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X-ray phase contrast micro-computed tomography (micro-CT) can achieve higher contrast than conventional
absorption-based X-ray micro-CT by utilizing refraction in addition to attenuation. In this work, we focus on a
specific X-ray phase contrast technique, edge illumination (EI) micro-CT. EI uses a sample mask with transmitting
apertures that split the X-ray beam into narrow beamlets, enabling detection of refraction-included intensity
variations. Between the typical mask designs (circular and slit-shaped apertures), slit-shaped apertures offer
practical advantages over circular ones, as they only require sample stepping in one direction, thereby reducing
scanning time. However, this leads to anisotropic resolution, as the slit-shaped apertures enhances resolution
only along the direction orthogonal to the slits. To address this limitation, we propose a self-supervised method
that trains on high-resolution in-plane images to enhance resolution for out-of-plane images, effectively miti-
gating anisotropy. Our results on both simulated and real EI micro-CT datasets demonstrate the effectiveness of

the proposed method.

1. Introduction

X-ray micro-computed tomography (micro-CT) allows analyzing the
interior structure of centimeter scale samples in a non-destructive
manner [1]. Images are formed by measuring the attenuation of X-ray
photons by matter, which leads to high contrast for highly attenuating
materials but produces poor contrast for samples composed of materials
with weak or similar attenuation properties, which are therefore chal-
lenging to visualize [2]. X-ray phase contrast micro-CT describes a class
of methods by which images are formed from X-ray refraction alongside
attenuation, enhancing contrast and bringing significant benefit for
those challenging samples [3]. One of them is the edge illumination (EI)
method [4], which uses a sample mask with transmitting apertures to
split the X-ray beam into fine beamlets and a matching detector mask to
create an array of edges in front of the pixels as shown in Fig. 1. When
positioning the sample mask such that half of each beamlet impinges on
a pixel while the other half impinges on the detector mask, refraction
can be detected, as this causes the beamlets to slightly change direction,
leading to an increase or decrease in the intensity measured in each
pixel.

When working with the EI method, an important consideration is the
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design of the sample mask, as this has implications on the spatial reso-
lution in the reconstructed tomographic volumes [5]. In conventional
micro-CT, spatial resolution is governed by the source and detector, each
introducing a blurring to the images that render features below a certain
scale unresolvable [6]. By contrast, in EI, resolution is governed by the
width of the sample mask apertures, provided that the spacing between
beamlets is sufficiently large to minimize any overlap between them,
and that they are not blurred as part of the detection process. This then
allows enhancing resolution beyond the limit imposed by the source/-
detector blurring by using sufficiently small apertures|[7]. However, this
comes at the cost of extended scan times, given that the apertures restrict
the x-ray flux, requiring longer exposures. Furthermore, since only the
sample areas traversed by beamlets can contribute to the image, the
sample must be stepped across the beamlet array in small increments at
each rotation angle to obtain fully sampled datasets [8]. Common
sample mask designs feature circular or slit-shaped apertures (Fig. 1).
Circular apertures enhance resolution in an isotropic fashion but also
imply a greater flux reduction, and require that the sample is stepped
along two orthogonal directions at each rotation angle, increasing scan
times. Their usage may therefore be considered impractical in certain
applications. Slit-shaped apertures transmit more flux and reduce the
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need for sample stepping to only one direction, resulting in faster scans
and making this design more practical. As a rough estimate, scans with
slit-shaped apertures reduce scan times by at least a factor of t compared
to circular apertures, where t is the number of steps required to step the
sample across the beamlet array along one direction. However, resolu-
tion is only enhanced along the direction orthogonal to the slits,
resulting in tomographic volumes with anisotropic resolution, featuring
a higher in-plane (axial) resolution and a lower out-of-plane (sagittal,
coronal) resolution. Another distinction between circular and
slit-shaped apertures is that the latter are sensitive to refraction along
one direction (orthogonal to the slits), whereas circular apertures are
omnidirectionally sensitive, which could justify their use despite the
longer scan times involved. To overcome the resolution anisotropy in
volumes acquired with slit-shaped apertures, deconvolution may be
applied to reduce the blur along the out-of-plane direction but this is
prone to introducing artifacts [9,10], particularly near edges. More
recently, supervised deep learning approaches have shown promise in
improving resolution [11-15], but they require high-quality, isotropic
reference images for training. This poses a challenge in EI micro-CT, as
samples are not usually scanned in sufficiently large numbers to build up
training sets. Furthermore, samples would need to be scanned with
slit-shaped apertures and circular apertures to obtain matching aniso-
tropic and isotropic volumes, which is extremely time-consuming and
may even be infeasible for samples that cannot be kept stable over long
time periods.

We present a self-supervised deep learning framework for enhancing
the out-of-plane resolution anisotropic EI micro-CT volumes acquired
with slit-shaped apertures as shown in Fig. 2. Our approach is based on
the idea of training a deep neural network on the higher-resolution in-
plane images and applying it to the lower-resolution out-of-plane images
[16-18]. This method builds on our previous work for medical helical
CT [18] by accurately modelling resolution differences to simulate
training images that reflect the anisotropic nature of the data, incor-
porating the system’s point spread functions (PSF) in both the in-plane
and out-of-plane directions. Using simulated datasets, we show that
the proposed method outperforms conventional deconvolution
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approaches and other deep learning methods both quantitatively and
visually, providing reliable resolution enhancement without halluci-
nating extraneous features. Furthermore, we demonstrate our method’s
effectiveness by applying it to experimentally acquired EI micro-CT
datasets. Our results demonstrate that isotropic tomographic volumes
can be obtained in EI micro-CT while also retaining the faster scan times
enabled by using slit-shaped apertures in the sample mask.

2. Method
2.1. Problem statement

We denote the reconstructed tomographic volume obtained with EI
micro-CT as I(x,y, z) € R¥*Y*Z, where X,Y,Z represent the number of
pixels along the x, y, z axes. The volume can be visualized in three
primary orientations: axial, coronal, and sagittal. We denote the axial,
coronal, and sagittal slices at positions #, y, and X’ as ay =1I(:,:,%), ¢, =
I(:,y’,:), and s,y =1(x,:,:). The voxel size of the volume is represented as
r* x P x %, where, for EI micro-CT with slit-shaped apertures in the
sample mask: ¥ = = ¥ < r%. That is, there is anisotropy in the voxel
dimensions, with a lower voxel resolution in the z axis (out-of-plane)
compared to the xy plane (in-plane). Additionally, we define the PSFs
along the in-plane and out-of-plane directions as 1D normalized zero-
mean Gaussian functions, where %, = ﬁw(o; 02,) is applied
along both the x and y directions in the xy-plane, while %, =
\/#_63,/4"(0; 02) is applied along the z direction. We choose o, > 0,y to
model the more extensive out-of-plane blurring due to the source and
detector and the less extensive in-plane blurring due to the sample mask
apertures. The choice of Gaussian models for the PSFs has arisen from
experimental observations made for EI micro-CT; edge-based measure-
ments of the horizontal and vertical system PSF have both produced
approximately Gaussian-shaped curves, albeit with a different standard
deviation.

Starting from a high-resolution “clean” volume I, blurring can be
introduced by the sequential application of the 1D PSFs along each axis.

object

rotation

object

—
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Fig. 1. Schematic of the EI system setup. The sample mask can have either circular or slit-shaped apertures. Circular apertures provide isotropic resolution but
require two-dimensional stepping, resulting in long scanning times, which may be impractical for some applications. In contrast, slit-shaped apertures require
translation in only one direction, significantly reducing scanning time. However, this approach yields anisotropic resolution.
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Fig. 2. Problem statement. When EI micro-CT is performed with a sample mask with slit-shaped apertures, the reconstructed volumes exhibit anisotropic resolution,
with different voxel sizes and point spread functions (PSFs) (varying blur levels) between the in-plane and out-of-plane directions. Our self-supervised learning
approach leverages the high-resolution in-plane images to generate training data, enabling improved out-of-plane resolution. The processed images feature isotropic
resolution without the need to acquire data with a sample mask with circular apertures, which is time-consuming.

In the xy-plane, blurring is applied by convolving both rows and col-
umns of each slice with .7, while in the z-direction, each column along

the z-axis is convolved with .#,. This leads to the blurred volume f,

where T = I+.2, with 2 being the 3D anisotropic Gaussian PSFs, rep-
resenting the anisotropic volumes reconstructed from EI micro-CT data.

2.2. Training and inference

Our proposed method simulates training images that resemble the
lower voxel resolution and blurrier out-of-plane images by generating
degraded versions of the high-resolution in-plane images. These simu-
lated images are then used to train a neural network, which can subse-
quently be applied to enhance the resolution of coronal and sagittal
images, as illustrated in Fig. 3.

To achieve a blur level in the in-plane images that matches the out-
of-plane blur, the in-plane images are convolved with a 1D Gaussian

PSF, defined as Zg = \/217”7‘12{)‘,%'(0;5%), where ogy = /02 — 0, For

each original in-plane image a:

¢ Convolving every row with Zg produces the horizontally blurred

. ~hor
imagea ;

¢ Convolving every column with .73 produces the vertically blurred
T

image 2"

To simulate the effect of reduced voxel resolution, we define
downsampling and upsampling functions that mimic the degradation
caused by lower resolution along the off-slice direction. The row-wise
downsampling function, .7 i“” intakes an image with resolution r¥ x
r?¥ and downscales it along rows to ¥ x r%, effectively reducing the pixel
count in the horizontal direction. Similarly, the upsampling function
T ’T‘”’ rescales the image back to its original resolution by linearly
upsampling the rows. This down- and upsampling process simulates the
degradation effect of reduced resolution while maintaining the original

image size. Analogously, the column-wise downsampling and upsam-
pling functions, .7 |* and .71, operate along the vertical direction.
For each original axial image a, we obtain:

o A horizontally degraded image .7 (.7 ’l“”(ﬁhor));
o A vertically degraded image: .7} (.71(a"")).

During training, these horizontally and vertically degraded images,
generated from all Z axial slices along the 2z axis, are used to train a
neural network fy to map the degraded images back to the original axial
images. Since resolution enhancement always takes place along the z
axis (the vertical axis for coronal and sagittal images), we define a
rotation function .% to rotate the horizontally degraded image by 90°,
ensuring that degradation consistently aligns with the vertical direction.
The weights 6 of the neural network are optimized by minimizing the
following objective function:

4
0= miny L7717
+LIZ (T (T @), 2 (@), M

where L is a loss function that computes the difference between the
network output to the target image.

After training, the network has learned the mapping from a degraded
image with voxel resolution r* and PSF ., along z axis to an image with
r and PSF .7,,. With the assumption that tomographic volumes exhibit
similar features across orientations, we apply this learned mapping to
enhance the resolution of coronal and sagittal images. For inference, the
coronal and sagittal images are first linearly upsampled with .77}, then
the trained network fy is applied to obtain images with enhanced reso-
lution and reduced blur. Empirically, we find that combining the
enhanced coronal and sagittal volumes yields no additional improve-
ment in image quality. Consequently, we use only the improved coronal
images as the final output.
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Fig. 3. Training and inference in our method. A neural network is trained on purposefully degraded in-plane images to enhance resolution the out-of-plane images.
To degrade the in-plane images, they are convolving with a PSF representing the difference between the in-plane and out-of-plane blur, followed by resampling to
simulate the reduced voxel resolution. For inference, the trained network is applied to linearly upsampled coronal and sagittal images, producing final outputs with

improved voxel resolution and reduced blur.

Any image-to-image neural network can be used as fy. In our ex-
periments, we employ a 2D Mixed Scale Dense (MS-D) network [19]
with 100 layers, training it for 200 epochs using an L2 loss function and
the ADAM optimizer [20].

3. Results and discussion
3.1. Datasets

We evaluate our method on three simulated datasets and three real
EI micro-CT datasets acquired with slit-shaped apertures in the sample
mask. We initially use isotropic tomographic volumes to simulate EI
micro-CT characteristics by applying anisotropic PSFs (cy, = 0.25, 6, =
2.5) along different orientations, as described in Section 2.1. The vol-
umes are then resampled along the z axis, yielding an anisotropic voxel
size where the voxel resolution along the z axis is four times worse than
in the xy plane. We compare the resolution-enhanced results against the
original isotropic high-resolution volumes.

e Foam Phantom: Using the foam_ct_phantom package [21], we
simulate a 512 x 512 x 512 voxels cylindrical foam phantom with
100,000 non-overlapping bubbles of various sizes.

e LoDolnd: From the LoDolnd dataset [22], we use a reference tube
sample comprising 15 materials (e.g., coriander, pine nuts),
providing complex, heterogeneous content. We crop and down-
sample the middle portion of the tube to 512 x 512 x 512 voxels.

e Lung: We select a human lung volume from Task06 Lung in the
Medical Segmentation Decathlon dataset [23], resampling it to
isotropic resolution with a shape of 404 x 512 x 512 voxels.

Real data were acquired using a custom EI micro-CT scanner [5]. The
sample mask had slit-shaped apertures (10 ym wide), while the pixel size
of the detector was 50 ym (40 ym when demagnified to the sample
plane). The reconstructed volumes therefore had voxel sizes of 10 x 10
x 40 um®. The PSFs describing the blur were modeled as Gaussian
functions with 6, = 0.39 and o, = 1.21, based on edge response function
measurements, resulting in a calculated o4y = 1.14. However, we found
empirically that a slightly larger o4y improved results, likely due to
minor inaccuracies in the edge response function measurements such as
edge imperfections, inclinations, or noise. Therefore, we used 64 = 1.5
for our experiments.

e Sponge: A piece of household sponge in a 3 mm diameter plastic
straw was scanned with 450 projections, 8 steps per projection, and a
1.5 s exposure per step. Data were flat and dark field corrected,
underwent single-image phase retrieval [24], and were subsequently
reconstructed into tomographic images via Filtered Back Projection
(FBP). The reconstructed volume contained 225 x 400 x 400 voxels.
Mouse Embryo: A deceased and ethanol dehydrated mouse embryo
(wild type, 14.5-day gestation) generated as surplus during research
[25] performed under the regulation of the UK Animals (Scientific
Procedures) Act 1986 and the National Centre for the 3Rs’ Re-
sponsibility in the Use of Animals for Medical Research (2019) was
scanned with 1200 projections, 8 steps per projection, and a 1.2's
exposure per step. The tomographic volume, reconstructed in the
same way as the sponge data, was cropped to a size of 128 x 512 x
512 voxels. In addition, we scanned the same mouse embryo using a
sample mask with finer apertures (5 ym wide), with 2400 pro-
jections, 16 steps per projection, and a 2 s exposure per step. The



J. Shi et al.

tomographic volume, again reconstructed as described above, had a
voxel size of 5 x 5 x 40 ym® and was cropped to a size of 143 x 1024
x 1024 voxels.

3.2. Comparison with other methods

To validate the effectiveness of the proposed method, we compare it
with the following classical and deep learning-based methods: Linear
Upsampling (out-of-plane images are linearly upsampled along the z
axis), Wiener Deconvolution using PSF with o4 = 2.49 for simulated
data and o4 = 1.5 for real data (following linear upsampling, Wiener
deconvolution [26] is applied along the z axis to address differences in
blur levels), Lucy-Richardson Deconvolution using PSF with o4 = 2.49
for simulated data and ogy = 1.5 for real data (similarly,
Lucy-Richardson deconvolution [10] is applied along the z axis), SAINT
(convolutional neural network-based method for CT image
super-resolution with a fixed upsampling factor of 4 [11]), and PLHR (a
vision transformer-based approach for CT image super-resolution with a
fixed upsampling factor of 5 [13]; to enable comparison, the outputs of
RPLHR were downsampled by a factor of 1.25). As discussed in Section
1, acquiring isotropic high-resolution EI micro-CT volumes, which are
required as reference data for training supervised learning models, is
often challenging and time-consuming. Consequently, we did not retrain
these methods and instead used the authors’ pre-trained weights, orig-
inally trained on human lung CT images. This may introduce
domain-shift effects when applied to other datasets in this work. Addi-
tionally, the traditional methods were applied with default parameters,
which could potentially introduce a bias favoring the more optimized
deep learning-based approaches.

3.3. Results

Simulated datasets. The results of using our proposed method, as
well as the various methods of comparison, to increase the out-of-plane
resolution in the degraded simulated datasets are shown in Fig. 4. It can
be seen that linear upsampling results in images that almost entirely
retain their blurriness, which is expected. While Wiener and Lucy-
Richardson deconvolution appear effective in deblurring, they also
introduce artifacts which is undesirable. SAINT appears to fail to
adequately deblur the image, and RPLHR introduces visible patch-based
artifacts. These arise because RPLHR processes images in patches due to
the high computational demands of the transformer model, limiting its

linear upsample
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\

Wiener rLucy-Richardson
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ability to handle entire images seamlessly. In comparison, our proposed
method produces deblurred images without introducing hallucinated
features or other unwanted artifacts. We also quantify the performance
of the various methods in Table 1, showing that our method consistently
yields the highest Peak Signal to Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM) [27] values across all datasets. The
sub-optimal performance of SAINT and RPLHR may be explained by the
domain shift between training and testing data.

Real EI micro-CT datasets. Results obtained for the real EI micro-CT
data are shown in Fig. 5. Due to the difficulty in acquiring isotropic EI
micro-CT images (requiring the use of a sample mask with circular ap-
ertures and involving excessive scan times), ground truth images are not
available in this case. This also means that quantitative metrics (PSNR,
SSIM) cannot be extracted. However, visually the results are consistent
with those observed on the simulated datasets. Linear upsampling re-
sults in blurry images, deconvolution methods introduce new artifacts
likely due to their sensitivity to slightly erroneous PSF estimates, and
SAINT outputs noticeably blurred images. RPLHR produces better visual
results than on the simulated datasets but the results also exhibits a
degree of hallucination, with generated features that visibly diverge
from the true image structures. By contrast, our method again delivers
high-resolution out-of-plane images with significantly reduced blur
while preserving the original image features, even for the challenging
case of an initial 8 x resolution mismatch.

Computation cost. The computational efficiency of the proposed
method was assessed using the mouse embryo dataset with the size of
128 x 512 x 512 voxels. Our approach simulates 256 pairs of training

Table 1

Comparison of various resolution enhancement methods, including our pro-
posed approach, applied to the described simulated volumes. Each entry shows
the Peak Signal to Noise Ratio (PSNR)/Structural Similarity Index Measure
(SSIM) [27] metrics calculated relative to the ground truth volumes, with the
highest values highlighted in bold.

Dataset Linear Wiener Lucy- SAINT RPLHR Ours
Richardson

Lung 33.59/ 35.80/ 36.77/0.94 33.53/ 32.10/ 40.20/
0.90 0.92 0.88 0.87 0.97

LoDolnd 32.20/ 33.37/ 33.86/0.88 31.88/ 27.00/ 35.20/
0.83 0.86 0.82 0.70 0.91

Foam 18.50/ 19.23/ 20.47/0.77 18.18/ 17.73/ 24.84/
0.67 0.66 0.64 0.61 0.82

SAINT RPLHR ours reference
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Fig. 4. Visual comparison of various resolution enhancement methods, including our proposed approach, on tomographic volumes with simulated non-isotropic
resolution. PSNR and SSIM values for each cropped image are displayed in the upper-left and lower-left corners, respectively. The locations of the selected
patches are indicated in the first column from the left. The labels 4 x in the upper-left corners denote the resolution enhancement factor along the off-plane direction.
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Fig. 5. Visual comparison of various resolution enhancement methods, including our proposed approach, on real EI micro-CT images. The red insets indicate the
locations of the enlarged patches. The labels 4 x and 8 x in the upper-left corners denote the resolution enhancement factor along the off-plane direction. Note that,
although the same mouse embryo was scanned at different resolutions, slight positional shifts of the sample components can occur between scans. As a result, precise
registration is challenging, so the images only display patches from approximately similar locations, with some differences in image features.

and target images. Training with the depth-100 MSD network requires
approximately 39 s per epoch. For the default 200 training epochs, the
total training time amounts to approximately 130 min. Once the
network is trained, the inference process for generating the final
resolution-enhanced CT volume takes approximately 20 s. All compu-
tations were performed on a workstation equipped with an Intel i7-
11700KF CPU and an Nvidia RTX 4080 GPU.

4. Conclusion

We have proposed a self-supervised framework for enhancing EI
micro-CT data by leveraging the high-resolution, in-plane images to
improve the lower-resolution, out-of-plane images. Our approach sim-
ulates training images by accurately modelling differences in voxel
resolution and blurring through orientation-specific PSFs, allowing the
network to learn and correct anisotropic effects inherent to EI micro-CT
data acquired with slit-shaped apertures in the sample mask. Our
method’s performance was evaluated on simulated data and real EI
micro-CT datasets, and compared to other methods for resolution
enhancement. Our approach consistently produced the highest-quality
results, reducing blur while retaining image features without intro-
ducing artifacts.

However, our method relies on the assumption that images across

different orientations share similar features in EI micro-CT. When sig-
nificant differences exist between orientations, the performance of our
approach may degrade. For instance, orientation-specific artifacts, such
as ring artifacts in in-plane images, could be inadvertently introduced
into out-of-plane images. Additionally, while our self-supervised
approach addresses the challenges of scanning isotropic CT data with
circular apertures in the sampling mask, it requires separate training for
each anisotropic volume. Although the training time is relatively short
compared to the time saved in scanning, future work could focus on
improving computational efficiency to further reduce overhead.

Our self-supervised framework enables the acquisition of high-
resolution, isotropic volumes with EI micro-CT using slit-shaped aper-
tures in the sample mask, which would normally only be possible with
circular apertures and thus incurring long scan times. We believe that
the framework will benefit applications of EI micro-CT for which both a
isotropic resolution and fast scans are required.
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