2, suggesting a conserved regulatory mechanism for kerati-

nocyte migration (Figures 7A–7C, S7D, and S7E; Table S6). We

have validated that FOSL1 was highly expressed in wound-

edge migrating keratinocytes in both human and mouse acute

wounds by IF staining (Figures 3L and S3K). Notably, recent

research has shown that IL-24, upregulated in epithelial stem

cells, promotes wound repair by enhancing re-epithelialization,

vascular regeneration, and FB activation, acting independently

of microbial and adaptive immune factors.90

Our scRNA-seq data reveal key structural differences be-

tween murine and human skin: humans have a thicker epidermis

with more spinous keratinocytes (integrated clusters 4–6), mice

possess abundant hair follicles (clusters 7 and 8), and a unique

panniculus carnosus structure (cluster 11 MYF6/Mrf4+)91

(Figures 7A, S7B, and S7D). These structural variances affect

wound healing mechanisms: mice primarily heal through panni-

culus carnosus contraction, whereas humans rely on re-epithe-

lialization and granulation tissue formation.92 Additionally, hu-

man wounds show a higher presence of mast cells (cluster 17),

aligning with findings of greater mast cell heterogeneity in hu-

mans than in mice93 (Figures 7A and S7D). Murine wounds

also have more proliferating cells at the G2/M phase of the cell

cycle, consistent with their more robust healing capabilities

(Figures 7D and S7F).

Beyond cellular composition, gene expression differences be-

tween mice and humans were even more striking (Figure 7E;

Table S6). For instance, migration-related genes such as

MMP1, S100A2/7/8/9, and SERPINB3/4 are highly expressed

in humans but barely in mice (Figures 7E, 7F, S7G, and S7I).

MMP1 supports human keratinocyte migration by breaking

down dermal collagen, a role filled by MMP13 in mice, indicating

species-specific proteolysis mechanisms for re-epithelializa-

tion.94,95 S100A proteins contribute to antimicrobial defense

and tissue repair,96 while SERPINB3/4 play a crucial role in ker-

atinocyte inflammatory responses.97 The distinct gene expres-

sions likely reflect differing adaptations to microbial threats.

Further, GO analysis of DEGs showed that human migrating ker-

atinocytes are enriched with genes related to mitochondrial ac-

tivity, which support wound healing functions such as energy

provision and inflammation regulation98 (Figure 7G; Table S6).

In contrast, murine migrating keratinocytes show a prolifera-

tion-focused gene expression, supporting their dual role in cell

proliferation and migration, as validated by FOSL1/MKI67 cos-

taining in murine wounds (Figures 7G, S3G, and S3K).33,34

Temporal changes in cell-type proportions during wound

repair in humans and mice show increases in proliferating

keratinocytes and FBs, migrating keratinocytes, plasma/B cells,

monocytes/macrophages, and neutrophils in acute wounds

(Figure S7H).

However, mesenchymal FBs (FB_I) increase over time in hu-

mans but decrease in mice, while T cells rise early in human

wounds and decline in mice during the initial healing stage.

Additionally, cell-to-cell communication during wound healing

differs between species. In human wounds, EGFR ligands are

produced by macrophages, dendritic cells, endothelial cells,

and migrating keratinocytes (Figure 4P), while in mouse wounds,

they are mainly expressed by keratinocytes and FBs, not im-

mune cells.99 IF analysis confirmed that EREG, an EGFR ligand,

is produced by both macrophages and keratinocytes in human

wounds, but primarily by keratinocytes in mouse wounds

(C) Immunofluorescence staining of FOSL1 (migrating keratinocyte marker), IL1b, and CD68 (pro-inflammatory macrophage markers) in human skin, acute, and

chronic wounds. DAPI stains the nuclei. Scale bars: 100 mm in low-magnification images and 20 mm in high-magnification images. The signal intensity of

epidermal FOSL1 was quantified.

(D–G) (D) Relative gene expression of Fosl1 in the epidermis of wild-type (WT) and diabetic (DB) mouse skin and wounds. n = 5. Boxplots showing CXCL1

expression in our ST-seq (acute wounds) and scRNA-seq (DFU and VU) datasets (E), public bulk RNA-seq data of skin and acute wounds from 5 donors and

5 VUs (F), and microarray data of skin (n = 6) and DFU (n = 6) (G).

(H) RT-qPCR of CXCL1 in human acute wounds from 7 donors, 16 VUs, and 27 DFUs.

(I–P) (I) Dot plot showing the fold changes of ligands and receptors of EGF and HGF signals in acute and chronic wounds normalized to the control skin. Cell

proportions of myeloid cells (J), lymphoid cells (K), proliferating FB (M), FB-I(POSTN+MMP11+) (N), FB-I(POSTN+COL11A1+) (O), and VE-capillary (P) in acute and

chronic wounds. (L) Dot plots showing scaled expression of DEGs between acute wounds and DFU in Mac_inf (upper) and Mac1 (lower).

Genes enriched in relevant GO terms were plotted. Significances were assessed using generalized linear modeling on a quasi-binomial distribution (A, B, J, K,

M–P), one-way ANOVA test (C and D), and Mann-Whitney U test (E–H), *p < 0.05, **p < 0.01, ***p < 0.001, n.s.: no significance.
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(Figure S7J). These findings underline the limitations of using

mouse models to study the human wound healing process.

Furthermore, our scRNA-seq dataset provides a unique plat-

form to investigate human-specific genes in wound repair, iden-

tifying two protein-coding genes (IL32 and ARHGEF35)100 and

49 non-conserved human long non-coding RNAs101 with cell-

type-specific expression in human wounds (Figure S7K).

Although most of these lncRNAs have demonstrated function-

ality in other tissues and diseases, their roles in skin and wound

healing remain to be further investigated.

In summary, our study shows that although humans and mice

share many wound-healing processes, there are significant dif-

ferences in cellular diversity and gene expression. This under-

scores the importance of assessing the clinical relevance of

mouse model data against the spatiotemporal roadmap of hu-

man skin wound healing our study provides.

HumanCell proportion Mouse

65

4

13

1

15 9

16
10

7

3

17

2

1412

18

8

11

Human acute wound Mouse acute wound
Integrated clusters

UMAP_1

U
M

AP
_2

Keratinocyte

Fibroblast

Melanocyte

Mast

Lymphoid

Myeloid

BA

C

F G

E

1

2

3
4

5

6

7

8
9
10

11
12
13
14
15
16
17
18

Bas−I

Bas−prolif

Bas−mig

Spi−I

Spi−II

Spi−mig

Gra
HF

MEL
FB−I
FB−II
FB−III

FB−prolif

Schwann

PC−vSMC
LE
VE

NK−cell
Th

Plasma_Bcell
Mast−cell

Mono−Mac
cDC1
cDC2
DC3

LC

Bas1

Bas2

Bas3
Bas4

Spi

Gra

HF1

HF2

HF3
HF4

Mel
Fb1

Fb2
Fb3
Mus1
Mus2

SG

EC1
EC2
gdT
Th
Mac
Lc

CD207

Integrated clusters

TPSB2
IL1B

CTSS
CD3D
VWF

CCL21
ACTA2

COL1A2
PDGFRA

DCT
SOX9
DSC1

KCNK7
KRT1

KRT16
KRT6B

GJB2
FOSL1
AREG

IL24
NRG1

CDC20
MKI67

COL17A1
KRT15

Conserved markers of integrated clusters

M
ig

ra
tin

g 
KC

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Percent 
Expressed

25
50
75
100

0.0

1.0

2.0

Average 
Expression

Im
m

un
e 

ce
lls

U
nd

iff
 K

C
s

D
iff

 K
C

s
En

do
H

F
M

EL
FB

 &
 S

M
C

Conserved migration gene signatures of keratinocytes

NRG1 IL24 AREG FOSL1 GJB2

Hu
m

an
M

ou
se

Muscle
Langerhans cell

SMC

Endothelium

S100A2

S100A7

F12

TNFSF10

IFI16

MMP1

SERPINB4

SERPINB3

S100A9

S100A8LGALS7

TPM2

SPRR1A

TRBC2

RBP2
PGAM4

MT1A
TMSB4Y

PABPC3

0

2

4

6

8

−10 −5 0 5 10 15
log2(fold change)

(Up in human)(Up in mouse)

M
ax

im
um

 D
EG

 e
xp

re
ss

io
n 

in
 m

ig
ra

tin
g 

cl
us

te
r 3

&4
 

PI15

-log2(qvalue +1)

Functional enrichment of biological process

Human Mouse

D

1
2
3
4

Hu
m

an
M

ou
se

Human specific migration gene signatures

S100A2 S100A7 S100A8 S100A9 MMP1 SERPINB3 SERPINB4

1
2
3
4
5

mitotic cell cycle phase transition
protein autophosphorylation

regulation of cell division
positive regulation of cell cycle

chromosome segregation
nuclear division

mitochondrial RNA metabolic process
tRNA processing

positive regulation of mitochondrial translation
mitochondrial gene expression

ncRNA processing
regulation of mitochondrial translation

0 10 20 30 40

Human Mouse

Cell cycle
phase

G1
G2M
S

UMAP_1

U
M

AP
_2

Figure 7. Comparison of human and murine

skin wound healing

(A) UMAP of integrated cell clusters from human

and mouse acute wounds. The top-left and top-

right plots show color-coded human and mouse

cell types separately. The Sankey diagram traces

the cellular assignments of integrated clusters from

the original human and mouse cell types, and the

pie chart reveals their contributions to each cluster.

SG, sweat gland cell; Mus, muscle cell; EC, endo-

thelial cell; gdT, gamma-delta T cell.

(B) Dot plot of conservedmarker gene expression of

integrated clusters. Undiff/Diff, undifferentiated/

differentiated KC; Endo, endothelium.

(C) Feature plots showing representative conserved

gene signatures of migrating keratinocytes.

(D) Cell cycle analysis in human and mouse wound

cells.

(E) Volcano plot showing DEGs in migrating kerati-

nocytes (clusters 3 and 4) between human and

mouse wounds. Red and blue dots represent up-

regulated genes in humans and mice, respectively.

The top 10 changed genes are highlighted.

(F) Feature plots showing representative human-

specific migration gene signatures.

(G) Lollipop chart showing enriched GO terms of

human- and mouse-DEGs in (E).

See also Table S6.

DISCUSSION

Wound healing involves intricate coordi-

nation of various cell types and molecular

signals, which have been primarily studied

in animal and in vitromodels. To better un-

derstand how these mechanisms apply to

humans, we utilized single-cell and spatial

transcriptomics in a unique in vivo human

wound-healing model. This innovative

approach allows us to trace the healing

process’s dynamics and cellular changes

with unprecedented precision and consis-

tency across an individual’s recovery.With

this spatiotemporal cell atlas of human

skin wound healing, we delve into re-

epithelialization, illuminating the cellular architecture of the hu-

man wound tongue, its gene regulatory networks, and the cell-

to-cell communication that promotes keratinocyte motility. The

study also highlights cellular and molecular discrepancies in

chronic wounds and identifies potential therapeutic targets.

This pivotal dataset is a vital resource for validating the relevance

of animal model findings and stimulates further research

into human wound healing mechanisms. To facilitate global

research collaboration and drive further discoveries, we have

made this groundbreaking roadmap of human skin wound heal-

ing accessible for interactive exploration online (https://www.

xulandenlab.com/tools).

Cell-to-cell communication signals are promising therapeutic

targets for enhancing tissue repair. Our study on human wounds

challenges established paradigms, particularly in ligand-receptor

signaling. Keratinocytes are pivotal in initiating immune responses
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through cytokines, chemokines, and growth factors, and their ac-

tivity varies with the stimulus and context.102 We identified IL18,

CCL27, and CXCL14 as the primary cytokines/chemokines pro-

duced by keratinocytes in acute human wounds (Figure S7L).

IL-18 is critical in starting inflammation during bacterial infec-

tions,103 CCL27 aids T cell-mediated inflammation103 and skin

regeneration,104 and CXCL14 recruits immune cells, inhibits

angiogenesis, and has antimicrobial properties.105,106 Despite

their significant roles, these cytokines are often overlooked in

wound repair studies. Additionally, some cytokines are produced

by specific keratinocyte clusters (Figure S7L). For example, basal

migrating keratinocytes express IL-20 and IL-24, targeting the IL-

22R receptor; granular keratinocytes produce IL36G and IL36RN,

supporting wound healing.107,108 Furthermore, our findings reveal

that, while IL1A/B/RN, IL6, and CXCL1/5/8 are commonly associ-

atedwith keratinocytes in vitro, in humanwounds in vivo, these cy-

tokines and chemokines are primarily produced bymacrophages,

dendritic cells, and FBs, not by keratinocytes (Figure S7L). This

insight challenges previous assumptions based on in vitro studies

and highlights the complexity of cellular interactions in actual

wound environments.

Many molecular signals have been previously reported to

regulate keratinocyte motility, and our study evaluated the phys-

iological relevance of these signals in human skin wound repair.

During the early inflammatory phase, keratinocytes initiate auto-

crine EGFR signaling, while pro-inflammatory macrophages

enhance cell migration by contributing additional EGFR and

CXCL1 signals. Although CXCL1 is typically associated with re-

cruiting inflammatory cells such as neutrophils, it also plays a

critical role in promoting keratinocyte migration,104 and blocking

its receptor, CXCR2, can impede re-epithelialization indepen-

dently of neutrophils.109 Our observations of reduced pro-inflam-

matory macrophage activity in chronic wounds align with the

longstanding theory that inflammation is essential for tissue

repair.77 The current perspective on inflammation in chronic

wounds is shifting from being viewed as persistently exces-

sive110 to dysfunctional, characterized by impaired monocyte

recruitment and macrophage and neutrophil dysfunction.111,112

Therefore, precise modulation of pathological inflammation,

rather than its inhibition, may be crucial for effective chronic

wound therapy.

Limitations of the study
Our study has some limitations. The Visum ST data lack single-

cell resolution. Higher-resolution ST needed in future studies

could shed light on the spatial arrangement of cell states at the

cellular or subcellular level. Additionally, our sampling of human

acute wounds at days 1, 7, and 30 post-injury captures key heal-

ing phases, but the limited time points may overlook transient

cell states and ephemeral cell-to-cell interactions; hence, a

higher temporal resolution would be advantageous. The

anatomical diversity of skin, recognized at histological,113 func-

tional,114,115 and gene expression levels,116,117 may influence

wound healing. Therefore, the different wound locations could

be a significant confounding factor in this study’s comparison.

Moreover, limited tissue availability and high costs of single-

cell and spatial omics technologies constrained the total cell

number in this study, potentially limiting the discovery of rare

cell types. Given the variability of human chronic wounds,

more extensive cohort studies and cross-dataset comparisons

are crucial to confirm our findings and aid in the molecular strat-

ification of complex chronic wounds.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

FOSL1 CellSignaling Technology Cat#5281;RRID:AB_10557418

p-FOSL1 CellSignaling Technology Cat#3880; RRID:AB_2106922

ERK CellSignaling Technology Cat#4695; RRID:AB_390779

p-ERK CellSignaling Technology Cat#4370; RRID:AB_2315112

GAPDH HUABIO Cat#ET1601-4; RRID:AB_3069615

Fra1 Polyclonal Antibody Thermofisher Cat#PA5-40361; RRID:AB_2609389

Alexa Fluor� 488 Mouse monoclonal [KP1] to CD68 Abcam Cat#ab222914

Anti-IL-1 beta antibody [OTI3E1] Abcam Cat#ab156791; RRID:AB_2890254

EREG Thermofisher Cat#PA5-46969; RRID:AB_2610406

MKI67 CellSignaling Technology Cat#9449; RRID:AB_2797703

S100A7 Abcam Cat#ab13680; RRID:AB_300557

EREG (Mouse) R&D Cat#AF1068; RRID:AB_2293459

F4/80 (Mouse) Santa Cruz Cat#sc-52664; RRID:AB_629466

MKI67 (Mouse) Thermo Fisher Cat#MA5-14520; RRID:AB_10979488

FOSL1 (Mouse) Novus Bio Cat#NBP1-47757; RRID:AB_10010724

S100A7 (Mouse) Boster Biological Technology Cat#A02369

Biological samples

Human wound samples Karolinska Institutet Biobank N/A

Human plastic surgery samples Karolinska Institutet Biobank N/A

Human venous ulcer samples Dermatology Hospital of Chinese

Academy of Medical Sciences

N/A

Mouse wound samples (WT and DB) Cyagen Biosciences N/A

Chemicals, peptides, and recombinant proteins

Dynabeads� MyOne� Streptavidin C1 Thermo Fisher 65001

Pierce� Protein A/G Magnetic Beads Thermo Fisher 88802

Pierce� 16% Formaldehyde (w/v), Methanol-free Thermo Fisher 28906

Glycine Sigma-Aldrich 50046

ProLong� Diamond Antifade Mountant with DAPI Thermo Fisher P36966

TRIzol� Reagent Thermo Fisher 15596018

Red Blood Cell Lysis Solution Miltenyi Biotec 130-094-183

EpiLife� Medium, with 60 mM calcium Thermo Fisher MEPI500CA

Human Keratinocyte Growth Supplement (HKGS) Thermo Fisher S0015

DMEM, high glucose Thermo Fisher 11965092

TritonX100 Merck X100-100ML

Dispase II, powder Thermo Fisher 17105041

Recombinant Human TNF-alpha Protein R&D Systems 210-TA-020

BSA Merck 10711454001

Pierce� IP Lysis Buffer Thermo Fisher 87787

Recombinant Proteinase K Solution (20 mg/mL) Thermo Fisher AM2546

2x Laemmli Sample Buffer Bio-Rad Laboratories 1610737EDU

AREG (20ng/mL) Novoprotein CG04

TGFalpha (20ng/mL) SinoBiological 11252-HNAE

HB-EGF (20ng/mL) SinoBiological 10325-HNAB

HGF (20ng/mL) Novoprotein CJ72
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ANGPTL4 (500ng/mL) Novoprotein CW53

EREG (20ng/mL) GenScript Z02865

APRIL (TNFSF13) (500ng/mL) Novoprotein Cat. No.:CU89

CXCL6 (20ng/mL) Novoprotein C598

ADAM17 (50ng/mL) Proteintech Ag32418

LTB (20ng/mL) Abmart RKRB5609S

CXCL1 (20ng/mL) Novoprotein C597

CXCL5 (20ng/mL) Novoprotein CF14

IL1B (20ng/mL) Novoprotein CG93

Critical commercial assays

Whole Skin Dissociation Kit, human Miltenyi Biotec 130-101-540

Dead Cell Removal Kit Miltenyi Biotec 130-090-101

Pierce� RNA 3’ End Desthiobiotinylation Kit Thermo Fisher 20163

Chromium Next GEM Single Cell 3ʹ Reagent
Kits v3.1, 16 rxns

10X Genomics PN-1000268

Chromium Next GEM Chip G Single Cell Kit, 48 rxns 10X Genomics PN-1000120

Dual Index Kit TT Set A 10X Genomics PN-1000215

RNAscope� Multiplex Fluorescent Reagent Kit v2 Advanced Cell Diagnostics, Inc 323100

Visium Spatial Gene Expression Slide & Reagents Kit 10X Genomics 1000187

Visium Spatial Gene Expression Starter Kit 10X Genomics 1000200

Visium Spatial Tissue Optimization Slide & Reagents Kit 10X Genomics 1000193

RevertAid First Strand cDNA Synthesis Kit Thermo Fisher K1622

Power SYBR� Green PCR Master Mix Thermo Fisher 4368708

TaqMan� Universal PCR Master Mix Thermo Fisher 4304437

Deposited data

Human skin acute wound single-cell RNA-seq data This paper GEO: GSE241132

Human venous ulcer single-cell RNA-seq data This paper GEO: GSE265972

Human skin acute wound spatial transcriptomics data This paper GEO: GSE241124

Mouse wound data (UW+PWD3) This paper GEO: GSE218430

Mouse wound data (UW+PWD2+PWD4+PWD7) Cai et al.89 GSA: CRA010641

Single-cell RNA-seq datasets from human healthy

adult skin and inflamed skin diseases

Reynolds et al.20 E-MATB-8142

Diabetic foot ulcers single-cell RNA-seq data Theocharidis et al.7 GEO: GSE165816

Human acute wound skin bulk RNA-seq data Liu et al.12 GEO: GSE174661

Experimental models: Cell lines

Human Epidermal Keratinocytes, adult (HEKa) Thermo Fisher C0055C

Oligonucleotides

FISH probe: MMP3 ACD company #403421

FISH probe: KRT6B ACD company #805641

FISH probe: ADAM12 ACD company #432561

qPCR primer: FOSL1 Sangon Forward: TGACCACACCCTCCCTAACTC

qPCR primer: FOSL1 Sangon Reverse: CTGCTGCTACTCTTGCGATGA

qPCR primer: CXCL1 IDT Hs.PT.58.39039397

qPCR primer: GAPDH IDT Hs.PT.39a.22214836

siRNA: siFOSL1 GenePharma Sense: GAGGGCAGCUGCUAUUUAUTT

siRNA: siFOSL1 GenePharma Antisense: AUAAAUAGCAGCUGCCCUCTT

Software and algorithms

CellRanger v5.0.1 10X genomics https://www.10xgenomics.com/support/

single-cell-gene-expression
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human wound sample collection
Five healthy volunteers were enrolled at the Karolinska University Hospital, Stockholm, Sweden. Three full-thickness skin wounds

were created on the upper buttock area of each donor using a 4-mm biopsy punch. Wound edge tissues were collected on days

1, 7, and 30 using a 6-mm biopsy punch. The samples were transferred to the laboratory for single-cell RNA sequencing (10X Ge-

nomics) or snap-frozen for spatial transcriptomics (10X Genomics). Written informed consent was obtained from all donors for the

collection and use of tissues for research. This study was approved by the Stockholm Regional Ethics Committee and conducted

according to the Declaration of Helsinki’s principles.

Venous ulcer samples and age- and body-location-matched healthy control samples from nine donors were collected at the

Dermatology Hospital of Chinese Academy of Medical Sciences, Nanjing, China. Patients with apparent soft tissue infections or

requiring systemic antibiotic treatment were excluded. After obtaining written informed consent from the patients, chronic wound

edge tissue samples were collected using a 4-mm biopsy punch following a local lidocaine injection. This study was approved by

the Ethics Committee of Institute of Dermatology, Chinese Academy of Medical Sciences (Ethic permission number: 2021-KY-059).

Mice wound sample collection
C57BL/6J wild-type mice were obtained from Charles River Laboratories (Sulzfeld, Germany) and housed under pathogen-free con-

ditions at the Comparative Medicine Biomedicum (KMB) facility, Karolinska Institutet. They were maintained under standard condi-

tions with free access to food and water, a 12-hour light/dark cycle, controlled temperature (20-22�C), and humidity (40-60%). Mice

aged 8–10 weeks were used for the experiments, approved by the Swedish Board of Agriculture’s Committee on Animal Experimen-

tation (Jordbruksverket).

Prior to wounding, 8-week-old mice with back skin in the telogen (resting) phase of the hair cycle were shaved and treated with

depilatory cream. A 4-mm full-thickness wound, extending through the panniculus carnosus, was created on the back using a biopsy

punch. Post-surgery, mice were housed individually to prevent interference. Buprenorphine (0.03 mg/kg, subcutaneous) was admin-

istered twice daily for the first two days to manage pain. On day 3 post-wounding, wound-edge and intact skin samples (at least

1.5 cm from the wound) were collected using a 6-mm biopsy punch for single-cell sequencing.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Spaceranger v1.2.0 10X genomics https://www.10xgenomics.com/support/

software/space-ranger

R v4.1.1 and v4.2.3 R Core Team https://www.r-project.org/

RStudio Posit https://posit.co/download/rstudio-desktop/

Seurat v4 Hao et al.18 https://github.com/satijalab/seurat/

Scrublet v0.2.3 Wolock et al.16 https://github.com/swolock/scrublet

DoubletFinder v2.0.3 McGinnis et al.17 https://github.com/chris-mcginnis-ucsf/

DoubletFinder

Harmony v0.1 Korsunsky et al.28 https://github.com/immunogenomics/harmony

Canonical correlation analysis (CCA) Butler et al.118 https://github.com/satijalab/seurat/

MiloR v1.6.0 Dann et al.29 https://github.com/MarioniLab/miloR

pySCENIC v0.11.2 Aibar et al.35 https://scenic.aertslab.org/

CellOracle v0.10.14 Kamimoto et al.39 https://github.com/morris-lab/CellOracle

scikit-learn python package (Gaussian Mixture Model) https://scikit-learn.org/stable/ https://scikit-learn.org/stable/

Monocle3 Cao et al.119 https://cole-trapnell-lab.github.io/monocle3

CellRank v1 Lange et al.61 https://cellrank.org

clusterProfiler v4 Wu et al.120 https://github.com/YuLab-SMU/clusterProfiler

MultiNicheNet Browaeys et al.53 https://github.com/saeyslab/multinichenetr

CellChat (v1.4.0) Jin et al.59 https://github.com/sqjin/CellChat

Cell2location Kleshchevnikov et al,27 https://github.com/BayraktarLab/cell2location/

AutoGeneS Aliee and Theis121 https://github.com/theislab/AutoGeneS

Cytoscape v3.8.2 Shannon et al.122 https://cytoscape.org/

Image J NIH https://imagej.nih.gov/ij

BioRender https://www.biorender.com https://www.biorender.com

Custom code This study https://doi.org/10.5281/zenodo.14176654
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METHOD DETAILS

Human and mouse single-cell RNA sequencing
We followed the same protocol to prepare single-cell suspensions from human and mouse skin and wound samples. Briefly, tissues

were incubated in 5 U/ml Dispase II at 4�C overnight. The epidermis was then gently separated from the dermis and incubated in

0.025% Trypsin/EDTA (Thermo Fisher) for 10-15 minutes at 37�C. The dermal cell suspension was prepared using the Whole Skin

Dissociation Kit (Miltenyi Biotec) per the manufacturer’s instructions. To capture a broad range of cell types, equal amounts of

epidermal and dermal cells were mixed. Red blood cells and dead cells were removed using the Red Blood Cell Removal Solution

and Dead Cell Removal Kit (both fromMiltenyi Biotec). After purification, viable cells were loaded onto the Chromium Controller (10X

Genomics) for single-cell encapsulation and cDNA library generation using the Chromium Next GEM Single Cell 3ʹ Reagent Kits v3.1
(103 Genomics). Libraries were sequenced on an Illumina NovaSeq6000 platform, with an average of 50K read-pairs per cell.

Spatial transcriptomic sequencing
Fresh frozen skin and acute wound tissues were embedded in the Optimal Cutting Temperature compound (OCT, Sakura Tissue-

TEK) on dry ice. Sections were fixed in methanol and imaged after hematoxylin and eosin (H&E) staining to assess the morphology

and quality of the tissues. The optimal permeabilization time for wound sections was determined to be 15minutes following the man-

ufacturer’s instructions (10x Genomics, Visium Spatial Tissue Optimization). Spatial gene expression libraries from 16 wound skin

sections were then generated according to the instructions of the Visum Spatial Gene Expression Kit from 10X Genomics. The li-

braries were sequenced using the Illumina NovaSeq6000 platform to generate approximately 150 M read-pairs per section.

Human scRNA-seq data processing
The single-cell sequence data were mapped with CellRanger (version 5.0.1) to a manually built human reference genome GRCh38

with the annotation file GENCODE version 38. The raw gene expression matrix contained 65,462 cells and 27,973 genes. The low-

quality cells expressing <500 genes, >20%mitochondrial genes, and <1000 gene counts were filtered out. Mitochondrial and hemo-

globin genes, as well as genes expressed in fewer than ten cells, were excluded. Potential doublets were detected using Scrublet16

(v0.2.3) and DoubletFinder17 (v2.0.3). Cells identified as doublets by both tools or those in clusters with multiple distinct cell type

markers were excluded. In total, 58,823 cells and 25,778 genes from 12 samples of acute wounds were retained for downstream

analysis.

Data normalization and scaling were performed using the SCTransform123 package, regressing out mitochondrial percentage and

cell cycle effects. Cell cycle analysis was conducted using the CellCycleScoring function based on the normalized gene expression.

The top 4000 variable genes were used for principal component analysis (PCA). During data integration, sample-to-sample batch

effects were corrected using top 40 PCs as input for the RunHarmony28 function. Uniform Manifold Approximation and Projection

(UMAP) and k-nearest neighbors graph were generated using the RunUMAP and FindNeighbors functions in Seurat18 (v4), respec-

tively. Major cell clusters were identified using the Louvain graph-based algorithm with a resolution of 0.8, resulting in 27 clusters.

Differentially expressed genes among clusters were calculated using the FindAllMarkers functions with the MAST method. Genes

with adjusted Pvalue<0.05, log fold change>0.25, and detected in at least 25 percent of cells were considered significantly high

in the cluster. Clusters were annotated based on each cluster’s top marker genes ranked by fold changes and well-documented

signature genes of distinct cell types.

Before sub-clustering analysis, cells of low-quality keratinocyte cluster Bas-II frommajor clusters were filtered out. Subpopulation

analyses of keratinocytes, fibroblasts, angiogenic cells, myeloid cells, and lymphoid cells were performed individually using the same

pipeline as for major cluster identification, including normalization, variable feature selection, batch correction, dimensionality reduc-

tion, and unsupervised clustering, but with a resolution of 0.5.

Neutrophil analysis was performed using unfiltered count matrices of samples after running CellRanger. Cells with fewer than 100

expressed genes were filtered out, retaining only those not included in the above analysis. Initial neutrophils were selected based on

the expression profiles of well-known markers (FCGR3B, CMTM2, CXCR2, PROK2, LINC01506).42 Cells were further filtered after

clustering analysis based on the neutrophil scores of each cluster. The refined neutrophils were extracted and re-ran the normaliza-

tion, scaling, and clustering steps with a resolution of 0.3.

Mouse single-cell sequencing data processing
The mouse single-cell data were processed using a protocol similar to the one used for human data. Raw sequencing data were

analyzed with the 103 Cell Ranger (v5.0.1) pipeline, which included demultiplexing, alignment to the GRCm39 (mm39) mouse

genome, barcode counting, and unique molecular identifier (UMI) quantification. Predicted doublets were removed based on Scrub-

let analysis. The filtered feature-barcode matrices were further processed using the Seurat pipeline. Cells expressing fewer than 500

genes, fewer than 1000 UMIs, or more than 10% mitochondrial genes, as well as mitochondrial, hemoglobin, ribosomal genes, and

genes expressed in fewer than 10 cells, were excluded. Data normalization was performed using SCTransform. Principal component

analysis (PCA) was applied to the top 4000 variable genes, and the first 40 principal components (PCs), as determined by ElbowPlot,

were used in the RunHarmony function to correct for batch effects across libraries. Uniform manifold approximation and projection

ll
OPEN ACCESS Resource

e4 Cell Stem Cell 32, 1–20.e1–e8, March 6, 2025

Please cite this article in press as: Liu et al., Spatiotemporal single-cell roadmap of human skin wound healing, Cell Stem Cell (2024), https://doi.org/
10.1016/j.stem.2024.11.013



(UMAP) plots were generated using RunUMAPwith the first 40 harmonized PCs. Clustering was performed using FindNeighbors and

FindClusters with a resolution of 0.8, and cluster markers were identified with FindAllMarkers. Cell types were annotated based on

known signature genes from previous studies.

Differential abundance testing with Milo
We tested for differential cell-state abundances of subpopulations across wound healing using the MiloR package (v1.6.0).29 Spe-

cifically, a K-nearest neighbors (KNN) graph was built using the graph ‘HARMONY’ slot from the adjacency matrix of the processed

Seurat object with the parameters: k = 40 and d=30. Cells were assigned to the neighborhoods based on the KNN graph using the

‘makeNhoods’ function (prop=0.1). To explore variations in cell counts between neighboring wound healing points (pairwise compar-

isons), cells from each sample in each neighborhood were counted. Differential neighborhood abundance testing was performed us-

ing a generalized linear model (GLM). Differentially abundant cell neighborhoods with SpatialFDR % 0.1 were plotted using the

‘plotNhoodGraphDA’ function.

SCENIC and CellOracle analyses
The pySCENIC (v0.11.2)35 was utilized to investigate the role of transcriptional regulators in human skin wound healing, following the

package’s tutorial. Raw count expression matrices of cell types were first prepared to construct co-expression modules between

transcription factors (TFs hg38) and potential target genes ranked by importance. Modules showing significant motif enrichment re-

mained, and TFs with directed targets in these modules were defined as regulons. Each regulon was then assigned an activity score

using the AUcell function. The top 5 regulons for each cell type were highlighted based on the scaled activity Z-scores across other

cell types. The regulon network was visualized using Cytoscape122 (v3.8.2) software.

In silico TF perturbation of gene regulatory networks (GRNs) was performed using CellOracle (v0.10.14)39 package. Based on a

pre-built GRN of human (hg38) from curated transposase-accessible chromatin with sequencing (ATAC-seq) data, we simulated

cell identity shifts in response to TF FOSL1 knockout and overexpression, setting the expression value to 0 and 2, respectively.

The simulated overexpression value exceeded the detected gene expression. Subsequently, we compared the simulated TF pertur-

bation vector field with the natural development vector field by calculating the perturbation score (PS). Positive and negative PSs

denoted the promotion and inhibition of cell differentiation, respectively.

Trajectory analysis of keratinocytes and fibroblasts
To infer the differences in epidermal cell trajectories between intact skin and wound conditions, we separated all keratinocytes into

wound and non-wound cells using a Gaussian mixture model (GMM) in the ‘scikit-learn’ Python package.124 We first filtered out cells

that did not express KRT6A, a strongmarker of wound-induced cells.30,31 The positive cells were categorized into ‘0’ and ‘1’ classes,

representing low- (KRT6Adim) and high-expressing (KRT6A+) cells. The wound cells comprised KRT6A+ cells, while the rest of the

keratinocytes (KRT6Adim/KRT6A-) were defined as non-wound cells. Pseudotime trajectory analysis of wound and non-wound ker-

atinocytes was performed using Monocle3119 package. The basal cell cluster (Bas-I) was selected as a starting point of the pseudo-

time trajectory. The differentially expressed driving genes along the trajectory were determined using Moran’s I test in the ‘graph_t-

est’ function, with the filtering criteria: q_value<0.00001 and morans_I>0.25.

RNA velocity analysis of fibroblasts was carried out using the CellRank (version 1)61 package, which predicted the cell differenti-

ation trajectory and its directionality based on the spliced and unsplicedmRNA content. The initial and terminal states were identified

using a deterministic mode in ‘cr.tl.initial_states’ and ‘cr.tl.terminal_states’ functions.

Gene ontology analysis
Gene ontology (GO) analysis of all gene clusters was computed using the Fisher exact test in the clusterProfiler120 package. GO bio-

logical process (BP) terms were filtered by the adjusted Pvalue<0.05 and enriched gene count>5.

M1 and M2 signature
Pro-inflammatory macrophage (M1) and anti-inflammatory macrophage (M2) signatures were derived from Table 1 published by

Martinez et al.45 Those in commonwith topmarker genes of macrophage clusters were used to calculate theM1- andM2-like scores

using the ‘AddModuleScore’ function in the Seurat package.18

Cell-to-cell communication analysis
To study putative cell-cell interactions across the wound healing process, we used theMultiNicheNet53 R package to infer the ligand-

receptor pairs in the acute wound scRNA-seq dataset. The MutiNicheNet is a framework based on prior knowledge of ligand-recep-

tor and ligand-target networks (version 2) that better explores cell-cell communications from multi-sample, multi-condition scRNA-

seq data. Significant ligand-receptor pairs between cell types were determined by the high expression of each pair, as well as

differentially expressed target genes of ligands in receiving cell types of different conditions, using the ‘multi_nichenet_analysis’ func-

tion with criteria: min_cells=10, logFC_threshold=0.50, p_val_threshold=0.05, fraction_cutoff=0.05, top_n_tatget=250.

In addition, we applied the CellChat59 package to perform differential signaling changes within basal and spinous migrating ker-

atinocytes between intact skin andwound conditions. Cells from each conditionwere imported into theCellChat analysis individually.

The major signaling contributors of each cell type were calculated based on signaling network likelihoods using the
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‘netAnalysis_computeCentrality’ function with a threshold of p-value<0.05. The differential outgoing and incoming interaction

strengths of each cell population in the cell-cell communication network between the two conditions were computed using the ‘ne-

tAnalysis_signalingRole_scatter’ function.

ST-seq data processing
Spatial sequencing data of human acute wounds wasmapped to the GRCh38 human genome using Space Ranger (v1.2). Spots with

less than 100 genes expressed and in low-quality clusters were excluded. We also filtered out MALAT1, mitochondrial, and hemo-

globin-related genes. In total, 22,915 spots and 36,578 genes from 16 sections remained. The data normalization and batch correc-

tion were performed using SCTransform123 and Harmony,28 respectively. Dimensionality reduction, clustering (res=0.5), UMAP, and

differentially expressed genes (DEGs) were carried out using the Seurat (v4)18 package. Spot clusters were annotated based on

DEGs and markers of distinct cell types from scRNA-seq. Spatial cell type distribution and gene expression were visualized using

the ‘SpatialDimPlot’ and ‘SpatialFeaturePlot’ functions, respectively.

Pseudobulk analysis of scRNA-seq and ST-seq
To examine the sample or donor heterogeneity in scRNA-seq and ST-seq, we performed the similarity analysis using the gene counts

generated from converting the gene expression of single-cell and spatial data to pseudobulk sequencing data. The principal compo-

nent and distance among samples were calculated using the R DESeq2 package.125 Pseudobulk differential expression analysis was

carried out using DESeq2125 and limma126 R packages. Significantly expressed genes were defined with avg_log2FC > 1 and p_val-

ue_adj < 0.05. The top 500 (ranked by fold changes) significant DE genes were used for GO analysis.

Deconvolution of ST-seq data and wound bulk RNA-seq data
To spatially map wound cell states defined by scRNA-seq data profiles in the Visum data, we used the Cell2location27 package. In

brief, we trained a negative binomial regression model to estimate reference transcriptomic signatures based on each cell type’s top

100marker genes profiled by scRNA-seq. We estimated the abundance of every cell type in each Visum spot using the inferred refer-

ence cell type signatures by decomposing spot mRNA counts. All parameters were set to default except for two: 1) the expected cell

abundance (N_cells_per_location=20) determined by approximately counting the average numbers of nuclei of each spot in H&E im-

ages, and 2) regularisation of per-location normalization (detection_alpha = 20) to account for large variations in RNA detection sensi-

tivity across different spots on Visium slides. The posterior distribution of cell abundance for each cell type in each spot was sum-

marized as 5% quantile, representing high confidence, which was used for visualization and colocalization analysis. To identify

microenvironments of spatial co-occurrence of cell types, we performed a non-negative matrix factorization (NMF) analysis of the

high-confidence cell type abundances, setting the number of factors to R=15. A cell type was considered localized in a microenvi-

ronment if its fraction was over 0.1.

Bulk RNA sequencing data of intact skin and wounds (Day 1 and Day 7 post-wounding) from our previous study12 (GSE174661)

was deconvoluted using the AutoGeneS121 package. Centroids of cell typeswere first constructed from our scRNA-seq data of acute

wounds using the top 4000 highly variable genes and distinct makers of each cell type. The bulk data was then deconvoluted based

on these centroids using a regression method of Nu-support vector machine (Nu-SVR).

Venous ulcer scRNA-seq analysis
scRNA-seq data from cells with <500 genes expressed, >20% mitochondrial genes, or <1000 gene counts were excluded. After

quality control, a total of 48,346 cells from four venous ulcers (VU) and five matched healthy controls were analyzed using the

same workflow and criteria as for acute wound scRNA-seq.

Integration of wounded skin scRNA-seq datasets
We retrieved public scRNA-seq datasets of healthy adult skin from Reynolds et al.20 (2021, E-MTAB-8142) and diabetic foot ulcers

(DFU) from Theocharidis et al.7 (2022, GSE165816). For the DFU scRNA-seq, we included 9 healthy controls and two subgroups of

DFU patients: thosewho healed the ulcers (Healer, DFU_H n=7) and thosewho failed to heal within 12weeks post-surgery (Non-heal-

er, DFU_NH n=4). Data integration across different scRNA-seq datasets, including acute wounds, VU, DFU, and human adult skin,

was carried out using the Harmony28 algorithm, setting each sample as a group variable.

Cell label transfer was performed using the ‘FindTransferAnchors’ and ‘MapQuery’ functions in Seurat,18 setting the cell types

generated from our acute wound dataset as a reference. The average predicted scores of each cell type were used to assess the

correlation of cell types across different scRNA-seq datasets. Furthermore, we refined cell labels using integrated unsupervised clus-

tering results, resolving ambiguous assignments by aligning them with the majority cell type in each population to enable a precise

comparison of cellular heterogeneity between acute and chronic wounds.

Cross-species comparison of human and mouse wound healing
To compare human and mouse wound healing, we integrated scRNA-seq data of human and mouse acute wounds at the inflamma-

tory phase (GSE218430) using canonical correlation analysis (CCA). Before integration, we sampled the same number of cells from

each sample in both datasets. The overlapped homologous genes of humans and mice were kept for integration. CCA118 in Seurat

(v4)18 was used to integrate the human and mouse scRNA-seq datasets using the top 3000 variable genes and each sample as an
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integration anchor. The dynamic changes of cellular proportions of human-mouse joint clusters were traced according to the original

cell-type assignments using the Sankey diagram. Conserved markers of integrated clusters were identified using the Seurat ‘Find-

ConservedMarkers’ function. Differential expression analysis between human and mouse migrating keratinocytes was performed

using the MAST test in Seurat ‘FindMarkers’ function.18 Functional enrichment of DEGs in humans and mice was carried out using

clusterProfiler,120 and the top 6 significant BP terms (adjusted Pvalue<0.05 and enriched gene count>5) were plotted. Cross-species

comparison ofmigration and proliferation scores in integratedmigrating and proliferating clusters was calculated based on the top 10

conserved marker genes across species using the Seurat ‘AddModuleScore’ function.

To further investigate the dynamic spatiotemporal changes across human and mouse wound healing, we used another publicly

available mouse wound data89 (accession number: GSA: CRA010641) that contained the unwounded skin (UW), post-wounding

day 2, 4, and 7 (PWD2, PWD4, PWD7). After sampling the cell numbers for each condition across species, the integrated data

were analyzed using the same pipeline as above described.

Human-specific coding and non-coding genes were retrieved from previous literature,100,101 and their expression was visualized

using the Seurat ‘DoHeatmap’ function.

Fluorescent in situ hybridization (FISH)
Probes for MMP3, KRT6B, and ADAM12 (Hs-MMP3:#403421, Hs-KRT6B:#805641, Hs-ADAM12:#432561) were designed by

Advanced Cell Diagnostics (ACD) in Silicon Valley, CA. Human skin andwound slides were prepared according to themanufacturer’s

instructions. After fixation and dehydration using 50%, 70%, and 100% ethanol, the slides were treated with Protease IV (ACD) and

incubated at room temperature for 30minutes. Subsequently, the slides were incubated with the probes for two hours at 40 �C, using
the HybEZ� II Hybridization System and the RNAscope�Multiplex Fluorescent Reagent Kit v2 (ACD). The hybridization signals were

amplified per the manufacturer’s instructions and captured using a Zeiss Axio Scan Z1 slide scanner.

Immunofluorescence staining and microscopy
Paraffin-embedded tissue sections were deparaffinized and rehydrated using xylene and a series of graded ethanol solutions. An-

tigen retrieval was performed in citric acid buffer (10 mM, pH 6.0). The sections were then blocked with 2.5% bovine serum albumin

(BSA) in Tris-buffered saline with 0.1% Tween-20 (TBST). Next, the sections were incubated overnight at 4�Cwith primary antibodies

specific to the anti-human FOSL1 (1:100 dilution, Thermofisher, #PA5-40361), anti-human IL1b (1:150 dilution, Abcam, ab156791),

anti-human CD68 (1:100 dilution, Conjugated with Alexa Fluor� 488, Abcam, ab222914), anti-human EREG (1:200 dilution,

ThermoFisher, PA5-46969), anti-human MKI67 (1:400 dilution, CST, 9449) and anti-human S100A7 (1:200, Abcam, ab13680),

anti-mouse EREG (1:100 dilution, R&D, AF1068), anti-mouse F4/80 (1:150 dilution, Santa Cruz, Sc-52664), anti-mouse MKI67

(1:150 dilution, Thermo Fisher, MA5-14520), anti-mouse FOSL1 (1:110 dilution, Novus Biologicals, NBP1-47757) and anti-mouse

S100A7 (1:200, Boster Biological Technology, A02369). After primary antibody incubation, the sections were treated with Alexa Fluor

555 Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed secondary antibody (cat. A-31572, ThermoFisher Scientific) or Goat anti-

Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 647 (cat. A-32728, ThermoFisher Scientific) or Alexa

Fluor� 488 Donkey anti-Rat IgG (H+L) Highly Cross-Adsorbed secondary antibody (A-21208, ThermoFisher Scientific) or Alexa

Fluor� 555 Donkey anti-Goat IgG (H+L) Cross-Adsorbed Secondary Antibody (A-21432, ThermoFisher Scientific) diluted at

1:1000 in TBST. To visualize cell nuclei, we counter-stained the sections with DAPI and mounted them using an anti-fading polyvinyl

alcohol mounting medium (ThermoFisher Scientific). Immunofluorescence staining was observed using a Confocal fluorescence

microscope.

RNA extraction and qRT-PCR
Total RNA was isolated from human in vivo wounds using the miRNeasy mini kit (Qiagen), followed by cDNA synthesis using the

RevertAid First Strand cDNA Synthesis Kit (ThermoFisher Scientific). Specific premixed primers and probes for CXCL1 and

GAPDH were designed by Integrated DNA Technologies (IDT, Leuven, Belgium). Gene expression levels were quantified using

TaqMan expression assays (ThermoFisher Scientific) and normalized to the housekeeping gene GAPDH. The comparative 2-DDCT

method was used for gene expression quantification, and all reactions were conducted on QuantStudio 6 or 7 platforms (Applied

Biosystems, Waltham, MA).

Keratinocyte culture, treatment, RNA extraction, and qRT-PCR
Human adult primary keratinocytes (Lifeline�Cell Technology) were cultured in DermaLife Basal Medium supplement with DermaLife

K LifeFactors� Kit and antibiotics [penicillin (100 U/ml), streptomycin (100 U/ml); Thermo Fisher Scientific] at 37�C, 5% CO2. For

keratinocyte treatment, the cells were plated into 24-well plates and treated with growth factors or cytokines as described in the

key resources table when reaching about 70% confluency. After incubation with growth factors or cytokines for 24 hours, cells

were lysed in RNAiso Plus (Takara,9109). RNA was isolated and reverse transcribed into complementary DNA using

PrimeScript� RT Master Mix (Takara, RR036A) according to the manufacturer’s instructions. qRT–PCR was performed using TB

Green� Premix Ex Taq� II (Tli RNaseH Plus) (Takara, RR820A) on a Roche LightCycler�96 system. GAPDHwas used as the internal

control. Results were normalized to the internal control, and the comparative 2-DDCT method was used to quantify gene expression.
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Cell migration assay
Keratinocytes were plated into 6-well plates and treated with growth factors or cytokines as described in the key resources table

when reaching about 70% confluency. After incubation with growth factors or cytokines for 24 hours, cells (95-100% confluency)

were scratched using a 200ul pipette tip. The cells were cultured in a supplement-free medium and allowed to grow for 24 hours.

Cell images at 0 h and 24 h were taken under a microscope at a magnification of 3 10. The cell migration rate was analyzed by

measuring the healed area of the scratch using the Image J software.

Western blotting
Primary keratinocytes were plated into 6-well plates and incubated for at least 24 hours. When they reached about 70% confluency,

cells were treated with 20mM U0126 or DMSO for 30 minutes, and then 2 ng/mL CXCL1 was added and incubated for the indicated

time. Cells were lysed by RIPA lysis buffer (P0013C, Beyotime) supplemented with protease and phosphatase inhibitors on ice for

10 minutes, and the cell debris was removed by centrifugation at 12,000 rpm at 4�C for 5 minutes. The lysate was boiled with

SDS loading buffer, and equal amounts of protein were loaded onto 4-20% precast polyacrylamide gels (Tanon, 180-9110H) and

then transferred onto nitrocellulose membranes (Pall Corporation, 66485). The membrane was blocked with 5% non-fat powdered

milk in tris-buffered saline with tween-20 (TBST). After blocking, themembranewas incubatedwith primary antibodies (1:1000) at 4�C
overnight, washed with TBST, and incubated with HRP-labeled goat anti-rabbit secondary antibody (1:2000) (Cell Signaling Tech-

nology, 7074). Protein bands were visualized using Clarity�Western ECL Substrate (Bio-Rad Laboratories, 170-5061). The density

of protein bands was quantified using ImageJ software. GAPDH served as the loading control.

QUANTIFICATION AND STATISTICAL ANALYSIS

Softwares and statistics
The tool used to visualize acute wound scRNA-seq was adapted from the R package ShinyCell.127 The visualization tool for the

spatial data was created using the WebAtlas pipeline.128 The workflow and schematic summary of this study were created using

BioRender. Statistical significances in migration assay and immunofluorescence staining quantification between groups were deter-

mined using either a two-tailed Student’s t-test or ANOVA analysis facilitated by GraphPad Prism 8 (GraphPad Software Inc, Cali-

fornia, USA). Cell proportion and gene expression were compared between groups using a quasi-binomial distribution model and

Mann-Whitney U test in R, respectively. A significance threshold of P<0.05 was applied for all statistical tests. Data were presented

as mean ± standard deviation (SD) or mean ± standard error of the mean (SEM).
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