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Abstract—In this paper, we propose a fluid antenna (FA)
enabled joint transmit and receive index modulation (FA-JTR-
IM) transmission mechanism for reconfigurable intelligent sur-
face (RIS)-assisted millimeter-wave (mmWave) communication
systems. By integrating the methodologies of FA and IM, the
proposed scheme achieves enhanced spectral efficiency (SE) while
requiring only a single radio frequency (RF) chain at both the
transmitter and receiver. The proposed scheme offers a low hard-
ware cost and power consumption transmission mechanism for
the RIS-aided mmWave communication systems. Specifically, the
encoding of information bits encompasses not only the modulated
symbol but also the indices of transmit FA positions and receive
antennas. To achieve a reliability-complexity trade-off, two types
of detectors are introduced for the proposed FA-JTR-IM scheme,
including the optimal maximum likelihood (ML) detector and
two-step sequential (TSS) detector. Based on the ML detector,
we derive the expression for the conditional pair-wise error
probability of the proposed FA-JTR-IM scheme. Additionally,
we provide the closed-form expressions for the unconditional
PEP under the finite-path and infinite-path channel conditions,
respectively. Simulation results demonstrate the superiority of
the proposed FA-JTR-IM scheme in terms of error performance
over its conventional benchmark schemes under the same SE
condition.

Index Terms—Reconfigurable intelligent surface, fluid an-
tennas, index modulation, millimeter-wave, average bit error
probability.

I. INTRODUCTION

THE explosive growth in wireless communication de-
mands has propelled the exploration of innovative solu-

tions capable of meeting the stringent requirements of future
networks. Among these, millimeter-wave (mmWave) commu-
nications have emerged as a promising candidate, owing to
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their vast available bandwidths and potential for high data
rates [1], [2]. One of the notable limitation encountered in
mmWave communication systems is the higher hardware cost
and increased power consumption compared to conventional
sub-6GHz systems [3]. This arises from the fact that mmWave
systems often require massive multiple-input multiple-output
(MIMO) with a high number of expensive radio frequency
(RF) chains to enable beamforming, spatial multiplexing and
diversity. Fluid antenna (FA) technique is considered as a
promising solution to achieve enhanced spatial diversity with
a lower hardware cost [4]–[6]. FA, also known as movable
antenna (MA), has garnered significant interest in wireless
communications due to its ability to dynamically adjust its
position, shape, size, or radiation properties [4]. Compared
to the conventional fixed position antenna (FPA) system, FA
system has the capacity to fully leverage spatial diversity
by dynamically adjusting the FA position within a defined
finite region at the transceiver [5]–[7]. Existing research on
FA system predominantly encompasses channel modeling,
channel estimation, performance analysis and optimization.
In detail, Wang et al. proposed the spatial correlation based
channel model for the FA systems in [5], [6]. Subsequently,
the field-response based channel model was proposed in [7],
[8]. Then, channel estimation algorithms were explored for the
spatial correlation channel model [9] and the field-response
channel model [10]. Based on the aforementioned channel
models, the methodology for antenna positioning design can
be categorized into discrete port selection [11] and continuous
position optimization [12], respectively. Moreover, the outage
probability and diversity performance of the FA systems were
derived in [13]–[15]. FA array enhanced beamforming has
been investigated in [16]–[18]. The authors of [19] focused
on optimizing beam coverage in FA arrays to enhance com-
munication performance by dynamically adjusting weights
and positions to suit varying conditions. More recently, the
FA aided system was extended in wideband communication
systems in [20].

On the other hand, index modulation (IM)-aided systems of-
fer unique advantages, including high energy efficiency (EE),
reduced hardware cost, and adaptable system architectures,
which are achieved by introducing additional dimensions to
convey information compared to conventional systems [21]–
[23]. The incorporation of IM into traditional FPA frameworks
exemplifies this paradigm shift. The concept of spatial mod-
ulation (SM) was explored in [24], wherein the utilization
of the active antenna index introduces an extra dimension
for transmitting information. In pursuit of enhanced spectral
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efficiency (SE) and reliability, a range of SM variants have
been explored. These include generalized SM (GSM) [25],
quadrature SM (QSM) [26], enhanced SM (ESM) [27], and
receive SM (RSM) [28]. In [29], generalized beamspace
modulation (GBM) was proposed for massive MIMO systems
operating in mmWave spectrum, capitalizing on the unique
attributes of mmWave massive MIMO technology.

Another limitation in mmWave communications is the sus-
ceptibility of mmWave signals to severe propagation losses
and blockage, leading to unreliable connections and limited
coverage areas [30]. To mitigate these challenges, researchers
have turned their attention to novel technologies such as recon-
figurable intelligent surfaces (RIS), which have demonstrated
remarkable capabilities in enhancing signal propagation and
coverage in mmWave environments [31]–[33]. RIS, composed
of passive reflecting elements, can adaptively manipulate the
electromagnetic waves incident upon them by controlling the
phase shift of the reflected signals [34]. Through intelligent
phase adjustment, RIS can effectively mitigate signal atten-
uation, exploit multi-path propagation, and enhance signal
coverage, thus revolutionizing the design of mmWave com-
munication systems. Recent research has focused on various
aspects of RIS-aided mmWave communications, including
channel modeling, channel estimation, beamforming design,
and system optimization. In particular, the authors of [32]
presented a novel model for outdoor-to-indoor communication
empowered by RIS in mmWave networks. [33] proposed a
channel estimation method based on atomic norm minimiza-
tion for RIS-aided mmWave systems, facilitating accurate
channel state information (CSI) acquisition. The integrated
optimization of hybrid beamforming and reflection coefficients
in RIS-aided mmWave systems were investigated in [35] and
[36], aiming to maximize system performance. Additionally,
the authors of [37] conducted ergodic achievable rate analysis
and optimization for RIS-assisted mmWave communication
systems, providing valuable guidelines for system design and
resource allocation.

To address the challenges posed by mmWave communica-
tions, the integration of RIS with IM, RIS with FA as well as
FA with IM has been explored in [38]–[43]. Specifically, the
combination of RIS and IM has been investigated in [38]–
[40]. The authors of [38] proposed a RIS-assisted spatial
scattering modulation (SSM) scheme for mmWave communi-
cations, where a set of orthogonal paths are indexed to convey
extra information bits. In [39], a novel cluster IM (CIM)
transmission scheme was proposed for RIS-aided mmWave
massive MIMO communications, offering enhanced system
performance. Then, the authors of [40] investigated the RIS-
enhanced mmWave communications with SM, where joint
reflecting coefficients and hybrid beamforming optimization
was conducted to further improve the error performance.
Nonetheless, there is a paucity of research in the literature
focusing on the integration of RIS-FA or FA-IM. Specifically,
the authors of [41] proposed an RIS-assisted FA system, where
the outage probability and delay outage rate performance
were derived. A low-complexity beamforming design for RIS-
assisted FA systems was proposed in [42]. The authors of
[43] incorporated IM with FA-assisted MIMO systems to

enhance the SE without additional hardware cost, where extra
information bits are conveyed by indexing the FA positions.
It is important to note that these works generally address
individual issues in mmWave communications (i.e., using RIS
to mitigate blockages, IM to improve spectral efficiency, or
FA to achieve enhanced spatial diversity), rather than tackling
multiple challenges simultaneously.

To the best of our knowledge, there is a lack of research
focusing on the FA enabled IM for the RIS-assisted mmWave
communications. The integration of FA, IM and RIS tech-
nologies is essential for reducing hardware costs, improv-
ing signal reliability in challenging mmWave environments,
and enhancing SE through increased spatial diversity. This
combination uniquely addresses the limitations of mmWave
systems while maximizing performance without the need for
additional complex hardware. In light of this gap, the primary
contributions of this paper can be outlined as illustrated below.

• We devise a novel FA empowered joint transmit and
receive index modulation (FA-JTR-IM) transmission
scheme for RIS-aided mmWave single-input multiput-
output (SIMO) communication systems, where both the
transmit FA positions and the receive antennas are in-
dexed to convey additional information bits. Hence, the
proposed scheme yields elevated SE, while preserving
the distinctive single-RF transceiver structure. Moreover,
with the assistance of the RIS, the beamforming pro-
cedure in conventional JTR-IM can be substituted by
adjusting the reflecting coefficients of the RIS elements.

• We propose a low-complexity detector, namely two-step
sequential (TSS) detector, tailored to mitigate the com-
putational complexity. Compared to the maximum like-
lihood (ML) detector, it strikes a good balance between
complexity and detection accuracy. This proposed TSS
detector commences with the estimation of the receive
antenna index, followed by the employment of an optimal
search algorithm to jointly identify the location index of
the transmit FA and the modulated symbol.

• We analyze the error performance of the proposed
scheme. To be specific, a detailed derivation of the
conditional pair-wise error probability (CPEP) for the
proposed scheme is performed based on the ML detection
algorithm. Then, the closed-form expressions of uncondi-
tional PEP (UPEP) are obtained under the conditions of
finite-path and infinite-path channels via the probability
density function (PDF) method.

• We conduct Monte Carlo simulations to confirm the
benefits of the proposed approach. The key findings are
summarized as follows: 1) the accuracy of the theoretical
analysis for average bit error probability (ABEP) is
rigorously verified; 2) the proposed FA-JTR-IM scheme
is superior to its relevant benchmark schemes; 3) the
ML detector provides the best error performance, but the
proposed TSS detector strikes a balance between error
performance and computational complexity.

The following sections of this paper are organized as
follows. Section II presents the channel model as well as the
transceiver model of the proposed FA-JTR-IM scheme. Section
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III provides the derivation for the ABEP performance is out-
lined. Section IV offers the simulation results to substantiate
the effectiveness of the proposed system. Finally, Section V
provides the concluding remarks of this paper.

Notations: |·| and ∥A∥ refer to the absolute value and the
Frobenius norm, respectively. (·)H and (·)T are the Hermitian
transpose and transpose, respectively. diag (·) and E (·) are
the diagonal and expectation operation, respectively. ℜ{·}
represents the real part of a complex variable. CM×N denotes
the space of M×N complex matrices. ȷ refers to the imaginary
unit, i.e., ȷ2 = −1. Q(x) = 1√

2π

∫∞
x

exp(−u2/2)du is the
Gaussian Q-function. ∠(x) represents the angle response of
x. IN refers to an N -dimensional identity matrix.

II. SYSTEM MODEL

In Fig. 1, we consider an RIS-assisted mmWave SIMO
communication system, where the transmitter (Tx) is equipped
with a single FA (i.e., Nt = 1) and the receiver (Rx) has
Nr fixed position antennas1. In the mmWave band, high
penetration loss frequently causes blockages and outages [44].
Therefore, we assume that there is no direct link between
the Tx to the Rx2. The deployment of RIS is designed to
mitigate these challenges by improving the communication
environment. As shown in Fig. 1, the transmit FA is connected
to a single RF chain through flexible connectors such as
coaxial cables. The entire FA transmission region is partitioned
into T = T1 × T2 grids, where T1 and T2 are the number
of grids along horizontal and vertical directions, respectively.
In this study, it is assumed that the transmit FA possesses
the capability to move freely within these T grids. The RIS
is composed of a fixed uniform planar array (UPA) of size
N = N1 × N2, where N1 and N2 are the number of UPA
elements along horizontal and vertical directions, respectively.
Similarly, the Rx is also composed of a fixed UPA of size
Nr = R1 × R2, where R1 and R2 are the number of UPA
elements along horizontal and vertical directions, respectively.

A. Channel Model

To begin with, we set up Cartesian coordinate sys-
tems to define the positions of the transmit FA, RIS as
well as receive UPAs. The set of coordinates represent-
ing all the possible positions of the transmit FA is de-
noted as T = [t1,1, t1,2, ..., tm,n, ..., tT1,T2

], where tm,n =
[xt,m, yt,n], m = 1, ..., T1, n = 1, ..., T2. The set of co-
ordinates representing the receive UPA is denoted as R =
[r1,1, r1,2, ..., rp,q, ..., rR1,R2

] with rp,q = [xr,p, yr,q], p =
1, ..., R1, q = 1, ..., R2. The set of coordinates representing
the RIS is denoted as N = [n1,1,n1,2, ...,nu,v, ...,nN1,N2

]
with nu,v = [xR,u, yR,v], u = 1, ..., N1, v = 1, ..., N2.

The RIS-assisted link can be represented as a combination
of three components: the Tx-RIS link, RIS phase-shift matrix

1It is worth mentioning that this work focuses on single-user scenarios to
simplify the analysis and clearly illustrate the key principles of the proposed
FA-JTR-IM scheme. However, the proposed transmission scheme can be
extended to multi-user scenarios, which will be explored in the future work.

2The introduction of a direct link would increase system complexity, as we
would need to dynamically manage both the direct link and the RIS-assisted
link. This will be part of our future work.

and RIS-Rx link. In this paper, we employ the widely rec-
ognized Saleh-Valenzuela (S-V) based field-response channel
model for mmWave communications. In addition, we assume
that the RIS is located close to the Tx to ensure a strong line-
of-sight (LoS) connection between the Tx and RIS. Moreover,
since the Rx is situated at a considerable distance from both the
Tx and RIS, it is evident that the non-LoS (NLoS) propagation
significantly influences the RIS-Rx link [2].

1) Tx-RIS channel: The channel between the Tx and RIS
can be represented as

H = [h(t1,1), ...,h(tm,n), ...,h(tT1,T2)] ∈ CN×T , (1)

where h(tm,n) = bHρt(tm,n) ∈ CN×1 is the channel vector
from the transmit FA situated at position tm,n = [xt,m, yt,n]
to the RIS. Those terms are defined as

• b = [b(n1,1), ..., b(nu,v), ..., b(nN1,N2
)] ∈ C1×N is

the field-response vector (FRV) in the RIS region.
b(nu,v) = ρR(nu,v) = eȷ

2π
λ (xR,u cos θR sinϕR+yR,v sin θR),

where θR ∈ [0, 2π] and ϕR ∈ [0, 2π] are the elevation and
azimuth angles, respectively, and λ is the wavelength.

• ρt(tm,n) = eȷ
2π
λ (xt,m cos θt sinϕt+yt,n sin θt), θt ∈ [0, 2π]

and ϕt ∈ [0, 2π] are the elevation and azimuth angles,
respectively.

2) RIS-Rx channel: According to [8], the channel between
the RIS and Rx can be expressed as

G = [g(r1,1), ...,g(rp,q), ...,g(rR1,R2)]
T ∈ CNr×N , (2)

where g(rp,q) = FHΞk(rp,q) ∈ CN×1 is the channel vector
between the RIS and receive UPA element located at position
rp,q = [rr,p, yr,q]. Specifically, the terms are defined as follows

• F = [f(n1,1), ..., f(nu,v), ..., f(nN1,N2
)] ∈ CL×N , where

L is the number of channel paths between the RIS and
Rx and f(nu,v) ∈ CL×1 denotes the FRV of the RIS.

• f(nu,v) = [ρR,1(nu,v), ..., ρR,l(nu,v), ..., ρR,L(nu,v)]
T ,

where ρR,l(nu,v) = eȷ
2π
λ (xR,u cos θR,l sinϕR,l+yR,v sin θR,l),

θR,l ∈ [0, 2π] and ϕR,l ∈ [0, 2π] are the elevation
and azimuth angles of the lth path, respectively, for
l = 1, ..., L.

• Ξ = diag(α1, ..., αl, ..., αL) ∈ CL×L is the path-
response matrix (PRM) between the RIS and Rx, where
αl ∼ CN (0, c/L) with c = c0d

−ϖ represents the
anticipated channel gain, c0 denotes the unit distance path
loss, d signifies the distance from the RIS to the Rx, and
ϖ refers to the path loss exponent.

• k(rp,q) = [ρr,1(rp,q), ..., ρr,l(rp,q), ..., ρr,L(rp,q)]
T ,

where ρr,l(rp,q) = eȷ
2π
λ (xr,p cos θr,l sinϕr,l+yr,q sin θr,l),

θr,l ∈ [0, 2π] and ϕr,l ∈ [0, 2π] are the elevation
and azimuth angles of the lth path, respectively, for
l = 1, ..., L.

3) Composite channel: The signal emitted from the Tx
traverses the Tx-RIS-Rx channel before reaching the Rx. In
essence, the RIS functions as a passive beamformer, reflecting
the signal over a specific transmit FA position to a specific
receive UPA element in the mmWave channel. Expressing
ψτ as the phase shift corresponding to the τ th passive RIS
element, the vector of RIS reflection coefficients is given by

Ψ = [eȷψ1 , ..., eȷψτ , ..., eȷψN ] ∈ CN×1. (3)
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Fig. 1. Block diagram of the proposed FA-JTR-PIM system for RIS-aided mmWave Communications.

B. Proposed FA-JTR-IM Transmission

As illustrated in Fig. 1, the principle of IM is applied con-
currently at the Tx and Rx ends, where the transmit FA region
grids and the fixed receive UPA elements are meticulously
indexed, respectively. In particular, only one of the T grids
is utilized by the transmit FA for signal transmission, and
one out of Nr receive UPA elements is selected to receive
signal. In the proposed FA-JTR-IM scheme, the incoming bit
stream is divided into three parts: 1) the first log2(T ) bits are
used to select the jth (j ∈ {1, 2, ..., T}) transmit FA position
index, which indicates that the position tm,n is occupied by the
single transmit FA. The relationship between the transmit FA
position index j and the position coordinate (m,n) mapping
process is given by j = (m − 1)T2 + n, m = 1, ..., T1 and
n = 1, ..., T2; 2) The next log2Nr bits are used to determine
the receive UPA element index i (i ∈ {1, 2, ..., Nr}), where
i = (p−1)R2+q, p = 1, ..., R1 and q = 1, ..., R2; and 3) The
remaining log2(M) bits are modulated to an M -quadrature
amplitude modulation (QAM) symbol sk, k ∈ {1, 2, ...,M}.

In this work, we normalize the power incident upon the RIS
to unity for ease of analysis [45]. It is important to note that
this normalization does not imply any change to the actual
transmit power constraints, which remain determined by the
transmitter or source in accordance with system design. Thus,
the signal received at the Rx is written as

y =
√
PGdiag(Ψ)

Hej
∥Hej∥2

sk +w, (4)

where y ∈ CNr×1 is the received signal, P is the transmit
power, w ∈ CNr×1 ∼ CN (0, N0INr

) is the additive white
Gaussian noise (AWGN) and ej is the jth column of identity
matrix IT .

To obtain the maximum instantaneous signal-to-noise ratio
(SNR) at the ith receive UPA element, the reflection coeffi-
cients should satisfy ψτ+ϑτj+φiτ = 0, τ = 1, 2, ..., N , where
ϑτj and φiτ are the angle response of the Tx-RIS and RIS-Rx
links, i.e., ϑτj ∈ {∠(H)} and φiτ ∈ {∠(G)}, respectively.
According to (1), ∥Hej∥22 = ∥h(tm,n)∥22 = N . The received
signal can thus be further written as

y =

√
P

N
Gdiag(Ψij)Hejsk +w. (5)

C. Signal Detection
At the receiver, it is assumed that perfect CSI is available,

while the impact of imperfect CSI will be addressed in Section
IV. To seek a reliability-complexity tradeoff, two types of
detectors are introduced in this subsection, which will be
detailed in the sequel.

1) Optimal ML detector: The optimal ML detector is em-
ployed to simutaneously identify the active position of transmit
FA, the receive UPA element, and the modulated symbol,
which is given by

(̂i, ĵ, k̂) = argmin
i,j,k

∥∥∥∥∥y −
√
P

N
Gdiag(Ψij)Hejsk

∥∥∥∥∥
2

2

. (6)

2) Low-complexity TSS detector: Given that the optimal ML
detector necessitates exploring all 2R possible combinations of
(i, j, k), it leads to high computational complexity, especially
when the transmission rate R is large. In response to this chal-
lenge, we introduce a low-complexity TSS detection algorithm
and the detailed procedure is given as follows.

Step 1: First, by exploiting the maximized energy in a
specific receive UPA element from the transmit FA with the
assistance of RIS, the estimated active receive UPA element
index î can be obtained as

î = argmax
i∈{1,2,...,Nr}

|y(i)|2. (7)

Step 2: Assuming the receive UPA element index is detected
correctly, the transmit FA position index j as well as the
modulated symbol sk can be jointly detected by

(ĵ, k̂) = argmin
j∈{1,..,T},k∈{1,...,M}

∥∥∥∥∥y −
√
P

N
Gdiag(Ψîj)Hejsk

∥∥∥∥∥
2

2

.

(8)
3) Complexity Analysis: The computational complexity is

delineated through real-valued flops, comprising both real-
valued multiplications and additions. For the given matrices
or vectors A ∈ Cm×n, B ∈ Cn×p, a ∈ Cn×1 and b ∈ Cn×1,
the corresponding computational complexity is given as

CAB = 2mp(4n− 1)

Ca−b = 4n− 1

C∥a∥2
2
= 2n.

(9)
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TABLE I
THE COMPUTATIONAL COMPLEXITY COMPARISON OF DIFFERENT

DETECTORS FOR THE FA-JTR-IM SCHEME

Optimal ML Proposed TSS

(4,128,4,4) 3.4× 107 8.6× 106 75%

(16,16,16,4) 6.6× 107 4.2× 106 94%

(64,128,8,4) 1.8× 1010 2.8× 108 98%

(Nr, N, T,M)
Detectors Complexity reduction

compared to ML

The computational complexity of the optimal ML detector
can be calculated as

CML = 2R[2Nr(N + T )(4N − 1) + 6Nr], (10)

where 2R is the total search space of the proposed FA-JTR-IM
scheme, and 2Nr(N + T )(4N − 1) + 6Nr is the complexity
of calculating ∥y −

√
P
NGdiag(Ψij)Hejsk∥22 in (6).

For the proposed TSS detection algorithm, the total com-
plexity can be expressed as

CTSS = 2Nr︸︷︷︸
Step1

+2(R−log2Nr)[2Nr(N + T )(4N − 1) + 6Nr]︸ ︷︷ ︸
Step2

.

(11)
To illustrate the complexity comparison more intuitively,

we present the exact flops of these two kinds of detectors
under various parameter settings in Table I. Clearly, the
implementation of the TSS detector exhibits a notably reduced
computational complexity compared to the optimal ML detec-
tor. This reduction in complexity becomes more pronounced
as Nr increases, benefiting from the reduced search space by
separating the receive antenna index firstly.

III. PERFORMANCE ANALYSIS

A. ABER performance analysis

This subsection is dedicated to deriving a closed-form
expression for the upper bound on the ABEP to perform
theoretical analysis of the proposed scheme. By leveraging
the widely recognized union bound technique, the ABEP of
the proposed scheme is constrained by

ABEP ≤ 1

R2R

∑
i

∑
j

∑
k

∑
î

∑
ĵ

∑
k̂

d{(i, j, k) → (̂i, ĵ, k̂)}

× P{(i, j, k) → (̂i, ĵ, k̂)},
(12)

where R is the transmission rate given in (29),
d{(i, j, k) → (̂i, ĵ, k̂)} is the Hamming distance and
P{(i, j, k) → (̂i, ĵ, k̂)} denotes the UPEP.

For the sake of brevity, we use Pe and P̄e to denote CPEP
and UPEP in the following text, respectively. To obtain the
upper bound, we first derive the union upper bound of CPEP
expression based on ML detection. Then, the closed-form
expressions for the UPEP are obtained via PDF method.

• CPEP Analysis: The CPEP Pe of the proposed FA-JTR-
IM system can be written as

Pe = P{(i, j, k) → (̂i, ĵ, k̂) |H,G}

= P


∥∥∥∥∥y −

√
P

N
Gdiag(Ψij)Hejsk

∥∥∥∥∥
2

2

>

∥∥∥∥∥y −
√
P

N
Gdiag(Ψîĵ)Heĵsk̂

∥∥∥∥∥
2

2

 .

(13)

According to the correctly detected and erroneously detected
transmit FA position index and receive UPA element index, the
derivation process can be divided into two categories: (i, j) =
(̂i, ĵ) and (i, j) ̸= (̂i, ĵ), which will be detailed as follows:

1) (i, j) = (̂i, ĵ): In this case, the detection of transmit FA
position index and receive UPA element index are both correct,
the error arises from the transmitted signal, i.e., sk ̸= sk̂. As
a result, the CPEP in (13) can be further simplified as

Pe =P
{
2ℜ
{√

P/NwH
(
Gdiag(Ψij)Hej(sk − sk̂)

)}
+
∥∥∥√P/NGdiag(Ψij)Hej(sk − sk̂)

∥∥∥2
2
< 0

}
.

(14)

Let ζ = 2ℜ{
√
P/NwH∆} +

∥∥∥√P/N∆
∥∥∥2
2

for ease of
notation, where ∆ = Gdiag(Ψij)Hej(sk − sk̂). Since the
elements of wH has complex normal distribution with variance
N0, its real part has norm distribution with variance N0

2 , i.e.,
ℜ{wH} ∼ CN

(
0,

N0INr

2

)
. Therefore, the random variable ζ

follows N (µζ , σ
2
ζ ), wherein µζ =

√
P/N ∥∆∥22 and

σ2
ζ = E

[
(ζ − µζ)

2
]

= E
[(

2ℜ
{√

P/NwH∆
})2]

= 4

√
P

N
E
[
ℜ{(wH)

2}
]
E
[
ℜ
{
∥∆∥22

}]
= 2N0

√
P

N
∥∆∥22.

(15)

Subsequently, the CPEP can be calculated as

Pe = Q

√∥∆∥22
2N0


= Q

√∥Gdiag(Ψij)Hej∥22
∣∣sk − sk̂

∣∣2
2N0

 .

(16)

2) (i, j) ̸= (̂i, ĵ): This case means that the detection of
spatial symbol indices are wrong, which includes three cases
as (i = î, j ̸= ĵ), (i ̸= î, j = ĵ) and (i ̸= î, j ̸= ĵ). Thus, the
CPEP is written as

Pe = P

∥∥wH
∥∥2
2
−

∥∥∥∥∥wH +

√
P

N
∆x

∥∥∥∥∥
2

2

> 0

 , (17)

where ∆x = Gdiag(Ψij)Hejsk − Gdiag(Ψîĵ)Heĵsk̂. To
simplify notation, we define two random variables χ1 and χ2
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as

χ1 =

∥∥wH
∥∥2
2

N0/2
, (18)

and

χ2 =

∥∥∥wH +
√

P
N∆x

∥∥∥2
2

N0/2
, (19)

which are central and non-central Chi-square random variables
with two degrees of freedom, respectively. The non-centrality
parameter of χ2 is

Π =
2P ∥∆x∥22
NN0

. (20)

Accordingly, the CPEP in (17) can be calculated as

Pe = P(χ1 > χ2)

=

∫ ∞

0

∫ ∞

x2

fχ1
(x1)fχ2

(x2)dx1dx2,
(21)

where fχ1
(x1) = 1

2 exp
(
−x1

2

)
is the PDF of the

central Chi-square random variable χ1 and fχ2
(x2) =

1
2 exp

(
−x2+Π

2

) ∞∑
i=0

(Πx2
4 )

i

(i!)2
is the PDF of the non-central Chi-

square random variable χ2.
Substituting the PDF of fχ1

(x1) and fχ2
(x2) into (21),

Pe =
1

4

∞∫
0

exp

(
−(x2 +Π)

2

)

×
∞∑
i=0

(
Πx2

4

)i
(i!)

2


∞∫
x2

exp

(
−x1
2

)
dx1

dx2

=
1

2
exp

(
−Π

2

) ∞∑
i=0


(
Π
4

)i
(i!)

2

∞∫
0

xi2 exp(−x2)dx2


(a)
=

1

2
exp

(
−Π

2

) ∞∑
i=0

(
Π
4

)i
i!

(b)
=

1

2
exp

(
−Π

4

)
,

(22)

where step (a) in (22) is obtained by using the integral that∫∞
0
xi exp(−x)dx = i!, while step (b) is derived by utilizing∑∞

i=0
xi

i! = exp(x). Thus, the CPEP can be recast as

Pe =

1

2
exp

−P
∥∥∥Gdiag(Ψij)Hejsk−Gdiag(Ψîĵ)Heĵsk̂

∥∥∥2
2

2NN0

 .

(23)
• UPEP Analysis: We embark on the derivation of the UPEP

utilizing the PDF method.
1) (i, j) = (̂i, ĵ): In this case, based on the CPEP derived

in (16), the UPEP P̄e can be calculated by

P̄e =
∞∫
0

f (z1)Q

(√
z1
2N0

)
dz1, (24)

where z1 = ∥Gdiag(Ψij)Hej∥22
∣∣sk − sk̂

∣∣2 and f (z1) is the
PDF of z1.

Lemma 1 In the case of (i, j) = (̂i, ĵ), the analytical
expression of UPEP can be expressed as

P̄e =
1

2L+1[(L− 1)!]
2

(
L

cE[B])

)L−1

×1− ω(a)

L−1∑
k=0

 2k

k

 (
1− ω2(a)

4

)k]
.

(25)

where B = |sk − sk̂|
2∥G̃diag(Ψij)h(tm,n)∥22, G̃ =

[g̃(r1,1), ..., g̃(rR1,R2)]
T , and g̃(rp,q) = FHk(rp,q). ω(a) =√

a
1+a with a =

|sk−sk̂|
2

4N0
, and

E[B] =

 N |sk − sk̂|
2E[∥G̃∥22], for L is finite

N |sk − sk̂|
2R, for L→ ∞

with R is the spatial correlation matrix of G̃.
Proof: See Appendix A.
2) (i, j) ̸= (̂i, ĵ): In this case, the UPEP can be written as

P̄e =
1

2

∞∫
0

f (z2) exp

(
− P

2NN0
z2

)
dz2, (26)

where z2 =
∥∥∥Gdiag(Ψij)Hejsk −Gdiag(Ψîĵ)Heĵsk̂

∥∥∥2
2
.

Lemma 2 In the case of (i, j) ̸= (̂i, ĵ), the analytical
expression of UPEP can be expressed as

P̄e =
1

2L+1[(L− 1)!]
2

(
L

cE[B̃]

)L−1
(
2LNN0 + cPE[B̃]

2cE[B̃]NN0

)L
,

(27)

where B̃ =
∥∥∥G̃(diag(Ψij)Hejsk − diag(Ψîĵ)Heĵsk̂

)∥∥∥2
2

and

E[B̃] =

 2(N −ℜ{Υ})E[∥G̃∥22], for L is finite

2(N −ℜ{Υ})R, for L→ ∞

with Υ = sk(sk̂)
Hdiag(Ψij)(diag(Ψîĵ))

HHej(Heĵ)
H .

Proof: See Appendix B.
Remark 1: We observe from (25) and (27) that the UPEP

P̄e is inversely proportional to E[B̃]. Therefore, increasing N
(which increases E[B̃]) will decrease P̄e. In other words, the
number of RIS elements N directly impacts system perfor-
mance by increasing expected value E[B̃], thereby leading to
a decrease in the upper bound on ABEP.

B. Spectral efficiency analysis

This subsection analyzes the bits per channel use (bpcu)
throughput of the proposed FA-JTR-IM scheme, where the
FPA-assisted IM (FPA-IM) serves as its benchmark to demon-
strate the superiority of the proposed scheme.

The SE of the classic FPA-IM scheme is given by

RFPA−IM = log2(Nr) + log2(M). (28)
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Fig. 2. Spectral efficiency comparisons between the proposed FA-JTR-IM
with the conventional FPA-IM schemes.

Based on the signal model described in Section II-B, the
SE of the proposed FA-JTR-IM scheme can be computed as

RFA−JTR−IM = log2(T ) + log2(Nr) + log2(M). (29)

To illustrate the SE performance more intuitively, Fig. 2
compares the SE between the proposed FA-JTR-IM and the
conventional FPA-IM scheme for various numbers of receive
antennas. The results show that the proposed scheme offers a
significant SE increase compared to the conventional FPA-IM
scheme when a single antenna is equipped at the transmitter.
This improvement is achieved by exploiting the spatial diver-
sity provided by FA, as indicated by the first term, log2(T ),
in (29)).

C. Implementation challenges of the proposed FA-JTR-IM
system

In this subsection, we discuss several practical challenges
associated with implementing the proposed system, including
channel estimation and antenna movement.

1) Channel estimation: Channel estimation is a critical
and challenging aspect of implementing FA-assisted systems.
This issue has been extensively explored in various studies
[10], [46], [47]. Specifically, the authors of [10] and [46]
proposed a compressed sensing framework to leverage the
inherent sparsity of the field-response-based channel model,
enabling accurate channel reconstruction. Furthermore, a novel
approach based on tensor decomposition for channel estima-
tion and reconstruction for FA-enabled MIMO systems was
introduced in [47], which is particularly effective for FA-
enabled MIMO systems. These existing channel estimation
algorithms are well-suited for the proposed FA-aided RIS
system due to the similarity in the underlying channel models,
where sparse and structured signals can be exploited for
efficient channel estimation.

2) Antenna movement: Antenna movement can be achieved
through various mechanical systems, microelectromechanical
systems (MEMS) and reconfigurable pixel antennas, provid-
ing flexibility to meet the diverse requirements of wireless

TABLE II
SIMULATION PARAMETERS.

Parameter Assumed value

Carrier frequency f 28 GHz

Wavelength λ 0.01 m

Distance from RIS to Rx d 30 m

Unit distance path loss c0 -62 dB

Path loss exponent ϖ 2.8

Transmit/receive region 10λ× 10λ

communication systems [7], [48], [49]. A common approach
involves using stepper motors to mechanically adjust the
antenna’s position via drive components [7]. These motors
provide precise control, making them ideal for larger systems
where scalability is important. However, FAs that rely on
mechanical movement face significant challenges in high-
mobility scenarios due to the time required for antenna repo-
sitioning. This delay hampers their ability to adapt to rapidly
changing channel conditions, presenting a major obstacle in
high-mobility communications.

Alternatively, MEMS-integrated antennas [48] and recon-
figurable pixel antennas [49] provide a more compact and
efficient solution, particularly for small-scale systems such as
mmWave and terahertz (THz) transceivers. These technolo-
gies offer high positioning accuracy, low power consumption,
and miniaturized components, making them ideal for space-
constrained devices. The precise control and high linearity
provided by MEMS and reconfigurable pixel antenna technolo-
gies further enhance antenna movement, making them highly
suitable for the proposed FA-JTR-IM scheme.

IV. SIMULATION RESULTS

This section showcases simulation results aimed at evalu-
ating the effectiveness of the proposed FA-JTR-IM scheme
and confirming the accuracy of the analytical upper bound
derived for ABEP. The simulation parameters are given in
Table II. In this work, we assume that the noise power spectral
density (PSD) is -174 dBm/Hz [50]. Given a bandwidth
(BW ) of 100 MHz, the noise power can be calculated as
N0 = PSD + 10log10(BW ) = −94 dBm. For all simulation
results, we set the transmit power to range from 10 dBm to
40 dBm, which corresponds to an SNR range of 1 dB to 31
dB.

The performance of the proposed FA-JTR-IM scheme is
illustrated in Figs. 3 and 4 through both simulated and an-
alytical average BER results. More precisely, Fig. 3 shows
the error performance over the finite-path channel condition
(i.e., L = 10), while Fig. 4 is depicts the performance under
the infinite-path channel condition (i.e., L = 100). As shown
in Fig. 3, in the finite-path case, as the transmission rate
increases, there is a notable increase in the disparity between
the simulated outcomes and the theoretical upper bound. This
divergences is rooted in the inherent characteristics of the
upper bound, which essentially provides an approximation and
is thus subject to constraints that become more pronounced
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Fig. 3. Simulation and theoretical results of the proposed FA-JTR-IM scheme
using the optimal ML detector under various parameter setting with N = 16,
L = 10, and 4QAM modulation.

as transmission rate escalates. However, in the infinite-path
case as shown in Fig. 4, the theoretical upper bound evinces
a propensity to converge more closely towards the simulated
results, especially in the high transmit power P region. In
the case of infinite-path channel, we provide a closed-form
expression for the UPEP. This provision stands as a pivotal
contribution, furnishing an invaluable theoretical tool for the
comprehensive evaluation of the system performance.

Fig. 5 compares the BER performance of the proposed
FA-JTR-IM scheme at data rate of 6 bpcu under T = 4,
Nr = 4, L = 10, 4QAM and various number of RIS elements
N . It can be observed from Fig. 5 that the proposed FA-
JTR-IM framework with increasing N achieves a significant
enhancement in BER performance. This enhancement is prin-
cipally attributable to the increased number of RIS elements,
improving the SNR of the received signal. Furthermore, Fig.
6 presents BER comparisons of the proposed FA-JTR-IM
scheme employing BPSK, 4QAM and 16QAM constellations
at transmission rates of 5 bpcu, 6 bpcu and 8 bpcu, respec-
tively. Evidently, when the target BER is 10−3, systems with
4QAM and 16QAM require approximately 3 dBm and 8 dBm
higher transmit power, respectively, compared to the BPSK
system. This phenomenon is due to the fact that the increase in
modulation order leads to a denser distribution of constellation
points within the normalized symbol constellation diagram,
consequently resulting in diminished Euclidean distances be-
tween adjacent constellation points.

Fig. 7 compares the error performance of the proposed
FA-JTR-IM scheme with its benchmark systems under the
same transmission rate condition, where “FA-T-IM” refers
to the FA-aided transmit IM scheme, “RSM” refers to the
receive IM scheme, and “SIMO without IM” denotes the
conventional FPAs-assisted SIMO scheme without IM. In the
case of Nt = 1, Nr = 4, N = 128 and L = 10, we set the
simulation parameters as T = 4 and 4QAM in the proposed
FA-JTR-IM scheme, T = 4 and 16QAM in the FA-T-IM
scheme, 16QAM in the RSM scheme, and 64QAM in the
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Fig. 4. Simulation and theoretical results of the proposed FA-JTR-IM scheme
using the optimal ML detector under various parameter setting with N = 16,
L = 100, and 4QAM modulation.
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Fig. 5. BER performance of the proposed FA-JTR-IM scheme with T = 4,
Nr = 4, L = 10 and 4QAM and various N .

SIMO without IM scheme, to achieve the transmission rate of
6 bpcu. It can be seen from Fig. 7 that the proposed FA-JTR-
IM significantly outperforms the benchmark schemes in the
high transmit power region. To be specific, at BER = 10−3, the
proposed scheme offers 5 dB, 7.5 dB and over 10 dB transmit
power gains compared to the FA-T-IM, RSM and SIMO
without IM schemes, respectively. This is primarily due to the
fact that, in the high transmit power region, symbol detection
errors become predominant, whereas in the low transmit power
region, errors in estimating index symbol dominate.

Fig. 8 compares the detection performance of the optimal
ML detector and the proposed TSS detector. As expected, the
optimal ML detector exhibits superior error performance over
the TSS detector. Specifically, in the case of 6 bpcu with
T = 4, Nr = 4, N = 128 and 4QAM, the optimal ML
detector provides a transmit power gain of 2.5 dB compared to
the TSS detector when BER = 10−3, but with 75% increase
in computational complexity. It can be also observed from
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Fig. 6. BER performance of the proposed FA-JTR-IM scheme for the
simulation parameters with T = 4, Nr = 4, L = 10 and N = 128 and
various modulation order M .
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Fig. 7. BER performance comparisons between the proposed FA-JTR-IM
scheme and its benchmark schemes at transmission rate of 6 bpcu.

Fig. 8 that the detection performance gap between these two
detectors becomes larger as the number of receive antennas Nr
increases. Correspondingly, as shown in Table I, the reduction
in detection complexity becomes more significant. This is
because that the increase in receive antennas means an increase
in the receive index bits, however, the first step of the TSS
detector is to estimate the receive index bits, which will
degrade the overall error performance.

Fig. 9 evaluates the impact of channel estimation errors on
the BER performance of the TSS detector in the proposed
FA-JTR-IM scheme. Here, the imperfect channel matrices are
modeled as He = H + Ht and Ge = G + Hr, where Ht

and Hr are the channel error with its entries being CN (0, δ2)
[51]. It is worth mentioning that the performance of the
perfect CSI case (i.e., δ = 0) is also included to facilitate
comparative analysis. It can be seen from Fig. 9 that the
error performance of the TSS detector deteriorates with an
increase in δ. Specifically, when BER is 10−2, the transmit
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Fig. 8. BER performance comparison of the optimal ML and proposed TSS
detectors for the proposed FA-JTR-IM scheme.
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Fig. 9. BER performance at 6 bpcu (T = 4, Nr = 4, N = 16, L = 10
and 4QAM) for the TSS detector aided FA-JTR-IM schemes in perfect and
imperfect CSI cases.

power deterioration of the TSS detector is 2 dB and 7 dB
for δ = 0.03 and δ = 0.07, respectively, compared to the
perfect CSI case. These results demonstrate that the proposed
FA-JTR-IM scheme is sensitive to CSI errors, as the BER
performance degrades noticeably with increasing δ, indicating
that precise CSI estimation is crucial for maintaining optimal
performance.

V. CONCLUSION

In this paper, we proposed a novel FA empowered joint
transmit and receive IM transmission scheme for RIS-assisted
mmWave SIMO communication systems, which can signifi-
cantly enhance the SE while retaining a single-RF transceiver
structure by the integration of RIS, FA and IM techniques. In
addition, we explored two detection algorithms, maximizing
detection accuracy with ML detector while offering compu-
tational efficiency through the TSS algorithm. Furthermore,
the analysis of the ABEP was conducted, and simulation
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results confirmed the accuracy of the theoretical analysis,
demonstrating the advantage of the proposed FA-JTR-IM
scheme over its benchmarks. Overall, the proposed FA-JTR-
IM scheme constitutes a promising candidate solution for RIS-
assisted mmWave communications.

APPENDIX A
PROOF OF LEMMA 1

According to (1), (2) and (3), the random variable z1 can
be written as

z1 =
∣∣sk − sk̂

∣∣2∥Gdiag(Ψij)Hej∥22
=
∣∣sk − sk̂

∣∣2∥G̃diag(Ψij)h(tm,n)∥22 ∥Ξ∥22 ,
(30)

where G̃ = [g̃(r1,1), ..., g̃(rp,q), ..., g̃(rR1,R2
)]T ∈ CNr×N

and g̃(rp,q) = FHk(rp,q) ∈ CN×1. Since Ξ is the PRM,
whose elements obey CN (0, c/L), z1 follows the generalized
central Chi-square distribution with 2L degree of freedom. The
PDF of z1 is given by

f(z1) =
1

2L(L− 1)!

(
Lz1
cB

)L−1

exp

(
−Lz1
cB

)
, (31)

where B = |sk − sk̂|
2∥G̃diag(Ψij)h(tm,n)∥22.

Substituting (47) into (24), the UPEP can be calculated as

P̄e =
1

π2L(L− 1)!

∞∫
0

π/2∫
0

(
Lz1
cB

)L−1

exp

(
−Lz1
cB

)

× exp

(
− z1

4N0sin
2θ

)
dθdz1.

(32)

By exchanging the order of integration, (32) can be further
expressed as

P̄e =
1

π2L(L− 1)!

π/2∫
0

∞∫
0

(
Lz1
cB

)L−1

× exp

(
−4LN0sin

2θ + cB

4cBN0sin
2θ

z

)
dz1dθ

=
1

π2L[(L− 1)!]
2

(
L

cB

)L−1
π/2∫
0

 sin2θ

sin2θ +
|sk−sk̂|

2

4N0

L

dθ.

(33)
Based on the integral formula in [52]

1

π

π/2∫
0

(
sin2θ

sin2θ + a

)L
dθ

=
1

2

[
1− ω(a)

L−1∑
k=0

(
2k
k

) (
1− ω2(a)

4

)k]
,

(34)

where ω(a) =
√

a
1+a , the UPEP in (33) can be rewritten as

P̄e =
1

2L+1[(L− 1)!]
2

(
L

cB

)L−1

×[
1− ω(a)

L−1∑
k=0

(
2k
k

) (
1− ω2(a)

4

)k]
,

(35)

where a =
|sk−sk̂|

2

4N0
. Furthermore, the UPEP P̄e can be further

obtained by taking expectation over the parameter B as

P̄e =
1

2L+1[(L− 1)!]
2

(
L

cE[B])

)L−1

×[
1− ω(a)

L−1∑
k=0

(
2k
k

) (
1− ω2(a)

4

)k]
.

(36)

Next, we will discuss the value of E[B] in two cases, i.e.,
finite-path (L is finite) case and infinite-path (L→ ∞) case.

• Finite-path case: In this case, acquiring the precise
distribution of elements within G̃ poses a challenge. However,
the approximate E[G̃] can be obtained by the Monte Carlo
method, so the value of E[B] can thus be calculated by

E[B] = |sk − sk̂|
2E[∥G̃diag(Ψij)h(tm,n)∥22]

= |sk − sk̂|
2E[∥G̃∥22]E[∥h(tm,n)∥

2
2]

= N |sk − sk̂|
2E[∥G̃∥22].

(37)

• Infinite-path case: To begin, let’s first revisit the expres-
sion of g̃(rp,q), which is given by

g̃(rp,q) = FHk(rp,q) =

L∑
l=1

gla(θR,l, ϕR,l), (38)

where gl = eȷ
2π
λ ρr,l(rp,q) and a(θR,l, ϕR,l) is the lth row of

the FRM F, denoted as

a(θR,l, ϕR,l) = [ρR,l(n1,1), ρR,l(n1,2), ..., ρR,l(nN1,N2
)]T .

(39)
As L→ ∞, the central limit theorem (CLT) dictates that

g̃(rp,q) ∼ N (0,R), (40)

where the calculation of the normalized spatial correlation
matrix R ∈ CN×N is performed as

R = E{g̃(rp,q)g̃(rp,q)H} = E{a(θr,l, ϕr,l)a(θr,l, ϕr,l)H}.
(41)

Next, we will give the procedure for calculating R. Specifi-
cally, the (i, j)th entry in R is expressed as

[R]i,j = E{a(θR,l, ϕR,l)(i)a(θR,l, ϕR,l)(j)H}
= E{eȷ 2πλ ((xR,u−xR,p) cos θR,l sinϕR,l+(yR,v−yR,q) sin θR,l)},

(42)
where i, j ∈ {1, 2, ..., N} and satisfies the relationship with
the pairs (u, v) and (p, q) as i = (u − 1)N2 + v and j =
(p− 1)N2 + q, u, p ∈ {1, 2, ..., N1} and v, q ∈ {1, 2, ..., N2}.

Multi-path components in environments with isotropic scat-
tering are evenly spread throughout the half-space in front
of the UPA. This uniform distribution results in the AoAs
following a PDF as

f(θR,l, ϕR,l) =
cos θR,l
2π

, θR,l ∈ [−π
2
,
π

2
], ϕR,l ∈ [−π

2
,
π

2
].

(43)
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Consequently, the expression in (42) can be further com-
puted as

[R]i,j =

π/2∫
−π/2

π/2∫
−π/2

eȷ
2π
λ ∥nu,v−np,q∥ sin θR,lf(θR,l, ϕR,l)dθR,ldϕR,l

=

π/2∫
−π/2

eȷ
2π
λ ∥nu,v−np,q∥ sin θR,l

cos θR,l
2π

dθR,l

=
sin( 2πλ ∥nu,v − np,q∥)

2π
λ ∥nu,v − np,q∥

.

(44)
Since G̃ is composed of multiple vectors g̃(rp,q), each

drawn independently from the same N (0,R) distribution.
In such case, the distribution of the matrix G̃ approximates
N (0,R), therefore, (37) can be simplified as

E[B] = N |sk − sk̂|
2R. (45)

Combining (36), (37) and (45), the UPEP in the case of
(i, j) = (̂i, ĵ) can be summarised as Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

In the case of (i, j) ̸= (̂i, ĵ), the random variable z2 can be
transformed as

z2 =
∥∥∥Gdiag(Ψij)Hejsk −Gdiag(Ψîĵ)Heĵsk̂

∥∥∥2
2

=
∥∥∥G̃(diag(Ψij)Hejsk − diag(Ψîĵ)Heĵsk̂

)∥∥∥2
2
∥Ξ∥22 .

(46)
Similar to the derivation process shown in Appendix A, the
PDF of z2 can be expressed as

f(z2) =
1

2L(L− 1)!

(
Lz2

cB̃

)L−1

exp

(
−Lz2
cB̃

)
, (47)

where B̃ =
∥∥∥G̃(diag(Ψij)Hejsk − diag(Ψîĵ)Heĵsk̂

)∥∥∥2
2
.

Combining (26) and (47), the UPEP can be further calculated
by

P̄e =
1

2L+1(L− 1)!

∞∫
0

(
Lz2

cB̃

)L−1

×

exp

(
−Lz2
cB̃

)
exp

(
− P

2NN0
z2

)
dz2

=
1

2L+1(L− 1)!

∞∫
0

(
Lz2

cB̃

)L−1

exp

(
−2LNN0 + cB̃P

2cB̃NN0

z2

)
dz2

=
1

2L+1[(L− 1)!]
2

(
L

cB̃

)L−1
(
2LNN0 + cB̃P

2cB̃NN0

)L
.

(48)
The same as the derivation process shown in Appendix A, the
UPEP can further rewritten as

P̄e =
1

2L+1[(L− 1)!]
2

(
L

cE[B̃]

)L−1
(
2LNN0 + cPE[B̃]

2cE[B̃]NN0

)L
,

(49)

where the calculation of E[B̃] is also divided into two cases
as

• finite-path case: In this case, we have

E[B̃] = E[|G̃(diag(Ψij)Hejsk − diag(Ψîĵ)Heĵsk̂)∥
2
2]

= E[|G̃∥22]E[∥(diag(Ψij)Hejsk − diag(Ψîĵ)Heĵsk̂)∥
2
2]

= 2(N −ℜ{Υ})E[∥G̃∥22],
(50)

where Υ = sk(sk̂)
Hdiag(Ψij)(diag(Ψîĵ))

HHej(Heĵ)
H .

• Infinite-path case: In this case, E[B̃] is computed as

E[B̃] = 2(N −ℜ{Υ})R. (51)

To integrate (49), (50) and (51), the UPEP in the case of
(i, j) ̸= (̂i, ĵ) can be represented as Lemma 2.
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