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Abstract

Information theory and entropy loss predict deeper more hierarchical software will
be more robust. Suggesting silent errors and equivalent mutations will be more
common in deeper code, highly structured code will be hard to test, so explaining
best practise preference for unit testing of small methods rather than system wide
analysis. Using the genetic improvement (GI) tool MAGPIE, we measure the impact
of source code mutations and how this varies with execution depth in two diverse
multi-level nested software. gem5 is a million line single threaded state-of-the-art
C++ discrete time VLSI circuit simulator, whilst PARSEC VIPS is a non-determin-
istic parallel computing multi-threaded image processing benchmark written in C.
More than 28-53% of mutants compile and generate identical results to the original
program. We observe 12% and 16% Failed Disruption Propagation (FDP). Exclud-
ing internal errors, exceptions and asserts, here most faults below about 30 nested
function levels which are Executed and Infect data or divert control flow are not
Propagated to the output, i.e. these deep PIE changes have no visible external effect.
Suggesting automatic software engineering on highly structured code will be hard.

Keywords Automatic code optimisation - Failed disruption propagation (FDP) -
Genetic improvement (GI) - Fault masking - Software resilience - Fitness landscape

1 Introduction

The robustness of software, Petke et al (2021), is a double edged sword. From the
point of view of the user, having computer systems which do not fail is important,
however from the perspective of software developers locating bugs in robust soft-
ware and testing their fixes is hard. This slows down progress, forcing the user to
deal with imperfect software which may have many defects or irritations which the
development team in practice will never have time to resolve. Here we are primar-
ily interested in automated software engineering, such as genetic improvement, but
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more robust, potentially more deeply nested programs, may be harder to repair,
maintain and optimise either mechanically or manually.

2 Software robustness and genetic improvement

By robust we mean that a system continues to operate even when perturbed.! A
robust system is still usable despite errors. If the perturbation is “small”, a robust
system will only deviate “slightly” or not at all from it usual behaviour and so remain
usable. With larger perturbations a robust system may start to give larger deviations
from its normal behaviour. Only with very large perturbations will a robust system
fail.

Globally we are now at the point where society relies on software, is even
addicted to software Langdon et al (2021), and although software is far from per-
fect,” nonetheless it is used and delivers huge economic benefits Langdon (2023);
Espinel (2016). Even though much effort is devoted to software verification and
validation, particularly testing Gelperin and Hetzel (1988), including mutation test-
ing DeMillo et al (1978); Jia and Harman (2011); Xiangjuan Yao et al (2014), in
industry Hynninen et al (2018), society depends on buggy software, however real
software is robust.

Previously Petke et al (2021); Clark and Hierons (2012); Langdon and Petke
(2015) we found that software robustness can be explained by information theory
Cilibrasi and Vitanyi (2007); Mesecan et al (2021b, 2021a) and an idea from soft-
ware testing. Voas and Miller (1995) consider the difficulty of testing software,
which can be considered as the other side of software robustness. They say for a
software error to be seen the buggy code must be executed (their “E”), the execu-
tion must in some way change the internals of the program (they call this infection
“I’) and that the change must propagate (“P”) to the program’s output(s). Overall
this is known as their “PIE” framework. “E”, “I”’ and “P” must all be present for a
code defect to impact the software. So, for example, if the bug lies in code which the
genetic improvement (GI) fitness tests does not exercise (no “E”) then the bug will
have no fitness impact. If there is no measurable fitness impact, GI will find it very
difficult to repair the bug.

We consider “P”: does the disruption, if any, caused by the error propagate
through the program to one or more of its outputs Petke et al (2021); Androutso-
poulos et al (2014). If not, we call this failed disruption propagation (FDP). We use
information theory to argue if there is information loss (measured by entropy loss,
see Fig. 1) on the route between the error (the infection point) and the program’s
output(s), then information about the error’s disruption may be lost Clark et al
(2020). If all information about the error is lost, then the program no longer depends

! We follow Petke et al (2021) and consider perturbations of all sorts from normal behaviour. A pertur-
bation may be long lasting or transient. For example, it may be due to a bug, coding error, software muta-
tion, power spike, cosmic radiation or malicious actor.

2 For example, (Peng and Wallace 1993, page v) said thirty years ago “errors will probably occur during
software development and maintenance”.
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Fig. 1 Left: adding two 8 bit numbers to give 8 bit result. Information is lost as inputs contain at most
2 x 8 bits (< 16 bits) of information and output can contain at most 8 bits. Right: red 0-9 actual distribu-
tion of 0-9 digits in 37 VIPS C source files. Dashed blue 0-18 distribution if they are added. Although
the output of + is wider and has higher entropy (3.75), it is smoother and has less entropy than the com-
bined entropy (5.76) of the two inputs to +. (Example expanded in the appendix)

on the error and so the error does not influence the output(s). Meaning the error does
not have an externally measurable impact. That is, the software is robust to the error.
We also suggest parts of a program may have more entropy loss, making the code
before the high entropy loss region more robust. (In Sect. 6 we show this can hap-
pen in real programs, particular in deeply nested software.) Thus the effectiveness
of genetic improvement depends not only on the error itself but do tests reach it (i.e.
execute it), if so, does the test cause the bug to do something different (i.e. cause
an infection) and where it is in the program, in terms of the test’s subsequent path
(execution trace) to the program’s output(s).

In a strictly hierarchical system (see Fig. 1), information only passes up through
the hierarchy and once lost cannot be recovered. In terms of traditional genetic
improvement (GI), if the disruption is lost before it reaches a measuring point
(e.g. the program’s output or a test oracle Terragni et al (2020); Langdon et al
(2017a)) there is no fitness signal and the GI has little chance of improving the code.

Niedermayr and Wagner (2019) have already shown with Java mutation testing
that there can be a strong relationship between the shortest path (their “minimal
stack distance”) from the test function (itself a Java method) to the mutated function
and the effectiveness of the test. Notice, although they do not consider information
theory, by using the shortest path they build in the assumption that test effectiveness
falls with distance. In our C/C++ experiments there are no test methods, instead we
use external test inputs and outputs and test the whole program (system tests). Thus,
when we use the total nesting depth?, it is akin to their stack distance but using the
C/C++ main function instead of their Java test method. Also their JUnit tests have
a maximum shortest path of 17 (average 8) (Niedermayr and Wagner 2019, Fig. 3)
whereas Magpie mutated VIPS code to a depth of up to 56 (Figs. 7, 8, 9) and gem5
up to 85 (Figs. 10, 1112).

In low resolution systems we would expect more information loss. For example,
in a system composed of only single bit logic gates, it may be difficult for disruption

3 We use GNU libc backtrace to give the depth of function nesting at run time.
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caused by an error to progress through many gates. Suppose the disruption signal
encounters an And gate whose other input is false, then the gate’s output is false
regardless of the disruption. That is, information about the error cannot propagate
past the And gate. In general, the longer the path between the disruption and the
GI’s test point (test oracle) the more chance of entropy loss and so there is more
chance that the disruption signal will not propagate.

In higher resolution system, e.g. 8 bit char (Fig. 1) and 32 bit integer (which are
the predominant types in our examples, see Sect. 7.4), the information loss may
be slower than in Boolean systems but, in general in hierarchical systems, it will
occur. For example a multiplication operation (which scales the disruption signal)
will destroy the signal if the multiplication’s other argument is zero. Moreover any
digital system is liable to lose information (only reversible computation does not
lose information Langdon (2003)). For example x = a+ b with a =2,b =3 and
a = 1,b =4 both set x to 5. That is, given the current value of x (5) we cannot infer
the values of a and b. Note that, there was more information before the addition than
afterwards. Even floating point arithmetic, which is designed to extract the maxi-
mum practical resolution from 32 bits, can lose information. For example, rounding
error causes information loss Langdon (2022a). With 32 bit IEEE floating point,
x=a+bwitha=5.0,b=0and a=5.0,b = 10" both set x to 5.0, so again infor-
mation has been lost: from the output of the addition operation we cannot infer the
values of its inputs.

Fitness landscape analysis is a relatively well studied topic in artificial evolution
Malan (2021), however there is until now little work on the fitness landscape of real
programs Petke et al (2019). Some studies of C programs include Langdon and Har-
man (2016); Langdon et al (2017b); Veerapen et al (2017); Veerapen and Ochoa
(2018), where we enumerated the complete mutation landscape for the triangle pro-
gram. In contrast Haraldsson et al (2017) used random walks to sample the fitness
landscape for three fragments of python programs. Gabin An et al (2018) suggested,
at least for automated program repair using PyGGI Gabin An et al (2019), that AST
mutations could be more effective than mutating source code directly (note we use
Magpie’s AST mutations, Sect. 3.1). While Smigielska et al (2021) analysed PyGGI
mutations for bug fixing on several Java QuixBugs programs.

Notice none of the above were interested in depth of nesting. Indeed researchers
are usually interested in the size of programs rather than their depth (Blot and Petke
2022a, pl15). We did some work on integer Langdon (2022b) and floating point
Langdon (2022d) functions, where fault masking could be total if the program nest-
ing was deep enough, however all were artificially evolved (genetic programming
Koza (1992); Poli et al (2008)) not real programs. For details see Sect. 7.4 in the
discussion.

The next three sections describe how we use the Magpie GI tool (Sect. 3) to uni-
formly sample the space of mutations of the deeply nested VIPS C benchmark and
C++ gem5, including the fitness function (Sect. 4) and parameters (Sect. 5). Sec-
tion 6 gives our results, including that only 17% of VIPS and 22% of gem5 mutants
fail at run time. Whilst Sect. 7 discusses Magpie on our examples, including exam-
ples of the mechanisms behind FDP (Sect. 7.5). Finally we conclude (Sect. 8) that
C/C++ software is robust to many AST based mutations and that failed disruption
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propagation (FDP) occurs more frequently with deeply nested mutants, making any
form of test based automatic software engineering (such as genetic improvement)
potentially more difficult in deeply nested code. The appendix gives an information
theory based explanation for FDP and mathematical formulae about it and entropy
in special types of nested software.

3 Experiments to study disruption propagation in C/C++
3.1 Magpie for mutation sampling and impact measurement

Magpie is a language independent genetic improvement tool. We use to it to gen-
erate uniformly at random mutations and measure their impact. Magpie was ini-
tially released in 2022 as an open source project on GitHub.* As of 2 October 2023,
including examples and documentation, Magpie contained 3781 lines of code,
mostly written in Python. It contains worked examples in Python, C, C++ and Ruby.
The next two sections describe VIPS (3.2 and 3.3) while the following two refer to
gem5 (3.4 and 3.5).

3.2 PARSECVIPS benchmark

The VIPS image processing benchmark Martinez and Cupitt (2005) is part of PAR-
SEC (Princeton Application Repository for Shared-Memory Computers), which was
devised as a benchmark to measure hardware performance on emerging workloads
(Bienia et al 2008, page 73). The PARSEC benchmark is often used, e.g. Schulte
et al (2014); Schulte (2014); Chen and Venkataramani (2016); Dorn et al (2019);
Bruce et al (2021). Indeed we used it in Langdon and Clark (2024b). We down-
loaded the 64bit X86 version of PARSEC 3.0 from GitHub® and extracted the VIPS
library from it. The VIPS thumbnail benchmark is often used but here our use is
totally different. We do not want to automatically fix bugs but instead we use it as
an example of highly nested well engineered software to demonstrate the effective-
ness of Magpie’s mutations and in particular how this varies with depth of proce-
dural nesting in a multi-threaded parallel environment. Schulte et al. found signifi-
cant improvements using their GOA Schulte et al (2014). GOA is a fitness driven
evolutionary GI tool and so does not sample uniformly. As Schulte et al (2014) do
not report nesting depth, it may be that GOA found it easier to evolve the shallower
parts of their VIPS.

3.3 VIPS thirty seven C source files

We again use our VIPS C benchmark (Langdon and Clark 2024b, Sect. 4.1). VIPS
is a large C library. Only a fraction of VIPS is used by each application. We took the

4 https://github.com/bloa/magpie 2 October 2023 Blot and Petke (2022b)
5 https://github.com/bamos/parsec-benchmark/ 16 October 2023.
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VIPS thumbnail benchmark and instrumented it to select those source files which it
uses on the test case (described in Sect. 4.1). Individual VIPS C source files were
selected in two ways and then the union of the two taken. Firstly: the Linux perf tool
was run at its maximum sampling frequency (40 kHz) ten times. All the functions
perf profiled were included. Secondly: in all perf runs, the shrink gen () func-
tion stood out as consuming the most CPU time. Using the GDB debugger and set-
ting a break point at shrink gen () the VIPS code was run multiple times and all
the nested functions from main to shrink gen () were recorded. Despite non-
deterministic multi-threading, this function nesting proved to be stable across multi-
ple debugger sessions. Combining both approaches to find important functions lead
to the identification of 37 source files. They also contain functions which are not
used here. Automatically, at the individual function level, unused code was removed
before presenting the source code to Magpie. Note this is only done to the function
level. The VIPS C code to be mutated still contains some examples of if branch and
case statements which are not used.

3.4 gem>5 benchmark

gem5 Binkert et al (2011); Bruce et al (2021) is the state of the art simulation tool
for systems composed of very large scale integrated (VLSI) electronic circuits. It is
widely used by industrial chip designers and manufactures and for open source and
academic research. It supports most commercial CPU instruction sets (ISAs) and
popular memory architectures. gem5 is an open project available via GitHub. It was
written and has been maintained for more than 10 years by a team of expert C++
programmers.

For SSBSE 2023 Arcaini et al (2023), Bobby Bruce cloned gemS5 staging branch
v23.0, included the latest features and improvements and ssbse-challenge-exam-
ples and merged them into a stable release. As part of the SSBSE 2023 challenge
Dakhama et al (2023), we cloned the SSBSE version of gem5.° It comprises a total
of 1.34 million lines of code (mostly C++) (git commit: 65edbe0, Jul 14, 2023).

gemS5 is a complete discrete time simulation and typically runs of the order of 10°
times slower than the circuit it is simulating. (For example, with our RNAfold frag-
ment, Sect. 4.2, gem5 runs 108 000 times slower than real time.) Thus to simulate
1000 clock ticks on a 3.6GHz CPU will take about 30 milliseconds.

3.5 gemb5 twenty five C++ source files

As mentioned in Sect. 3.4, gem5 is a huge program. Starting from its almost 10 000
source files, on a single core, it takes more than two hours to compile and build gem5 to
target only X86 binaries. Therefore gem5 was profiled using GNU gcov on our test case
(Sect. 4.2) and 25 heavily used C++ source files were selected to be used by Magpie (see
also Fig. 2). Instead of the gem5 scons build script, a conventional Linux command script
was written to compile just the mutated code and link it against the gem5 shared object

6 gemS5 https://github.com/BobbyRBruce/gem5-ssbse-challenge-2023.git
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Fig. 2 FlameGraph of Linux perf profile of gem5 simulating our RNAfold fragment (Section 4.2). Used
functions are spread horizontally, whilst vertical axis indicates depth of function call nesting. (An inter-
active version is available via https://github.com/wblangdon/Deep-Imperative-Mutations-have-Less-
Impact)

library. For compilable mutants, compiling and linking takes on average 7 s. Notice for
gem), unlike VIPS, we did not seek to exclude unused code. Instead we reject mutations
which according to gcov line coverage profile are not used on the test case. This leads to
rejecting 69.2% of gemS Magpie mutations before they are compiled (Table 4). This has
the advantage that the gem5 C++ source files do not need to be stripped of their unused
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functions and the gcov profile says which lines of code are used during fitness testing
(rather than which functions are called). Since we know where Magpie has placed its
mutation, it is easy to use the pre-collected profile data to quickly weed out useless muta-
tions, rather than run the complete fitness evaluation to simply confirm it has no runtime
influence (as it is not executed).

4 Fitness function

We are not attempting to improve VIPS or gem5 but to measure the impact of mutat-
ing their C/C++ sources. Nevertheless we treat it as if we were running Magpie
normally and supply it with a formal fitness function.

For each mutation we want to know:

does it compile and link without error.

does it run and terminate within a time limit (VIPS 2, gem5 15 s)7.
does the program fail with an exception or error message.

does the mutated program exit with a non-success exit status.

does it generate an output and if so is the output mutated.

A e

4.1 VIPS test case

We used a GI benchmark PPM image (see Fig. 3) Langdon et al (2016) and Langdon
and Clark (2024b). VIPS takes as input the 3264x2448 image (23 970 833 bytes)
and generates a 128x96 PPM image as output (36 919 bytes).?

4.2 gemb test case

gem5 is used to simulate a CPU intensive loop written in C and running on a
64 bit X86 computer (gemS5 command line option ~isa X86). We used the
default configuration script supplied with SSBSE 2023 challenge track (gemS5
command line input hello-custom-binary.py). For the X86 program that
gem5 simulates we took the most compute intensive loop from the open source
RNAfold® program (gem5 command line option ~binary higher order
code 209). Otherwise we used gem5’s defaults, including disabling debug
options.

Like RNAfold version 2.5.1 itself, the X86 executable higher order
code 209 was compiled with gcc -O2. It repeats the 209 iterations of the loop
needed for an example twenty base RNA molecule, Fig. 4. (RNAfold runtime
grows faster than quadratically with RNA molecule size, hence a small RNA

7 Aunix limit filesize on the output was not needed.
8 VIPS benchmark https://github.com/wblangdon/vips

9 RNAfold Lorenz et al (2011) calculates the minimum self-binding free energy of an RNA molecule.
It is written in C and is part of the open source ViennaRNA package https://www.tbi.univie.ac.at/RNA/
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Fig.3 Left: VIPS 3264x2448 benchmark input image (23 970 833 bytes) Right: 128x96 thumbnail
image generated by VIPS (36 919 bytes, see left of Figure 5 for enlarged thumbnail)

Fig.4 Twenty base RNA molecule used in gem5 test case higher order code 209. The figure
shows the minimum free energy secondary structure, which is found by RNAfold. Note the C — G pair
bindings form a characteristic low energy “hairpin” spiral, often found in both RNA and DNA molecules

molecule was used.) We had previously used Genetic Improvement to improve
RNAfold’s accuracy Langdon et al (2018) and to parallelise this loop Langdon
and Lorenz (2017, 2019).

5 Magpie search

Magpie has the ability to search using genetic programming Blot and Petke (2020)
or local search Blot and Petke (2021) and to operate either in line mode or, as we
do here, to treat the source files as AST trees. First the 37 VIPS C (Sect. 3.3) and
25 gem5 C++ (Sect. 3.5) source files were converted to XML files using scrml ver-
sion 1.0.0. The ability to mutate and crossover XML gives Magpie the ability to
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Table1 1000 random Magpie

VIPS mutants Compiled, ran and produced correct 526 52.6%
output

Failed to compile 302 30.2%

Failed to run correctly or gave incor- 164 16.4%

rect output

Magpie type error” 8 0.8%

¢ Magpie XML TypeError may have been fixed. GitHub commit
b0ad2c1 (Oct 17, 2023)

work with any programming language. We sampled uniformly at random the impact
of Magpie’s seven common mutation operators 1000 times (gem5 2500'?). Three
mutate C/C++ statements (StmtReplacement, Stmtlnsertion, StmtDeletion) whilst
four change parts of expressions within statements (ComparisonOperatorSetting,
ArithmeticOperatorSetting, NumericSetting, RelativeNumericSetting). For example,
Relative- NumericSetting can change a value in the source code by 50%.

The Magpie parameter max_steps was set to one. Meaning each time Magpie
created uniformly at random independently of execution depth of nesting a single
mutant and tested it. The other Magpie parameters were left at their defaults.

Magpie used a mostly idle 32 GB eight core 3.60 GHz Intel 17-4790 desktop CPU
running networked Unix Centos 7, using Python 3 version 3.10.1 and version 10.2.1
of the GNU C/C++ compiler. On average generating compiling and testing each
VIPS mutation takes 2.5 s. Whilst for gem5 it is 6.6 s. Of course gem5 is a much
bigger program, 44MB v. 450KB, and for example, linking gem5 alone takes on
average about 1.4 s, whilst running takes on average about 1.1 s v. about 80 millisec-
onds for VIPS (albeit VIPS uses all 8 available cores).

6 Results

The next two sections give the fraction of VIPS (6.1) and gem5 (6.2) mutations in
each impact class, before Sects. 6.3 and 6.4 consider in detail the variation of the
impact of mutations with run time depth.

6.1 VIPS results

The VIPS results are summarised in Tables 1, 2, and 5 whilst Figs. 7, 8, and 9 con-
sider the variation of the impact of errors with stack depth

Of the 1000 Magpie XML mutants, there are 302 which failed to compile (2™
row in Table 1). These fall into 38 different classes. There are 177 compilation

10 In Sect. 3.5 we noted the higher fraction of gem5 mutations falling in non-executed code and in order
to get at least the 37 non-exception runtime errors we found with VIPS Langdon and Clark (2024a),
Table 2, we increase our gem5 sample size to 2500. Actually Table 3 reports we found 55 gem5 mutants
which gave at least one wrong answer at runtime but did not raise an exception. (We need at least 25 for
the comparison in Sect. 6.4.)
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errors due to bad use of variable names, such as undeclared variables. The other
125 are essentially syntax errors. We discuss problems with moving variables out of
their declaration scope in Sect. 7.2. It is surprising, given that Magpie is using XML
and so is effectively operating at the program’s AST level, that more than 12% of
mutants fail to compile with syntax errors. Examples include pasting a well formed
if statement into a struct data structure and replacing the minus sign in a nega-
tive constant (e.g. -1) with an arithmetic operator (e.g. /) giving rise to a syntax error
(e.g. return /13).

The last row in Table 1 says that there were 8§ mutants where Magpie failed with
an internal TypeError. It may be that these successfully passed the fitness tests. How-
ever it seems safest to exclude them. We also exclude the 88 identical mutants (sec-
ond row in Table 2). So Tables 1 and 2 show 438 of 602 (1000-8-88-302), (i.e. 73%)
of unique VIPS mutants which compile, produce the right output.

The middle four rows in Table 2 show 91 (55%) of the 164 mutants which
compiled but gave bad results, failed with an exception whilst running. The last
three rows in Table 2 show 73 (45%) of the erroneous mutants which ran either:
VIPS detected an internal error (36 22%), the output was not generated (19 12%)
or the image was created but was not the same as the original (18 11%). In six
cases the output was the wrong size. But in 12 of the 18 cases where an incorrect
output was generated the output was the right size. In some cases the incorrect
output resembles the correct image. (The left side of Fig. 5 shows the correct out-
put v. error on right.) In others although the image header in the output is correct,
the image’s content is totally scrambled (Fig. 6). Notice Fig. 5 indicates a differ-
ent type of software robustness: although it is different from the correct output
and thus fails the fitness test, visually it is “close” to the expected answer and so
might be acceptable.

6.2 gemb5 results

The gem5 results are summarised in Tables 3, 4 and 5 whilst Figs. 10, 1112 con-
sider the variation of the impact of errors with stack depth. To allow easy com-
parison between gem5 and VIPS results Tables 3 to 5 and Figs. 10 to 12 follow
the same format as the VIPS results in the previous section.

Of the 2500 Magpie gem5 mutants, most (1730, Table 4) are rejected because
they lie in non-executed code (see Sect. 3.5 page 7).

The second row of Table 4 shows 238 gem5 mutants are rejected because actually
Magpie made no change. E.g. because a number mutation replaced 0 with another 0.
This is more-or-less the same ratio (9.52%) as VIPS 8.8% (Table 2).

A further 17 Magpie mutations are rejected because, although syntactically dif-
ferent (when compiled with -O2) their object code is identical. For example, a muta-
tion which inserted “Tick when = 0;” where the compiler recognises that the
variable “when” is unused and optimises it away, leaving the rest of the object code
unchanged. We have previously used this with the GCC compiler Langdon (2020)
and LLVM Langdon et al (2023) to quickly spot semantically identical mutations
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Table 2 Details of Magpie 1000

VIPS mutants given in Table 1. Correct output 438 43.8%

Mutation is identical to original code 88  8.8%

Runtime error 134, e.g. assert, double free, mutex error 40  4.0%

Exceed 2 second timeout 25 2.5%
Segmentation error 22 22%
Floating point error 4 0.4%
VIPS detected error, e.g. No such file or directory 36 3.6%
No error reported but output error 19  19%
No error reported but output changed 18  1.8%

Top two rows refer to the 526 successful mutants (Sect. 7.1 on
row 2). Other seven are the 164 mutants which failed or gave bad out-
put. Middle four rows mutants gave a non-success termination status

Fig.5 Left: original VIPS thumbnail output. Almost all mutants which produce output, give images
which are identical. Right: a similar but different mutant image

Fig. 6 Note most mutant images
are unchanged (Figure 5), how-
ever right is a radically different
mutant image. Note although the
pixels are scrambled, the output
is still an image and of the right
type and dimensions

Table 3 2500 random Magpie

gem5 mutants Compiled, ran and produced correct output 380 15.2%
Failed to compile etc 1975 79.0%
Failed to run correctly or gave incorrect output 145 5.8%
Magpie TypeError 0 0%
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Table 4 Details of Magpie 2500 gem mutants given in Table 3.

Correct output 142
Mutation is identical 238
Mutation is semantically identical 17
Mutation in non-executed code 1730
Failed to compile 228

gem5 detected error, e.g. gemS5 panic, Assertion failure or 47
it erronously reports “segmentation fault” in code it is
simulating

Exceed 15 second timeout 17
Segmentation error 10
Floating point error 3
gem) detected “fatal:” error 13
No error reported but output changed 55
Totals 2500

5.68%
9.52%
0.68%
69.20%
9.12%
1.88%

0.68%
0.40%
0.12%
0.52%
2.20%

27.57%

44.27%
9.13%

3.30%
1.94%
0.58%
2.52%
10.68%
(515)

Top row refers to the 142 successful mutants. The next three rows the mutation was ok but rejected
before testing due to: no change to source code (238), object files are identical (17) or it was located in
code that profiling said is not executed on the test case (1730). Last column gives percentages excluding
these automatically rejected equivalent mutations. 228 mutations failed to compile. The other six rows
are the 145 mutants which failed or gave bad output. Middle four rows mutants gave a non-success termi-

nation status

6r I I I FDP No error C——1 |
Non exception errors 72277
5 i
4 i
S 7I
K] |
g 3+ 0 _
[T 1
2+ K i
0k ) ) —
0 40 50

Depth of function call nesting

60

Fig.7 25 mutations which change internal state but output is unaffected (shaded pink) and 25 which

change output (pattern) without raising an exception or reporting an error. (See page 15)
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Fig. 8 25 mutations with no impact and 25 which change output. Same data as Figure 7. The vertical
axis is truncated to 0—450, as otherwise perturbations which cause errors to the output (blue hatching)
nested 13 functions deep x=13 (8453) and x=24 (181952), would dominate all the other data. (Graph
described on page 15)

and so avoid the cost of fitness evaluation. It can also be used with the compiler’s
assembler code output to spot semantically identical parts of mutations when auto-
matically simplifying compound mutations Langdon (2020). The compiler C pre-
processor can also be used to strip away parts of mutations rendered irrelevant by
conditional compilation directives when building tabu list of mutations Langdon
et al (2015). Just running the pre-processor is typically much cheaper than run-
ning the complete compilation. The compiler has been used to identify equivalent
mutants in mutation testing Papadakis et al (2015).

Of the 532 (2500-1730-238) gem5 compilations, 228 (43%) mutants failed
to compile (Table 4). These fall into 15 different classes. There are 164 (31%)
compilation errors due to bad use of variable names (scoping errors will be dis-
cussed in Sect. 7.2). The other 64 (12%) compilation errors are different types of
syntax error. Syntax error include removing the if from an if else leaving
the el se dangling and replacing a * used to dereference a pointer with an arith-
metic operator, such as-.

The middle four rows in Table 4 show 77 (53%) of the 145 mutants which
compiled but gave bad results, failed with a system exception whilst running. A
further 13 failed with one of gem5’s exceptions (total 62%). For example, one
of Magpie’s mutations changed the condition in a while loop so that it was
always false, meaning the size etc. of a buffer was not set up. This later resulting
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VIPS mutations sorted by mean execution depth

Fig.9 25 VIPS mutations with no impact (mean depth +) and 25 which change output (mean depth X).
Error bars show interquartile range. +X also show min and max depth. Notice mutations with average
depth y > 30 tend not to impact VIPS thumbnail output. Same data as Figures 7 and 8

in gem5 detecting a fatal exception in writeBlob and so it stopped with
status code 1 and much of the gem5 output was not created.

The last but one row of Table 4 shows 55 mutations compiled and ran without
reporting an error but gave erroneous outputs (38% of the 145 mutations which
failed at runtime). For example, in one case Magpie mutated the initial start con-
dition in a for loop from 1 = 0 to i = -1, resulting in the loop starting with
an illegal value for variable i. Notice the mutated for loop was executed for one
more iteration than it should have been. gem5 did not notice the error. Four of
the five output files created by gem5 were unchanged. Only 8 of the 504 lines in
the other file were changed. Indeed all numeric values in it were unchanged and
the only change was that in the 8 cases the text description at the start of the line
was slightly corrupted.

6.3 VIPS failed disruption propagation (FDP)

When considering failed disruption propagation in real code: disruptions to the
program’s internal state due to Magpie mutations which cause C exceptions or for
which VIPS itself reports an error, are caught by special mechanisms which imme-
diately terminate the program and so the disruption does not propagate through the
program in the normal way (rows 3—7 in Table 2). The last two rows in Table 2
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Table 5 Top: 91 random
Magpie VIPS mutants without
error. Lower: Data for 43
randomly selected gem5
mutants without error. (All
instrumented gem5 mutants are
known to have either executed
or not, i.e. no “na” in row 2)

contain 37 mutations which

Executed Infected count fraction

VIPS

N N 45 49% + 5%

na N 13 14% + 4%

y N 8 9% + 3%

y y 25 27% + 5%
Total 91

gem5

N N 10 23% + 7%

y N 8 19% + 6%

y y 25 58% + 8%
Total 43

The first column says if the modified code is executed or not.
“na” indicates that the mutant may or may not have been run, but in
either case it cannot infect the state, e.g. replacing 0 by 0%3/2. 25 of
91 (27% + 5%) mutants are executed and disrupt the program at least
once. (+ indicates standard error)

either: caused the output not to be created or to be

Fraction
N
T

I T =
FDP No error C—
Non exception errors s5C<°2

N_SH

40 50 60 70 80 90
Depth of function call nesting

Fig. 10 25 gem5 mutations which change internal state but output is unaffected (shaded pink) and 25
which change output (pattern) without raising an exception or reporting an error. (See page 18)
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different in some way from the usual output. We uniformly at random selected 25 of
these (blue cross hatch in Figs. 7 and 8).

From the mutants which did produce the right output (top row of Table 2), we
uniformly at random selected 25 where: the modified code was executed and it
changed the program’s state or flow of control (shaded pink in Figs. 7 and 8). (See
also Fig. 9 and left of Table 5.) For both the selected 25 ok and 25 non-exception
mutants (previous paragraph) we instrumented the mutation site to record how many
times its execution made a difference and how deep in the function call hierarchy it
was when it was executed.

The function containing the mutated code can be called multiple times and from
different positions and hence the depth of a particular disruption typically var-
ies during execution. (Perhaps due to the use of multiple threads introducing non-
determinism, there is sometimes a small variation between runs.) Although typically
executed many times only a single disruption need reach the output for the mutation
to fail the test (Sect. 4) (blue hatching in Figs. 7 and 8).

Note Figs. 7, 8 9 do not distinguish between levels of severity of the damage to
the output. Either the VIPS mutant passed the test (pink) or it did not (blue hatch).

To allow fair comparison, the histograms in Fig. 7 are normalised so that if a
VIPS mutation is executed and causes a change of state at different depths (plotted
along the x-axes) the vertical height (y-axes) is plotted in proportion to the num-
ber of disrupting executions for that depth. This ensures that the area allocated to
each of the (25+25) mutations plotted in Fig. 7 is the same. Thus two mutations
which both failed a test but one is executed many thousands of times and the other
only once, are allocated equal areas. Similarly, a mutation which is executed three
times, once at depth 6 and twice at depth 40, will contribute one third to x=6 and
two thirds to x=40. Disrupting executions of the same type (pass/failed) at the same
depth are stacked on top of each other. For example in Fig. 7, the peak (y=6) at
depth x=8 represents all the failing disruptions at depth 8 across the 25 mutations
randomly sampled from the 37 which failed without raising an error or exception'’.

The same VIPS data are presented in Fig. 8, however the vertical (y) axis now
represents the number of perturbations. That is, the y-axes shows the sum of all the
disruptions of the same class (pass/fail) at the same depth (again disruptions which
do reach the output are shown with blue hatching). Taking the example of the five
failing mutations which change state at depth 24 (peak “181952” in Fig. 8): two of
them disrupt only at depth 24 (both infect 35 968 times); the other three disrupt at
two or three depths but cause disruption 96, 96 and 109 824 times at depth 24, giv-
ing in total 35968 + 35968 4+ 96 + 96 + 109 824 = 181 952.

Notice failing mutations are typically executed causing disruptions more times
and closer to the top of the stack (which in C means the main () function, depth 1).
Whereas although disruptions which fail to propagate (FDP, pink shaded in Fig. 8)
can occur at a range of nesting levels, they predominate at depths greater than about

1 Of the 25 randomly sampled VIPS failing mutations, eight introduce a disruption at depth 8. Four of
these also cause disruptions at another depth. In this example, these four each disrupt at depth 8 exactly
half the time, so giving at x=8,y =6 = (4 +4 X %) plotted with blue hatching in Fig. 7.
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Fig. 11 25 gem5 mutations with no impact and 25 which change output. Same data as Figure 10. Note
log vertical scale (Graph described on page 18)

30. E.g. in Figs. 7 and 8, seven independent silent mutations (pink) contribute to the
area for depth > 31, compared to one impactful mutation (blue), p = 3%.'? Fig. 9
again shows this impact v. depth data but this time the distribution (minimum, quar-
tiles, mean and maximum) for each individual mutation is gathered together.

We can estimate the fraction of Failed Disruption Propagation (FDP) using data
gathered from the non-error VIPS mutants when we sought our random sample of
25 mutants which did cause disruption but did not cause an error (see page 14).
The left hand side of Table 5 considers 91 uniformly random chosen non-identical
mutants of the 438 which run without error (first row Table 2 page 12). 25 of the
91 are executed and disrupt the program but do not change the output. This is 27%
of the sample, which corresponds to 120 + 21 in 438. In other words, for our VIPS
about 12% + 2% of Magpie mutants show failed disruption propagation.

6.4 gemb5 failed disruption propagation (FDP)

To investigate the variation of mutation impact with runtime nesting depth for gemS5,
we follow the same sampling philosophy for gem5 as we did for VIPS (previous
section). That is, we again exclude the 77 (47+17+10+3) mutations which failed
at runtime with an exception or where gem5 itself reported an error (13), leaving
55 (Table 4 page 14) where an error was detected only because one or more of the

12 p = %3 non-parametric one sided statistical hypothesis sign test.
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Fig. 12 25 gem5 mutations with no impact (mean depth +) and 25 which change output (mean depth X).
Error bars show interquartile range. +X also show min and max depth. Notice mutations with average
depth y > 30 tend not to impact any of gem5’s outputs. Same data as Figures 10 and 11

files generated by gem5 were different from those generated by the unmutated code.
As with VIPS, we do not distinguish levels of error severity, only that the files are
different. We choose uniformly at random 25 of these 55 gem5 mutations and instru-
ment them (blue cross hatching in Figs. 10 and 11). Similarly we instrument muta-
tions chosen uniformly at random from the 142 mutations which ran without error.
We continue drawing at random until we have 25 mutations which are executed at
least once and which change the state or flow of control. Again we use GNU libc
backtrace to measure the depth of function nesting (plotted with pink in Figs. 10
and 11, see also Fig. 12 and right hand side of Table 5).

Like VIPS, the instrumented gem5 mutants can be executed many thousands of
times (hence use of log scale in Fig. 11) and at different depths in the function call-
ing hierarchy. Unlike VIPS, gem5 mutants appear deterministic.

Like Fig. 7, the histograms in Fig. 10 are normalised so that if a mutation is exe-
cuted and causes a change of state at different depths the vertical height is plotted
in proportion to the number of disrupting executions for that depth (page 15). This
ensures that the area allocated to each of the (25+25) mutations plotted in Fig. 10
is the same. Thus two mutations which pass all the tests but one is executed half a
million times (depth 23) and the other only six times (depth 4), are plotted with the
same area. Disrupting executions of the same type (pass/failed) at the same depth
are stacked on top of each other. For example in Fig. 10, the blue peak (y=7.999) at
depth x=30 represents all the failing disruptions at depth 30 across the eight of 25
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mutations randomly sampled from the 55 which failed without raising an error or
exception.

The same data are presented in Fig. 11. Now the vertical (y) axis represents the
number of perturbations (on a log scale). That is, the y-axes shows the sum of all
the disruptions of the same class (pass/fail) at the same depth. Taking the exam-
ple of the eight failing mutations (plotted with blue in Fig. 11) which change state
at depth 30, five only execute at depth 30 and the other three are predominately at
depth 30 (total 723 676). The other three also execute at depth 26 but contribute
only 222 executions of the 119 470 executions at that depth.

The spike in non-error mutations at depth 31 suggests (as with VIPS) that run
time mutations at greater than depth ~ 30 are less likely to influence the program’s
output. (In Figs. 10 and 11, eleven independent silent mutations (pink) contribute
to the area for depth > 30, compared to two impactful mutations (blue), p = 1%.")
Fig. 12 again shows the depth data but this time the distribution (minimum, quar-
tiles, mean and maximum) for each individual mutation is gathered together. If we
look at Fig. 12 we can see in the deeper half of the mutations there is a (albeit small)
tendency for deeper mutations to show failed disruption propagation (FDP). (All 13
equivalent mutants (red) in the top half of Fig. 12 have deeper means than the top 13
mutations which impact the output (blue), p = 0.01%.'*)

As with VIPS, we can estimate the fraction of failed disruption propagation from
our random sample of 25 gem5 mutants which did cause disruption but did not
cause an error (see pages 14 and 15). The right hand side of Table 5 considers 43
uniformly at random chosen non-identical mutants of the 142 which run without
error (first row Table 4). 25 of the 43 are executed and disrupt the program but do
not change the output. This is 58% of the sample, or 82.6 + 11 of 142. If we exclude
automatically detected equivalent Magpie mutations (last column Table 4), this is
82.6 of 515. That is, 16% + 2% of non-equivalent Magpie gemS mutants show failed
disruption propagation (FDP).

7 Discussion

We start the discussion with Magpie, the GI tool we use to generate source code
changes. We suggest ways to improve Magpie but conclude the fraction of identi-
cal patches (Sect. 7.1) and the number of variables moved out of scope (Sect. 7.2)
are not too expensive. Sections 7.3 and 7.4 suggest our benchmarks are typical of a
wide range of software. Of course all cases of failed disruption propagation (FDP)
show information loss, nevertheless in Sect. 7.5 we describe in detail ten examples
of FDP, explaining the various mechanisms which prevent disruption impacting the
program’s output, so making the software robust.

13" p = %1 non-parametric one sided statistical hypothesis sign test.
4 p = 0.01% non-parametric one sided statistical hypothesis sign test.
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7.1 Magpie identical patches

The second row of Tables 2 and 4 shows 9% of Magpie mutations are identical to the
original code. It is therefore no surprise that they compile, run and generate identi-
cal output. (In the second example, gem5, we do not bother running them.) Identical
mutations are produced by XML operations ArithmeticOperatorSetting, Compari-
sonOperatorSetting and NumericSetting:

ArithmeticOperatorSetting has only 5 choices (+, —, *, /, %). So, for example, if
the existing arithmetic operator is + there is a 1/5 chance that Magpie will replace +
with another +, meaning no change is made. Similarly XML operation Comparison-
OperatorSetting has only 6 choices (<, <=, ! =, ==, >, >=) and NumericSetting can
replace 0 with another 0, 1 with 1, or -1 with -1.

We observe 9% (rather than 1/5 etc.) of Magpie mutations not changing the
source code as there are several other mutation operators as well as Arithmeti-
cOperatorSetting, ComparisonOperatorSetting and NumericSetting (see Sect. 5).
Although it is possible, the other XML changes are unlike ly to replace the original
XML with an identical copy.

It might be easy to force Magpie to ensure that new source code is different from
the previous (parent) code. This seems like an obvious improvement, particularly
for hill climbing local search. For population based search (i.e. genetic program-
ming) these identical mutations represent a source of neutral moves Schulte (2014);
Blot et al (2015); Ting Hu et al (2020), so removing them would change population
dynamics, however it seems in general that removing them would not have a delete-
rious effect.

7.2 Undeclared variable compilation errors

We saw in Sect. 6.1 that 18% of VIPS mutants fail to compile because the muta-
tion has moved an existing variable out of scope. In gemS5, Sect. 6.2, the fraction of
compilations attempted which fail due to bad use of variable names is even higher
at 31%. However, usually a mutation failing to compile is a relatively cheap part of
the fitness function. Nonetheless the fraction of scope errors could potentially be
addressed by:

e Restricting XML based mutations to copying source material within the same
source file Langdon and Harman (2015).

e Addition of new Magpie scope validity checks Langdon and Harman (2014).

e Use SBSE Harman and Jones (2001) search techniques (such as genetic pro-
gramming) to fix up variable names Marginean et al (2015).

Moreover, as we did previously, e.g. Langdon and Alexander (2023), to further

reduce the cost of erroneous mutations, we use the GCC command line option
-fmax-errors=1 to stop the compiler immediately it discovers a single error.
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7.3 AreVIPS and gem5 typical?

Typically both VIPS and gemS5 are composed of small functions which themselves
are not deeply nested. Therefore it seems reasonable to use the depth of function
nesting (i.e. position in the call stack) to serve as a proxy for the actual depth of
nesting.

VIPS is typical of C programs. It uses both pointers to read and write data out-
side the current function and the function’s own arguments and return value to pass
information into and out of functions. gem5 uses also pointers but like much C++
code it also uses “pass by reference” ( &). That is, in both examples, data and hence
information flow is not tied exactly to control flow and the hierarchy of nested func-
tion calls. Nevertheless our results suggest in real code deeply nested functions can
correspond to some extent to information loss regarding disruption caused by deeply
buried errors.

We anticipate our technique will be useful for investigating failed disruption
propagation (FDP) in other programs. We found FDP occurring at similar depths,
suggesting perhaps that it will occur in other deeply nested programs at about the
same depth. In future we hope to develop light weight analysis tools to highlight
particular source code regions of rapid entropy loss. In pure functional system we
were able to conduct large mutational robustness studies which showed wide indi-
vidual variability but on average the impact of disruptions fell exponentially with
distance, rather than having a sharp cut off. In general we expect large variation in
software robustness to individual errors and perturbations but nonetheless we expect
as they get more remote from the program’s outputs, they will have on average less
impact and the program will tend to be more robust to them.

7.4 Few continuous types

Of the 1247 variables declared in our 37 VIPS C files (Sect. 3.3), only 33 (2.6%)
are continuous (float or double) or pointers to continuous variables. While gemS5
makes heavy use of its own types and also uses the C++ auto keyword, nonethe-
less it appears in the 25 C++ gem5 files (Sect. 3.5), only twenty (1.7%) of the 1188
variables declared are continuous (double). In both VIPS and gem5 the other vari-
ables are discrete types (e.g. int, char, string and application specific discrete types).
Indeed for VIPS 69% and gemS5 23% of variables are pointers to discrete variables.
Like VIPS and gem5, many programs have few continuous data.

We would expect wide continuous data (e.g. 64 or 128 bit doubles) to be better at
transmitting disturbances in information flow from one part of a program to another.
It may be in some classes of program, which have many continuous variables, much
deeper nesting will be needed to get the levels of fault masking seen here. However,
albeit in a purely functional (Lisp) setting with 32 bit precision (float) we Lang-
don (2022c¢); Langdon and Banzhaf (2022); Langdon (2022e, 2022d) showed almost
complete failure for sizable disruptions to propagate to the output in very deep pro-
grams. Note we were concerned with functions evolved by genetic programming
Koza (1992); Poli et al (2008), whereas here we deal with real programs written in
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StmtDeletion((’window.c.xml’, ’stmt’, 78))
- window->height = 0;

Fig. 13 The Magpie mutation operator StmtDeletion removes statement 78 from window.c.xml,
so deleting the initialisation of window— > height on line 270 in window. c. It is executed 15 times at
depth 51 and changes state in up to 12 of these 15 times

traditional (imperative) languages (C/C++), with data flows which do not slavishly
follow the nested hierarchy of the procedure calls.

7.5 Explanations of ten examples of failed disruption propagation (FDP)

The following examples are of mutations which have no impact despite being Exe-
cuted and changing the program’s state. L.e., they causes an Infection but it fails to
Propagate to the outputs. The following sections (7.5.1-7.5.10) show the impact of
randomly chosen VIPS and gem5 FDP mutations (five of each) and explain why
their disruption fails to propagate.

Although there are a few similarities, each of the following cases of failed dis-
ruption propagation (FDP) is unique. Sometimes disruption is passed via the run
time calling hierarchy to other functions (7.5.1, 7.5.2, 7.5.4, 7.5.7), often disruption
is past to other parts of the code via shared variables (7.5.3, 7.5.5, 7.5.7, 7.5.10)
and sometimes the disruption does not leave the function which has been mutated
(7.5.6,7.5.8, 7.5.9). In some cases information is progressively lost during irrevers-
ible operations such as arithmetic, logical expressions and rounding (7.5.4). And in
others it is lost suddenly, e.g. by overwriting mutated results (7.5.17.5.2) or by mul-
tiply by zero (7.5.6) or variables being explicitly deleted (7.5.3) or implicitly deleted
when they go out of scope (7.5.4, 7.5.8, 7.5.9) or simply not used (7.5.5, 7.5.7,7.5.8,
7.5.9). The final example shows a single mutation causing a huge change affecting
more than a quarter of a million variables, each comprising both data and pointers
and although it impacts runtime, the disruption if bounded by logical expressions
and does not leak out into the program’s functionality (7.5.10). The common theme
in these FDP examples is in real code information loss is due to irreversible actions.

7.5.1 Example VIPS FDP caused by later over write

Fig. 13 shows line 270 of window.c being mutated so that field height of
struct im window t is not set to zero. Instead height retains its exist-
ing value. The mutation is executed 15 times. The original content of window-
>height is not deterministic, but is not zero between 0 and 12 times. Typically
the mutation changes state about half the times it is executed. Four lines after the
mutation im window new () calls im window set () and passes the mutated
variable window to it. Although im window_ set () uses parts of window it
does not use the value in window->height. Instead near its end im window
set () unconditionally overwrites the whole of window->height, thus remov-
ing all the impact of the mutation.
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StmtDeletion((’init.c.xml’, ’stmt’, 38))
- im->client2 = NULL; |

Fig. 14 The Magpie mutation operator StmtDeletion removes statement 38 from init.c.xml, so
deleting the initialisation of im— > client2 on line 150 in init.c. It is executed 18 times at depths 8
to 42 and changes state in two of these (depths 8 and 9)

NumericSetting((’im_init_world.c.xml’, ’number’, 8), ’1’)
- { "vips-tile-height", 'h', 0, G OPTION ARG INT, &im tile height,
+ { "vips-tile-height", 'h', 1, G OPTION ARG INT, &im tile height,

Fig. 15 The Magpie mutation operator NumericSetting changes the ninth (Magpie indexes start at
0) number in im_init world.c.xml from O to 1. So changing the initialisation of static GOp-
tionEntry option_entries[2] online 225in im init world.c. The mutation is executed
once when the program is initialised changing element 2 of struct array GOptionEntry option
entries int field flags from 0 to 1

Notice the original function im window new () follows good practice
in ensuring all seven fields within struct window are initialised (including
height), even though the immediately following code recalculates five of seven
of them. Also the mutation is repeatedly executed in non-deterministic code. It often
changes the state of a variable, that disruption propagates into a second function but
it fails to propagate beyond the second function.

7.5.2 Example VIPS FDP caused by later over write

Fig. 14 gives a mutation similar to the one in the previous section. It shows line 150
of init.c being mutated so that field client?2 of IMAGE struct im is not set
to NULL (0). Instead client?2 retains its existing value (typically O or Oxffffffff).
Unfortunately it is not possible to be definitive about exactly why leaving client?2
as Oxffffffff can never have any impact, but we can see in the multi-threaded code
where, as in the previous section, im is initialised en-block, the value client?2
is not used (for example it is passed as argument dummy to function im start
one () and as dummy?2 of im_stop_one (), neither of which use it) and in im
generate () where client? is over written.

So again the mutation is executed. In a proportion of cases, the mutation causes
a change of state. This is propagated via global variables to code in distant func-
tions but there the disruption is either ignored or lost when the global variable is
overwritten.

7.5.3 Example VIPS FDP caused by bounded use

Fig. 15 shows line 225 of im init world.c.xml being mutated so that field
flags of struct option entries([2] is set to 1 rather than O when the pro-
gram 1is initialised (i.e. before main () is called). option entries is only
used in function im get option group (), which is called via g option
context add group() from main(). option entries is passed to
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ArithmeticOperatorSetting((’transform.c.xml’, ’operator_arith’, 21), ’+’)
- *oy = trn->ic * mx + trn->id * my;
+ *oy = trn->ic * mx + trn->id + my;

Fig.16 The Magpie mutation operator ArithmeticOperatorSetting replaces * by + in
transform.c.xml’s operator arith 21, so updating the calculation of *oy of line 122 in
transform.c. It is executed and changes state 380 times at depth 26. The mutation is in parallel
multi-threaded code and so the order (but not the values) of the mutated calculations varies between runs

g option group add entries () which incorporates it into its other argu-
ment option group. option group is returned to main () as pointer con-
text (of type GOptionContext*). Note the data pointed to by context may
be disrupted by the mutation. main () passes context to g option con-
text parse (). However the mutation does not change how g option con-
text parse () updates its outputs. Then main () deletes context using
g_option context free().

Thus the mutation infects state immediately (even before the program starts),
that disruption can be transferred between GTK library calls but is not used outside
them and is removed by g option context free () before main () calls
thumbnail () to generate output.

7.5.4 Example VIPS FDP caused by logic, rounding and scope limits

Fig. 16 shows the calculation of double oy being mutated on line 112 of
transform.c 380 out of 384 times it is executed. Typically the value of oy in
function im__transform invert point () is changed by about 0.5% but
there are cases when it is approximately doubled and four cases where it should be 0
but is instead 1.015625.

im transform invert point () is passed as a transform fn func-
tion pointer to transform_rect (), which calls it four times each time it itself is
called, once for each corner of a rectangular part of the output thumbnail 128 x 96
image. In transform rect () the X,y values of each corner calculated by im
transform invert point () (including the mutated y value) are returned
to it as double. transform rect () deliberately converts to int in order to
“Round-to-nearest to try to stop rounding errors growing images.” transform
rect () combines four double X,y point pairs to give a bounding box. Notice
taking the maximum or minimum of four numbers loses information as only the
extreme of the four values contributes to the output. double top and double
bottom each combine four mutated y values. Similarly rounding continuous values
to integers also loses information.

double top is rounded to give output int top. Whilst output int height
is calculated by rounding bottom - top. After rounding int height is
never disrupted by the mutation. Whilst in 33 of 96 bounding boxes int top is
increased by 1. Notice combining four values and rounding has reduced the disrup-
tion by more than ten fold (380 to 33). The mutated rectangles are passed back to
affinei gen () via Rect need.
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StmtDeletion((’meta.c.xml’, ’stmt’, 23))
g _value_register transform func(
T type,
- G_TYPE_STRING,
transform area g string );

Fig. 17 The Magpie mutation operator StmtDeletion removes statement 23 from meta.c.xml,
so deleting the call of function g _value register transform func () from lines 340-343 in
meta.c. Itis executed once at depth 6

ComparisonOperatorSetting((’MemoryPowerModel.cc.xml’, ’operator_comp’, 2), ’>’)
- int64_t tRefBlocal = (t.REFB == 0) ? (t.RAS + t.RP) : (t.REFB);:
+ 1int64_t tRefBlocal = (t.REFB > 0) ? (t.RAS + t.RP) : (t.REFB):

nn

Fig.18 The Magpie mutation operator ComparisonOperatorSetting replaced operator
comp number 2 (i.e. the third comparison, Magpie starts numbering at 0) in MemoryPowerModel .
cc.xml with >. I.e. == on line 214 is replaced by >. Line 214 is executed 2432 times at depths 22 or 26
or 29. Each time the mutated code sets tRefBlocal to 0 instead of the correct value 39

In affinei gen () the mutated need.top is passed to im rect inter-
sectrect (), whose output Rect clipped is disrupted (1n 33 of 96 execu-
tions) by the mutation. Although im rect intersectrect () increases the
disruption from just need to include clipped, only either clipped. top or
clipped.height are disrupted (not both simultaneously) and state (i.e. values in
need and clipped) remains disrupted in 33 executions of affinei gen (). How-
ever the disrupted values in c1ipped never cause a change of control flow and like
need they are deleted at the end of affinei gen () when they go out of scope and
so the disruption is contained in affinei gen () (depth 23).

7.5.5 Example VIPS FDP caused by redundant code

Fig. 17 shows lines 340-343 of meta . c being deleted so that GTK library function
g value register transform func () is not called. The mutation causes
a change of flow of control and the function transform area g string()
will not be registered as the GTK transformation function between static GType
type “im area” and G_TYPE STRING. However transform area g
string () is notused. That is, the mutation causes a changes of state hidden inside
the GTK library but it never has any impact.

7.5.6 Example gem5 FDP caused by multiply by zero

Fig. 18 shows line 214 of MemoryPowerModel. cc being mutated and that the
value it calculates for local variable tRefBlocal is changed from 39 to 0. tRef-
Blocal is only used in the immediately following for loop (lines 217 to 250).

The for loop always iterates eight times. Each iteration tRefBlocal is used (on
line 223) by function vddODomain.calcTivEnergy () tosetenergy.refb
energy banks[i] (i= 0---7). The first argument of calcTivEnergy () is
the expression c. numberofrebeanks [i] * tRefBlocal. (This is the only

@ Springer



Automated Software Engineering (2025) 32:6 Page 27 of 39 6

place the value in tRefBlocal is used.) However all eight values of the vector
c.numberofrefbBanks are zero. So the original code multiplied O by 39 to
give 0. And the mutated code multiplies 0 by O to also give 0. Note energy.refb
energy_ banks is not disrupted by the mutation. Thus although the mutated value
of tRefBlocal is used 2432 X 8 = 19456 times it has no impact in any of them
and all information about the mutation is destroyed when tRefBlocal goes out of
scope at the end of function MemoryPowerModel: :power calc().

7.5.7 Example gem5 FDP caused by data not used

Fig. 19 shows line 69 of CAHelpers.cc being mutated so that CommandAna
lysis::timeToCompletion () returns 17 instead of 16. timeToCom-
pletion() is called several times by CommandAnalysis::idle act
update () in CommandAnalysis.cc, were the mutation’s impact is typically
propagated into its output variable idlecycles_act. That is, idlecycles
act may be a several percent bigger than it should be. Meaning energy.idle
energy_act banks[i] and energy.idle energy act (both in Memo-
ryPowerModel. cc) are also a several percent bigger than they should be. Both
energy.idle energy act banks[i] and energy.idle energy act
are only used in MemoryPowerModel: :power print () which prints them
out. However power print () is never used, and so although the mutation has
been executed and it has made a difference and that disruption has propagated some
distance through the C++ code via function call returns and shared values, ulti-
mately it has no external impact despite the mutation impacting internal state more
than two hundred thousand times.

7.5.8 Example gem5 FDP addition of unused variable

Fig. 20 shows a mutation which adds a line which simultaneously declares a variable
old it and initialises it by calling PTable: :find (). In the GNU standard C4++
template library hashtable’s find () is free of side effects (find () const) and
new line 116 is the only place in EmulationPageTable: :unmap () where
old it is used. Therefore although the mutation both changes flow of control and
program internal state, all its impact is deleted as soon as o1d_it goes out of scope
at the end of each iteration of the enclosing while loop. It could be that if this muta-
tion was applied elsewhere, e.g. at a different depth, it would have the same lack of
effect.

RelativeNumericSetting((’CAHelpers.cc.xml’, ’number’, 1), (>, ’+1)’))
- memTimingSpec.DQSCK + 1 + (memArchSpec.burstLength /
+ memTimingSpec.DQSCK + (1+1) + (memArchSpec.burstLength /

Fig. 19 The Magpie mutation operator RelativeNumericSetting changed ' number’, 1 (i.e.
the second number) from 1 to (1+1) in CAHelpers.cc.xml. CAHelpers.cc line 69 is executed
and changes state a total of 206 994 times (at depths 26 or 27 or 31). Each time the mutation means Com
mandAnalysis::timeToCompletion () returns 17 rather than 16 (an increase of 6.25%)
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7.5.9 Example gem5 FDP deletion of empty for loop

Fig. 21 shows a mutation which removes a complete for loop which iterates through
the GNU standard template library set unified. Again the std library function
begin (), which is used to initialise the loop control variable t1b, has no side
effects. Since unified is empty, in the unmutated code the loop terminates immedi-
ately. Note, since the mutation removes the loop iteration test of t1b, the mutation
changes flow of control. In the unmutated code the change of state associated with
creating and initialising t1b is lost when t1b goes out of scope. Thus although the
mutation changes both state and flow of control, its impact does not propagate past
where the loop used to be.

7.5.10 Example gem5 FDP change of state impacts runtime not functionality

Fig. 22 shows a mutation which removes a complete if statement. The mutation is
inside MemCtrl: :pruneBurstTick ()’s while loop and is executed 226 118
times. In most cases curTick() >* current_it, so causing DPRINTF () and
burstTicks.erase () to be called. DPRINTF () is a debug macro which
checks to see if its first argument MemCtrl is true. Since debug flag MemCtrl
is not set, DPRINTF () does nothing. Whereas in the unmutated code, burst-
Ticks.erase (current it) typically causes parts of std::unordered
multiset burstTicks to be deleted. The mutation causes both the flow of

StmtInsertion((’page_table.cc.xml’, ’_inter_block’, 57),
(’page_table.cc.xml’, ’stmt’, 17))
+ auto old_it = pTable.find(vaddr);

Fig.20 The Magpie mutation operator StmtInsertion adds a copy of statement 17 to _inter
block 57.(Bothare in page table.cc.xml.) This adds line 116 auto old it = pTable.
find (vaddr) ; to page table.cc. Itis executed 11 times at depth 35, calling hashtable find ()
each time

StmtDeletion((’mmu.cc.xml’, ’stmt’, 19))
- for (auto tlb : unified) {
- tlb->flushAll();

o

Fig.21 The Magpie mutation operator StmtDeletion removes statement 19 from mmu. cc.xml, so
deleting lines 91-93 from mmu . cc. It is executed 4 times at depth 26 or 35

StmtDeletion((’StmtDeletion((’mem_ctrl.cc.xml’, ’stmt’, 228))
- if (curTick() > *current_it) {
- DPRINTF (MemCtrl, "Removing burstTick for %d\n", *current it);
- burstTicks.erase(current it);
= b
Fig.22 The Magpie mutation operator StmtDeletion removes statement 228 from mem ctrl.

cc.xml, so deleting the if on lines 667-670 in mem ctrl.cc. It is executed 226 118 times at
depth 30
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control to be changed (for example curTick () is no longer called) and also state
changes. That is, the expired, i.e. older than curTick (), elements of multiset
burstTicks are no longer erased. Eventually burstTicks contains 223 785
Tick.

pruneBurstTick () 1is called by MemCtrl::doBurstAccess(),
which a couple of lines later calls DRAMInterface::doBurstAcc
ess (), which calls DRAMInterface::activateBank (), which calls
MemCtrl::verifySingleCmd ().

burstTicks is used in MemCtrl::verifySingleCmd 223 786 times at
depth 31 or 32. However even though burstTicks contains many more elements,
the count for the current cmd_tick (cf. burstTicks.count (burst tick))
is little effected and (as with the unmutated code) it never exceeds 8 (the value of
max cmds per burst). So both the Tick inserted into burstTicks and
the value returned by MemCtrl::verifySingleCmd () are unchanged. That
is, the mutation changes flow of control locally but not elsewhere and although it
changes state globally, this impacts run time and memory usage but does not propa-
gate to any of the outputs. Note:

e With -O3 (and no instrumentation) g++ seems to make a good of optimising the
now pointless while loop in MemCtrl: :pruneBurstTick (). (The mutated
code takes 0.96 s v. 0.92 s for the original.)

e The mutation means burstTicks will continue to grow. In fitness testing we
do not see a big increase in the memory needed to run gem5. However in much
larger simulations a computer running gem5 might eventually notice the memory
problem.

8 Conclusions: software is robust, deeper code is more robust

Software is robust to many mutations. If we exclude obviously poor mutations (e.g.
those that failed to compile, are identical, or lie in code that is not used) approxi-
mately half (73% VIPS, 49% gem5, Tables 2 and 4) of source code mutations run ok
and give the right answer.

We use Voas’ PIE framework to explain software robustness in terms of infor-
mation theory and entropy loss (Sect. 2 and the appendix). If the modified code
was Executed, and it changed the program’s internal state (it was Infected) but
information about that disruption was not Propagated to any output, including
the program’s exit status, we call this failed disruption propagation (FDP) and
the software is robust to the mutation. Software robustness could also include
partial cases where disruption does indeed reach the output but the answer is only
changed a little and may still be usable (e.g. Figure 5).

For any disruption to have impact, information about it must reach the pro-
gram’s outputs. Every executed operation from the site of the disruption to the
outputs can lose information. In a strictly hierarchical system, if information is
lost en-route it cannot be recovered later. That is, information loss is cumula-
tive. Meaning the deeper the nesting of functionality, the more chance there is
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of information loss. When all information is lost, the disruption has no further
impact and cannot change the output. In strictly nested systems we do see pro-
gressive information loss and very deep systems can be 100% robust even to very
disruptive mutations (Sect. 2).

As faults may be invisible, robust systems are more difficult to test. It may be for
larger, and especially deeper programs, far greater use of white box approaches with
extensive internal instrumentation and closely packed and more sophisticated test
oracles, will be needed by both automated testing and genetic improvement.

In traditional imperative languages information flow can by-pass the function call
hierarchy via shared data. Our C/C++ programs extensively use shared data and
we do see examples of mutation induced disruption spreading via global variables.
Nonetheless we still see a weak relationship between depth and impact, with FDP
more likely in deeper mutations, particularly in our examples when nested more
than about 30 function calls deep, leading to mutations which do not change the pro-
gram’s output. This makes deeper code more robust.

Appendix

Theoretical models of information loss in large expressions

We start by expanding the example of information loss from one addition (page 3)
to an example with a mixture of three additions and two multiplications (Fig. 23)
and then describe a model of information loss in large expressions. Figures 25, 26,
27 28 show the model’s Gaussian approximation gets rapidly more accurate and plot
values for up to 10 000 additions. Indeed the Gaussian approximation, 2 + log, o,
is a reasonable approximation of the entropy (in bits) of many probability distribu-
tions (with standard deviation ¢). Our information loss model could be extended to
include subtraction. Finally we consider potential Log Normal extensions to multi-
plication and division.

0-364 (0-255)
+

/\

0-162 0-162
018/' ‘\09 o/ ‘\018

+ +
0-9 0-9 0-9 0-9

Fig. 23 Intermediate values calculated in expression (a+b)c+d(e+f) where a.-.f are independent random
digits (0-9). (If 8 bit precision then output (top) is between 0 and 255)
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In: Entropy 6*2.88 = 17.29
Level 2: 2*3.75 +2*2.88 = 13.27 ——
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Fig. 24 Distribution of values at each of the four levels in Figure 23. First two plots (red and blue) are the
same as the two plots in Figure 1. Note calculations are in 8 bit precision, hence the all values, horizontal
axis, line in the range 0-255 (OXxFF). Note non-linear x-axis

Figures 23 and 24 expand the example in Fig. 1 (page 4) to a multiple level
expression. The first two levels, and their entropies, are the same as Fig. 1. As we
proceed up the expression towards the output, as expected, we see information loss
and so entropy falling. The expression has 6 inputs, each drawn from the same 0-9
distribution (the solid red line in Fig. 24) and so (as in Sect. 2) each has entropy
H, =2.88 bits. As the inputs are independent, the combined information content of
the six digits is 6 X 2.88 = 17.29 bits. Adding two digits together gives a value in
the range 0-18 (entropy 3.75, shown with dashed dark blue line in Fig. 24). Notice
addition has a smoothing effect and although the blue line covers more values (0-18
v. 0-9) it is smoother than the original distribution (red line). The purple line shows
the impact of multiplying the result of adding two digits by a third, giving values in
the range (0-162, entropy 4.46). Notice further information loss indicated by total
entropy falling again. Figure 24 calculates entropy and plots the probability distri-
butions when using 8 bit calculations, so the output is in the range 0-255, rather
than 0-364. Finally the light blue dotted line, the output, again shows the smoothing
effect of addition and again total entropy falls (from 6 X 2.88 = 17.29 to 6.02 bits).

As we said in Sect. 2 all operators commonly used in programming lose infor-
mation (i.e. are not reversible). In nested expressions this loss is cumulative. So
typically deeper expressions lose more information. In some special cases we can
be use mathematics to be precise.

In the case of the addition of n independent values, the mean is the sum of the
individual means and similarly the variance is the sum of their variances. As n
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Probability
0.14
0.12

0.1
0.08
0.06
0.04
0.02

0

Number of inputs 0]

Fig. 25 Distribution of values of adding random digits (0-9) from the VIPS source code. Note non-linear
axis

increases (by the central limit theorem) the output distribution will approach a
Normal (Gaussian) distribution N(m, ). Where the mean is m and the standard
deviation is ¢ (62 = the variance). N(m, ¢%) has entropy log,(c) + 2.0471 bits.

In practice, assuming the individual distributions are not too different and not
too asymmetric, the output distribution approaches N(m, ¢%) rapidly (see Figs. 25
and 28). Assume the inputs all come from the same distribution, with mean m,
and standard deviation ¢,. So mean =nXm, and variance o> =n X (c,)>, so
o= \/Z X o0,. Figure 25 plots the actual distributions for various numbers of inde-
pendent inputs drawn at random from the distribution of 0-9 digits in the VIPS C
source code used by Magpie. As expected, the mean and standard deviation follow
m=nXm,and ¢ = \/ﬁ X o, (where m, = 2.53997 and o, = 2.75424). The stand-
ard deviation is plotted with a dotted line in Fig. 27 (note log scales).'

As n increases, then not only does the mean of N(m, o?) increase but more impor-
tantly so to does its width . If we now consider that in a computer we are doing
our calculations with a limited number of bits, so the infinite precision idealised
Gaussian distribution N(m, 62) has to be mapped into finite arithmetic. Suppose we
use 8 bit integers, then then whole of N(m, ¢%) is mapped onto 0-255 (see Fig. 26).
Regardless of the mean m, if the standard deviation ¢ is large compared to 255 then
mapping the nicely curved distribution will lead to an almost uniform distribution
across 0-255 (with an entropy of 8 bits). (Actually we get close, 3 significant digits,
of a uniform distribution when ¢ is only 174.) Mathematically, if \/n X o, >> 256 the
entropy of the sum will be ~ 8 bits and the information loss will be ~ nH, — 8 bits,
i.e. almost all the input information is lost. (Again in our example we actually get
close to maximum entropy with ¢ > 145.) The numbers on the right vertical axis of
Fig. 28 show for large n the theory agrees with actual values.

Finally: if the inputs to the expression are nicely behaved (meaning we can
always take their logs) then the above argument can be extended to expressions
with just multiplications. By taking logs, the expression changes from a series of

15" A small animation of the output of expressions converging as they get bigger to the Gaussian dis-
tribution can be found on line via http://www.cs.ucl.ac.uk/staff/W.Langdon/icse2024/langdon_2024_GI/
add10.html
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Fig.26 As Figure 25 but in 8 bits, hence cut off at 255

multiplications of independent values to a sum of logs of independent values. Mean-
ing we can again use the central limit theorem to argue that the sum will approach
a Normal distribution, i.e. the product approaches a Log Normal distribution, with
known information content as measured by entropy.

Where the log of values are well behaved, like subtraction, we can also extend
our argument to division and indeed to expressions composed of both multiplication
and division, by simply treating log of division as addition of a negative log value
(log(a/b) = log(a) — log(b) = log(a) + (—log(b))). Again leading to a Normal dis-
tribution of the logs and so the output of a product/division expression of independ-
ent (logable) terms approaches a Log Normal distribution as it gets bigger. If there
as many divisions as multiplies, (i.e. as many + log as —log) then the mean of the
log of the distribution will be zero. That is the distribution will be centered at 1.0
and its entropy will grow O(log,(n)). That is, much slower than the input entropy
O(n).

By keeping track of signs separately, i.e. working with sign(az) and log |a|
and using sign (a X b) = sign (%) = (sign (a) + sign (b))%2 as well as
log(la x b|) = log(|a|) + log(|b|) and log(lj—jl) = log(|a|) — log(|b]), we could even
extend this argument to negative values. If there are an even number of negative
signs, the distribution will be log normal. If odd, it will be -log normal. If signs
are distributed evenly at random the distribution will be curiously bimodal: 50% log
normal and 50% -log normal. However a continuous distribution that spans both
positive and negative values is liable to include zero or at least very small values
where finite arithmetic leads eventually to zero.

If randomly drawn input values include non-logable values such as zero they
will quickly dominate the distribution of output values. Multiplication by zero gives
zero, so even a single zero as input will give zero as output, meaning as the expres-
sion gets bigger the probability of it giving a non-zero value shrinks towards noth-
ing. Similarly large expressions with division and zero input will be quickly domi-
nated by how division by zero is treated. Similarly other non-logable values, such
as nan (not-a-number) and inf (infinity) will quickly dominate large floating point
expressions. With their output distributions depending upon how these exceptional
values are treated.
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Fig. 27 Mean and standard deviation of adding VIPS 0-9 digits. Solid red line mean and red dashed line
standard deviation o assuming unlimited precision when adding n inputs (x-axis) randomly drawn drawn
from the distribution of VIPS digits, same data as Figure 25. Note diagonal line shows mean is propor-
tional to n. Whilst 6 \/ﬁ Dash blue lines show mean and ¢ where sum is forced into 8 bit arithmetic
and converges to uniform 0-255, entropy 8 bits, same data as Figure 26. Note log-log plot
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Fig. 28 Entropy of adding VIPS 0 to 9 digits. Solid red + line unlimited precision, same data as Fig-
ure 25. Note convergence to Gaussian (dotted line) entropy log,(c) + 2.0471. (To reduce clutter data
above x=20 plotted without crosses +.) Dashed blue line where sum is forced into 8 bit arithmetic and
converges to uniform 0-255, entropy 8 bits. Same data as Figure 26, Note log plot
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Notice 0 (and nan, inf, etc.) rapidly eat all the information in the other inputs
to multiplicative expressions. Depending on exactly how these exception values
are handled, as we consider larger expressions, their output probability distribution
geometrically converges on a single output value, e.g. 0, which has no information
about the inputs and entropy of 0 bits.
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