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Abstract

The Boundary Control (BC) Method was originally formulated with respect to hy-

perbolic inverse problems. We extend this powerful method to elliptic and parabolic

problems. In particular, by considering Boundary Value Problems as edge problems,

we extend the functional analytic version of BC from commutative C* algebras to

noncommutative ones, through the use of a suitably chosen pseudodifferential calcu-

lus for singular manifolds. We then apply this extended BC to the open Calderón

conjecture, presenting a multitude of cases where the uniqueness argument holds.

Via the pseudodifferential calculus extension to higher singularities by an iteration

process, the extended BC is applied to the reconstruction of a Riemannian polyhe-

dron. We also showed that for the standard (hyperbolic) BC the interface and corner

detection of a Riemannian polyhedron can be achieved by introducing appropriate

notions from physics (e.g. waveguides and 4-wave-mixing).

For Electrical Impedance Tomography, i.e., for the 2D case of the Calderón

problem, a novel algorithm is constructed that is simpler and faster compared to the

well-known D-bar method, which is based on Complex Geometric Optics solutions.

The following algorithms are implemented in the tomographic , extensively

used library, Software for Tomographic Image Reconstruction (STIR): two 2D

Positron Emission Tomography (PET), two 2D Single Photon Emission Computed

Tomography (SPECT), and one 3D PET. These algorithms serve as templates for

how to include in the library analytic reconstruction algorithms, without the need to

extensively study the library. The PET algorithms constitute strong alternatives to

STIR’s existing filtered back-projection PET algorithms in terms of image quality

and/or speed, while the SPECT algorithms are the first of their kind within the
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library.



Impact Statement

This thesis focuses on analytical and numerical aspects of tomography. In particular,

it advances the understanding of aspects of the solution of the Calderón problem,

and introduces practical improvements in medical imaging through algorithmic

development and contributions to widely-used software.

An important contribution is the delineation of the path towards the unification

of inverse boundary value problems (IBVPs). This is achieved by extending the

applicability of the BC Method beyond hyperbolic problems to elliptic and parabolic

ones. Unifying the BC Method will have important implications in several fields,

including physics, engineering, and importantly in medical imaging where inverse

BVPs play a critical role.

The extended BC Method is applied to the Calderón problem, a central inverse

problem that has been under study for more than 40 years. In particular, it proves

uniqueness for several specific cases. These results are directly relevant to elec-

trical impedance tomography (EIT), since the 2D Calderón problem provides the

mathematical foundation of EIT.

In addition to its focus on tomography, the thesis also applies the extended BC

Method to the reconstruction of Riemannian polyhedra. This work broadens the

range of problems that can be addressed applying the extended BC method, namely,

it includes geometries with higher singularities. Importantly, in this work concepts

from physics are incorporated into the standard hyperbolic BC problem-solving.

This interdisciplinary approach, by showing how physical ideas can be integrated

into mathematical frameworks, opens the way to potential applications in areas

such as non-destructive testing and underwater fiber optics, where the detection and
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manipulation of wave patterns is critical.

This thesis also introduces a novel algorithm for 2D EIT. This algorithm appears

to be faster and simpler than the widely used D-bar method. The enhanced speed

of this algorithm makes it well-suited for real-time applications in clinical settings,

where quick and accurate imaging is essential.

Further practical contributions of this research include the implementation of

five tomographic algorithms in the Software for Tomographic Image Reconstruc-

tion (STIR) library. STIR is widely recognized and used in the medical imaging

community. Thus, the inclusion of two algorithms for 2D Positron Emission Tomog-

raphy (PET), two algorithms for 2D Single Photon Emission Computed Tomography

(SPECT), and one algorithms for 3D PET algorithm improves the library’s capabili-

ties. Some of these new algorithms offer better image quality and faster processing

times compared to existing methods. Importantly, they also serve as a clear template

for including analytic reconstruction algorithms in the library, helping to advance the

library’s ongoing contributions to medical imaging. STIR’s importance, underscored

by its 2017 Rotblat Prize by Physics in Medicine & Biology (PMB), suggests that

these additions will be valuable for both researchers and clinicians working with

tomographic imaging.

In summary, this thesis involves high level mathematical work of direct practical

significance. In particular, it has the potential to impact a range of fields, from

tomography to non-destructive testing and fiber optics.
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Chapter 1

Introductory Material

The thesis comprises six Chapters on the analytical and numerical aspects of tomog-

raphy.

In Chapter 2 we work on the Boundary Control (BC) method, which uses

boundary measurements to reconstruct a domain’s internal structure. It analyzes

how boundary controls, like signals, propagate within the domain, establishing a

relationship between inputs and outputs that encodes system information. A key

step is coordinatization, where internal points are assigned coordinates based on

boundary-induced signals, effectively ”coding” the domain. This data is then used

to construct a model that replicates the original system, allowing the domain to be

reconstructed and solving the inverse problem by converting boundary measurements

into an accurate internal representation. For different types of hyperbolic problems,

BC method uses distinct coordinatization techniques, each tailored to the nature

of the problem at hand. For example, hyperbolic inverse problems such as those

on graphs employ Dirac measures, where a pointwise, highly analytic approach is

suitable [1]. For more geometrically focused problems, like those on Riemannian

manifolds in acoustic or electrodynamic systems, semigeodesic coordinates are used,

relying on the travel times of waves through geodesics [2], [3], [4]. In dynamical

inverse problems, often found in geophysical applications, the boundary distance

function is utilized, focusing on the geometric relationship between boundary points

and internal distances [5], [6]. In more complex hyperbolic systems like elasticity or

electrodynamics, wave nests are used to capture intricate wave behaviors through
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a combination of geometric and operator-theoretic techniques [7], [8]. Although

BC has been applied to the “hyperbolization” of the Calderon problem by the

transformation of the conductivity equation to the Schrödinger equation [9], [10], the

most direct application of BC to elliptic problems, which I am aware of, is for the

2D Laplace-Beltrami operator; there, coordinatization is determined by the spectrum

of an algebra of states, which is analytic and algebraic in nature [11].

Hence the different methods of BC coordinatization exhibit analytic, geometric,

and sometimes algebraic characteristics. Aiming at a more unified approach, pseu-

dodifferential operators (PDOs) immediately come to mind, as they inherently merge

these three aspects—analytic, geometric, and algebraic—by their very nature. PDOs

provide a framework that can capture both local analytic properties and the global

geometric structure of a problem in an algebraic framework. This suggests that the

spectrum of a PDO could serve as a universal method of coordinatization, potentially

unifying these various approaches. By doing so, the need for distinct techniques

tailored to specific types of problems could be reduced, as the PDO-based approach

could, in theory, apply to a broad range of systems, bridging the gap between analytic

and geometric methods. To work on BC with PDOs, we reduce inverse boundary

value problem (IBVP) to pseudodifferential edge problems; then the PDO algebra’s

principal symbols naturally comprise of interior and edge symbols. This decompo-

sition allows for direct isometric isomorphisms between them. Consequently, the

PDOs provide a natural connection between the function spaces and the geometry of

the manifold, ensuring density and compatibility between the algebraic structures

and geometric configurations.

Historically, one of the challenges in applying the BC method to elliptic prob-

lems has been the tendency to ”hyperbolize” these problems introducing extra

complexity. In particular, given that elliptic problems, unlike hyperbolic ones, do

not require time-reversal techniques, BC finds a more natural and direct application

to elliptic problems through PDOs, where the need for time-reverse engineering is

eliminated. Building on this, we explore the extension of the BC method to parabolic

problems, which can often be reduced to elliptic problems. By viewing BC through
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the framework of PDOs, it becomes apparent that this approach has the potential to

serve as a unifying method for inverse boundary value problems across hyperbolic,

elliptic, and parabolic types. In this light, further study of the PDO-based version of

BC is necessary to understand the full extent to which it can unify these methods.

Finally, when applying these insights to the Calderón problem, we uncover a broad

range of spaces in which the uniqueness argument holds. This result underlines that,

as the information encoded within a PDO is significantly enhanced, providing not

only information about the function spaces but also about the underlying manifolds

themselves, BC through PDOs is a powerful and flexibile tool for solving inverse

boundary value problems across diverse spaces and systems.

In Chapter 3, we build on the methodology from Chapter 2 and apply it to a

more complex class of problems involving manifolds with higher singularities, i.e.

not just edge problems, specifically focusing on the reconstruction of a Riemannian

polyhedron. For the hyperbolic case, we demonstrate how physical principles

can provide us with criteria for the detection of interfaces and vertices, allowing

us to use the standard hyperbolic Boundary Control (BC) method handling each

compartment independently and proceeding in an iterative fashion. In particular,

for the case of electromagnetic waves we observe that there exists an analogue to

Snell’s Law, for perpendicular incidence, which is what we need as we work with

geodesics. We use this to form an edge detection criterion, and further combining

it with waveguide theory, a vertex detection criterion. Additionally, in the context

of the Z-scan technique, we introduce a criterion for detecting lattice points using a

four-wave solution. For the case of acoustic waves, we extend the analysis further,

using reflection and transmission coefficients to detect interfaces. The identification

of corners in this scenario relies on acoustic waveguides and directional couplers,

similar to their electromagnetic counterparts. By applying the principles of wave

propagation and coupling, we can create a unified approach that encompasses both

electromagnetic and acoustic waves, providing a comprehensive framework for

detecting singularities and reconstructing polyhedra in various physical settings.

In Chapter 4, a novel algorithm is developed for 2D Electrical Impedance To-
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mography (EIT), providing a computationally efficient alternative to the well-known

D-bar method using Complex Geometric Optics (CGO) solutions. Both algorithms

rely on the transformation of the conductivity equation to the Schrödinger equation

and are inspired by inverse scattering theory. However, the existing algorithm using

CGO solutions introduces complex frequencies and essentially ‘hyperbolizes’ the

problem, i.e. mimics aspects of hyperbolic problems, which is a hallmark of CGO

solutions and leads to additional computational complexity. In contrast, the novel

algorithm retains the elliptic nature of the problem, resulting in a simpler, more

direct and computationally efficient approach. Additionally, the novel algorithm is

designed for arbitrary domains, whereas the CGO-based algorithm can theoretically

be extended to more complex domains, but practically it is best suited for circular or

simply connected domains due to the reliance on symmetry and the Fourier-based

approach. We are in the process of completing our numerical implementation.

Chapters 5 to 7 contain the implementations in STIR of two 2D Positron Emis-

sion Tomography (PET) algorithms, two 2D Single Photon Emission Computed

Tomography (SPECT) algorithms, and one 3D PET algorithm, respectively. These

implementations serve as templates for how to include analytic reconstruction algo-

rithms in the library without requiring an extensive study of the library itself. This is

particularly evident in the case of the ”artificial scanner” used to handle missing data

in the 3D implementation; STIR’s equivalent process is limited to use with Filtered

Backprojection (FBP) because its forward projection process relies on the symme-

tries specific to FBP. The artificial scanner works for standard fully 3D sinograms,

i.e., with unit differences in axial positions for consecutive segments (increasing up

to the middle segment and decreasing afterward), and also for sinograms where there

is a jump in the axial positions in the middle segment. While these types of data are

created by STIR, if the artificial scanner is extended to non-full sinograms, it could

potentially be implemented as a separate class in STIR.

The first implementation of 2D PET in STIR was part of my master’s thesis,

which also included identifying relevant symmetries of the algorithm. However,

now an enhanced version of the code is produced with new features, and also up-
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dated to be compatible with the current version of STIR. The code files for all

five algorithms can be found in my Github account: [https://git2hub.com/Dimitra-

Kyriakopoulou](https://git2hub.com/DimitraKyriakopoulou). It includes two repos-

itories: SRT2D (public) and REP (private); the former has been forked from

STIR’s repository, while the latter is a clone of STIR. For SRT2D repository,

which contains the implementation for SRT 2D PET and SPECT, a pull request

(https://github.com/UCL/STIR/pull/1420) was submitted, and 9 out of 9 tests were

successful (Pre-commit check, Codacy Static Code Analysis, Continuous Integration

(CI) via Appveyor, and the 6 subtests of Build and ctest and recon test pack CI), as

visible when logged into Github. The REP repository will be made public, and a pull

request will be submitted once the test processes are complete. So far, 8 out of 9

tests have been successful. We are currently working on changes needed to pass the

macOS-latest-gcc11-cuda0-Debug-pp=OFF-ROOT=OFF subtest in Build and ctest

and recon test pack CI.



Chapter 2

Extension of Boundary Control

method to elliptic and parabolic

problems, and its application to the

Calderon problem

We show that Boundary Control method, a method for hyperbolic inverse problems,

is also capable of dealing directly with certain classes of elliptic and parabolic

Inverse Boundary Value Problems; thus pointing towards Boundary Control method

potentially constituting a means of unification of Inverse Boundary Value Problems.

As an application we show that the Calderon problem can be dealt with directly

via Boundary Control method, i.e. without reduction of the elliptic problem to a

’hyperbolized’ problem.

2.1 Introduction
Manifolds with smooth boundary form a subcategory of manifolds with edge [12].

Hence, Bernard Wolfgang Schulze studied elliptic Boundary Value Problems (BVPs)

of Shapiro– Lopatinskii (SL) type ([13],[14],[15],[16]) in the framework of Boutet

de Monvel’s algebra of BVPs with the transmission property at the boundary [17].

Ellipticity refers to an analogue of Shapiro– Lopatinskii conditions, i.e., a bijectivity

condition for an operator-valued principal symbol structure which contains also trace
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and potential operators with respect to the edge, a substitute of the former boundary.

Later Schulze [12] created the Toeplitz analogue algebra of BVPs unifying conditions

of SL- and global projection (GP)- elliptic type (especially APS-conditions in the

sense of Atiyah, Patodi, and Singer -[18], [19], [20]); ellipticity in this context is

equivalent with the Fredholm properties in the respective scales of spaces (standard

Sobolev spaces in the SL case, spaces of Hardy type in the GP case).

Reducing inverse elliptic and parabolic BVPs to edge problems, we will study

how Boundary Control (BC) method can be applied to them. BC method, originating

from M. G. Krein’s work on 1-dimensional inverse scattering theory ([21], [22]),

contrasts with Gel’fand-Levitan and Marchenko’s fundamental methods through its

utilization of the wave equation’s finite propagation speed. Krein’s approach, while

initially not evident due to its frequency domain formulation, was later clarified

by Blagovestchenskii’s time-domain analysis, highlighting its hyperbolic nature

through a Volterra-type equation for unknown functions ([23]). This advancement

was essential for the method’s multi-dimensional extension by Belishev [24], with

its geometric aspects further detailed by Belishev and Kurylev [25], also noted

in [26]. Additionally, the BC method’s capability to assess the inner product of

boundary-induced waves, traced back to Blagovestchenskii ([27]), was extended to

multidimensional contexts ([28]), underscoring the method’s non-perturbative and

inherently hyperbolic characteristics [29].

The BC-method integrates control and systems theory, asymptotic methods,

functional analysis, and operator theory with partial differential equations, indicating

its interdisciplinary strength. It has established significant links with Banach algebras

([30], [31]), non-commutative geometry ([32], [33], [34]), and functional models of

linear operators ([35], [36]), underscoring the method’s comprehensive applicability

and depth [37].

Linking the BC method with noncommutative algebra enables its application to

elliptic and parabolic problems, suggesting its potential as a unifying solution for

Inverse Boundary Value Problems (BVPs). Noncommutative analysis, focused on

quantizing observables within arbitrary Poisson brackets, aims to identify operators
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A1, . . . ,Am that express the problem’s operator through a rich system of relations.

This approach allows solving by expressing solutions as functions of these operators,

where noncommutative analysis outlines conditions for this method and provides

formulas for symbol composition laws. This reduction simplifies the approach to

asymptotic problems, making noncommutative analysis particularly effective for

various asymptotics. It outperforms wave-packet transform methods in handling

simultaneous asymptotics, proving useful in constructing parametrices on manifolds

with singularities, applying to asymptotics in weighted function spaces, such as

power-law weighted Sobolev spaces near degeneration points [38].

We extend the BC method to noncommutative algebras, paralleling the com-

mutative C∗-algebra approach [37], employing Gelfand representation. In particular,

the work by Heunen et al. [39], [40] introduces a topos-theoretic framework that

redefines the Gelfand spectrum for noncommutative C*-algebras and leading to an

explicit Gelfand transform. By constructing a sheaf topos over the poset of com-

mutative subalgebras, their approach introduces an internal Gelfand spectrum that

integrates noncommutative algebraic structures with a generalized notion of space.

This innovative perspective not only provides a bridge between noncommutative and

commutative theories but also leads to the formulation of an external spectrum, en-

abling a geometrical interpretation of noncommutative spaces analogous to classical

manifolds. Selecting an appropriate C∗ algebra C for pseudodifferential operators’

symbols on manifolds M, we can choose the spectrum of C as the coordinatization

method of the manifold, similarly to [37]. For this purpose, [40] not only adapts

the concept of Dirac measures to noncommutative settings but also showcases how

the algebra’s genericity, i.e. its (topologized) spectrum being homeomorphic to the

manifold, emerges from the seamless topological integration of M with the external

spectrum of the algebra.

Hence, in this paper, we prove the following theorems, whose proofs are the

topics of Sections 2.3.1 and 2.3.2, respectively:

Theorem 2.1.1. The BC method can be used to directly prove uniqueness arguments

for inverse elliptic BVPs.
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Theorem 2.1.2. The BC method can be used to directly prove uniqueness arguments

for inverse Volterra parabolic BVPs.

Led by the insights provided by the previous two theorems, we propose the

following conjecture as a topic worthy of further investigation:

Conjecture 2.1.1. The BC method potentially unifies inverse BVPs of all types,

namely hyperbolic, elliptic, and parabolic.

Finally, based on 2.1.1, we demonstrate that the Calderón problem can be

studied directly via the Boundary Control method without reducing the elliptic

problem to a hyperbolized problem [41].

We now proceed to state the Calderón problem [42] for a compact smooth

Riemannian manifold M of arbitrary dimension n ≥ 2. The direct problem is as

follows:
∇ ·σ(x)∇u(x) = 0, x ∈ X

u(x) = f (x), x ∈ ∂X ,
(2.1)

where the domain X ⊆Rn (with n ≥ 2) is bounded and possesses a smooth boundary

denoted as ∂X . The term σ(x) refers to the conductivity coefficient, assumed to

be smoothly varying across X , and f (x) designates the given Dirichlet boundary

condition for our problem. For a smooth function f , it has a unique smooth classical

solution u = u f (x).

The transformation from Dirichlet to Neumann data, also known as the voltage-

to-current mapping, is described by: Λ : H
1
2 (∂X)→ H− 1

2 (∂X),

f (x) 7→ Λσ [ f ](x) = σ(x) ∂u
∂ν

(x),
(2.2)

where (·)ν denotes the outward normal derivative. The Calderón problem involves

deducing the conductivity coefficient, σ , by utilizing the data from the Dirichlet-to-

Neumann map.

The uniqueness argument for the inverse problem is defined as follows:
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Theorem 2.1.3. Assume σ ̸= 0, and consider the edge problem corresponding to the

BVP 2.1. Assuming two locally flat near the boundary manifolds Mi, i = 1,2, with

the same boundary and the same boundary data Λ, the manifolds are isometrically

isomorphic for γ ̸= 1
2 ,

3
2 , where γ is the weight factor in the spaces of the edge-

degenerate operators.

2.2 Quick Overview on Pseudodifferential Operators

on Manifolds with Edges
Construction of admissible algebras in manifolds with singularities [43]. A

singular manifold (Mo, D) is defined by its differential operators’ behavior, where

Mo is a smooth manifold and D an algebra of differential operators. These operators

are standard in Mo but adhere to specific constraints near singular points, ensuring the

algebra D within any compact subset U ⋐ Mo aligns with all differential operators

having smooth coefficients on Mo [38, 44]. This framework facilitates handling

differential equations on manifolds with singularities, focusing on operator behavior

rather than the manifold’s embedding or metric properties. The distinction among

singular manifolds sharing the same Mo lies in the differential operators’ limits at

the manifold’s infinite regions, as outlined in [44].

Algebras of differential operators on manifolds with cone and edge singu-

larities.[43], primarily Section 1.1.2. The algebra D for differential operators on

manifolds with singularities or edges is generated by C∞(M) and a space V of vector

fields, where V and F , a function space, have inclusions with respect to smooth

functions and vector fields on Mo. By embedding Mo into a compact manifold M

and extension of a non-degenerate Riemannian metric dρ2 from Mo to M, V is then

characterized via its dual space V ′ based on an F-valued inner product, making

V = V ′. This construction uniquely defines D, which then ties manifolds to two

categories; with conical singularities or edges, depending on the operator type.

Symbols for cone-degenerate differential operators. [43], Section 1.2.6. The

principal symbol, analogous to that in smooth manifolds, emerges within the struc-

ture of the differential operator algebra D, organized by order into a hierarchy Dk.
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This organization leads to a graded algebra gr D=
⊕

∞
j=0D j/D j−1, with D−1 = {0}.

For an operator D of order k, its principal symbol Σ(D) = Σk(D) is identified through

projection to grkD. In smooth contexts, this symbol functions over the cotangent

bundle T ∗M, guiding from space M to T ∗M. The transition, or microlocalization, es-

pecially for manifolds with conical singularities, lacks a clear phase space definition,

prompting a two-stage process to navigate potential complexities.

Stage 1. Localization. [43]. Functions in C∞(M), constant on the boundary,

are a subalgebra in the differential operator algebra D, exhibiting a commutation

relation indicative of a C∞(M)-module structure in the associated graded algebra

grD. Symbol spaces Σkx localize the symbol order k to a point x on M. The set of

local representatives of an operator D in Dk, denoted σx(D), uniquely determines

D’s principal symbol. These local representatives can be conveniently described via

a scaling procedure related to the metric’s induced local scaling transformations gλ

around point x. This leads to defining the scaled operator Dx by the limit of scaled

operations on D, with the limit interpreted in terms of pointwise convergence. This

limit exists for any D in Dm and establishes a bijective, multiplicative correspondence

between σx(D) and Dx. This localizes each operator D to a family of operators Dx,

representing D’s class in grmD on the space Kx, adjusted for interior points and the

conical point specifically.

Stage 2. Microlocalization. [43]. For each interior point x, the constant-

coefficients operator Dx on TxM leads to the polynomial Pm(0, ξ ) via Fourier trans-

form, representing D’s principal symbol in T ∗M’s fiber over x. This symbol, σ(D),

extends to a smooth function across T ∗M, defining the interior symbol. Conversely,

at the conical point, Dx lacks translation invariance, precluding microlocalization,

and is directly termed the cone symbol, σc(D), preserving the distinct treatments for

interior and conical points in symbol analysis.

Symbols for edge-degenerate differential operators.[43]. The algebra D of

edge-degenerate differential operators is filtered by operator order, defining symbols

within grD =
⊕

∞
m=0Dm/Dm−1. The principal symbol of an operator P ∈ Dm is its

image in Dm/Dm−1. This principal symbol, detailed for edge-degenerate operators,
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combines the interior symbol and the edge symbol. The interior symbol, σ(D),

derived from the classical symbol σclas(D), extends smoothly to T ∗M. The edge

symbol, σ∧(D)(x, ξ ), represented in local coordinates, forms a well-defined operator

family on KΩx , parameterized by T ∗X points. The compatibility condition ensures

the interior and edge symbols of D ∈ Dm satisfy σ(σ∧(D)) = σ∂ (D), integral to

symbol definitions for edge-degenerate differential operators on manifolds with

edges. This setup indicates that M acts as the stretched manifold of M.

Algebras of pseudodifferential operators on manifolds with cone and edge sin-

gularities. The task involves extending the algebra Dk(M) to PSDk(M), including

pseudodifferential operators, with emphasis on handling singular points on M. The

approach is local, constructing these operators in coordinate charts and integrating

them across the manifold using partitions of unity, similar to conventional pseu-

dodifferential operator theory [45]. Special focus is on constructing admissible

pseudodifferential operators near singularities, extending symbol classes beyond

polynomials via noncommutative analysis [38].

STEP 1.Function spaces. The algebra for pseudodifferential operators is defined

within a scale of Hilbert spaces, essential for ensuring the operators act in function

spaces suitable for singular elliptic differential operators [38]. These spaces must

align with solutions of differential equations, with the choice proven critical for

theoretical integrity [44], [38]. Specifically, within M’s interior, these function

spaces match traditional Sobolev spaces, while near singularities, the spaces adapt

to the singularity type, differentiated into cone-degenerate and edge-degenerate

categories [43].

Function spaces for cone-degenerate operators. [43], Section 2.1.1. Weighted

Sobolev spaces Hs,γ(M) are tailored for cone-degenerate elliptic operators, incorpo-

rating solutions of homogeneous equations and exhibiting a norm invariance property

near singularities [43]. These spaces match ordinary Sobolev spaces in M’s interior

and adapt to singularity types near conical points. The norm calculation for Hs,γ(M)

relies on functions near singularities, transitioning to the model cone K = KΩ for a

global group action. The weighted Sobolev space norm combines standard Sobolev
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norms and localized norms near singularities, forming a scale of Hilbert spaces

invariant under specific transformations [43]. Cone-degenerate differential opera-

tors maintain continuity within these spaces, ensuring operator applicability across

different Sobolev scales [43].

Function spaces for edge-degenerate operators. [43], Section 2.1.1. In study-

ing edge-degenerate operators, we define function spaces that accommodate the

operators’ behavior near and away from the manifold’s edge, ensuring coherence

across these regions. For the cone KΩ, we integrate usual Sobolev spaces at infinity

with weighted Sobolev spaces near the vertex, employing a partition of unity for

seamless transitioning. This approach creates the space Ks,γ(KΩ), blending local

and global function norms ([46]).Abstract wedge spaces Ws(Rn, H) extend this

concept to manifold edges, adapting through Fourier transform methods and scaling

by a strongly continuous operator group κλ , leading to the specific space Ws,γ(W )

for an infinite wedge. This construction is then applied to the entire manifold M,

forming Ws,γ(M) which integrates edge behavior with the manifold’s bulk proper-

ties.An edge-degenerate differential operator D operates continuously within these

constructed spaces, confirming the adequacy of the spaces Ws,γ(M) for hosting

solutions to edge-degenerate differential equations [43].

STEP 2. Symbols. Describe the admissible class of symbols. [38]. For applica-

tions in noncommutative analysis, the symbol class S∞(Rn) is optimal. Yet, in the

context of pseudodifferential operators, symbols typically have uniform dependence

on spatial variables without infinite growth. Symbols that do exhibit growth are

not bounded within the relevant spaces, nor are they part of the algebra, a fact that

applies to manifolds with singularities too. To facilitate analysis of such operator

algebras and symbol classes, the approach to functions of noncommuting operators

is expanded to include operator-valued symbols.

Symbols for cone-degenerate pseudodifferential operators.[43], Section 3.4.1.

On a manifold M with conical singularities, the principal symbol of a cone-

degenerate pseudodifferential operator D combines the interior symbol σ(D) and

the cone symbol σc(D). The interior symbol, a function on the stretched cotangent
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bundle T ∗
0 M, is homogeneous of order m in the fibers. The cone symbol, defined

through the concept of conormal symbols, is an mth-order pseudodifferential oper-

ator with parameter p on the base Ω of the cone, continuous in weighted Sobolev

spaces. Compatibility between interior and cone symbols is required for them to

form a principal symbol, indicated when the principal symbol of the cone symbol

matches the restriction of the interior symbol to ∂T ∗
0 M. This framework accommo-

dates the analysis of pseudodifferential operators on manifolds with singularities,

encapsulating both local and global operator characteristics [47], [43].

Symbols for cone-degenerate pseudodifferential operators.[43], Section 3.4.1.

On a manifold M with conical singularities, the principal symbol of a cone-

degenerate pseudodifferential operator D combines the interior symbol σ(D) and the

cone symbol σc(D). The interior symbol σ = σ(y, η) is a function on the stretched

cotangent bundle T ∗
0 M, homogeneous of order m in the fibers. Cone symbols are

defined via conormal symbols, which are mth-order pseudodifferential operators on

the manifold Ω with a specific parameter. These symbols, when associated with a

conormal symbol, form the cone symbol σc, operating in weighted Sobolev spaces

on the infinite cone KΩ. Compatibility between σ and σc ensures that they form

principal symbols of the operator D, characterized by a shared boundary symbol σ∂

[47].

Symbols for edge-degenerate pseudodifferential operators. [43], Section 3.4.2.

For compact manifolds M with an edge X and a cone base Ω, the principal symbols

of edge-degenerate operators consist of interior symbols σ and edge symbols σ∧.

Interior symbols are homogeneous functions on the stretched cotangent bundle, while

edge symbols represent families of differential or pseudodifferential operators on KΩ,

parameterized by T ∗
0 X and acting in Ks,γ(KΩ). Edge symbols incorporate conditions

for twisted homogeneity, continuity, almost compact fiber variation, and are defined

in both local neighborhoods of the cone vertex and its exterior. The compatibility

between interior symbols and cone symbols ensures the principal symbol’s coherence.

Edge symbols, represented by the formula σc = r−mσc

(
ir ∂

∂ r

)
, are continuous in

weighted Sobolev spaces, signifying the structured approach in defining operator
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families for edge-degenerate pseudodifferential operators on manifolds with singular

edges.

STEP 3. Quantization

Quantization on manifolds with cones. [43], Section 3.4.1. In order to thus

associate a pseudodifferential operator in weighted Sobolev spaces on on M to

each principal symbol, we introduce negligible operators, which are compact in D :

Hs,γ(M)→ Hs−m,γ−m(M), and continuous for D : Hs,γ(M)→ Hs−m+1,γ−m(M).

We then construct a pseudodifferential operator D of order m and weight γ with

principal symbol • to be continuous in these spaces, its definition modulo negligible

operators. These operators, denoted by Ψm
γ (M), have well-defined principal symbols,

and the principal symbol •(D), uniquely characterizes each D ∈ Ψm
γ (M). The

compactness of it within Ψm
γ (M) signals its location in the space of negligible

operators Im
γ .

Quantization on manifolds with edges. [43], Section 3.4.3. Operators of

order m on the compact manifold M with edges are defined as those extendable

to continuous from Ws,γ(M) to Ws−m,γ−m(M) for every s ∈ R. These are called

negligible operators when compactly-mapped between these spaces and are included

in JOpγm(M). The pseudodifferential operators of order m and weight γ have

unique principal symbols, which can be written down as composed of interior symbol

σ ∈C∞(T 0∗M) and edge symbol σ∧. These symbols need to satisfy compatibility

condition. Then they can be together quantized, and the obtained pair (σ , σ∧) is

unique for each operator P. This ensures that the operator is precisely defined from

its principal symbol within the framework of weighted Sobolev spaces on a compact

manifold with edges. The resulting pseudodifferential operators’ algebra is denoted

by PSDm
γ (M).

STEP 4. Algebra formation. We study whether the symbols of the aforemen-

tioned pseudodifferential operators form an algebra. In [43], the algebra of principal

symbols for zero-order pseudodifferential operators (ψDOs) (the general case fol-

lows by order reduction) is defined within a Hilbert space H, emphasizing the role

of a symbol mapping σ that distinguishes operators by their association to the ideal
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K of compact operators. This setup yields a monomorphism σ̃ of the Calkin algebra

into a unital topological algebra S, alongside a linear mapping Q serving as the

right inverse of σ , facilitating quantization. Essentially, S represents the algebra of

(principal) symbols for Ã, making it isomorphic to the corresponding Calkin algebra,

which is a C∗ algebra.

Edge problems. [43], Chapter 6. In the theory of operators on manifolds

with edges, boundary value problems are a specific instance where the edge acts

as the boundary and the cone simplifies to R+, representing the inner normal [46].

Addressing elliptic problems on these manifolds involves modifying the problem to

ensure the edge symbol becomes invertible, often through the inclusion of boundary

and coboundary operators in a matrix operator setup. This adaptation, rooted in the

physical context of boundary conditions in Fredholm problems, may not always be

feasible due to potential topological constraints akin to the Atiyah-Bott obstruction

in boundary value problem theory.

Edge boundary and coboundary operators. [43], Section 6.1.2. In addressing

Fredholm problems for operators on manifolds with edges, matrix operators incor-

porating edge boundary and coboundary conditions are essential. These operators,

organized in a 2×2 matrix format, integrate pseudodifferential operators with spe-

cific edge-focused components. This approach, critical for ellipticity and parabolicity

studies, involves operators that are defined modulo negligible ones, aiming for opera-

tors that are compact and continuous across specified weighted Sobolev spaces [43].

The framework extends to defining both edge boundary and coboundary symbols as

pseudodifferential operators on X , emphasizing their compact and continuous nature

in adapted Sobolev spaces, ensuring the operators are finely tuned to the edge’s

properties. This method underscores a comprehensive strategy for handling complex

operator conditions on manifolds with edges.

The calculus of edge morphisms. [43], Section 6.1.3. Defining edge boundary

and coboundary operators within a framework for operators on manifolds with

edges, [43] introduces a comprehensive classification of operators as morphisms

of order m and weight γ . These morphisms, formed in a matrix operator setup
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combining pseudodifferential, boundary, and coboundary components, allow for

the representation of complex boundary conditions integral to Fredholm problems.

Key to this formalism is the concept of principal symbols for these morphisms,

encapsulating both the interior symbol of the operator A and an operator family

forming the edge symbol, characterized by continuity and compactness properties in

weighted Sobolev spaces. This structure underpins the analytical approach to elliptic

problems on manifolds with edges, emphasizing compatibility conditions essential

for morphism definition and the subsequent mathematical treatment of boundary

phenomena.

Inverse elliptic BVPs via BC method

Ellipticity and finiteness theorems

Ellipticity and finiteness theorems for degenerate ψDOs. [43], Section 3.5.1.

and Section 3.5.4. In the degenerate ψDO algebra A constructed by [43], an operator

A is termed elliptic if its symbol σ(A) is invertible in the symbol algebra S. The main

result of elliptic theory, the finiteness theorem, asserts that an operator is Fredholm

if its symbol is invertible. This theorem applies to cone-degenerate and edge-

degenerate ψDOs on manifolds with conical singularities and edges, respectively,

defining ellipticity through the invertibility of operators’ symbols and stating that

elliptic operators are Fredholm, with their kernel, cokernel, and index remaining

constant across different smoothness levels.

Ellipticity and finiteness theorems for edge problems. [43], Section 6.1.4. For

a morphism A within the degenerate ψDO algebra A, [43] defines it as elliptic if

its interior symbol is invertible across the entire cotangent bundle T ∗
0 M and its

edge symbol is invertible on T ∗
0 X . Such elliptic morphisms are Fredholm across all

considered spaces, maintaining constant kernel, cokernel, and index regardless of

smoothness level s. Additionally, an elliptic morphism is uniquely identified by its

principal symbol modulo negligible operators, underlining the pivotal role of the

symbol in determining ellipticity and Fredholm properties.

The obstruction to ellipticity. [43], Section 6.2. For an operator A on a mani-

fold with an edge, constructing an elliptic edge problem requires adding boundary
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operators B, coboundary operators C, and a pseudodifferential operator D on the

edge. The solvability of such a problem hinges on the interior ellipticity of A and a

Fredholm condition on its edge symbol, as detailed in [43]. The crux is that for A to

be part of an elliptic edge problem, its edge symbol’s index must vanish in a specific

K-theory element, influenced solely by A’s interior symbol.

Inverse parabolic BVPs via BC method. [48]. In the complex upper half-plane

H, we explore symbol spaces Sµ;ℓ(Rn ×Rq;E, Ẽ) composed of smooth, bounded

functions from Rn ×Rq into L(E, Ẽ), where E and Ẽ are Hilbert spaces. These

spaces, equipped with a topology defined by a seminorm system, include symbols

that are (anisotropic) homogeneous of degree µ . We also define the space of sym-

bols of infinite order, S−∞(Rn ×Rq;E, Ẽ), and extend these definitions to symbols

dependent on spatial variables. Furthermore, classical symbols Sµ;ℓ
cl (Rn ×Rq;E, Ẽ)

comprise a subset characterized by an asymptotic sum of homogeneous components.

Similarly, for the Volterra property in symbols, we define Sµ;ℓ
V (Rn ×H;E, Ẽ) empha-

sizing operators analytically extendable into the complex plane’s interior, alongside

corresponding definitions for pseudodifferential operators. Parabolic symbols and

operators within this framework are distinguished by their parameter-dependent

ellipticity. This detailed symbolic structure underpins the analysis of operators on

manifolds, particularly emphasizing the treatment of elliptic and parabolic types in

various contexts. Essential to this theory is the notion of parabolicity for operators

in manifolds with edges, as encapsulated in [13], where both the interior symbol’s

parabolic nature and the edge symbol’s invertibility criterion play crucial roles.

2.3 Proofs on BC method extensions

2.3.1 Proof on BC for elliptic problems

2.3.1.1 Facts to be used in the proof

All definitions/facts included in the following itemized lists are from [43].

Graded Algebra and Principal Symbol
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[D0] For a manifold M with a C∞ structure densely defined on a subset M◦, the

algebra Di f f (M◦) includes all differential operators with smooth coefficients

on M◦. A subalgebra D ⊂ Di f f (M◦) is defined by selecting operators based

on their behavior near the singularity set M\M◦, emphasizing the algebra’s

responsiveness to the manifold’s singular and non-singular regions.

[D1] We define D with an order-based filtration: {0}=D−1 ⊂D0 ⊂D1 ⊂ ·· ·. This

leads to the formation of the associated graded algebra gr D=
⊕

∞
j=0D j/D j−1,

where grkD isolates symbols of operators precisely of order k, thus segregating

different order effects.

[D2] The principal symbol of an operator D in Dk, noted as Σk(D), abstracts the

operator’s highest-order impact by projecting D to grkD through the map

Σk : Dk → grkD. This operation discards lower-order influences, highlighting

the core action of D.

[D3] Globally, utilizing a partition of unity to ”glue” these local correspondences

together, while carefully selecting invertible pseudodifferential operators to

circumvent topological obstructions, allows for the extension of local algebraic

and geometric properties of D across the entire manifold M.

Localization of Principal Symbol and Monomorphism

[L0] Let the stretched manifold M be a compactification and extension of the sin-

gular space M, which ”stretches” over the singular points of M, effectively

smoothing out the singularities. The subspace C∞(M)⊂C∞(M) acts as a nat-

ural subalgebra within D, with the commutation relation [C∞(M),Dk]⊂Dk−1

indicating that C∞(M) effectively operates on the graded algebra grD, render-

ing each grkD a C∞(M)-module, where the left and right actions coincide.

[L1] Localization at a point x ∈M targets the action of D’s operators at x. This

process uses the maximal ideal Ix ⊂C∞(M), comprised of functions zero at x,

to adapt the algebra to local considerations.
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[L2] Through localization, each operator D’s principal symbol, Σk(D), is repre-

sented at x by σx(D), determined via Σkx = grkD/IxgrkD. This representation

captures the operator’s highest-order behavior near x, effectively tying alge-

braic properties to manifold’s topology.

[M1] The monomorphism induced by mapping π : grkD → ∏x∈MΣkx, with each

πx : grkD → Σkx acting as a natural projection, ensures that the set of local

representations {σx(D)} uniquely identifies the principal symbol of D, thereby

establishing a direct link between the algebra’s elements and their manifesta-

tions across M.

Scaling for Localized Behavior

[S1] To discern the influence of D at x, scaling transformations gλ for λ ∈ R+

adjust D for local behavior analysis. The limit Dx = limλ→∞ λ−m(g∗
λ
)−1Dg∗

λ
u,

for u ∈C∞
0 (Kx) and excluding x for singular points, showcases D’s localized

impact, correlating with σx(D).

Fundamental Relationship

[T1] The relationship σx(D) 7→ Dx is both 1-1 and multiplicative, highlighting the

principal symbol’s role in unveiling D’s essence in a localized context. This

interplay, facilitated by the monomorphism in [M1] and the scaling process in

[S1], deepens our comprehension of differential operators’ localized effects,

affirming the algebra D’s adaptability and the continuity of its application

across M.

Edge Symbols

[E1] Edge symbols, represented as D(x;ξ ), act on the specific weighted Sobolev

spaces Ks
γ(KΩ), which are constructed by gluing weighted and standard

Sobolev spaces across different regions of the cone KΩ. Ks
γ(KΩ) is an adap-

tation for cone structures of the abstract wedge spaces Ws(M;KΩ). The
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connection between the algebraic structure of edge symbols and Ws(M;KΩ)

underlies the continuity and scaling properties essential for the functionality of

edge-degenerate pseudodifferential operators within the Ws(M;KΩ) spaces.

Quantization

[Q1] The exact sequence

0 → Jm
γ →Am

γ →Om → 0

delineates the structural relationships in the algebra of quantization for pseu-

dodifferential operators. Here, Jm
γ is an ideal comprising edge symbols, Am

γ is

an algebra of both interior and edge symbols meeting specific compatibility

conditions, and Om consists of interior symbols, enabling a comprehensive

formulation of quantization processes in the context of manifold M.

Calkin Algebra

[A1] Let H denote a Hilbert space, and B(H) the algebra of bounded operators on

H. The set Ã ⊂ B(H), representing zero-order pseudodifferential operators

(ψDO), forms a subalgebra known as the general algebra of zero-order ψDOs

(the general case follows by order reduction).

[A2] A homomorphism σ : Ã → S is defined, mapping Ã into a unital topological

algebra S. This mapping is characterized by σ(A) = 0 if and only if A ∈ K,

where K denotes the ideal of compact operators within B(H).

[A3] The symbol mapping σ induces a well-defined monomorphism σ̃ : Ã/(K∩
Ã) → S, effectively establishing a one-to-one correspondence between the

elements of the Calkin algebra Ã/(K∩Ã) and the elements within S.

[A4] There exists a continuous linear mapping Q : S → Ã, for which σ(Q(s)) = s

for all s ∈ S, making Q the right inverse of σ . This mapping is instrumental

in ensuring that the structure and relational properties between Ã and S are

preserved.
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Edge Morphisms

[EM1] A morphism A of order m and weight γ , represented as an operator matrix

A =
(

A C
B D

)
, includes A as a pseudodifferential operator on M, with B and C

as edge boundary and coboundary operators, and D as a pseudodifferential

operator on the edge X , all of order m and weight γ . The set of such morphisms

is denoted by Morm
γ (M). The interior symbol of morphism A, σ(A), is defined

as σ(A), the interior symbol of the operator A.

2.3.1.2 Lemmas

In the framework of a noncommutative Calkin algebra on a manifold, we deploy

a topos-theoretic approach in accordance to [40]. The internal spectrum models a

C*-algebra’s structure within a sheaf topos, and the external spectrum effectively

translates these algebraic points into a topological structure that can be visualized

as points in a space. It is inferred from [40] that norm convergence in an algebra A

implies topological convergence in the external spectrum ΣextA, as the latter carries

the weak* topology, which respects norm limits. In particular, the topology of the

internal spectrum, which is aligned with weak* features suitable for C*-algebra

structures, is reflected in the external spectrum to maintain mathematical consistency

and meaningful interpretation. Based on this inference the map ε : M → ΣextA,

where εx = δx represents the Dirac measure is meaningful.

The Calkin algebra C on M, defined in [A3], achieves a notion of ’genericity’

through the homeomorphic relation established between M and Σext(C) via the

embedding ε , enriched by a topos-theoretic generalization of spatial isomorphism;

the Gelfand transform Ĉ ∼= C in this context reflects a deep algebraic-geometric

correspondence, emphasizing the continuity and topological equivalence between

M and Σext(C).
Additionally in [40] the broadened perspective on spectrum and space through

sheaf toposes and frames offers the flexibility to rigorously define and use the

external spectrum for non-C*-algebraic structures, if it can be described within a

suitable framework (like a topos or through frame theory). Hence, the algebra S

([A2], [A3]) is eligible for external spectrum. In particular, defining ε : M → Σext(C),
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where εx = δx is the Dirac measure, the continuity of ε and its inverse suggest that

S respects the spatial topology required for an external spectrum; this continuity

ensures that S can be effectively treated as a fibered space over the manifold, akin

to the external spectrum’s behavior over the base space of subalgebras. Also the

algebraic operations within S need to be compatible with the fibered structure; the

monomorphism [A3] and symbol mapping [A2] ensure that S retains algebraic

properties consistent with the Calkin algebra, crucial for its interpretation as an

external spectrum. Of course, an internal spectrum cannot be constructed for S due to

its potentially non-C*-algebra properties, hence S has no explicit Gelfand transform.

Let us note that S in [A2] can refer to either interior or edge symbol algebras

of the edge-degenerate PDOs. However, in what follows, for ease of writing, by

abuse of terminology, we will refer to S as the algebra of principal symbols (standard

ones; not the ones for edge-degenerate operators), instead of the algebra of interior

symbols, as the two essentially coincide.

Lemma 2.3.1. There is a one-to-one correspondence between points on the manifold

M and the external spectrum Σext(S) of principal symbols S, which is related to

differential operators on M.

Proof.

Local Association Through Localization. ([L1], [L2]). For any point x on M,

the process of localization maps the behavior of differential operators at x. This

involves identifying the principal symbols σx(D) for each differential operator D at

x, using maximal ideals Ix comprised of functions that are zero at x.

Global Extension and Correspondence. The monomorphism [M1] expands

these local associations to a global structure within S. It guarantees that the con-

nections between points x on M and their localized algebraic behaviors via σx(D)

correspond to unique maximal ideals in S without overlap. This ensures a one-to-one

correspondence between points on M and maximal ideals in S, summarizing the

differential actions at each point x. □

Lemma 2.3.2. There is one-to-one correspondence between the manifold M and

the external spectrum Σext(C) of the Calkin algebra, Ã/(K∩Ã).
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Proof. By [A3], σ̃ creates a one-to-one correspondence between maximal ideals

in the Calkin algebra and S, preserving their structural and relational properties.

By Lemma 2.3.1 the external spectrum Σext(S) of S and the manifold are in 1-1

correspondence. Therefore, there is one-to-one correspondence between the manifold

and the external spectrum of the Calkin algebra. □

Lemma 2.3.3. The map ε : M→ ΣextS, where εx = δx is the Dirac measure, associ-

ating each point x in the manifold M with a maximal ideal of the external spectrum

ΣextS of the algebra S, is continuous.

Proof. In accordance to the constructions in [40], norm convergence in S implies

topological convergence in the external spectrum ΣextS; as was explained in the

beginning of this section.

Evaluation Map Definition for S. Define evx(σ(D)) for any x∈M and a symbol

σ(D) ∈ S to denote the action of the differential operator D at x, modulo lower order

terms, reflecting the graded nature of S.

Density and Approximation Argument. Given σ(D) ∈ S and any ε > 0, we

utilize the density of D in Ã [D0] to select D′ ∈ D such that σ(D′) approximates

σ(D) in the norm of S, i.e., ∥σ(D)−σ(D′)∥S < ε/3.

Formal Convergence Argument. For a converging sequence xn → x in M, and

considering σ(D′) ∈ S that closely approximates σ(D) in S:

∥σ(D)(xn)−σ(D)(x)∥S ≤
∥∥σ(D)(xn)−σ(D′)(xn)

∥∥
S +
∥∥σ(D′)(xn)−σ(D′)(x)

∥∥
S

+
∥∥σ(D′)(x)−σ(D)(x)

∥∥
S ,

where the continuity of D′ ensures ∥σ(D′)(xn)−σ(D′)(x)∥S → 0 as n → ∞.

Ensuring Continuity. This formulation guarantees that ∥σ(D)(xn)−σ(D)(x)∥S <

ε , affirming the continuity of ε .

Lemma 2.3.4. The map ε : M→ ΣextC, where εx = δx is the Dirac measure, associ-

ating each point x in the manifold M with a maximal ideal of the external spectrum

ΣextC of the Calkin algebra C is continuous.
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Proof. The argument is the same with the one in Lemma 2.3.3 applied to [A] ∈ C,

denoting the action of A modulo compact operators at x in accordance to the algebra’s

quotient structure, instead of σ(D) ∈ S, and with the density argument:

Given [A] ∈ C and any ε > 0, we utilize the density of D in Ã to select D ∈ D
such that [D] approximates [A] in the quotient norm of C, i.e., ∥[A]− [D]∥C < ε/3. □

Lemma 2.3.5. The map ε−1 : ΣextS →M, where εx = δx is the Dirac measure, from

a maximal ideal of the external spectrum ΣextS of the algebra S, to a point in the

manifold M, is continuous.

Proof. In accordance to the constructions in [40], norm convergence in S implies

topological convergence in the external spectrum ΣextS; as was explained in the

beginning of this section.

Sequence of Ideals and Convergence. Assume a sequence of maximal ideals

Mn converges to M in ΣextS. This implies that for every principal symbol σ(D) ∈ S,

the evaluation at Mn (which can be thought of as evaluating σ(D) at the points xn

corresponding to Mn) converges to the evaluation at M (evaluation at the point x

corresponding to M) as n → ∞, i.e.

σ(D)|Mn → σ(D)|M as n → ∞.

Approximation and Density in D. For any σ(D)∈ S and given ε > 0, there exists

an operator D′ ∈D approximating σ(D) within S, such that ∥σ(D)−σ(D′)∥S < ε/3.

This uses the density of D in Ã [D0].

Continuity of σ(D′) and Convergence of Points. Consider xn,x ∈ M corre-

sponding to Mn,M, respectively. The continuity of D′ implies D′(xn)→ D′(x). Since

σ(D′) reflects D′’s highest-order action, this continuity extends to σ(D′), ensuring

that the evaluations σ(D′)(xn) converge to σ(D′)(x) within the algebraic framework

of S.

Ensuring Continuity of ε−1. The convergence σ(D′)(xn)→ σ(D′)(x), due to

the operational continuity of D′ and its approximation of σ(D), ensures that the

spectral convergence Mn → M mirrors as the topological convergence xn → x on M,
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thereby demonstrating the continuity of ε−1. □

Lemma 2.3.6. The map ε−1 : ΣextC →M, where εx = δx is the Dirac measure, from

a maximal ideal of the external spectrum ΣextC of the Calkin algebra C, to a point in

the manifold M is continuous.

Proof. The argument is the same with the one in Lemma 2.3.5 applied to [ f ] ∈ C
instead of σ(D) ∈ S, and with the density argument:

For any [ f ] ∈ C and given ε > 0, there exists an operator D ∈ D approximating

[ f ] within C, such that ∥[ f ]− [D]∥C < ε/3. This utilizes the density of D in Ã [D0].

Lemma 2.3.7. The commutative structure of the differential operators algebra D is

preserved in the algebra of principal symbols S.

Proof. By contradiction, assume the commutative structure of D is not preserved in

S. This would imply a failure in the commutative properties’ transition from D to S.

Commutative Structure of D. The commutative properties of D with respect

to operations involving C∞(M) are detailed in [L0]. The overall architecture of D
mirrors these local commutative behaviors, supported by an order-based filtration

([D1]) and reinforced by employing a partition of unity along with the choice of

invertible pseudodifferential operators to avoid topological obstructions ([D3]).

Preservation of Commutativity in S. Through the monomorphism [M1], local

principal symbols σx(D) are systematically connected to S, preserving local com-

mutative structures globally. The relationship between σx(D) and Dx ([T1]) extends

commutative properties from local to global contexts within S.

Contradiction and Conclusion. The mechanisms ensuring the preservation

of commutativity from D through S, as outlined by the structured mapping [M1],

contradict the assumption of disrupted commutative structures. Therefore, the

commutative structure within D is indeed preserved in the algebra of principal

symbols S. □

Lemma 2.3.8. The commutative structure of the differential operators algebra D is

preserved in the Calkin algebra Ã/(K∩Ã).
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Proof. By contradiction, assume the commutative structure of D is not preserved in

the Calkin algebra. However, by Lemma 2.3.7 the commutative structure within D
is preserved in the algebra of principal symbols S. Hence, the mechanism ensuring

commutativity’s preservation from D through S, and by [A3], to the Calkin algebra,

contradict the assumption of disrupted commutative structures. Therefore, the

commutative structure within D is indeed preserved in the Calkin algebra, Ã/(K∩
Ã). □

Lemma 2.3.9. The algebra of principal symbols S, associated with the differential

operators on the manifold M, satisfies the Ascending Chain Condition (ACC).

Proof. By contradiction, assume that S does not satisfy the ACC. This implies the

existence of an infinite ascending sequence {In} of ideals in S that does not stabilize,

i.e. In ⊂ In+1 for all n and In ̸= In+1.

Local Boundedness of Dx. According to [S1], for each x in M, the operational

impact of Dx is bounded due to scaling transformations, indicating that differential

operators exhibit locally bounded complexity.

Transition of Boundedness from Dx to σx(D). The monomorphism [T1] illus-

trates that each local principal symbol σx(D) directly correlates to the bounded limit

Dx, implying that the complexity of σx(D) is similarly bounded at each point on M.

Connection of Local Symbols σx(D) to Global S. Through the monomorphism

[M1], local principal symbols σx(D) are systematically linked to their global coun-

terparts within S, ensuring the transfer of local bounded complexity to the algebra of

principal symbols S.

Implication of Filtration on Global D and S. The filtration of D as detailed

in [D1] not only organizes differential operators by their order but also enables the

translation of local boundedness observed through Dx and σx(D) to a structured com-

plexity within the global framework of D and subsequently to S. This global structure

of D’s structure is further ensured through the utilization of a partition of unity and

circumventing topological obstruction by selection of invertible pseudodifferential

operators ([D3]).

Contradiction and Conclusion. The inherent bounded complexity of symbols
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in S implies that any ascending chain of ideals in S must stabilize, contradicting the

initial assumption. Therefore, S must satisfy ACC. □

Lemma 2.3.10. The Calkin algebra C = Ã/(K∩Ã) satisfies the Ascending Chain

Condition (ACC).

Proof. By contradiction, assume that the Calkin algebra C does not satisfy the ACC,

leading to an infinite ascending chain of ideals {In}.

Monomorphism and ACC in S. By [A3], σ̃ creates a one-to-one correspondence

between ideals in the Calkin algebra and S, preserving their structural and relational

properties. Since S satisfies the ACC by Lemma 2.3.9, every ascending chain of

ideals stabilizes.

Contradiction and Conclusion. The infinite ascending chain {In} in Ã/(K∩Ã)

would correspond to a similar chain in S through σ̃ , contradicting S’s ACC property.

The contradiction confirms our initial assumption is false; therefore, the Calkin

algebra must satisfy the ACC. □

Lemma 2.3.11. The Calkin algebra C is a generic algebra, i.e. the embedding

ε : M→ ΣextC, where εx = δx is the Dirac measure, exists and is a homeomorphism,

and the Gelfand transform of C can be given explicitly.

Proof. The Calkin algebra is eligible for application of the paper [40] on construction

of Gelfand transform for noncommutative C∗ algebras, as it contains commutative

subalgebras by Lemma 2.3.8 and it satisfies the Ascending Chain Condition by

Lemma 2.3.10.

The one-to-one correspondence between points on M and maximal ideals

in the external spectrum of the Calkin algebra C is given by Lemma 2.3.2. The

continuity of the embedding ε and its inverse ε−1 is given by Lemmas 2.3.4 and

2.3.6, respectively.

The link between external and internal spectrum as given in [40] allows for the

explicit construction of Gelfand transform. □
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Lemma 2.3.12. The algebra S of principal symbols is a generic algebra, i.e. the

embedding ε : M → ΣextS, where εx = δx is the Dirac measure, exists and is a

homeomorphism.

Proof. The one-to-one correspondence between points on M and maximal ideals in

the external spectrum of algebra S are given by Lemma 2.3.1.

The continuity of the embedding ε and its inverse ε−1 are given by Lemmas

2.3.3 and 2.3.5, respectively. □

Lemma 2.3.13. The coordinatization of the manifold can be given via the Gelfand

transform of the Calkin algebra.

Proof. By Lemmata 2.3.11 and 2.3.12 the manifold is homeomorphic to the external

spectrum of the Calkin algebra and the external spectrum of the algebra of principal

symbols S, respectively. Hence, the external spectrum of the Calkin algebra and the

external spectrum of S are also homeomorphic. Given that, as S is not eligible for an

internal spectrum, whereas the Calkin algebra can support both internal and external

spectral analysis, we will use the Calkin algebra for coordinatizing the manifold by

its Gelfand transform. □

Lemma 2.3.14. Given two exact and splitting sequences

0 → J1m
γ → A1m

γ → O1m → 0, (2.3)

0 → J2m
γ → A2m

γ → O2m → 0, (2.4)

and the isometric isomorphism φ : J1m
γ → J2m

γ , then O1m is isometrically isomorphic

to O2m.

Proof : We can express A1m
γ and A2m

γ as direct sums due to the exactness and splitting

of the sequences:

A1m
γ = J1m

γ ⊕O1m, (2.5)

A2m
γ = J2m

γ ⊕O2m. (2.6)
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Define a mapping ψ : A1m
γ → A2m

γ where ψ( j,o) = (φ( j),o) for any ( j,o) ∈
A1m

γ . This map ψ is constructed to maintain the structural relationship between A1m
γ

and A2m
γ .

To verify ψ as an isometric isomorphism, we check for linearity, injectivity,

surjectivity, and isometry:

1. Linearity: ψ respects vector addition and scalar multiplication, given its

operation on each component of the direct sum.

2. Injectivity: Assume ψ( j1,o1) = ψ( j2,o2). This leads to (φ( j1),o1) =

(φ( j2),o2). Given φ is an isomorphism, we deduce j1 = j2 and thus ( j1,o1) =

( j2,o2), proving injectivity.

3. Surjectivity: For any ( j2,o2) ∈ A2m
γ , there exists ( j1,o2) ∈ A1m

γ such that

ψ( j1,o2) = (φ( j1),o2) = ( j2,o2), indicating surjectivity.

4. Isometry: Since φ is an isometry between J1m
γ and J2m

γ , preserving inner

product structures, the mapping ψ , defined as ψ( j,o) = (φ( j),o), naturally extends

this isometry to A1m
γ and A2m

γ . By applying φ to the J component and directly

transferring the O component, ψ maintains the inner product relations intact across

the entire structure.

Since ψ and φ are isometric isomorphisms between Aimγ ’s and Jimγ ’s, i = 1,2,

then Oim = Aimγ /Jimγ , i = 1,2 are isometrically isomorphic. □

2.3.1.3 Proof of Theorem 2.1.1

We consider two manifolds Mi, i = 1,2 with the same boundary and same boundary

data, i.e. having the same Dirichlet-to-Neumann map.

1. On the two manifolds Mi, i = 1,2, let us consider the following direct

BVPs Pi =

 A

Bi

 , for i = 1,2, where A is our elliptic operator, B1 is the boundary

condition with the input data of the inverse problem, i.e the Dirichlet data, and

B2 corresponds to the output data, i.e. the Neumann data, connected by the given

Dirichlet-to-Neumann map Λ which the two manifolds share.

This is meaningful, as in the static context of elliptic inverse BVPs, both the

input (Dirichlet) and output (Neumann) boundary data are snapshots of the steady
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state, not states in a temporal evolution. Hence, using the output data as boundary

conditions for a conceptual direct problem does not inherently involve reverse

engineering in a temporal sense, because the data does not inherently possess a

”direction” of propagation; unlike the dynamic, time-evolving problem.

2. We will treat the elliptic BVPs Pi, i = 1,2, as edge problems, where the edge

is the boundary and the cone degenerates to R+, interpreted as the inner normal.

By [EM1] an operator A and its edge morphism have the same interior symbol,

i.e. σ(Ai) = Oi, i = 1,2, where Ai ∈ Mor0
γ , and Oi, i = 1,2 denote the interior

symbols of the operator A for the corresponding manifold (they are determined by

the manifold).

3. From [46], Section 3.1.2, Proposition 3 and the comments following it, we

get

Proposition 2.3.15. ([46]) The operator Z = F−1
η→yκ−1(η)Fy→η , where κ is a con-

tinuous groups with the strong operator topology, defines an isometric isomorphism

Z : Ws(Rq, E)→ Hs(Rq, E). (2.7)

Ws is the abstract wedge space defined in [E1], which is equivalent to the

boundary in our case.

Also wedge spaces modelled by {E, κλ},{E, κ̃λ} are isomorphic for any choice

of continuous groups with the strong operator topology. If

Z̃ : Ws(Rq, E)→ Hs(Rq, E)

is the isomorphism of Proposition 2.3.15 related to κ̃λ , then we get the isometric

isomorphism

Z̃−1Z : Ws(Rq, E)→W̃s(Rq, E).

Given the isometric isomorphism between the abstract wedge spaces W s(Rq,E)

and W̃ s(Rq,E) established through this specific isomorphism Z̃−1Z, the edge symbols

D(x;ξ ) on Ks
γ(KΩ) and D̃(x;ξ ) on K̃s

γ(KΩ) are isometrically isomorphic. This is
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because as stated in [E1] Ks
γ(KΩ) is an adaptation of W s(Rq,E) with E = KΩ to

specific geometric configurations, i.e. cones, and both sets of spaces serve analogous

roles in the context of edge-degenerate operators and their symbol calculus (in

particular, these spaces define the domains and codomains for the operators, and

their transformations are dictated by similar structural and functional principles).

4. Applying Lemma 2.3.14 for sequences described in [Q1], and using 3. we

conclude that the interior symbols of the manifolds are isometrically isomorphic.

5. By Lemma 2.3.13 the coordinatization of the manifold can be given via the

Gelfand transform of the Calkin algebra.

Hence, the two manifolds are isometrically isomorphic. □

2.3.2 Proof on BC for parabolic problems

2.3.2.1 Facts to be used in the proof

All definitions/facts included in the following itemized list are from [43].

Parabolic Symbols and Volterra Operators

[P1] A symbol a∈ Sµ;ℓ
V (Rn×Rn×H;E, Ẽ) is parabolic if it demonstrates parameter-

dependent ellipticity within Sµ;ℓ(Rn ×Rn ×H;E, Ẽ), ensuring crucial analyti-

cal properties over H necessary for temporal dynamics in parabolic differential

equations. Here, µ denotes the order, ℓ the degree of homogeneity, and E, Ẽ

represent Hilbert spaces.

[P2] A Volterra operator A(λ ) ∈ Lµ;ℓ
V (cl)(X ;H;E, F) qualifies as parabolic when it

satisfies parameter-dependent ellipticity within Lµ;ℓ
(cl)(X ;H;E, F). This class

of operators, emerging from symbols exhibiting the Volterra property, is spe-

cialized for equations typified by temporal parameters, aligning with parabolic

equation characteristics.

[P3] The sequence of principal symbols for Volterra operators is exact and splits as

follows:

0→Lµ−1;ℓ
V cl (X ;H;E, F)

ι→Lµ;ℓ
V cl(X ;H;E, F)

σ
µ;ℓ
ψ→ S(µ;ℓ)

V ((T ∗X×H)\0, Hom(π∗E, π
∗F))→ 0
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Here, σ
µ;ℓ
ψ denotes the principal symbol, π∗ refers to the pull-back associated

with the projection π , and S(µ;ℓ)
V represents the space of anisotropic homoge-

neous functions of degree µ that are analytic within H.

2.3.2.2 Proof on Theorem 2.1.2

Through [P1] and [P2] Volterra operators’ parabolicity is linked with parameter-

dependent ellipticity, hence we resort to the solution for inverse elliptic BVPs in

Section 2.3.1.3. Theorem [P3] is required at step 4 to ensure that symbols are

isomorphic to the Calkin algebra of the operators. □

2.4 The Calderon Problem
While the edge calculus contains all “standard” elliptic BVPs for differential oper-

ators, the result holds as long as there is no obstruction to ellipticity. Obstruction

to ellipticity is expressed as obstruction to the existence of Fredholm problems

for a given operator, or equivalently as obstruction to the existence of Fredholm

operators with a given interior symbol. It often happens that even though the interior

symbol of an edge-degenerate operator is elliptic, the edge symbol is not invertible

and the operator fails to be Fredholm. For the edge problem corresponding to the

Calderon problem we will create a new edge symbol, by adding some “boundary

and “coboundary” operators concentrated at the edge, which will offer to the edge

symbol maximum domain of invertibility.

2.4.1 Proof of Theorem 2.1.3

Finding out the cases for which the edge problem for the Calderon problem can be

made Fredholm, indicates the cases for which the uniqueness argument of section

2.3.1.3 applies. The following Lemma directly makes use of the analysis of [43],

Section 6.1.1 for Fredholmness of the Laplace operator, as it turns out the problem

is essentially reduced to that of the Laplacian for σ ̸= 0 and locally flat near the

boundary manifold.

Lemma 2.4.1. The operator Cald corresponding to the multidimensional Calderon
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problem on a manifold M

Cald ≡ div(σ∇) : Ws,γ(M)→Ws−2,γ−2(M),

where σ is the conductivity, can be made Fredholm through conversion to an edge

problem via addition of boundary and coboundary operators, for γ ̸= 1
2 ,

3
2 .

Proof.

1. Operator expressed in local coordinates. Consider local coordinates x =

(r,x1,x2, . . . ,xn−1) near the boundary, with r normal to the boundary and xi tangential.

The Calderón operator in local coordinates is:

div(σ(x)∇u) =
1√
|g|

∂i

(√
|g|gi j

σ(x)
∂u
∂x j

)

Suppose the manifold is locally flat near the boundary, which means simplifying

the metric tensor to approximately an identity matrix; hence, gi j ≈ δi j and |g| ≈ 1.

Under this assumption, the Calderón operator can be simplified to:

div(σ(x)∇u)≈ ∂

∂ r

(
σ(x)

∂u
∂ r

)
+

n−1

∑
i=1

∂

∂xi

(
σ(x)

∂u
∂xi

)

where the divergence and gradient are reduced to their Euclidean forms.

2. Edge symbol of the operator. The edge symbol for an operator is derived

by applying a Fourier transform to the tangential derivatives of the operator in

local coordinates. As a pseudodifferential operator, the edge symbol is primarily

concerned with capturing the leading-order behavior of the operator, particularly

in a high-frequency domain; hence, as mixed derivatives do not contribute to the

highest-order terms in this context, the focus is on pure higher-order derivatives.

Therefore, in the Fourier-transformed space, the edge symbol of the operator

Cald becomes

σ∧(Cald)(ξ ) = σ(x)(
∂ 2

∂ r2 −∥ξ∥2),

where ∥ξ∥2 = ξ 2
1 +ξ 2

2 + . . .+ξ 2
n−1 is a multi-dimensional frequency variable, with



2.4. The Calderon Problem 49

ξi the Fourier dual variables corresponding to the tangential coordinates xi.

Hence, the foundational structure of the edge symbol corresponding to the

Calderón problem retains a consistent format regardless of the specific form of

conductivity σ(x), be it constant, linear, radial, polynomial, harmonic, exponential,

etc.

3. Adjoint operator of the edge symbol. For test functions f ,g ∈ C∞
0 (R+×

Rn−1), we apply integration by parts, focusing on the radial derivative:

∫
R+×Rn−1

σ(x) f ·
(

∂ 2g
∂ r2 −

n−1

∑
i=1

ξ
2
i g

)
dr dx =−

∫
R+×Rn−1

σ(x)
∂ f
∂ r

· ∂g
∂ r

dr dx

The adjoint calculation involves ’reversing’ the differential operation in the

radial direction while keeping the tangential frequency components:

−
∫
R+×Rn−1

σ(x)
∂ f
∂ r

· ∂g
∂ r

dr dx =
∫
R+×Rn−1

σ(x)

(
∂ 2 f
∂ r2 −

n−1

∑
i=1

ξ
2
i f

)
·gdr dx

This equation suggests that the adjoint family

σ∧(Cald)(ξ )∗ : K2−s,2−γ(R+)→K−s,−γ(R+),

on C∞
0 (R+) retains the same structure as the original edge symbol σ∧(Cald)(ξ ).

4. Homogeneity of the edge symbol. To study the invertibility of the edge

symbol in the spaces

σ∧(Cald)(ξ ) : Ks,γ(R+)→Ks−2,γ−2(R+),

it suffices to study the invertibility of σ∧(∆)(ξ ) at the normalized scale |ξ |= 1, and

then extend the result to all ξ ̸= 0 across the entire domain by scaling, due to the

principle of homogeneity of the edge symbol.

5. Kernel and cokernel of the edge symbol. The kernel of the edge symbol is

σ∧(Cald)(ξ )u = σ(x)(
∂ 2u
∂ r2 −

n−1

∑
i=1

ξ
2
i u) = 0.
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For the case of spatially varying conductivity σ(x) ̸= 0 we get the equation

∂ 2u
∂ r2 −

n−1

∑
i=1

ξ
2
i u = 0.

whose general solution is:

u(r,ξ1,ξ2, . . . ,ξn−1) =C1er
√

∑
n−1
i=1 ξ 2

i +C2e−r
√

∑
n−1
i=1 ξ 2

i .

To be part of the kernel, the solution u must be integrable over R+. Given that

the term er
√

∑
n−1
i=1 ξ 2

i grows exponentially as r increases (particularly for ∑
n−1
i=1 ξ 2

i ̸= 0),

integrability requires that the coefficient C1 associated with this term must be zero to

prevent the function from becoming unbounded as r → ∞. Therefore, the kernel for

the Calderón problem’s edge symbol has a one-dimensional kernel spanned by

u = e−|ξ |r. (2.8)

Cokernel, i.e. the kernel of the adjoint edge symbol,

σ∧(∆)(ξ )∗ : K2−s,2−γ(R+)→K−s,−γ(R+),

is also spanned by e−|ξ |r.

The norm Ks,γ(Rn) of a function u is defined as

∥u∥Ks,γ =

(
∑

|α|≤s

∫
Rn

r−2γ |Dαu|2 dr dξ

)1/2

,

where Dα represents derivatives up to order s with respect to both the radial variable

r and the angular variables ξ within the multi-index α . To avoid singularities at r = 0,

the combined exponent on r from r−2γ and the derivatives should be greater than −1.

Hence, for the function u(r,ξ1, . . . ,ξn−1) = e−r|ξ |, the integral’s convergence relies

on the term ∫
Rn

r−2γrk|ξ |ke−2r|ξ | dr dξ ,
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where k is the degree of r in Dαu. Therefore the condition k−2γ >−1 must hold

for the smallest k (i.e., k = 0), thus

γ <
1
2
.

Hence, the presence of the weight factor r−2γ in the definition of the norm in

Ks,γ(R+) results in the assertion that e−r ∈ Ks,γ(R+) if and only if γ <
1
2

.

On the other hand, for the function u(r,ξ1, . . . ,ξn−1) = e−r|ξ |, the convergence

of ∥u∥K2−s,2−γ relies on the term

∫
Rn

r−2(2−γ)+k|ξ |2ke−2r|ξ | dr dξ ,

where k is the degree of r in Dαu. Therefore the condition −2(2− γ)+k >−1 must

hold for the smallest k (i.e., k = 0), thus

γ >
3
2
.

Hence, the presence of the weight factor r−2(2−γ) in the definition of the norm

in K2−s,2−γ(R+) results in the assertion that e−r|ξ | ∈ K2−s,2−γ(R+) if and only if

γ >
3
2

.

As a result of the above, we conclude that:

Case 1 If γ <
1
2

, then σ∧(Cald)(ξ ) has the one-dimensional kernel spanned by the

function (2.8) and the trivial cokernel.

Case 2 If γ >
3
2

, then σ∧(Cald)(ξ ) has the trivial kernel and the one-dimensional

cokernel spanned by the function (2.8).

Case 3 If
1
2
< γ <

3
2

, then σ∧(Cald)(ξ ) is invertible, satisfying both injectivity (trivial

kernel) and surjectivity (trivial cokernel) conditions.

Case 4 If γ =
1
2

or γ =
3
2

, then σ∧(Cald)(ξ ) is not Fredholm. In particular, for γ = 1/2

or (3/2), small alterations on functions belonging to Ks,γ(Rn) might lead to

large deviations onto their images under the edge symbol, causing unexpected
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limit infinities outside the range; thus the requirement for a closed range is not

satisfied.

6. We want to make our edge symbol invertible, i.e. make the equation

σ∧(Cald)(ξ )v = F (2.9)

uniquely solvable by putting finitely many conditions on the solution or the right-

hand side. This is obviously impossible for the non-closed range case 4 (because the

limit of a converging sequence in the domain might map to an element outside the

range, making it impossible to uniquely link elements in the target space back to the

domain), and we will deal only with cases 1 and 2.

6a. Case 1: Integral condition for Unique Solvability for γ <
1
2

.

The point is to restrict the solution space. For example, a global constraint over

the whole solution space, determines the integral condition

B(ξ )v ≡
∫

∞

0
φ(|ξ |r)v(r)dr = g ∈ C, (2.10)

where φ(|ξ |r) ∈C∞
0 (R+) is not orthogonal to e−r

√
∑ i=1n−1ξ 2

i .

The non-orthogonality uniquely imposes a scalar constraint, ensuring that solu-

tions v(r) are solely scalar multiples c of the kernel function. Thus it guarantees the

equation’s unique solvability within the kernel by preventing any arbitrary function

from trivially satisfying it, thereby directly linking each solution v(r) to a unique

scalar c that corresponds with a given g. Hence, the integral condition becomes a

scalar equation for c, and essentially effectively reduces the infinite-dimensional

solution space to a singular dimension defined by a specific scalar c ∈ C.

To show uniqueness, let v1(r) and v2(r) be two solutions of the integral con-

dition for the same g. The difference vd(r) = v1(r)− v2(r) is a solution of the

homogeneous integral condition. As v1(r) and v2(r) are of the form of a scalar

multiplied by the kernel function e−|ξ |r, then so is vd(r). As φ(r) is not orthogonal

to the kernel function, then vd(r) is identically zero, i.e. v1(r) = v2(r).

6a.i. Edge problem by quantization for Cald. The symbol of the Laplace-
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Beltrami operator is quantized by smoothing near ξ = 0 (to ensure that the operator

behaves well, even at low frequencies or near the ”edges” of the domain) and

replacing the multidimensional frequency vector ξ with the corresponding multidi-

mensional differentiation operator −i ∂

∂x , obtaining the following edge problem for

Cald operator for γ < 1
2 :

 Cald u = f ,

Bu ≡ ∫ ∞

0 φ(r[−i ∂

∂x ])u(x)dr = g(x).
(2.11)

6a.ii. Estimates for Cald.

In what spaces will this problem be Fredholm? The spaces in which Cald acts

are clear, and we only need to find the natural space into which the edge boundary

operator B acts. Namely, by Theorem 3.32 of [43]

B(ξ ) ∈ S0
CV (•1, •2),

where S0
CV is the space of symbols of compact fiber variation, and •1 is the space

Ks,γ(R+) equipped with the family of norms ∥ · ∥ξ = ∥|ξ |sκ−1
|ξ | · ∥Ks,γ (R•) and •2 is

the one-dimensional complex space C equipped with the family of norms ∥ · ∥ξ =

|ξ |s+1/2| · |.

By [43], Theorem 3.32, the operator B acts continuously in the spaces

B : Ws,γ(M)→ Hs+1/2(X), X = ∂M.

6a.iii. Edge problem and Fredholmness for Cald. Hence, the operator A

corresponding to our edge boundary value problem acts in the spaces

A =

 ∆

B

 : Ws,γ(M)→
Ws−2,γ−2(M)

⊕
Hs+1/2(X)

. (2.12)

This operator is Fredholm; this follows from the general finiteness theorem [43],
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Theorem 6.19.

6b. Case 1: Condition for Unique Solvability for γ >
3
2

.

To make Eq. (2.9) uniquely solvable, one can equip it, say, with a co-condition

including a numerical unknown µ ∈ C:

σ∧(∆)(ξ )v+µφ(|ξ |r) = F, (2.13)

where φ is the same function as above.

6b.i. Quantizing, we obtain the problem

∆u+Cw = f , (2.14)

where the operator C is given by the formula

Cw = φ

(
r
[
−i

∂

∂x

])
w.

6b.ii. A similar argument shows that the operator A corresponding to this edge

coboundary value problem acts in the spaces

A = (∆ C) :

Ws,γ(M)

⊕
Hs−5/2(X)

→Ws−2,γ−2(M). (2.15)

□



Chapter 3

Polyhedral reconstruction via

Boundary Control method

We study uniqueness of an elliptic Riemannian polyhedron using the elliptic version

for Boundary Control method, which we presented in Chapter 2. We also present

interface detection criteria for hyperbolic Riemannian manifolds through introduction

of the waveguide notion, the four-wave mixing notion, etc.

3.1 Introduction
In continuation of the work [49] where a uniqueness argument via Boundary Control

(BC) method for a hyperbolic Riemannian polyhedron was presented, we proceed to

uniqueness argument of an elliptic Riemannian polyhedron, by extending the elliptic

version for Boundary Control (BC) method, which we presented in Chapter 2, i.e.

extending the pseudodifferential cone and edge singularities algebra that were used

there.

The category of manifolds with singularities, denoted as Mk, includes M0 for

C∞ manifolds and progresses to higher orders representing more complex singulari-

ties, such as conical or edge singularities. This hierarchy allows for the definition

of Mk+1 manifolds iteratively from Mk. Manifolds within Mk support a natural

differential operators algebra, characterized by principal symbolic hierarchies and

ellipticity concepts. Prior research, including [50], [51], and [52], illustrates that

advancing from level k to k+1 in manifold analysis entails leveraging the parameter-
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dependent calculus of the preceding level, enriched by index theory and additional

insights, challenging the notion of a simple inductive approach from k to k+1. This

complexity necessitates a detailed examination beyond mere induction, as suggested

by [53]. Hence, we prove

Theorem 3.1.1. The BC method can provide a uniqueness argument for an elliptic

Riemannian polyhedron.

Furthermore, for the reconstruction of hyperbolic Riemannian polyhedron

problem, we use the reconstruction per compartment choice; hence we resort to

papers solving the problem in smooth manifolds, and we add interface and vertex

detection conditions in the case of different wave types and different media. For

interface detection we try to find a condition equivalent to Snell’s law but for

perpendicular interface incidence.

Hence, we show that

Theorem 3.1.2. For electromagnetic waves in isotropic dielectric media

(i) The amplitude transmission and reflection coefficients constitute conditions for

interface detection.

(ii) Coupled mode equations constitute a vertex detection criterion.

(iii) For polyhedron with multiple interfaces meeting at a vertex, the RC filter, i.e. a

multi-directional coupler, can constitute a vertex detection criterion.

Theorem 3.1.3. For electromagnetic waves in anisotropic non-linear media, e.g. a

crystal, the four-wave-mixing constitutes a vertex detection criterion.

Theorem 3.1.4. For acoustic waves in fluid media

(i) the intensity transmission and reflection coefficients constitute conditions for

interface detection.

(ii) The directional coupler with multiple transmission line matrices constitutes a

vertex detection condition.
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3.2 Reconstruction of an Elliptic Riemannian

Polyhedron

3.2.1 Algebra description

The iterative construction of higher singularities. [53], Section 10.3.1.

In their work, Calvo, Martin, and Schulze [54] introduce the category Mk for

singularity-ordered spaces. A space M is part of this category if it progressively

subtracts submanifolds Y , starting from a non-singular manifold (M0), through to

manifolds with singularities of order k−1. Specifically, for a space M to belong to

Mk, it must, after excluding a submanifold Y , fall within Mk−1. Furthermore, the

dimensions of Y indicate the nature of the singularity—zero dimensions imply a

corner, while higher dimensions suggest an edge.

By deductive method, in [3] is established a hierarchy of C∞ submanifolds

Y (l) within M, leading to a decomposition of M into a sequence where each M( j)

comprises submanifolds of decreasing singularity order, forming smooth edges of

varying dimensions within M.

Adequate differential operators of order µ for spaces within Mk are denoted by

A ∈ Diffµ

deg(M), and are uniquely characterized by their behavior on non-singular

portions of M and near singular edges, with the latter described by a specialized

formula involving the radial derivative and smooth coefficients.

The concept of a principal symbolic hierarchy σ(A) for these operators is

introduced, capturing the traditional homogeneous principal symbol for non-singular

parts of M and extending it across the singularity order spectrum to describe the

behavior of A in relation to singular edges, culminating in a family of operators

defined for the conical model space.

Higher generations of weighted corner spaces. [53], Section 10.5.1.

In the study of manifolds with complex singularities, the focus is on defining

and understanding weighted Sobolev spaces, which are essential for modeling the

manifold’s geometric and analytic properties. These spaces, denoted as Ks,γ(X∧) for
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compact manifolds X within a set Mk, and Ws,γ(X∧×Rq), serve to encapsulate the

behaviors near singularities through the incorporation of weight tuples γ ∈ Rk.

Manifolds M are connected through a hierarchy of subspaces M( j), transition-

ing from complex structures to more simplified ones, ultimately allowing for an

analytical framework that accommodates the manifold’s singular characteristics. The

construction of weighted Sobolev spaces is iteratively defined, starting from stan-

dard Sobolev spaces for k = 0 scenarios and extending to weighted cone and edge

spaces for manifolds with conical singularities or smooth edges, respectively. These

definitions rely on stretching the manifold to fit the model spaces, with Hs,γ(M) and

Ws,γ(M) being particular instances.

A remarkable aspect of these spaces is their invariance under natural chart

transformations, facilitating the application across various manifold settings. More-

over, the transition to analyzing manifolds by directly addressing their singular

nature, rather than their stretched counterparts, simplifies the notation and theoretical

underpinnings, as illustrated by replacing Hs,γ(M) with Hs,γ(M).

The iterative process is further elucidated through the use of group isomor-

phisms, which underpin the local modeling near singular points and the seamless

connection between local and global perspectives on the manifold. This leads to a

comprehensive framework that not only addresses the manifold’s inherent complexity

but also provides a methodological basis for exploring weighted corner spaces in

higher-dimensional settings.

Lastly, the theory accommodates both compact and non-compact manifolds,

allowing for a broad application spectrum. This includes the consideration of

manifolds as countable unions of compact sets and the introduction of spaces like

Hs,γ
(comp)(M) and Hs,γ

(loc)(M), which are tailored to handle the nuances of manifold

structures with varying degrees of compactness.

Additional edge conditions in higher corner algebras. [53], Section 10.5.2.

As we saw in Chapter 2 to extend an elliptic operator A into a Fredholm operator

across Sobolev spaces, formulating additional boundary conditions is essential,

particularly by enhancing the boundary symbol into a set of isomorphisms. This may
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necessitate introducing vector bundles J± on the boundary, even for scalar operators,

and applying to operators between distributional sections of vector bundles E and F

to achieve Fredholm operators.

For manifolds with edges, an edge-degenerate operator A necessitates supple-

menting the principal edge symbol σ∧(A) to transform it into a 2×2 block matrix of

isomorphisms for suitable vector bundles J±. This process involves detailed construc-

tions based on the bundles Ey and Fy derived from projecting vector bundles over the

manifold’s singularities and adjusting for admissible weights, which influence the

choice of J± bundles.

Operators are considered Fredholm when they meet ellipticity conditions related

to the edge algebra, signified by the bijectivity of the augmented edge symbol for

all off-zero cotangent vectors. The Fredholm operators are then represented as

2×2 block matrices connecting Sobolev spaces associated with the manifold and its

boundary, based on specific weight data and the bundles E, F , J−, and J+.

For manifolds featuring hierarchical structure, the focus shifts to weighted

Sobolev spaces associated with each subspace, characterized by their respective

weights and vector bundles. The formulation extends to higher corner operator

spaces, which encompass operators of a specific order and are represented as block

matrices acting on the amalgamated weighted Sobolev spaces. These operators’ el-

lipticity, crucial for their classification as Fredholm operators, is affirmed through the

hierarchical structure of their principal symbols, accommodating both the manifold’s

interior and its corners.

3.2.2 Proof of Theorem 3.1.1

Having created the extension for function spaces and symbols we use the method of

Chapter 2 to prove the Theorem. □
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3.3 Interface and vertex detection conditions for

hyperbolic Riemannian Polyhedron

reconstruction
We give conditions of interface and vertex detection for the reconstruction of a

polyhedron with BC method in the case of different wave types and different media.

3.3.1 Prerequisite facts

3.3.1.1 Riemannian polyhedron

We start with a closed n-dimensional finite simplicial complex

M=
I⋃

i=1

Ω
(i),

where Ω(i) are closed n-dimensional simpleces of M.

We assume that M is dimensionally homogeneous, i.e. any k-simplex, 0 ≤
k < n, of M is contained in at least one Ω(i). We assume also that any (n− 1)-

dimensional simplex γ belongs either to two different n simpleces, Ω(i) and Ω( j),

which, in this case, we often denote by Ω− and Ω+, or to one n simplex Ω(i). In

the former case we call γ an interface (sometimes (n− 1)-dimensional interface)

between Ω− and Ω+, in the latter case we call γ a boundary (n−1)-simplex, with

(n−1)-simpleces having this property making the boundary ∂M.

We denote by Mk,0 ≤ k ≤ n, the k-skeleton of M which consists of all k-

simpleces of M, with the differential structure on each k-simplex determined by its

barycentric coordinates. Clearly, M=Mn.

3.3.1.2 Boundary Control (BC) method for hyperbolic problems

The Boundary Control method (BCm), as elaborated e.g. in [55], offers a three-step

process to construct a manifold that matches given data, involving defining input and

state spaces (F and H, respectively), an input/state map W , and an input/output map

R that serves as the inverse data.
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1. Coordinatization: Attach coordinates to each point in a manifold Ω, derived

from state space H, to create a metrically equivalent set Ω̃ based on reachable states

and the mapping W .

2. Model Construction: Use data R to determine inner products in the input

space F , leading to an auxiliary space H̃ and mapping W̃ , which together form a

model isometric to the original system’s controllable part.

3. Replication of Ω̃: By mimicking the coordinatization step with model states,

replicate Ω̃, ensuring it is metrically and structurally identical to the original Ω.

Our metric is non-smooth between the polyhedron compartments. However, by

smoothing u with respect to time t, we can extend it to non-smooth solutions, see e.g.

[56].

3.3.2 Electromagnetic waves in isotropic dielectric media

The material of this section is from [57].

3.3.2.1 Interface detection

We examine interactions of plane electromagnetic (EM) waves at the interfaces

between two non-absorbing, isotropic, and homogeneous media. These media are

characterized by their permittivity and permeability values denoted (ε1,µ1) and

(ε2,µ2), for media 1 and media 2 respectively. Let Ei and Hi, i = 1,2,3 be the

electric and magnetic fields associated with the incident, the refracted, and the

reflected waves, respectively. Let the incidence plane be the xz- plane. Let θ1,θ2

and θ3 be the angles of incidence, transmission/refraction, reflection, respectively,

and k1,k2 and k3 the propagation vectors along the incidence direction, the refracted

direction and the reflected direction, respectively.

Wave polarization at these interfaces is categorized into: P-polarized waves,

where the magnetic field H⃗ is perpendicular to the incidence plane, also recognized as

TM-polarized; and S-polarized waves, where the magnetic field lies within the inci-

dence plane, hence termed TE-polarized. The amplitude transmission and reflection
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coefficients for both TM- and TE-polarized waves are defined as

t =
E2

E1
, (3.1)

and

r =
E3

E1
, (3.2)

indicating the wave amplitude ratios.

A lemma pertaining to normal incidence reveals that the amplitude transmission

and reflection coefficients for TE- and TM-polarized waves are given, respectively,

by

rp = rs =
n1 −n2

n1 +n2
, (3.3)

and

tp = ts =
2n1

n2 +n1
, (3.4)

where n1 and n2 are the refractive indices of the respective media. This demonstrates

that, at normal incidence, the coefficients are unaffected by wave polarization.

Proof of Theorem 3.1.2 (i). Following a shortest geodesic, this will be

normal to the interface from both of its sides. Hence we can recover waves up

to a very small part past the interface. We test the recovered values to spot the

ones which satisfy the amplitude reflection and transmission coefficients given in

the above Lemma, i.e. (3.4) and (3.3); these will correspond to the interface points. □

3.3.2.2 Vertex detection

To detect the vertices we introduce waveguides, and make use of their coupling.

For multi-dimensional polyhedron, we use directional couplers. Hence we start by

introducing the relevant notions.

3.3.2.2.1 Waveguides

Total internal reflection (TIR), a principle essential for understanding light behavior

in optical fibers and other waveguide technologies, arises when light transitions
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from a denser medium to a rarer one (n1 > n2), resulting in complete reflection

at the interface without transmission. This is captured for TE-polarized waves

where the critical angle causes cosθ2 to become imaginary, denoted by cosθ2 =

−i
√

n2
1 sin2

θ1

n2
2

−1, indicating the absence of wave transmission across the boundary.

In TIR, the transmitted fields adjust to maintain Ey,Hx,Hz components, with

power flow exclusively parallel to the interface, and no cross-boundary energy

transfer. This is mathematically expressed through wave equations for upward

moving waves in the lower medium, E1 = E0ei(ωt−β z−κx) and E3 = E0ei(ωt−β z+κx),

with β and κ describing wave propagation and boundary interaction.

Introducing two TIR interfaces creates a waveguide, confining the wave between

them and allowing for evanescent decay outside, as shown by E⃗ = Acosκxei(ωt−β z).

3.3.2.2.2 Waveguide Modes

Modes developed include TE Mode, which is a TE-polarized wave guided in a

waveguide, and the TM Mode, guided similarly as a TM-polarized wave. The

waveguides can have different geometries -rectangular, circular, or arbitrary- with

varied refractive index (RI) distribution n(x,y). Specifically, for a planar design, RI

depends on the x-coordinate, assuming the structure is infinitely extended along the

yz-plane. Inhomogeneous wave equations for E and H fields in waveguides are

∇
2E⃗ +∇(

∇n2

n2 · E⃗) = µ0ε0n2 ∂ 2E⃗
∂ t2 , (3.5)

and

∇
2H⃗ +

∇n2

n2 × (∇× H⃗) = µ0ε0n2 ∂ 2H⃗
∂ t2 , (3.6)

respectively. These fields’ variations depend on the waveguide’s RI profile. TE and

TM modes reveal specific field dependence of field components, with TEM mode

equation for Ey being
∂ 2Ey

∂x2 +(k2
0n2 −β

2)Ey = 0, (3.7)

illustrating mode behavior in RI variable waveguides.
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3.3.2.2.3 Mode coupling

We examine the mode coupling phenomenon in axially invariant, uniform waveg-

uides, where separate modes are supported with invariant field patterns during

propagation. Unlike in uniform waveguides, where only the phase of modes changes,

couplers induce variations in mode amplitudes through energy redistribution. This

coupling may occur between modes within the waveguide or involve conversion from

guided to radiation modes. Hence, we study these power redistributions in detail.

Introducing a perturbation to an ideal waveguide facilitates the exchange of energy

between modes, potentially enabling complete conversion from one mode to another

under specific conditions. Mode coupling is a pivotal process that, under certain

circumstances, allows for nearly total energy transfers between specific modes.

A directional coupler enhances mode exchange by facilitating co-directional

coupling of two identical modes. It utilizes the waveguide’s evanescent fields, which

extend beyond the waveguide’s boundaries. Thus, when two waveguides are placed

sufficiently close that their evanescent fields overlap, energy is redistributed between

the guides. With adequate distance, this fundamental power transfer can extend

almost the entire interaction length, making power coupling and decoupling periodic

functions of the interaction length.

The total field of the coupled waveguides, ψ(x,y,z), is expressible as a linear

combination of the individual waveguide modes, ψ1 and ψ2, i.e.,

ψ(x,y,z) = a(z)ψ1(x,y)+b(z)ψ2(x,y), (3.8)

The coupled mode equations are given by

∂a
∂ z

=−i(β1 +κ11)a− iκ12b, (3.9)

∂b
∂ z

=−i(β2 +κ22)b− iκ21a, (3.10)

where β1 and β2 denote the propagation constants of the waveguides’ modes, and

the κ values represent the coupling coefficients.
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Proof of Theorem 3.1.2 (ii). We consider two mathematical waveguides on

two interfaces. The corner which constitutes the meeting point of the interfaces is

going to satisfy the waveguide coupling mode equations; the smoothening of the

metric allows for calculation of the values at the vertex points.. Let us note that we

regard waveguides which have extremely small inter-interfacial area, hence coupled

have again size approximately equal to the interface size. □

3.3.2.2.4 Multiple interfaces meeting at a vertex

The material of this section is in addition to [57], also from [58].

In advancing the application of coupled mode equations to higher dimensions,

it’s essential to employ directional couplers, integral in enabling field interactions

between dual-channel optical waveguides. These couplers facilitate energy transfer

through evanescent mode coupling, leading to dynamic power redistribution between

closely placed waveguides. The interaction is characterized by power tapping and

reciprocal energy exchange, attributed to the overlapping of external fields via

evanescent mode coupling. This process underpins the theoretical framework for

analyzing power exchange between two waveguides, further elaborated through

coupled mode equations.

Specifically, if we consider waves in two parallel waveguides with expressions

a(z) = a0e−iβ z,

b(z) = b0e−iβ z, (3.11)

the resulting power in each waveguide can be respectively described as

|a(z)|2 = 1− κ2

1
4∆β 2 +κ2

sin2{
(√

1
4

∆β 2 +κ2

)
z}, (3.12)

|b(z)|2 = κ2

1
4∆β 2 +κ2

sin2{
(√

1
4

∆β 2 +κ2

)
z}. (3.13)
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This mathematical formulation is crucial for understanding the variation of power

along the z-axis in the waveguides.

Furthermore, an RC filter, constituted of multiple directional couplers and delay-

line sections, acts as an add-drop filter. This arrangement can be mathematically

represented through the multiplication of transmission matrices corresponding to

each coupler and delay-line section. The transmission matrix for an N-stage RC

filter is denoted as Y1

Y2

= Tc(LN+1) · · ·TMZTc(L2)TMZTc(L1)

 X1

X2

 , (3.14)

with TMZ and Tc representing the transmission matrices for the delay-line section

and the coupler, respectively.

Proof of Theorem 3.1.2 (iii). So many stages should be added to the direc-

tional coupler as the number of interfaces that meet at a vertex minus 1. Then the

directional coupler will perform coupling of the waveguides corresponding to these

interfaces, and when this value is recovered this will indicate the vertex is detected. □

3.3.3 Electromagnetic waves in anisotropic non-linear media

The material of this section is from [59].

3.3.3.1 Crystal detection

For the crystal lattice we need to detect the vertices, i.e. interface is not relevant. We

use the four-wave mixing formula as the condition for checking for a vertex. First

we use z-scan for third order nonlinearity susceptibility, which is necessary for the

four-wave mixing formula -we describe it in the appendix.

3.3.3.1.1 Four-wave-mixing

In four-wave mixing, three monochromatic pump fields of frequencies ω1,ω2, and

ω3 interact within a medium characterized by its third-order nonlinear susceptibility

to produce a polarization P(3)
NL (ωs) at the mixed frequency ωs = ω1 ±ω2 ±ω3. This
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generates a signal field at ωs, propagating in the z-direction through a cubic or

isotropic nonlinear optical medium. Under assumptions such as plane monochro-

matic fields, undepleted pump fields, and signal propagation along the z-direction,

the signal field’s evolution, based on slowly varying envelope approximation, is

governed by the differential equation

dEs

dz
=− iω2

s µ0ε0

2ks
χ
(3)
e f f E1(z)E2(z)E3(z)e−i(∆k̄·ŝz)z, (3.15)

where χ
(3)
e f f is the third order nonlinear susceptibility and ∆⃗k = k⃗s − k⃗1 − k⃗2 − k⃗3

represents the phase mismatch. Integration of this equation, given the initial condition

Es(z = 0) = 0, leads to the signal field expression:

Es(z) =
ω2

s µ0ε0

2ks(∆⃗k · êz)
χ
(3)
e f f E1(0)E2(0)E3(0)

sin
(
(∆⃗k·êz)z

2

)
(
(∆⃗k·êz)z

2

)


2

, (3.16)

highlighting that maximum signal intensity is achieved when the phase matching

condition ∆k = 0 is satisfied. In a special case where the signal and one of the pump

fields are degenerate (ωs = ω3), the signal field grows exponentially with distance,

characterized by gain or loss, as described by

Es(z) = Es(0)exp(gsz), (3.17)

where gs(z) represents the gain or loss coefficient, emphasizing the controlled ampli-

fication or attenuation of the signal field through phase management in the nonlinear

medium.

Proof of Theorem 3.1.3. We consider the case ωs = ω3 above, where E3

represents the normal geodesic on the vertex. We use Z-scan to get the third order

nonlinear susceptibility, which is necessary for the four-wave mixing equation (3.17).

The points on the normal geodesic that satisfy (3.17) indicate a vertex. □

3.3.4 Acoustic waves in fluid media

The material of this section is from [60].
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The conditions for the interface detection use the pressure transmission and

reflection coefficients. For the vertices, we use waveguiding, and an acoustic trans-

mission line direction coupler.

3.3.4.1 Interface detection

Regarding the propagation of acoustic waves across fluidic media interfaces, the

process involves calculating the transmission and reflection coefficients for pressure

waves. This calculation is crucial for understanding acoustic transmission lines or

waveguides in various media. When an acoustic wave transmits from one medium

to another, a portion of its energy is transmitted through the new medium while the

remainder is reflected. This principle applies regardless of the medium being solid

or fluid. In the case of lossless fluid media and planar waves, the complexity of this

phenomenon is reduced. The fundamental equations for pressure p and velocity u in

acoustic wave propagation are represented as p(x, t)

u(x, t)

= Re

 p+(s) p−(s)
p+(s)

z0

−p−(s)
z0


 e−sx/c

esx/c

est

 , (3.18)

where z0 denotes the characteristic impedance. For a planar wave encountering a

fluidic interface, the intensity transmission and reflection coefficients, TI and RI , are

used to quantify the energy distribution process. These coefficients are defined as

TI =
4(Z2/Z1)

[(Z2/Z1)−1]2
(3.19)

and

RI = [
(Z2/Z1)−1
(Z2/Z1)+1

]2, (3.20)

highlighting the role of characteristic impedances Z1 and Z2 in determining the

wave’s behavior at the interface. The boundary conditions, including equal acoustic

pressure and the continuity of particle velocities across the interface, ensure material

coherence and facilitate the precise analysis of wave interactions at media boundaries.

This framework simplifies the complex phenomena associated with acoustic wave

transmission and reflection, aiding in the understanding of acoustic wave behavior in
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different media.

Proof of Theorem 3.1.4 (i). Following a shortest geodesic, this will be normal

to the interface from both of its sides. Hence we can recover waves up to a very

small part past the interface. We test the recovered values to spot the ones which

satisfy the transmission and reflection coefficients, i.e. (3.19) and (3.20) in the above

Lemma; these will correspond to the interface points. □

3.3.4.2 Vertex detection

Proof of Theorem 3.1.4 (ii). The acoustic multi-stage directional coupler with as

many transmission matrices as the number of interfaces meeting at a vertex minus

1, obeys the same equation (3.14) as the one for the electromagnetic case, with the

acoustic transmission line equations (3.18) replacing the electromagnetic ones. □



Chapter 4

Electrical impedance tomography

revisited

In this Chapter we present a novel EIT algorithm. The algorithm involves the

following steps (all relevant equations are derived below):

1. Using the given Dirichlet and Neumann data, we calculate uz on the boundary via

Eq. (4.14).

2. From Eq. (4.30), we calculate v̂ numerically; the RHS can be calculated from Eq.

(4.19) using Eq. (4.14).

3. From Eq. (4.22), we find uz, using v̂ and the calculated RHS of (4.30).

4. We numerically integrate uz to find u.

Notation
• Let z,ζ ,h,η ,k, be complex variables,

z = z1 + iz2, ζ = ζ1 + iζ2, h = h1 + ih2, η = η1 + iη2, k = k1 + ik2,

where z j,ζ j,h j,η j,k j, j = 1,2 are real variables.

• Bar will denote complex conjugation.

• ∂Ω will denote the boundary of the two-dimensional domain Ω.

• For simplicity of notation, f (z) will denote f (z,z), i.e f (z) means that f is a
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function of the two independent variables z1 and z2.

Basic Formulas

This work makes crucial use of the following formulas, known as Pompeiu’s formu-

las, for the complex-valued continuously differentiable function f (z):

f (z) =
1

2iπ

∫
∂Ω

f (ζ )
ζ − z

dζ − 1
π

∫∫
Ω

∂ f (ζ )

∂ζ

dζ1dζ2

ζ − z
, z ∈ Ω, (4.1)

f (z) =− 1
2iπ

∫
∂Ω

f (ζ )

ζ − z
dζ − 1

π

∫∫
Ω

∂ f (ζ )
∂ζ

dζ1dζ2

ζ − z
, z ∈ Ω, (4.2)

In the particular case of f (z) = 1/(z−z0), equation (4.1) suggests the following

important identity:
1
π

∂

∂ z
1

z− z0
= δ (z− z0), z,z0 ∈ C. (4.3)

Indeed, as the boundary ∂Ω of the clopen Ω ≡ C is the empty set, the first integral

on the right-hand side of (4.1) vanishes, and (4.1) implies (4.3) by virtue of the

definition of the δ -function.

4.1 A simple re-derivation of the basic equations of

EIT

Let the real-valued function u(z) satisfy the PDE

uzz = qu, (4.4)

where q(z) is a real-valued function.

Letting in (4.1) f = e−ikzuz, and employing (4.4), equation (4.1) becomes

uz(z) =
1

2iπ

∫
∂Ω

eikz−ikζ uζ (ζ )
dζ

ζ − z
− 1

π

∫∫
Ω

eikz−ikζ (qu)(ζ )
dζ1dζ2

ζ − z
, k ∈ C,z ∈ Ω.

(4.5)
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Letting in (4.2) f = eikzu, we find

u =− 1
2iπ

∫
∂Ω

e−ikz+ikζ u(ζ )dζ

ζ − z
− 1

π

∫∫
Ω

e−ikz+ikζ uζ (ζ )
dζ1dζ2

ζ − z
, k ∈ C,z ∈ Ω.

(4.6)

Replacing in (4.6) uζ (ζ ) via (4.5) we find the following:

u =− 1
2iπ

∫
∂Ω

eik(ζ−z)u(ζ )
dζ

ζ − z
+

1
2i

∫
∂Ω

Gk(z,η)uη(η)dη −
∫∫

Ω

Gk(z,η)(qu)(η)dη1dη2,

k ∈ C, z ∈ Ω. (4.7)

where

Gk(z,η) =− 1
π2

∫∫
Ω

ei(−kz−kη+kζ+kζ )dζ1dζ2

(ζ − z)(η −ζ )
. (4.8)

With the change of variables ζ = z+η , (4.8) becomes

Gk(z,η) =
1

π2

∫∫
Ω

ei(kz+kη)dη1dη2

ηz
,

implying that

Gk(z,η) = Gk(z−η), (4.9)

with

Gk(z) =
1

π2

∫∫
Ω

ei(kz+kη+kη)dη1dη2

η(η + z)
. (4.10)

Using the identity

∂Gk(z−η)

∂ z
=− 1

π

eik(z−η)

z−η
, k ∈ C,z ∈ C, (4.11)

and employing (4.9) and integration by parts, (4.7) becomes the basic equation of

EIT:

u(z)=− 1
2iπ

∫
∂Ω

eik(ζ−z)u(ζ )
dζ

ζ − z
− 1

2iπ

∫
∂Ω

eik(z−η)u(η)dη

z−η
−
∫∫

Ω

Gk(z−η)(qu)(η)dη1dη2,

k ∈ C,z ∈ Ω. (4.12)
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Incidentally, the easiest way to derive (4.11) is to first establish the identity

∂Gk(z)
∂ z

=− 1
π

e−ikz

z
, k ∈ C,z ∈ C, (4.13)

and then find (4.11) by taking the complex conjugate of (4.13) and using the identity

Gk(z−η) = Gk(z−η).

To find (4.13) we differentiate (4.10) with respect to ∂z and use (4.3), i.e.

∂Gk(z)
∂ z

=
1

π2

∫∫
Ω

ei(kz+kη+kη)

η

∂

∂ z
1

η − (−z)
dη1dη2 =

1
π2

∫∫
Ω

ei(kz+kη+kη)

η
πδ (η − (−z))dη1dη2

= − 1
π

e−ikz

z
.

4.2 Using the equation for uz

Equation (4.5) is much simpler than the basic equation (4.12). Furthermore, if both

the Dirichlet and the Neumann data are given, then

uzdz =
1
2

(
∂u(z(s))

∂ s
+ i

∂u(z(s))
∂ν

)
ds, z(s) ∈ ∂Ω, (4.14)

where s denotes the arc-length parameterization of the curve ∂Ω, hence ∂u/∂ s is

the derivative of f along the tangent of ∂Ω, and ∂/∂ν is the derivative along the

outward normal to ∂Ω. Identity (4.14) implies that the first term of the right-hand

side of (4.5) is known.

In what follows we will show that useful information can be obtained by

employing Eq. (4.5). In this connection, we first concentrate on the simple case that

Ω is the unit disc, and we also take k = 0.

If

ζ = τeiφ , (4.15)
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then

∂ζ =
1
2

e−iϕ
[

∂τ −
i
τ

∂ϕ

]
, ∂

ζ
=

1
2

eiϕ
[

∂τ +
i
τ

∂ϕ

]
. (4.16)

Letting

u(τ,φ) =
∞

∑
m=−∞

ûm(τ)eimφ , (4.17)

it follows from (4.16) that

uζ =
1
2

∞

∑
m=−∞

ei(m−1)φ
[

dûm(τ)

dτ
+

m
τ

ûm(τ)

]
, (4.18)

uζ |∂Ω =
1
2

∞

∑
m=−∞

ei(m−1)φ
[

dûm(1)
dτ

+mûm(1)
]
=

1
2

∞

∑
m=−∞

ζ
m−1

[
dûm(1)

dτ
+mûm(1)

]
.

(4.19)

Similarly, we let

(qu)(τ,φ) =
∞

∑
m=−∞

v̂m(τ)eimφ , (4.20)

(qu)(ζ )dζ1dζ2 =
∞

∑
m=−∞

v̂m(τ)eimφ (τdτdφ) =
∞

∑
m=−∞

v̂m(τ)ζ
m

τ
−m(−ie−iφ dτdζ )

= −i
∞

∑
m=−∞

v̂m(τ)ζ
m−1

τ
−m+1dτdζ . (4.21)

Therefore using (4.19) and (4.21), equation (4.5) becomes

uz(z) =
1

4iπ

∞

∑
m=−∞

[
dûm(1)

dτ
+mûm(1)

]∫
∂Ω

ζ m−1dζ

ζ − z
+

i
π

∞

∑
m=−∞

∫ 1

ρ

dτ v̂m(τ)τ
−m+1

∫
∂Ω

ζ m−1dζ

ζ − z

=
1
2

∞

∑
m=−∞

[
dûm(1)

dτ
+mûm(1)

]
zm−1 −2

∞

∑
m=−∞

zm−1
∫ 1

ρ

v̂m(τ)τ
−m+1dτ,

z = ρeiθ , 0 < ρ < 1, 0 < θ < 2π, (4.22)

where we employed Cauchy’s Integral Formula to get the last equality.

If ρ = 1, then we recover identity (4.19)

uz(z)|z=eiθ =
1
2

∞

∑
m=−∞

[
dûm(1)

dτ
+mûm(1)]eiθ(m−1) (4.23)
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Expanding the integral from ρ to 1 as a Taylor’s series around ρ = 1,

−
∫ 1

ρ

τ
−m+1v̂m(τ)dτ =

∞

∑
n=0

(
∫ ρ

1 τ−m+1v̂m(τ)dτ)(n)|ρ=1

n!
(ρ −1)n

= v̂m(1)(ρ −1)
(

1+
(−m+1)

2!
(ρ −1)+

(−m+1)(−m)

3!
(ρ −1)2 + . . .

)
+O

(
(ρ −1)2) , (ρ −1)→ 0,

(4.22) becomes

uz(z) =
1
2

∞

∑
m=−∞

[
dûm(1)

dτ
+mûm(1)]zm−1

+2
∞

∑
m=−∞

zm−1v̂m(1)(ρ −1)
(

1+
(−m+1)

2!
(ρ −1)+

(−m+1)(−m)

3!
(ρ −1)2 + . . .

)
+O

(
(ρ −1)2) , (ρ −1)→ 0. (4.24)

4.3 Direct Constraints
Poincaré’s lemma ∫

∂Ω

F =
∫∫

Ω

dF, (4.25)

with

F = Gdz,dF = Gzdz∧dz = 2iGzdz1dz2,

yields the complex form of Green’s theorem

∫
∂Ω

G(z)dz = 2i
∫∫

Ω

Gz(z)dz1dz2. (4.26)

Letting

G(z) = (
∞

∑
n=0

cnzn)uz(z), z = τeiφ , (4.27)

and using (4.19) we find

G(z)dz|∂Ω = (
∞

∑
n=0

cnzn)
1
2

∞

∑
m=−∞

ei(m−1)φ [
dûm(1)

dτ
+mûm(1)](ieiφ dφ)

=
i
2

∞

∑
n=0

cn

∞

∑
m=−∞

ei(n+m)φ [
dûm(1)

dτ
+mûm(1)]dφ , (4.28)
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while using (4.4) and (4.20) we find

Gz(z)dz1dz2 =

(
∂

∂ z
(

∞

∑
n=0

cnzn)uz(z)+(
∞

∑
n=0

cnzn)uzz(z)

)
dz1dz2 = (

∞

∑
n=0

cnzn)qu(τ,φ)(τdτdφ)

=
∞

∑
n=0

cn

∞

∑
m=−∞

v̂m(τ)ei(n+m)φ
τ

n+1dτdφ , (4.29)

where the first term on the right-hand side vanishes as it contains the d-bar derivative

of an analytic function. Using (4.28) and (4.29) in (4.26) we find

i
2

∞

∑
n=0

cn

∞

∑
m=−∞

∫ 2π

0
dφei(n+m)φ [

dûm(1)
dτ

+mûm(1)]= 2i
∞

∑
n=0

cn

∞

∑
m=−∞

∫ 2π

0
dφei(n+m)φ

∫ 1

0
dττ

n+1v̂m(τ).

The integration over τ implies that m =−n. Then, since the above equation is

valid for all cn, it follows that

∫ 1

0
dττ

n+1v̂−n(τ) =
1
4
[
dû−n(1)

dτ
−nû−n(1)], n ≥ 0. (4.30)

The fact that u is real implies that v̂−n(τ) = v̂n(τ). Thus, (4.30) implies constraints

for all the coefficients of qu.

4.4 Ω arbitrary bounded domain, i.e. not restricted

to unit disk

We first show that Eq (4.22) is valid even after removing the restriction k = 0.

Using (4.19) and (4.21), equation (4.5) without assuming k = 0 becomes

uz(z) =
1

4iπ

∞

∑
m=−∞

[
dûm(1)

dτ
+mûm(1)

]∫
∂Ω

eikz−ikζ ζ m−1dζ

ζ − z

+
i
π

∞

∑
m=−∞

∫ 1

ρ

dτ v̂m(τ)τ
−m+1

∫
∂Ω

eikz−ikζ ζ m−1dζ

ζ − z

=
1
2

∞

∑
m=−∞

[
dûm(1)

dτ
+mûm(1)

]
zm−1 −2

∞

∑
m=−∞

zm−1
∫ 1

ρ

v̂m(τ)τ
−m+1dτ,

z = ρeiθ , 0 < ρ < 1, 0 < θ < 2π,
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where we used Cauchy’s Integral Formula. Hence equation (4.22) does not change,

i.e. it is the same in both k = 0 and k ̸= 0 case.

Using (4.18) and (4.21), (4.5) becomes

uz(z) =
1

4iπ

∞

∑
m=−∞

∫
∂Ω

ζ m−1

τm−1

[
dûm(τ)

dτ
+

m
τ

ûm(τ)

]
eikz−ikζ dζ

ζ − z

+
i
π

∞

∑
m=−∞

∫
τ

ρ

dτ v̂m(τ)τ
−m+1

∫
∂Ω

ζ m−1eikz−ikζ dζ

ζ − z

=
1
2

∞

∑
m=−∞

zm−1

τm−1

[
dûm(τ)

dτ
+

m
τ

ûm(τ)

]
−2

∞

∑
m=−∞

zm−1
∫

τ

ρ

v̂m(τ)τ
−m+1dτ,

z = ρeiθ , ρ = |z|, θ = arg(z), (4.31)

where the Cauchy Integral Formula was used.

Using (4.18), (4.27) becomes

G(z)dz|∂Ω = (
∞

∑
n=0

cnzn)
1
2

∞

∑
m=−∞

ei(m−1)φ [
dûm(τ)

dτ
+

m
τ

ûm(τ)](iτeiφ dφ)

=
i
2

∞

∑
n=0

cn

∞

∑
m=−∞

ei(n+m)φ
τ

n+1[
dûm(τ)

dτ
+

m
τ

ûm(τ)]dφ . (4.32)

Using (4.32) and (4.29) in (4.26) we find

i
2

∞

∑
n=0

cn

∞

∑
m=−∞

∫ 2π

0
dφei(n+m)φ

τ
n+1[

dûm(τ)

dτ
+

m
τ

ûm(τ)]

= 2i
∞

∑
n=0

cn

∞

∑
m=−∞

∫ 2π

0
dφei(n+m)φ

∫
τ

0
dτ τ

n+1v̂m(τ).

The integration over τ implies that m =−n. Then, since the above equation is

valid for all cn, it follows that

∫
τ

0
dτ τ

n+1v̂−n(τ) =
1
4

τ
n+1[

dû−n(τ)

dτ
− n

τ
û−n(τ)], n ≥ 0. (4.33)

Again the fact that u is real implies that v̂−n(τ) = v̂n(τ). Thus, (4.33) implies

constraints for all the coefficients of qu.
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4.5 Appendices

4.5.1 Appendix I (verification of (4.22))

Using the representation (4.17), and employing the identities (4.16) we find

uzz =
1
4

[
∂

2
τ +

1
τ

∂τ +
1
τ2 ∂

2
φ

]
u(τ,φ)=

1
4

∞

∑
m=−∞

[
d2ûm(τ)

dτ2 +
1
τ

dûm(τ)

dτ
− m2

τ2 ûm(τ)

]
eimϕ .

(4.34)

Then integration by parts yields:

∫ 1

ρ

dττ
−m+1v̂m(τ) =

1
4

∫ 1

ρ

dττ
−m+1

[
d2ûm(τ)

dτ2 +
1
τ

dûm(τ)

dτ
− m2

τ2 ûm(τ)

]
=

1
4

[
dûm(1)

dτ
+mûm(1)−

dûm(ρ)

dρ
ρ

1−m −mûm(ρ)ρ
−m
]
.

Hence, equation (4.22) becomes

uz =
1
2

∞

∑
m=−∞

[
dûm(1)

dτ
+mûm(1)

]
zm−1 − 1

2

∞

∑
m=−∞

zm−1
[

dûm(1)
dτ

+mûm(1)
]

+
1
2

∞

∑
m=−∞

zm−1
[

ρ
1−m dûm(ρ)

dρ
+mρ

−mûm(ρ)

]
,

or

uz =
1
2

∞

∑
m=−∞

ei(m−1)θ
[

dûm(ρ)

dρ
+

m
ρ

ûm(ρ)

]
, (4.35)

which is indeed valid by (4.18).

4.5.2 Appendix II (verification of (4.30))

Letting q=
1
4

, (4.4) is a modified Helmholtz equation, hence its fundamental solution

corresponding to k =
√
−(−1

4) =
1
2 is

G(ξ ,ζ ;x,y) =
1

2π
K0(k|ζ − z|) = 1

2π
K0(

1
2
|ζ − z|),
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with z = x+ iy, ζ = ξ + iζ , where K0(z) denotes the zeroth order modified Bessel

function of the second kind, where

Km(x) =
∫

∞

0
e−xcosh(t) cosh(mt)dt.

Hence, it follows that

u(τ,φ) =
∞

∑
m=−∞

dm
Km(τ)

Km(1)
eimφ , (4.36)

where Km(τ) with k = 1
2 is analytic at τ = 1.

In this case,
dûm(1)

dτ
= dm

K′
m(1)

Km(1)
, ûm(1) = dm. (4.37)

Also,

v̂m(ρ) =
dm

4
Km(τ)

Km(1)
. (4.38)

Hence, using

−K−n−1(τ) = K′
−n(τ)−

n
τ

K−n(τ),

d
dτ

[
τ

n+1K−n−1(τ)
]

= −τ
n+1K−n(τ),

we have

∫ 1

0
dττ

n+1 d−n

4
K−n(τ)

K−n(1)
=

d−n

4K−n(1)

∫ 1

0

d
dτ

[
−τ

n+1K−n−1(τ)
]

=
d−n

4K−n(1)

∫ 1

0

d
dτ

[
τ

n+1K′
−n(τ)−

n
τ

τ
n+1K−n(τ)

]
=

1
4

[
d−n

K′
−n(1)

K−n(1)
−nd−n

]
, n ≥ 0, (4.39)

which is indeed (4.30).
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4.5.3 Appendix III (Verification of (4.31))

Integration by parts and (4.34) yield:

∫
τ

ρ

dττ
−m+1v̂m(t) =

1
4

∫
τ

ρ

dτ τ
−m+1

[
d2ûm(τ)

dτ2 +
1
τ

dûm(τ)

dτ
− m2

τ2 ûm(τ)

]
=

1
4

[
dûm(τ)

dτ
τ

1−m +mûm(τ)τ
−m − dûm(ρ)

dρ
ρ

1−m −mûm(ρ)ρ
−m
]
.

Hence, equation (4.31) becomes

uz =
1
2

∞

∑
m=−∞

zm−1

τm−1

[
dûm(τ)

dτ
+

m
τ

ûm(τ)

]
− 1

2

∞

∑
m=−∞

zm−1
[

τ
1−m dûm(τ)

dτ
+mûm(τ)τ

−m
]

+
1
2

∞

∑
m=−∞

zm−1
[

ρ
1−m dûm(ρ)

dρ
+mρ

−mûm(ρ)

]
=

1
2

∞

∑
m=−∞

zm−1
[

ρ
1−m dûm(ρ)

dρ
+mρ

−mûm(ρ)

]

or

uz(z) =
1
2

∞

∑
m=−∞

ei(m−1)θ
[

dûm(ρ)

dρ
+

m
ρ

ûm(ρ)

]
which is indeed valid by (4.18).

4.5.4 Appendix IV (Verification of (4.33))

Let q = 1
4 . Instead of (4.36), we choose

u(τ,φ) =
∞

∑
m=−∞

cmKm(τ)eimφ ,

where Km(τ) is the modified Bessel function of 2nd kind.

In this case,
dûm(τ)

dτ
= cmK′

m(τ),

and,

v̂m(τ) =
cm

4
Km(τ).
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Hence,

∫
τ

0
dτ τ

n+1 c−n

4
K−n(τ) =

c−n

4

∫
τ

0

d
dτ

[
τ

n+1K′
−n(τ)−

n
τ

τ
n+1K−n(τ)

]
=

1
4

τ
n+1
[
c−nK′

−n(τ)−
n
τ

c−nK−n(τ)
]
, n ≥ 0,

which is indeed (4.33).



Chapter 5

Implementation of two 2D PET

analytic reconstruction algorithms in

STIR and their performance

evaluation

In Software for Tomographic Image reconstruction (STIR), an object-oriented library

implemented in C++ for 3D Positron Emission Tomography (PET) and Single

Photon Emission Computed Tomography (SPECT) reconstruction, we implement

a PET analytic reconstruction algorithm based on the gridding method (GRD2D),

and we improve the implementation in STIR of another algorithm based on spline

interpolation (SRT2D). We perform comparisons in terms of speed and image quality,

in particular contrast for both ’hot’ and ’cold’ Regions of Interest (ROIS) between

these two algorithms and the prevailing analytic reconstruction algorithm Filtered

Backprojection (FBP2D) included in STIR. SRT2D and GRD2D prove to be strong

alternatives to FBP2D in terms of image quality, and also GRD2D has significant

computational advantage over FBP2D.
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5.1 Prerequisites

5.1.1 2D Geometry

In this chapter, we consider a 2D PET scanner; see chapter 6 for the more general 3D

case. The scanner consists of gamma-ray detectors arranged in the circumference of

a circle. The scanner measures emissions along lines connecting pairs of detectors.

We call such a line LOR (Line of Response). We symbolize the angle of an LOR with

the x axis with θ . Typically we have the same number of LORs for each angle θ . We

symbolize them with nrad (or sp) and call them number of tangential positions. We

symbolize the number of angles θ with nang (or sth) and call them number of views.

Theoretically a scanner with N number of detectors can have N(N −1)/2 number

LORs, but this can vary vastly.

For convenience we will define a rotated coordinate system (ρ,τ)θ . The trans-

formation from the rotated to the standard coordination system is given by

x = τ cosθ −ρ sinθ , y = τ sinθ +ρ cosθ ,

and the inverse by

τ = xcosθ + ysinθ , ρ =−xsinθ + ycosθ . (5.1)

[61]

Typically (and almost always) the views θi of a scanner are equidistant, i.e.

dang = π/nang. The same does not hold for the tangential positions; however, when

they are equidistant, then drad = 2rscn/nrad, where rscn is the scanner ring radius,

and we say that the data are arc corrected (this can be easily achieved with a linear

interpolation).

Finally we will symbolize by f (x,y) the activity in the point (x,y), and might

refer to f as the image. The emissions along the Line of Response (LOR) with angle
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θ and tangential position ρ are given by the Radon transform

(R f )(ρ;θ) =
∫ rscn

−rscn

f (τ,ρ;θ)dτ.

The function

(Rθ f )(·) = (R f )(·,θ)

is called the projection of f at angle θ .

The Radon transform is intimately related to the Fourier transform by the

projection slice theorem [62], which states that

R̂θ f (r) = f̂ (r cosθ ,r sinθ),

i.e. the 1D Fourier transform of the projections (Rθ f )(·) of angle θ is the 2D Fourier

transform of f (x,y) evaluated at a line of angle θ passing through the domain origin.

The goal of image reconstruction in PET is to reconstruct the activity image

f (x,y) using the measured radionuclide emissions along LORs, i.e. calculate f

given its Radon transform R f . However, it is impossible to reconstruct a continuous

function from discrete samples of its Radon transform. In practice, the image is

discretized, and the reconstruction is performed on a grid of pixels to approximate

the continuous function.

5.1.2 Direct Fourier Method

We can fill the Fourier space F(u,v) of f by calculating the Fourier transform of

g(ρ;θ) for all available θ . In order to reconstruct f (x,y) the fastest method is to

calculate the 2D inverse Fourier transform of F . This is called Direct Fourier Method

(DFM).

Besides DFM there are other analytic methods for reconstruction which rely

on the backprojection of each pixel (xi,yi) (Backprojection-Filtering [63], Filtered

Backprojection [64]). Other non-analytic (iterative) reconstruction methods include

Algebraic Reconstruction Techniques (ART) [65], Maximum-Likelihood Estimation

Method (MLEM) [66] and Ordered Subset Expectation Maximization (OSEM) [67].
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The main difficulty of DFM is that the available samples in the Fourier space

of f –taken by the projection-slice theorem– (i.e. (rip cosθith,rip sinθith)) are not

uniformly distributed, while in order to reconstruct f we need them to lie on a

regular grid (typically (rix,riy)). For example, for a sample scanner consisting of

16 detectors and 8 tangential positions the available and the required samples are

illustrated in Figure 5.1.

Figure 5.1: o regular grid, * samples provided by projection slice theorem

Many methods exist for the estimation of the Fourier samples onto the regular

grid. Two-dimensional interpolation is the simplest and fastest method but might not

yield satisfactory results. A more accurate (but slower) method is gridding which is

analyzed below.

5.2 2D Gridding algorithm (GRD2D)
We implement in STIR [68] GRD2D, a 2D PET reconstruction algorithm using the

Fourier Slice Theorem and the gridding method. We choose a variant for the gridding

method [69] to reconstruct f with bounded support from f̂ , which is particularly

suited to PET reconstruction. The gridding method is used to reconstruct the image

f from its Fourier transform f̂ , sampled on a non-uniform grid. The process begins

by convolving f̂ with a window function ŵ to produce ĝ, which smooths the non-

uniform samples. Following this, the function g is computed by applying the inverse

Fourier transform to ĝ, and finally, the image f is obtained by dividing g by the

window function w to correct for the initial weighting. The steps of the algorithm, as

described in [69], follow:

Step 1 Compute samples of f̂ from the available projections
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Using the notation introduced in section 5.1.1, and for

−nrad/2 ≤ µ < nrad/2, 0 ≤ ν < nang, (5.2)

the projections measured by the scanner are

pµ,ν = (Rθν
f )(rµ), (rµ ,θν) = (µdrad,νdang).

Choosing an FFT-friendly integer Nrad ≥ nrad, say

Nrad = βradnrad, βrad ∈ R, βrad ≥ 1,

(5.2) becomes

−Nrad/2 ≤ µ < Nrad/2, 0 ≤ ν < nang. (5.3)

Padding (filling with zeros up to the desired length) each projection pµ,ν

at both ends with (Nrad −nrad)/2 zeros and applying 1-D FFT, in view of the

projection slice theorem, we get

p̂µ,ν = f̂ (rµ cosθν ,rµ sinθν), rµ = µ/(Nraddrad),

where drad is the pixel size. Thus we have obtained the samples p̂µ,ν in the

polar grid formed by the sampling points

uµ,ν = (rµ cosθν ,rµ sinθν),

in the disk

D = {u ∈ R2| |u| ≤ 1/(2drad)}.

In the gridding method the reconstruction interval is of the form

R = [−Md/2,Md/2]× [−Md/2,Md/2], M ∈ R+.
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As we assume f to be strictly space-limited to R, i.e. we perform a full

reconstruction, choosing M = Mrad and d = drad,

R = [−rscn,rscn]× [−rscn,rscn].

Step 2 Numerically compute ĝ using convolution of f̂ with a window function ŵ on

K intervals.

To compute the convolution product

ĝ(u) = (ŵ∗ f̂ )(u) =
∫
R2

ŵ(u−u′) f̂ (u′)du′ (G1)

on the grid points {l/(Nraddrad) |l = (l1, l2),−Nrad/2 ≤ l1, l2 ≤ Nrad/2} in D,

we partition D such that each sampling point uµ,ν lies in exactly one cell, and

we approximate (G1) by

ĝ(l/(Nraddrad)) =
drad

Nraddrad
∑
ν

∑
µ

σµ ŵ(l/(Nraddrad)−Tp(rµ ,θν))p̂µ,ν , (**)

where σµ = |µ| if µ > 0 and σ0 = 1/4, and the transformation Tp :R×[0,π)→
R2 with Tp(ρ,θ) = (ρ cosθ ,ρ sinθ) turns (G1) to polar coordinates (since we

have a polar grid). Outside the disk D, we put ĝl = 0.

For the windowing function ŵ, we will choose a separable 2D Kaiser-

Bessel window

ŵKB(αr,v;s) = χ[−v,v](s)
I0

(
2πarv

√
1− (s/v)2

)
2v

where α ≥ 1 with α2ŵ =
∫
R2 ŵ(u)du is the “equivalent width” of the window

ŵ, I0 the zero-order modified Bessel function, and

r = nraddrad/2, v = K/(2βnraddrad).

Its support is in the interval V = [−K/(2βnradd),K/(2βnradd)]2 for some
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K ∈ Z+ with K/(βnrad)≪ 1, i.e. it is “small”.

The Kaiser-Bessel window has a jump discontinuity at s = ±v, and the

relative height of the jump is RH = I0(2παrv). To reduce RH we need to

increase the product αv (r is no longer at our disposal); however increasing α

will also widen w and hence narrow ŵ (as ŵ and w are reciprocal to each other),

and also w must stay away from zero in R, whereas increasing v will widen ŵ

but simultaneously increase the computational load. Hence, we cannot simply

widen the window for more smoothing effect: according to [69] for PET the

optimal parameters are α = 2 for window width and K = 4 for the support of

the convolution.

Step 3 Compute g using the 2D inverse Fourier transform.

Evaluating at x = kdrad,k = (k1,k2) for −Nrad/2 ≤ k1,k2 < Nrad/2, the trun-

cated Fourier series resulting from applying the dual version of the Poisson

summation formula to g, and shifting the summation index, yields

g′(kdrad)= exp(−iπk ·1)(Nraddrad)
−1

Nrad−1

∑
l=0

ĝ((l−Nrad/2)/d)exp(i2πk(l/Nrad)),

0 ≤ k < Nrad. (G2)

In our full reconstruction case, f and g are strictly space-limited to R,

and there is no aliasing error even if we choose Q = R, where Q =

[−Nraddrad/2,Nraddrad/2].

Applying the inverse DFT to the sequence {ĝl−Nrad/2}Nrad−1
l=0 , which we

have estimated in the previous step, we can compute g′(kdrad) for 0 ≤ k < Nrad,

and then extend it onto all k ∈ Z2, and in particular to −Nrad/2 ≤ k < Nrad/2,

given that g′ is periodic with period Nraddrad.

Step 4 Compute f = g/w.

Stipulating the weights are positive and bounded away from zero in R, holds

f (kdrad) = g′|Nrad/2−1
k=−Nrad/2/w(kdrad), −nrad/2 ≤ k < nrad/2. (G3)
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5.2.1 Implementation details of Step 2

For efficiency we are saving the Cartesian grid coordinates in a matrix

{l/(Nraddrad) |l = (l1, l2),−Nrad/2 ≤ l1, l2 ≤ Nrad/2} of the input data polar grid.

For the implementation of the approximation of the convolution by (**), for ev-

ery view and for every tangential position and for every x-point of the reconstructed

image we calculate the x-coordinate Tx of the 2D vector l
Nraddrad

−Tp(ρµ ,θν). If Tx

falls into the support of the window used in convolution, we calculate the value of

the Fourier transform of the Kaiser-Bessel window at Tx. For every y-point of the

reconstructed grid, we calculate Ty. If Ty falls inside the window used in convolution,

we calculate the value of the Fourier transform of the Kaiser-Bessel window at Ty

and the quadrature part suggested by equation (**). Let us note that, Kaiser-Bessel

window is separable, thus allowing us to do this. This part of the implementation

can be vastly improved by calculating explicitly the intervals where the support of

the window function used in the convolution is non-zero (it leads to the dropping of

two loops).

5.2.2 Further notes on (STIR) implementation

For the 1D and 2D Fourier transforms we use STIR’s DFT implementation, which

we append with a small function fftshift that reorders the initial data. Assuming

that the number of tangential positions is even, GRD2D code should work for every

scanner.

In case the length of the interpolation window is K = 1, the gridding method

reduces to a simple bilinear interpolation, which makes the code dramatically faster.

However, as no less than K=4 gives results satisfactory for medical applications (K=6

is as accurate as Filtered Backprojection) [69], the interpolation algorithm for K=1

was not implemented.

Only direct sinograms (i.e., segment 0) are used, since GRD2D is a 2D code.

Therefore, the number of z positions in the final image will be equal to the number

of axial positions in segment 0. By default, when setting z output size := -1
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for the case of FBP2D (and in particular in AnalyticReconstruction.cxx, which

GRD2D also extends), the output image consists of 2×number of axial positions−1

elements. This indicates that number of axial positions−1 extra images are recon-

structed through linear interpolation between neighboring sinograms (commonly

referred to as cross-planes).

The computational burden of computing the convolution can be effectively

parallelized both in shared and distributed memory architectures.

As STIR’s FBP2D has a Ramp-Hamming filter, i.e. an enhanced variant beyond

the Ramp filter (the latter being an integral component of the mathematical formula-

tion of FBP), we have created a simple low-pass filter that can be optionally applied

depending on the respective parameter set in the parameter file.

5.3 Spline Reconstruction Technique (SRT2D)

algorithm

5.3.1 Mathematical formulation and algorithm steps

SRT2D was introduced in [70], and the content of this subsection will be taken from

this paper. This algorithm reconstructs the image f (x1,x2) from its Radon transform

data f̂ (ρ,θ). It does so by first approximating the projection data with natural cubic

splines, calculating the Hilbert transform of the spline-interpolated data, and then

performing numerical integration over the angle θ to obtain the final reconstructed

image.

Although we use the available PET data, the algorithm is fundamentally de-

signed to work with CT data, specifically the Radon transform of attenuation, as

it was originally part of a SPECT algorithm. Since after precorrections, both the

PET sinogram and CT data are line integrals (Radon transforms) of some underlying

function, the algorithm designed to process the Radon transform of attenuation (CT

data) can still work with the PET sinogram, which represents line integrals of the

radiotracer distribution; This is because in PET, attenuation is independent of the

location of the source along the line between two detectors and can therefore be
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factored out.

Taking the real part of the inverse Radon transform yields

f (x1,x2) =− 1
4π2

∫ 2π

0
hρ(ρ,θ)dθ ,

with the Hilbert transform

h(ρ,θ) =
∮

∞

−∞

f̂ (ρ ′,θ)
ρ ′−ρ

dρ
′.

Suppose that f̂ (ρ,θ) is given, for every θ , at n equally spaced points ρi ∈
[−1,1], i.e. suppose that f̂i = f̂ (ρi,θ) are known. In order to calculate numerically

f (x1,x2) we perform the following steps.

Step 1 Calculation of the natural cubic spline of f̂ (ρ,θ).

In each interval [ρi,ρi+1] we approximate f̂ (ρ,θ) calculating the natural cubic

spline Si(ρ,θ) (in ρ) by subroutine splint from Numerical Recipes [61],

which uses the second derivatives f̂ ′′i of f̂ (x,y) with respect to ρ at ρ = ρi,

calculated themselves by subroutine spline from Numerical Recipes [61].

Step 2 Calculation of hρ(ρ,θ).

For ρ ̸= ρi,ρi+1 holds

hρ(ρ,θ) =
∂

∂ρ

n−1

∑
i=1

∫
ρi+1

ρi

Si(ρ
′,θ)

ρ ′−ρ
dρ

′, (5.4)

=
n−1

∑
i=1

(
f̂i

ρi −ρ
− f̂i+1

ρi+1 −ρ
− 1

4
(ρi −3ρi+1 +2ρ) f̂ ′′i − 1

4
(3ρi −ρi+1 −2ρ) f̂ ′′i+1

+[
f̂i − f̂i+1

ρi −ρi+1
− 1

6
(ρi −ρi+1 −

3(ρi+1 −ρ)2

ρi −ρi+1
) f̂ ′′i

+
1
6
(ρi −ρi+1 −

3(ρi −ρ)2

ρi −ρi+1
) f̂ ′′i+1] ln

∣∣∣∣ρi+1 −ρ

ρi −ρ

∣∣∣∣),
where ρ is calculated for any x1 and x2 (for any θ ) using (5.1).

Step 3 Numerical integration of (5.4).
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We calculate ∫ 2π

0
hρ(θ)dθ =

2π

N

N−1

∑
i=0

hρ

(
2πi
N

)
, (5.5)

and multiplying by − 1
4π2 we get f (x1,x2).

5.3.2 Symmetries

We will explain SRT2D’s symmetries-related speeding up technique [71].

Let {x1k1
}sx

k1=1, {x2k2
}sy

k2=1, {ρi}sp
i=1 be uniform partitions of [ -1,1 ], let {θ j}sth

j=1

be a uniform partition of
[
0,π sth−1

sth

]
, and

ρ = x2 cosθ − x1 sinθ . (5.6)

The above partitions correspond to constant detector spacing. Then, the eight

points

• (x1k1
,x2k2

,θ j,ρk), (x1k1
,x2sx−k2+1,θsth− j+2,ρk), (x1sx−k1+1,x2k2

,θsth− j+2,ρsp−k),

(x1sx−k1+1,x2sy−k2+1,θ j,ρsp−k),

• and either (x1k2
,x2k1

,θsth/2− j,ρsp−k), (x1k2
,x2sx−k1+1,θ j−2−sth/2,ρsp−k),

(x1sx−k2+1,x2k1
,θ j−2−sth/2,ρk), and (x1sx−k2+1,x2sy−k1+1,θsth/2− j,ρk), for 2 ≤

j ≤
⌈ sth

2

⌉
,

• or (x1k2
,x2k1

,θ3∗sth/2− j−1,ρk), (x1k2
,x2sx−k1+1,θsth/2+ j−3,ρk), (x1sx−k2+1,x2k1

,θsth/2+ j−3,ρsp−k),

and (x1sx−k2+1 ,x2sy−k1+1,θ3∗sth/2−i−1,ρsp−k), for
⌈ sth

2

⌉
≤ j ≤ sth−1,

have the same ln |ρ −ρi+1| value.

Thus, by executing the algorithm for k1 from 1 to
⌈ sx

2

⌉
and for k2 from 1 to k1,

we only need to compute once the logarithm associated with the above eight points

(the logarithms associated with j = 1 must be computed separately).
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5.3.2.1 Prerequisite relations and their proofs

To illustrate the validity of the above assertion, we need to make use of the following

relations, which hold for j ≥ 2 :

ρ(x1k1
,x2k2

,θ j) =−ρ(x1sx−k1+1,x2k2
,θsth− j+2), (5.7)

ρ(x1k1
,x2k2

,θ j) =ρ(x1k1
,x2sy−k2+1,θsth− j+2), (5.8)

ρ(x1k1
,x2k2

,θ j) =−ρ(x1sx−k1+1,x2sy−k2+1,θ j), (5.9)

ρi −ρ =− (ρsp−i+1 − (−ρ)) =−(ρsp−i+1 +ρ), (5.10)

sth

∑
j=2

n−2

∑
i=1

Di, j ln
∣∣∣ρ(x1k1

,x2k2
,θ j)−ρi+1

∣∣∣=
2

∑
j=sth

n−2

∑
i=1

Di,sth− j+2 ln
∣∣∣ρ(x1k1

,x2k2
,θsth− j+2)−ρi+1

∣∣∣ ,
(5.11)

where Di, j = [Di(ρ,θ j)−Di+1(ρ,θ j)], and ∑
2
j=sth denotes summation with decreas-

ing, instead of increasing order.

Furthermore, the following two relations are also required for proving the

assertion.

ρ(x1k1,x2k2,θ j) =−ρ(x1k2,x2k1,θsth/2− j) for 1 ≤ j ≤
⌈

sth
2

⌉
(5.12)

ρ(x1k1,x2k2,θ j) = ρ(x1k2,x2k1,θ3∗sth/2− j−1) for
⌈

sth
2

⌉
≤ j ≤ sth−1 (5.13)

Assuming {x1k1
} = {x2k2

}, as is the case with reconstructed images, we therefore

can calculate only the logarithm for (x1k1
,x2k2

) and use it also for (x2k2
,x1k1

)

Properties (5.7)-(5.9) are shown in Figure (7.7), for specific values of x1k1
, x2k2

and θ j.

The proof of equations 5.7 and 5.8, is based on the following facts:

1. x1k1
= x1(k1) =−x1(sx− k1 +1), x2k2

= x2(k2) =−x2(sx− k2 +1).

This is a straightforward consequence of the fact that {x1k1
} and {x2k2

} are

uniform partitions of [ -1,1 ].
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Figure 5.2: Examples of symmetries displayed along three planes corresponding to the
discretized array of ρ values: (left) symmetries in the x1x2 plane for θ(40),
(center) symmetries in the x2θ plane for x1(100), (right) symmetries at the x1θ

plane for x2(120).

2. cos(θ j) = cos(θ( j)) = −cos(θ(sth − j + 2)), sin(θ j) = sin(θ( j)) =

sin(θ(sth− j+2)).

This is a straightforward consequence of the fact that θ( j)= π−θ(sth− j+2),

since {θ j}sth
j=2 is a uniform partition of

[
π

1
sth ,π

sth−1
sth

]
, and of the identities

cos(θ j) =−cos(π −θ j) and sin(θ j) = sin(π −θ j).

Equation 5.9 follows from equations 5.7 and 5.8. Equation 5.10 is a straightfor-

ward consequence of the fact that {ρi} is a uniform partition of [−1,1]. In equation

5.11 we replace j with sth− j+1, and traverse {θ j} in the opposite direction.

Equations 5.12 and 5.13 follow from equation 5.6 for θ and π

2 − θ , and for
π

2 +θ and π −θ , where θ ∈
(
0, π

2

)
, respectively.

5.3.2.2 Patterns

Further acceleration of the implementation can be achieved by making use of the

following patterns:

1. In each step (except the first) only the number Di+1 should be calculated and

stored for use in the next step, since Di corresponds to Di+1 of the previous

iteration.

2. Simplification of Di leads to formula

Di =
f̂i− f̂i+1
ρi−ρi+1

− 1
6

(
ρi −ρi+1 − 3(ρi+1−ρ)2

ρi−ρi+1

)
f̂ ′′i + 1

6

(
ρi −ρi+1 − 3(ρi−ρ)2

ρi−ρi+1

)
f̂ ′′i+1.

Therefore, at each iteration (except the first), only the coefficient of f̂ ′′i must

be calculated and stored until the next iteration, since the coefficient of f̂ ′′i+1
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corresponds to the coefficient f̂ ′′i of the previous iteration.

5.3.3 STIR implementation improvements

A first implementation of SRT2D in STIR took place in [71]. We present the

improvements of the new implementation.

5.3.3.1 Compact form of the code

We have created a function that calculates the derivative of Hilbert transform for a

specific ρ and θ , and used this function to calculate all Hilbert transforms. Special

care should be put in the input data for this function each time. Compact form speeds

up the code by 30% percent (we did not do less calculations, but simply lessened the

amount of code).

5.3.3.2 Input data read as viewgrams instead of as sinograms

Sinogram is the measurements of the scanner for (a particular segment and) a

particular axial position (and for all tangential positions and all views). Viewgram

is the measurements of the scanner for (a particular segment and) a particular view

(and for all tangential positions and all axial positions).

The main difference in the code when reading input data as viewgrams instead

of sinograms is that we are reading the data for a particular view (θ ) each time.

Therefore the first loop has to be along the views. Derivatives of the data and the

quantity ’termC’ are now calculated for a specific view (θ ) (instead of a specific axial

position in the case of sinogram). Second and third loops are along x1 and x2 (as in

the sinogram code). Inside the third loop we calculate log |pi − x| for the particular

x = x(θ ,x1,x2) (where p denotes the partition for tangential positions). And the final

loop is along the axial positions (instead of the views which we had in the sinogram

code). We are using the already-computed values of the logarithm for ALL axial

positions. Another significant change is that the value of the function calculating

Hilbert derivative for the particular θ ,x1,x2 (and axial position) is directly added to

the final image (in the sinogram case, these values were stored in a vector of length

sth, and were summed and assigned to the image after the completion of fourth

loop.)
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Reading input data as viewgrams instead of sinograms, led to the improvement

of speed (35%). The function calculating the derivative of Hilbert transform requires

the time consuming calculation of log |pi−x| for i = 1 . . .sp, where sp is the number

of tangential positions, but x depends only on x1,x2 and θ , and not on the axial

positions. Therefore we calculate log |pi − x(θ ,x1,x2)| for particular x1,x2,and θ

and use the value for ALL axial positions. Note that we can make use of the values

of the logarithm, because the last loop of our algorithm is over axial positions, since

we are reading our data as viewgrams. (In the case of sinograms, the last loop has to

be along the views(θ )).

Reading input data as viewgrams instead of sinograms improved the speed by

35

5.3.3.3 Variable pixel-size and number of pixels

By changing number of pixels, we change the area to be reconstructed. We changed

the limits of the partition for x1 and x2 accordingly, in particular we set the partition

ends as −sx/(sp+1) and −sx/(sp+1), respectively, where sx is the the number of

pixels chosen by the user increased by 1, and sp the number of tangential positions.

If sx < (sp+1), then we reconstruct area smaller than the default, if sx = sp+1, we

reconstruct the default area, and if sx > sp+1 we reconstruct an area larger than the

default. Let us note that in the latter case, the extra area added is simply filled with

zeroes.

By changing the pixel-size, we change the norm of the partition for x1 and x2,

i.e. 2/(sp+ 1). The reason one might want to change the pixel-size would be to

change the resolution, and therefore see the image with more (if the pixel-size is

greater than 1) or less (if the pixel-size is less than 1) detail. Let us note this equals

to changing voxel size (if ring diameter is to not be taken into account, as in our

case). By dividing the norm of the partition by the pixel-size, we must also scale

accordingly the values of the image. In particular since bin size cannot change as it

depends on the scanner, if we change the voxel size, we must accordingly divide the

image values, following STIR’s convention for handling voxel size adjustments.(See

Figure 5.3 below)
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Figure 5.3: Zoom

5.3.3.4 Parallelization of SRT2D

We have parallelized the algorithm using OpenMP (a shared-memory architecture).

For compatibility with both OpenMP-enabled and non-OpenMP builds, conditional

directives were used to include the necessary OpenMP-specific code. Additionally,

default values for the number of threads were set, with a warning printed when only

a single thread is used, similar to the approach taken in FBP2D.

The most efficient strategy is to parallelize the main loop (axial position in input

read as sinogram, and views in input read as viewgram).

We have used a parallel for construct, with no wait clause.

For safety we have used a critical construct to access the data (from STIR’s

proj data ptr) and to write our data to image (STIR’s VoxelsOnCartesianGrid),

respectively. These do not seem to delay the code, and might even be unneccessary.

We maintained the automatic scheduling option, since special scheduling did

not improve speed, as by the nature of the code work load for threads is balanced.

The overall improvement of parallelization on speed when using 4 threads is

50%.

5.3.3.5 Filtering

For the same reason we added a filter in GRD2D (see Step 5.2 of GRD2D), after

experimentation with various filter choices and combinations, we also created a

mixture of automated filters for SRT2D, in particular, a Wiener [72], a gamma [73]

and a median [74] filter (the latter used with caution as it can potentially suppress
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details). As default filters we have set the Wiener and the gamma filter; however, the

reader is given the option to disable or enable each one of the available filters from

the parameter file.

Wiener filter. It computes a local mean and variance for the whole slice. It then

shifts the value of each pixel in the slice by the estimated noise level, averaging the

computed local variance over the slice. To minimize the impact of noise on pixel

intensity, the filter adjusts pixels based on noise and variance levels: pixels with high

variance are lightly corrected to maintain detail while reducing noise, whereas pixels

with variance similar to or lower than noise undergo stronger smoothing to suppress

noise, balancing detail preservation and noise reduction.

Gamma filter. It adjusts the luminance of an image to either amplify or attenuate

its contrast without altering the inherent spatial characteristics. Initially, it normalizes

pixel values to a [0, 1] range, facilitating consistent application across varying image

intensities. It then calculates the average pixel value of the image, disregarding pixels

with absolute values less than a threshold (0.1) to focus on more significant data

points. Based on this average, a gamma correction value is determined, aiming to

adjust the average pixel intensity towards a predefined target (0.25). The correction

is applied by raising each pixel’s value to the power of the gamma value, effectively

modifying the distribution of pixel intensities to enhance or reduce contrast. Pixels

with negligible intensity are excluded from this power operation to maintain numeri-

cal stability. Finally, the image is denormalized, scaling the pixel values back to their

original range.

Median filter. It processes an image one pixel at a time. It considers a local

neighborhood around each pixel. For each pixel, a small window of neighboring

pixels (in this case, a 3×3 grid centered around the pixel in question) is taken; the

values of those pixels are then collected and sorted. Then, the replaced pixel value

is computed as the median of this ordered list of neighboring pixel values, which

replaces the original pixel values. Since it is to be applied to EACH pixel, apart from

the border pixels, the threshold is set effectively half-way through the sorted list, so

by definition half the values are either lower or higher.
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5.4 Comparison of algorithms

5.4.1 Phantom and data creation

We will perform comparisons with the Hoffman Phantom, which in our case has a

contrast ratio of 5:1 for grey matter vs. white matter and zero uptake in the ventricles;

this represents a minor deviation from the typical 4:1 ratio used in standard FDG-PET

brain scans.

Figure 5.4: Hoffmann brain phantom

Scanner interfiles and sinograms (with the addition of Poisson noise) were

created in STIR; the latter together with the parameter files and the reconstructed

images via a bash script allowing automation of the procedure.

We will compare GRD2D, SRT2D and STIR’s FBP2D.

FBP2D GRD2D SRT2D

Figure 5.5: Reconstructed images of FBP2D, GRD2D, and SRT2D with a 0.1 Poisson noise
scaling factor.

5.4.2 Image Quality Metrics

According to the NEMA standards [75], the contrast image quality metric is measured

in Regions Of Interest (ROIs) with a diameter as close as possible to the inner

diameter of each hot, cold and background sphere. To adjust this test for the

Hoffmann phantom, we regard as ’hot sphere’ the white matter (WM) ROI with
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ground truth value 127, as ’cold sphere’ the cerebrospinal fluid (CSF) ROI with

value 0, and as ’background’ the grey matter (GM) ROI with value 25.

In Matlab we detect the ROIs through blurring, and pixel intensity-based seg-

mentation of the phantom, and save their coordinates to be applied to the recon-

structed images. Blurring is used to avoid the inclusion of pixels that are close to

each ROI’s boundary; as it averages the pixel values within a neighborhood, the sharp

transitions at the boundaries are smoothed out, causing the boundary pixels to take

on intermediate values rather than retaining their original, distinct values. Then the

ROIs are defined based on the specific pixel intensity values, i.e, ROIs corresponding

to WM, CSF and GM are identified by selecting pixels with an intensity value of 127,

0 (within a circular region avoiding the zero-valued region surrounding the actual

image data), and 25, respectively.

For STIR, to generate different levels of Poisson noise, the forward-projected

sinograms were scaled with factors of 0.1, 0.5, and 0.9 before calling a Poisson

random number generator. This will be denoted as “noise level” in the text below,

where a lower noise level corresponds to a noisier image and a higher noise level cor-

responds to a less noisy image. For each algorithm, we generate 100 reconstruction

images (realizations) at each noise level.

On each such set of 100 realizations, we apply 10 postfilters with increasing

FWHM, e.g. gaussian with increasing standard deviation σ , and then calculate

contrast as per the NEMA standard. Let us underline that we used the Nema contrast

tests, as there is no specific standardized test equivalent to the NEMA standard that

is universally applied to the the Brainweb phantoms. Although we took great care

to treat appropriately the complex boundaries of our phantom’s ROIs, Nema tests

could still be expected to potentially make contrast appear worse than it actually is

for anatomically realistic phantoms.

5.4.2.1 Metrics

The CoV is calculated as:

CoV =
σ

m
,
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where σ and m are the standard deviation and the mean, respectively, of the entire

reconstructed image, averaged over all realizations per postfilter.

It should be noted that this calculation of CoV includes both noise-induced

variability and the inherent non-uniformity of the phantom itself. Therefore, the CoV

will not approach zero even in noiseless cases but will instead be limited by the CoV

of the noiseless image.

As per the Nema standard, for the ’hot’ ROI, the contrast QH,r for realization r

is calculated by:

QH,r =

 CH,r
CB,r

−1
aH
aB

−1


where CH,r is the average counts in the ’hot’ ROI, CB,r is the average counts in the

’background’ ROI, aH is the analytic activity concentration in the ’hot’ ROI, i.e. 4,

and aB is the analytic activity concentration in the ’background’ ROI, i.e. 1. The

total contrast Chot for the ’hot’ ROI is determined by averaging the contrast over

all realizations. Therefore, the ideal algorithmic reconstruction would give a value

of QH,r = 1. A value of QH,r greater than one overestimates the contrast of the hot

region.

Further, for the ’cold’ ROI, the contrast QC,r for realization r is calculated by

QC,r =

(
1− CC,r

CB,r

)

where CC,r is the average counts in the ’cold’ ROI, and CB,r is the average counts in

the ’background’ ROI. The total contrast Ccold for the ’cold’ ROI is determined by

averaging the contrast over all realizations. The analytic activity for the cold region

is zero; therefore, the ideal value for QC,r would be one.

5.4.2.2 Noise Sensitivity and Algorithm Behavior

We will discuss noise dependence for each algorithm, particularly how contrast and

CoV vary across noise levels and postfilter strengths.

For each algorithm, we plot contrast (as per the NEMA standard) versus the

Coefficient of Variation (CoV) for each noise level, as defined in subsection 5.4.2.1.
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It should be noted that this calculation of CoV includes both noise-induced variability

and the inherent non-uniformity of the phantom itself. Therefore, the CoV will not

approach zero even in noiseless cases but will instead be limited by the CoV of the

noiseless image.

Reversing the CoV axis, we observe that for lower CoV (corresponding to

higher postfilter values), all algorithms become less sensitive to noise, i.e. as the

image gets more blurred/smoothed each algorithm converges to a steady contrast

value. This behavior suggests a potential indication of linearity in noise suppression

but does not conclusively prove it.

In a linear algorithm, we expect lower counts (and hence more noise) to result

in a higher CoV for the same contrast. If CoV remains constant despite increased

noise, it likely indicates that the noise contribution to the CoV is smaller than the

non-uniformity component of the phantom, which is still acceptable. This trend

holds for all algorithms.
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5.4.2.3 Contrast vs. CoV: the 10 different postfilters at the highest

noise level data are the parameters

We only present results at the highest noise level, hence at the lowest count level, as

the differences between algorithms are more pronounced then.
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Applying to SRT2D the Wiener automated (i.e. based on the image values and

not on parameters’ choice) filter,
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The algorithms have comparable performance. However, taking into account

both contrast and noise, it seems that the best choice for the first sigma of the

postfilter is GRD2D filtered, whereas for the 3rd sigma onwards for the ’hot’ ROI

the best choice is SRT2D with or without filter.

As [71] does not specify the ROI strategy used, it is difficult to compare our

results with theirs.

5.4.3 Computational complexity

Let us assume sx∼ sy∼ sp∼ sa∼ sth∼N ∈N, where sp is the number of tangential

positions, sth is the number of views, sx,sy are the number of points in x,y coordinates,

and sa is the number of axial positions, respectively. Then the order of computational

complexity of SRT2D is O(N4), whereas of FBP2D is O(N3) (the bulk of activity is

due to backprojection), and of GRD2D is O(N2 log2 N) [69].



Chapter 6

Implementation of two 2D SPECT

analytic reconstruction algorithms in

STIR and their performance

evaluation

In Software for Tomographic Image Reconstruction (STIR), an object-oriented li-

brary implemented in C++ for 3D Positron Emission Tomography (PET) and Single

Photon Emission Computed Tomography (SPECT) reconstruction, we implement

two analytic 2D SPECT reconstruction algorithms: Kunyansky SPECT Algorithm

(KSA2D) and Spline Reconstruction Technique (SRT2DSPECT). As Filtered Back-

projection (FBP) does not provide an inverse for the attenuated Radon transform, we

focus on these analytic algorithms and compare them with STIR’s Ordered Subsets

Maximum A Posteriori One Step Late (OSMAPOSL) in terms of image quality,

particularly contrast for both ’hot’ and ’cold’ Regions of Interest (ROIs). Both

SRT2DSPECT and KSA2D have better contrast over OSMAPOSL,despite the fact

the latter is an iterative algorithm. In particular, KSA2D shows an advantage for ’hot’

ROIs, and SRT2DSPECT for ’cold’ ROIs. Additionally, KSA2D is notably fast.
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6.1 Prerequisites

6.1.1 Formulation of the problem

The goal of SPECT is to reconstruct the radionuclide distribution f (xxx), xxx ≡ (x1,x2),

for known attenuation coefficient α(xxx), from measured projections gθ (ρ), where

θθθ(θ) is the direction along which the detector measures the intensity of radiation

and ρ is the distance of this line from the origin. This problem is equivalent to the

inversion of the attenuated Radon transform

gθ (ρ)≡ Rα,θ f =
∫
R

exp(−Dθ α[xxx+ tθθθ(θ)]) f (xxx+ tθθθ(θ))dt, (6.1)

where the divergent beam transform Dθ α(xxx) is

Dθ α(xxx) =
∫

∞

0
α(xxx+ tθθθ(θ))dt. (6.2)

[76]

For convenience a rotated coordinate system (τ,ρ) with axes parallel to vectors

θθθ(θ) and θθθ
⊥(θ) can be introduced

τ = x1 cosθ + x2 sinθ = xxx ·θθθ(θ),

ρ =−x1 sinθ + x2 cosθ = xxx ·θθθ⊥(θ), (6.3)

and then (6.1) and (6.2) can be written for f ⋆
θ
(τ,ρ) = f (xxx(τ,ρ,θ)), α⋆

θ
(τ,ρ) =

α(xxx(τ,ρ,θ)) and D⋆
θ

α⋆
θ
(τ,ρ) = Dθ α(xxx(τ,ρ,θ)). [76]

As stated in [77], the inversion formula was first derived by Novikov [78],

extending the derivation of the analogous result for the inverse Radon transform

presented in [79]; then in [70] the inversion formula was obtained via a slight

modification of a certain formula contained in [79]. In [76] Kunyansky introduced

a SPECT reconstruction algorithm based on [78]; we implemented it in STIR as

Kunyansky SPECT Algorithm 2D (KSA2D). In [70] the SPECT reconstruction

algorithm Spline Reconstruction Technique 2D was introduced; we implemented it
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in STIR as SRT2DSPECT.

SRT2DSPECT has two mathematical formulations, in [70] and [77]. For our

implementation within STIR, we used [70] because it is of higher image quality.

In particular, except for the attenuated Radon transform ĝθ (ρ) of the radiopharma-

ceutical distribution f (xxx), the mathematical formulation in [70] takes as data the

Radon transform α̂(ρ,θ), whereas the mathematical formulation of [77] employs

the attenuation coefficient α(xxx); while the values at the node points used for the

spline approximating α̂ , which is used extensively in both algorithms, in [70] are

exact, in [77] are themselves approximations, leading inevitably to lower image

quality.

6.1.2 SPECT scanner description and assumptions

We assume a cylindrical scanner of radius R. The projections are arc-corrected,

meaning the detectors are positioned in a line perpendicular to the scanner, rather

than curved around it. Therefore, the distance of the detectors from the origin forms

a uniform partition of [−R,R]. This configuration corresponds to SPECT with a

parallel hole collimator. We also assume that the angles θ are equidistant, forming a

uniform partition of [0,2π].

6.2 Kunyansky’s SPECT Algorithm (KSA2D)

6.2.1 Mathematical formulation of the reconstruction formula

The content of this subsection is taken from [76]. The real-valued version of the

Novikov formula becomes simpler when straightforward differentiation in ρ replaces

the application of the operator (−sinθ
∂

∂x1
,cosθ

∂

∂x2
), equivalently expressed as

(θθθ⊥(θ) ·∇), to a function in (τ,ρ) coordinates.

Hence, the reconstruction formula is given by

f (xxx) =
1

4π

∫ 2π

0
Mθ (xxx ·θθθ(θ),xxx ·θθθ⊥(θ))dθ , (6.4)

Mθ (τ,ρ) =
∂

∂ρ
[exp(D⋆

θ α
⋆
θ (τ,ρ))mθ (ρ)]. (6.5)



6.2. Kunyansky’s SPECT Algorithm (KSA2D) 108

where the modified projections mθ (ρ) are

mθ (ρ) = e−Aθ (ρ)
[
hc

θ (ρ)H
(
hc

θ (ρ)e
Aθ (ρ)gθ (ρ)

)
+hs

θ (ρ)H
(
hs

θ (ρ)e
Aθ (ρ)gθ (ρ)

)]
,

(6.6)

with

hc
θ (ρ) = cos(HAθ (ρ)), (6.7)

hs
θ (ρ) = sin(HAθ (ρ))), (6.8)

Aθ (ρ) =
1
2
(Rθ α)(ρ), (6.9)

and the Hilbert transform H of a function h(u)

Hh(u) =
1
π
P
∫
R

h(u)
u− v

dv. (6.10)

6.2.2 The algorithm steps and a few implementation comments

For a very detailed description of the algorithm implementation we refer the reader to

Section 4 of [76]. Hence, we include only the algorithm steps with a few comments

of ours.

We assume radially and angularly uniformly discretized gθi(p j), i =

1,2, . . . ,nφ , j = 1,2, . . . ,np, where nφ is the number of projections, np is the

discretization size of each projection.

Step 1 Evaluate the divergent beam transform Dθ α(x) (DBT) given by (6.2), using

bilinear interpolation and trapezoidal quadrature.

Simply using bilinear interpolation and trapezoidal quadrature for the

calculation of the DBT, and ultimately the Radon transform, is nowhere near

as accurate as the Siddon’s algorithm [80] used for the forward project in

STIR’s pinhole SPECT scanners, but it needs only O(n2
p) operations, making

it extremely fast.

Note that we assume that the attenuation coefficient is given on the same

Cartesian grid on which the image will be reconstructed (therefore scaling is
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not an option for attenuation). (Hence, the settings for the number of pixels

and pixel-size are disabled). An appropriate interpolation can be used in case

attenuation is given on a different grid.

Step 2 Evaluate the Radon transform Aθi(ρ j) given by (6.9) and (6.1) (which is simply
1
2D⋆

θi
α⋆

θi
(τ1,ρ j), i = 1,2, . . . ,nφ , i = 1,2, . . . ,np).

Step 3 Evaluate HAθ (ρ), the Hilbert transform of Aθ (ρ).

In [76] the Hilbert transform is regarded as a convolution with kernel

1/(π p), and it is calculated as discrete convolution with the kernel represented

by the sequence K j, j =−np, . . . ,np. This kernel has 2np +1 elements, so to

perform such a convolution one should pad the function to 2np+1 samples and

then follow the standard procedure (i.e. f ∗K = f̂ K̂ where f̂ can be calculated

using FFT).

The method of calculation of Hilbert transform we preferred is the one

mentioned in [81], as it gives better results for the points close to the interval

edges, as shown in Figure 6.1. 2np +1 is not an FFT-friendly number (thus

making the algorithm slow), so we pad the kernel function to actually 2np

samples (since it has a finite support, and therefore it is zero at the boundary),

and we set K̂1 = K̂np+1 = 1, K̂2,...,np = 2 and K̂np+2,...,2np = 0.

Figure 6.1: Hilbert transform of sinc(x): precise value vs. numerical value with Marple’s
method (which we use) vs. Kunyansky’s method

As STIR’s FBP2D has a Ramp-Hamming filter, i.e. an enhanced variant
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beyond the Ramp filter (the latter being an integral component of the mathe-

matical formulation of FBP), we also added to KSA2D the filter proposed in

[76]:

Ŵ [ρ] =
{ 1/2(1+ cos(πρ/ρcutoff)), |ρ| ≤ ρcutoff

0, |ρ|> ρcutoff
, ρ

cutoff ≤ ρ
Nyquist,

(6.11)

where ρcutoff is the cut-off frequency.

Step 4 Compute modifying projections mθ (ρ) by

i. calculating hc
θ
(ρ) and hs

θ
(ρ) using (6.7) and (6.8), respectively,

ii. calculating the Hilbert transforms H(hc
θ
(ρ)eAθ (ρ)gθ (ρ)) and H(hs

θ
(ρ)eAθ (ρ)gθ (ρ))

and

iii. calculate mθ (ρ) using (6.6).

Step 5 Differentiate the product exp(D⋆
θ

α⋆
θ
(τ,ρ))mθ (ρ) in ρ , hence calculating (6.5),

using a central difference scheme.

For the differentiation of the product exp(D⋆
θ

α⋆
θ
(τ,ρ))mθ (ρ) is employed

a fourth order central difference

u′(ρ)≈ 1
12∆ρ

[(
−u(ρ +2∆ρ)+u(ρ −2∆ρ)

)
+8
(
u(ρ +∆ρ)−u(ρ −∆ρ)

)]
.

We have also extended the method to the left boundary by using the 4th

order forward difference

u′(ρ)≈ 1
∆ρ

[
− 25

12
u(ρ)+4u(ρ+∆ρ)−3u(ρ+2∆ρ)+

4
3

u(ρ+3∆ρ)− 1
4

u(ρ+4∆ρ)
]
,

and for the right boundary the 4th order backward difference

u′(ρ)≈ 1
∆ρ

[25
12

u(ρ)−4u(ρ+∆ρ)+3u(ρ+2∆ρ)− 4
3

u(ρ+3∆ρ)+
1
4

u(ρ+4∆ρ)
]
.

Step 6 Backproject the result of the differentiation Mθ (τ,ρ) to obtain (6.4), again
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using bilinear interpolation and a simple quadrature rule.

6.2.3 Notes on STIR implementation

The following points pertain to implementation particularly in STIR.

There is a subtle point regarding reconstruction for all slices in SPECT in STIR.

Note that in SPECT only direct sinograms are defined, therefore in STIR’s notation

we are iterating over all axial positions of segment 0. As in the case of FBP2D, for

data created by STIR’s simulated parallel hole SPECT scanners, user is forced to

set z output size in the parameter file, to the number of rings (so that the final

image z positions will be compatible). Otherwise, the default z out put size in STIR

is 2∗number o f slices−1, i.e. (number o f slices−1) extra elements are added,

in particular the oblique projections between neighbour rings, which are not defined

in SPECT.

FFT function in STIR for complex data works only for number of data that are

power of 2 (the remaining FFT functions work for even number of data). Therefore

padding is required for the Fourier transform used in the calculation of the three

Hilbert transforms.

Grid spacing of attenuation map must be the same with grid spacing for the

reconstructed image. If we change xy output, grid does not essentially change, but

grid changes once zoom is changed. In the latter case interpolation of attenuation in

the new grid would be required, therefore the mathematical formulae should change

in case zoom would be included.

6.3 Spline Reconstruction Technique

(SRT2DSPECT)

6.3.1 Mathematical formulation and algorithm steps of

SRT2DSPECT

The content of this subsection is taken from [70], which introduces the mathematical

formulation of SRT2DSPECT we implement in STIR.
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Taking the real part of attenuated Radon transform yields

f (x1,x2) =
1

4π

∫ 2π

0
(rx1 sinθ − rx2 cosθ)dθ , (6.12)

where τ and ρ are given by (6.3), and

r(τ,ρ,θ) = I(τ,ρ,θ)
(

α
cme
(

1
π

hc +2α
s
)
+α

sme
(

1
π

hs −2α
c
))

, (6.13)

with

I(τ,ρ,θ) = exp

(∫ √
1−ρ2

τ

A(τ ′,ρ,θ)dτ
′
)
, (6.14)

A(τ,ρ,θ) =− 1
4π2

∫ 2π

0
hρ(τ sin(θ − t)+ρ cos(θ − t), t)dt, (6.15)

hρ(ρ,θ) =
∂

∂ρ

n−1

∑
i=1

∫
ρi+1

ρi

Si(ρ
′,θ)

ρ ′−ρ
dρ

′, (6.16)

and

α
cpe(ρ,θ) = e

1
2 α̂(ρ,θ) cos h(ρ,θ)

2π
, αspe(ρ,θ) = e

1
2 α̂(ρ,θ) sin

h(ρ,θ)
2π

,(6.17)

α
cme(ρ,θ) = e−

1
2 α̂(ρ,θ) cos h(ρ,θ)

2π
, αsme(ρ,θ) = e−

1
2 α̂(ρ,θ) sin

h(ρ,θ)
2π

,(6.18)

α
c(ρ,θ) = αcpe(ρ,θ)ĝθ (ρ), αs(ρ,θ) = α

spe(ρ,θ)ĝθ (ρ), (6.19)

hc(ρ,θ) =
∫

∞

−∞

αc(ρ ′,θ)
ρ ′−ρ

dρ ′, hs(ρ,θ) =
∫

∞

−∞

αs(ρ ′,θ)
ρ ′−ρ

dρ
′. (6.20)

(6.21)

Suppose that α̂(ρ,θ) is given, for every θ , at n equally spaced points ρi ∈
[−1,1], i.e. suppose that α̂i = α̂(ρi,θ) are known. Similarly for ĝθ (ρ). Then to

calculate numerically f (x1,x2) we perform the following steps.

Step I Calculations at the nodes, i.e at ρ = ρi.
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I.1 Calculation of h(ρ,θ) at all given ρ and θ using

h(ρ,θ) = −α̂i + α̂i+1 +
1

36
(
−4ρ

2
i −5ρiρi+1 −5ρ

2
i+1 −3(ρi −5ρi+1)ρ −6ρ

2)
α̂
′′
i

+
1

36
(
5ρ

2
i +5ρiρi+1 −4ρ

2
i+1 −3(5ρi −ρi+1)ρ +6ρ

2)
α̂
′′
i+1, (6.22)

where the second derivatives α̂ ′′
i of α̂(x,y) with respect to ρ at ρ = ρi

are calculated by subroutine spline from Numerical Recipes [61].

I.2 Use of Step I.1 for the calculation of αcpe(ρ,θ) and αspe(ρ,θ) by use of

(6.17), and then of αc(ρ,θ) and αs(ρ,θ) by use of (6.19) and the data

function ĝ f .

Calculation of the second derivatives of αc(ρ,θ) and αs(ρ,θ) by use of

subroutine spline.

Step II Calculations on segments [ρi,ρi+1].

II.1 Calculate numerically α(x1,x2) (same procedure as in PET)

i. Calculation of the natural cubic spline of α̂(ρ,θ) for any x1, x2 (and

θ ).

In each interval [ρi,ρi+1] we approximate α̂(ρ,θ) calculating the

natural cubic spline Si(ρ,θ) (in ρ) by subroutine splint from

Numerical Recipes [61], which uses the second derivatives α̂ ′′
i of

α̂(x,y) with respect to ρ at ρ = ρi, which had themselves been

calculated at Step I.1.

ii. Calculation of hρ(ρ,θ).
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For ρ ̸= ρi,ρi+1 holds

hρ(ρ,θ) =
∂

∂ρ

n−1

∑
i=1

∫
ρi+1

ρi

Si(ρ
′,θ)

ρ ′−ρ
dρ

′

=
n−1

∑
i=1

(
α̂i

ρi −ρ
− α̂i+1

ρi+1 −ρ

−1
4
(ρi −3ρi+1 +2ρ)α̂ ′′

i − 1
4
(3ρi −ρi+1 −2ρ)α̂ ′′

i+1

+[
α̂i − α̂i+1

ρi −ρi+1
− 1

6
(ρi −ρi+1 −

3(ρi+1 −ρ)2

ρi −ρi+1
)α̂ ′′

i

+
1
6
(ρi −ρi+1 −

3(ρi −ρ)2

ρi −ρi+1
)α̂ ′′

i+1] ln
∣∣∣∣ρi+1 −ρ

ρi −ρ

∣∣∣∣),
(6.23)

where ρ is calculated for any x1 and x2 (for any θ ) using (6.3).

iii. Numerical integration of (6.23).

We calculate

∫ 2π

0
hρ(θ)dθ =

2π

N

N−1

∑
i=0

hρ

(
2πi
N

)
, (6.24)

and multiplying by − 1
4π2 we get f (x1,x2).

II.2 We calculate h(ρ,θ) for ρ ̸= ρi and ρ ̸= ρi+1

h(ρ,θ) =
n−1

∑
i=1

{Fi −
1

ρi −ρi+1
ln
∣∣∣∣ρi+1 −ρ

ρi −ρ

∣∣∣∣[(ρi+1 −ρ)α̂i − (ρi −ρ)α̂i+1

−1
6
(ρi −ρ)(ρi+1 −ρ)

(
(ρi −2ρi+1 +ρ)α̂ ′′

i +(2ρi −ρi+1 −ρ)α̂ ′′
i+1
)]
},

(6.25)

where Fi is the right–hand side of (6.22).

II.3 We calculate αcme(ρ,θ) and αsme(ρ,θ) by (6.18) using Steps II.1 and

II.2, αc(ρ,θ) and αs(ρ,θ) by (6.19) using splint with the derivatives

calculated at Step I.1 and the corresponding node values at Step I.2, and

hc(ρ,θ) and hs(ρ,θ) using relations similar to (6.25).
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II.4 We numerically calculate I(τ,ρ,θ) assuming compact support, hence on

finite integration domain. If τ < 0, in place of (6.14) we use

I(τ,ρ,θ) = exp
(

α̂(ρ,θ)−
∫ −τ

−
√

1−ρ2
A(τ ′,ρ,θ)dτ

′
)
. (3.16)

(6.26)

We use the Gauss–Legendre quadrature

∫
β

α

A(τ ′,ρ,θ)dτ
′ ≈ w1A(τ1,ρ,θ)+w2A(τ2,ρ,θ), (6.27)

where the abscissas τ1,τ2 and the weights w1,w2 are given by

τ1 = a+(b−a)

(
1
2
−

√
3

6

)
, τ2 = a+(b−a)

(
1
2
+

√
3

6

)
, w1 =w2 =

1
2
(b−a).

(6.28)

II.5 Using Steps II.3 and II.4 we calculate r(τ,ρ,θ) by (6.13).

II.6 Finally we calculate f (x1,x2) using (6.12) by numerical integration sim-

ilar to the one in Step II.1.iii, and numerical calculation of the partial

derivatives rx1 and rx2 by a forward difference scheme and a backward

difference scheme for the first half and second half of the interval [−1,1],

respectively, i.e.

α
′(xxx) ≈ −3α(xxx)+4α(xxx+∆xxx)−α(xxx+2∆xxx)

2∆xxx
(6.29)

α
′(xxx) ≈ 3α(xxx)−4α(xxx−∆xxx)+α(xxx−2∆xxx)

2∆xxx
(6.30)

6.3.2 Speeding up techniques, filtering, and further aspects of

the STIR implementation

We describe some aspects of the STIR implementation of SRT2DSPECT; predomi-

nantly, the ones leading to speed and image quality improvement.
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6.3.2.1 SPECT symmetry

For the Hilbert transform, we could apply the same symmetries used for the derivative

of the Hilbert transform in 2D SRT PET (SRT2D algorithm in STIR), as discussed

in Chapter 4 of the thesis, since both include the same logarithmic expression.

A new symmetry has been employed for the calculation of the derivative of the

Hilbert transform for partition th2.

Let x, y,ρ ∈ [−1,1] and θ ∈ [0,2π), and let {xi}sx
i=1,{yi}sy

i=1 be uniform par-

titions of [−1,1] with sx = sy points, {ρi}sp
i=1 uniform partition of [−1,1] with sp

points, and {θi}sth
i=0 uniform partition of [0,2π − 2π

sth ] with sth points. Let Nt ∈ N,

such that Nt even and Nt << sth (i.e. Nt = 8 or Nt = 10) and let {ti}Nt
i=1 be a uniform

partition of [0,2π − 2π

Nt ] with Nt points.

Let ρ(ω;a,b,c) := acos(c−ω)+bsin(c−ω) and if a,b ∈ [−1,1], c ∈ [0,2π],

we observe that ρ(ω) =−ρ(π +ω). Therefore, for the partitions mentioned above

we get ρ(t j;a,b,θi) =−ρ(tNt/2+ j,a,b,θi) for j = 1 . . .Nt/2 (See Figure 6.2 below).

Therefore ln |ρ −ρ(t j;a,b,θi)|= ln |ρ +ρ(tNt/2+ j;a,b,θi)|. And so, we have

that ln |ρk −ρ(t j;a,b,θi)|= ln |ρsp−k+1 −ρ(tNt/2+ j;a,b,θi)|. This is a direct conse-

quence of equation ρi −ρ =−(ρsp−i+1 − (−ρ)) =−(ρsp−i+1 +ρ).

SPECT requires the calculation of ln(|ρk−ρ(t j;a,b,θi)|) for all k = 1 . . .sp, j =

1 . . .Nt. We can reduce evaluations of log by calculating the logarithm for k =

1 . . .sp and j = 1 . . .Nt/2.
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Figure 6.2: Examples of symmetry of t1 sin(th(ith)− t)+ rhocos(th(ith)− t) with respect
to the values t of th2 for x1(100),x2(150),θ(40).
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6.3.2.2 Input data read as viewgrams instead of as sinograms

To read input data as viewgrams instead of sinograms, the same logic applies as in 2D

PET [82]. In the case of 2D SPECT, though, it leads to further improvement of speed

(45%) compared to 2D PET(35%), as there are more quantities we can calculate in

the third loop, and use the computed values in ALL iterations of the fourth loop. In

particular, besides log|pi−x|, where p is the partition for tangential positions, we can

calculate the spline coefficients, and more importantly the logarithms for the function

for calculating the derivative of Hilbert transform, which is calculated for each axial

position for the coarser (second) partition of θ (views) in a fifth(!) loop nested inside

the fourth loop. It is noteworthy that the final loops run along axial position, x1,x2

(instead of x1,x2,θ ) and the values are added to the final image (instead of being

integrated and assigned to the final image, as in the case of sinogram).

6.3.2.3 Further speeding up techniques

We need to calculate 3 Hilbert transforms with the same ρ . So, we have calculated

the logarithm value once for each ρi and use this value for all these Hilbert transforms.

(Let us note that since each symmetry evaluates Hilbert transform for the same ρ as

the original point, we could cache the logarithmic value of ρ −ρi and use it for the

extra 3 Hilbert transforms of the symmetric point. Therefore, having 8 symmetric

point, should we have used the symmetries for the Hilbert transform, we would have

used the same logarithmic value for a total of 8*3=24 Hilbert transforms.)

6.3.2.4 Parallelization

In case of SPECT with input read in sinogram format, due to the size of the matrices

that were used, there was a problem on the initialization of these matrices for the

threads. Therefore, we had to initialize calloc inside our parallel loops, which

slows down the algorithm. In case of SPECT with input read in viewgram format

the matrices were not that large; in particular matrix dimension for viewgram is

sa× sx× sy, whereas for sinogram sx× sy× sth, and number of axial positions sa is

significantly less than number of views sth.
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6.3.2.5 Reading attenuation data from file

We set the attenuation filename as an optional input and check its validity before

reading the attenuation data in the same way as the emission data, using STIR’s

reconstruction functions.

6.3.2.6 Filtering

For the same reason we added a filter to KSA2D (see Step 2 in Section 6.2.2), after

experimentation with various filter choices and combinations, we created a mixture

of automated filters for SRT2D, in particular, a Wiener, a gamma and a median filter

(the latter used with caution as it can potentially suppress details). As default filters

we have set the Wiener and the gamma filter; however, the reader is given the option

to disable or enable each one of the available filters from the parameter file.

Wiener filter. It computes a local mean and variance for the whole slice. It then

shifts the value of each pixel in the slice by the estimated noise level, averaging the

computed local variance over the slice. To minimize the impact of noise on pixel

intensity, the filter adjusts pixels based on noise and variance levels: pixels with high

variance are lightly corrected to maintain detail while reducing noise, whereas pixels

with variance similar to or lower than noise undergo stronger smoothing to suppress

noise, balancing detail preservation and noise reduction.

Gamma filter. It adjusts the luminance of an image to either amplify or attenuate

its contrast without altering the inherent spatial characteristics. Initially, it normalizes

pixel values to a [0, 1] range, facilitating consistent application across varying image

intensities. It then calculates the average pixel value of the image, disregarding pixels

with absolute values less than a threshold (0.1) to focus on more significant data

points. Based on this average, a gamma correction value is determined, aiming to

adjust the average pixel intensity towards a predefined target (0.25). The correction

is applied by raising each pixel’s value to the power of the gamma value, effectively

modifying the distribution of pixel intensities to enhance or reduce contrast. Pixels

with negligible intensity are excluded from this power operation to maintain numeri-

cal stability. Finally, the image is denormalized, scaling the pixel values back to their

original range.
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Median filter. It processes an image one pixel at a time. It considers a local

neighborhood around each pixel. For each pixel, a small window of neighboring

pixels (in this case, a 3×3 grid centered around the pixel in question) is taken; the

values of those pixels are then collected and sorted. Then, the replaced pixel value

is computed as the median of this ordered list of neighboring pixel values, which

replaces the original pixel values. Since it is to be applied to EACH pixel, apart from

the border pixels, the threshold is set effectively half-way through the sorted list, so

by definition half the values are either lower or higher.

6.4 Comparison of algorithms

6.4.1 Phantom and creation of data

We will perform comparisons with XCAT phantom of 128×128×128 voxels (see

Fig. 6.3).

Figure 6.3: XCAT cardiac phantom

Scanner interfiles and sinograms (with the addition of Poisson noise) were

created in STIR; the latter together with the parameter files and the reconstructed

images via a bash script allowing automation of the procedure. The implementation

should work for every scanner (having set the extend of rotation to 360), assuming

an appropriate attenuation map is given; in particular, attenuation image must be

sp× sp, where sp is the number of tangential positions of the scanner. (Let us note

that for the DFT’s, the size of sp does not matter, as it is always doubled and padded

to the smallest power of 2.)

Attenuation correction has to be off for FBP. Therefore we are not going to

perform comparisons with STIR’s FBP2D.
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We compare KSA2D, SRT2DSPECT, and STIR’s OSMAPOSL.

NIF2D OSSPS SRT2DSPECT

Figure 6.4: Reconstructed images of KSA2D, OSSPS, and SRT2DSPECT with a 0.01
Poisson noise scaling factor.

6.4.2 Image Quality Metrics

To adjust the NEMA standard test for the XCAT phantom, we regard the ’hot sphere’

as the ROI with a value of 2800, the ’cold sphere’ as the ROI with a value of 0, and

the ’background’ as the ROI with a value of 700.

For details regarding how ROIs are chosen, the contrast metrics, and noise

sensitivity comments, refer to Section 5.4.2, which describes the methodology

applied for 2D PET; the same approach is followed here, adjusted for the specific

characteristics of the XCAT phantom used in 2D SPECT.

For STIR, to generate different levels of Poisson noise, the forward-projected

sinograms were scaled with factors of 0.01, 0.05, and 0.09 before calling a Poisson

random number generator.

6.4.2.1 Noise Sensitivity and Algorithm Behavior

1.41.61.822.22.42.62.8

COV

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

C
on

tr
as

t f
or

 'h
ot

' R
O

I

SRT2DSPECT

noise level 0.01
noise level 0.05
noise level 0.09

1.41.61.822.22.42.62.8

COV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
on

tr
as

t f
or

 'c
ol

d'
 R

O
I

SRT2DSPECT

noise level 0.01
noise level 0.05
noise level 0.09



6.4. Comparison of algorithms 121

1.51.551.61.651.71.751.8

COV

0

0.2

0.4

0.6

0.8

1

C
on

tr
as

t f
or

 'h
ot

' R
O

I

KSA2D

noise level 0.01
noise level 0.05
noise level 0.09

1.51.551.61.651.71.751.8

COV

0

0.2

0.4

0.6

0.8

1

1.2

C
on

tr
as

t f
or

 'c
ol

d'
 R

O
I

KSA2D

noise level 0.01
noise level 0.05
noise level 0.09

6.4.2.2 Contrast vs. CoV: the 10 different postfilters at the highest

noise level data are the parameters

Due to SRT2DSPECT’s inherent noise, it is necessary that it is filtered.
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Applying to KSA2D its filter with parameter 0.5,
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we get



6.4. Comparison of algorithms 122

1.41.451.51.551.61.651.71.75

COV

0.7

0.8

0.9

1

1.1

1.2

1.3

C
on

tr
as

t f
or

 'h
ot

' R
O

I

SRT2DSPECT filtered vs. KSA2D filtered vs. OSMAPOSL

SRT2DSPECT filtered
KSA2D filtered
OSMAPOSL

1.41.451.51.551.61.651.71.75

COV

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
on

tr
as

t f
or

 'c
ol

d'
 R

O
I

SRT2DSPECT filtered vs. KSA2D filtered vs. OSMAPOSL

SRT2DSPECT filtered
KSA2D filtered
OSMAPOSL

For the hot region, the KSA2D algorithm gives the best results. SRT2DSPECT

highly overestimates the contrast while exhibiting the same noise levels as KSA2D.

OSMPOPOSL provides slightly lower contrast than KSA2D, but with significantly

less noise. For the cold region, we observe that SRT2DSPECT produces the best

contrast, although with slightly higher noise compared to KSA2D. KSA2D yields

higher-than-expected contrast for the initial sigmas, resulting in an illusionary con-

trast (as all values above 1 for the ’cold’ ROIs formula). OSMAPOSL, on the other

hand, provides very low contrast, rendering its reduced noise irrelevant.

As [77] uses the uniform NEMA phantom, while we use an anatomically

realistic phantom, it would be difficult to compare our results with theirs.

6.4.3 Computational Complexity

OSMAPOSL being an iterative algorithm won’t be compared with the analytic

algorithms for speed. Let us assume sx ∼ sy ∼ sp ∼ sth ∼ N ∈ N, where sp is the

number of tangential positions, sth is the number of views, and sx,sy are the number

of points in x,y coordinates, respectively. Then KSA2D is of order of computational

complexity O(N3) [76], and SRT2DSPECT is O(N4).



Chapter 7

Implementation of a 3D PET analytic

reconstruction algorithm in STIR and

its performance evaluation

In Software for Tomographic Image Reconstruction (STIR), an object-oriented

library implemented in C++ for 3D Positron Emission Tomography (PET) and Single

Photon Emission Computed Tomography (SPECT) reconstruction, we implement a

3D Direct Fourier Method (DFM3D). We compare it in terms of speed and image

quality, in particular contrast for both ’hot’ and ’cold’ Regions of Interest (ROIs),

with the prevailing analytic reconstruction algorithm Filtered Backprojection 3D

Reprojection (FBP3DRP) included in STIR. Both algorithm have the same order of

computational complexity, but FBP3DRP has better image quality.

7.1 Prerequisites

7.1.1 3D Geometry

7.1.1.1 Physical scanner (discrete data)

A PET scanner consists of gamma-ray detectors arranged in the circumference of a

circle. The scanner measures emissions along lines connecting pairs of detectors. We

call such a line LOR (Line of Response). We symbolize the angle of an LOR with

the x axis with θ . Typically we have the same number of LORs for each angle θ .
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We symbolize them with nrad (or sp) and call them number of tangential positions.

We symbolize the number of angles θ with nang (or sth) and call them number of

views. Theoretically a scanner with N number of detectors can have N/2 number of

tangential positions and N/2 number of views (since the LOR connecting the pair

(i, j) of detectors with the pair ( j, i) is the same), but this can vary vastly.

In the three dimensional (3D) case the physical arrangement of the detectors

is exactly the same as in the two dimensional (2D), but now measurements across

different rings are allowed. This improves the quality of the image, as we are able to

capture more photons, but complicates the reconstruction process. To characterize

the projection data (Line of Responses or LORs) in the 3D case, we introduce two

additional quantities related to the axial direction of the scanner, namely segments

and axial positions. We say that an LOR belongs to the segment s if the ring difference

of the detectors is s. Therefore a scanner with r rings can have 2r− 1 number of

segments ranging from −r+1 to r−1. The other necessary quantity to uniquely

characterize an LOR is the axial position, we say that an LOR has axial position a if

the average ring of the detectors is a. Therefore segment s can have r−|s| number

of axial positions. Note that axial positions are not integers but multiples of 0.5, this

does not pose any problem since we are never going to use this notation in practice.

7.1.1.2 Rotated coordinate system (mathematical formulation)

Standard coordinate system is oriented in the scanner so that the z-axis is the axis

of rotation of the cylindrical detector system, and the origin is at the center of

the scanner. As in the 2D case, we will introduce a rotated coordinate system

(ρ,α,τ)(θ ,φ) in order to align the LORs with the τ-axis. (ρ,α,τ)(θ ,φ) shall be an

orthonormal rotation of the standard coordinate system along the angles (θ ,φ).

We define θ to be the angle which the vector makes with the xy-plane (since

z-axis is normal to the xy-plane, θ is complementary with the angle between the

vector and z-axis), and φ to be the angle from the y-axis to the component of the

vector lying in the xy-plane. Obviously we associate θ with the segments and φ with

the views.

Since the LORs are undirected we can assume that φ < π . If it is necessary to
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change the direction of the LOR we can always take

θ
′ =−θ

φ
′ = φ +π

For a given LOR direction (θ ,φ) we define a coordinate system (ρ,α,τ) ac-

cording to the following rules:

1. The vectors ρ , α and τ are orthonormal.

2. The origin of (ρ,α,τ) is at the origin of (x,y,z) space.

3. τ is parallel to the LOR direction described by (θ ,φ).

4. ρ lies in the xy-plane, and coincident with the x-axis when φ = 0.

These conditions uniquely describe the (ρ,α,τ)(θ ,φ) coordinate system. The rela-

tionship between (x,y,z) and (ρ,α,τ)(θ ,φ) can be seen in Figure 7.1.

z

y

x α

ρ ττxy
θ

π/2− θφ
θ

Figure 7.1: Standard (grey) and rotated coordinate systems

The transformation from (x,y,z) to (ρ,α,τ)(θ ,φ) to is given by


ρ

α

τ

=


−sinφ cosφ 0

−sinθ cosφ −sinθ sinφ cosθ

cosθ cosφ cosθ sinφ sinθ




x

y

z

 , (T1)



7.1. Prerequisites 126

and for the transformation to (x,y,z) we have


x

y

z

=


−sinφ −sinθ cosφ cosθ cosφ

cosφ −sinθ sinφ cosθ sinφ

0 cosθ sinθ




ρ

α

τ

 . (T2)

7.1.1.3 Data alignment

In 2D geometry we know that tangential positions are not equidistant. In the three

dimensional case, an additional phenomenon is observed. In the previous section

we associated a segment s with the angle θ that the LORs form with the xy-plane.

However this is only valid for the tangential position 0 (ρ = 0). As we move towards

the boundary of the scanner (ρ → R or ρ →−R) angles θ become larger.

In Figure 7.2 we can see the LORs for segment 1 (θ = θ1) and a particular view

φ and axial position α . As we can see the angle formed with the blue plane (xz-axis)

becomes steeper as the tangential positions ρ grow. Also observe that only half of

the LORs between detectors of these two rings are drawn, since LORs are undirected

the other half is stored to segment -1 (θ =−θ1).

Figure 7.2: LORs (in red) for θ = θ1, α = −0.5, φ = 0 and various tangential positions,
xz-axis in blue

In practice, PET scanners store data based on ring differences (δ = z1 − z2)

and azimuthal angles (φ ). Here, z1 and z2 are the positions of two detectors along

the axial (z) direction of the scanner, corresponding to different detector rings. The

scanner measures LORs (Lines of Response) directly between detector pairs, and

the data comes as sinograms in δ ,φ coordinates.

We symbolize the activity distribution by f (x,y,z) and refer to it as image.
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We symbolize the emissions measured by the scanner along the LOR with angles

(θ ,φ) and tangential/axial positions (ρ,α) with g(ρ,α;θ ,φ) and refer to them as

projections. For a particular angle (θ ,φ) we call g(ρ,α) projection plane. The

Radon transform gives

g(ρ,α;θ ,φ) =
∫

∞

−∞

f (x,y,z)dτ. (7.1)

The goal of 3D-PET is to reconstruct the activity image f (x,y,z) using the

measured radionuclide emissions along LORs g(ρ,α;θ ,φ), i.e. calculate f given its

3D Radon transform g.

7.1.2 Projection-slice theorem

The main tool for many analytical reconstruction algorithms is the projection-slice

theorem or Fourier slice theorem (FST). In its 3D version it states that the three-

dimensional Fourier transform of a function f restricted to a plane passing through

the domain origin is equal to the two-dimensional Fourier transform of a plane

consisting of projections with direction parallel to the normal of the original plane

(the 3D Radon transform with direction the normal of the original plane).

In particular, let F(kx,ky,kz) be the three-dimensional Fourier transform of

f (x,y,z) (the ‘k’ symbol indicates that these variables lie in the frequency domain

-and are usually integers), and consider a plane formed by a parallel set of LORs

with direction (θ ,φ). Using the rotated coordinate system (ρ,α,τ) defined above,

the Radon transform (projection plane) is defined by (7.1).

It is easy to prove the theorem if we expand the Fourier transforms (to save space

we omit the usage of δ function). Projection plane g(ρ,α;θ ,φ) has two-dimensional

Fourier transform

G(kρ ,kα ;θ ,φ) =
∫ ∫

g(ρ,α;θ ,φ)exp(−2πi(kρρ + kαα))dρ dα

Substituting g with the line integral (7.1) we get

G(kρ ,kα ;θ ,φ) =
∫ ∫ ∫

f (x,y,z)exp(−2πi(kρρ + kαα))dρ dα dτ.
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This volume integral over (ρ,α,τ) space is converted to (x,y,z) space by using the

transform (T1)

G(kρ ,kα ;θ ,φ) =
∫ ∫ ∫

f (x,y,z)exp(−2πi(kρ(xcosφ + ysinφ)

+ kα(−xsinθ sinφ + ysinθ cosφ + zcosθ)))dxdydz

By rearranging the terms we get

G(kρ ,kα ;θ ,φ) =
∫ ∫ ∫

f (x,y,z)exp(−2πi(x(kρ cosφ − kα sinθ sinφ)

+ y(kρ sinφ + kα sinθ cosφ)+ z(kα cosθ))))dxdydz,

which happens to be the three-dimensional Fourier transform of f

F(kx,ky,kz) =
∫ ∫ ∫

f (x,y,z)exp(−2πi(xkx + yky + zkz))dzdydz,

if we define 
kx

ky

kz

=


−sinφ −sinθ cosφ

cosφ −sinθ sinφ

0 sinθ


 kρ

kα⋆

 . (P1)

Note that this transform is identical to (T2) if we set τ equal to zero.

7.2 3D Direct Fourier Method
The strategy for the image reconstruction, similarly to the 2D case, is to fill the

Fourier space F(kx,ky,kz) of f by calculating the Fourier transform of g(ρ,α) for all

available planes (θ ,φ) and then to calculate the inverse 3D Fourier transform of F .

As we can see from equations (P1), x, y and z are randomly scattered in the 3D

domain. As we are interested in finding the values of the image in a regular grid

(xi,y j,zk) of the 3D domain, we must perform interpolation on the data (kx,ky,kz)

given by FST in the Fourier domain. A full 3D interpolation is time consuming

and requires large amount of memory, therefore we would like to reduce the 3D

interpolation to 2D interpolations (with number of rings multitude). Let us note that
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FST clearly takes viewgrams and not sinograms as input.

7.2.1 Modified coordinate system

An important observation in [83] is that we can reduce the interpolation in two

dimensions if we change the (ρ,α) coordinate system. In particular if we apply the

transformation

α
⋆ =

α

cosθ
,

the Fourier transform of g(ρ,α⋆) becomes

G(kρ ,kα⋆) = cosθ G(kρ ,kα cosθ),

and the samples of P(kρ ,kα⋆) obtained from its Discrete Fourier Transform are

located at values of k⋆α at

k⋆α =
kα

cosθ
.

As a result of shearing of α coordinate, the samples obtained by the FST are

given by 
kx

ky

kz

=


−sinφ − tanθ cosφ

cosφ − tanθ sinφ

0 1


 kρ

kα⋆

 . (P2)

For the the kz component we have

kz = kα⋆,

and no interpolation has to be performed in that direction. Therefore only two-

dimensional interpolation is needed for the components (kx,ky), considerably im-

proving the speed of the algorithm. In the particular case of data from a cylindrical

scanner, the partition along the ky-direction has grid spacing kv/cos(θ) (i.e. vectors

(ku,kv) of projected space need to be simply orthogonal, and not necessarily or-

thonormal, and consequently kv does not coincide with grid spacing of z). Therefore

in [83] the last equation becomes z = kv, i.e. it is independent of the angles θ and φ

and so we can reduce the 3D interpolation to 2D interpolations in the xy planes.
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The projection planes measured by the scanner are naturally sheared by a factor

of cosθ , so no processing is required to produce the sheared (ρ,α⋆) coordinate

system. In fact, it would be necessary to perform an interpolation to force the data

to the orthonormal (ρ,α) coordinates. This is demonstrated in Figure 7.3. For

the direct plane projections (θ = 0) the distance between the LORs along the α

direction is equal to the ring spacing ∆α , while for the rest segments LORs distance

is ∆α cosθ , i.e. as θ increases LORs distance along α axis decreases. [83]
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∆α

∆α cos θ

θ

Figure 7.3: dashed line: segment 0 (θ = 0), solid line: segment -2 (θ > 0)

7.2.2 Inverse Distance Weighting

As we have seen earlier, samples provided by FST are scattered along each slice.

The most important part of the algorithm is the interpolation of the Fourier samples

on a uniform grid, which will enable us to use the inverse DFT to acquire the original

image f .

Figure 7.4: The figure on the left depicts the samples provided by the Projection-slice
theorem, and the one on the right the uniform grid upon which the samples must
be interpolated

For example, in Figure 7.4 on the left we can see the Fourier samples available

for a scanner with 9 segments, 5 axial positions, 9 views and 16 tangential positions

(or simply 5 rings and 32 detectors per ring, with a restriction on the number of

views for better visualisation), and on the right we can see the grid upon which the

samples must be estimated.

The procedure we are going to follow to achieve this is called Inverse Distance

Weighting (IDW), as presented in [84]. The foundational principle of the IDW

method is that the influence exerted on an interpolated sample should be stronger
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from proximal neighbors than from those at a distance. This leads to the value

at the target location being calculated as the weighted average of the values from

neighboring locations, with the weight applied inversely proportional to the distance

between the interpolated point and the surrounding samples. IDW interpolation for

the required sample (xi,yi) is given by

F(xi,yi) =
N

∑
j=1

w jF(x⋆j ,y
⋆
j), with w j =

h−p
j

∑
N
k=1 h−p

k

,

where F(x⋆j ,y
⋆
j) are the available spectral samples provided by FST, w j the associated

weight, h j represents the distance from the j-th neighboring sample to the point

of interpolation, with N denoting the total count of neighboring samples contained

within a pre-specified neighbourhood.

A large neighbourhood contains more frequency samples and therefore provides

more accurate interpolation. However, more samples slow down the algorithm.

Selection of the neighbourhood can be performed in two ways: the neighbourhood

can be selected to have specified length L or specified number of neighbours N. The

latter one provides more accurate results in the border region of the scanner where

sample density is low, but is quite slow and requires us to save the neighbourhoods

on the disc. Therefore we will use the fixed length method.

7.3 3D Direct Fourier Method (DFM3D)
We implement in STIR [68] the reconstruction algorithm DFM3D, which recovers

the missing data and performs 3D reconstruction.

7.3.1 Outline of the algorithm

The algorithm combines [85] and [84] in the following steps:

Step 1 Reconstruct an initial estimate of the image using the available projections

from the direct plane (segment 0) by use of 2D-DFM (for each sinogram)

[potentially any 2D reconstruction algorithm can be used here]:

1a. Pad tangential positions with zeroes.
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1b. Use Fast Fourier Transform (FFT) for each view, and place the data

accordingly to the 2D space using FST.

1c. Use IDW (2D) to interpolate the data to a rectangular grid.

1d. Use Inverse Fast Fourier Transform (IFFT) 2D to reconstruct the slice.

Step 2 Reprojection.

2a If you decide to keep all reprojected data, pad axial positions accordingly.

2b Forward project the initial image to calculate the projections for the axial

positions not measured by the scanner.

Step 3 From the measured and calculated data use 3D-DFM to reconstruct the image:

3a. Use FFT 2D for each viewgram (using the desired oversampling) and

place the data accordingly in the 3D Fourier space using FST.

3b. Use IDW (2D) to interpolate the available samples onto the uniform grid.

3c. Use IFFT 3D on the interpolated samples (and extract the required values

if oversampling is used).

Step 3 is the 3D equivalent of Step 1. Step 1 is elaborated in another paper of

ours [82], which uses Gridding Method [69] in place of IDW.

STIR’s FBP3DRP follows the same procedure, but instead of DFM uses FBP

[86]. Furthermore, it is not handy to directly transfer FBP3DRP’s missing data

compensation method in any algorithm that is not based on backprojection, as the

backprojection symmetries permeate the code (principally through the RelatedView-

grams class [87]).

7.3.2 Data requirements

The present form of the algorithm poses the following requirements on the form of

the input data:

i) Each segment s should have number of rings−|s| axial positions (for other

forms of the axial position vector, the algorithm may or may not work).
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ii) The data need to be arc-corrected, as the formulae work for uniform partition

of tangential positions; otherwise interpolation would be necessary.

iii) Tangential positions should be even (in the case of STIR implementation, for

the library’s FFT function).

iv) Number of rings should be even (in the case of STIR implementation, for the

library’s FFT function).

7.3.3 Implementation of the algorithm

Note that we take the grid spacing along the first direction to be the one in x-direction,

and the grid-spacing along the second direction to be the same with the z-direction.

7.3.3.1 Oversampling

As we have seen in the 2D case, due to the finite extent of the discrete Fourier

transform, artifacts are introduced in the reconstructed image. These artifacts can

be reduced by increasing the sampling density in the Fourier domain. This process

is referred to as “oversampling”. When more samples are available in the Fourier

domain, interpolation yields more accurate results.

Fourier domain oversampling is easily achieved by zero-padding, i.e. extending

the projection data by adding elements containing zeroes. Due to the sheared

axial coordinate system oversampling is only necessary along the ρ direction (no

interpolation is performed in α direction). Fourier domain oversampling by a factor

of s is achieved by adding (s−1)Nx zeroes along ρ dimension, forming the padded

projection plane g⋆(ρ,α⋆;θ ,φ) which is sNx×Nz in size (where Nx is the number of

tangential positions and Nz the number of axial positions). We set the transform of

the padded projections to be

G⋆(kρ ,kα⋆;θ ,φ) =
1
s

G(
kρ

s
,kα⋆;θ ,φ),

the term 1/s is added to compensate for the s-fold increase in the amount of data

placed in the Fourier domain, so that image recovery is independent of the degree of

oversampling used.
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The amount of artifacts present in the reconstructed image is directly related

to the size of the imaged object. Artifacts increase as the object becomes larger,

which in turn needs larger oversampling to be compensated for. Oversampling by

a factor s will increase the running time of the algorithm roughly by a factor of s,

therefore there is a strong motivation to use as little oversampling as possible. As

we can see by experiments, 2-fold oversampling is sufficient in most cases. If the

activity is confined to the center of the field of view, it may be possible to produce

reasonable images without oversampling. On the other hand, if a substantial portion

of the activity is in the periphery, 4-fold oversampling may be required.

Padding with respect to z axis is not mandatory. However, to utilize all of the

missing data we could pad to 2× number of rings, i.e. use two times more tangential

positions, and fill with zeroes the extra ones. This reduces artifacts. The change in

formula is the aforementioned.

7.3.3.2 Step 2: Reprojection

We use forward projection to calculate the integral of f (the image) along the LORs

not measured by the scanner.

STIR, of course, has built in function for performing forward projection based

on Siddon’s algorithm [80], however, one could easily create a custom-made such

function, by using trapezoidal quadrature to calculate the integral of f , and trilinear

interpolation [88] to estimate the value of f in the quadrature nodes. Of course, for

speed’s shake it is crucial one does not do full forward projection, but only with

respect to the missing LORs; that’s why we name the procedure reprojection. Let

us note that except for the standard reprojection in the spatial domain, reprojection

can take place in the Fourier domain, with apparent speed improvement [83]. For

compatibility with STIR’s ’forward project’ one must use bin size = z voxel size/2.

Let us underline that FST requires that each segment number has constant

number of axial positions (i.e. for each θ constant number of v’s); however, repro-

jection assigns to each segment |segment number|+number of rings axial positions,

i.e. increases number of axial positions. We can either set a constant number of axial

positions (equal to the number of rings num rings), keep the required axial positions
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generated by forward project and discard the rest, or pad our data to 2×number

of rings and therefore fit all the axial positions created by forward project (using

zeroes for the axial positions not generated by forward projecting) (Step 2a). How-

ever, depending on whether a segment is even or odd, its partition will differ; for odd

segments there is an axial position passing through the center of the scanner, but not

in the even ones. Padding for odd number of axial positions doesn’t yield as good

results as for the even case.

7.3.3.3 Step 2b and 3b: IDW

We implement the first method IDW method by specifying a predefined length

(IDWa) instead of the number of neighbours, because it is faster. In order to improve

the running time further, instead of iterating over the interpolation points, we iterate

over the sample points and we assign the contribution onto nearby interpolation

points. The results of IDWa are not lesser in quality than Matlab’s built-in griddata

function.

7.3.3.4 Step 3a: 3D interpolation turned to 2D

Let us note that partition for x is essentially non-uniform, but as STIR automatically

arc-corrects data we can regard it as uniform.

7.3.3.5 Noise filter

As STIR’s FBP3DRP has an enhanced variant beyond the Ramp filter (the latter being

an integral component of the mathematical formulation of FBP), we also added the

option of the Hanning filter [89] for DFM3D. To implement the Hanning filter over

a three-dimensional dataset, we begin by creating three distinct Hanning sequences,

one for each dimension, custom-fit to its length. We compute each element in these

sequences with the formula 0.5(1−cos(2πn/(N −1))), where ‘n‘ marks the current

position within the sequence, and ‘N‘ signifies the total length of that dimension.

We then adjust each point in our three-dimensional data array by multiplying it with

the corresponding values from each dimension’s Hanning sequence. The effect of

applying the Hanning filter in this manner is to gradually reduce the contributions of

data points at the edges of each dimension, which mitigates abrupt changes at the
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boundaries that can introduce artifacts into frequency analysis.

7.4 ’Artificial scanner’ as a means of extrapolation of

missing data

7.4.1 Missing data

In order to calculate the Fourier transform of g used in FST, all non-zero projections

g(ρ,α) must be known. However, since the scanner has finite axial extent, measure-

ments are not available for all axial positions α . For example,as we can see in Figure

7.5, considering the projections for segment 2 of the scanner, only 3 axial positions

can be measured and 4 more have to be somehow calculated.

z

y

Figure 7.5: LORs for segment 2, solid line: measured, dashed line: missing

In particular let us consider a scanner with r rings (numbered from −⌊r/2⌋
to ⌊r/2⌋). For the segment s, projections along r + |s| axial positions have non-

zero values (i.e. axial positions −⌊r/2⌋− |s|/2 . . .⌊r/2⌋+ |s|/2) but only r − |s|
are measured by the scanner (i.e. axial positions −⌊r/2⌋+ |s|/2 . . .⌊r/2⌋− |s|/2),

therefore projections along 2|s| axial positions have to be estimated.

In order to estimate missing projections, we notice that for the segment s = 0

all axial positions are known, therefore we could use FST. Furthermore since θ = 0,

this reduces to the standard two-dimensional case. Therefore we can reconstruct an

initial estimation of the image f by using the available data from segment zero and

then forward-project this image to acquire the necessary projections.

Initial image estimation can be reconstructed by means of standard 2D PET in

each axial position of segment zero (i.e. in each ring). Forward-projection is simply
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the evaluation of a standard line integral, which can be performed using a simple

quadrature rule.

Therefore a required projection is given by

g(ρ,α;θ ,φ) =
∫

f (x,y,z)dτ,

where (x,y,z) are given by (T2) in relation to (ρ,α,τ). By discretizing the above

integral we get

g(ρ,α,θ ,φ) =
n

∑
i=1

f (x(τi;ρ,α,θ ,φ),y(τi;ρ,α,θ ,φ),z(τi;ρ,α,θ ,φ))δτ.

Since f is know in a grid (xi,y j,zk), a trilinear interpolation is performed to evaluate

it for the required (x,y,z). (In particular we are interested in the tube integral of f ;

this can be simply achieved by multiplying the above quantity by δρ δα .)

7.4.2 Artificial scanner

Skipping the missing data extrapolation procedure is possible only for the special

cases that there are no missing data, as in the data depicted in Fig. 7.6.

1 2 3 4 5 6 7 8 9 10111213141516

1 2 3 4 5 6 7 8 9 10111213141516

Figure 7.6: No missing data case

We can exploit a method to forward-project the initial image –such as Ray-

Tracing– if we utilize existing tomographic software such as STIR, or even a general

mathematical package such as MATLAB’s radon function. In order to do so, we

need to construct an artificial scanner which will be able to calculate our missing

projections.

For the example in Fig. 7.6, we can create a simple scanner, i.e. 128 tan-

gential positions, 64 views, 16 rings and maximum ring difference 15 (segments =
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−15 . . .15), and in general the default settings of create projdata template. The

image is a simple cube spanning [−R/2,R/2]× [−R/2,R/2] (R is the ring radius) in

the axial direction, and rings 7–10 in the transaxial direction. Note that we are forced

to set z voxel size := ring spacing/2, thus despite the cube spanning slices

5–12 in the original image, it spans only rings 7–10 after the projection. However, in

the particular case that segment s has number of rings-|s| axial positions, we skip

steps 1 and 2 of the algorithm by constructing an ’artificial scanner’ as follows.

Let us assume we have a scanner with N rings, and we want to reconstruct

missing data for this scanner. This scanner has 2N-1 segments. For each segment k,

only N-k sinograms are measured and therefore k sinograms have to be extrapolated.

The easiest way to extrapolate the missing data is to construct an artificial

scanner with (N − 1)+N +(N − 1) = 3N − 2 rings. By associating the (1 . . .N)

rings of the original scanner with the rings (N . . .2N −1) of the artificial scanner,

rings (1 . . .N − 1) can be used to extrapolate the missing sinograms of negative

segments (−N . . .−1) of the original scanner, and rings (2N . . .3N −2) can be used

to extrapolate the missing sinograms of positive segments (1 . . .N) of the original

scanner.



7.4. ’Artificial scanner’ as a means of extrapolation of missing data 140

scanner A, 3 Rings, all segments (segments -2,-1,0,1,2)

seg0 (direct) seg1
seg2 seg-2

seg-1

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

scanner B, 7 Rings, 5 segments (segments -2,-1,0,1,2)

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

seg0 (direct) seg1
seg2 seg-2

seg-1

z
0 .1 .2 .3

0 .1 .2 .3 .4 .5-.1-.2

z

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3

1 2 3

Scanner B

Scanner A

ringscannerA = ringscannerB − 2

If scanner A has N rings, scanner B must have 2*N+1 rings

and then ringscannerA = ringscannerB −N + 1

Figure 7.7: Artificial vs. real scanner

In Figure 7.7 observe that the sinogram of segment (set of sinograms with the

same ring difference) k and axial position a (LOR starts in ring a and ends in ring

a+segment number) of the original scanner is actually the sinogram of segment k

and axial position N +a−1 of the artificial scanner. Therefore we can extract the

required sinograms from the artificial scanner.

The difficult part of the artificial scanner coding is finding the correspondence

between the indices of the original and the artificial scanner.

After reading the STIR data vector, we want to transform it into a 4D array,

that will allow us to make easy use of the data. STIR stores the data (measured

values along LORs) as a 4-dimensional array. The first dimension corresponds to

the tangential position, the second to the axial position, the third to the view and the
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fourth to the segment. Let sp:=number of tangential positions, sa:=number of axial

positions for segment 0 (number of rings), sth:=number of views and sphi:=number

of segments. We cannot use the same array as in STIR because we have to include

the missing data. STIR array has variable number of axial positions for each segment.

After we include the missing data, the number of axial positions will be fixed

(and equal to the ring number), therefore we will read and store the data into a

4-dimensional array with fixed dimensions (sp,sa,sth,sphi).

We will present a simplified version of the method, as would apply in case we

were able to use a Matlab’s ”cell” array, which allows its elements to be of different

type. So, we create cell data to save data for each segment, as each segment has

different number of axial positions, and therefore arrays cannot be used.

We construct a vector axial, which indicates the number of axial positions

for each segment; in particular, in its k-th position, we place the number of axial

positions of segment k− sa.

We transform the initial data into an array with sp lines times a vector b. b

contains a 3D cell of dimensions sa× sth× sphi. We want to read the data contained

in b for a particular φ , let φ = s. The data for this particular s begin in the position

ps∗ sth, where ps is the sum of the first s−1 places of axial. Now, for this particular

s, we need to read the 2D matrix of axial positions and views, with dimensions

as× sth, where as is the number of axial position for segment s. The elements for

each axial position a begin at the index ps ∗ sth+ a of b, and the i-th element for

axial position a is located at index ps∗ sth+a+ i∗as.

We indicate the index of a segment with iphi, and the index of an axial position

with ia.

For the segments with negative index, sinogram with iphi, ia of the initial

scanner corresponds to iphi, ia+ iphi−1 of the artificial scanner.

For the segments with positive index, sinogram iphi, ia is in positions iphi, iphi+

ia of the artificial scanner.

It is important to note that the artificial scanner works even when there is a jump

in the central segment’s axial position number, instead of the typical incremental
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increase/decrease relative to its prior and following segments, respectively. In such a

case, it only necessitates a suitable increase in the padding of the axial positions.

7.5 Comparison of algorithms

7.5.1 Phantom and data creation

We will be performing comparisons with a phantom that was downloaded from

Brainweb; it is Subject 04 Discrete Model, with x−y−z dimensions 362×434×362,

saved as unsigned byte 0 to 255. [90] Essentially this is MRI data, but was turned

into PET data, by applying one value to each ROI with Matlab.

Figure 7.8: Brainweb brain phantom

Scanner interfiles and sinograms (with the addition of Poisson noise) were

created in STIR; the latter together with the parameter files and the reconstructed

images via a bass script allowing automation of the procedure. For sinogram creation

fwdtest with type ’Matrix’ and ’matrix type := ray tracing’ were used (oth-

erwise projecting image using fwdtest with type ’Ray Tracing’ some of the direct

sinograms might swap parts -issue related to the symmetries used). Assuming that

the number of tangential positions is even, DFM3D code should work for every

scanner.

We will compare DFM3D with STIR’s FBP3DRP.
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DFM3D FBP3DRP

Figure 7.9: Reconstructed images of DFM3D and FBP3DRP with a 0.1 Poisson noise
scaling factor.

7.5.2 Image Quality Metrics

To adjust the NEMA standard test for the Brainweb phantom, we regard the ’hot

sphere’ as the ROI with a value of 4, the ’cold sphere’ as the ROI with a value of 0,

and the ’background’ as the ROI with a value of 1.

For details regarding how ROIs are chosen and the contrast metrics, refer to

Section 5.4.2, which describes the methodology applied for 2D PET. The same

approach is followed here, adjusted for the specific characteristics of the Brainweb

phantom used in 3D PET.

For STIR, to generate different levels of Poisson noise, the forward-projected

sinograms were scaled with factors of 0.1, 0.5, and 0.9 before calling a Poisson

random number generator.

7.5.2.1 Noise Sensitivity and Algorithm Behavior

DFM3D does not become less sensitive to noise as the image gets more

blurred/smoothed. This behavior could potentialy suggest non-linearity of noise

propagation; it must be further investigated.
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7.5.2.2 Contrast vs. CoV: the 10 different postfilters at the highest

noise level data are the parameters

Although DFM3D demonstrates convergence of the values at the three noise levels

when the postfilter is strongest, which would potentially be a hint for linearity of

noise propagation, further investigation is required to determine the nature of the

algorithm. This is necessary because its curve patterns differ significantly from

those in previous chapters, and most importantly, its behavior with respect to the

automated Hanning filter is unique. Specifically, the filter increases the contrast for

the ’cold’ ROI, but decreases it for the ’hot’ ROI.

In any case, FBP3DRP exhibits superior contrast overall (though with slightly

noisier images), particularly for the ’cold’ ROI.
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7.5.3 Complexity of DFM3D versus FBP3DRP

Let us assume sphi ∼ sa ∼ sp ∼ sth ∼ N ∈N, where sphi is the number of segments,

sa the number of axial positions, sp the number of tangential positions, sth the

number of views, then the order of computational complexity of both DFM3D and
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FBP3DRP is O(N4 log2 N) (the filtering has the bulk of the calculations for the later).
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