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Abstract
Information theory and entropy loss predict deeper more hierarchical software will 
be more robust. Suggesting silent errors and equivalent mutations will be more 
common in deeper code, highly structured code will be hard to test, so explaining 
best practise preference for unit testing of small methods rather than system wide 
analysis. Using the genetic improvement (GI) tool MAGPIE, we measure the impact 
of source code mutations and how this varies with execution depth in two diverse 
multi-level nested software. gem5 is a million line single threaded state-of-the-art 
C++ discrete time VLSI circuit simulator, whilst PARSEC VIPS is a non-determin-
istic parallel computing multi-threaded image processing benchmark written in C. 
More than 28–53% of mutants compile and generate identical results to the original 
program. We observe 12% and 16% Failed Disruption Propagation (FDP). Exclud-
ing internal errors, exceptions and asserts, here most faults below about 30 nested 
function levels which are Executed and Infect data or divert control flow are not 
Propagated to the output, i.e. these deep PIE changes have no visible external effect. 
Suggesting automatic software engineering on highly structured code will be hard.

Keywords  Automatic code optimisation · Failed disruption propagation (FDP) · 
Genetic improvement (GI) · Fault masking · Software resilience · Fitness landscape

1  Introduction

The robustness of software, Petke et al (2021), is a double edged sword. From the 
point of view of the user, having computer systems which do not fail is important, 
however from the perspective of software developers locating bugs in robust soft-
ware and testing their fixes is hard. This slows down progress, forcing the user to 
deal with imperfect software which may have many defects or irritations which the 
development team in practice will never have time to resolve. Here we are primar-
ily interested in automated software engineering, such as genetic improvement, but 
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more robust, potentially more deeply nested programs, may be harder to repair, 
maintain and optimise either mechanically or manually.

2 � Software robustness and genetic improvement

By robust we mean that a system continues to operate even when perturbed.1 A 
robust system is still usable despite errors. If the perturbation is “small”, a robust 
system will only deviate “slightly” or not at all from it usual behaviour and so remain 
usable. With larger perturbations a robust system may start to give larger deviations 
from its normal behaviour. Only with very large perturbations will a robust system 
fail.

Globally we are now at the point where society relies on software, is even 
addicted to software Langdon et al (2021), and although software is far from per-
fect,2 nonetheless it is used and delivers huge economic benefits Langdon (2023); 
Espinel (2016). Even though much effort is devoted to software verification and 
validation, particularly testing Gelperin and Hetzel (1988), including mutation test-
ing DeMillo et  al (1978); Jia and Harman (2011); Xiangjuan Yao et  al (2014), in 
industry Hynninen et  al (2018), society depends on buggy software, however real 
software is robust.

Previously Petke et  al (2021); Clark and Hierons (2012); Langdon and Petke 
(2015) we found that software robustness can be explained by information theory 
Cilibrasi and Vitanyi (2007); Mesecan et al (2021b, 2021a) and an idea from soft-
ware testing. Voas and Miller (1995) consider the difficulty of testing software, 
which can be considered as the other side of software robustness. They say for a 
software error to be seen the buggy code must be executed (their “E”), the execu-
tion must in some way change the internals of the program (they call this infection 
“I”) and that the change must propagate (“P”) to the program’s output(s). Overall 
this is known as their “PIE” framework. “E”, “I” and “P” must all be present for a 
code defect to impact the software. So, for example, if the bug lies in code which the 
genetic improvement (GI) fitness tests does not exercise (no “E”) then the bug will 
have no fitness impact. If there is no measurable fitness impact, GI will find it very 
difficult to repair the bug.

We consider “P”: does the disruption, if any, caused by the error propagate 
through the program to one or more of its outputs Petke et  al (2021); Androutso-
poulos et al (2014). If not, we call this failed disruption propagation (FDP). We use 
information theory to argue if there is information loss (measured by entropy loss, 
see Fig. 1) on the route between the error (the infection point) and the program’s 
output(s), then information about the error’s disruption may be lost Clark et  al 
(2020). If all information about the error is lost, then the program no longer depends 

1  We follow Petke et al (2021) and consider perturbations of all sorts from normal behaviour. A pertur-
bation may be long lasting or transient. For example, it may be due to a bug, coding error, software muta-
tion, power spike, cosmic radiation or malicious actor.
2  For example, (Peng and Wallace 1993, page v) said thirty years ago “errors will probably occur during 
software development and maintenance”.
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on the error and so the error does not influence the output(s). Meaning the error does 
not have an externally measurable impact. That is, the software is robust to the error. 
We also suggest parts of a program may have more entropy loss, making the code 
before the high entropy loss region more robust. (In Sect. 6 we show this can hap-
pen in real programs, particular in deeply nested software.) Thus the effectiveness 
of genetic improvement depends not only on the error itself but do tests reach it (i.e. 
execute it), if so, does the test cause the bug to do something different (i.e. cause 
an infection) and where it is in the program, in terms of the test’s subsequent path 
(execution trace) to the program’s output(s).

In a strictly hierarchical system (see Fig. 1), information only passes up through 
the hierarchy and once lost cannot be recovered. In terms of traditional genetic 
improvement (GI), if the disruption is lost before it reaches a measuring point 
(e.g.  the program’s output or a test oracle Terragni et  al (2020); Langdon et  al 
(2017a)) there is no fitness signal and the GI has little chance of improving the code.

Niedermayr and Wagner (2019) have already shown with Java mutation testing 
that there can be a strong relationship between the shortest path (their “minimal 
stack distance”) from the test function (itself a Java method) to the mutated function 
and the effectiveness of the test. Notice, although they do not consider information 
theory, by using the shortest path they build in the assumption that test effectiveness 
falls with distance. In our C/C++ experiments there are no test methods, instead we 
use external test inputs and outputs and test the whole program (system tests). Thus, 
when we use the total nesting depth3, it is akin to their stack distance but using the 
C/C++ main function instead of their Java test method. Also their JUnit tests have 
a maximum shortest path of 17 (average 8) (Niedermayr and Wagner 2019, Fig. 3) 
whereas Magpie mutated VIPS code to a depth of up to 56 (Figs. 7 , 8, 9) and gem5 
up to 85 (Figs. 10, 1112).

In low resolution systems we would expect more information loss. For example, 
in a system composed of only single bit logic gates, it may be difficult for disruption 

Fig. 1   Left: adding two 8 bit numbers to give 8 bit result. Information is lost as inputs contain at most 
2 × 8 bits ( ≤ 16 bits) of information and output can contain at most 8 bits. Right: red 0–9 actual distribu-
tion of 0-9 digits in 37 VIPS C source files. Dashed blue 0–18 distribution if they are added. Although 
the output of + is wider and has higher entropy (3.75), it is smoother and has less entropy than the com-
bined entropy (5.76) of the two inputs to + . (Example expanded in the appendix)

3  We use GNU libc backtrace to give the depth of function nesting at run time.
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caused by an error to progress through many gates. Suppose the disruption signal 
encounters an And gate whose other input is false, then the gate’s output is false 
regardless of the disruption. That is, information about the error cannot propagate 
past the And gate. In general, the longer the path between the disruption and the 
GI’s test point (test oracle) the more chance of entropy loss and so there is more 
chance that the disruption signal will not propagate.

In higher resolution system, e.g. 8 bit char (Fig. 1) and 32 bit integer (which are 
the predominant types in our examples, see Sect.  7.4), the information loss may 
be slower than in Boolean systems but, in general in hierarchical systems, it will 
occur. For example a multiplication operation (which scales the disruption signal) 
will destroy the signal if the multiplication’s other argument is zero. Moreover any 
digital system is liable to lose information (only reversible computation does not 
lose information Langdon (2003)). For example x = a + b with a = 2, b = 3 and 
a = 1, b = 4 both set x to 5. That is, given the current value of x (5) we cannot infer 
the values of a and b. Note that, there was more information before the addition than 
afterwards. Even floating point arithmetic, which is designed to extract the maxi-
mum practical resolution from 32 bits, can lose information. For example, rounding 
error causes information loss Langdon (2022a). With 32  bit IEEE floating point, 
x = a + b with a = 5.0, b = 0 and a = 5.0, b = 10−7 both set x to 5.0, so again infor-
mation has been lost: from the output of the addition operation we cannot infer the 
values of its inputs.

Fitness landscape analysis is a relatively well studied topic in artificial evolution 
Malan (2021), however there is until now little work on the fitness landscape of real 
programs Petke et al (2019). Some studies of C programs include Langdon and Har-
man (2016); Langdon et  al (2017b); Veerapen et  al (2017); Veerapen and Ochoa 
(2018), where we enumerated the complete mutation landscape for the triangle pro-
gram. In contrast Haraldsson et al (2017) used random walks to sample the fitness 
landscape for three fragments of python programs. Gabin An et al (2018) suggested, 
at least for automated program repair using PyGGI Gabin An et al (2019), that AST 
mutations could be more effective than mutating source code directly (note we use 
Magpie’s AST mutations, Sect. 3.1). While Smigielska et al (2021) analysed PyGGI 
mutations for bug fixing on several Java QuixBugs programs.

Notice none of the above were interested in depth of nesting. Indeed researchers 
are usually interested in the size of programs rather than their depth (Blot and Petke 
2022a, p15). We did some work on integer Langdon (2022b) and floating point 
Langdon (2022d) functions, where fault masking could be total if the program nest-
ing was deep enough, however all were artificially evolved (genetic programming 
Koza (1992); Poli et al (2008)) not real programs. For details see Sect. 7.4 in the 
discussion.

The next three sections describe how we use the Magpie GI tool (Sect. 3) to uni-
formly sample the space of mutations of the deeply nested VIPS C benchmark and 
C++ gem5, including the fitness function (Sect. 4) and parameters (Sect. 5). Sec-
tion 6 gives our results, including that only 17% of VIPS and 22% of gem5 mutants 
fail at run time. Whilst Sect. 7 discusses Magpie on our examples, including exam-
ples of the mechanisms behind FDP (Sect. 7.5). Finally we conclude (Sect. 8) that 
C/C++ software is robust to many AST based mutations and that failed disruption 
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propagation (FDP) occurs more frequently with deeply nested mutants, making any 
form of test based automatic software engineering (such as genetic improvement) 
potentially more difficult in deeply nested code. The appendix gives an information 
theory based explanation for FDP and mathematical formulae about it and entropy 
in special types of nested software.

3 � Experiments to study disruption propagation in C/C++

3.1 � Magpie for mutation sampling and impact measurement

Magpie is a language independent genetic improvement tool. We use to it to gen-
erate uniformly at random mutations and measure their impact. Magpie was ini-
tially released in 2022 as an open source project on GitHub.4 As of 2 October 2023, 
including examples and documentation, Magpie contained 3781 lines of code, 
mostly written in Python. It contains worked examples in Python, C, C++ and Ruby. 
The next two sections describe VIPS (3.2 and 3.3) while the following two refer to 
gem5 (3.4 and 3.5).

3.2 � PARSEC VIPS benchmark

The VIPS image processing benchmark Martinez and Cupitt (2005) is part of PAR-
SEC (Princeton Application Repository for Shared-Memory Computers), which was 
devised as a benchmark to measure hardware performance on emerging workloads 
(Bienia et  al 2008, page 73). The PARSEC benchmark is often used, e.g. Schulte 
et  al (2014); Schulte (2014); Chen and Venkataramani (2016); Dorn et  al (2019); 
Bruce et  al (2021). Indeed we used it in Langdon and Clark (2024b). We down-
loaded the 64bit X86 version of PARSEC 3.0 from GitHub5 and extracted the VIPS 
library from it. The VIPS thumbnail benchmark is often used but here our use is 
totally different. We do not want to automatically fix bugs but instead we use it as 
an example of highly nested well engineered software to demonstrate the effective-
ness of Magpie’s mutations and in particular how this varies with depth of proce-
dural nesting in a multi-threaded parallel environment. Schulte et al. found signifi-
cant improvements using their GOA Schulte et al (2014). GOA is a fitness driven 
evolutionary GI tool and so does not sample uniformly. As Schulte et al (2014) do 
not report nesting depth, it may be that GOA found it easier to evolve the shallower 
parts of their VIPS.

3.3 � VIPS thirty seven C source files

We again use our VIPS C benchmark (Langdon and Clark 2024b, Sect. 4.1). VIPS 
is a large C library. Only a fraction of VIPS is used by each application. We took the 

4  https://​github.​com/​bloa/​magpie 2 October 2023 Blot and Petke (2022b)
5  https://​github.​com/​bamos/​parsec-​bench​mark/ 16 October 2023.

https://github.com/bloa/magpie
https://github.com/bamos/parsec-benchmark/
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VIPS thumbnail benchmark and instrumented it to select those source files which it 
uses on the test case (described in Sect. 4.1). Individual VIPS C source files were 
selected in two ways and then the union of the two taken. Firstly: the Linux perf tool 
was run at its maximum sampling frequency (40 kHz) ten times. All the functions 
perf profiled were included. Secondly: in all perf runs, the shrink_gen() func-
tion stood out as consuming the most CPU time. Using the GDB debugger and set-
ting a break point at shrink_gen() the VIPS code was run multiple times and all 
the nested functions from main to shrink_gen() were recorded. Despite non-
deterministic multi-threading, this function nesting proved to be stable across multi-
ple debugger sessions. Combining both approaches to find important functions lead 
to the identification of 37 source files. They also contain functions which are not 
used here. Automatically, at the individual function level, unused code was removed 
before presenting the source code to Magpie. Note this is only done to the function 
level. The VIPS C code to be mutated still contains some examples of if branch and 
case statements which are not used.

3.4 � gem5 benchmark

gem5 Binkert et al (2011); Bruce et al (2021) is the state of the art simulation tool 
for systems composed of very large scale integrated (VLSI) electronic circuits. It is 
widely used by industrial chip designers and manufactures and for open source and 
academic research. It supports most commercial CPU instruction sets (ISAs) and 
popular memory architectures. gem5 is an open project available via GitHub. It was 
written and has been maintained for more than 10 years by a team of expert C++ 
programmers.

For SSBSE 2023 Arcaini et al (2023), Bobby Bruce cloned gem5 staging branch 
v23.0, included the latest features and improvements and ssbse-challenge-exam-
ples and merged them into a stable release. As part of the SSBSE 2023 challenge 
Dakhama et al (2023), we cloned the SSBSE version of gem5.6 It comprises a total 
of 1.34 million lines of code (mostly C++) (git commit: 65edbe0, Jul 14, 2023).

gem5 is a complete discrete time simulation and typically runs of the order of 105 
times slower than the circuit it is simulating. (For example, with our RNAfold frag-
ment, Sect. 4.2, gem5 runs 108 000 times slower than real time.) Thus to simulate 
1000 clock ticks on a 3.6GHz CPU will take about 30 milliseconds.

3.5 � gem5 twenty five C++ source files

As mentioned in Sect.  3.4, gem5 is a huge program. Starting from its almost 10  000 
source files, on a single core, it takes more than two hours to compile and build gem5 to 
target only X86 binaries. Therefore gem5 was profiled using GNU gcov on our test case 
(Sect. 4.2) and 25 heavily used C++ source files were selected to be used by Magpie (see 
also Fig. 2). Instead of the gem5 scons build script, a conventional Linux command script 
was written to compile just the mutated code and link it against the gem5 shared object 

6  gem5 https://​github.​com/​Bobby​RBruce/​gem5-​ssbse-​chall​enge-​2023.​git

https://github.com/BobbyRBruce/gem5-ssbse-challenge-2023.git
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library. For compilable mutants, compiling and linking takes on average 7 s. Notice for 
gem5, unlike VIPS, we did not seek to exclude unused code. Instead we reject mutations 
which according to gcov line coverage profile are not used on the test case. This leads to 
rejecting 69.2% of gem5 Magpie mutations before they are compiled (Table 4). This has 
the advantage that the gem5 C++ source files do not need to be stripped of their unused 

Fig. 2   FlameGraph of Linux perf profile of gem5 simulating our RNAfold fragment (Section 4.2). Used 
functions are spread horizontally, whilst vertical axis indicates depth of function call nesting. (An inter-
active version is available via https://​github.​com/​wblan​gdon/​Deep-​Imper​ative-​Mutat​ions-​have-​Less-​
Impact)

https://github.com/wblangdon/Deep-Imperative-Mutations-have-Less-Impact
https://github.com/wblangdon/Deep-Imperative-Mutations-have-Less-Impact
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functions and the gcov profile says which lines of code are used during fitness testing 
(rather than which functions are called). Since we know where Magpie has placed its 
mutation, it is easy to use the pre-collected profile data to quickly weed out useless muta-
tions, rather than run the complete fitness evaluation to simply confirm it has no runtime 
influence (as it is not executed).

4 � Fitness function

We are not attempting to improve VIPS or gem5 but to measure the impact of mutat-
ing their C/C++ sources. Nevertheless we treat it as if we were running Magpie 
normally and supply it with a formal fitness function.

For each mutation we want to know: 

1.	 does it compile and link without error.
2.	 does it run and terminate within a time limit (VIPS 2, gem5 15 s)7.
3.	 does the program fail with an exception or error message.
4.	 does the mutated program exit with a non-success exit status.
5.	 does it generate an output and if so is the output mutated.

4.1 � VIPS test case

We used a GI benchmark PPM image (see Fig. 3) Langdon et al (2016) and Langdon 
and Clark (2024b). VIPS takes as input the 3264×2448 image (23 970 833 bytes) 
and generates a 128× 96 PPM image as output (36 919 bytes).8

4.2 � gem5 test case

gem5 is used to simulate a CPU intensive loop written in C and running on a 
64  bit X86 computer (gem5 command line option –isa X86). We used the 
default configuration script supplied with SSBSE 2023 challenge track (gem5 
command line input hello-custom-binary.py). For the X86 program that 
gem5 simulates we took the most compute intensive loop from the open source 
RNAfold9 program (gem5 command line option –binary higher_order_
code_209). Otherwise we used gem5’s defaults, including disabling debug 
options.

Like RNAfold version 2.5.1 itself, the X86 executable higher_order_
code_209 was compiled with gcc -O2. It repeats the 209 iterations of the loop 
needed for an example twenty base RNA molecule, Fig.  4. (RNAfold runtime 
grows faster than quadratically with RNA molecule size, hence a small RNA 

7  A unix limit filesize on the output was not needed.
8  VIPS benchmark https://​github.​com/​wblan​gdon/​vips
9  RNAfold Lorenz et al (2011) calculates the minimum self-binding free energy of an RNA molecule. 
It is written in C and is part of the open source ViennaRNA package https://​www.​tbi.​univie.​ac.​at/​RNA/

https://github.com/wblangdon/vips
https://www.tbi.univie.ac.at/RNA/
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molecule was used.) We had previously used Genetic Improvement to improve 
RNAfold’s accuracy Langdon et  al (2018) and to parallelise this loop Langdon 
and Lorenz (2017, 2019).

5 � Magpie search

Magpie has the ability to search using genetic programming Blot and Petke (2020) 
or local search Blot and Petke (2021) and to operate either in line mode or, as we 
do here, to treat the source files as AST trees. First the 37 VIPS C (Sect. 3.3) and 
25 gem5 C++ (Sect. 3.5) source files were converted to XML files using scrml ver-
sion  1.0.0. The ability to mutate and crossover XML gives Magpie the ability to 

Fig. 3   Left: VIPS 3264×2448 benchmark input image (23  970  833  bytes) Right: 128× 96 thumbnail 
image generated by VIPS (36 919 bytes, see left of Figure 5 for enlarged thumbnail)

Fig. 4   Twenty base RNA molecule used in gem5 test case higher_order_code_209. The figure 
shows the minimum free energy secondary structure, which is found by RNAfold. Note the C – G pair 
bindings form a characteristic low energy “hairpin” spiral, often found in both RNA and DNA molecules
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work with any programming language. We sampled uniformly at random the impact 
of Magpie’s seven common mutation operators 1000 times (gem5 250010). Three 
mutate C/C++ statements (StmtReplacement, StmtInsertion, StmtDeletion) whilst 
four change parts of expressions within statements (ComparisonOperatorSetting, 
ArithmeticOperatorSetting, NumericSetting, RelativeNumericSetting). For example, 
Relative- NumericSetting can change a value in the source code by 50%.

The Magpie parameter max_steps was set to one. Meaning each time Magpie 
created uniformly at random independently of execution depth of nesting a single 
mutant and tested it. The other Magpie parameters were left at their defaults.

Magpie used a mostly idle 32 GB eight core 3.60 GHz Intel i7-4790 desktop CPU 
running networked Unix Centos 7, using Python 3 version 3.10.1 and version 10.2.1 
of the GNU C/C++ compiler. On average generating compiling and testing each 
VIPS mutation takes 2.5 s. Whilst for gem5 it is 6.6 s. Of course gem5 is a much 
bigger program, 44MB v.   450KB, and for example, linking gem5 alone takes on 
average about 1.4 s, whilst running takes on average about 1.1 s v. about 80 millisec-
onds for VIPS (albeit VIPS uses all 8 available cores).

6 � Results

The next two sections give the fraction of VIPS (6.1) and gem5 (6.2) mutations in 
each impact class, before Sects. 6.3 and 6.4 consider in detail the variation of the 
impact of mutations with run time depth.

6.1 � VIPS results

The VIPS results are summarised in Tables 1, 2, and 5 whilst Figs. 7, 8, and 9 con-
sider the variation of the impact of errors with stack depth

Of the 1000 Magpie XML mutants, there are 302 which failed to compile (2nd 
row in Table  1). These fall into 38 different classes. There are 177 compilation 

Table 1   1000 random Magpie 
VIPS mutants

a Magpie XML TypeError may have been fixed. GitHub commit 
b0ad2c1 (Oct 17, 2023)

Compiled, ran and produced correct 
output

526 52.6%

Failed to compile 302 30.2%
Failed to run correctly or gave incor-

rect output
164 16.4%

Magpie type errora 8 0.8%

10  In Sect. 3.5 we noted the higher fraction of gem5 mutations falling in non-executed code and in order 
to get at least the 37 non-exception runtime errors we found with VIPS Langdon and Clark (2024a), 
Table 2, we increase our gem5 sample size to 2500. Actually Table 3 reports we found 55 gem5 mutants 
which gave at least one wrong answer at runtime but did not raise an exception. (We need at least 25 for 
the comparison in Sect. 6.4.)
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errors due to bad use of variable names, such as undeclared variables. The other 
125 are essentially syntax errors. We discuss problems with moving variables out of 
their declaration scope in Sect. 7.2. It is surprising, given that Magpie is using XML 
and so is effectively operating at the program’s AST level, that more than 12% of 
mutants fail to compile with syntax errors. Examples include pasting a well formed 
if statement into a struct data structure and replacing the minus sign in a nega-
tive constant (e.g. -1) with an arithmetic operator (e.g. /) giving rise to a syntax error 
(e.g. return /1;).

The last row in Table 1 says that there were 8 mutants where Magpie failed with 
an internal TypeError. It may be that these successfully passed the fitness tests. How-
ever it seems safest to exclude them. We also exclude the 88 identical mutants (sec-
ond row in Table 2). So Tables 1 and 2 show 438 of 602 (1000-8-88-302), (i.e. 73%) 
of unique VIPS mutants which compile, produce the right output.

The middle four rows in Table  2 show 91 (55%) of the 164 mutants which 
compiled but gave bad results, failed with an exception whilst running. The last 
three rows in Table 2 show 73 (45%) of the erroneous mutants which ran either: 
VIPS detected an internal error (36 22%), the output was not generated (19 12%) 
or the image was created but was not the same as the original  (18 11%). In six 
cases the output was the wrong size. But in 12 of the 18 cases where an incorrect 
output was generated the output was the right size. In some cases the incorrect 
output resembles the correct image. (The left side of Fig. 5 shows the correct out-
put v. error on right.) In others although the image header in the output is correct, 
the image’s content is totally scrambled (Fig. 6). Notice Fig. 5 indicates a differ-
ent type of software robustness: although it is different from the correct output 
and thus fails the fitness test, visually it is “close” to the expected answer and so 
might be acceptable.

6.2 � gem5 results

The gem5 results are summarised in Tables 3, 4 and 5 whilst Figs. 10, 1112 con-
sider the variation of the impact of errors with stack depth. To allow easy com-
parison between gem5 and VIPS results Tables 3 to 5 and Figs. 10 to 12 follow 
the same format as the VIPS results in the previous section.

Of the 2500 Magpie gem5 mutants, most (1730, Table 4) are rejected because 
they lie in non-executed code (see Sect. 3.5 page 7).

The second row of Table 4 shows 238 gem5 mutants are rejected because actually 
Magpie made no change. E.g. because a number mutation replaced 0 with another 0. 
This is more-or-less the same ratio (9.52%) as VIPS 8.8% (Table 2).

A further 17 Magpie mutations are rejected because, although syntactically dif-
ferent (when compiled with -O2) their object code is identical. For example, a muta-
tion which inserted “Tick when = 0;” where the compiler recognises that the 
variable “when” is unused and optimises it away, leaving the rest of the object code 
unchanged. We have previously used this with the GCC compiler Langdon (2020) 
and LLVM Langdon et  al (2023) to quickly spot semantically identical mutations 
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Table 2   Details of Magpie 1000 
VIPS mutants given in Table 1.

 Top two rows refer to the 526 successful mutants (Sect.  7.1 on 
row 2). Other seven are the 164 mutants which failed or gave bad out-
put. Middle four rows mutants gave a non-success termination status

Correct output 438 43.8%
Mutation is identical to original code 88 8.8%
Runtime error 134, e.g. assert, double free, mutex error 40 4.0%
Exceed 2 second timeout 25 2.5%
Segmentation error 22 2.2%
Floating point error 4 0.4%
VIPS detected error, e.g. No such file or directory 36 3.6%
No error reported but output error 19 1.9%
No error reported but output changed 18 1.8%

Fig. 5   Left: original VIPS thumbnail output. Almost all mutants which produce output, give images 
which are identical. Right: a similar but different mutant image

Fig. 6   Note most mutant images 
are unchanged (Figure 5), how-
ever right is a radically different 
mutant image. Note although the 
pixels are scrambled, the output 
is still an image and of the right 
type and dimensions

Table 3   2500 random Magpie 
gem5 mutants Compiled, ran and produced correct output 380 15.2%

Failed to compile etc 1975 79.0%
Failed to run correctly or gave incorrect output 145 5.8%
Magpie TypeError 0 0%
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Table 4   Details of Magpie 2500 gem mutants given in Table 3.

Top row refers to the 142 successful mutants. The next three rows the mutation was ok but rejected 
before testing due to: no change to source code (238), object files are identical (17) or it was located in 
code that profiling said is not executed on the test case (1730). Last column gives percentages excluding 
these automatically rejected equivalent mutations. 228 mutations failed to compile. The other six rows 
are the 145 mutants which failed or gave bad output. Middle four rows mutants gave a non-success termi-
nation status

Correct output 142 5.68% 27.57%
Mutation is identical 238 9.52% –
Mutation is semantically identical 17 0.68% –
Mutation in non-executed code 1730 69.20% –
Failed to compile 228 9.12% 44.27%
gem5 detected error, e.g. gem5 panic, Assertion failure or 

it erronously reports “segmentation fault” in code it is 
simulating

47 1.88% 9.13%

Exceed 15 second timeout 17 0.68% 3.30%
Segmentation error 10 0.40% 1.94%
Floating point error 3 0.12% 0.58%
gem5 detected “fatal:” error 13 0.52% 2.52%
No error reported but output changed 55 2.20% 10.68%
Totals 2500 (515)
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Fig. 7   25 mutations which change internal state but output is unaffected (shaded pink) and 25 which 
change output (pattern) without raising an exception or reporting an error. (See page 15)
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and so avoid the cost of fitness evaluation. It can also be used with the compiler’s 
assembler code output to spot semantically identical parts of mutations when auto-
matically simplifying compound mutations Langdon (2020). The compiler C pre-
processor can also be used to strip away parts of mutations rendered irrelevant by 
conditional compilation directives when building tabu list of mutations Langdon 
et  al (2015). Just running the pre-processor is typically much cheaper than run-
ning the complete compilation. The compiler has been used to identify equivalent 
mutants in mutation testing Papadakis et al (2015).

Of the 532 (2500-1730-238) gem5 compilations, 228 (43%) mutants failed 
to compile (Table 4). These fall into 15 different classes. There are 164 (31%) 
compilation errors due to bad use of variable names (scoping errors will be dis-
cussed in Sect. 7.2). The other 64 (12%) compilation errors are different types of 
syntax error. Syntax error include removing the if from an if else leaving 
the else dangling and replacing a * used to dereference a pointer with an arith-
metic operator, such as-.

The middle four rows in Table  4 show 77 (53%) of the 145 mutants which 
compiled but gave bad results, failed with a system exception whilst running. A 
further 13 failed with one of gem5’s exceptions (total 62%). For example, one 
of Magpie’s mutations changed the condition in a while loop so that it was 
always false, meaning the size etc. of a buffer was not set up. This later resulting 
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Fig. 8   25 mutations with no impact and 25 which change output. Same data as Figure 7. The vertical 
axis is truncated to 0–450, as otherwise perturbations which cause errors to the output (blue hatching) 
nested 13 functions deep x=13 (8453) and x=24 (181952), would dominate all the other data. (Graph 
described on page 15)
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in gem5 detecting a fatal exception in writeBlob and so it stopped with 
status code 1 and much of the gem5 output was not created.

The last but one row of Table 4 shows 55 mutations compiled and ran without 
reporting an error but gave erroneous outputs (38% of the 145 mutations which 
failed at runtime). For example, in one case Magpie mutated the initial start con-
dition in a for loop from i = 0 to i = -1, resulting in the loop starting with 
an illegal value for variable i. Notice the mutated for loop was executed for one 
more iteration than it should have been. gem5 did not notice the error. Four of 
the five output files created by gem5 were unchanged. Only 8 of the 504 lines in 
the other file were changed. Indeed all numeric values in it were unchanged and 
the only change was that in the 8 cases the text description at the start of the line 
was slightly corrupted.

6.3 � VIPS failed disruption propagation (FDP)

When considering failed disruption propagation in real code: disruptions to the 
program’s internal state due to Magpie mutations which cause C exceptions or for 
which VIPS itself reports an error, are caught by special mechanisms which imme-
diately terminate the program and so the disruption does not propagate through the 
program in the normal way (rows 3–7 in Table  2). The last two rows in Table  2 
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Fig. 9   25 VIPS mutations with no impact (mean depth + ) and 25 which change output (mean depth × ). 
Error bars show interquartile range. +× also show min and max depth. Notice mutations with average 
depth y > 30 tend not to impact VIPS thumbnail output. Same data as Figures 7 and 8
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contain 37 mutations which either: caused the output not to be created or to be 

Table 5   Top: 91 random 
Magpie VIPS mutants without 
error. Lower: Data for 43 
randomly selected gem5 
mutants without error. (All 
instrumented gem5 mutants are 
known to have either executed 
or not, i.e. no “na” in row 2)

The first column says if the modified code is executed or not. 
“na” indicates that the mutant may or may not have been run, but in 
either case it cannot infect the state, e.g. replacing 0 by 0*3/2. 25 of 
91 ( 27% ± 5% ) mutants are executed and disrupt the program at least 
once. (± indicates standard error)

Executed Infected count fraction

VIPS
N N 45 49% ± 5%
na N 13 14% ± 4%
y N 8 9% ± 3%
y y 25 27% ± 5%

Total 91
gem5
N N 10 23% ± 7%
y N 8 19% ± 6%
y y 25 58% ± 8%

Total 43
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Fig. 10   25 gem5 mutations which change internal state but output is unaffected (shaded pink) and 25 
which change output (pattern) without raising an exception or reporting an error. (See page 18)
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different in some way from the usual output. We uniformly at random selected 25 of 
these (blue cross hatch in Figs. 7 and 8).

From the mutants which did produce the right output (top row of Table 2), we 
uniformly at random selected 25 where: the modified code was executed and it 
changed the program’s state or flow of control (shaded pink in Figs. 7 and 8). (See 
also Fig. 9 and left of Table 5.) For both the selected 25 ok and 25 non-exception 
mutants (previous paragraph) we instrumented the mutation site to record how many 
times its execution made a difference and how deep in the function call hierarchy it 
was when it was executed.

The function containing the mutated code can be called multiple times and from 
different positions and hence the depth of a particular disruption typically var-
ies during execution. (Perhaps due to the use of multiple threads introducing non-
determinism, there is sometimes a small variation between runs.) Although typically 
executed many times only a single disruption need reach the output for the mutation 
to fail the test (Sect. 4) (blue hatching in Figs. 7 and 8).

Note Figs. 7, 8 9 do not distinguish between levels of severity of the damage to 
the output. Either the VIPS mutant passed the test (pink) or it did not (blue hatch).

To allow fair comparison, the histograms in Fig.  7 are normalised so that if a 
VIPS mutation is executed and causes a change of state at different depths (plotted 
along the x-axes) the vertical height (y-axes) is plotted in proportion to the num-
ber of disrupting executions for that depth. This ensures that the area allocated to 
each of the (25+25) mutations plotted in Fig.  7 is the same. Thus two mutations 
which both failed a test but one is executed many thousands of times and the other 
only once, are allocated equal areas. Similarly, a mutation which is executed three 
times, once at depth 6 and twice at depth 40, will contribute one third to x=6 and 
two thirds to x=40. Disrupting executions of the same type (pass/failed) at the same 
depth are stacked on top of each other. For example in Fig.  7, the peak (y=6) at 
depth x=8 represents all the failing disruptions at depth 8 across the 25 mutations 
randomly sampled from the 37 which failed without raising an error or exception11.

The same VIPS data are presented in Fig. 8, however the vertical  (y) axis now 
represents the number of perturbations. That is, the y-axes shows the sum of all the 
disruptions of the same class (pass/fail) at the same depth (again disruptions which 
do reach the output are shown with blue hatching). Taking the example of the five 
failing mutations which change state at depth 24 (peak “181952” in Fig. 8): two of 
them disrupt only at depth 24 (both infect 35 968 times); the other three disrupt at 
two or three depths but cause disruption 96, 96 and 109 824 times at depth 24, giv-
ing in total 35 968 + 35 968 + 96 + 96 + 109 824 = 181 952.

Notice failing mutations are typically executed causing disruptions more times 
and closer to the top of the stack (which in C means the main() function, depth 1). 
Whereas although disruptions which fail to propagate (FDP, pink shaded in Fig. 8) 
can occur at a range of nesting levels, they predominate at depths greater than about 

11  Of the 25 randomly sampled VIPS failing mutations, eight introduce a disruption at depth 8. Four of 
these also cause disruptions at another depth. In this example, these four each disrupt at depth 8 exactly 
half the time, so giving at x=8, y = 6 = (4 + 4 ×

1

2
) plotted with blue hatching in Fig. 7.
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30. E.g. in Figs. 7 and 8, seven independent silent mutations (pink) contribute to the 
area for depth > 31 , compared to one impactful mutation (blue), p = 3%.12 Fig. 9 
again shows this impact v. depth data but this time the distribution (minimum, quar-
tiles, mean and maximum) for each individual mutation is gathered together.

We can estimate the fraction of Failed Disruption Propagation (FDP) using data 
gathered from the non-error VIPS mutants when we sought our random sample of 
25 mutants which did cause disruption but did not cause an error (see page  14). 
The left hand side of Table 5 considers 91 uniformly random chosen non-identical 
mutants of the 438 which run without error (first row Table 2 page 12). 25 of the 
91 are executed and disrupt the program but do not change the output. This is 27% 
of the sample, which corresponds to 120 ± 21 in 438. In other words, for our VIPS 
about 12% ± 2% of Magpie mutants show failed disruption propagation.

6.4 � gem5 failed disruption propagation (FDP)

To investigate the variation of mutation impact with runtime nesting depth for gem5, 
we follow the same sampling philosophy for gem5 as we did for VIPS (previous 
section). That is, we again exclude the 77 (47+17+10+3) mutations which failed 
at runtime with an exception or where gem5 itself reported an error (13), leaving 
55 (Table 4 page 14) where an error was detected only because one or more of the 
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Fig. 11   25 gem5 mutations with no impact and 25 which change output. Same data as Figure 10. Note 
log vertical scale (Graph described on page 18)

12  p = %3 non-parametric one sided statistical hypothesis sign test.
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files generated by gem5 were different from those generated by the unmutated code. 
As with VIPS, we do not distinguish levels of error severity, only that the files are 
different. We choose uniformly at random 25 of these 55 gem5 mutations and instru-
ment them (blue cross hatching in Figs. 10 and 11). Similarly we instrument muta-
tions chosen uniformly at random from the 142 mutations which ran without error. 
We continue drawing at random until we have 25 mutations which are executed at 
least once and which change the state or flow of control. Again we use GNU libc 
backtrace to measure the depth of function nesting (plotted with pink in Figs. 10 
and 11, see also Fig. 12 and right hand side of Table 5).

Like VIPS, the instrumented gem5 mutants can be executed many thousands of 
times (hence use of log scale in Fig. 11) and at different depths in the function call-
ing hierarchy. Unlike VIPS, gem5 mutants appear deterministic.

Like Fig. 7, the histograms in Fig. 10 are normalised so that if a mutation is exe-
cuted and causes a change of state at different depths the vertical height is plotted 
in proportion to the number of disrupting executions for that depth (page 15). This 
ensures that the area allocated to each of the (25+25) mutations plotted in Fig. 10 
is the same. Thus two mutations which pass all the tests but one is executed half a 
million times (depth 23) and the other only six times (depth 4), are plotted with the 
same area. Disrupting executions of the same type (pass/failed) at the same depth 
are stacked on top of each other. For example in Fig. 10, the blue peak (y=7.999) at 
depth x=30 represents all the failing disruptions at depth 30 across the eight of 25 
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Fig. 12   25 gem5 mutations with no impact (mean depth + ) and 25 which change output (mean depth × ). 
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mutations randomly sampled from the 55 which failed without raising an error or 
exception.

The same data are presented in Fig. 11. Now the vertical (y) axis represents the 
number of perturbations (on a log scale). That is, the y-axes shows the sum of all 
the disruptions of the same class (pass/fail) at the same depth. Taking the exam-
ple of the eight failing mutations (plotted with blue in Fig. 11) which change state 
at depth 30, five only execute at depth 30 and the other three are predominately at 
depth  30 (total  723  676). The other three also execute at depth  26 but contribute 
only 222 executions of the 119 470 executions at that depth.

The spike in non-error mutations at depth 31 suggests (as with VIPS) that run 
time mutations at greater than depth ≈ 30 are less likely to influence the program’s 
output. (In Figs. 10 and 11, eleven independent silent mutations (pink) contribute 
to the area for depth > 30 , compared to two impactful mutations (blue), p = 1%.13) 
Fig. 12 again shows the depth data but this time the distribution (minimum, quar-
tiles, mean and maximum) for each individual mutation is gathered together. If we 
look at Fig. 12 we can see in the deeper half of the mutations there is a (albeit small) 
tendency for deeper mutations to show failed disruption propagation (FDP). (All 13 
equivalent mutants (red) in the top half of Fig. 12 have deeper means than the top 13 
mutations which impact the output (blue), p = 0.01%.14)

As with VIPS, we can estimate the fraction of failed disruption propagation from 
our random sample of 25 gem5 mutants which did cause disruption but did not 
cause an error (see pages 14 and 15). The right hand side of Table 5 considers 43 
uniformly at random chosen non-identical mutants of the 142 which run without 
error (first row Table 4). 25 of the 43 are executed and disrupt the program but do 
not change the output. This is 58% of the sample, or 82.6 ± 11 of 142. If we exclude 
automatically detected equivalent Magpie mutations (last column Table 4), this is 
82.6 of 515. That is, 16% ± 2% of non-equivalent Magpie gem5 mutants show failed 
disruption propagation (FDP).

7 � Discussion

We start the discussion with Magpie, the GI tool we use to generate source code 
changes. We suggest ways to improve Magpie but conclude the fraction of identi-
cal patches (Sect. 7.1) and the number of variables moved out of scope (Sect. 7.2) 
are not too expensive. Sections 7.3 and 7.4 suggest our benchmarks are typical of a 
wide range of software. Of course all cases of failed disruption propagation (FDP) 
show information loss, nevertheless in Sect. 7.5 we describe in detail ten examples 
of FDP, explaining the various mechanisms which prevent disruption impacting the 
program’s output, so making the software robust.

13  p = %1 non-parametric one sided statistical hypothesis sign test.
14  p = 0.01% non-parametric one sided statistical hypothesis sign test.
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7.1 � Magpie identical patches

The second row of Tables 2 and 4 shows 9% of Magpie mutations are identical to the 
original code. It is therefore no surprise that they compile, run and generate identi-
cal output. (In the second example, gem5, we do not bother running them.) Identical 
mutations are produced by XML operations ArithmeticOperatorSetting, Compari-
sonOperatorSetting and NumericSetting:

ArithmeticOperatorSetting has only 5 choices ( + , −, ∗ , /, % ). So, for example, if 
the existing arithmetic operator is + there is a 1/5 chance that Magpie will replace + 
with another + , meaning no change is made. Similarly XML operation Comparison-
OperatorSetting has only 6 choices (<,<=, ! =,==,>,>=) and NumericSetting can 
replace 0 with another 0, 1 with 1, or -1 with -1.

We observe 9% (rather than 1/5 etc.) of Magpie mutations not changing the 
source code as there are several other mutation operators as well as Arithmeti-
cOperatorSetting, ComparisonOperatorSetting and NumericSetting (see Sect.  5). 
Although it is possible, the other XML changes are unlike ly to replace the original 
XML with an identical copy.

It might be easy to force Magpie to ensure that new source code is different from 
the previous (parent) code. This seems like an obvious improvement, particularly 
for hill climbing local search. For population based search (i.e. genetic program-
ming) these identical mutations represent a source of neutral moves Schulte (2014); 
Blot et al (2015); Ting Hu et al (2020), so removing them would change population 
dynamics, however it seems in general that removing them would not have a delete-
rious effect.

7.2 � Undeclared variable compilation errors

We saw in Sect. 6.1 that 18% of VIPS mutants fail to compile because the muta-
tion has moved an existing variable out of scope. In gem5, Sect. 6.2, the fraction of 
compilations attempted which fail due to bad use of variable names is even higher 
at 31%. However, usually a mutation failing to compile is a relatively cheap part of 
the fitness function. Nonetheless the fraction of scope errors could potentially be 
addressed by:

•	 Restricting XML based mutations to copying source material within the same 
source file Langdon and Harman (2015).

•	 Addition of new Magpie scope validity checks Langdon and Harman (2014).
•	 Use SBSE Harman and Jones (2001) search techniques (such as genetic pro-

gramming) to fix up variable names Marginean et al (2015).

Moreover, as we did previously, e.g. Langdon and Alexander (2023), to further 
reduce the cost of erroneous mutations, we use the GCC command line option 
-fmax-errors=1 to stop the compiler immediately it discovers a single error.
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7.3 � Are VIPS and gem5 typical?

Typically both VIPS and gem5 are composed of small functions which themselves 
are not deeply nested. Therefore it seems reasonable to use the depth of function 
nesting (i.e. position in the call stack) to serve as a proxy for the actual depth of 
nesting.

VIPS is typical of C programs. It uses both pointers to read and write data out-
side the current function and the function’s own arguments and return value to pass 
information into and out of functions. gem5 uses also pointers but like much C++ 
code it also uses “pass by reference” ( &). That is, in both examples, data and hence 
information flow is not tied exactly to control flow and the hierarchy of nested func-
tion calls. Nevertheless our results suggest in real code deeply nested functions can 
correspond to some extent to information loss regarding disruption caused by deeply 
buried errors.

We anticipate our technique will be useful for investigating failed disruption 
propagation (FDP) in other programs. We found FDP occurring at similar depths, 
suggesting perhaps that it will occur in other deeply nested programs at about the 
same depth. In future we hope to develop light weight analysis tools to highlight 
particular source code regions of rapid entropy loss. In pure functional system we 
were able to conduct large mutational robustness studies which showed wide indi-
vidual variability but on average the impact of disruptions fell exponentially with 
distance, rather than having a sharp cut off. In general we expect large variation in 
software robustness to individual errors and perturbations but nonetheless we expect 
as they get more remote from the program’s outputs, they will have on average less 
impact and the program will tend to be more robust to them.

7.4 � Few continuous types

Of the 1247 variables declared in our 37 VIPS C files (Sect. 3.3), only 33  (2.6%) 
are continuous (float or double) or pointers to continuous variables. While gem5 
makes heavy use of its own types and also uses the C++ auto keyword, nonethe-
less it appears in the 25 C++ gem5 files (Sect. 3.5), only twenty (1.7%) of the 1188 
variables declared are continuous (double). In both VIPS and gem5 the other vari-
ables are discrete types (e.g. int, char, string and application specific discrete types). 
Indeed for VIPS 69% and gem5 23% of variables are pointers to discrete variables. 
Like VIPS and gem5, many programs have few continuous data.

We would expect wide continuous data (e.g. 64 or 128 bit doubles) to be better at 
transmitting disturbances in information flow from one part of a program to another. 
It may be in some classes of program, which have many continuous variables, much 
deeper nesting will be needed to get the levels of fault masking seen here. However, 
albeit in a purely functional (Lisp) setting with 32  bit precision (float) we Lang-
don (2022c); Langdon and Banzhaf (2022); Langdon (2022e, 2022d) showed almost 
complete failure for sizable disruptions to propagate to the output in very deep pro-
grams. Note we were concerned with functions evolved by genetic programming 
Koza (1992); Poli et al (2008), whereas here we deal with real programs written in 
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traditional (imperative) languages (C/C++), with data flows which do not slavishly 
follow the nested hierarchy of the procedure calls.

7.5 � Explanations of ten examples of failed disruption propagation (FDP)

The following examples are of mutations which have no impact despite being Exe-
cuted and changing the program’s state. I.e., they causes an Infection but it fails to 
Propagate to the outputs. The following sections (7.5.1–7.5.10) show the impact of 
randomly chosen VIPS and gem5 FDP mutations (five of each) and explain why 
their disruption fails to propagate.

Although there are a few similarities, each of the following cases of failed dis-
ruption propagation (FDP) is unique. Sometimes disruption is passed via the run 
time calling hierarchy to other functions (7.5.1, 7.5.2, 7.5.4, 7.5.7), often disruption 
is past to other parts of the code via shared variables (7.5.3, 7.5.5, 7.5.7, 7.5.10) 
and sometimes the disruption does not leave the function which has been mutated 
(7.5.6, 7.5.8, 7.5.9). In some cases information is progressively lost during irrevers-
ible operations such as arithmetic, logical expressions and rounding (7.5.4). And in 
others it is lost suddenly, e.g. by overwriting mutated results (7.5.17.5.2) or by mul-
tiply by zero (7.5.6) or variables being explicitly deleted (7.5.3) or implicitly deleted 
when they go out of scope (7.5.4, 7.5.8, 7.5.9) or simply not used (7.5.5, 7.5.7, 7.5.8, 
7.5.9). The final example shows a single mutation causing a huge change affecting 
more than a quarter of a million variables, each comprising both data and pointers 
and although it impacts runtime, the disruption if bounded by logical expressions 
and does not leak out into the program’s functionality (7.5.10). The common theme 
in these FDP examples is in real code information loss is due to irreversible actions.

7.5.1 � Example VIPS FDP caused by later over write

Fig.  13 shows line  270 of window.c being mutated so that field height of 
struct im_window_t is not set to zero. Instead height retains its exist-
ing value. The mutation is executed 15 times. The original content of window-
>height is not deterministic, but is not zero between 0 and 12 times. Typically 
the mutation changes state about half the times it is executed. Four lines after the 
mutation im_window_new() calls im_window_set() and passes the mutated 
variable window to it. Although im_window_set() uses parts of window it 
does not use the value in window->height. Instead near its end im_window_
set() unconditionally overwrites the whole of window->height, thus remov-
ing all the impact of the mutation.

Fig. 13   The Magpie mutation operator StmtDeletion removes statement 78 from window.c.xml, 
so deleting the initialisation of ������− > ������ on line 270 in window.c. It is executed 15 times at 
depth 51 and changes state in up to 12 of these 15 times
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Notice the original function im_window_new() follows good practice 
in ensuring all seven fields within struct window are initialised (including 
height), even though the immediately following code recalculates five of seven 
of them. Also the mutation is repeatedly executed in non-deterministic code. It often 
changes the state of a variable, that disruption propagates into a second function but 
it fails to propagate beyond the second function.

7.5.2 � Example VIPS FDP caused by later over write

Fig. 14 gives a mutation similar to the one in the previous section. It shows line 150 
of init.c being mutated so that field client2 of IMAGE struct im is not set 
to NULL (0). Instead client2 retains its existing value (typically 0 or 0xffffffff). 
Unfortunately it is not possible to be definitive about exactly why leaving client2 
as 0xffffffff can never have any impact, but we can see in the multi-threaded code 
where, as in the previous section, im is initialised en-block, the value client2 
is not used (for example it is passed as argument dummy to function im_start_
one() and as dummy2 of im_stop_one(), neither of which use it) and in im_
generate() where client2 is over written.

So again the mutation is executed. In a proportion of cases, the mutation causes 
a change of state. This is propagated via global variables to code in distant func-
tions but there the disruption is either ignored or lost when the global variable is 
overwritten.

7.5.3 � Example VIPS FDP caused by bounded use

Fig. 15 shows line 225 of im_init_world.c.xml being mutated so that field 
flags of struct option_entries[2] is set to 1 rather than 0 when the pro-
gram is initialised (i.e. before main() is called). option_entries is only 
used in function im_get_option_group(), which is called via g_option_
context_add_group() from main(). option_entries is passed to 

Fig. 14   The Magpie mutation operator StmtDeletion removes statement 38 from init.c.xml, so 
deleting the initialisation of ��− > ������� on line 150 in init.c. It is executed 18 times at depths 8 
to 42 and changes state in two of these (depths 8 and 9)

Fig. 15   The Magpie mutation operator NumericSetting changes the ninth (Magpie indexes start at 
0) number in im_init_world.c.xml from 0 to 1. So changing the initialisation of static GOp-
tionEntry option_entries[2] on line 225 in im_init_world.c. The mutation is executed 
once when the program is initialised changing element 2 of struct array GOptionEntry option_
entries int field flags from 0 to 1
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g_option_group_add_entries() which incorporates it into its other argu-
ment option_group. option_group is returned to main() as pointer con-
text (of type GOptionContext*). Note the data pointed to by context may 
be disrupted by the mutation. main() passes context to g_option_con-
text_parse(). However the mutation does not change how g_option_con-
text_parse() updates its outputs. Then main() deletes context using 
g_option_context_free().

Thus the mutation infects state immediately (even before the program starts), 
that disruption can be transferred between GTK library calls but is not used outside 
them and is removed by g_option_context_free() before main() calls 
thumbnail() to generate output.

7.5.4 � Example VIPS FDP caused by logic, rounding and scope limits

Fig.  16 shows the calculation of double oy being mutated on line 112 of 
transform.c 380 out of 384 times it is executed. Typically the value of oy in 
function im__transform_invert_point() is changed by about 0.5% but 
there are cases when it is approximately doubled and four cases where it should be 0 
but is instead 1.015625.
im__transform_invert_point() is passed as a transform_fn func-

tion pointer to transform_rect(), which calls it four times each time it itself is 
called, once for each corner of a rectangular part of the output thumbnail 128 × 96 
image. In transform_rect() the x,y values of each corner calculated by im__
transform_invert_point() (including the mutated y value) are returned 
to it as double. transform_rect() deliberately converts to int in order to 
“Round-to-nearest to try to stop rounding errors growing images.” transform_
rect() combines four double x,y point pairs to give a bounding box. Notice 
taking the maximum or minimum of four numbers loses information as only the 
extreme of the four values contributes to the output. double top and double 
bottom each combine four mutated y values. Similarly rounding continuous values 
to integers also loses information.
double top is rounded to give output int top. Whilst output int height 

is calculated by rounding bottom - top. After rounding int height is 
never disrupted by the mutation. Whilst in 33 of 96 bounding boxes int top is 
increased by 1. Notice combining four values and rounding has reduced the disrup-
tion by more than ten fold (380 to 33). The mutated rectangles are passed back to 
affinei_gen() via Rect need.

Fig. 16   The Magpie mutation operator ArithmeticOperatorSetting replaces * by + in 
transform.c.xml’s operator_arith 21, so updating the calculation of *oy of line 122 in 
transform.c. It is executed and changes state 380 times at depth  26. The mutation is in parallel 
multi-threaded code and so the order (but not the values) of the mutated calculations varies between runs
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In affinei_gen() the mutated need.top is passed to im_rect_inter-
sectrect(), whose output Rect clipped is disrupted (in 33 of 96 execu-
tions) by the mutation. Although im_rect_intersectrect() increases the 
disruption from just need to include clipped, only either clipped.top or 
clipped.height are disrupted (not both simultaneously) and state (i.e. values in 
need and clipped) remains disrupted in 33 executions of affinei_gen(). How-
ever the disrupted values in clipped never cause a change of control flow and like 
need they are deleted at the end of affinei_gen() when they go out of scope and 
so the disruption is contained in affinei_gen() (depth 23).

7.5.5 � Example VIPS FDP caused by redundant code

Fig. 17 shows lines 340–343 of meta.c being deleted so that GTK library function 
g_value_register_transform_func() is not called. The mutation causes 
a change of flow of control and the function transform_area_g_string() 
will not be registered as the GTK transformation function between static GType 
type “im_area” and G_TYPE_STRING. However transform_area_g_
string() is not used. That is, the mutation causes a changes of state hidden inside 
the GTK library but it never has any impact.

7.5.6 � Example gem5 FDP caused by multiply by zero

Fig. 18 shows line 214 of MemoryPowerModel.cc being mutated and that the 
value it calculates for local variable tRefBlocal is changed from 39 to 0. tRef-
Blocal is only used in the immediately following for loop (lines 217 to 250).

The for loop always iterates eight times. Each iteration tRefBlocal is used (on 
line 223) by function vdd0Domain.calcTivEnergy() to set energy.refb_
energy_banks[i] (i= 0⋯ 7 ). The first argument of calcTivEnergy() is 
the expression c.numberofrefbBanks[i] * tRefBlocal. (This is the only 

Fig. 17   The Magpie mutation operator StmtDeletion removes statement 23 from meta.c.xml, 
so deleting the call of function g_value_register_transform_func() from lines 340–343 in 
meta.c. It is executed once at depth 6

Fig. 18   The Magpie mutation operator ComparisonOperatorSetting replaced operator_
comp number 2 (i.e. the third comparison, Magpie starts numbering at 0) in MemoryPowerModel.
cc.xml with >. I.e. == on line 214 is replaced by >. Line 214 is executed 2432 times at depths 22 or 26 
or 29. Each time the mutated code sets tRefBlocal to 0 instead of the correct value 39
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place the value in tRefBlocal is used.) However all eight values of the vector 
c.numberofrefbBanks are zero. So the original code multiplied 0 by 39 to 
give 0. And the mutated code multiplies 0 by 0 to also give 0. Note energy.refb_
energy_banks is not disrupted by the mutation. Thus although the mutated value 
of tRefBlocal is used 2432 × 8 = 19 456 times it has no impact in any of them 
and all information about the mutation is destroyed when tRefBlocal goes out of 
scope at the end of function MemoryPowerModel::power_calc().

7.5.7 � Example gem5 FDP caused by data not used

Fig.  19 shows line  69 of CAHelpers.cc being mutated so that CommandAna
lysis::timeToCompletion() returns 17 instead of 16. timeToCom-
pletion() is called several times by CommandAnalysis::idle_act_
update() in CommandAnalysis.cc, were the mutation’s impact is typically 
propagated into its output variable idlecycles_act. That is, idlecycles_
act may be a several percent bigger than it should be. Meaning energy.idle_
energy_act_banks[i] and energy.idle_energy_act (both in Memo-
ryPowerModel.cc) are also a several percent bigger than they should be. Both 
energy.idle_energy_act_banks[i] and energy.idle_energy_act 
are only used in MemoryPowerModel::power_print() which prints them 
out. However power_print() is never used, and so although the mutation has 
been executed and it has made a difference and that disruption has propagated some 
distance through the C++ code via function call returns and shared values, ulti-
mately it has no external impact despite the mutation impacting internal state more 
than two hundred thousand times.

7.5.8 � Example gem5 FDP addition of unused variable

Fig. 20 shows a mutation which adds a line which simultaneously declares a variable 
old_it and initialises it by calling PTable::find(). In the GNU standard C++ 
template library hashtable’s find() is free of side effects (find() const) and 
new line 116 is the only place in EmulationPageTable::unmap() where 
old_it is used. Therefore although the mutation both changes flow of control and 
program internal state, all its impact is deleted as soon as old_it goes out of scope 
at the end of each iteration of the enclosing while loop. It could be that if this muta-
tion was applied elsewhere, e.g. at a different depth, it would have the same lack of 
effect.

Fig. 19   The Magpie mutation operator RelativeNumericSetting changed ’number’, 1 (i.e. 
the second number) from 1 to (1+1) in CAHelpers.cc.xml. CAHelpers.cc line 69 is executed 
and changes state a total of 206 994 times (at depths 26 or 27 or 31). Each time the mutation means Com
mandAnalysis::timeToCompletion() returns 17 rather than 16 (an increase of 6.25%)
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7.5.9 � Example gem5 FDP deletion of empty for loop

Fig. 21 shows a mutation which removes a complete for loop which iterates through 
the GNU standard template library set unified. Again the std library function 
begin(), which is used to initialise the loop control variable tlb, has no side 
effects. Since unified is empty, in the unmutated code the loop terminates immedi-
ately. Note, since the mutation removes the loop iteration test of tlb, the mutation 
changes flow of control. In the unmutated code the change of state associated with 
creating and initialising tlb is lost when tlb goes out of scope. Thus although the 
mutation changes both state and flow of control, its impact does not propagate past 
where the loop used to be.

7.5.10 � Example gem5 FDP change of state impacts runtime not functionality

Fig. 22 shows a mutation which removes a complete if statement. The mutation is 
inside MemCtrl::pruneBurstTick()’s while loop and is executed 226  118 
times. In most cases �������() >∗ �������_�� , so causing DPRINTF() and 
burstTicks.erase() to be called. DPRINTF() is a debug macro which 
checks to see if its first argument MemCtrl is true. Since debug flag MemCtrl 
is not set, DPRINTF() does nothing. Whereas in the unmutated code, burst-
Ticks.erase(current_it) typically causes parts of std::unordered_
multiset burstTicks to be deleted. The mutation causes both the flow of 

Fig. 20   The Magpie mutation operator StmtInsertion adds a copy of statement 17 to _inter_
block 57. (Both are in page_table.cc.xml.) This adds line 116 auto old_it = pTable.
find(vaddr); to page_table.cc. It is executed 11 times at depth 35, calling hashtable find() 
each time

Fig. 21   The Magpie mutation operator StmtDeletion removes statement 19 from mmu.cc.xml, so 
deleting lines 91–93 from mmu.cc. It is executed 4 times at depth 26 or 35

Fig. 22   The Magpie mutation operator StmtDeletion removes statement 228 from mem_ctrl.
cc.xml, so deleting the if on lines 667–670 in mem_ctrl.cc. It is executed 226  118 times at 
depth 30
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control to be changed (for example curTick() is no longer called) and also state 
changes. That is, the expired, i.e. older than curTick(), elements of multiset 
burstTicks are no longer erased. Eventually burstTicks contains 223  785 
Tick.
pruneBurstTick() is called by MemCtrl::doBurstAccess(), 

which a couple of lines later calls DRAMInterface::doBurstAcc
ess(), which calls DRAMInterface::activateBank(), which calls 
MemCtrl::verifySingleCmd().
burstTicks is used in MemCtrl::verifySingleCmd 223  786 times at 

depth 31 or 32. However even though burstTicks contains many more elements, 
the count for the current cmd_tick (cf. burstTicks.count(burst_tick)) 
is little effected and (as with the unmutated code) it never exceeds 8 (the value of 
max_cmds_per_burst). So both the Tick inserted into burstTicks and 
the value returned by MemCtrl::verifySingleCmd() are unchanged. That 
is, the mutation changes flow of control locally but not elsewhere and although it 
changes state globally, this impacts run time and memory usage but does not propa-
gate to any of the outputs. Note:

•	 With -O3 (and no instrumentation) g++ seems to make a good of optimising the 
now pointless while loop in MemCtrl::pruneBurstTick(). (The mutated 
code takes 0.96 s v. 0.92 s for the original.)

•	 The mutation means burstTicks will continue to grow. In fitness testing we 
do not see a big increase in the memory needed to run gem5. However in much 
larger simulations a computer running gem5 might eventually notice the memory 
problem.

8 � Conclusions: software is robust, deeper code is more robust

Software is robust to many mutations. If we exclude obviously poor mutations (e.g. 
those that failed to compile, are identical, or lie in code that is not used) approxi-
mately half (73% VIPS, 49% gem5, Tables 2 and 4) of source code mutations run ok 
and give the right answer.

We use Voas’ PIE framework to explain software robustness in terms of infor-
mation theory and entropy loss (Sect. 2 and the appendix). If the modified code 
was Executed, and it changed the program’s internal state (it was Infected) but 
information about that disruption was not Propagated to any output, including 
the program’s exit status, we call this failed disruption propagation (FDP) and 
the software is robust to the mutation. Software robustness could also include 
partial cases where disruption does indeed reach the output but the answer is only 
changed a little and may still be usable (e.g. Figure 5).

For any disruption to have impact, information about it must reach the pro-
gram’s outputs. Every executed operation from the site of the disruption to the 
outputs can lose information. In a strictly hierarchical system, if information is 
lost en-route it cannot be recovered later. That is, information loss is cumula-
tive. Meaning the deeper the nesting of functionality, the more chance there is 
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of information loss. When all information is lost, the disruption has no further 
impact and cannot change the output. In strictly nested systems we do see pro-
gressive information loss and very deep systems can be 100% robust even to very 
disruptive mutations (Sect. 2).

As faults may be invisible, robust systems are more difficult to test. It may be for 
larger, and especially deeper programs, far greater use of white box approaches with 
extensive internal instrumentation and closely packed and more sophisticated test 
oracles, will be needed by both automated testing and genetic improvement.

In traditional imperative languages information flow can by-pass the function call 
hierarchy via shared data. Our C/C++ programs extensively use shared data and 
we do see examples of mutation induced disruption spreading via global variables. 
Nonetheless we still see a weak relationship between depth and impact, with FDP 
more likely in deeper mutations, particularly in our examples when nested more 
than about 30 function calls deep, leading to mutations which do not change the pro-
gram’s output. This makes deeper code more robust.

Appendix

Theoretical models of information loss in large expressions

We start by expanding the example of information loss from one addition (page 3) 
to an example with a mixture of three additions and two multiplications (Fig. 23) 
and then describe a model of information loss in large expressions. Figures 25, 26, 
27 28 show the model’s Gaussian approximation gets rapidly more accurate and plot 
values for up to 10 000 additions. Indeed the Gaussian approximation, 2 + log2 � , 
is a reasonable approximation of the entropy (in bits) of many probability distribu-
tions (with standard deviation � ). Our information loss model could be extended to 
include subtraction. Finally we consider potential Log Normal extensions to multi-
plication and division.

Fig. 23   Intermediate values calculated in expression (a+b)c+d(e+f) where a … f are independent random 
digits (0–9). (If 8 bit precision then output (top) is between 0 and 255)
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Figures  23 and  24 expand the example in Fig.  1 (page  4) to a multiple level 
expression. The first two levels, and their entropies, are the same as Fig. 1. As we 
proceed up the expression towards the output, as expected, we see information loss 
and so entropy falling. The expression has 6 inputs, each drawn from the same 0-9 
distribution (the solid red line in Fig. 24) and so (as in Sect.  2) each has entropy 
H o = 2.88 bits. As the inputs are independent, the combined information content of 
the six digits is 6 × 2.88 = 17.29 bits. Adding two digits together gives a value in 
the range 0–18 (entropy 3.75, shown with dashed dark blue line in Fig. 24). Notice 
addition has a smoothing effect and although the blue line covers more values (0–18 
v. 0–9) it is smoother than the original distribution (red line). The purple line shows 
the impact of multiplying the result of adding two digits by a third, giving values in 
the range (0-162, entropy 4.46). Notice further information loss indicated by total 
entropy falling again. Figure 24 calculates entropy and plots the probability distri-
butions when using 8 bit calculations, so the output is in the range 0–255, rather 
than 0–364. Finally the light blue dotted line, the output, again shows the smoothing 
effect of addition and again total entropy falls (from 6 × 2.88 = 17.29 to 6.02 bits).

As we said in Sect. 2 all operators commonly used in programming lose infor-
mation (i.e. are not reversible). In nested expressions this loss is cumulative. So 
typically deeper expressions lose more information. In some special cases we can 
be use mathematics to be precise.

In the case of the addition of n independent values, the mean is the sum of the 
individual means and similarly the variance is the sum of their variances. As n 

Fig. 24   Distribution of values at each of the four levels in Figure 23. First two plots (red and blue) are the 
same as the two plots in Figure 1. Note calculations are in 8 bit precision, hence the all values, horizontal 
axis, line in the range 0–255 (0xFF). Note non-linear x-axis
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increases (by the central limit theorem) the output distribution will approach a 
Normal (Gaussian) distribution N(m, �2) . Where the mean is m and the standard 
deviation is � ( �2 = the variance). N(m, �2) has entropy log2(�) + 2.0471 bits.

In practice, assuming the individual distributions are not too different and not 
too asymmetric, the output distribution approaches N(m, �2) rapidly (see Figs.  25 
and  28). Assume the inputs all come from the same distribution, with mean mo 
and standard deviation  �o . So mean = n × mo and variance �2 = n × (�o)

2 , so 
� =

√
n × �o . Figure 25 plots the actual distributions for various numbers of inde-

pendent inputs drawn at random from the distribution of 0-9 digits in the VIPS C 
source code used by Magpie. As expected, the mean and standard deviation follow 
m = n × mo and � =

√
n × �o (where mo = 2.53997 and �o = 2.75424 ). The stand-

ard deviation is plotted with a dotted line in Fig. 27 (note log scales).15

As n increases, then not only does the mean of N(m, �2) increase but more impor-
tantly so to does its width � . If we now consider that in a computer we are doing 
our calculations with a limited number of bits, so the infinite precision idealised 
Gaussian distribution N(m, �2) has to be mapped into finite arithmetic. Suppose we 
use 8 bit integers, then then whole of N(m, �2) is mapped onto 0–255 (see Fig. 26). 
Regardless of the mean m, if the standard deviation � is large compared to 255 then 
mapping the nicely curved distribution will lead to an almost uniform distribution 
across 0–255 (with an entropy of 8 bits). (Actually we get close, 3 significant digits, 
of a uniform distribution when � is only 174.) Mathematically, if 

√
n × 𝜎o ≫ 256 the 

entropy of the sum will be ≈ 8 bits and the information loss will be ≈ nHo − 8 bits, 
i.e. almost all the input information is lost. (Again in our example we actually get 
close to maximum entropy with � ≥ 145 .) The numbers on the right vertical axis of 
Fig. 28 show for large n the theory agrees with actual values.

Finally: if the inputs to the expression are nicely behaved (meaning we can 
always take their logs) then the above argument can be extended to expressions 
with just multiplications. By taking logs, the expression changes from a series of 
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Fig. 25   Distribution of values of adding random digits (0–9) from the VIPS source code. Note non-linear 
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15  A small animation of the output of expressions converging as they get bigger to the Gaussian dis-
tribution can be found on line via http://​www.​cs.​ucl.​ac.​uk/​staff/W.​Langd​on/​icse2​024/​langd​on_​2024_​GI/​
add10.​html

http://www.cs.ucl.ac.uk/staff/W.Langdon/icse2024/langdon_2024_GI/add10.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/icse2024/langdon_2024_GI/add10.html
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multiplications of independent values to a sum of logs of independent values. Mean-
ing we can again use the central limit theorem to argue that the sum will approach 
a Normal distribution, i.e. the product approaches a Log Normal distribution, with 
known information content as measured by entropy.

Where the log of values are well behaved, like subtraction, we can also extend 
our argument to division and indeed to expressions composed of both multiplication 
and division, by simply treating log of division as addition of a negative log value 
( log(a∕b) = log(a) − log(b) = log(a) + (− log(b)) ). Again leading to a Normal dis-
tribution of the logs and so the output of a product/division expression of independ-
ent (logable) terms approaches a Log Normal distribution as it gets bigger. If there 
as many divisions as multiplies, (i.e. as many + log as − log ) then the mean of the 
log of the distribution will be zero. That is the distribution will be centered at 1.0 
and its entropy will grow O(log2(n) ). That is, much slower than the input entropy 
O(n).

By keeping track of signs separately, i.e.  working with sign(a) and log |a| 
and using sign (a × b) = sign (

a

b
) = ( sign (a) + sign (b))%2 as well as 

log(|a × b|) = log(|a|) + log(|b|) and log(| a
b
|) = log(|a|) − log(|b|) , we could even 

extend this argument to negative values. If there are an even number of negative 
signs, the distribution will be log normal. If odd, it will be -log  normal. If signs 
are distributed evenly at random the distribution will be curiously bimodal: 50% log 
normal and 50% -log  normal. However a continuous distribution that spans both 
positive and negative values is liable to include zero or at least very small values 
where finite arithmetic leads eventually to zero.

If randomly drawn input values include non-logable values such as zero they 
will quickly dominate the distribution of output values. Multiplication by zero gives 
zero, so even a single zero as input will give zero as output, meaning as the expres-
sion gets bigger the probability of it giving a non-zero value shrinks towards noth-
ing. Similarly large expressions with division and zero input will be quickly domi-
nated by how division by zero is treated. Similarly other non-logable values, such 
as nan (not-a-number) and inf (infinity) will quickly dominate large floating point 
expressions. With their output distributions depending upon how these exceptional 
values are treated.
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Notice 0 (and nan, inf, etc.) rapidly eat all the information in the other inputs 
to multiplicative expressions. Depending on exactly how these exception values 
are handled, as we consider larger expressions, their output probability distribution 
geometrically converges on a single output value, e.g. 0, which has no information 
about the inputs and entropy of 0 bits.
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