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A B S T R A C T

X-ray phase contrast micro-computed tomography (micro-CT) can achieve higher contrast than conventional 
absorption-based X-ray micro-CT by utilizing refraction in addition to attenuation. In this work, we focus on a 
specific X-ray phase contrast technique, edge illumination (EI) micro-CT. EI uses a sample mask with transmitting 
apertures that split the X-ray beam into narrow beamlets, enabling detection of refraction-included intensity 
variations. Between the typical mask designs (circular and slit-shaped apertures), slit-shaped apertures offer 
practical advantages over circular ones, as they only require sample stepping in one direction, thereby reducing 
scanning time. However, this leads to anisotropic resolution, as the slit-shaped apertures enhances resolution 
only along the direction orthogonal to the slits. To address this limitation, we propose a self-supervised method 
that trains on high-resolution in-plane images to enhance resolution for out-of-plane images, effectively miti
gating anisotropy. Our results on both simulated and real EI micro-CT datasets demonstrate the effectiveness of 
the proposed method.

1. Introduction

X-ray micro-computed tomography (micro-CT) allows analyzing the 
interior structure of centimeter scale samples in a non-destructive 
manner [1]. Images are formed by measuring the attenuation of X-ray 
photons by matter, which leads to high contrast for highly attenuating 
materials but produces poor contrast for samples composed of materials 
with weak or similar attenuation properties, which are therefore chal
lenging to visualize [2]. X-ray phase contrast micro-CT describes a class 
of methods by which images are formed from X-ray refraction alongside 
attenuation, enhancing contrast and bringing significant benefit for 
those challenging samples [3]. One of them is the edge illumination (EI) 
method [4], which uses a sample mask with transmitting apertures to 
split the X-ray beam into fine beamlets and a matching detector mask to 
create an array of edges in front of the pixels as shown in Fig. 1. When 
positioning the sample mask such that half of each beamlet impinges on 
a pixel while the other half impinges on the detector mask, refraction 
can be detected, as this causes the beamlets to slightly change direction, 
leading to an increase or decrease in the intensity measured in each 
pixel.

When working with the EI method, an important consideration is the 

design of the sample mask, as this has implications on the spatial reso
lution in the reconstructed tomographic volumes [5]. In conventional 
micro-CT, spatial resolution is governed by the source and detector, each 
introducing a blurring to the images that render features below a certain 
scale unresolvable [6]. By contrast, in EI, resolution is governed by the 
width of the sample mask apertures, provided that the spacing between 
beamlets is sufficiently large to minimize any overlap between them, 
and that they are not blurred as part of the detection process. This then 
allows enhancing resolution beyond the limit imposed by the source/
detector blurring by using sufficiently small apertures[7]. However, this 
comes at the cost of extended scan times, given that the apertures restrict 
the x-ray flux, requiring longer exposures. Furthermore, since only the 
sample areas traversed by beamlets can contribute to the image, the 
sample must be stepped across the beamlet array in small increments at 
each rotation angle to obtain fully sampled datasets [8]. Common 
sample mask designs feature circular or slit-shaped apertures (Fig. 1). 
Circular apertures enhance resolution in an isotropic fashion but also 
imply a greater flux reduction, and require that the sample is stepped 
along two orthogonal directions at each rotation angle, increasing scan 
times. Their usage may therefore be considered impractical in certain 
applications. Slit-shaped apertures transmit more flux and reduce the 

* Corresponding author.
E-mail address: j.shi@liacs.leidenuniv.nl (J. Shi). 

1 These authors have contributed equally.

Contents lists available at ScienceDirect

Tomography of Materials and Structures

journal homepage: www.journals.elsevier.com/tomography-of-materials-and-structures

https://doi.org/10.1016/j.tmater.2024.100046
Received 14 November 2024; Received in revised form 12 December 2024; Accepted 20 December 2024  

Tomography of Materials and Structures 7 (2025) 100046 

Available online 23 December 2024 
2949-673X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:j.shi@liacs.leidenuniv.nl
www.sciencedirect.com/science/journal/2949673X
https://www.journals.elsevier.com/tomography-of-materials-and-structures
https://doi.org/10.1016/j.tmater.2024.100046
https://doi.org/10.1016/j.tmater.2024.100046
http://creativecommons.org/licenses/by/4.0/


need for sample stepping to only one direction, resulting in faster scans 
and making this design more practical. As a rough estimate, scans with 
slit-shaped apertures reduce scan times by at least a factor of t compared 
to circular apertures, where t is the number of steps required to step the 
sample across the beamlet array along one direction. However, resolu
tion is only enhanced along the direction orthogonal to the slits, 
resulting in tomographic volumes with anisotropic resolution, featuring 
a higher in-plane (axial) resolution and a lower out-of-plane (sagittal, 
coronal) resolution. Another distinction between circular and 
slit-shaped apertures is that the latter are sensitive to refraction along 
one direction (orthogonal to the slits), whereas circular apertures are 
omnidirectionally sensitive, which could justify their use despite the 
longer scan times involved. To overcome the resolution anisotropy in 
volumes acquired with slit-shaped apertures, deconvolution may be 
applied to reduce the blur along the out-of-plane direction but this is 
prone to introducing artifacts [9,10], particularly near edges. More 
recently, supervised deep learning approaches have shown promise in 
improving resolution [11–15], but they require high-quality, isotropic 
reference images for training. This poses a challenge in EI micro-CT, as 
samples are not usually scanned in sufficiently large numbers to build up 
training sets. Furthermore, samples would need to be scanned with 
slit-shaped apertures and circular apertures to obtain matching aniso
tropic and isotropic volumes, which is extremely time-consuming and 
may even be infeasible for samples that cannot be kept stable over long 
time periods.

We present a self-supervised deep learning framework for enhancing 
the out-of-plane resolution anisotropic EI micro-CT volumes acquired 
with slit-shaped apertures as shown in Fig. 2. Our approach is based on 
the idea of training a deep neural network on the higher-resolution in- 
plane images and applying it to the lower-resolution out-of-plane images 
[16–18]. This method builds on our previous work for medical helical 
CT [18] by accurately modelling resolution differences to simulate 
training images that reflect the anisotropic nature of the data, incor
porating the system’s point spread functions (PSF) in both the in-plane 
and out-of-plane directions. Using simulated datasets, we show that 
the proposed method outperforms conventional deconvolution 

approaches and other deep learning methods both quantitatively and 
visually, providing reliable resolution enhancement without halluci
nating extraneous features. Furthermore, we demonstrate our method’s 
effectiveness by applying it to experimentally acquired EI micro-CT 
datasets. Our results demonstrate that isotropic tomographic volumes 
can be obtained in EI micro-CT while also retaining the faster scan times 
enabled by using slit-shaped apertures in the sample mask.

2. Method

2.1. Problem statement

We denote the reconstructed tomographic volume obtained with EI 
micro-CT as I(x, y, z) ∈ RX×Y×Z, where X,Y,Z represent the number of 
pixels along the x, y, z axes. The volume can be visualized in three 
primary orientations: axial, coronal, and sagittal. We denote the axial, 
coronal, and sagittal slices at positions ź , ý , and x́  as aź = I(:, :, ź ), cý =

I(:,ý ,:), and sx́ = I(x́ ,:,:). The voxel size of the volume is represented as 
rx × ry × rz, where, for EI micro-CT with slit-shaped apertures in the 
sample mask: rx = ry = rxy < rz. That is, there is anisotropy in the voxel 
dimensions, with a lower voxel resolution in the z axis (out-of-plane) 
compared to the xy plane (in-plane). Additionally, we define the PSFs 
along the in-plane and out-of-plane directions as 1D normalized zero- 
mean Gaussian functions, where P xy = 1̅̅̅̅̅̅̅̅̅

2πσ2
xy

√ N (0; σ2
xy) is applied 

along both the x and y directions in the xy-plane, while P z =

1̅̅̅ ̅̅̅̅̅
2πσ2

z

√ N (0; σ2
z ) is applied along the z direction. We choose σz > σxy to 

model the more extensive out-of-plane blurring due to the source and 
detector and the less extensive in-plane blurring due to the sample mask 
apertures. The choice of Gaussian models for the PSFs has arisen from 
experimental observations made for EI micro-CT; edge-based measure
ments of the horizontal and vertical system PSF have both produced 
approximately Gaussian-shaped curves, albeit with a different standard 
deviation.

Starting from a high-resolution “clean” volume I, blurring can be 
introduced by the sequential application of the 1D PSFs along each axis. 

Fig. 1. Schematic of the EI system setup. The sample mask can have either circular or slit-shaped apertures. Circular apertures provide isotropic resolution but 
require two-dimensional stepping, resulting in long scanning times, which may be impractical for some applications. In contrast, slit-shaped apertures require 
translation in only one direction, significantly reducing scanning time. However, this approach yields anisotropic resolution.

J. Shi et al.                                                                                                                                                                                                                                       Tomography of Materials and Structures 7 (2025) 100046 

2 



In the xy-plane, blurring is applied by convolving both rows and col
umns of each slice with P xy, while in the z-direction, each column along 
the z-axis is convolved with P z. This leads to the blurred volume Î, 
where Î = I ∗ P , with P being the 3D anisotropic Gaussian PSFs, rep
resenting the anisotropic volumes reconstructed from EI micro-CT data.

2.2. Training and inference

Our proposed method simulates training images that resemble the 
lower voxel resolution and blurrier out-of-plane images by generating 
degraded versions of the high-resolution in-plane images. These simu
lated images are then used to train a neural network, which can subse
quently be applied to enhance the resolution of coronal and sagittal 
images, as illustrated in Fig. 3.

To achieve a blur level in the in-plane images that matches the out- 
of-plane blur, the in-plane images are convolved with a 1D Gaussian 

PSF, defined as P dif = 1̅̅̅̅̅̅̅̅̅
2πσ2

dif

√ N (0; σ2
dif ), where σdif =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

z − σ2
xy

√
. For 

each original in-plane image a: 

• Convolving every row with P dif produces the horizontally blurred 

image âhor;
• Convolving every column with P dif produces the vertically blurred 

image âver.

To simulate the effect of reduced voxel resolution, we define 
downsampling and upsampling functions that mimic the degradation 
caused by lower resolution along the off-slice direction. The row-wise 
downsampling function, F hor

↓ intakes an image with resolution rxy ×

rxy and downscales it along rows to rxy × rz, effectively reducing the pixel 
count in the horizontal direction. Similarly, the upsampling function 
F hor

↑ rescales the image back to its original resolution by linearly 
upsampling the rows. This down- and upsampling process simulates the 
degradation effect of reduced resolution while maintaining the original 

image size. Analogously, the column-wise downsampling and upsam
pling functions, F ver

↓ and F ver↑, operate along the vertical direction. 
For each original axial image a, we obtain: 

• A horizontally degraded image F hor
↑ (F hor

↓ (âhor
));

• A vertically degraded image: F ver
↑ (F ver

↓ (âver
)).

During training, these horizontally and vertically degraded images, 
generated from all Z axial slices along the z axis, are used to train a 
neural network fθ to map the degraded images back to the original axial 
images. Since resolution enhancement always takes place along the z 
axis (the vertical axis for coronal and sagittal images), we define a 
rotation function R to rotate the horizontally degraded image by 90∘, 
ensuring that degradation consistently aligns with the vertical direction. 
The weights θ of the neural network are optimized by minimizing the 
following objective function: 

θ∗ = min
θ

∑Z

i=1
L[fθ(F

ver
↑ (F ver

↓ (âver
)), a]

+ L[R (fθ(F
hor
↑ (F hor

↓ (âhor
))),R (a)], (1) 

where L is a loss function that computes the difference between the 
network output to the target image.

After training, the network has learned the mapping from a degraded 
image with voxel resolution rz and PSF P z along z axis to an image with 
rxy and PSF P xy. With the assumption that tomographic volumes exhibit 
similar features across orientations, we apply this learned mapping to 
enhance the resolution of coronal and sagittal images. For inference, the 
coronal and sagittal images are first linearly upsampled with F ver

↑ , then 
the trained network fθ is applied to obtain images with enhanced reso
lution and reduced blur. Empirically, we find that combining the 
enhanced coronal and sagittal volumes yields no additional improve
ment in image quality. Consequently, we use only the improved coronal 
images as the final output.

Fig. 2. Problem statement. When EI micro-CT is performed with a sample mask with slit-shaped apertures, the reconstructed volumes exhibit anisotropic resolution, 
with different voxel sizes and point spread functions (PSFs) (varying blur levels) between the in-plane and out-of-plane directions. Our self-supervised learning 
approach leverages the high-resolution in-plane images to generate training data, enabling improved out-of-plane resolution. The processed images feature isotropic 
resolution without the need to acquire data with a sample mask with circular apertures, which is time-consuming.
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Any image-to-image neural network can be used as fθ. In our ex
periments, we employ a 2D Mixed Scale Dense (MS-D) network [19]
with 100 layers, training it for 200 epochs using an L2 loss function and 
the ADAM optimizer [20].

3. Results and discussion

3.1. Datasets

We evaluate our method on three simulated datasets and three real 
EI micro-CT datasets acquired with slit-shaped apertures in the sample 
mask. We initially use isotropic tomographic volumes to simulate EI 
micro-CT characteristics by applying anisotropic PSFs (σxy = 0.25, σz =

2.5) along different orientations, as described in Section 2.1. The vol
umes are then resampled along the z axis, yielding an anisotropic voxel 
size where the voxel resolution along the z axis is four times worse than 
in the xy plane. We compare the resolution-enhanced results against the 
original isotropic high-resolution volumes. 

• Foam Phantom: Using the foam_ct_phantom package [21], we 
simulate a 512 × 512 × 512 voxels cylindrical foam phantom with 
100,000 non-overlapping bubbles of various sizes.

• LoDoInd: From the LoDoInd dataset [22], we use a reference tube 
sample comprising 15 materials (e.g., coriander, pine nuts), 
providing complex, heterogeneous content. We crop and down
sample the middle portion of the tube to 512 × 512 × 512 voxels.

• Lung: We select a human lung volume from Task06 Lung in the 
Medical Segmentation Decathlon dataset [23], resampling it to 
isotropic resolution with a shape of 404 × 512 × 512 voxels.

Real data were acquired using a custom EI micro-CT scanner [5]. The 
sample mask had slit-shaped apertures (10 μm wide), while the pixel size 
of the detector was 50 μm (40 μm when demagnified to the sample 
plane). The reconstructed volumes therefore had voxel sizes of 10 × 10 
× 40 μm3. The PSFs describing the blur were modeled as Gaussian 
functions with σxy = 0.39 and σz = 1.21, based on edge response function 
measurements, resulting in a calculated σdif = 1.14. However, we found 
empirically that a slightly larger σdif improved results, likely due to 
minor inaccuracies in the edge response function measurements such as 
edge imperfections, inclinations, or noise. Therefore, we used σdif = 1.5 
for our experiments. 

• Sponge: A piece of household sponge in a 3 mm diameter plastic 
straw was scanned with 450 projections, 8 steps per projection, and a 
1.5 s exposure per step. Data were flat and dark field corrected, 
underwent single-image phase retrieval [24], and were subsequently 
reconstructed into tomographic images via Filtered Back Projection 
(FBP). The reconstructed volume contained 225 × 400 × 400 voxels.

• Mouse Embryo: A deceased and ethanol dehydrated mouse embryo 
(wild type, 14.5-day gestation) generated as surplus during research 
[25] performed under the regulation of the UK Animals (Scientific 
Procedures) Act 1986 and the National Centre for the 3Rs’ Re
sponsibility in the Use of Animals for Medical Research (2019) was 
scanned with 1200 projections, 8 steps per projection, and a 1.2 s 
exposure per step. The tomographic volume, reconstructed in the 
same way as the sponge data, was cropped to a size of 128 × 512 ×
512 voxels. In addition, we scanned the same mouse embryo using a 
sample mask with finer apertures (5 μm wide), with 2400 pro
jections, 16 steps per projection, and a 2 s exposure per step. The 

Fig. 3. Training and inference in our method. A neural network is trained on purposefully degraded in-plane images to enhance resolution the out-of-plane images. 
To degrade the in-plane images, they are convolving with a PSF representing the difference between the in-plane and out-of-plane blur, followed by resampling to 
simulate the reduced voxel resolution. For inference, the trained network is applied to linearly upsampled coronal and sagittal images, producing final outputs with 
improved voxel resolution and reduced blur.
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tomographic volume, again reconstructed as described above, had a 
voxel size of 5 × 5 × 40 μm3 and was cropped to a size of 143 × 1024 
× 1024 voxels.

3.2. Comparison with other methods

To validate the effectiveness of the proposed method, we compare it 
with the following classical and deep learning-based methods: Linear 
Upsampling (out-of-plane images are linearly upsampled along the z 
axis), Wiener Deconvolution using PSF with σdif = 2.49 for simulated 
data and σdif = 1.5 for real data (following linear upsampling, Wiener 
deconvolution [26] is applied along the z axis to address differences in 
blur levels), Lucy-Richardson Deconvolution using PSF with σdif = 2.49 
for simulated data and σdif = 1.5 for real data (similarly, 
Lucy-Richardson deconvolution [10] is applied along the z axis), SAINT 
(convolutional neural network-based method for CT image 
super-resolution with a fixed upsampling factor of 4 [11]), and PLHR (a 
vision transformer-based approach for CT image super-resolution with a 
fixed upsampling factor of 5 [13]; to enable comparison, the outputs of 
RPLHR were downsampled by a factor of 1.25). As discussed in Section 
1, acquiring isotropic high-resolution EI micro-CT volumes, which are 
required as reference data for training supervised learning models, is 
often challenging and time-consuming. Consequently, we did not retrain 
these methods and instead used the authors’ pre-trained weights, orig
inally trained on human lung CT images. This may introduce 
domain-shift effects when applied to other datasets in this work. Addi
tionally, the traditional methods were applied with default parameters, 
which could potentially introduce a bias favoring the more optimized 
deep learning-based approaches.

3.3. Results

Simulated datasets. The results of using our proposed method, as 
well as the various methods of comparison, to increase the out-of-plane 
resolution in the degraded simulated datasets are shown in Fig. 4. It can 
be seen that linear upsampling results in images that almost entirely 
retain their blurriness, which is expected. While Wiener and Lucy- 
Richardson deconvolution appear effective in deblurring, they also 
introduce artifacts which is undesirable. SAINT appears to fail to 
adequately deblur the image, and RPLHR introduces visible patch-based 
artifacts. These arise because RPLHR processes images in patches due to 
the high computational demands of the transformer model, limiting its 

ability to handle entire images seamlessly. In comparison, our proposed 
method produces deblurred images without introducing hallucinated 
features or other unwanted artifacts. We also quantify the performance 
of the various methods in Table 1, showing that our method consistently 
yields the highest Peak Signal to Noise Ratio (PSNR) and Structural 
Similarity Index Measure (SSIM) [27] values across all datasets. The 
sub-optimal performance of SAINT and RPLHR may be explained by the 
domain shift between training and testing data.

Real EI micro-CT datasets. Results obtained for the real EI micro-CT 
data are shown in Fig. 5. Due to the difficulty in acquiring isotropic EI 
micro-CT images (requiring the use of a sample mask with circular ap
ertures and involving excessive scan times), ground truth images are not 
available in this case. This also means that quantitative metrics (PSNR, 
SSIM) cannot be extracted. However, visually the results are consistent 
with those observed on the simulated datasets. Linear upsampling re
sults in blurry images, deconvolution methods introduce new artifacts 
likely due to their sensitivity to slightly erroneous PSF estimates, and 
SAINT outputs noticeably blurred images. RPLHR produces better visual 
results than on the simulated datasets but the results also exhibits a 
degree of hallucination, with generated features that visibly diverge 
from the true image structures. By contrast, our method again delivers 
high-resolution out-of-plane images with significantly reduced blur 
while preserving the original image features, even for the challenging 
case of an initial 8 × resolution mismatch.

Computation cost. The computational efficiency of the proposed 
method was assessed using the mouse embryo dataset with the size of 
128 × 512 × 512 voxels. Our approach simulates 256 pairs of training 

Fig. 4. Visual comparison of various resolution enhancement methods, including our proposed approach, on tomographic volumes with simulated non-isotropic 
resolution. PSNR and SSIM values for each cropped image are displayed in the upper-left and lower-left corners, respectively. The locations of the selected 
patches are indicated in the first column from the left. The labels 4 × in the upper-left corners denote the resolution enhancement factor along the off-plane direction.

Table 1 
Comparison of various resolution enhancement methods, including our pro
posed approach, applied to the described simulated volumes. Each entry shows 
the Peak Signal to Noise Ratio (PSNR)/Structural Similarity Index Measure 
(SSIM) [27] metrics calculated relative to the ground truth volumes, with the 
highest values highlighted in bold.

Dataset Linear Wiener Lucy- 
Richardson

SAINT RPLHR Ours

Lung 33.59/ 
0.90

35.80/ 
0.92

36.77/0.94 33.53/ 
0.88

32.10/ 
0.87

40.20/ 
0.97

LoDoInd 32.20/ 
0.83

33.37/ 
0.86

33.86/0.88 31.88/ 
0.82

27.00/ 
0.70

35.20/ 
0.91

Foam 18.50/ 
0.67

19.23/ 
0.66

20.47/0.77 18.18/ 
0.64

17.73/ 
0.61

24.84/ 
0.82
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and target images. Training with the depth-100 MSD network requires 
approximately 39 s per epoch. For the default 200 training epochs, the 
total training time amounts to approximately 130 min. Once the 
network is trained, the inference process for generating the final 
resolution-enhanced CT volume takes approximately 20 s. All compu
tations were performed on a workstation equipped with an Intel i7- 
11700KF CPU and an Nvidia RTX 4080 GPU.

4. Conclusion

We have proposed a self-supervised framework for enhancing EI 
micro-CT data by leveraging the high-resolution, in-plane images to 
improve the lower-resolution, out-of-plane images. Our approach sim
ulates training images by accurately modelling differences in voxel 
resolution and blurring through orientation-specific PSFs, allowing the 
network to learn and correct anisotropic effects inherent to EI micro-CT 
data acquired with slit-shaped apertures in the sample mask. Our 
method’s performance was evaluated on simulated data and real EI 
micro-CT datasets, and compared to other methods for resolution 
enhancement. Our approach consistently produced the highest-quality 
results, reducing blur while retaining image features without intro
ducing artifacts.

However, our method relies on the assumption that images across 

different orientations share similar features in EI micro-CT. When sig
nificant differences exist between orientations, the performance of our 
approach may degrade. For instance, orientation-specific artifacts, such 
as ring artifacts in in-plane images, could be inadvertently introduced 
into out-of-plane images. Additionally, while our self-supervised 
approach addresses the challenges of scanning isotropic CT data with 
circular apertures in the sampling mask, it requires separate training for 
each anisotropic volume. Although the training time is relatively short 
compared to the time saved in scanning, future work could focus on 
improving computational efficiency to further reduce overhead.

Our self-supervised framework enables the acquisition of high- 
resolution, isotropic volumes with EI micro-CT using slit-shaped aper
tures in the sample mask, which would normally only be possible with 
circular apertures and thus incurring long scan times. We believe that 
the framework will benefit applications of EI micro-CT for which both a 
isotropic resolution and fast scans are required.
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