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ABSTRACT
BACKGROUND Atrial fibrillation (AF) prediction improves by combining clinical scores with a polygenic risk score (PRS) for AF
(AF-PRS), but there are limited studies of PRS for ventricular arrhythmia (VA) prediction.

OBJECTIVE We assessed the value of includingmultiple PRS for cardiovascular risk factors (CV-PRS) for incident AF and VA pre-
diction.

METHODS We used 158,733 individuals of European ancestry from UK Biobank to build 3 models for AF: CHARGE-AF (AF1),
AF11 AF-PRS (AF2), AF21 CV-PRS (AF3). Models for VA included sex and age (VA1), VA11 coronary artery disease (CAD) PRS
(CAD-PRS, VA2), and VA2 1 CV-PRS (VA3), conducting separate analyses in subjects with and without ischemic heart disease
(IHD). Performance was evaluated in individuals of European (N 5 158,733), African (N 5 7200), South Asian (N 5 9241) and
East Asian (N 5 2076) ancestry from UK Biobank.

RESULTS AF2 had a higher C-index than AF1 (0.762 vs 0.746, P < .001), marginally improving to 0.765 for AF3 (P < .001,
including PRS for heart failure, electrocardiogram and cardiac magnetic resonance measures). In South Asians, AF2 C-index
was higher than AF1 (P < .001). For VA, the C-index for VA2 was greater than VA1 (0.692 vs 0.681, P < .001) in Europeans, which
was also observed in South Asians (P < .001). VA3 improved prediction of VA in individuals with IHD.

CONCLUSION CV-PRS improved AF prediction compared to CHARGE-AF and AF-PRS. A CAD-PRS improved VA prediction,
while CV-PRS contributed in IHD. AF- andCAD-PRSwere transferable to individuals of South Asian ancestry. Our results inform of
the use of CV-PRS for personalized screening.
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Introduction

Atrial and ventricular arrhythmia are a cause of substantial
morbidity and mortality in the general population. Atrial fibril-
lation (AF) is the most common cardiac arrhythmia and associ-
ated with increased risk for cardioembolic stroke and heart
failure (HF).1 Ventricular arrhythmia (VA) are the primary cause
of sudden cardiac death, with w50% of these deaths occur-
ring in individuals considered low risk using current clinical
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criteria.2 Therefore, AF and VA risk stratification tools need
to improve the identification of high-risk individuals in low-
risk populations who may benefit from early implementation
of primary prevention strategies.
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Figure 1
Overview of the models and PRS evaluated in this study to predict incident atrial fibrillation and ventricular arrhythmic risk. AF 5 atrial fibrillation; ECG 5 electro-
cardiogram; MRI 5 magnetic resonance imaging; PRS 5 polygenic risk score.
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predisposition for AF showed a strong association with AF risk
independently from traditional risk factors.4 When combined
with the CHARGE-AF score, 3 times as many AF cases were
identified compared with CHARGE-AF alone.5 For VA, there
is no established clinical score, but male sex and age are
themain risk factors in the general population.6 A recent study
has reported a coronary artery disease (CAD) PRS is associ-
ated with sudden cardiac death in patients with CAD and car-
diovascular comorbidities independently from sex and age,
with a 70% improvement in discrimination when combined
Abbreviations

AF: atrial fibrillation

CAD: coronary artery disease

CHARGE: Cohorts for Heart
and Aging Research in Ge-
netic Epidemiology

ECG: electrocardiogram
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with clinical risk factors.7

Most AF or VA risk factors,
including electrocardiogram
(ECG) or cardiacmagnetic reso-
nance images (MRI) markers,
are heritable, with more than
1000 significant loci com-
bined.4,8–25 Our recent work
showed that the combination
of a CAD PRS with PRS for
several cardiovascular risk
factors has a better
performance in predicting
incident CAD risk in the
general population than a
CAD PRS alone.26 Neverthe-
less, the AF and VA predictive
value of PRS for these risk fac-
tors is still unknown, although this investigation would inform
on their utility in risk stratifying individuals who are otherwise
healthy, in which there are potentially few confounding factors.

We, thus, hypothesized that additional PRS for AF and VA
cardiovascular risk factors, including ECG and MRI risk
markers in combination with clinical scores, may capture addi-
tional electrophysiological mechanisms relevant for risk strat-
ification. We have tested this in a middle-aged population of
European ancestry without prevalent cardiovascular disease
at recruitment (Figure 1), as well as in individuals with African,
South Asian, and East Asian ancestry. We also performed sex-
stratified analyses and repeated incident VA association ana-
lyses in individuals with and without prevalent ischemic heart
disease (IHD).
Methods

Study population

UK Biobank is a prospective study of 502,505 individuals,
aged 40 to 69 years old at recruitment (2006–2008). UK Bio-
bank has approval from theNorthWestMulti-Centre Research
EthicsCommittee, and all participants provided informed con-
sent. The research reported in this paper adhered to the Hel-
sinki Declaration as revised in 2013. For AF and VA, individuals
with a diagnosis of CAD, VA, AF or heart failure at recruitment
were excluded using international Classification of Diseases,
Tenth Revision (ICD-10) codes (Supplemental Table S1). The
main analysis included 398,716 unrelated individuals of



Figure 2
Flowchart indicating the number of individuals included in the study and the partition into training and test for incident atrial fibrillation (AF) and ventricular arrhythmia
(VA) risk prediction. CV 5 cardiovascular.
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European-ancestry (Figure 2). A subset of 81,251 individuals
who participated in the UK Biobank exercise stress test or in
the imaging study was used to obtain the list of variants and
weights to build the optimal PRS for each cardiovascular risk
factor trait. The remaining 317,465 independent individuals
were further split into training (50%) and test (50%) subsets.
The training subset was used to derive specific models associ-
atedwith incident AF and VA, and their performancewas eval-
uated in the test subset (Figure 2). Models were additionally
tested in unrelated individuals without prevalent CAD, VA,
AF, or HF of African (N 5 7200), South Asian (N 5 9241) and
East Asian (N 5 2076) ancestry from UK Biobank, given their
different genetic background.
AF and VA risk definition

The primary endpoints of the study were incident AF and VA
as recorded in hospital episode statistics using ICD10 codes
I48, I480, I481, I482, and I489 for AF and I460, I461, I472,
and I490 for VA. Follow-up was from the study inclusion
date until November, 2022 (median of 13.6 years, interquar-
tile range of 1.2 years).
Calculation of polygenic risk scores

Selection of each PRS was based on a previous electrophysi-
ological hypothesis for their association with risk of AF or
VA. In total, 36 PRS for clinical risk factors and ECG and MRI
measures were derived (Supplementary Methods, Table 1).
All PRS were standardized by subtracting the mean and
dividing by their standard deviation so that their effect sizes
in the models were comparable.
Training of statistical models

In the training set, we fitted 3 models: CHARGE-AF (AF1),
CHARGE-AF and the AF PRS (AF2),4 and AF2 and the other
35 PRS (AF3). The CHARGE-AF score was calculated using
the original model originally described.3 Models 2 and 3
were also adjusted for the genetic array and the first 10 prin-
cipal components.26 PRS were included as continuous vari-
ables in the models.

For each model, we performed univariable logistic regres-
sion analyses to determine the relationship between each risk
factor and incident AF risk.27 Then, we took forward intomulti-
variable logistic regression models, clinical risk factors or PRS
that were significantly associated with AF (P < .05) using back-
ward stepwise elimination to remove markers with a nonsig-
nificant association with the Akaike information criterion
(“stepAIC” function from the “MASS” package in R [R Foun-
dation for Statistical Computing, Vienna, Austria]).

We followed a similar approach for the prediction of VA
risk, also fitting 3 models: sex and age (VA1), sex, age and a
CAD PRS4 (VA2), and sex, age, a CAD PRS and the other 35
PRS (VA3).



Table 1 List of polygenic risk scores included in the analysis

Trait N variants GWAS paper Includes UK Biobank Derivation method

AF 6,730,541 - No PGS Catalog (PGS000016)
CAD 6,630,150 - No PGS Catalog (PGS000013)
HF 909,256 Wang 2023 No PRScs
Diabetes 6,917,436 - No PGS Catalog (PGS000014)
BMI 2,100,302 - No PGS Catalog (PGS000027)
SBP 1,108,568 Evangelou 2018 No PRScs
DBP 1,110,407 Evangelou 2018 No PRScs
PP 1,108,602 Evangelou 2018 No PRScs
HDL 1,107,495 Hoffmann 2018 No PRScs
LDL 1,107,494 Hoffmann 2018 No PRScs
Triglycerides 1,107,494 Hoffmann 2018 No PRScs
Resting HR 1,108,747 van de Vegte 2023 No PRScs
HR response to exercise 14 Ramírez 2018 Yes Lead SNVs
HR response to recovery 16 Ramírez 2018 Yes Lead SNVs
PR 583 Ntalla 2020 No Lead SNVs
QRS 135 Young 2022 No Lead SNVs
QT 227 Young 2022 No Lead SNVs
JT 205 Young 2022 No Lead SNVs
spQRSTa 53 Young 2022 No Lead SNVs
QT dynamics during exercise 19 van Duijvenboden 2020 Yes Lead SNVs
QT dynamics during recovery 3 van Duijvenboden 2022 Yes Lead SNVs
Tpe interval 28 Ramírez 2020 Yes Lead SNVs
TMRex 8 Ramírez 2019 Yes Lead SNVs
TMRrec 8 Ramírez 2019 Yes Lead SNVs
Brugada syndrome 21 Barc 2022 No Lead SNVs
DCM 13 Tadros 2021 Yes (controls) Lead SNVs
HCM 16 - Yes (controls) PGS Catalog (PGS000778)
LAAEF 6 Ahlberg 2021 Yes Lead SNVs
LAmin 3 Ahlberg 2021 Yes Lead SNVs
LVEDV 22 Pirrucello 2020 Yes Lead SNVs
LVESV 32 Pirrucello 2020 Yes Lead SNVs
LVEF 19 Pirrucello 2022 Yes Lead SNVs
LVM 465 - Yes PGS Catalog (PGS003427)
RVESV 21 Pirrucello 2022 Yes Lead SNVs
RVEDV 14 Pirrucello 2022 Yes Lead SNVs
RVEF 12 Pirrucello 2022 Yes Lead SNVs

AF5 atrial fibrillation; BMI5 body mass index; CAD5 coronary artery disease; DBP5 diastolic blood pressure; DCM5 dilated cardiomyopathy; GWAS5Genome-
wide Association Study; HCM5 hypertrophic cardiomyopathy; HDL5 high-density lipoprotein; HR5 heart rate; LAAEF5 left atrial active emptying fraction; LAmin
5 left atrial minimum volume; LDL 5 low-density lipoprotein; LVEDV 5 left venticular end-diastolic volume; LVEF 5 left ventricular ejection fraction; LVESV 5 left
ventricular end-systolic volume; LVM5 left ventricular mass; RVEF5 right ventricular ejection fraction; RVEDV5 right ventricular end-diastolic volume; RVESV5 right
ventricular end-systolic volume; PP 5 pulse pressure; SBP 5 systolic blood pressure; SNV 5 single nucleotide variant; TMR 5 T-wave morphology restitution.
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Test of statistical models

In the independent test subset (Figure 2), we calculated risk
scores as the weighted sum of significant clinical risk factors
and PRS in the respective multivariable models from the training
set, weighted by the corresponding beta coefficients.26,27

Performance of the risk scores was evaluated by measuring
the concordance index (C-index). We used bootstrapping to
calculate a population of C-indices and to extract (CIs) intervals.
Then, the likelihood ratio test (LRT, package “lmtest” in R) was
used to compare nestedmodels. Calibration of themodels was
evaluated using the integrated calibration index and the scaled
Brier score ("psfmi" library in R); calibration plots weremadeus-
ing the "predtools" library in R The net reclassification
improvement (NRI) was computed using the package “Predic-
tABEL” in R to quantify the added predictive value of each
score beyond that from the corresponding preceding one for
both AF and VA risk. The risk categories used for the NRI anal-
ysis were equivalent to the event rate for each endpoint.
Next, for each score and endpoint, we identified 2 risk
groups based on their training-specific optimal cutoff, calcu-
lated as the value of the score that jointly maximized both
sensitivity and specificity values using the “cutpointr” pack-
age in R. Thus, risk groups were defined as low risk (test score
values < optimal cutoff) and high-risk (test score values >
optimal cutoff). Odds ratios (ORs) were calculated using the
low-risk group as a reference. To evaluate the dependency
of the results on the choice of threshold, we repeated the
low- and high-risk split using the cutoff value that marks the
90th percentile of the scores in the training set.

Finally, we performed survival analyses; Kaplan-Meier
curves were derived using the optimal cutoff values, with
a comparison of cumulative events performed by using
log-rank tests, and plotted using the “survminer” package
in R. Hazard ratios (HRs) were derived taking the low-risk
group as a reference using univariable Cox regression ana-
lyses.



Table 2 Characteristics of the cohort

Risk factor or endpoint

All Training Test

PN 5 317,465 N 5 158,733 N 5 158,732

Male sex, n (%) 138,929 (43.76) 69,362 (43.70) 69,567 (43.83) .462
Age 58 (13) 58 (13) 58 (13) .350
Diabetes mellitus, n (%) 13,847 (4.36) 6,836 (4.31) 7,011 (4.42) .128
Hypertension, n (%) 207,715 (65.43) 103,995 (65.52) 103,720 (65.34) .303
Median CHA2DS2-VA score31 (IQR) 1 (1) 1 (1) 1 (1) .394
Median height (IQR), cm 168 (14) 168 (14) 168 (14) .213
Median weight (IQR), kg 76.2 (21.1) 76.2 (21.0) 76.2 (21.1) .724
Previous or current smoker, n (%) 34,915 (11.00) 17,471 (11.01) 17,444 (10.99) .879
Use of antihypertensive medications, n (%) 58,237 (18.34) 29,099 (18.33) 29,138 (18.36) .857
Median CHARGE-AF score (IQR) 11.70 (1.45) 11.70 (1.45) 11.70 (1.45) .542
Incident AF events, n (%) 20,822 (6.56) 10,411 (6.56) 10,411 (6.56) 1.000
Incident VA events, n (%) 1,243 (0.39) 622 (0.39) 621 (0.39) .977

AF 5 atrial fibrillation; DBP 5 diastolic blood pressure; IQR 5 interquartile range; SBP 5 systolic blood pressure; VA 5 ventricular arrhythmias.

Figure 3
Prediction of incident AF risk. A: Forest plot illustrating the odds ratio of CHARGE-AF score, the AF PRS and each PRS for cardiovascular risk factors and ECG or MRI
risk markers that remained significant in the adjusted model. Concordance indices and odds ratios obtained for CHARGE-AF score (magenta), CHARGE-AF and the
AF PRS (cyan) and CHARGE-AF, the AF PRS and the PRS depicted in (A) (green) for incident AF risk prediction are shown in (B) and (C). Abbreviations as in Figure 1.
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Figure 4
Cumulative atrial fibrillation-free survival probability of individuals in the low- (red) and high-risk (blue) groups for models AF1 (A), AF2 (B), AF3 (C). HR, hazard ratio.
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Sex-stratified analyses

To investigate sex-specific contributions of the multiple PRS
for incident AF and VA risk stratification, we performed sex-
stratified analyses by repeating the training and testing of sta-
tistical models in men and women separately.

Incident VA prediction in individuals with and without
IHD

Finally, we performed separate incident VA association ana-
lyses by repeating the training and testing of statistical models
in individuals with and without prevalent IHD to determine
whether the underlying aetiology of VA affects PRS perfor-
mance (Supplemental Methods, Supplemental Figures S1
and S2).

Performance assessment in non-European ancestries

To assess the generalizability and performance of the statis-
tical models trained in the European individuals for non-
European ancestry individuals, we tested in individuals with
African, South Asian, and East Asian ancestry. To reduce
the variation in the PRS distribution due to genetic ancestry,
we used the residuals from a linear model after regressing
each PRS on the first 4 genetic PCs, as previously
described.28

Results

The study population consisted of 138,929 men, with a me-
dian (interquartile range) age of 58 (13) years old. The demo-
graphic characteristics of this population are shown in Table 2.
Prediction of incident AF

During the follow-up period, there were 10,411 AF cases
(6.6%) in each of the training and test sets (Figure 2). The
C-index for AF1 (CHARGE-AF) was 0.746 (0.742–0.751) in
the test set, which significantly increased to 0.762 (0.757–
0.766, P < 2.2 ! 10–16) when using AF2 (CHARGE-AF 1 AF
PRS, Figure 3). The C-index for AF3 was statistically signifi-
cantly higher than that for AF2 (0.765 [0.760–0.769], P < 2.2
! 10–16. The PRS for HF, T-wave morphology restitution
(TMR) after exercise, body mass index (BMI), QT dynamics
during exercise, left ventricular ejection fraction (LVEF),
T-peak to T-end (T-pe) interval, resting heart rate, left ventric-
ular ejection systolic volume (LVESV), left atrial active mini-
mum volume (LAmin), Brugada syndrome, QRS duration
and QT interval (in decreasing order of magnitude and direc-
tion of effect) remained significantly associated with incident
AF in AF3 (Figure 3). The overall mean NRI was 0.288
(0.268–0.308, P < .001) for AF2 vs AF1, and 0.110 (0.090–
0.130, P < .001) for AF3 vs AF2 (Supplemental Tables S2
and S3). Calibration metrics and overall performance of
each model using the "optimal" and the 90th percentile
thresholds are shown in Supplemental Table S4 and
Supplemental Figure S3). Finally, OR values and 95%CI for in-
dividuals in the high-risk group vs those in the low-risk group
progressively increased from 4.85 (4.63–5.08) for AF1, to 5.24
(5.01–5.48) for AF2, and 5.56 (5.31–5.83) for AF3 (Figure 3).
HR values increased from 4.83 for AF1, to 5.17 for AF2 and
to 5.49 for AF3 (Figure 4).

In sex-specific analyses, AF2 had a significantly higher
C-index than AF1 in both men (N 5 69,432 in the test set,



Figure 5
Prediction of incident VA risk. A: Forest plot illustrating the odds ratio of sex, age, the CAD PRS and each PRS for cardiovascular risk factors and ECG or MRI risk
markers that remained significant in the adjusted model. Concordance indices and odds ratios obtained for sex and age score (magenta), sex, age and the CAD
PRS (cyan) and sex, age, the CADPRS and the PRS depicted in panel (A) (green) for incident VA risk prediction are shown in (B) and (C). CAD5 coronary artery disease.
Other abbreviations as in Figure 3.
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6151 AF cases) and women (N 5 89,300 in the test set, N 5

4260 AF events). In men, AF2 showed an NRI of 0.287, and
OR and HR values for AF1 and AF2 of 4.05 and 4.55,
and 4.04 and 4.48, respectively. In women, NRI was 0.284,
and OR and HR values were 5.36 for AF2 vs 4.86 for
AF1, and 5.30 for AF2 vs 4.85 for AF1 (Supplemental
Figures S3, S4, and S5, Supplemental Tables S5, S6, and
S7). However, cardiovascular (CV)-PRS (the same PRS from
the main analysis, except for the PRS for TMR after exercise,
QT dynamics during exercise, LVEF, T-pe interval, and LAmin
and the addition of CAD and the PR interval) only showed a
significant contribution in men. These jointly increased the
C-index to 0.772 (P 5 4.6 x 10–4) and the OR to 4.51, with
an NRI of 0.121 (0.094–0.147, P < .001, Supplemental
Figure S4, Supplemental Table S7).

We tested the performance of each model trained in the
main analysis in individuals with African (166 AF cases), South
Asian (275 AF cases) and East Asian (42 AF cases) ancestry. In
individuals of South Asian ancestry, AF2 had a significantly
higher C-index than AF1 (0.787 [0.760–0.813] vs 0.774
[0.746–0.802], P 5 2.9 ! 10–5), which significantly increased
to 0.791 (0.764–0.817), P 5 1.8 ! 10–4, for model AF3
(Supplemental Table S4, Supplemental Figure S6). The ORs
were 6.52 (4.87–8.72) for AF1, 7.08 (5.31–9.45) for AF2, and
7.59 (5.64–10.22) for AF3, and the HR values were 6.61,
7.16, and 7.64, respectively. In individuals with African or
East Asian ancestry, AF2 or AF3 did not significantly improve
the predictive value already provided by CHARGE-AF in AF1
alone; however, there were a smaller number of cases in these
ancestry groups.
Prediction of incident VA risk

For prediction of incident VA, there were 621 and 622 VA
cases (0.4%) in the training and test sets, respectively
(Figure 2). VA1 (sex and age) showed a C-index of 0.681
(0.660–0.701), which significantly increased for VA2 (sex,
age and a CAD PRS, 0.692 [0.671–0.712], P 5 4.1 ! 10–11,
Figure 4). NRI was 0.314 (0.236–0.392, P < .001,
Supplemental Table S8), calibration and performance metrics



Figure 6
Cumulative ventricular arrhythmia-free survival probability of individuals in the low- (red) and high-risk (blue) groups for models VA1 (A), VA2 (B), and VA3 (C). HR 5
hazard ratio.
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are shown in Supplemental Table S9 and Supplemental
Figure S7). OR and HR values were 3.11 (2.64–3.67) and
3.27 (2.76–3.88), and 3.20 and 3.36, respectively (Figures 5
and 6). After fitting model VA3, the PRS for HF, QT dynamics
during exercise, HDL and QT interval remained significantly
associated with incident VA, independently from sex, age,
and the CAD PRS. However, in combination, they did not
improve discrimination compared with VA2 (Figure 5). HR
values were 3.20 for VA1, 3.36 for VA2, and 3.26 for VA3
(Figure 6).

Sex-specific analyses (69,465 men in the training set, 441
VA cases, and 69,464 men in the test set, 441 VA cases)
showed similar findings, with VA2 having a significantly higher
performance than VA1, but the contribution of CV-PRS not
being statistically significant (Supplemental Figures S8 and
S9, Supplemental Tables S10 and S11).

There were 561 VA cases (5%) in both the training and test
sets in individuals with prevalent IHD. Age was not signifi-
cantly associated with incident VA, and sex alone had a C-in-
dex of 0.545 (0.528–0.563). The CADPRSwas not significantly
associated with incident VA. Thus, VA3 included sex and the
PRS for diastolic blood pressure (DBP) and dilated cardiomy-
opathy (DCM) (the 2 PRS that remained significantly associ-
ated in model VA3). There was a significant increase in the
C-index to 0.592 (0.560–0.624, P 5 8.5 ! 10–3) with a mean
NRI of 0.216 (0.0972–0.3352, P 5 .004, Supplemental
Tables S9 and S12, Supplemental Figure S10). OR and HR
values were 1.86 (1.44–2.42) and 1.84 (Supplemental
Figure S11). In individuals without IHD, there were 653 VA
cases (0.2%) in both training and test subsets. The C-index
was 0.654 (0.625–0.684) for VA1, and the OR was 3.01
(2.41–3.75). However, the addition of the CAD PRS (VA2), or
VA3 (here the PRS for HF and the spatial QRST angle were
the only 2 PRS that remained significantly associated with inci-
dent VA), did not significantly improve model performance
(Supplemental Table S12).

We finally tested the performance of eachmodel trained in
the main analysis in individuals of African, South Asian and
East Asian ancestries. We observed that, in individuals with
South Asian ancestry (46 VA cases), VA2 had a significantly
higher C-index than VA1 (0.722 [0.648–0.796] vs 0.640
[0.579–0.700], P 5 3.2 ! 10–4). However, the C-index of
VA3 was not significantly higher than that of score 2 (P 5

1.7 ! 10–1, Supplemental Table S9, Supplemental
Figure S12). The OR and HR values were 3.56 (1.76–7.17)
and 4.10 for VA1, 2.41 (1.30–4.47) and 4.3 for VA2, and
2.26 (1.26–4.08) and 5.60 for VA3. In individuals with African
(22 VA events) or East Asian ancestry (3 VA events), VA2 or
VA3 did not significantly improve the performance compared
with VA1 alone.
Discussion

In this work, we assessed the contribution of PRS for cardio-
vascular risk factors in the prediction of incident AF and VA
in a large middle-aged population. We have validated the
improvement in incident AF risk stratification provided by
the combination of an AF PRS with the CHARGE-AF score
and observed that the inclusion of multiple CV-PRS further
improved discrimination. For incident VA, we observed that
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a CAD PRS significantly improved risk stratification compared
with sex and age alone, but the addition of the multiple
CV-PRS only improved discrimination in individuals with
prevalent IHD. We also demonstrated that our models using
AF and CAD PRS for incident AF and VA risk prediction are
potentially transferable in individuals of South Asian ancestry.

It has been reported previously that the combination of
polygenic risk for AF with the CHARGE-AF clinical score im-
proves incident AF risk prediction over CHARGE-AF alone
in patients with and without cardiovascular diseases and risk
factors.5 Our work builds on these findings, demonstrating
that inclusion of genetic predisposition for CV risk factors pro-
vides an incremental improvement in AF risk prediction in
healthy middle-aged individuals of European ancestry. Re-
sults showed that genetically predicted shorter ventricular de-
polarization and repolarization times were associated with
increased AF risk, confirming previous observations having
also now performed adjustment for additional CV risk fac-
tors.14 Finally, the contribution of MRI markers such as LVEF
or LVESV highlights the role for genetically determined differ-
ences in ventricular structure in AF risk, potentially through
atrial mechanical and cardiac ion channel remodeling.

Our sex-stratified analyses enabled the investigation of the
potential contribution to risk prediction of CV-PRS in each sex
separately, as well as the specific genetic architecture of AF
and VA. The PRS for cardiovascular risk factors that signifi-
cantly contributed to AF risk in men predominantly overlap-
ped with those from the main analysis. However, the PRS for
LVEF, T-pe interval, and resting HR were no longer significant
in model AF3 and were replaced by the PRS for CAD and the
PR interval. In women, inclusion of PRS for CV risk factors did
not significantly contribute to AF risk prediction. The addition
of the CADPRS in themodel for men suggests genetic predis-
position to development of an ischemic substrate is an impor-
tant contributor to AF risk compared with women, as
previously reported,29 as well as abnormalities in cardiac con-
duction, which have extensively been linked with AF.13

Sandhu and colleagues7 recently demonstrated the added
value of a CAD PRS to sex and age in stratifying patients with
documented IHD on coronary angiography and CV comor-
bidities, according to SCD risk. Our study is the first to report
the added value of a CAD PRS to sex and age for prediction of
incident VA in the general population, and this improvement
held when analyzing women and men separately. IHD is the
most common risk factor for VA and SCD in middle-aged indi-
viduals,6 and identification of individuals early in life with a
higher genetic predisposition could improve sudden cardiac
death (SCD) prevention strategies. Interestingly, our results
did not show an added value for the CAD PRS to sex and
age alone when performing the analysis separately in individ-
uals with and without prevalent IHD. These findings suggest
that although a CAD PRS associates with risk for developing
IHD, it does not offer improvements in VA risk stratification
when considering the underlying etiology for arrhythmia.

Beyond the presence of ischemia, the causes of malignant
VA aremultifactorial, including cardiomyopathies and inherited
channelopathies,whichmight be reflectedonECGandMRI risk
factors through the effects of structural changes, including
fibrosis and postmyocardial infarction remodeling.6 In our
work, we observed that the PRS for HF,QTdynamics during ex-
ercise, high-density lipoprotein (HDL), and QT interval re-
mained significantly associated with incident VA risk after
adjusting for sex, age, and the CAD PRS, but they did not pro-
vide an improvement in risk stratification value. This may be
caused by small individual effect sizes. In sex-stratified analyses
there were similar observations. However, when analyzing indi-
viduals with prevalent IHD, we observed that inclusion of the
PRS forDBPandDCMsignificantly improvedVA risk prediction.
The incremental gain by including aDCMPRS could suggest an
interaction of ischemic and nonischemic etiologies in geneti-
cally predisposed individuals that contributes to VA risk.7

Thus, our results extend the observations of Sandhu et al7

and warrant testing of these models in other cohorts including
those considered clinically high risk.

We also tested the performance of themodels trained using
individuals with European ancestry in non-European ancestry
groups. We observed that the AF and CAD PRS significantly
contribute to incident AF and VA prediction, respectively, in
South Asian ancestry individuals but not in individuals with Afri-
can or EastAsian ancestry. Thesefindings suggest a good trans-
ferability of the AF PRS to a South Asian population and
confirms previous observations for the generalisability of the
CAD PRS.28 The absence of a significant improvement in Afri-
can and East Asian individuals could be caused by a smaller
number of cases; however, they may also reflect a need for
ancestry-specific PRS for these 2 populations.30 Including mul-
tiple CV-PRS in AF3 did not improve the performance of AF2 in
peopleof SouthAsian ancestry; however, it is of interest that the
predictive value of CHARGE-AF alone in these individuals was
better thanAF3 (CHARGE-AF, AF PRS, andPRS formultiple car-
diovascular risk factors) in persons of European ancestry. This
may reflect a greater prevalence of advanced CV disease in
these individuals that could lessen the additive effect of PRS
(Supplemental Table S13).

Regarding the clinical implications of our findings, although
the combinedmodels are statistically significantly stronger than
the clinical risk scores, the improvement is marginal. However,
even a small improvement in predictive accuracy can be clini-
cally relevant, particularly if it shifts an individual’s risk classifica-
tion from a lower to a higher risk category, as shown in our NRI
results. Our results could inform the design of clinical studies to
investigate the utility of thesePRSs inpatient cohorts and higher
risk populations, to identify individuals who would benefit most
from more intensive screening for earlier AF detection that
would facilitate prompt initiation of anticoagulation.
Strengths and limitations

A strength of this work is that we developed specific models
for prediction of incident AF and VA, both in the overall pop-
ulation, and in men and women separately. Thus, the results
are not biased by an a priori specific selection of PRS for
each outcome. Moreover, we used one of the largest cohorts
available with detailed phenotypic and genetic data and
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relatively long follow-up. In addition, the inclusion of PRS for
robust ECG and MRI risk markers allows an extended charac-
terization of the genetic architecture of AF and VA risk.

There are also some limitations inour study. First, the study is
limited to the UK Biobank cohort, which is known to have a
healthy volunteer selection bias. Calculation of optimal PRS
was performed independently from the samples used to train
and test themodels, thusminimizing the risk of overfitting.How-
ever, validation of these findings in other cohorts at different
levels of risk and in other ethnicities will provide support for
further generalizability. We used variants and effect sizes from
multiancestry genome-wide association study (GWAS) when-
ever possible to optimize transferability across ancestries,
following findings fromprevious studies.8However,multiances-
try GWAS on ECG and MRI traits are not currently available.
Conclusion

In this large middle-aged population-based cohort, the inclu-
sion of PRS for CV risk factors provides an incremental
improvement in prediction of incident AF risk when combined
with the CHARGE-AF clinical score and an AF PRS. Regarding
VA risk, although they did not improve the risk stratification
value of sex, age, and a CAD PRS for incident VA prediction
in the main analysis, they showed a significant contribution
in individuals with IHD. Our results also indicate a good trans-
ferability of the European AF and CAD PRS for AF and VA risk
prediction, respectively, in persons of South Asian ancestry.
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