Is MRI ready to replace biopsy during active surveillance?

Abstract

Active surveillance (AS) is a conservative management option recommended for patients diagnosed with low-risk prostate cancer (PCa) and selected cases with intermediate-risk PCa. The adoption of prostate MRI in the primary diagnostic setting has sparked interest in its application during AS. This review aims to examine the role and performance of multiparametric MRI (mpMRI) across the entire AS pathway, from initial stratification to follow-up, also relative to the utilization of the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) criteria. Given the high negative predictive value of mpMRI in detecting clinically significant PCa (csPCa), robust evidence supports its use in patient selection and risk stratification at the time of diagnosis or confirmatory biopsy. However, conflicting results have been observed when using MRI in evaluating disease progression during follow-up. Key areas requiring clarification include addressing the clinical significance of MRI-negative csPCa, optimizing MRI quality, determining the role of biparametric MRI (bpMRI) or mpMRI protocols, and integrating artificial intelligence (AI) for improved performance.

Clinical relevance statement

MRI plays an essential role in the selection, stratification, and follow up of patients in active surveillance (AS) for prostate cancer. However, owing to existing limitations, it cannot fully replace biopsies in the context of AS.

Key Points

- Multiparametric MRI (mpMRI) has become a crucial tool in active surveillance (AS) for prostate cancer (PCa).
- Conflicting results have been observed regarding multiparametric MRI efficacy in assessing disease progression.
- Standardizing MRI-guided protocols will be critical in addressing current limitations in active surveillance for prostate cancer.

Introduction

Active surveillance (AS) is a management option recommended for patients diagnosed with low-risk prostate cancer (PCa) and selected cases with intermediate-risk PCa. The primary goal of AS is to mitigate the risk of overtreatment and procedure-related complications while ensuring timely intervention in case of disease progression, thereby preserving the opportunity for curative treatment [1].

Currently, there is considerable heterogeneity in the inclusion criteria and monitoring procedures of AS (Table 1). Typical AS protocols require an early confirmatory biopsy within one year after diagnosis, preferably under magnetic resonance imaging (MRI) guidance, followed by sequential biopsies every two to three years [1,2,3]. In recent years, the adoption of prostate MRI in the primary diagnostic setting has sparked interest in its application during AS [4].

Given the high negative predictive value (NPV) of a non-suspicious MRI (PI-RADS/Likert scores 1–2) for clinically significant PCa (csPCa), the notion of patients with negative or

stable multiparametric MRI (mpMRI) avoiding scheduled biopsies is appealing to both clinicians and patients [5].

To date, AS protocols worldwide and international guidelines have incorporated MRI either during initial stratification or as part of follow-up procedures [1, 2, 6,7,8,9]. Nonetheless, the oncologic safety of avoiding biopsies in patients with stable or negative mpMRI results during AS remains a subject of controversy [3, 10], and further studies are necessary to refine the implementation of the MRI-driven approach in clinical practice. Moreover, the increasing global utilization of MRI in AS underscores the need for a standardized approach to performing, interpreting, and scoring MRI in this context.

Since the established PI-RADS scoring system does not consider temporal changes in prostate MRI findings over time [11], the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) recommendations were first proposed in 2016, specifically aimed at standardizing the reporting of serial MRIs during AS [12], and have been recently updated to version 2 [13].

In light of the complexities of AS and of MRI utilization in this context, we aim to examine the role and performance of mpMRI across the entire AS pathway, from initial stratification to follow-up, also relative to the utilization of the PRECISE criteria.

Role of MRI for active surveillance

At the time of diagnosis or confirmatory biopsy

The integration of mpMRI into the diagnostic pathway of PCa significantly reduces the need for unnecessary biopsies, while simultaneously increasing the detection rate of csPCa and decreasing that of insignificant PCa [14]. Moreover, it diminishes the risk of Grade Group (GG) upgrading at radical prostatectomy [15]. Incorporating mpMRI with targeted biopsies at the initiation of AS could ensure optimal sampling and minimize subsequent reclassification.

A substantial body of evidence already supports the notion that an early MRI in AS improves risk stratification [16,17,18]. In the study by Stavrinides et al on an AS cohort with over 3800 person-years [19], the primary factor driving treatment discontinuation aside from secondary Gleason pattern 4 at baseline was the visibility of MRI findings at baseline, specifically Likert scores of 4–5. Interestingly, MRI-visible lesions with GG1 demonstrated outcomes comparable to those of non-visible GG2 disease. This finding suggests that MRI-visible lesions may follow a distinct radiological, pathological, and clinical course.

The randomized controlled ASIST trial evaluated whether the outcomes on confirmatory biopsy one year after the initiation AS with GG1 differed between patients who underwent a 12-core confirmatory biopsy vs mpMRI-targeted biopsy (Table 2) [20]. Initially, a significant difference in the prevalence of $GG \ge 2$ at confirmatory biopsy among the randomization groups was not observed. However, the findings after two years revealed that 10% of patients in the MRI group exhibited $GG \ge 2$ at follow-up

biopsy after confirmatory biopsy, compared to 23% in the systematic biopsy-only group [17]. The disparity between the initial and updated results may be attributed to the better identification of csPCa through MRI-targeted biopsy, leading to reduced rates of AS failure and grade progression over a longer follow-up period. Overall, these findings underscore the importance of an MRI-informed confirmatory biopsy for enhanced risk stratification, ultimately leading to a 50% reduction in the risk of reclassification in the long term. Figure 1 illustrates an example highlighting the importance of MRI-targeted biopsy.

Efforts have also focused on determining whether systematic biopsies can be omitted when MRI shows suspicious lesions. Recabal et al demonstrated that avoiding surveillance biopsy in patients with no visible MRI lesions would result in missing $GG \ge 2$ PCa in 11% of cases, while avoiding systematic biopsy in those with visible MRI lesions would miss csPCa in 13% of cases [21]. These conclusions were further supported by a meta-analysis where Schoots et al reported that MRI-targeted confirmatory biopsies upgraded an additional 7% of patients compared to systematic biopsies [16]. Therefore, most guidelines recommend performing both MRI-targeted and systematic biopsies at the time of the first confirmatory biopsy in AS [1]. Importantly, these findings are derived from studies where MRI-targeted confirmatory biopsies were conducted in patients enrolled in AS with a 12-core systematic biopsy.

Endeavours have been made to understand whether patients who are diagnosed with upfront MRI can delay or avoid their follow-up or confirmatory biopsies.

The MRIAS study investigated whether an early confirmatory biopsy could be avoided in favor of yearly MRIs followed by a mandatory three-year biopsy, as shown in Table 2 [18]. Upon completion of the 3-year biopsy, 14% patients with persistently negative MRIs (PI-RADS 1-2) had csPCa, resulting in a NPV for a persistently negative MRI of 86% (95% CI 81–90%). Biopsy was deferred for three years in 71% of patients with negative MRI and stable PSA, potentially leading to a delay in the diagnosis of csPCa in up to 8% of cases. Of note, 73% of patients diagnosed with csPCa despite a non-suspicious MRI exhibited organ-confined GG2 disease upon radical prostatectomy, suggesting that csPCa missed by MRI may be less aggressive than MRI-visible csPCa. Therefore, in patients diagnosed with an upfront MRI, confirmatory biopsy could be delayed rather than avoided [1].

At the time of follow-up (serial MRI)

Several studies aimed to determine whether a favorable MRI—either one that remains non-suspicious over time or one that shows no signs of progression—can be used alone to avoid surveillance biopsies. In a recent systematic review and metanalysis, a NPV between 80 and 90% has been reported, indicating that approximately 10 to 20% of patients with a favorable MRI harbour csPCa that would be missed if a scheduled biopsy is omitted [22]. Additionally, MRI progression (defined as either an increase in the suspicion score, an increase in the size of the index lesion, or evidence of extraprostatic extensions) has a very low positive predictive value (PPV) [22]. Based on a prevalence of pathological progression between 20 and 30%, the PPV of an MRI

showing progression ranged from 37 to 50%. This suggests that over half of the patients with MRI progression during AS do not experience pathological upgrading.

In all, a negative MRI demonstrates superior performance compared to a positive (or progressive) MRI in predicting biopsy results. Furthermore, it must be noted that most evidence regarding the utility of sequential MRIs in AS is derived from studies with relatively short follow-ups (< 5 years), focusing on early biopsy outcomes [22]. Nevertheless, outcomes from a large single-center cohort demonstrated that MRI-driven AS is safe and yields comparable results to cohorts of patients undergoing AS with scheduled serial biopsies [19]. This holds particular significance, especially in light of the decreased compliance rates observed for repeat biopsies over time [23], potentially undermining the value of a mandated biopsy protocol.

The recent ProtecT trial demonstrated that even in patients diagnosed without MRI and monitored predominantly using prostate specific antigen (PSA), the risk of metastasis was < 10% at 15 years [24]. Furthermore, the risk of non-PCa-related death can be significant in AS patients. Consequently, one could argue that current approaches, including the MRI diagnostic pathway, risk calculators, biomarkers, and follow-up MRI with scheduled biopsies, may be overly aggressive. However, until less stringent approaches are proven effective, they should be reserved for expert centers, and any potential de-intensification should be guided by clinicopathologic cancer factors, increasing age, and comorbidities [25]. The results from a recently funded randomized controlled trial in the UK (NIHR152027) will contribute to understanding the effectiveness and compliance of MRI-driven versus conventional AS protocols [26].

PRECISE vs non-PRECISE

The PRECISE recommendations have been introduced to standardize the reporting of sequential MRIs in AS [12]. Utilizing a five-point scale, PRECISE describes radiological changes relative to previous surveillance MRIs: a PRECISE score of 1 indicates resolution of previously suspicious areas; a score of 2 implies regression of areas that remain suspicious; a score of 3 indicates stability (Figs. 2, 3); scores 4 and 5 (Figs. 4–6) indicate progression. To date, there are no large prospective studies validating this reporting tool, with many centers still relying on institution-specific criteria to define radiological changes in AS [18, 22].

The recent PROMM-AS is the sole prospective study to evaluate the PPV and NPV of the PRECISE scores through a scheduled two-year biopsy in patients with GG1 or GG2 PCa who were enrolled in AS following an equivocal or suspicious MRI [27]. Its primary objective was to assess whether an MRI-guided early AS strategy would result in a low progression rate on a scheduled two-year biopsy, but it did not meet this endpoint. Nonetheless, in GG1, the NPV for PRECISE scores 1–3 (indicating radiological regression or stability) was 88%, albeit based on a very limited number of events (Table 2).

The majority of the evidence of the PRECISE recommendations in predicting csPCa stems from retrospective studies (Table 3) and was summarized in a recent meta-analysis [22]. O'Connor et al assessed 391 patients on AS whose MRIs were evaluated using the PRECISE recommendations, reporting a NPV of 76% (95% CI 71–81%) for

PRECISE scores 1–3 in predicting progression from GG 1 to GG \geq 2 [28]. Giganti et al demonstrated that the PRECISE 4 encompasses a heterogeneous group [29]. Specifically, in a study where surveillance biopsies were conducted solely in the presence of signs of radiological progression, individuals progressing from a non-suspicious scan (e.g., from PI-RADS/Likert 1–2 to PI-RADS/Likert 4–5) exhibited a lower risk of higher-grade cancer on biopsy (26%) compared to those with an increase in size or conspicuity of a suspicious lesion (86%).

In a recent meta-analysis, Rajwa et al reported no significant differences in the positive or negative predictive values for pathological progression between the PRECISE scores and institution-specific criteria [22]. Specifically, the PPV for PRECISE 4–5 was 50% (95% CI 31–70%) and 49% (95% CI 34–64%) for institution-specific criteria, respectively. The NPVs were 88% (95% CI 81–94%) for PRECISE and 83% (95% CI 77–88%) for institution-specific criteria, respectively. All studies included in the meta-analysis assessed progression at different AS time points, requiring careful interpretation of the derived performance metrics due to inherent heterogeneity. Moreover, centers that did not adopt the PRECISE recommendations were predominantly high-volume institutions.

One of the primary drawbacks of any scoring system for monitoring MRI changes during AS is that the majority of patients show no significant changes over time, with some authors calling into question the utility of evaluating overall changes rather than the PI-RADS/Likert score on a given scan [30]. In addition, studies examining the NPV of stable MRIs (including those using the PRECISE recommendations) encounter challenges related to ascertainment bias. This bias arises when the decision to conduct a surveillance biopsy depends on MRI findings, which may artificially inflate the apparent NPV of the test [19].

In particular, the original PRECISE recommendations face several limitations, notably the absence of guidance on tumor size measurement methods or size progression thresholds. Moreover, there is ambiguity regarding whether the calculation of the PRECISE score should be based on baseline MRI or the most recent imaging, and how to approach stable MRI-visible versus MRI-invisible disease. To tackle these contentious issues, version 2 of the PRECISE recommendations has been recently developed by an expert consensus panel and awaits further validation [13].

Discussion

MRI has undeniably emerged as an indispensable tool in the contemporary era of AS. Its exceptional diagnostic performance, notably its high NPV, plays a pivotal role in various aspects of AS, including guiding targeted biopsies, selecting optimal candidates, and identifying progression. Evidence already supports its use in patient selection and risk stratification, while suboptimal results have been observed when using MRI in evaluating disease progression during follow-up,

Hence, the question arises: "Is MRI ready to replace biopsy during AS?".

Our response, to date, is a cautious "no". Despite all the strengths of MRI, evidence suggests that it cannot yet fully replace biopsy during AS.

One issue that needs to be clarified is the clinical significance of missed csPCa by MRI. While already established that the prevalence of csPCa is low in patients with a negative MRI, the true significance of cancers detected in this setting is not clear [24, 31, 32]. There is increasing evidence that the oncologic risk (e.g., biochemical recurrence and cancer-specific mortality) is substantially lower in csPCa in patients with a negative compared with a positive MRI [33]. In this regard, "false-negative" MRI for csPCa at confirmatory biopsy or during AS may not be as critical as initially thought.

Additional important efforts are needed to maximize the role MRI plays in AS today and to even potentially replace biopsy in the future.

First, we need to ensure high quality of MRI to achieve the highest possible diagnostic performance for detecting, characterizing, and determining progression. It has been shown that poor image quality negatively affects its performance and systematic measures have been proven to improve image quality at the global level [34,35,36]. The Prostate Imaging Quality (PI-QUAL) score (and its future iterations) or other standardized methods of assessing MRI quality are gaining interest and will be instrumental in achieving this goal [37].

Second, the use of MRI without intravenous contrast medium in the setting of AS needs to be further investigated. While MRI without intravenous contrast medium has shown potentially equivalent performance to multiparametric MRI for the detection of csPCa, its role in AS is yet to be established [38,39,40].

Finally, standardization of how MRI is acquired and interpreted for AS needs to be established. Although the current evidence does not show the superiority of standardized approaches (i.e., PRECISE) when compared with institution-specific scales, lessons can be learned from PI-RADS replacing institution-specific scales as a global standard because of this standardization [41].

Continuous effort is needed to homogenize imaging approaches across institutions to facilitate multi-institutional research and ultimately better patient outcomes [13, 42]. In this context, radiomics and artificial intelligence (AI) might play a role in addressing several challenges associated with MRI in AS, including standardizing serial MRI assessments, evaluating the progression of MRI-visible lesions and mitigating interreader variability in MRI interpretation, particularly among non-expert readers [43, 44].

In conclusion, MRI is not yet ready to fully replace biopsies during AS. However, MRI plays an essential role in providing the most value together with clinical and pathological information, especially in the selection and stratification of patients in AS. As we move forward, it is imperative to address key issues such as the clinical significance of MRI-negative csPCa, MRI quality, the use of MRI without intravenous contrast medium or mpMRI, and the integration of AI. Tackling these challenges will be essential in expanding the role of MRI in AS and potentially replacing biopsies in the future.

Abbreviations

AI:

Artificial intelligence

AS:

Active surveillance

csPCa:

Clinically significant prostate cancer

GG:

Grade group

mpMRI:

Multiparametric MRI

MRI:

Magnetic resonance imaging

PCa:

Prostate cancer

References

- Mottet N, van den Bergh RCN, Briers E et al (2021) EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol 79:243– 262. https://doi.org/10.1016/j.eururo.2020.09.042
- Bokhorst LP, Valdagni R, Rannikko A et al (2016) A decade of active surveillance in the PRIAS study: an update and evaluation of the criteria used to recommend a switch to active treatment. Eur Urol 70:954– 960. https://doi.org/10.1016/j.eururo.2016.06.007
- 3. Willemse PPM, Davis NF, Grivas N et al (2022) Systematic review of active surveillance for clinically localised prostate cancer to develop recommendations regarding inclusion of intermediate-risk disease, biopsy characteristics at inclusion and monitoring, and surveillance repeat biopsy strategy. Eur Urol 81:337–346
- 4. Moore CM, King LE, Withington J et al (2023) Best current practice and research priorities in active surveillance for prostate cancer—a report of a movember international consensus meeting. Eur Urol Oncol 6:160–182. https://doi.org/10.1016/j.euo.2023.01.003
- 5. Sathianathen NJ, Omer A, Harriss E et al (2020) Negative predictive value of multiparametric magnetic resonance imaging in the detection of clinically significant prostate cancer in the prostate imaging reporting and data system era: a systematic review and meta-analysis. Eur Urol 78:402–414
- 6. Van Hemelrijck M, Ji X, Kattan MW et al (2019) Reasons for discontinuing active surveillance: assessment of 21 centres in 12 countries in the movember GAP3 consortium. Eur Urol 75:523–531. https://doi.org/10.1016/j.eururo.2018.10.025
- 7. Dasgupta P, Davis J, Hughes S (2019) NICE guidelines on prostate cancer 2019. BJU Int 124:1
- Eastham JA, Boorjian SA, Kirkby E (2022) Clinically localized prostate cancer: AUA/ASTRO guideline. J Urol 208:505– 507. https://doi.org/10.1097/JU.0000000000002854
- Schaeffer EM, Srinivas S, Adra N et al (2022) NCCN GUIDELINES® INSIGHTS: prostate cancer, version 1.2023: featured updates to the NCCN guidelines. JNCCN. J Natl Compr Cancer Netw 20:1288– 1298. https://doi.org/10.6004/jnccn.2022.0063
- 10. Hettiarachchi D, Geraghty R, Rice P et al (2021) Can the use of serial multiparametric magnetic resonance imaging during active surveillance of prostate cancer avoid the need for prostate biopsies?—a systematic diagnostic test accuracy review. Eur Urol Oncol 4:426– 436. https://doi.org/10.1016/j.euo.2020.09.002
 - 436. https://doi.org/10.1016/j.euo.2020.09.002
- 11. Weinreb JC, Barentsz JO, Choyke PL et al (2016) PI-RADS prostate imaging reporting and data system: 2015, Version 2. Eur Urol. https://doi.org/10.1016/j.eururo.2015.08.052
- 12. Moore CM, Giganti F, Albertsen P et al (2017) Reporting magnetic resonance imaging in men on active surveillance for prostate cancer: the PRECISE recommendations—a report of a European School of Oncology Task Force. Eur Urol 71:648–655. https://doi.org/10.1016/j.eururo.2016.06.011

- 13. Englman C, Maffei D, Allen C et al (2024) PRECISE version 2: updated recommendations for reporting prostate magnetic resonance imaging in patients on active surveillance for prostate cancer. Eur Urol. https://doi.org/10.1016/j.eururo.2024.03.014
- 14. Kasivisvanathan V, Rannikko AS, Borghi M et al (2018) MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med 378:1767–1777. https://doi.org/10.1056/NEJMoa1801993
- 15. Ahdoot M, Wilbur AR, Reese SE et al (2020) MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis. N Engl J Med 382:917–928. https://doi.org/10.1056/nejmoa1910038
- 16. Schoots IG, Nieboer D, Giganti F et al (2018) Is magnetic resonance imaging-targeted biopsy a useful addition to systematic confirmatory biopsy in men on active surveillance for low-risk prostate cancer? A systematic review and meta-analysis. BJU Int 122:946–958
- 17. Klotz L, Pond G, Loblaw A et al (2020) Randomized study of systematic biopsy versus magnetic resonance imaging and targeted and systematic biopsy in men on active surveillance (ASIST): 2-year postbiopsy follow-up. Eur Urol 77:311–317. https://doi.org/10.1016/j.eururo.2019.10.007
- 18. Doan P, Scheltema MJ, Amin A et al (2022) Final analysis of the magnetic resonance imaging in active surveillance trial. J Urol 208:1028–1036. https://doi.org/10.1097/JU.000000000002885
- 19. Stavrinides V, Giganti F, Trock B et al (2020) Five-year outcomes of magnetic resonance imaging–based active surveillance for prostate cancer: a large cohort study [Formula presented]. Eur Urol 78:443–451. https://doi.org/10.1016/j.eururo.2020.03.035
- 20. Klotz L, Loblaw A, Sugar L et al (2019) Active surveillance magnetic resonance imaging study (ASIST): results of a randomized multicenter prospective trial. Eur Urol 75:300–309. https://doi.org/10.1016/j.eururo.2018.06.025
- 21. Recabal P, Assel M, Sjoberg DD et al (2016) The efficacy of multiparametric magnetic resonance imaging and magnetic resonance imaging targeted biopsy in risk classification for patients with prostate cancer on active surveillance. J Urol 196:374–381. https://doi.org/10.1016/j.juro.2016.02.084
- 22. Rajwa P, Pradere B, Quhal F et al (2021) Reliability of serial prostate magnetic resonance imaging to detect prostate cancer progression during active surveillance: a systematic review and meta-analysis. Eur Urol. 80:549–563
- 23. Bokhorst LP, Alberts AR, Rannikko A et al (2015) Compliance rates with the Prostate Cancer Research International Active Surveillance (PRIAS) protocol and disease reclassification in noncompliers. Eur Urol 68:814–821. https://doi.org/10.1016/j.eururo.2015.06.012
- 24. Hamdy FC, Donovan JL, Lane JA et al (2023) Fifteen-year outcomes after monitoring, surgery, or radiotherapy for prostate cancer. N Engl J Med 388:1547–1558. https://doi.org/10.1056/nejmoa2214122
- 25. Rajwa P, Sprenkle PC, Leapman MS (2021) When and how should active surveillance for prostate cancer be de-escalated? Eur Urol Focus 7:297–300
- 26. A randomised controlled trial of regular MRI scans compared to standard care in patients with prostate cancer managed using active surveillance (NIHR152027). https://fundingawards.nihr.ac.uk/award/NIHR152027

- 27. Valentin B, Arsov C, Ullrich T et al (2024) Magnetic resonance imaging-guided active surveillance without annual rebiopsy in patients with grade group 1 or 2 prostate cancer: the prospective PROMM-as study. Eur Urol Open Sci 59:30–38. https://doi.org/10.1016/j.euros.2023.10.005
- 28. O'Connor LP, Wang AZ, Yerram NK et al (2021) Changes in magnetic resonance imaging using the prostate cancer radiologic estimation of change in sequential evaluation criteria to detect prostate cancer progression for men on active surveillance. Eur Urol Oncol 4:227–234. https://doi.org/10.1016/j.euo.2020.09.004
- 29. Giganti F, Stabile A, Stavrinides V et al (2021) Natural history of prostate cancer on active surveillance: stratification by MRI using the PRECISE recommendations in a UK cohort. Eur Radiol 31:1644–1655. https://doi.org/10.1007/s00330-020-07256-z
- 30. Aerts J, Hendrickx S, Berquin C et al (2023) Clinical application of the prostate cancer radiological estimation of change in sequential evaluation score for reporting magnetic resonance imaging in men on active surveillance for prostate cancer. Eur Urol Open Sci 56:39–46. https://doi.org/10.1016/j.euros.2023.08.006
- 31. Li P, You S, Nguyen C et al (2018) Genes involved in prostate cancer progression determine MRI visibility. Theranostics 8:1752–1765. https://doi.org/10.7150/thno.23180
- 32. Lehto TPK, Pylväläinen J, Sandeman K et al (2024) Histomic and transcriptomic features of MRI-visible and invisible clinically significant prostate cancers are associated with prognosis. Int J Cancer 154:926–939. https://doi.org/10.1002/ijc.34743
- 33. Wibmer AG, Chaim J, Lakhman Y et al (2021) Oncologic outcomes after localized prostate cancer treatment: associations with pretreatment prostate magnetic resonance imaging findings. J Urol 205:1055–1062. https://doi.org/10.1097/JU.000000000001474
- 34. Pausch AM, Ghafoor S, Kluckert J et al (2024) Risk factors for prostate cancer in men with false-negative mpMRI: a retrospective single center cohort study of image quality scores and clinical parameters. Eur J Radiol 170:111227. https://doi.org/10.1016/j.ejrad.2023.111227
- 35. Brembilla G, Lavalle S, Parry T et al (2023) Impact of prostate imaging quality (PI-QUAL) score on the detection of clinically significant prostate cancer at biopsy. Eur J Radiol 164 https://doi.org/10.1016/j.ejrad.2023.110849
- 36. Giganti F, Ng A, Asif A et al (2023) Global variation in magnetic resonance imaging quality of the prostate. Radiology 309:e231130. https://doi.org/10.1148/RADIOL.231130
- 37. Giganti F, Allen C, Emberton M et al (2020) Prostate imaging quality (PI-QUAL): a new quality control scoring system for multiparametric magnetic resonance imaging of the prostate from the PRECISION trial. Eur Urol Oncol 3:615–619. https://doi.org/10.1016/j.euo.2020.06.007
- 38. Woo S, Suh CH, Kim SY et al (2018) Head-to-head comparison between biparametric and multiparametric MRI for the diagnosis of prostate cancer: a systematic review and meta-analysis. AJR Am J Roentgenol 211:W226–W241
- 39. Asif A, Nathan A, Ng A et al (2023) Comparing biparametric to multiparametric MRI in the diagnosis of clinically significant prostate cancer in biopsy-naive men

- (PRIME): a prospective, international, multicentre, non-inferiority within-patient, diagnostic yield trial protocol. BMJ Open 13 https://doi.org/10.1136/bmjopen-2022-070280
- 40. Caglic I, Sushentsev N, Gnanapragasam VJ et al (2021) MRI-derived PRECISE scores for predicting pathologically-confirmed radiological progression in prostate cancer patients on active surveillance. Eur Radiol 31:2696–2705. https://doi.org/10.1007/s00330-020-07336-0
- 41. Woo S (2023) Editorial comment: PRECISE-the precisely right thing to use when interpreting prostate MRI for active surveillance? AJR Am J Roentgenol 225:660
- 42. Sanmugalingam N, Sushentsev N, Lee KL et al (2023) The PRECISE recommendations for prostate MRI in patients on active surveillance for prostate cancer: a critical review. AJR Am J Roentgenol 225:649–660. https://doi.org/10.2214/AJR.23.29518
- 43. Sushentsev N, Rundo L, Blyuss O et al (2021) MRI-derived radiomics model for baseline prediction of prostate cancer progression on active surveillance. Sci Rep 11:12917. https://doi.org/10.1038/s41598-021-92341-6
- 44. Ploussard G, Rouvière O, Rouprêt M et al (2022) The current role of MRI for guiding active surveillance in prostate cancer. Nat Rev Urol 19:357–365
- 45. Klotz L, Vesprini D, Sethukavalan P et al (2015) Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J Clin Oncol 33:272–277. https://doi.org/10.1200/JCO.2014.55.1192
- 46. Selvadurai ED, Singhera M, Thomas K et al (2013) Medium-term outcomes of active surveillance for localised prostate cancer. Eur Urol 64:981–987. https://doi.org/10.1016/j.eururo.2013.02.020
- 47. Morash C, Tey R, Agbassi C et al (2015) Active surveillance for the management of localized prostate cancer: guideline recommendations. J Can Urol Assoc 9:171–178. https://doi.org/10.5489/cuaj.2806
- 48. Dieffenbacher S, Nyarangi-Dix J, Giganti F et al (2021) Standardized magnetic resonance imaging reporting using the prostate cancer radiological estimation of change in sequential evaluation criteria and magnetic resonance imaging/transrectal ultrasound fusion with transperineal saturation biopsy to select men. Eur Urol Focus 7:102–110. https://doi.org/10.1016/j.euf.2019.03.001
- 49. Osses DF, Drost FJH, Verbeek JFM et al (2020) Prostate cancer upgrading with serial prostate magnetic resonance imaging and repeat biopsy in men on active surveillance: are confirmatory biopsies still necessary? BJU Int 126:124–132. https://doi.org/10.1111/bju.15065
- 50. Ullrich T, Arsov C, Quentin M et al (2020) Multiparametric magnetic resonance imaging can exclude prostate cancer progression in patients on active surveillance: a retrospective cohort study. Eur Radiol 30:6042–6051. https://doi.org/10.1007/s00330-020-06997-1
- 51. Bhanji Y, Mamawala M, de la Calle CM et al (2023) Prostate cancer radiological estimation of change in sequential evaluation (PRECISE) magnetic resonance imaging scoring to predict clinical outcomes in active surveillance for grade group 1 prostate cancer. Urology 180:194–
 - 199. https://doi.org/10.1016/j.urology.2023.07.019