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Abstract

Anomaly detection is the task of identifying unusual instances that deviate from typical ap-

pearances or behaviours. Use cases include fraud detection, medicine, and fault detection.

Effective automated systems can identify anomalies in situations that are too challenging

or costly for humans. However, satisfactory detection performance relies on underlying

representation space that depicts the training data. In this thesis, we investigate what char-

acteristics form a good representation. We conduct experiments on images, text, speech,

and tabular data to examine how well anomalies can be detected in each case and to find

commonalities across the modalities.

We find that no representation learning scheme performs well across all modalities. How-

ever, our results suggest that low-dimensional embeddings are best for anomaly detection.

Using embeddings from pre-trained networks is an effective starting point and fine-tuning

boosts performance. We also analyse how the anomaly detection architectures affect re-

sults. We show the detector is unimportant as long as the representation space is reason-

able. The choice of representation should consider prior knowledge about the anomalies

and how they contrast with the benign distribution. Overall, our findings suggest anomaly

detection research should focus on representation learning objectives rather than modify-

ing architectures or scoring functions.



Impact statement

The need for automated safety systems is becoming more pronounced in a world of con-

tinuous technological innovation. As technology moves at lightning speed, the data sup-

porting this technology becomes more complex. The increasing scale and complexity of

this data are overwhelming for humans. This creates a need for automated safety sys-

tems. These systems are necessary for detecting accidental faults and to guard against the

actions of increasingly sophisticated adversaries. In many cases, safety-critical tasks are

equivalent to anomaly detection problems. These tasks range from locating firearms in

airport luggage to identifying disinformation.

We demonstrate how difficult these safety-critical tasks are for humans. We conducted a

large-scale study to measure how well humans could detect speech deepfakes. This was

the first study to examine capability in English and Mandarin as we recognised that deep-

fakes are a global problem. We found humans cannot reliably detect speech deepfakes

even when primed for the task. Our work resonated with the public and received cov-

erage across international media, including The Guardian, New Scientist, and the BBC.

Following this, we have continuously engaged with the media to explain how AI can im-

pact daily lives. We have fact-checked disinformation, explained how deepfakes work on

podcasts, and created spoofs for a radio programme on AI-enabled fraud.

Although automated systems are imperative for decision-making, the work shows that

supervised classifiers are insufficient. They do not generalise well to new test conditions,

such as different speakers. Our findings signal the need for alternative approaches, espe-

cially as issues like non-consensual deepfake proliferation increasingly affect society.

This thesis examines the capabilities of anomaly detectors, which do not need labelled

anomalies for training. We study their performance across different modalities to find po-

tential synergies. The results show that the choice of representation is the most crucial

component in an anomaly detector. Simple detectors work, provided the underlying be-



nign embedding is low-dimensional. This property is achievable by adapting pre-trained

neural networks trained on diverse data. We also provide instances where particular de-

tectors and architectures work better than others.

The findings will interest practitioners who want to deploy anomaly detectors in produc-

tion to address safety-critical problems. Our work signals promising directions and areas

to disregard in anomaly detection research. We establish a time and environmentally-

efficient baseline for anomaly detection by showing that a detector with pre-trained em-

beddings performs reasonably.

Future work could build on the thesis by curating training datasets to improve pre-trained

neural networks or testing the resilience of anomaly detectors in more challenging set-

tings, such as corrupted input data.
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1 | Introduction

Malicious actors are constantly innovating in this era of rapid technological advancement.

As security systems learn to counter the modus operandi of criminals, new strategies to

bypass defences emerge. One example is identity fraud. Previously, a fraudster might

impersonate a victim using a crude mask to mimic their appearance and mannerisms [2].

Nowadays, fraudsters can use deepfakes (syntheticmedia produced in the likeness of a per-

son using deep learning technology) to do so. These technologically-enhanced activities

have already caused harm. The FBI has issued warnings about malicious actors creating

explicit deepfakes to harass victims [3] and to apply for sensitive jobs [4]. There have

even been multiple reports of deepfakes convincing victims to part with the equivalent of

hundreds of thousands of pounds [5, 6].

Barriers to accessing significant computational resources will only make it easier for ad-

versaries to scale these activities. One report on deepfakes estimates that 90% of online

content may be synthetically generated by 2026 [7]. The volume of data produced means

it will be challenging for humans to vet everything without assistance. The nature of syn-

thetic media is likely to diversify. One may primarily think of images when considering

threats like deepfakes, but malicious actors will branch into other modalities like audio.

Humans are also inconsistent assessors. Studies suggest humans are overconfident in their

abilities to detect falsified media [8, 9, 10]. Investigations also suggest human performance

is unreliable for other safety-critical tasks. For instance, studies of X-ray baggage screeners

suggest their hit rates decrease with higher workloads [11].

These results highlight the need for automated anomaly detectors to complement man-

ual detection processes. Binary machine learning classifiers are a common but imper-

fect approach. Although they are highly accurate at classifying examples similar to those

seen during training, their performance on out-of-distribution samples is more unreliable
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[12, 13, 14]. This phenomenon means adversaries can defeat binary classifiers by slightly

modifying existing threats. Collecting more threats to retrain detectors is a solution, but

leads to a cat-and-mouse dynamic stalemate.

One-class classifiers aim to address the shortcomings of binary classifiers. They only use

benign data to build an exemplar embedding. At inference, samples that do not resemble

the exemplar features are deemed unusual. This approach is potentially more cost-efficient

than binary classifiers as it does not require example threats for training. As one-class clas-

sifiers cannot overfit on anomalous training data, they should generalise better to unseen

anomalies.

One-class classifiers have two core components: the underlying representation and the

detector. Research on natural images suggests the former aspect is more important for

performance than the latter [15, 16]. However, the questions of what a "good" representa-

tion is and how to quantify it are still unresolved.

One-class detection research also tends to focus on images. It is unclear whether these

findings transfer to other modalities, which is crucial as security applications go beyond

images. Therefore, this thesis aims to address the following research questions:

RQ1. What representations best facilitate anomaly detection?

RQ2. Is the choice of representation more important for performance than the choice

of anomaly detector?

RQ3. What are the characteristics of good representations?

RQ4. Do similar principles for designing anomaly detectors and representations apply

regardless of input modality?

In addition to revisiting one-class detectors on natural images, we analyse performance on

X-ray imagery, text, speech and tabular data. Our results indicate no solution for anomaly

detection that works across modalities exists. Likewise, measures of representation quality

depend on the anomaly detection setup and have their caveats.

Nonetheless, our findings suggest a reasonable benign representation is low-dimensional

compared to the learnt feature space. Learning representations from pre-trained neural

networks trained on vast amounts of data similar to the benign and anomalous classes can
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enable this.

Self-supervised methods enable the extraction of suitable representations for image, text,

and speech data. We demonstrate these results through empirical studies in each of these

modalities. Simple self-supervised tasks (such as encouraging benign data to match a cen-

tral exemplar embedding) work reasonably, raising questions on whether more compli-

cated tasks are necessary for anomaly detection.

However, appropriate learning schemes for tabular data are unknown. Like the other

modalities, we conduct detailed ablation studies on tabular data to test the effectiveness of

different self-supervised approaches. Self-supervision - and broadly representation learn-

ing - is unhelpful in improving tabular anomaly detection performance.

Finally, we reconfirm that representation choice is more important than the detector, al-

though detectors with minimal distributional assumptions are preferable.

The structure of the thesis is as follows. In Chapter 2, we provide an overview of one-

class anomaly detection and representation learning. Chapters 3, 4, 5, 6, and 7 investigate

anomaly detection behaviour on images, text, speech, and tabular data respectively. We

summarise the findings, outline limitations, and conclude in Chapter 8.

The work in this thesis has contributed to the following publications:

1. Kimberly T. Mai, Toby Davies, and Lewis D. Griffin. Brittle features may help

anomaly detection. Women in Computer Vision Workshop at Computer at the Confer-

ence on Computer Vision and Pattern Recognition, 2021. (Chapter 3).

2. Kimberly T. Mai, Toby Davies, and Lewis D. Griffin. Self-supervised losses for one-

class textual anomaly detection. arXiv preprint arXiv:2204:05695, 2022. (Chapter 4).

3. Kimberly T. Mai, Sergi Bray, Toby Davies, and Lewis D. Griffin. Warning: Humans

cannot reliably detect speech deepfakes. PLoS One 18 (8), e0285333, 2023. (Chapter

5).

4. Kimberly T. Mai, Toby Davies, and Lewis D. Griffin. Understanding the limitations

of self-supervised learning for tabular anomaly detection. Pattern Analysis and Ap-

plications, 2024, (Chapter 7).

Beyond the thesis, we have contributed to the following:
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1. Kimberly T. Mai, Toby Davies, Lewis D. Griffin, Emmanouil Benetos. Explaining

the decisions of anomalous sound detectors. The 7th Workshop on the Detection and

Classification of Acoustic Scenes and Events, 2022.

2. Lewis D. Griffin, Bennett Kleinberg, Maximilian Mozes, Kimberly T. Mai, Maria Vau,

Matthew Caldwell, Augustine Mavor-Parker. Large language models respond to in-

fluence like humans. Social Influence in Conversations Workshop at the 61st Annual

Meeting of the Association for Computational Lingustics, 2023.

3. Kimberly T. Mai, Lorenzo Pasculli, Shane D. Johnson, Lewis D. Griffin. Generative

AI and homeland security: rethinking risk and response. Under review, 2024.



2 | Background

In this Chapter, we recap the anomaly detection landscape and the various ways to mea-

sure the properties of embeddings1.

2.1 Anomaly detection

Anomaly detection is the task of identifying unusual instances. We label these instances

as "anomalous" and the remaining instances as benign. Using the definition per Ruff et al.

[1], it can be characterised as follows:

Let  ∈ ℝ𝑑 represent the data space. We assume the benign data is drawn from a distri-

bution  on  . Anomalies are data points 𝐱 ∈  that lie in a low probability region in  .

Assuming  has a corresponding probability density function 𝑝(𝐱), the set of anomalies

can be defined as follows:

 = {𝐱 ∈  |𝑝(𝐱) ≤ 𝜏}, 𝜏 ≥ 0 (2.1)

Where 𝜏 is a threshold.  on  transforms to  ′ on  according to  ′(𝜃(𝐱)) = |𝐉𝜃|, where

𝐉 is the Jacobian of 𝜃. If 𝜃 is an effective mapping, then 𝜃() will still be a low probability

of  ′ and 𝜃() will have a simpler boundary in  than  in  .

Often, the original input space is not used, as anomaly detection performance can be im-

proved by using a different representation space. In the context of deep learning, a neural

network parameterised by 𝜃 ∶  ↦  (where  ∈ ℝ𝑚) is used to transform the input

data. The anomalies are assumed to lie in a low-probability region in the new space.

Essentially, the decision - anomaly or benign - is a binary choice. Themost straightforward

1This thesis differentiates between the terms "representation" and "embedding". Representation refers to
the learnt space, whereas embeddings are the samples that map into the representation space.
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way of facilitating this is with a supervised binary classifier. However, supervised models

come with disadvantages. They require labelled anomalies for training. Collecting such

samples can be costly and challenging as anomalies rarely occur. Moreover, supervised

classifiers require re-training to categorise unseen anomalies correctly.

In light of the shortcomings of supervised classifiers, we focus on one-class models. One-

class models only use benign data for training. We can train amodel directly on the data, or

pre-process the data to extract relevant features. Traditional feature engineering pipelines

were hand-crafted. Nowadays, one can use neural networks.

The model compares the embedding of a test datum to the exemplar training embedding

at inference time. The more dissimilar the datum is, the more likely it is an anomaly. The

degree of acceptable dissimilarity depends on a set threshold. This threshold is a trade-off

between false accepts and rejects.

Appropriate thresholds are task-dependent. For example, it may be more acceptable to

have higher false reject rates when inspecting baggage at the airport compared to fa-

cial verification systems to unlock personal smartphones. We use the area under the re-

ceiver operating curve (AUROC) as the primary evaluation metric to avoid tuning differ-

ent thresholds for each application mentioned in the thesis and for consistency with other

work. The receiver operator curve is a graphical depiction of the true positive against

the false positive rate at various thresholds. We can consider AUROC as the probability

that a randomly selected anomaly will be ranked as more abnormal than a benign sample.

Scores fall between 0% and 100%. A score of 50% indicates a detector cannot distinguish

between anomalies and benign data points, while a score of 100% signals perfect anomaly

discrimination.

Although AUROC tends to be more stable for imbalanced datasets than accuracy, it may

not fully reflect model performance in situations of extreme imbalance. AUROC may fail

to highlight incorrect classifications of rare anomalies. As a result, a high AUROC score

in an imbalanced dataset could signal that a model only learns to correctly identify benign

samples.

Anomalies can be of different types. Two important categories are [17]:

1. Semantic: The instance is an unusual object category (e.g., firearms in baggage).
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2. Fine-grained: The instance is a typical object category. Instead, the instance con-

tains unexpected patterns in specific segments [18], such as unusual textures in bag-

gage due to power explosives [19].

This thesis focuses on semantic anomalies. Future work could extend our investigations

to fine-grained anomalies.

Anomalies are further categorised by how far they deviate from benign data. The distri-

bution of near out-of-distribution (OOD) samples resembles the benign distribution more

closely than far OOD points [20]. As a concrete example, if the training data contained X-

ray images of airport baggage, then X-ray images of baggage with firearms would be near

OOD. In contrast, camera photos of luggage containing firearms would be far OOD as they

are from a different domain. We primarily focus on near OOD samples by partitioning ex-

isting classification datasets to construct anomalies (for example, we treat the "automobile"

class in CIFAR-10 [21] as anomalies and the remaining nine classes as benign).

Benign data also fall into two main categories: unimodal and multimodal. The data points

in the unimodal setting are more similar to each other than the multimodal instance. Using

CIFAR-10 as an example, an unimodal configuration might only include "cat" as the benign

class, whereas amultimodal configurationmight incorporate all animals (i.e., cat, deer, dog,

frog, horse). We use both configurations.

2.1.1 Related fields

Out-of-distribution
sample detectors

One-class
Anomaly detection

Novelty detection

Multiple classes

Out-of-distribution
detection

Open-set recognition

Figure 2.1: Taxonomy of out-of-distribution sample detectors.

Anomaly detection closely aligns with novelty detection, open-set recognition and out-of-

distribution detection [22]. Although all fields involve detecting OOD samples, the litera-

ture uses out-of-distribution detection to refer to models explicitly designed to distinguish

between multiple classes.
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All fields assume only benign data are available at training. However, anomaly and novelty

detection group training data into one class. In contrast, semantic labels are available for

the benign subclasses in open-set recognition and out-of-distribution detection.

Anomaly and novelty detection differ in their treatment of OOD samples. Anomaly de-

tection treats them as abnormal, whereas novelty detection views them as merely unseen.

Consequently, future iterations of novelty detectors may incorporate previously identified

unseen data points into training.

Open-set recognition and out-of-distribution detectors assess test data in different ways.

Open-set models simultaneously classify known classes of in-distribution data while flag-

ging unseen classes. In contrast, out-of-distribution detection solely focuses on identifying

unseen samples. They use the subclasses to aid decision-making.

Methods designed for one field are adaptable to another. One can use metadata or aug-

mentations to create new subclasses to turn a one-class configuration into a multiple-class

one [23]. Conversely, one can combine the subclasses into one group.

We provide further details on OOD sample detectors in Appendix A.

2.2 Representation learning

Representation learning is a machine learning paradigm that aims to transform a raw data

space into one with concise and meaningful features. Previous one-class anomaly detec-

tion methods that used representation learning relied on traditional feature engineering,

such asMel spectrograms for audio [24] and histograms of gradients for images [25]. How-

ever, using features from neural networks is now the default choice and has improved

performance significantly [26].

Features from pre-trained classification networks transfer well to other tasks, even when

the downstreammodality is different [27]. For instance, Palanisamy et al. [28] showed that

convolutional neural networks (CNNs) trained on ImageNet [26] are a strong baseline for

audio classification. Fine-tuning the neural network with the target dataset can boost per-

formance. However, supervised learning may not be feasible because labels might not be

available. For instance, the exact contents of benign luggage seen in X-ray scanners may

be too complicated to annotate. The range of items varies widely, depending on a pas-
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senger’s travelling purposes. Therefore, using the OOD confidence of a model classifying

different items inside luggage may be infeasible.

Self-supervised learning overcomes this issue by using intrinsic properties of the data as

labels. They use pretext tasks to generate labels from unlabelled data [29]. Examples

of pretext tasks include colourising greyscale images [30] or predicting the next word in

a sentence [31, 32]. Understanding the typical characteristics of a domain allows one to

create an appropriate pretext task. For instance, colourisation requires knowledge of object

boundaries and semantics. These aspects are useful for image classification [33, 34].

2.2.1 Self-supervised pretext tasks

Some categories of pretext tasks are as follows. Balastriero et al. [29] covers these in more

detail.

Classifying perturbations: Each training datum is subject to a perturbation randomly

selected from a fixed set, such as rotating the input data [35] or reordering patches in an

image [36]. A classification model then learns to predict which perturbation was applied.

Conditional prediction. A neural network sees pieces of the input data and learns to

complete the remaining parts. Examples include predicting the next word given a portion

of a sentence [31] or filling in masked areas of an image [37, 38].

Clustering. Under this category, models learn to group semantically similar instances and

place them far away from observations representing other semantic categories. 𝑘-means

clustering is a classic example that measures similarity in Euclidean space.

More modern techniques learn a similarity metric using neural mappings. One popular

loss function that enables this is InfoNCE [39, 40]. InfoNCE takes augmented views of

the same data point as positives and learns to group them while pushing away other data

points. Augmentations are usually in the form of transformations. In the case of images,

these can involve adding noise, colour jittering, or horizontal flips. However, InfoNCE

relies on large batch sizes to enable sufficiently challenging comparisons. Augmentation

choices are also vital, as aggressive transformations could remove relevant semantic fea-

tures.

VICReg [41] attempts to overcome some of the issues of InfoNCE by enforcing specific
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statistical properties. It encourages augmented views to have a high variance to ensure the

neural mapping learns diverse aspects of the data. It also regularises the covariance matrix

of the embeddings. This regularisation ensures the neural mapping covers complementary

information across the representation space.

2.2.2 Measuring embeddings

Different pretext tasks learn different features. Variances across tasks can make it unclear

what features are more desirable than others. Understanding the importance of features

would help us understand howneural networkswork and how to improve them. For exam-

ple, it would help us recognise whether the model would benefit from data augmentation

or architectural changes.

Neural networks are less interpretable than shallow machine learning models like linear

regression, partly due to the large number of parameters and nonlinearities [42]. The field

of adversarial machine learning highlights the difficulty of interpreting neural networks.

For example, adding imperceptibly small amounts of noise can cause an image classifier

to label a panda as a gibbon [43].

The one-class anomaly detection setup adds another layer of complexity. Embedding qual-

ity is only measurable with benign data. Yet, a good representation space needs to gen-

eralise poorly to out-of-distribution data. Hence, measures that rely on the training data

might be misleading.

There are still ways to measure embedding quality in the one-class setting. These meth-

ods fall into two categories: explainability (analysing task outputs) or interpretability

(analysing the internal properties of embeddings) [44]. Analysing task outputs involves

studying how the extracted embeddings perform on particular tasks. These embeddings

are not necessarily from the final layer of neural networks. Some representation learn-

ing studies find that using intermediate embeddings can be better for anomaly detection

because the later layers of neural networks specialise in the training task, while earlier

layers learn more generalised features [40, 45, 46]. In contrast, measures that analyse in-

ternal properties look at the properties of data after they have been transformed by neural

networks. We summarise some examples relevant to one-class anomaly detection below.
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Methods to
measure embeddings

Explainability

Downstream task
performance
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Figure 2.2: Diagram showing methods for assessing neural network embeddings.

Downstream task performance. We freeze the neural network of interest and extract

relevant features. We use these features to train a detector and evaluate a downstream

task, like anomaly detection or classification. We use performance metrics like accuracy

to implicitly measure embedding quality. This setting relies on having a validation set

that faithfully reflects the test conditions. For example, if the trained model was a spam

detector, the spam emails in the validation set should contain content similar to spam in

real-life settings.

Ablations observe how outputs change following input or architecture modifications. For

example, the work of Geirhos et al. [33] showed that ImageNet-trained CNNs were biased

towards texture by training ResNets to classify the ImageNet categories and varying the

input features (natural colour, greyscale, silhouettes, canny images and textures). Per-

forming ablations allows us to understand if trained models have biases or limitations.

However, extensive ablation studies involve consistently training new models, which is

expensive. Additionally, using ablations for hyperparameter tuning raises the prospect

of overfitting. This overfitting can be problematic if there is a misalignment between the

ablations and the ultimate purpose of the model.

Human comparisons. Models that make the same classifications or mistakes as humans

indicate they use similar characteristics for decision-making. For example, RotNet, which

encourages a model to predict the correct orientation of input images, relies on the reg-

ularity that many semantic classes have a non-uniform distribution of orientations [35].

One instance is cars, where wheels are generally in contact with the ground.
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Human comparisons can be as primitive as measuring how well models perform on an

annotated dataset, such as classifying ImageNet. More sophisticated studies involve re-

cruiting participants and comparing their responses to the model’s outputs. The texture

study by Geirhos et al. recruited 97 participants to classify the same input features used

to train the ResNet models [33]. Unlike the ResNet models, human participants could still

categorise images with altered textures. From these results, Geirhos et al. concluded that

ResNet models relied more on texture to make classification decisions.

However, human studies come with considerations. Human participants can be costly to

recruit. Their decisions are also often error-prone and biased. One study suggests Ima-

geNet and CIFAR-100, two widely used datasets in computer vision research, contain an-

notation errors close to 6% in their test sets [47]. Another study on out-of-distribution de-

tection suggests a 50% overlap between in-distribution ImageNet-1K and commonly-used

out-of-distribution test sets [48]. These results imply the performance of classification or

out-of-distribution detectors may not faithfully indicate if one model is indeed better than

another. Human responses can also encode biases. One open-source large-scale dataset, 80

Million Tiny Images [49], was withdrawn after a study found the annotations contained

derogatory terminology. As a result, models trained on this dataset exhibited offensive

biases [50].

Visualisations are useful in illustrating embedding behaviour. They aim to present em-

beddings in a way humans can understand. Dimensionality reduction techniques like PCA

and t-SNE aim to capture the most crucial data directions [51]. For example, Gao et al. vi-

sualised word embeddings from a vanilla transformer using singular value decomposition

and found they occupied a narrow space [52]. Concurrent and subsequent works con-

firmed this phenomenon [53, 54, 55, 56].

However, dimensionality reduction techniques have caveats. They use assumptions that

might not apply. PCA is a linear method that disregards the nonlinearities encoded in deep

neural networks.

T-SNE assumes the data follows a t-distribution in the lower dimensional space and is bet-

ter at modelling local relationships. It is also not deterministic. Re-running the algorithm

generates different results. In addition, t-SNE cannot transform unseen data and has to be

run on test data. Therefore, the visualisations can be misleading in a one-class setup.
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Covariance-based methods typically summarise the eigendecomposition of the covari-

ance matrix to a scalar value. Other works have used these scalar values to inform model

and hyperparameter selection.

The first measure mentioned in this review, 𝛼-ReQ, takes inspiration from neuroscience. A

2019 study by Stringer et al. analysed the encoding dimensionality of natural images in the

visual cortex of mice [57]. The encodings were high dimensional, and correlations obeyed

an 𝛼
𝑛 power law, where 𝛼 ≈ 1. They computed the correlations by plotting the eigenvalue

spectrum of the covariance matrix of the encodings on a log-log scale and measured the

gradient. This gradient is termed 𝛼. The correlations were not due to the power spectra of

natural images [58], as this behaviour persisted after whitening the stimuli presented to the

mice. An 𝛼 less than 1 indicates a dense encoding, whereas an 𝛼 larger than 1 indicates

sparser encodings. Stringer et al. argue that 𝛼 ≈ 1 is desirable. Slower eigenspectrum

decays would increase sensitivity to small changes in input stimuli while faster decays

would decrease sensitivity to changes in input stimuli.

𝛼-ReQ used the 𝛼 approach to measure the quality of learnt embeddings in self-supervised

image classification models [59]. They found an 𝛼 closer to 1 was a "sweet spot" for down-

stream classification performance. However, they emphasise this value is necessary but

insufficient for good downstream performance. Self-supervised models using CNNs as

backbones exhibited positive correlations between classification accuracy and 𝛼, whereas

transformer-based models showed negative correlations. In addition, the authors found

that correlations between 𝛼 and performance were weaker in the earlier layers of the

models and hypothesised this is due to earlier layers learning more broad task-invariant

features.

RankMe evaluates embedding quality by estimating the rank of the embeddings [60]. They

hypothesise larger values are better because they exhibit less dimensional collapse. The

score is as follows:

RankMe(𝒁) = exp
(
−

min(𝑁 ,𝐾)

∑
𝑘=1

𝑝𝑘 log 𝑝𝑘)
(2.2)

with 𝑝𝑘 =
𝜎𝑘(𝒁)
||𝜎(𝒁)||1

+ 𝜖, (2.3)
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Where 𝒁 are the training embeddings, 𝜎𝑘 is the 𝑘-th singular value of 𝒁 and 𝜖 is a sta-

bility constant. The study used RankMe to perform self-supervised model selection and

showed the metric correlated with classification accuracy. The authors demonstrated that

𝛼-ReQ and RankMe exhibited similar performance when used as a model selection metric

but found that RankMe outperformed 𝛼-ReQ in cases of dimensional collapse. However,

RankMe cannot be used to compare architectures. The authors emphasise it is only usable

when comparing identical architectures.

Another similar metric is the area under cumulative explained variance (AUCEV). Li et

al. [61] used AUCEV to establish why non-contrastive self-supervision approaches (like

BYOL [62] or SimSiam [63] that use stop-gradients instead of contrastive losses to learn

embeddings) perform well even though the global minimum is a collapsed embedding.

They found thatmodel capacity closely alignswith classification performance. If themodel

is too small compared to the dataset, it leads to dimensional collapse. They use AUCEV to

measure the extent, where there are 𝐾 singular values in total:

AUCEV =
1
𝐾 ∑𝐾

𝑖=1∑
𝑖
𝑗=1 𝜎𝑗

∑𝑑
𝑘=1 𝜎𝑘

(2.4)

Values closer to 50% indicate no collapse, whereas 100% indicates severe dimensional fail-

ure. Hence, AUCEVs closer to 50% are more desirable. Unlike 𝛼-ReQ and RankMe, Li et

al.’s experiments only cover non-contrastive self-supervised models and use ResNets as

backbones.

Gradient-based methods rely on the backpropagation aspect of deep neural networks.

They examine gradient magnitudes given some input data. A sizeable gradient update

suggests the model is learning a new concept. Therefore, if a model trained on a particular

semantic class encounters a datum seen previously, the gradient should be smaller. Con-

sequently, gradient magnitudes are proxies for measuring the tightness of an embedding.

Simon-Gabriel et al. show the 𝓁𝑝 norm of gradients calculated at the loss  corresponds to

vulnerability to adversarial perturbations [64]. Higher norms correspond to higher vulner-

ability. This method cannot be applied to non-neural anomaly detection methods because

it requires a model that can backpropagate.

Similarity metrics correspond to the assumption in anomaly detection that benign em-
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beddings should be compact [65, 66, 67]. One way to measure this is by calculating the

cosine similarities across the training samples [68]. Another variation involves calculating

the average cosine similarity against a mean embedding [66, 67].

Similarity metrics can also compare embeddings from different models or layers. Alter-

native methods like centred kernel alignment (CKA) [69] commonly measure cross-model

similarities. Unlike cosine similarity, CKA is invariant to linear transformations. Therefore

CKA can compare different representation spaces. However, CKA is more complicated to

run than cosine similarity. The first step involves computing kernel matrices for the two

embeddings. If 𝐗𝑚1 and 𝐗𝑚2 are two embeddings with dimensionalities 𝑚1 and 𝑚2, their

similarity matrices after the kernel step are as follows:

𝐊𝑚1 = 𝑘(𝐗𝑚1 , 𝐗𝑚1), 𝐊𝑚2 = 𝑘(𝐗𝑚2 , 𝐗𝑚2) (2.5)

The matrices are zero-centred to 𝐇𝐊𝑚1 and 𝐇𝐊𝑚2 , where 𝐇𝐊 is the centred matrix. The

two matrices undergo comparison using the CKA score. The CKA score typically uses the

Hilbert-Schmidt independence criterion, which measures the independence between two

distributions and is normalised. CKA scores range between 0 and 1. Scores closer to 1

suggest higher alignment.

HSIC(𝐗𝑚1 , 𝐗𝑚2) =
1

(𝑛 − 1)2
tr(𝐇𝐊𝑚1𝐇𝐊𝑚2) (2.6)

CKA(𝐗𝑚1 , 𝐗𝑚2) = HSIC(𝐗𝑚1 , 𝐗𝑚2) /
√
HSIC(𝐗𝑚1 , 𝐗𝑚1)HSIC(𝐗𝑚2 , 𝐗𝑚2) (2.7)

The kernel operations mean CKA is more expensive to compute than cosine similarity and

is less interpretable. The population characteristics of the input data can also confound

CKA and lead to misleading similarities. Cui et al. propose a fix by regressing out the

input features [70].
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2.3 Landscape of representation learning for anomaly detec-

tion

Representation learning approaches for anomaly detection use deep neural networks end-

to-end or as feature encoders. Both rely on the same assumption: the embeddings learnt

by the neural networks can characterise benign data but not anomalies.

End-to-end approaches work on the principle that neural networks behave differently on

benign data and anomalies. When dealing with anomalies, losses are higher [46, 71, 72],

predictions from discriminative models should be more uncertain [13], or log-likelihoods

in generative models are lower [73]. However, this assumption does not always hold in

practice.

Nalisnick et al. [73] trained generativemodels to reconstruct images frommultiple datasets

(MNIST, FMNIST, SVHN, CIFAR-10, CIFAR-100). They used the log-likelihood to score

samples, anticipating that OOD samples should have lower values. The log-likelihood

scores for the OOD datasets were often higher than the training datasets across several

generative models. Possible reasons include poor calibration between the actual under-

lying distribution and the fitted distribution, the bias of deep generative models towards

low-level statistics, and the curse of dimensionality [74, 75, 76]. Alternatively, the OOD

datasets could have more straightforward characteristics than the training set. The gen-

erative models might contain the features to generate these out-of-distribution samples.

For example, Zenati et al. [77] combined the losses from the generator and discriminator

of a generative adversarial network (GAN) to score anomalies. When training their GAN

on MNIST, the model treated digits of the anomalous class "1" as more typical than the

training set classes ("0", "2",...,"9").

Feature extraction approaches feed neural network outputs into a shallow anomaly detec-

tor. 𝑘-nearest neighbours (𝑘-NNs) are a popular choice due to their nonparametric nature

[15, 16, 67, 78, 79], but other approaches like one-class support vector machines (OCSVMs)

and Gaussian mixture models (GMMs) have also been used [80].

Embeddings do not always originate from the final layer. Intermediate embeddings have

also demonstrated good performance [80]. For instance, Andrews et al. [45] extract in-

termediate embeddings from a sparse autoencoder to train OCSVMs. They found these

embeddings worked better on average than using input features or the residuals from the
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autoencoder. However, there is no method for identifying which intermediate embeddings

work best. Intermediate embeddings are also not guaranteed to work better. For instance,

Xu et al. [81] trained OCSVMs with intermediate embeddings of BERT [82] and RoBERTa

[83] to detect OOD samples on two datasets. They found the penultimate layers worked

best on one dataset but there was no best-performing layer for the second dataset.

There is no consensus on whether end-to-end methods are better than feature extraction

approaches. Using models end-to-end removes the need to assemble and tune different

components in the anomaly detection pipeline (for example, selecting the best-performing

shallow detector). In contrast, outputs from shallow detectors are more straightforward

to interpret and diagnose.

Benchmarking studies that compare different OOD detectors show 𝑘-NN can outperform

end-to-end models on near OOD but not far OOD instances when using a ResNet-50 pre-

trained on ImageNet as a backbone [84]. However, these benchmarking studies concen-

trated on the scenario where multiple labels are available for the training data, which

differs from the one-class focus in this thesis.

More broadly, representation learning methods for anomaly detection focus on computer

vision and use ImageNet as the benign distribution. Follow-up studies would benefit from

applying representation learning methods to more diverse scenarios.
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Reviewing images is a common way of assessing safety. Examples include identifying

bogus biometric attempts [85], flagging unusual vehicle movements [86], and pinpointing

suspicious items in parcels [17]. The contents of images can vary greatly and it can be

challenging for humans to keep up with the changing nature of anomalies. Therefore,

complex and varied images emphasise the need for automated detectors.

One might use supervised classifiers as an initial option. However, it is challenging to col-

lect a sufficient number of anomalies for training. For instance, a training set for a super-

vised firearms classifier suffers from this problem. Finding firearms in the wild is rare. The

difficulty of collecting training anomalies motivates the use of one-class anomaly detec-

tors. Regardless, there might not be sufficient data to train a one-class model from scratch.

For instance, X-ray images of luggage have vastly different characteristics from natural

images and require specialist equipment to collate. One could adapt features from models

specialising in processing natural images for a domain like X-rays. Pre-trained models

trained with natural images are widely available. However, it is unclear whether using

them to evaluate X-ray images would result in a domain shift that affects detectability.

We compare how different representation spaces affect anomaly detection performance.

To do so, we use knowledge distillation [87] to construct a setting where the model should

be able to represent benign data but not anomalies. We select a teacher network trained

on a pretext task. This task originates from a more complex pre-trained classification

task or self-supervised learning. A student network that only sees inlier training data

learns to match the internal embeddings of a frozen teacher network. Using the idea that

regression models extrapolate poorly to unseen data, we expect the embeddings of the

student and teacher to differ more on anomalous images compared to benign images [88].

We use mean squared error to score anomalies, as the extent of disagreement between

student and teacher should show through higher regression errors. Although there have
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been works that have used this failure-to-extrapolate idea [88, 89, 90], these works have

fixed the teacher representation spaces and have not explored how varying the teacher

can affect detection.

We derive representation spaces from various sources, including an X-ray security dataset

containing staged threats [17]. Our approach outperforms the previous best anomaly de-

tection scores for that dataset, boosting the AUROC score from 92.65% to 96.41%.

In addition, our results suggest embeddings with features susceptible to adversarial pertur-

bations may be better candidates for anomaly detection. To summarise, our contributions

are as follows:

1. We conduct an empirical study to compare the suitability of multiple candidate em-

beddings for anomaly detection.

2. We confirm the choice of representation space is more important than the anomaly

detection method.

3. We demonstrate that separability between anomalies and benign data does not en-

sure reasonable detection performance.

4. We show that embeddings more prone to adversarial perturbations may be more

suitable for anomaly detection. We also propose a score tomeasure the vulnerability.

This work was presented at the Women in Computer Vision Workshop at CVPR [91].

We outline the anomaly detection literature in §3.1 and describe our approach in §3.2. We

analyse our results in §3.3. Finally, we summarise and conclude in §3.4.

3.1 Background

Earlier approaches for image-based anomaly detection used hand-crafted feature engi-

neering (such as colour histograms [92] or textural features [93]) to pre-process high-

dimensional images.

The advent of deep learning enabled the learning of features that specialised more to the

training distribution [43]. Generative models, particularly autoencoders, are popular end-

to-end approaches that simultaneously learn relevant features and assess anomalousness

[45, 71, 72]. However, evidence showed that these models often deem OOD data less
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anomalous than benign data [73]. One explanation speculates that generative models fail

to model the actual distribution sufficiently [74].

Instead of using the sampled training data to learn representation spaces from scratch,

later works use transfer learning [94]. Representations formed from models pre-trained

onmass amounts of data should have fewer discrepancies between themodelled and actual

distributions. The diversity of large-scale natural image datasets like ImageNet [95] makes

transfer learning a sensible starting point for image-based anomaly detection. Transfer

learning methods use the pre-trained models directly or fine-tune with the benign data

before feature extraction. Anomaly detection methods feed the embeddings through shal-

low detectors [94, 96] or apply feature engineering (such as binarisation [17]) to enhance

the difference between benign and anomalous inputs.

The size of pre-trained models means it can be expensive to extract features directly.

Knowledge distillation is a technique closely linked to transfer learning that addresses

this issue [87]. This technique involves two models: a teacher and a student. The stu-

dent model tends to be more computationally efficient while retaining salient features of

the teacher. Instead of training the student from scratch, the student learns to mimic the

outputs of the teacher. These outputs can be the teacher’s predictions or intermediate

embeddings.

Knowledge distillation has improved both classification and anomaly detection [89, 97].

Works hypothesise knowledge distillation is helpful because the teacher logits provide

more information about how classes relate to each other than discrete labels [87, 97].

Anomaly detectors that use knowledge distillation assume the student network represents

benign data similarly to the teacher but diverges on anomalies. Bergmann et al. pro-

pose an ensemble-based method for fine-grained anomaly detection [89]. An ensemble of

students learns to mimic the pre-trained teacher output by minimising the patch-based

distance between the mean student embedding and the teacher embedding. The anomaly

score combines the reconstruction loss between each student and teacher with the average

amount of disagreement between the students. As this method is for fine-grained anomaly

detection, it relies on combining pixel patch embeddings, which is expensive.

Neural networks tend to be susceptible to adversarial perturbations. An imperceptible

change to the input data can alter neural network outputs. Studies suggest vulnerability
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is related to the magnitude of the loss gradient [64, 98]. The occurrence of adversarial

examples suggests neural networks rely on brittle features for learning representations

[43]. Works argue that these brittle features are not at odds with downstream performance.

Instead, they claim brittle features are a direct product of a model’s sensitivity to well-

generalising features in data [99, 100].

3.2 Method

Although several works use pre-trained embeddings for anomaly detection, embeddings

from ImageNet-based classifiers are the most common choice [13, 17, 96, 89]. These em-

beddings may not be suitable when there are domain shifts, for instance, from natural

images to X-rays. Therefore, our research questions are as follows:

1. What representations and embeddings are best for image-based anomaly detection?

2. What are the properties of the most suitable embeddings?

Our anomaly detection setup relies on a reconstruction principle. A good embedding

should contain features sufficient to reconstruct benign instances but insufficient to re-

construct anomalies. Our approach is similar to using autoencoders and a reconstruction

loss as the anomaly score [71] but fixes a flaw with autoencoders. Some works show that

vanilla autoencoders can construct more rudimentary OOD classes [73, 77]. For example,

Zenati et al. [77] showed that autoencoders can reconstruct the anomalous class "1" in

MNIST if the remaining numbers are benign.

Ren et al. [74] suggest this behaviour happens because the reconstruction relies on short-

cut features. For example, in MNIST, the proportion of zeros (the number of pixels be-

longing to the background in an image) is a confounding factor and affects reconstruction.

They term this proportion of zeros a "background" representation. Ren et al. propose fix-

ing this issue by introducing likelihood ratios. The likelihood ratio statistic compares a

representation that only models benign data against a background representation that can

model other semantic classes beyond the benign class.

Our teacher-student approach uses a similar principle. We train the teacher on more com-

plex pretext tasks, sometimes on more diverse data. The student only uses benign data

specific to anomaly detection. Its task is also simple. It learns to match the teacher’s out-
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puts. As a result, the student learns a representation space more specific to the benign

data, whereas the teacher learns a representation that captures background information.

We emulate the likelihood ratio scenario by passing a test datum through the teacher and

student and comparing embeddings. The student and teacher should output similar em-

beddings for benign data and divergent embeddings for anomalies. We visualise our ap-

proach in Figure 3.1.
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Figure 3.1: Schematic of the knowledge distillation architecture.

First, we train a teacher network on a pretext task. We outline all pretext tasks in §3.2.1. In

all cases, the teacher does not encounter any anomalies during the training stage. We then

freeze the teacher weights and randomly initialise a student network. We feed the same

input image to the student and teacher. The student learns to match their output with the

teacher. We optimise the student using mean squared error (MSE). We experimented with

ensembling and other loss functions but did not notice significant improvements.

Our inference pipeline is similar. We pass a test image through both networks and use the

MSE as the anomaly score. For an input datum 𝒙, let the output of the student be 𝑓 (𝒙) and

the output of the teacher be ℎ(𝒙). The anomaly score 𝐴(𝒙) is then defined as:

𝐴(𝒙) = ||ℎ(𝒙) − 𝑓 (𝒙)||2 (3.1)

3.2.1 Pretext tasks

We use generative and discriminative tasks to cover the range of learning objectives. The

tasks are as follows:
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Classification from other datasets. We train neural networks to classify a dataset sep-

arate from the one we use for anomaly detection. We use a standard classification training

regime: we use the provided annotation labels and train with cross-entropy loss.

RotNet uses a perturbation-type self-supervised task [35]. Each input image rotates by a

multiple of 90 degrees {0◦, 90◦, 180◦, 270◦}. Themodel learns to predict the rotation using the

angle as the label. RotNet learns orientations and subsequent features that are important

for identifying semantic classes. The networks use cross-entropy loss.

SimCLR is a self-supervised clustering task for images [40]. It trains a Siamese neural

network to distinguish between two augmented views of the same image. The training

process uses a contrastive loss function called NT-Xent. NT-Xent compares images in a

minibatch. Two differently augmented views of the same image are the positive pair, while

the remaining samples in the minibatch are negative. This loss encourages the network to

learn the semantic features in images andmakes the network invariant to factors irrelevant

to semantic classification, such as sharpness and colour. In the original implementation,

the authors experimented with different augmentations. They found random cropping,

flipping, colour distortion andGaussian blur worked best. We use the same augmentations.

Autoencoders (AE) are unsupervised networks that learn to reconstruct the input data

[101]. An autoencoder typically includes a bottleneck in its architecture. It projects the

input data through this bottleneck so that it is encouraged to learn more efficient embed-

dings of the data and to ignore irrelevant noise. We optimise the autoencoders using MSE.

Denoising autoencoders (DAE) are extensions of AEs. They learn to reconstruct the data

using a corrupted version as input [102]. By learning to remove the noise in addition to

recreating the data, DAEs should be more robust to noise and irrelevant variations in input

data. However, adding noise makes the training process more computationally expensive

than AEs. We optimise the DAEs with MSE and apply Gaussian noise (𝜎 = 1) to the input

data.

We also include two control representations:

Random weights (Random). We randomly initialise the teacher weights. We apply

the default Glorot initialisation [103] because we use PyTorch to implement the models.

Glorot initialisation aims to preserve the variance of the input signal as it passes through
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a network to prevent vanishing gradients by ensuring zero means and maintaining the

value of the variance of the input in every layer. Random weights provide a floor for

performance.

Supervised anomaly detection (Supervised) uses a teacher network that classifies be-

nign and anomalous training samples. Although this is not a realistic representation for

one-class anomaly detection, this setup provides a ceiling for the best teacher represen-

tation. The network specifically learns to categorise typical samples and anomalies from

the same distribution as the test distribution.

3.2.2 Comparisons

We compare our knowledge distillation framework to shallow anomaly detectors trained

directly on embeddings extracted from the teacher. We use AUROC to benchmark all

anomaly detection methods.

Mean squared error. We pass all the training data through the teacher and extract the

newly transformed embeddings. We calculate the mean embedding across the training

samples. We use the MSE between a test datum (transformed by the teacher) and the

mean embedding as the anomaly score. This scoring method uses the same assumption

as the centre loss setup [66]: benign data should be close to the prototypical (teacher)

embedding.

Mahalanobis distance. In addition to the mean embedding, we calculate the covariance

of the training data from the newly transformed embeddings. We calculate the full and

diagonalised covariance to understand whether including correlations between variables

improves performance. We use the Mahalanobis distance between a test datum and these

values to calculate anomaly scores.

We also compare the performance of the anomaly detectors to the supervised classification

performance. We freeze the teacher networks, append a linear head and fine-tune the

networks to classify between benign samples and anomalies. CIFAR-10 is the exception:

we fine-tune the network to categorise all ten classes.

3.2.3 Datasets

We evaluate anomaly detection performance on the following datasets:
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Cats vs. Dogs (CvD) contains 25,000 coloured images of cats and dogs split equally be-

tween the two classes [104]. For each class, we allocated 10,000 images for the training set

and the remaining 2,500 images into the test set. As image sizes vary, we resize each image

to 32 × 32 pixels. The anomaly detectors only used one class for training. The images of

the other class are deemed anomalous.

CIFAR-10 contains 60,000 32 × 32 colour images split equally across ten classes (airplane,

automobile, bird, cat, deer, dog, frog, horse, ship, truck) [21]. In total, there are 50,000 train-

ing images and 10,000 test images. There are no overlaps between the classes. We evaluate

unimodal and multimodal configurations for all ten classes, resulting in twenty configura-

tions overall. For example, for the unimodal configuration, we could pick airplane as the

benign class and set the remaining classes as anomalies.

Plant Pathology 2020 is a Kaggle dataset. It contains 3,651 colour images of apple leaves

taken under different light, angle, and noise conditions [105]. Of those, 1,821 images were

labelled and categorised into one of four categories for the Kaggle competition: healthy

(516), containing apple scabs (592), containing cedar apple rust (622), or containing multi-

ple diseases (91). We use 80% of the labelled healthy images for training and the remaining

20% for testing. We sampled an equal number from the other classes to serve as anomalies

during testing. We do not use the unlabelled images. The original images are 2048 × 1065

pixels. We resize each image to 224 × 224 to fit computational constraints.

The X-ray dataset consists of 5,000 stream-of-commerce (SoC) and 234 staged threat

(threat) parcels collected from a UK parcel distribution centre [17]. The SoC parcels con-

sist of benign objects, whereas the threat parcels include a firearm. All parcels have dual

views, which show the same contents at perpendicular angles. They are false-coloured

with dual-energy imaging. The images are 764 pixels high, while the width varies. SoC

parcels have a median width of 676 pixels, whereas threat parcels have a median width of

990 pixels. We show examples from the dataset in Figure 3.2.

We use the same pre-processing steps as Griffin et al. [17], who initially introduced the

dataset (Figure 3.3). We cropped the images to remove extra air and split them into 224×224

patches using a stride of 112 or less so that both views were fully covered. We only use SoC

patches for training. The models only encounter the threat patches during the evaluation

stage. As we fed patches into the networks instead of full images, we used the maximum
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MSE across an image’s patches as the anomaly score.

Figure 3.2: Example dual-view images from the X-ray dataset. The top row is a SoC example and
the bottom is a staged threat example.

Figure 3.3: Example of how the X-ray images are pre-processed using the threat example from 3.2.
SoC and threat images undergo the same pre-processing steps.

3.2.3.1 Additional datasets

We train teacher networks with additional datasets. We use these teacher networks to in-

vestigate how transfer learning from other representations affects detection performance.

STL-10 is an image recognition dataset inspired by CIFAR-10 [106]. There are ten classes

(airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck). Each class contains the same

number of coloured images: 500 training images and 800 testing images. All images are 96×

96 pixels. The dataset also includes 100,000 unlabelled images, which are for unsupervised

learning. We resize each image to 32 × 32 pixels to train the teacher models. We only use

labelled data for the auxiliary classification tasks, while we also include unlabelled data to

train the RotNets and AEs.

Fashion MNIST (FMNIST) is a greyscale dataset containing images from ten clothing

classes (t-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, ankle boot) [107].

There are 60,000 training and 10,000 testing images, each of size 28 × 28. The classes are

equally balanced. We resize each image to 32 × 32 for the auxiliary classification task.
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Table 3.1: Pretext tasks and datasets used to pre-train the teacher and generate fixed representa-
tions for each anomaly detection dataset, excluding randomly initialised weights which
are used for all datasets. We italicise the supervised (ceiling) representations. The
datasets in the table cells were used as training data for the pretext task.

Pretext Task

Evaluation
dataset

Classification RotNet Autoencoder Denoising
Autoencoder

SimCLR

Cats vs.
Dogs

STL
CIFAR-10
Cats vs. Dogs

STL
CIFAR-10
Cats vs. Dogs

STL
CIFAR-10
Cats vs.
Dogs

STL
CIFAR-10
Cats vs.
Dogs

Not used

CIFAR-10 STL
FMNIST
CIFAR-10

STL
FMNIST
CIFAR-10

STL
FMNIST
CIFAR-10

STL
FMNIST
CIFAR-10

CIFAR-
10

Plant
Pathology

Plant Village
ImageNet
Plant Pathol-
ogy

Plant Pathol-
ogy

Not used Not used Not used

X-ray ImageNet
X-ray

X-ray Not used Not used Not used

Plant Village contains 54,309 healthy and unhealthy leaf images spanning fourteen crop

species [108]. The species further divide into healthy or diseased categories, leading to

39 disjoint classes. We train the teacher model to classify between healthy and unhealthy

plant images.

ImageNet is a large-scale image recognition dataset [95]. It has more than 14 million

images. These images have labels corresponding to a lexical database called WordNet

[109]. We do not train the teacher models on ImageNet ourselves. Instead, we initialise

the teacher with pre-trained ImageNet weights.

We summarise the pretext tasks and datasets in Table 3.1.

3.2.4 Architectures

We fix the architecture for each dataset. The students and teachers have identical archi-

tectures for all experiments. This choice is not a requirement for the method; we choose

to do so to minimise architecture search. We used the Adam optimiser [110] to train all

students with a learning rate of 1e − 5 for 20 epochs, as we found higher learning rates

led to training instabilities. We did not apply augmentations to the images when training
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the students, as we found they could erode features that distinguish benign images from

anomalies.

We use CNN encoders with a fixed-dimension projection head for all pretext tasks except

AEs. For AEs, we mirror the encoder to construct a decoder, while the original projection

head is a bottleneck. We train AEs with the encoder-decoder structure. We discard the

decoder during knowledge distillation.

For CvD and CIFAR-10, we use a ResNet-9 [111] for all tasks. We remove the original

classification head from the auxiliary task and use a 128-dimensional head after the pooling

layer. We train the students to match the embeddings from this 128-dimensional layer.

We use the embeddings after the final pooling layer of a DenseNet-161 network [112] for

the Plant Pathology and X-Ray datasets, resulting in 2208-dimensional embeddings.

3.3 Results

We present the results of the anomaly detectors in §3.3.1 and analyse the properties of the

different representations in §3.3.2.

3.3.1 Anomaly detection performance

Tables 3.2 to 3.5 summarise the anomaly detection results per dataset across the configu-

rations. Appendix C.1 contains more detailed breakdowns of the results.
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Table 3.2: Cats vs. Dogs results averaged over the two classes. The best anomaly detection results
for each representation space are bolded and control results are italicised.

Anomaly Detection Method (AUROC)

Teacher
Representation

Classification
Accuracy

Knowledge
Distillation

MSE Mahalanobis
(Diagonal)

Mahalanobis
(Full)

Mean

Baseline 83.40 89.37 89.04 76.12 85.93 85.12
Random 64.11 50.87 50.24 50.33 51.17 50.65
STL Classification 71.28 61.82 63.20 58.80 56.34 60.04
CIFAR Classification 87.57 81.98 92.29 78.23 74.91 81.85
STL RotNet 75.87 54.91 53.71 52.28 53.96 53.72
CIFAR RotNet 76.65 56.69 51.35 51.44 55.85 53.83
CvD RotNet 70.12 50.18 49.07 49.29 49.64 49.55
STL AE 64.66 52.03 52.16 51.60 51.77 51.89
CIFAR AE 64.11 51.63 52.06 51.45 51.10 51.56
CvD AE 64.47 51.29 49.93 49.93 50.63 50.45
STL DAE 64.69 53.65 51.34 50.89 51.52 51.85
CIFAR DAE 66.13 53.42 51.64 51.13 51.50 51.92
CvD DAE 57.23 50.87 50.37 50.17 50.66 50.51
Mean 70.02 58.36 58.18 55.51 56.53 57.15

Table 3.3: CIFAR-10 results averaged over unimodal and multimodal configurations.

Anomaly Detection Method (AUROC)

Teacher
Representation

Classification
Acc.

Knowledge
Distillation

MSE Mahalanobis
(Diagonal)

Mahalanobis
(Full)

Mean

Baseline 94.08 91.52 76.01 76.19 79.77 80.87
Random 40.31 55.53 54.94 54.90 54.19 54.89
STL Classification 56.70 80.78 71.24 72.43 73.00 74.36
FMNIST Classification 26.16 54.34 53.61 53.68 53.70 53.83
STL RotNet 59.94 63.01 61.62 61.41 59.61 61.41
FMNIST RotNet 21.59 54.68 52.64 52.93 51.67 52.98
CIFAR RotNet 37.27 73.35 72.95 73.07 69.23 72.15
CIFAR SimCLR 65.04 51.78 32.52 32.83 47.15 41.07
STL AE 47.13 57.16 56.14 56.47 56.29 56.52
FMNIST AE 43.60 57.69 55.96 55.64 55.26 56.14
CIFAR AE 44.50 56.33 55.91 56.65 55.28 56.04
STL DAE 49.82 55.73 56.92 57.31 57.68 56.91
FMNIST DAE 40.57 56.25 55.04 55.28 54.26 55.21
CIFAR DAE 14.67 55.45 52.95 53.73 54.75 54.22
Mean 45.81 61.69 57.75 58.03 58.70 59.04
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Table 3.4: Plant Pathology results.

Anomaly Detection Method (AUROC)

Teacher
Representation

Classification
Acc.

Knowledge
Distillation

MSE Mahalanobis
(Diagonal)

Mahalanobis
(Full)

Mean

Baseline 100 100 99.87 99.89 99.89 99.91
Random 63.67 42.50 44.16 44.07 41.35 43.02
Plant Village Classification 90.92 89.82 76.57 83.73 90.78 85.23
ImageNet Classification 88.24 70.66 56.69 61.85 49.45 59.66
Plant Path. RotNet 57.97 48.09 46.70 47.14 47.51 47.36
Mean 80.16 70.21 64.80 67.34 65.80 67.04

Table 3.5: X-ray results.

Anomaly Detection Method (AUROC)

Teacher
Representation

Classification
Acc.

Knowledge
Distillation

MSE Mahalanobis
(Diagonal)

Mahalanobis
(Full)

Mean

Baseline 98.98 99.74 99.25 99.68 99.63 99.58
Random 88.56 73.61 42.41 44.85 71.87 58.19
ImageNet Classification 96.79 76.36 68.37 69.35 73.46 71.88
X-ray RotNet 93.62 96.41 36.08 37.77 60.06 57.58
Mean 94.49 86.53 61.53 62.91 76.26 71.81



Images | 31

3.3.1.1 Knowledge distillation outperforms shallow anomaly detectors

Figure 3.4 summarises anomaly detection performance across all datasets and teacher rep-

resentations. Knowledge distillation outperforms the other detectors on average, as it

makes fewer assumptions about the underlying benign distribution.

0 10 20 30 40 50 60
Median AUROC (%)  is better

Knowledge distillation

Mahalanobis (full)

Mahalanobis (diagonal)

MSE

Figure 3.4: Bar chart comparing the different detectors, summarised by all datasets and auxiliary
representations.

To understand this in more detail, we can see how knowledge distillation compares to the

Mahalanobis distance across different representations on CIFAR-10 (Figure 3.5). We use

the Mahalanobis scores for this analysis as performance across the shallow detectors is

similar. If knowledge distillation and the Mahalanobis distance were on par, the points

should lie on the grey 𝑥 = 𝑦 line. This behaviour is the case for the unimodal setting.

The detectors are more comparable. However, knowledge distillation has an advantage in

the multimodal setting. The results indicate this as the representations skew towards the

𝑦-axis.

Mahalanobis distances make assumptions about the teacher embeddings that may not

hold. The Mahalanobis distance assumes a multivariate Gaussian distribution models the

benign data. MSE also assumes a Gaussian distribution. This assumption may be reason-

able for an unimodal setting where the typical class is tighter. However, this assumption

may not hold true for the multimodal setting, where we can expect more intra-class vari-

ation.

In contrast, knowledge distillation uses the errors between the student and teacher rep-
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Figure 3.5: Scatter plot of CIFAR-10 Mahalanobis AUROC scores against knowledge distillation
AUROC scores, separated by unimodal and multimodal configurations.

resentations instead of directly using the teacher representations. Hence, there are no

explicit constraints on the distribution of the benign class.

Performance amongst the shallow detectors is similar when the datasets involve anoma-

lies from distinct semantic classes (Tables 3.2 and 3.3). Plant Pathology (Table 3.4) and

X-ray (Table 3.5), the two datasets where anomalies are closer to the benign distribution,

are exceptions. The complete Mahalanobis computation works better than the other shal-

low approaches. Their results suggest more challenging anomaly detection benefits from

considering skewed directions.

3.3.1.2 The choice of representation is more important than the anomaly detector

We expand on Figure 3.5 and analyse embedding performance across the different datasets.

Figure 3.6 compares knowledge distillation scores against Mahalanobis scores for each

embedding. There is a clear correlation between these scores across the datasets, indicating

the choice of representation (and hence embedding) is more important than the anomaly

detector.

Discriminative tasks lead to better representations for all of the datasets. For all datasets

except for X-ray, transferring features from a classification task containing similar seman-

tic classes is the most beneficial. In the absence of labels, RotNet can help implicitly learn
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(c) Plant Pathology
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Figure 3.6: Scatter plots of Mahalanobis AUROC scores against knowledge distillation AUROC
scores for each representation.

semantic features. These results align with Hendrycks et al. [113], who use RotNet’s pre-

dictions to detect OOD samples with ImageNet and CIFAR-10 as the benign distributions.

However, RotNet is not a general-purpose pretext task. The orientation of leaves is irrel-

evant to plant health, so RotNet is ineffective for the Plant Pathology dataset.

However, RotNet led to the best results on the X-ray dataset. We achieved an AUROC

of 96.41%, exceeding the anomaly detection score of 92.5% in Griffin et al. [17]. There are

two potential reasons. Firstly, X-ray images are a different domain than the natural images

found in ImageNet. Training on X-ray images directly leads the network to learn features

more specific to this domain. Secondly, adversaries might need to fit firearms in specific

parcel locations to conceal them. The RotNet task might help identify these positions.
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3.3.2 Analysing representational properties

3.3.2.1 Separability is not the sole factor for adequate anomaly detection
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Figure 3.7: Scatter plots of supervised classification accuracies against knowledge distillation AU-
ROC scores for each representation.

We compare knowledge distillation performance against supervised classification accu-

racy in Figure 3.7. Although there is a correlation between these values, there are ex-

ceptions, which we highlight in the plots. On CIFAR-10, although SimCLR achieves the

highest supervised classification performance outside of the baseline (65.04% accuracy),

its anomaly detection performance is underwhelming. SimCLR achieves AUROC scores

equal to or worse than random. Additionally, although RotNet does not have the highest

classification performance amongst the X-ray representations, it is the best for detecting

threats.
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3.3.2.2 Better representations correlate with higher average gradient norms

Although the anomaly detection results highlight a link with separability, it does not ap-

pear to be the sole factor for good anomaly detection. We hypothesise that anomaly de-

tectors also rely on non-robust features. Namely, the distribution of the training data in a

suitable representation space has directions in which the distribution is tight. Hence, the

features are "brittle". Consequently, these brittle features allow anomalous data tomanifest

more clearly. Research into adversarial vulnerability indicates these features are essential

for good generalisation [99].

We measure brittleness by adapting the gradient norm approach proposed by Simon-

Gabriel et al. [64]. After training a student with the knowledge distillation framework,

we record the mean L2 gradient norms of the training data using the student network. To

allow for meaningful comparisons of this score across different representations, we divide

the norms by the trace of the covariance to account for the spread of differing representa-

tions:

𝔼||𝜕𝑥 train𝐿||2
tr(Σtrain)

(3.2)

𝑥train denotes a training sample, 𝐿 is the MSE loss between the student and teacher and

tr(Σtrain) is the trace of the training covariance matrix. We compute the covariance using

the difference between the student and teacher outputs for each training datum.

More adversarially vulnerable instances require subtler shifts in the input domain to evoke

changes in the model’s outputs. Hence, a higher gradient norm indicates increased sus-

ceptibility to adversarial perturbations [64].

We illustrate the relationship between knowledge distillation performance and the average

L2 gradient norms in Figure 3.8. The scatter plots suggest a positive correlation between

better performance and higher gradient norms. These norms could also explain SimCLR’s

performance on CIFAR-10 (as its average L2 norm is lower than other representations) and

RotNet’s performance on X-ray (as its average L2 norm is high and close to the baseline).

These results suggest that higher norms could indicate which representations are better

candidates for anomaly detection.
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Figure 3.8: Scatter plots of average L2 gradient norms against knowledge distillation AUROC
scores for each representation.

3.4 Conclusion

We conclude by outlining the work’s limitations and main contributions.

3.4.1 Limitations

In our experiments, we match the student’s architecture with the teacher. This approach

does not take advantage of the initial proposed benefits of knowledge distillation. The

original paper shows that knowledge from a more complex teacher is transferrable to a

more efficient student [87]. In addition, our decision to match the student and teacher

architecture limited our experiments, due to constraints on computational resources. For

this reason, we were unable to train AEs on Plant Pathology and the X-ray dataset. Future

work could establish whether using smaller architectures can maintain anomaly detection

performance.
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In addition, we did not apply any data augmentations to the input data. As data augmen-

tations can improve separability [101] (which links to anomaly detection performance),

detailed ablation studies varying these augmentations could improve anomaly detection

performance further.

Our results also show that knowledge distillation outperforms shallow anomaly detectors.

However, we only extracted features from the penultimate layer of the teacher networks.

Although there is a debate about whether deep anomaly detectors outperform more tradi-

tional counterparts [94], extracting embeddings from a later layer may not take advantage

of the complete representational power of neural networks. Future work could compare

how knowledge distillation compares with embeddings from several layers of the teacher

network.

Finally, the gradient norm score is only usable on neural networks that can backpropagate.

This score is not suitable for embeddings that do not rely on neural networks or when we

do not have white-box access. Extensions to this work should investigate alternative ways

to measure embeddings.

3.4.2 Summary

We conducted a study to analyse how various representations affect anomaly detection

performance. To do so, we propose a knowledge-distillation framework that fixes all

components apart from the teacher representation. We show that knowledge distillation

outperforms other parametric methods, especially when the benign distribution is multi-

modal.

Nonetheless, we show that anomaly detection performance relies on the underlying repre-

sentation. Our results reinforce previous findings that features from discriminative tasks

outperform those from generative models [73]. Transferring features from a similar do-

main trained on a classification task is most beneficial. Alternatively, discriminative tasks

that learn relevant semantic features like RotNet can be substitutes.

Finally, we analyse the properties of the representations. We show separability between

anomalies and benign samples is insufficient for reasonable anomaly detection. We pro-

pose a gradient norm score that measures the adversarial brittleness of representations,

and we link the score to anomaly detection performance.
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Monitoring text helps to protect users from harmful or inappropriate online content. There

are many uses of text-based anomaly detection, from identifying fake news [114] to weed-

ing out spam [115] to flagging atypical reviews [116],

Existing works in natural language processing (NLP) focus on the far OOD setting, in

which the anomalies derive from a dataset that has a different purpose [13, 117, 118, 119,

120]. For example, a model could use news articles as training data but treat film reviews

as anomalous [120]. These approaches also assume the training data contains multiple

subclasses. As a result, the anomaly scoring mechanisms typically incorporate these su-

pervisory signals by fitting a Mahalanobis distance [96] to each subclass or by obtaining

the highest probability in the softmax layer [13]. However, these supervisory signals are

not always available. Social media posts, for instance, may cover a range of topics. Hence,

it might be challenging to assign definitive labels.

One-class learning removes the need to annotate subclasses. However, compared to im-

ages, fewer studies investigate the effectiveness of one-class learning on text [66, 80, 113].

Recent innovations in machine learning suggest that adapting image-based approaches

to text might be of benefit. Previously, image and text tasks used different architec-

tures. CNNs were the architecture of choice for images, while recurrent neural networks

(RNNs) were preferable for text [101]. The emergence of transformers has altered this

setup. Transformers have become the architecture of choice for image and text-based

tasks [82, 121], outperforming the previous go-to architectures.

Reconstruction-based methods are a common anomaly detection approach for images

[71, 72]. They assume a model trained on benign data cannot represent unseen anoma-

lies well. Hence, the reconstruction losses for anomalies should be higher. We investigate

whether the same principle is suitable for textual anomaly detection. We fine-tune trans-
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formers on benign text data using three self-supervised objectives and use the loss as the

anomaly score. Focusing on the near OOD anomaly setting, we examine performance

on two anomaly types with six datasets. We refer to the two anomaly types as seman-

tic and word order. Semantic anomalies are created by partitioning a single dataset by

class label, while word-order anomalies randomly shuffle the tokens of benign text. Our

approach outperforms more complex methods, boosting the average AUROC score on se-

mantic anomalies by 11.6% and word-order anomalies by 22.8%. Our contributions are as

follows:

• We show that fine-tuning a transformer is a simple benchmark that achieves good

anomaly detection results and outperforms other approaches.

• We introduce word-order anomalies to measure how sensitive an anomaly detector

is to word-order information.

• We show the optimal self-supervision objective and the resulting representation de-

pends on the anomaly type. Separability of anomalies and benign data is a neces-

sary but insufficient condition. Adversarially brittle features are better for detecting

word-order anomalies.

We provide a background into textual OOD detection in §4.1. We outline our method in

§4.2 and analyse the results in §4.3. §4.4 concludes the chapter and identifies areas of future

work.

4.1 Background

This section discusses existing anomaly and OOD detection approaches for text.

4.1.1 Anomaly detection with static word embeddings

Previous textual anomaly detection approaches relied on feeding static word embeddings

into shallow detectors [122]. Static word embeddings are functions that map each word

to a single vector [123]. These word embeddings can be simple word frequencies [123]

or more sophisticated learnt dictionaries like word2vec [124], GloVe [125] and FastText

[126]. However, static approaches fail to capture nuance. They map words with multiple

meanings to the same embedding [123].
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As a result, anomaly detection approaches shifted to learningword representations specifi-

cally for OOD detection. Context vector data description (CVDD) is one example [116].

Starting from a pre-trained word embedding method like FastText, CVDD uses multiple

self-attention heads [127] to learn a collection of context vectors. The method applies

an orthogonal regularisation term to ensure the context vectors learn different concepts.

Context vectors are "prototypical centres": compact descriptions of the various concepts in

benign data. A context vector is like the centre embedding in SVDD [65, 66]. During train-

ing, the model also learns to map input sentences to the new representation space. The

idea is that benign data maps to a location close to the context vectors, whereas anoma-

lies lie far away. Therefore, the cosine distance between an input sentence and a context

vector can evaluate anomalousness. Hence, the overall anomaly score is an average cosine

distance between the input and each context vector.

Because CVDD maps data to a central embedding, the authors mention manifold collapse

could occur. The authors state this only happens if a word appears in an identical loca-

tion for all training samples. They mitigate the collapse issue by normalising the context

vectors. CVDD contains several hyperparameters. In addition to the number of attention

heads, the output dimensionality, context regularisation term, and importance weighting

between different heads can also influence results. Balancing these hyperparameters can

make it challenging to deploy CVDD.

4.1.2 Multiple class out-of-distribution detection methods

There are more existing works that study text-based OOD detection. However, they rely

on subclass labels. We outline a few examples below.

Hendrycks et al. [128] show that fine-tuning a pre-trained transformer on a classification

task and using the maximum softmax probabilities [13] to score anomalies outperforms

shallow detectors trained with static embeddings. However, they use far OOD datasets for

evaluation, which are more trivial to address.

Arora et al. [117] extend the experiments in Hendrycks et al. [128] to more near OOD

settings. They analyse two types of near OOD scenarios: background shift and semantic

shift. Background shifts include more syntactical changes, such as spelling errors. Seman-

tic shifts involve topic changes. They compare two OOD scorers: maximum softmax prob-
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abilities [13] against perplexities. However, they use different backbones for the scoring

methods: RoBERTa [83] for maximum softmax and GPT-2 [129] for perplexities. There-

fore, performance differences could be due to a combination of the scoring method and

the underlying architecture.

𝑘-Folden [118] extends the maximum softmax method in Hendrycks et al. [128] by simu-

lating proxy anomalies. Given a dataset with 𝑘 subclasses, they train 𝑘 models. For each

model, they leave one class out and train the model to classify the remaining 𝑘 − 1 classes

with a cross-entropy loss. The left-out class is the proxy anomaly class. They supplement

the cross-entropy loss with a Kullback-Leibler (KL) divergence loss between the proxy

anomalies and a uniform distribution. To assess anomalousness, they look at the softmax

probabilities of the left-out class for each model and average the probability distributions.

Similar to vanilla maximum softmax, on average, this mean score should be lower for OOD

data because the models are more uncertain. However, ensembling is more expensive than

alternative methods.

Podolskiy et al. [119] revisit the Mahalanobis distance [96]. Like Hendrycks et al. [128],

they fine-tune transformers on a classification task. However, they use class-wise Maha-

lanobis distances as anomaly scores and find this outperforms maximum softmax proba-

bilities.

4.1.3 One-class anomaly detection methods

The methods in the previous section rely on subclasses. They also only use the classi-

fication layer to identify anomalies. Xu et al. [81] argue that this does not incorporate

the full representational power of transformers. They proposeMahalanobis distance as

features (MDF) as a solution. MDF computes the Mahalanobis distance of each training

datum in each layer. They use these distances as features to train an OCSVM. They find

that fine-tuning the models with a masked language modelling loss before feature extrac-

tion also improves results. However, their investigations on the best intermediate layer

for anomaly detection are inconclusive. No particular layer is better than the others. Al-

though training OCSVMs with Mahalanobis distance features is computationally efficient,

the distances are less informative than the complete representation space.

The closest approach to ours isDetecting Anomalies in Text using ELECTRA (DATE)



Text | 42

[130]. DATE is an end-to-end approach that adapts the ELECTRA architecture [131].

ELECTRA is a large language model (LLM) with the same transformer-encoder architec-

ture as BERT [82]. However, it uses a replaced token detection (RTD) objective for learning

instead of masked language modelling. In RTD, an additional BERT-based generator re-

places a proportion of input tokens with plausible random tokens. The main component of

ELECTRA, the discriminator, predicts whether the tokens in an input sequence are original

or inserted by the generator. DATE incorporates RTD and an additional objective called

replaced mask detection (RMD). For the RMD task, the discriminator chooses which mask

pattern corrupted the text from a set of potential masks. Inference only uses the discrim-

inator. The discriminator receives an uncorrupted sentence. It then calculates the proba-

bility of each token being original using the RTD head. Like the maximum softmax score

[13], the RTD head should be less confident about anomalies.

4.2 Method

Our review of text-based OOD detection suggests few works combine representation

learning with one-class detectors. The variations in self-supervised objectives across

approaches also make it unclear what objective and resulting representation is best for

anomaly detection [117, 130]. Therefore, our research questions are as follows:

1. What self-supervised objective works best for anomaly detection on text?

2. What properties do the resulting representations have?

4.2.1 Overall principle

We fix the underlying architecture to minimise the influence of architectural differences

and only vary the self-supervised objectives. In particular, we use the encoder from a

pre-trained uncased BERTBASE [82] and RobERTaBASE [83]. We use the uncased versions

to ensure a fair comparison with other approaches like CVDD [116], which lowercase all

data as a pre-processing task. We also initialise from pre-trained weights to benefit from

the transfer learning strengths of LLMs. We append different heads depending on the

objective. We fine-tune each model for up to 30,000 steps and employ early stopping based

on the validation loss. We analyse three self-supervised objectives in our experiments.

We choose an end-to-end anomaly detection approach to use the entire representational



Text | 43

capacity of LLMs. We assume that a fine-tuned model learns the underlying characteris-

tics of benign data well but not those of anomalies. This assumption is analogous to using

autoencoders for image-based anomaly detection [45, 46, 71, 72]. The reconstruction er-

ror for anomalies should be higher because an autoencoder only contains the features to

construct benign data. Consequently, our approach uses the loss as the anomaly score.

We choose to use the loss of the encoder directly rather than the student-teacher disagree-

ment described in Chapter 3. We disregard this approach as the student-teacher method

requires an additional frozen model.

4.2.2 Self-supervised objectives

We analyse three self-supervised objectives in our experiments:

Masked language modelling (MLM) is a perturbation-type objective [82]. It is essen-

tially a denoising autoencoder [102]. MLM involves randomly masking tokens in a se-

quence and training the model to predict the masked tokens. Through this approach, the

model learns the contextual relationships between words. Both BERT and RoBERTa use a

fixed [MASK] token to mask inputs [82, 83]. When fine-tuning our models, we retain the

default configuration specified in the original BERT implementation and randomly mask

15% of tokens.

The loss function only considers the masked tokens. Therefore, if the input sequence

has 𝑛 tokens, where the 𝑖-th token is masked (denoted by 𝒚𝒊) and the other tokens

(𝒙𝟏, 𝒙𝟐, ..., 𝒙𝒊−𝟏, ..., 𝒙𝒊+𝟏, 𝒙𝒏) are provided in the sequence, the MLM loss at position 𝑖 is as

follows:

𝑀𝐿𝑀 = −
𝑛
∑
𝑖=1

log(𝑝(𝒚𝒊|𝒙𝟏, 𝒙𝟐, ..., 𝒙𝒊−𝟏, [MASK], 𝒙𝒊+𝟏, ..., 𝒙𝒏)). (4.1)

At inference, we mask the same proportion of tokens in the test sentence and use the error

between the predicted and original tokens as the anomaly score.

Causal language modelling (CLM) is a conditional prediction task. The model learns

to predict the next token, given previous tokens in a sequence. Unlike MLM, it is unidi-

rectional as it only considers tokens before the token of interest. However, CLM-based

models exhibit good downstream performance on language tasks [129]. They have shown



Text | 44

strong performance on few-shot learning tasks like translation, question-answering and

on-the-fly reasoning [132]. The loss at token position 𝑖 is as follows:

𝐶𝐿𝑀 = −
𝑛
∑
𝑖=1

log(𝑝(𝒚𝒊|𝒙𝟏, 𝒙𝟐, ..., 𝒙𝒊−𝟏)) (4.2)

We use the CLM loss as the anomaly score. The CLM loss closely links to perplexity, which

is the exponential of the CLM loss. Perplexity is a frequent metric for evaluating language

models [123]. Lower perplexities mean the model’s predictions are closer to the actual

distribution of the data. Other works have used perplexity to evaluate far OOD detection

[117] and evidence-supported fact-checking [114]. However, we assess near OOD anoma-

lies and do not combine the test sequence with supporting evidence to identify anomalies.

Contrastive learning refers to a collection of clustering methods with learnt distance

mappings. It encourages similar instances to group closely and to lie far from disparate

samples. Previous works in computer vision suggest contrastive losses can help discrim-

inate anomalies from benign samples [133, 134]. However, these methods require data

augmentations that are not directly transferrable to text, such as colour jittering. Zhou et

al. [120] propose a contrastive pre-training method for text-based OOD detection but use

subclass labels to define positives and negatives.

SimCSE [135] resolves the data augmentation issue for unsupervised text data by applying

different dropout masks to sentences. The model learns to select the same (perturbed)

sentence from a minibatch of other sentence pairs. We fine-tune the model using the

original dropout probability (𝑝 = 0.1) and temperature (𝜏 = 0.05) described in SimCSE. We

use the loss, also known as NT-Xent [40], as the anomaly score.

For a feature encoder 𝑓𝜃 and a random dropout mask 𝒛, the encoding for a sentence 𝒙𝒊 is

𝒉𝒛𝑖 . Therefore, if we feed 𝒙𝒊 to the encoder twice and apply two different dropout masks

𝒛 and 𝒛′, the outputs are 𝒉𝒛𝑖 and 𝒉𝒛′𝑖 . For a minibatch of 𝑁 sentences, and some similarity

function sim(.), the loss at 𝒙𝒊 is as follows:

𝑁𝑇−𝑋𝑒𝑛𝑡 = − log
⎛
⎜
⎜
⎜
⎝

expsim(𝒉𝒛𝑖 ,𝒉𝒛
′
𝑖 )/𝜏

∑𝑁
𝑗=1 exp

sim(𝒉𝒛𝑖 ,𝒉
𝒛′𝑗
𝑗 )/𝜏

⎞
⎟
⎟
⎟
⎠

(4.3)
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4.2.3 Comparisons

We analyse the three fine-tuned objectives against five baselines. We chose the baselines

as they were introduced in previous text anomaly detection work. In addition to CVDD

[116], MDF [81] and DATE [130], we use the following for comparison:

Pre-trained transformers (Pre-trained). We use the MLM loss as the anomaly score

on a pre-trained network. This is equivalent to using the pre-training distributions,

BooksCorpus [136] andWikipedia, as the benign distribution. Although this approachwas

not included in previous work, it is comparable to MLM. We can compare it to MLM to

examine the incremental benefit of fine-tuning. We disregard the auxiliary next-sentence

prediction in BERT [82] as we do not use sentence pairs for anomaly detection.

Bag-of-words models (BoW). We follow the approach in CVDD [116] and compute the

mean over word embeddings extracted from FastText [126] to create a sentence embedding

for each datum. We use these sentence embeddings to train linear OCSVMs. We do not

use pre-trained embeddings from BERT as Ruff et al. [116] observed they did not garner

enough improvements to justify the additional computational cost. By including BoW, we

can assess whether dynamic word embeddings that consider sentence structure are better

than using word frequencies.

4.2.4 Datasets

We evaluate anomaly detection performance on the same publicly available datasets used

in previous NLP anomaly detection work.

20 Newsgroups [137] is a collection of 20,000 documents split across 20 different news-

groups. We use the six top-level subjects (computer, recreation, science, miscellaneous, pol-

itics, religion) to partition the documents. For each subject, there are 577-2,859 training

samples and 382-1,909 test samples.

Reuters-21578 [138] is a collection of 10,788 news articles split across 90 topics. We only

use a subset of data that have only one label (earn, acq, crude, trade, money-fx, interest,

ship). Partitioning by class label, there are 108-2,840 training samples and 36-1,083 testing

samples.

AG News [139] is a topic classification dataset gathered from more than 2,000 news

sources over one year of activity. It contains four classes (business, sci, sports, world), each
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with 30,000 samples for training and 1,900 for testing.

IMDb [140] is a sentiment classification dataset consisting of film reviews. It contains two

classes (pos, neg), each with 25,000 samples for training and 25,000 for testing.

Snopes [141] is a fact-checking dataset containing paired examples of tweets and a fact-

checking article from snopes.com. There are four classes (true, mostly true, mostly false,

false). We only use true (7,363) and false (21,256) tweets in our experiments and do not

use the articles. We randomly partition 80% of this smaller dataset for training and use the

remaining 20% for testing.

The Enron Spam Dataset [142] is derived from the Enron Email Dataset [143]. There

are two classes, ham (16,458) and spam (17,171) emails. We randomly partition 80% of the

dataset for training and use the remaining 20% for testing.

We pre-process all data in the same manner as CVDD [116] for a fair comparison. Namely,

we lowercase all sentences and strip punctuation, stopwords, numbers and whitespaces.

We also only include words with a minimum length of three characters.

4.2.5 Anomaly construction approach

We use the class labels of the datasets to construct two setups for the benign training data,

as per Kim et al. [46]. This setup allows us to compare anomaly performance between

inliers having a tighter or more diverse distribution. Therefore, for a dataset with 𝑚 class

labels, we make the following arrangements:

• Unimodal normality: We construct the inliers using data from a single label.

• Multimodal normality: We construct the inliers using data from 𝑚 − 1 labels.

We study two types of near OOD anomalies:

Semantic anomalies. Data belonging to the same original class label(s) as the training

data are categorised as benign, while the remainder are anomalies. Taking AG News as

an example, if we selected business as the unimodal benign class, test sentences belonging

to business would be benign. Anything from sci, sports, and world would be anomalies.

Conversely, if we used sci, sports, and world as multimodal benign samples, test sentences

from business would be anomalies.
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Word order anomalies. The anomalies have the same semantic content as the benign

samples but have scrambled word order. We partition the text into non-overlapping 𝑛-

grams (𝑛 ∈ {1, 2, 3, 4}) and shuffle until each 𝑛-gram is no longer in its original position.

Larger values of 𝑛 are more similar to the benign class and more challenging to detect. If

we use the AG News business category as the unimodal benign class, the anomalies would

be perturbed sentences from the test split of business.

We use the same seeded random function algorithm described in Sinha et al. [144], who

find that masked languagemodels pre-trained with perturbed word order still achieve high

accuracy when fine-tuned for downstream tasks. We use word order anomalies to disen-

tangle whether detectors focus on word frequency statistics or if they also consider sen-

tence structure at inference. Therefore, approaches unable to detect word order anomalies

are more similar to bag of words models.

We provide examples of word order anomalies below:

Class Sentence

Inlier voip gaining ground despite cost concerns
Anomaly (𝑛 = 1) concerns voip despite cost ground gaining
Anomaly (𝑛 = 2) ground despite cost concerns voip gaining
Anomaly (𝑛 = 3) despite cost concerns voip gaining ground
Anomaly (𝑛 = 4) cost concerns voip gaining ground despite

Table 4.1: Word order anomaly examples derived from AG News. Colour corresponds to the orig-
inal order.

4.3 Results

We present the results for semantic and word order anomaly detection. We examine how

architectural choices influence results and then analyse the properties of the learnt repre-

sentations.

4.3.1 Semantic anomaly detection

Figure 4.1 shows the overall anomaly detection results for semantic anomalies. The results

labelled pre-trained, MLM, CLMand SimCSE refer to the BERTBASEmodels. The full results

split by dataset and normality, including RoBERTaBASE, are in Appendix C.2.

We only highlight BERTBASE results as the BERTBASE and RoBERTaBASE results are com-
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Figure 4.1: Median semantic anomaly detection results aggregated by model. Error bars denote
the 95% confidence intervals across all datasets.

parable. Therefore, we display results for BERTBASE unless otherwise stated. We compare

BERTBASE and RoBERTaBASE in §4.3.3.1.

4.3.1.1 Fine-tuning a pre-trained transformer boosts semantic anomaly detection

performance

Figure 4.1 indicates BoW can detect semantic anomalies adequately. These results suggest

semantic anomalies are detectable by analysing word frequency statistics. In contrast, pre-

trained BERT is not much better than random. The underlying representation relies on a

general-purpose corpus rather than conditioned on the content of the benign class, so it

does not capture class-specific word frequency statistics.

The improvements seenwithMLM, CLM and SimCSE suggest fine-tuning helps to give ad-

ditional information about the nature of benign data. This observation aligns with findings

in OOD detection for images [145]. For images, the authors find that fine-tuning trans-

formers outperform pre-trained variants and speculate this is due to the model learning

more tightly clustered benign embeddings.

When comparing MLM, CLM and SimCSE, their performances are on par. The exception

is IMDb (Appendix C.2, Figure C.1i). SimCSE exceeds the other approaches. It could be

because the semantic content of positive and negative reviews are similar, but SimCSE is

better at capturing the overall nuance of sentences. The loss function in SimCSE, NT-Xent,

considers the entire sentence representation.
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4.3.1.2 SimCSE is more robust to contaminated training data
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Figure 4.2: Mean AUROC scores across datasets by contamination percentage. Experiments were
conducted with semantic anomalies. Pre-trained, MLM, CLM, and SimCSE refer to
BERTBASE models.

One-class methods assume training data only includes benign samples. However, anoma-

lies may leak into the training data in practice. We simulate this scenario by adding a set

percentage of semantic anomalies {5%, 10%, 15%} into the training data. On average, the

fine-tuned transformers perform better than the other models (Figure 4.2). Contamination

affects word frequencies. SimCSE’s ability to capture nuance makes it the most robust

approach, while CLM is more sensitive.

4.3.2 Word order anomaly detection

We look at overall word order anomaly detection performance and ablations by 𝑛-gram.

4.3.2.1 Fine-tuning transformers boosts word order anomaly detection

Figure 4.3 shows the overall results on word order anomalies. Under this scenario, BoW

performance drops significantly. We also observe these trends in CVDD and DATE, which

suggest these methods also mostly rely on word frequency statistics. In contrast, the pre-

trained transformer detects word order anomalies better than the other baseline models.

As CVDD, DATE and the pre-trained BERT model all include attention mechanisms in

their architecture, it suggests sensitivity to word order has more to do with the training

objective than the architecture.

Fine-tuned MLM and CLM improve on the performance of pre-trained BERT. However,

SimCSE performance is no better than random because it evaluates entire sentences, not

individual tokens. Therefore, it cannot deduce shuffled word order. These results indicate
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Figure 4.3: Word order anomaly detection results aggregated by model. Error bars denote the 95%
confidence intervals across datasets.

the self-supervision approach is more important than the architecture.

4.3.2.2 Density models are better at detecting word order anomalies
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Figure 4.4: Mean AUROC across datasets on word order anomalies by 𝑛-gram level. Larger 𝑛-
grams are more challenging to differentiate from benign samples as fewer individual
tokens are shuffled.

We conducted an ablation study of word order detection performance under different per-

mutation strengths. CLM is more stable under more challenging anomaly detection con-

ditions (Figure 4.4), experiencing a decline of only 4% between 1-grams and 4-grams. Pre-

trained and fine-tuned MLM experience similar drops (11%), which confirms the choice

of objective for anomaly scoring is a core component of performance. As CLM calculates

its score at the token level, it is more sensitive to word order changes than MLM, which

considers token spans through the masking mechanism.



Text | 51

4.3.3 Architectural choices

We proceed to examine how changes to the architecture influence anomaly detection.

4.3.3.1 Fine-tuning reduces the advantages of better pre-trained architectures
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(a) Semantic anomaly results.

Pre-trained MLM CLM SimCSE
0

20

40

60

80

100

BERT RoBERTa

(b) Word order anomaly results
encompassing all 𝑛-grams.

Figure 4.5: Median anomaly detection score for BERT and RoBERTa models across datasets.

Figure 4.5 compares the fine-tuning results on the BERTBASE architecture against the

RoBERTaBASE architecture. Although pre-trained RoBERTa performs better than its BERT

counterpart (suggesting RoBERTa is more sensitive to word order structure because it has

been pre-trained for longer and with a better masking scheme), this advantage decreases

upon fine-tuning. There are also no distinct differences in the semantic anomaly scenario.

4.3.3.2 Using the loss combined with the embedding is better than using the em-

beddings as a feature extractor

For these analyses, we extracted the embeddings at the last hidden BERT layer (layer 12)

and mean-pooled over the positions to analyse the characteristics of the learnt embed-

dings. We used mean pooling as it is a strong baseline in other NLP tasks like sentence

similarity [146]. We process test data in the same way. At inference, we pass a test datum

through the fine-tuned transformer and mean-pool over the positions again to extract the

embeddings.

We used the embeddings to train static detectors, including OCSVMs, Mahalanobis dis-

tance and 𝑘-NN. However, we found that 𝑘-NNs performed best overall. We report the

remaining results in Figure C.3. We use the mean distance from the test datum to its 𝑘-

nearest neighbours as the anomaly score. We tried 𝑘 = {1, 2, 5, 10, 50} and found 𝑘 = 1 was

the best-performing setting.
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(a) Semantic anomaly results.
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Figure 4.6: Comparison between using the loss as an anomaly score and nearest neighbour for
anomaly detection across datasets.

Figure 4.6 compares the median anomaly detection AUROC scores when using the models

end-to-end compared to 1-NN. Although the embeddings themselves are generally capable

of supporting semantic anomaly detection, all representations receive a performance boost

when using the loss to score anomalies. The embeddings are adequate in the semantic

anomaly setting but underperform on word order anomalies. This behaviour suggests

that fixed embeddings only consider word frequencies, not sentence structure.

The results also explain why MDF underperforms the other methods (Figure 4.1 and 4.3),

as it extracts features from frozen hidden layers to train anomaly detectors.

4.3.4 Analysing representational properties

We proceed to analyse the properties of the self-supervised representations. We train

linear classifiers to set a score ceiling and examine properties using gradient norms.

4.3.4.1 The separability of benign data and anomalies matters more for semantic

anomalies than word order anomalies

We extracted both benign and anomalous embeddings at the last hidden state of BERT

and trained a logistic classifier to examine the separability of the embeddings. As it is

supervised, the logistic classifier serves as an upper bound for anomaly detection perfor-

mance. The correlation between classification accuracy and anomaly detection is more

apparent for semantic anomalies (Figure 4.7), suggesting separability is a good indicator

for better embeddings for this type. There is no such correlation for word order anomalies.
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Figure 4.7: Scatter plot comparing classification accuracy of test inliers versus anomalies to
anomaly detection performance across datasets.

For instance, some MLM and CLM embeddings have high anomaly detection performance

but low classification separability. In addition, SimCSE word order embeddings can be

linearly separable, but anomaly detection is ineffective. These patterns suggest there is

another factor that influences word order anomaly detection.

4.3.4.2 Word anomaly detection links to the presence of non-robust features

25 20 15 10 5
Log L2 Norm

40

60

80

100

AU
R

O
C

 (%
)

(
 is

 b
et

te
r)

MLM CLM SimCSE

Figure 4.8: Comparison of average log L2 norms of the training inlier data to 1-gram word order
anomaly detection performance across datasets. The pattern is similar across different
𝑛-gram levels.

We hypothesise that an adversarially non-robust [99] inlier embedding is a better signal

for word order anomaly detection than separability. Non-robust embeddings are more

likely to shift when there is a minor change in the input features. Such embeddings char-

acterise inliers narrowly and provide more directions for anomalies to manifest. We use
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the same approach as §3.3.2.2 for image-based anomaly detection. We calculate the aver-

age L2 gradient norms of the losses divided by the trace of the training data. Higher values

correspond to the presence of more non-robust features. Figure 4.8 shows that CLM-based

embeddings (which have the best performance) tend to have higher values and SimCSE

the least. These clusters correspond with previous literature that states autoregressive

models like GPT [129] are highly anisotropic [147], while contrastive models like SimCSE

are more isotropic [135, 148].

4.4 Conclusion

We conclude by outlining the work’s limitations and main contributions.

4.4.1 Limitations

Our experiments aim to evaluate if transformers fine-tuned with self-supervision objec-

tives can perform anomaly detection. We achieve this by using the same hyperparameters

used to pre-train the original BERT and the SimCSE implementations. These hyperpa-

rameters may not be the optimal configuration for anomaly detection as the datasets we

examined were smaller compared to the original pre-training datasets and differed in con-

tent. An extension of this work could look at varying these hyperparameters. Variations

could include using different masking rates for MLM [149], investigating alternatives to

uniformmasking for MLM [150, 151], or adjusting the temperature parameter for SimCSE.

Similarly, we used the same data pre-processing approach described in CVDD to ensure

comparability between the methods. Including casing, numbers, or punctuation might

affect detectability. For example, the cased version of BERT performs better on some

downstream tasks like named entity recognition [152]. Additional ablations could com-

pare uncased BERT with cased BERT or amend the data processing pipeline to analyse

performance changes.

In addition, our current approach relies on fine-tuning all layers in a transformer. This

step is computationally expensive and may be impractical when computational resources

are more limited. Future work could examine alternatives, such as fine-tuning the latter

layers only or using adapters [153].

The comparisons to the shallow detectors in §4.3.3.2 are limited. We only extract em-
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beddings from the final hidden layer of BERT, but this approach does not consider the

entire representational capacity of the models. Although summarised by the Mahalanobis

features, MDF, for example, extracts features from multiple layers [81]. A more detailed

comparison could evaluate different ways of combining the features and how this affects

results.

Moreover, although word order anomalies demonstrate that fine-tuned transformers are

better than BoWdetectors, their practical application is unclear. Additional ablations could

examine how syntactical changes like spelling errors or negotiations affect detection.

4.4.2 Summary

We studied how fine-tuned transformers with three self-supervised objectives perform

anomaly detection. Fine-tuning a pre-trained transformer allows the model to learn bet-

ter representations than static embeddings. We also show that the output of the loss is a

better detection method than extracting the embeddings to train shallow detectors. The

best self-supervised objective depends on the type of anomalies. CLM is better at discern-

ing discrepancies in word order, whereas SimCSE is better at capturing nuances in entire

sentences. Future work could add outlier exposure to encode more information about

anomalies [154]. Alternatively, in situations where the nature of anomalies is unknown,

studies could combine self-supervised objectives to complement each other.
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Audio-based anomaly detection has a wide range of security applications. Potential use

cases range from gunshot detection [155] to monitoring machine failures [156, 157, 158] to

locating cases of animal distress [159]. However, we focus on harms that directly impact

people. The following two chapters focus on speech deepfakes and developing systems to

identify them.

Speech deepfakes are artificial voices generated by machine learning models. Due to rapid

research progress, it is possible to produce a realistic-sounding clone using only a few

audio samples. This development raises the prospect of exploiting speech deepfakes for

various criminal activities. Examples include spear phishing, propagating fake news, and

bypassing biometric authentication systems [160, 161, 162].

Previous literature has highlighted deepfakes as one of the biggest security threats arising

from artificial intelligence progress due to their potential for misuse [161, 162]. For exam-

ple, experts expect disinformation from deepfakes to erode trust on several levels: towards

individuals, organisations, and even societies.

Although several studies examine deepfake performance, they focus on images and videos.

Fewer works concentrate on speech data. Therefore, understanding the risks of speech

deepfakes will enable the development of better defences and regulations to counteract

hazards before they occur.

In this chapter, we measure how well humans can detect speech deepfakes, and was pub-

lished in PLoS ONE [8]. Estimating human performance allows us to quantify how likely

deepfakes can fool individuals. The results give a baseline for how well automated detec-

tion solutions need to work to protect against harm. Chapter 6 investigates how different
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representations affect automated anomaly detection performance.

5.1 Introduction

Adversaries are already using speech deepfakes to commit fraud. In 2020, a bank manager

in Hong Kong received a phone call from someone sounding like a company director he

had spoken to before [5]. The purported director requested the bank manager to autho-

rise transfers totalling $35 million. Based on their existing relationship, the bank manager

transferred $400,000 before he realised something was wrong. The bank manager was a

victim of an elaborate hoax: fraudsters had used deepfake technology to clone the direc-

tor’s voice. This incident is not isolated. In 2019, the CEO of a UK-based firmwas swindled

by a speech deepfake of his manager into transferring €220,000 to a Hungarian supplier

[6].

Existing speech deepfake detection research focuses on developing machine learning sys-

tems in the context of voice authentication [163, 164, 165]. Comparisons beyond biometrics

and studies which measure human detection capabilities are sparse [166].

The state of existing research raises questions. Firstly, machine learning systems require

large amounts of data for training [101] and are hard to interpret [167]. When analysing

these systems, it is unclear which characteristics distinguish synthesised speech from bona

fide. Therefore, knowing what humans use to identify deepfakes could provide a better

understanding of how black-box machine learning systems work.

Secondly, focusing on automated biometric authentication does not quantify the threat

of other potential criminal applications of speech deepfakes. Multiple studies deem other

uses of speech deepfakes as more concerning, such as defrauding people through voice

spoofs [161, 162].

We seek to address these two questions by measuring how well humans distinguish bona

fide speech from synthesised speech. We ran an online experiment where individuals

listened to bona fide and fake audio clips and attempted to differentiate between them.

We randomly assigned the participants to two conditions. In the first condition, we pre-

sented participants with one audio clip at a time and asked them to decide if the clip was

fake. In the second condition, we presented participants with audio clip pairs contain-
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ing the same speech (one bona fide and one synthesised) and asked them to identify the

synthesised audio.

We ran the experiment in English and Mandarin to understand if listeners used language-

specific attributes to detect deepfakes and to observe if deepfake detection is more man-

ageable in one language than another. Finally, we incorporated randomised interventions

to evaluate whether familiarising participants with examples of speech deepfakes boosts

detection performance.

Our results suggest the listeners had limited detection capabilities, and performance is

similar between languages. Additionally, familiarising participants improved performance

but only to a small extent.

5.2 Background on deepfakes

Deepfakes are synthetic media produced in the likeness of a person. They fall into the field

of generative artificial intelligence (AI). Generative AI algorithms learn patterns and char-

acteristics to create synthetic content similar to the original data. Deepfakes specifically

refer to the outputs of generative AI that resemble humans and their actions. Deepfake

media occur in different modalities:

1. Images: This modality contains static faces generated using varying techniques.

These techniques include:

• Generation from scratch: A generative adversarial network [101] or diffu-

sion model [168] synthesises a fictional identity.

• Morphing: Blending similar-looking faces to produce an identity containing

the characteristics of the sources [169].

• Swaps: A source face replaces the target in a different image [170].

2. Video: This modality features individuals performing actions. Currently, the tech-

niques used to synthesise videos are similar to those used in images. Image synthesis

techniques are applied at a frame level and stitched together to form a video.

3. Speech: This modality conveys information in a manner that sounds like a genuine

person’s voice. Although audio can refer to general sound synthesis, the terms "au-
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dio", "speech", and "voice" deepfakes are used interchangeably in academic literature.

We refer to them as "speech deepfakes" for consistency.

In addition, deepfakes are either produced in the likeness of a known identity (targeted)

or do not resemble a familiar identity (untargeted). For example, we can categorise video

deepfakes of politicians as targeted. Targeted deepfakes are often referred to as "spoofs"

in the literature. However, spoofs are a broader category that includes non-deep learning

methods to imitate individuals [171]. Examples include dubbing by voice actors [172]

and replay attacks, where the adversary uses a recording of the targeted individual [173].

Conversely, a generic face created from scratch and not conditioned to resemble a specific

individual is untargeted. The deepfake detection literature commonly refers to legitimate

content of humans as "bona fide". Zhang (2022) [174] contains further information on

deepfake terminology.

5.2.1 Synthesising speech

Generative models are often used to synthesise speech. Speech synthesisers which use

generative models follow a common framework:

1. Data collection: Several audio recordings of the speaker are collected.

2. Pre-processing: The audio recordings are converted into alternative formats to

make it easier for the generative model to work with them.

3. Training: Processed audio recordings are fed to the generative model to learn the

patterns and characteristics of the data. The trained model is often called a vocoder.

The frameworks often include text-to-speech (TTS) modules to make it easier to generate

speech. The generative model also sees text transcriptions corresponding to the audio

recordings in this setting. We depict a visualisation of this framework in Figure 5.1.

Input speech

Pre-processing

Text encoder

Generative model

Synthesised speech

Processed speech
embedding

Text embedding

Text-to-speech
module

Text transcription of the
input speech

Figure 5.1: Diagram of a typical generative speech synthesis model.
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5.2.2 Related work

Most deepfake detection studies which examine human performance use visual media.

When faced with deepfake content of politicians, participants rely on contextual knowl-

edge in the form of political literacy to identify spoofs [172, 175].

Removing such background knowledge makes the detection task more difficult. In the

context of images, multiple studies show humans do not perform much better than chance

[176, 177]. There is no improvement when evaluating videos either [9, 178, 179]. Moreover,

these studies suggest humans are overconfident in their deepfake detection abilities [9].

Several of the above studies examine if interventions can boost detection performance.

However, the effectiveness of these interventions is debatable. Bray et al. [176] famil-

iarised participants by showing examples of deepfakes before the main task. The authors

also drew participants’ attention to errors often present in bogus images. Although these

interventions improved deepfake detection performance, they also increased overall scep-

ticism as a higher proportion of bona fide images were falsely classified. One could also

note that pointing out errors biases the participants and prevents them from indepen-

dently identifying the tell-tale characteristics of deepfakes. Köbis et al. [9] presented in-

terventions by informing participants about the impact of deepfakes and rewarding correct

guesses. Neither intervention led to improved performance.

In contrast, other authors found interventions derived from machine learning model out-

puts improve detection. Tahir et al. [179] produced educational material containing in-

dicators of bogus images with the assistance of machine learning interpretability tools.

The authors found detection performance improved compared to the initial control group.

However, a recent study [180] contests the reliability of these tools, as the authors show it

is possible to manipulate the output visualisations. Groh et al. [178] allowed participants

to amend their choices after viewing the predictions of a machine learning model. This

form of cooperation improved results significantly.

Fewer studies examine how well humans can detect speech deepfakes. Watson et al. [181]

presented eight clips to college students and asked them to decide whether the clips were

real or fake. They found that shorter clips were easier to identify. However, the sample size

of their study was small and skewed towards a younger, college-educated demographic.

The ASVspoof challenge organisers ran an experiment with a larger sample size [182].
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They asked 1,145 participants to imagine they worked in a call centre and decide whether

the incoming calls were spoken by humans or by an AI. However, the experiment was

limited to the speaker verification setting.

Müller et al. [183] ran a game where 378 participants competed against a machine learn-

ing model to decide if an audio clip was fake. Similar to Groh et al. [178], they found

that feedback from the machine learning model improved human performance. In their

experiment, Müller et al. [183] found that the difference between human and AI accuracy

was about 10%. However, their study only used English-language clips, only presented

one audio clip to participants at a time, and did not collect information about participant

confidence.

We summarise the relevant literature in Table 5.1. We note that Barari et al. [172] men-

tion fake speech stimuli in their analysis. However, they used actors to create the speech

instead of generative AI. Therefore we excluded this from our analysis.

Table 5.1: Summary of related literature measuring human capabilities to detect deepfakes.

Modality Year Author Deepfake stimuli

Image
2021 Nightingale & Farid [177] Faces generated using StyleGAN2

[184]
2023 Bray et al. [176] Faces generated using StyleGAN2

Video

2021 Barari et al. [172] Face-swap videos of politicians
2021 Groh et al. [178] Face-swap videos from the Deep-

fake Detection Challenge dataset
[185]

2021 Köbis et al. [9] Face-swap videos from the Deep-
fake Detection Challenge dataset

2021 Tahir et al. [179] Face-swap videos from Celeb-DF
[186], FaceForensics++ [187] and
DeepFaceLab [188]

2022 Appel & Prietzel [175] Face-swap videos of politicians

Speech

2020 Wang et al. [182] Spoofed utterances generated from
TTS and voice conversion systems
used in ASVspoof2019

2021 Watson et al. [181] Audio clips generated using Mel-
GAN [189]

2022 Müller et al. [183] Spoofed utterances from the
ASVspoof2019 dataset [182]
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5.3 Method

Our research questions were as follows:

1. How well can humans detect speech deepfakes?

2. Are there differences in detection capabilities depending on the language?

3. Do interventions in the form of examples and added context improve detection per-

formance?

Through this setup, we could quantify the threat of speech deepfakes when humans in-

teract with them. We anticipated these results would serve as a baseline for automated

detection performance and inform the development of better automated detectors.

5.3.1 Stimuli

We introduce the bona fide and deepfake stimuli used in the experiments.

5.3.1.1 Bona fide stimuli

Wecollected bona fide stimuli from two publicly available datasets. Both datasets consist of

one female speaker reading generic sentences. The datasets also include text transcriptions

of the audio. We chose such datasets to prevent participants from using external cues for

the detection task.

We used LJSpeech [190] as the English dataset. The dataset consists of a speaker reading

passages from seven non-fiction books, varying between one and ten seconds in length.

We used the Chinese Standard Mandarin Speech Corpus (CSMSC) [191] as the Mandarin

dataset. The corpus used in the dataset aims to cover Mandarin tones and prosody as

comprehensively as possible.

5.3.1.2 Deepfake stimuli

To create the deepfake stimuli, we used publicly available TTS models trained on the two

datasets [192]. In particular, we chose pre-trained VITS models [193]. VITS is an end-to-

end TTS model which combines the data pre-processing and vocoder into a single frame-

work.

We randomly selected 50 sentences from the validation split of the two datasets to create
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the deepfakes. We used the same sentences for our bona fide stimuli. Therefore, we had

100 clips in total.

5.3.2 Procedure

The setup for the English andMandarin experiments was identical. We randomly assigned

participants to two configurations: unary and binary. In both configurations, we asked

participants to rate the confidence of their choice on a ten-point Likert scale and provide

freeform text justifications. Participants were allowed to listen to the clips as often as they

liked. We did not give feedback to the participants to inform them if their choices were

correct. Compared to the setups described in Groh et al. and Müller et al. [178, 183], the

lack of feedback creates a more realistic scenario. When encountering speech deepfakes

in the wild (for example, through fraudulent calls), humans do not know that the voices

are fake. We include screenshots of the two configurations in Figure 5.2.

Figure 5.2: Screenshots of the task interface.
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5.3.2.1 Unary configuration

We presented twenty randomly chosen distinct clips to each participant, each on separate

pages. Participants listened to approximately an equal number of bona fide and synthe-

sised clips, but we did not inform them about the proportion. We tasked the participants

with deciding whether the clip they heard was real or fake.

5.3.2.2 Binary configuration

We presented twenty randomly chosen clip pairs (labelled "A" and "B") comprising the

same spoken sentence. Each pair contained a clip uttered by the human speaker and a

clip produced by VITS. We randomised the order of the fake and real clips and asked the

participants to decide which clip was fake. We included this scenario to see if contextual

information helped detection.

5.3.2.3 Familiarisation treatment

In addition to the two configurations, we randomly assigned half of the participants to a

familiarisation treatment group. We included the treatment to verify the existing literature

and understand if humans could be trained to detect deepfakes like a machine learning

model. We showed participants in the treatment group five deepfake utterances before

commencing the main detection task. We informed the participants that these examples

were synthesised and allowed them to listen to the clips multiple times. These clips were

distinct from the stimuli used in the main task.

For participants in the control group, we gave them a filler task. In this task, we asked par-

ticipants to list potential applications of synthesised speech and to provide their opinion

about whether synthesised audio will positively or negatively impact society.

5.3.3 Participants

We recruited participants via the Prolific platform. We filtered for participants fluent in En-

glish and Mandarin, as fluency affects detection performance [183]. We paid participants

at a rate of £7.25 per hour. To encourage more thoughtful responses, we informed partici-

pants they could receive a £1.00 bonus if their detection scores were in the top 50%. Overall,

we recruited 529 participants. The mean age was 28.9 years old, and 50.6% identified as

male. Table 5.2 contains a more detailed breakdown of the demographics by treatment
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group.

Table 5.2: Number of participants by group.

Group English Mandarin
n Age (SD) Male (%) n Age (SD) Male (%)

Unary no familiarisation 76 26.8 (8.1) 55.2 65 31.0 (10.4) 44.6
Unary familiarisation 65 26.7 (7.3) 56.9 54 31.4 (8.7) 44.4
Binary no familiarisation 60 27.5 (7.2) 53.3 70 31.8 (9.0) 48.8
Binary familiarisation 80 27.4 (7.3) 57.5 59 29.1 (8.5) 39.6
Overall 281 27.1 (7.5) 55.8 248 30.9 (9.2) 44.5

5.3.4 Ethics statement

The study was reviewed and exempted by the Department of Security and Crime Science’s

ethics board at University College London. All participants were notified about the pur-

pose of the study and were over the age of 18. Before participating, the participants were

asked to tick a series of checkboxes to provide informed written consent.

5.3.5 Benchmarking against automated deepfake detectors

To compare the performance of the human participants to automated methods, we trained

two artificial neural networks which specialised in detecting speech deepfakes. Both net-

works used an LFCC-LCNN architecture [194], which converts raw audio waveforms into

two-dimensional representations. The networks are trained on labelled bona fide and

deepfake samples. The ASVspoof 2021 challenge used LFCC-LCNNs as baseline models

for spoof detection [165]. Hence, they are a reasonable benchmark for our experiments.

The article summarising the ASVspoof 2021 competition contains more detail about the

top-performing speech deepfake detection architectures [165].

We used two versions for each language:

1. In-domain: We trained the networks using the training split of LJSpeech and CSMSC

as bona fide samples and created deepfakes by passing the sentences of the training

splits through VITS.

2. Out-of-domain: We trained the Mandarin network with FAD [195], another

Mandarin-language dataset. We used the pre-trained ASVspoof network [196]

for English-language evaluation.
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We introduce the out-of-domain variant for a fairer comparison with human performance,

as artificial neural network performances can decline with slight changes in the audio clips

(such as changes to the speaker identity or environment). In addition, it is unlikely that

the participants in our study recognise the identities in the LJSpeech and CSMSC datasets.

5.4 Results

We present overall detection results and analyse the effects of different interventions.

5.4.1 Overall performance

Figure 5.3 summarises human performance across all the different groups. We provide

breakdowns of the classification choices in Tables 5.3 and 5.4, which aggregate the English

and Mandarin results. We completed the analysis using the SciPy [197] and statsmodels

[198] Python packages. For further details, Appendix C.3.1 contains results per stimulus.
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Figure 5.3: Box plot summarising human performance across the different groups.

Participants made the correct classifications 70.35% of the time in the unary scenario. They

were better at identifying deepfakes (73% accuracy). In comparison, participants correctly

identified bona fide examples 67.78% of the time. We speculate the high number of mis-

classified bona fide samples is partly due to increased scepticism, as participants were

aware of the presence of deepfakes through the task briefing. This behaviour aligns with
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Table 5.3: Confusion matrix for the unary group responses.

Predicted class

Real (2,442) Fake (2,678)

True class Real (2,598) 1,761 837
Fake (2,522) 681 1,841

n = 5,120.
Overall accuracy = 70.35%.
Reals correctly identified = 67.78%.
Fakes correctly identified = 73.0%.

Table 5.4: Confusion matrix for the binary group responses.

Predicted class

Real Fake

True class Real - -
Fake (5,380) 775 4,605

True real class labels are not defined in this scenario as participants were asked to choose
the fake clip every time.
Overall accuracy is equivalent to fakes correctly identified = 85.59%.

observations in Bray et al. [176].

Performance improved under the binary scenario. Participants correctly recognised the

deepfake audio in 85.59% of trials. However, the binary setup represents an unrealistic

scenario. Even if the identity of a speaker is known, reference utterances containing the

same speech as the test clip we would like to evaluate are unlikely to be available.

5.4.2 Measuring the effects of interventions

We follow a similar approach to Groh et al. [178] to disentangle the effects of each in-

tervention on performance. We transformed the correct/incorrect results into continuous

values by weighting the decision of each participant with their provided confidence scores.

The ten-point confidence scale participants completed serves as the mapping function.

The lowest score of 0 signals that the participant’s choice is a guess, so their confidence

in making the right decision corresponds to 50%. In contrast, the highest score of 9 corre-

sponds to 100% belief.

The resulting transformed scores depended on whether the participants made the correct

classification. For example, if the participant rated their confidence as 7, this maps to a
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belief of 88%. If they make the right decision, the adjusted score is 0.88. Conversely, if they

make the wrong decision, we subtract the value from 1, resulting in an adjusted score of

0.12.

The revised scores also enable fairer comparisons with the automated deepfake detectors,

which output scores between 0 and 1 when evaluating examples. We refer to the revised

scores as accuracy scores for the remainder of the text. We also rescale the scores to

percentages.

After transforming the results, we analysed the effects of different interventions on the

accuracy scores of participants on each audio clip using linear regression. In addition

to language, familiarisation and binary intervention, we analysed the impact of the clip

duration. Table 5.5 outlines the results at the overall, unary and binary levels.

Table 5.5: Linear regression results of interventions on confidence-scaled accuracy.

Independent variable Dependent variable: Confidence-scaled accuracy

All (SD) Unary (SD) Binary (SD)

Constant 43.742*** (1.897) 46.394*** (2.791) 71.217*** (2.530)
Mandarina 1.790 (1.404) 1.477 (1.882) 2.152 (2.118)
Familiarisation 3.840*** (1.191) 3.758** (1.571) 3.854** (1.802)
Clip length 0.797*** (0.209) 0.375 (0.358) 1.168*** (0.230)
Binary intervention 29.830*** (1.186) - -
Observations 10,500 5,120 5,380
𝑅2 0.165 0.003 0.010
Adjusted 𝑅2 0.165 0.002 0.009
F-Statistic 171.102*** 2.455* 11.794***

aDummy variable indicating which language was used in the task. 1 = Mandarin, 0 =
English.
*𝑝 < 0.1. **𝑝 < 0.05. ***𝑝 < 0.01.

5.4.2.1 Reference audio helps with deepfake detection

The linear regression results indicate the improvement gained from the binary scenario is

statistically significant (𝑝 < 0.001). Consequently, the results suggest contextual informa-

tion via reference audio is beneficial for uncovering quirks in synthesised speech.
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5.4.2.2 Training humans to detect deepfakes only helps slightly

The familiarisation treatment increases detection accuracy by 3.84% on average (𝑝 =

0.001). This effect is present in both the unary and binary regression results, improving

accuracy by 3.76% (𝑝 = 0.017) and 3.85% (𝑝 = 0.032), respectively. However, the famil-

iarisation treatment only boosts accuracy to a level which is slightly above chance in the

unary setting, ceteris paribus.

5.4.2.3 It is equally challenging to detect deepfakes in Mandarin and English

Figure 5.3 shows that performance in English and Mandarin is comparable across the

different treatment groups. This observation is supported by Table 5.5, which shows

Mandarin-speaking participants only outperform their English counterparts by 1.79%, and

this effect is not statistically significant (𝑝 = 0.202).

5.4.2.4 Shorter speech deepfakes are not easier to identify

As our stimuli varied from two to eleven seconds, we included clip length in the regres-

sion to verify whether it is easier to discriminate shorter clips. Our results suggest clip

length has a negligible impact on accuracy, improving performance by only 0.80% for each

additional second. Our scatter plot (Figure 5.4) supports this and shows no relationship

between the two variables. These findings conflict with Watson et al. [181], who suggest

it is easier to identify shorter deepfakes.
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Figure 5.4: Scatter plot showing the relationship between clip length and confidence-scaled accu-
racy.
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5.4.3 Analysing performance against time

In addition to analysing the treatment effects, we examine whether the hypothesis of

spending more time on the task improves performance.

5.4.3.1 Listening to the clips more frequently does not aid detection

We recorded the number of times participants clicked on each audio clip and compared

the values to accuracy. As shown in Figure 5.5, there is no relationship between the two

variables (𝜌 = −0.05, 𝑝 < 0.001).
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Figure 5.5: Scatter plot showing the relationship between the number of times played and
confidence-scaled accuracy.

5.4.3.2 Spending more time on the task also does not affect performance

Similar to the above analysis, we compared the time taken to complete the entire task to

the total number of clips correctly identified. Figure 5.6 only suggests a weak relation-

ship between the two variables (𝜌 = 0.10, 𝑝 = 0.018), suggesting investing more time to

complete the task does not improve performance.
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Figure 5.6: Scatter plot showing the relationship between minutes taken to complete and correct-
ness scores.

5.4.3.3 Participants do not get better throughout the task without explicit feed-

back

To understand whether participants improved as they saw more examples and progressed

further in the task, we calculated the number of correct responses per question number.

If so, we would expect more correct answers in question twenty compared to question

one. Figure 5.7 illustrates the resulting histogram. The histogram shows performance

is relatively stable across the questions. This observation indicates participants do not

improve throughout the task unless they have explicit feedback, as examined by Groh

et al. [178] and Müller et al. [183]. We quantitatively verified the result by conducting

a one-way chi-squared hypothesis test against the uniform distribution, which was not

statistically significant (𝜒 2 = 6.19, 𝑝 = 0.997).
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Figure 5.7: Histogram of correct responses across question number.
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5.4.4 Comparing human performance to automated detectors

The following section compares human performance to automated deepfake detectors. For

comparability, we use commonly reported performancemetrics found in machine learning

literature.

• Receiver operating characteristic (ROC): These plots represent discriminatory

ability. They compare true positive rates against false positive rates at different

thresholds.

• The area under the receiver operating characteristic (AUROC): This score

summarises ROCs into a single value. 50% AUROC indicates predictions are guesses,

whereas 100% AUROC means perfect discrimination between bona fides and deep-

fakes in all trials.

• Equal error rate (EER): This describes the point on ROCs where the true positive

and false positive rates are equal.

Figure 5.8 displays the AUROC and EER scores. We include only the unary scenario in

this analysis as the inference setup between humans and automated detectors is more

comparable. Both evaluate one clip at a time. We aggregated the English and Mandarin

results as we observed similar results.
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Figure 5.8: Receiver operator curves under the unary scenario.

5.4.4.1 Human performance is less sensitive to unknown conditions compared to

automated detectors

The no familiarisation (AUROC = 73.83%) and familiarisation curves (AUROC = 75.54%)

confirm humans performed better than chance. The curves also support the linear re-

gression result. Showing participants examples of deepfakes only had a minute impact on
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performance. However, performancewas quite unreliable: on average, humans incorrectly

classified clips a quarter of the time.

Humans underperformed the in-domain automated detectors, which had perfect discrimi-

nation ability (AUROC = 100% for both languages). However, the out-of-domain detectors

often incorrectly classified bona fides as deepfakes (AUROC = 25.31%). Based on this be-

haviour, humans are more robust to unknown factors, such as speaker identity.

5.4.4.2 Crowd-sourced speech deepfake detection is comparable to the top-

performing automated detectors

Per Groh et al. [178], we averaged the accuracy scores of each participant per clip to

calculate the crowd-sourced responses. Like the results observed with video stimuli [178],

crowd-sourced performance is on par with the in-domain detector. However, the benefit

of familiarising participants dissipates when averaging responses. The crowd-sourced no

familiarisation and crowd-sourced familiarisation AUROC scores are similar at 95.51% and

94.04%, respectively.

5.4.5 Freeform text analysis

To understand how participants assessed the genuineness of audio clips, we analysed

their freeform text responses. We grouped responses by language, clip authenticity, and

whether participants made the correct choice. We then created word clouds using tf-idf

weightings. Tf-idf measures the importance of a word within a document compared to a

collection of documents to account for frequently appearing words [199]. Figures 5.9 and

5.10 show the English and Mandarin word clouds.



Speech: human-level deepfake detection | 74

Real (Correctly Classified) Real (Incorrectly Classified)

Fake (Correctly Classified) Fake (Incorrectly Classified)

Figure 5.9: Word clouds containing justifications for the English-language clips.

Participants referred to the same characteristics regardless of whether they made the cor-

rect decisions. For example, in Figure 5.9, participants who correctly classified bona fide

utterances as legitimate (in the top left of Figure 5.9) mentioned pauses, tone and intona-

tion. However, participants who incorrectly categorised bona fide utterances as fake (top

right of Figure 5.9) also referred to these attributes. We compared responses by the actual

label of the clips and whether participants made the correct response. We did not find

substantial differences between these segments. Therefore, automated detectors that in-

corporate these human characteristics would produce limited improvements. We observed

this activity in both English and Mandarin. They tended to rely on intuition to make clas-

sifications, referring to naturalness (自然) and robotic (机械) sounds. Beyond intuition,

English and Mandarin participants also commonly referenced pauses (停顿), intonation

(语调), pronunciation (发音), and speed (速度).

Regarding differences between languages, there were more references to breathing among
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Real (Correctly Classified) Real (Incorrectly Classified)

Fake (Correctly Classified) Fake (Incorrectly Classified)

Figure 5.10: Word clouds containing justifications for the Mandarin-language clips. Note partici-
pants for the Mandarin tasks provided justifications in both Mandarin and English.

the English-speaking participants. In contrast, Mandarin-speaking participants mentioned

the cadence of the speaker (节奏), pacing between words (断句), and fluency (流畅). This

result may be due to differences in timing properties between the two languages. English

is stress-timed, while Mandarin is syllable-timed [200].

5.5 Conclusion

We conclude by outlining the work’s limitations and main contributions.

5.5.1 Limitations

Although our setup enabled comparison with automated detectors, it does not necessarily

reflect more realistic scenarios where a listener may encounter speech deepfakes.

Firstly, the balance of deepfakes we presented in our experiment does not reflect the pro-
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portion that occurs in the wild. Participants were equally likely to encounter deepfakes

as bona fides in the task. However, AI-generated content (including the use of deepfakes

for nefarious purposes) is still rare for now. In addition, we could expect participants to

be much more attentive to the occurrence of deepfakes as we informed them about the

nature of the task.

Moreover, we minimised contextual information in our stimuli. For example, we do not

examine situations where the contextual knowledge of a listener (such as awareness of the

speaker’s identity, emotional status, the number of parties in a conversation, or political

affiliations) may have informed their decisions. These aspects may be relevant to typical

use cases where speech deepfakes may arise, such as false news propagation [161]. Future

work could look at exploring how these characteristics influence detection.

Additionally, we asked participants in both languages to listen to utterances purporting to

originate from a single female speaker. Given that the age and gender of speakers influence

speech perception [201, 202], future work could consider how varying speaker identity

affects deepfake detection performance.

To generate our deepfake stimuli, we used an older approach which is not necessarily

illustrative of the state-of-the-art speech synthesis algorithms. Although our results indi-

cate how well humans can detect speech deepfakes generated with limited computational

resources, they may not faithfully reflect performance under the most current conditions.

5.5.2 Summary

Humans can detect speech deepfakes, but not consistently. They tend to rely on natural-

ness to identify deepfakes regardless of language. As speech synthesis algorithms improve

and become more natural, it will become more difficult for humans to catch speech deep-

fakes.

Although there are some differences in the features that English and Mandarin speakers

use to detect deepfakes, the two groups share many similarities. Therefore, the threat

potential of speech deepfakes is consistent despite the language involved.

It will be easier for adversaries to generate more deepfakes as the computational barrier

for synthesising data lowers. More deepfakes in the wild will have a knock-on effect.

Adversaries will have more opportunities to scale their operations, particularly for disin-
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formation such as impersonations and spear phishing [162].

Ultimately, the battle between deepfake creation and detection is an arms race [203]. How

can we defend against falling prey to deepfake trickery? Our binary scenario shows that

comparing against reference audio is helpful if we know the speaker’s identity. However,

we do not always have this information.

Increasing awareness by showing people examples of deepfake audio has a limited effect,

as demonstrated by our familiarisation results. Spending more time evaluating the clips

does not seem to help either.

To summarise, attempting to improve human detection capabilities is unrealistic. We show

that even in a controlled environment where the task is easier (participants are aware of

the presence of speech deepfakes and the deepfakes are not created using state-of-the-

art speech synthesisers), deepfake detection is not high. Our results suggest the need for

automated detectors tomitigate a human listener’s weaknesses. Automated detectors’ per-

formance on in-domain data indicates they can pick up on subtleties that humans cannot.

However, we show they are brittle and fail to work when there are changes in the test au-

dio’s environmental conditions. Given the extent of human limitations and the increasing

availability of computational resources for deploying detectors, research should focus on

improving these detectors. We attempt to tackle this issue in the next chapter by analysing

how deepfake detection performance varies with different representations.

In the meantime, crowd-sourcing is a reasonable mitigation. We confirm crowd perfor-

mance is on par with the top-performing automated detectors and is not as brittle. Ex-

tending fact-checking tools to include audio evaluations is one way to protect against

deepfake threats.



6 | Speech: automated deepfake

detection

Existing automated deepfake detection approaches tend to use binary classifiers [204].

These classifiers learn by distinguishing between deepfake and bona fide speech. At test

time, these classifiers work well when presented with clips similar to those seen during

training. However, their performance degrades when there is a distribution shift in the test

audio [14, 204, 205]. For example, changes in the speaker identity or added compression

(such as transmission through telephone lines) can result in these shifts.

Improving the generalisability of deepfake detectors is an ongoing research topic in the

speech-processing community. One common strategy uses embeddings from large pre-

trained neural networks as input to binary classifiers [206, 207, 208]. Pre-trained networks

transform deepfake and bona fide training samples into a different representation. The

binary classifier then learns to differentiate bona fide and deepfake utterances in this new

space. Pre-trained networks benefit from learning high-level features that transfer well to

several tasks because they encounter varied datasets at the pre-training stage. However,

this setup does not guarantee that the features will transfer well to all unseen anomalies.

Binary classifiers are prone to learning brittle decision boundaries [209]. As a result, they

often yield unexpected results outside their decision space. Our experiments in §5.4.4

confirm this behaviour: performance on the OOD data was worse than chance. The binary

classifier evaluated on OOD bona fide and spoof data achieved an AUROC of 25.31%.

An alternative strategywould be tomake decisions on the pre-trained embeddings directly.

This approach removes the computational expense of an additional classifier. Furthermore,

we can use bona fide data to set up a one-class detector. Training a model with only bona

fide data reduces the potential to overfit on particular deepfake synthesis methods.
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Although one-class anomaly detection is effective in other modalities like image and text

[113, 210], its usefulness for speech deepfake detection is underexplored. In the absence

of labelled data, images and text have benefitted from pretext tasks that take advantage of

intrinsic biases to learn benign representations. Intrinsic biases include translation invari-

ance in images or fixed grammatical structures in text. Examples of useful pretext tasks

that leverage these biases include denoising [82, 102], autoregressive modelling [31], and

contrastive learning [40].

It is not straightforward to adapt these tasks to speech. Audio clips cannot undergo dis-

cretisation like text. Although contrastive learning is domain-neutral, it requires appro-

priate augmentation strategies to learn good representations [40]. It is unclear which aug-

mentations preserve the discriminative features necessary for speech deepfake detection.

Additionally, several components for effective speech deepfake detection are unknown,

such as the most appropriate audio representation, how to encode knowledge of the bona

fide distribution, and the choice of detector.

Instead of using bespoke pretext tasks, we can take advantage of the nature of bona fide

data. Bona fide speech is widely available and can come from various sources, like different

speakers. Therefore, we can use the metadata to construct a pretext task. Alternatively,

we can treat bona fide data as one homogenous class and use a generic centre loss to learn

a compact embedding [65, 66, 67].

We investigate whether one-class models can detect speech deepfakes and if they have the

same shortcomings as their binary counterparts. We study multiple aspects of the one-

class anomaly detection pipeline, including the choice of representation space, detector,

and architecture.

Our results are as follows:

1. One-class anomaly detectors can detect deepfakes and outperform binary classifiers

on unseen bona fide data.

2. Fine-tuning pre-trained models with bona fide data is the most beneficial. However,

most of the performance gains come from the underlying pre-trained model.

3. Embeddings extracted from more generalised audio classification models are better

for anomaly detection than embeddings from models trained specifically on speech.
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4. The most effective embeddings occupy a low-dimensional subspace. We can mea-

sure this property by projecting data to a lower subspace with principal components

analysis and measuring performance on a proxy task.

From these findings, we provide the following contributions:

1. Our experiments show that one-class anomaly detectors can detect speech deep-

fakes.

2. We show that one-class anomaly detectors can complement binary classifiers, as

they are more robust to unseen bona fide data.

3. We provide practical insights on how to perform one-class deepfake detection. Key

components include the choice of underlying pre-trained network, the fine-tuning

objective, and the type of anomaly detector.

4. We diagnose conditions where anomaly detection should succeed by analysing the

datasets in detail.

6.1 Background

We discuss different approaches for deepfake detection: binary classifiers, one-class learn-

ing for speech data, and one-class learning in other modalities.

6.1.1 Binary classifiers

Deepfake binary classifiers typically have two components: a frontend (which transforms

the input features) and a backend (which makes the classification decisions).

Early iterations used hand-crafted time-frequency representations as the front end. These

methods fed Mel frequency cepstral coefficients (MFCCs) [211] to shallow backend clas-

sifiers like Gaussian mixture models, support vector machines and probabilistic linear

discriminant analyses [182]. Subsequent backends switched to CNNs to process time-

frequency features more effectively. The consensus was that CNNs could identify more

fine-grained patterns that differentiate deepfakes from bona fide utterances due to their

ability to perform localised feature extraction [26].

However, time-frequency representations come at the cost of information loss, such as



Speech: automated deepfake detection | 81

phase and temporal resolution. This information loss could remove important discrimina-

tive features. These representations also vary depending on hyperparameters like window

size, shift length and dimensionality, leading to inconsistencies across implementations.

RawNet [212] and RawNet2 [213] attempt to resolve these issues by modifying the CNN

architecture to permit raw waveforms as input, replacing the two-component system with

an end-to-end approach. A variation of the end-to-end approach uses graph neural net-

works (GNNs) instead of CNNs [214]. These GNNs aim to surpass CNN performance by

processing the time and frequency domains in separate neural network branches before

combining them at a later processing stage.

More recent approaches using GNNs have reverted to separate frontend modules [215].

These frontend modules use features from self-supervised models designed for speech,

including HuBERT [216] and Wav2vec 2.0 [217, 218].

HuBERT adapts the BERT language model to speech [82]. HuBERT predicts masked

speech tokens instead of words. It learns to convert the raw waveforms into discrete units

like the language tokens in BERT. The conversion process relies on 𝑘-means clustering.

Once converted, a proportion of the units undergo masking. A transformer encoder in the

HuBERT architecture predicts the values of the masked components during training.

Wav2vec 2.0 has a different training setup. Instead of 𝑘-means clustering, it discretises

the waveforms using a quantisation module. Training also relies on contrastive predictive

coding. Contrastive predictive coding involves predicting parts of the audio based on other

segments of the utterance [219].

We provide a more detailed overview of the models in Appendix B.2.

6.1.2 One-class learning for speech

In recent audio deepfake detection literature, "one-class learning" refers to the work of

Zhang et al. [220]. They propose a new loss function called "one-class softmax". This

loss function encourages the model to learn a feature space that groups the bona fide em-

beddings into a tight space and pushes the deepfake embeddings away by a fixed margin.

The anomaly scorer uses the model’s classification confidences. Lower confidence scores

signal more anomalous utterances. Their approach is a misnomer, as the training stage

includes labelled deepfakes. It is a supervised contrastive learning method.
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Ding et al. expand on the work of Zhang et al. [220] by introducing speaker attractor

multi-centre one-class learning [221]. Ding et al. found that bona fide utterances often

form multiple clusters in the embedding space, as data tends to comprise multiple speaker

identities. As a result, grouping all bona fide data into one unit could result in misclas-

sifications. They modify the bona fide class in the one-class softmax loss function to set

multiple speaker identities as attractor classes. The attractors receive updates during opti-

misation to improve the positions of the speaker identities. The model continues to learn

with a margin-based objective. However, this approach requires speaker identity labels in

addition to labelled spoofs.

Pianese et al. take a more traditional approach to one-class learning [222]. They extract

speaker embeddings using a pre-trainedmodel to initialise attractor classes. Each attractor

class has a different speaker identity. They use cosine similarity and squared Euclidean

metrics between a test sample and the attractor classes to evaluate test audio. However,

this method also requires knowledge of speaker identities.

Few works train models using only bona fide data without speaker labels. Alegre et al.

[223] use local binary patterns [224] of speech cepstrograms to train OCSVMs, demon-

strating the viability of actual one-class learning. Villalba et al. use one-class learning as

part of an ensemble submission to the ASVspoof 2015 challenge [225]. They extract fea-

tures from a multilayer perceptron (MLP) to train an OCSVM. However, the approach was

not purely unsupervised. The MLP learnt to classify between bona fides and spoofs.

6.1.3 One-class learning for deepfake detection in other modalities

One-class deepfake detectors for modalities outside of speech fall under various subcate-

gories:

Outlier exposure. Outlier exposure techniques introduce a set of proxy anomalies at the

training stage [154]. These proxy anomalies are either OOD data from another dataset or

are synthetically generated. The model learns to classify between the bona fide samples

and the proxies. Shiohara and Yamasaki [226] adopt this approach to detect face swap

deepfakes. They synthesise deepfakes by conducting self-swaps. Self-swaps are face swaps

that use the same identity as the source image. As a result, the model learns about the

synthesis method rather than irrelevant background information.
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An analogous approach in speech would be using a voice converter to transform a voice

back to the source identity. However, this outlier exposure method specialises in detecting

samples from a particular synthesiser. Therefore, it is not guaranteed to generalise to

other unseen synthesis methods. To overcome this problem, a model would need to train

on self-swaps synthesised using several methods.

Reconstruction. Reconstruction methods assume that models trained on bona fide data

cannot represent anomalies [1]. The anomaly score is typically the input-output recon-

struction loss [71], although other methods use the difference between latent embeddings

[46, 72]. Khalid and Woo [227] apply the reconstructive approach to facial deepfake de-

tection using autoencoders, which are popular reconstruction models. They train a vari-

ational autoencoder on genuine faces and use the root mean squared error to score test

images. However, in certain instances, autoencoders can represent anomalies [228]. Feng

et al. [229] switch to to autoregressive models to identify audiovisual deepfakes. They use

a contrastive learning framework to synchronise the audio and video content. They extract

features from the contrastive model to train an autoregressive transformer. The authors

assume the transformer cannot fit a distribution to deepfakes, so they flag sequences with

low probabilities as anomalous. However, generative models also suffer from the anomaly

generation issue. Other studies suggest deep generative models can assign higher anomaly

scores to in-distribution data than out-of-distribution data [73, 230, 231].

Client matching. Instead of comparing reconstructed data against its input, other ap-

proaches compare input data with an exemplar identity. This is analogous to speaker

verification in speech [222]. Cozzolino et al. [232] extract a compact identity embedding

using a three-dimensional morphable model that captures shape, expression and appear-

ance using principal components analysis. The model transforms a video clip into this

three-dimensional representation at test time. An anomaly scorer compares this represen-

tation against the claimed identity.

In a subsequent study, Cozzolino et al. extended client matching to the audiovisual modal-

ity [233]. They use contrastive learning to align training audio and video clips. This

step ensures embeddings belonging to the same identity across modalities lie close to

each other. During evaluation, they extract intermediate embeddings from the contrastive

model. The anomaly score is the similarity between the test embedding and the closest
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reference identity. Similar to the speech deepfake case, this approach requires client la-

bels.

Self-supervision. Although autoencoders fall into this definition, newer methods use

pretext tasks that do not reconstruct data. Haliassos et al. [234] and Shi et al. [235] train

self-supervised models on bona fide data before fine-tuning supervised classifiers. Al-

though not purely one-class approaches, these methods suggest that training on bona fide

data can provide better generalisation.

Haliassos et al. [234] adapt a student-teacher approach [62]. The teacher model receives

audio data. The student model receives video data but must match the teacher’s output

with a mean squared error objective. The supervised classifier has two learning objectives.

It learns to predict what is bona fide or deepfake. It also learns to predict the embeddings

of the teacher.

Shi et al. [235] pre-train a transformer with a masked image modelling objective [236].

Following this step, they mask all blocks and obtain predictions for each block. They

compute a residual map using the difference between the input and the predictions. They

then use the map as the input to a supervised classifier that learns to predict between bona

fide and deepfake images.

Pre-trained embeddings. Self-supervision is computationally expensive as it needs large

batch sizes [40]. Other works show that performing anomaly detection with pre-trained

embeddings works well, which raises the question of whether additional fine-tuning on

bona fide data is necessary. Many post-hoc approaches that use pre-trained embeddings

extract features from the pre-logits layer and run shallow classifiers such as 𝑘-NN orMaha-

lanobis distance [16, 209]. Some studies build on the pre-trained embedding by fine-tuning

with the bona fide data using a centre loss [67]. However, the centre loss is prone to rep-

resentation collapse [66, 67]. There are strategies to avoid collapse, such as early stopping

and regularisation [67, 237].

6.2 Method

Our research questions were as follows:

1. Can we use one-class anomaly detection to identify speech deepfakes? If so, what
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representations work the best?

2. Given a fixed embedding, how do different anomaly detectors compare?

3. Do anomaly detectors perform better on unseen data distributions compared to their

supervised counterparts?

Our experimental pipeline follows a set structure, as illustrated in Figure 6.1:

Input speech Pre-trained network Fine tuning

None (frozen) Centre loss Open set

Feature extraction

Anomaly detector

Score function

Anomaly Normal

p(x) ≤ 𝜏  p(x) > 𝜏 

Figure 6.1: Diagram of the experimental pipeline.

Embedding extraction. We use the pre-trained neural network as is, or after fine-tuning.

We pass the training data through the neural network and obtain a new embedding from

the hidden layers. We use these embeddings to approximate the bona fide distribution.

Anomaly scoring: We pass the test data through the same neural network to transform

it into a new representation space. We compare how similar it is to the approximated bona

fide distribution using a shallow detector.

Our anomaly detection setup has the following advantages:

• Minimal engineering: Using neural networks as feature extractors means we do

not need prior knowledge to create hand-crafted embeddings. We also do not need
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additional supervised classifiers as we perform anomaly detection directly on the

embeddings.

• Speaker agnostic: We do not need to use labelled speaker identities to refine the

anomaly detection system.

• Only needs bona fide data: We do not need to collect deepfakes samples to train

the system, which should encourage better generalisation to unseen deepfake syn-

thesis methods.

• Architecture independent: The extraction and shallow anomaly detection

method can be applied to various architectures. We show this by analysing the

effect of different pre-trained audio and speech transformers on detection capabil-

ity.

We vary model architecture, training objective, anomaly detector, and training data to

understand the importance of each component. We clarify these aspects in the following

sections.

6.2.1 Datasets

We train and evaluate the anomaly detectors on publicly available English, Mandarin and

Japanese deepfake datasets. We used ASVspoof [163, 204] to align with previous deepfake

detection work. We chose additional Mandarin and Japanese datasets to ensure our results

were applicable beyond English.

ASVspoof 2019. The ASVspoof challenge, initially created in 2015, aimed to encourage

research on anti-spoofing [182]. It established an initial benchmark of spoofing counter-

measures. ASVspoof 2019 was the third edition of the challenge [163] and was the first

to introduce logical access (LA) attacks. LA attacks involve scenarios where an adver-

sary seeks to break into systems remotely using deepfakes. We only use the LA subset

of ASVspoof 2019, as the other partition uses presentation attacks. Presentation attacks

(playback of recorded voices) are not in scope for this work as they are not products of

deep learning models. The database uses the Voice Cloning Toolkit (VCTK) corpus [238],

a multi-speaker English speech database, as the bona fide samples. The training split has

2,580 bona fide and 22,800 deepfake utterances. The test split has 5,370 bona fide target

utterances, 1,985 bona fide non-target utterances and 63,882 deepfake utterances gener-
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ated from seven TTS and six voice conversion (VC) algorithms. We only use the bona fide

utterances in the training split to train our one-class models.

ASVspoof 2021 extends the work of ASVspoof 2019 [204]. The ASVspoof 2019 used clean

speech signals. Subsequent studies demonstrated that the proposed deepfake detection

systems degraded in the presence of noisy data [164]. The ASVspoof 2021 LA task intro-

duced noisier bona fide and spoofed speech to address this discrepancy. They added noise

by transmitting utterances from both classes through telephony systems. ASVspoof 2021

does not include a new training partition. Participants had to use the training split from

ASVspoof 2019. We follow the same protocol in our experiments and use ASVspoof 2019’s

training partition for training. ASVspoof 2021’s evaluation split includes 14,816 bona fide

utterances and 133,360 spoofed utterances from thirteen TTS, VC and hybrid spoofing at-

tacks. Like ASVspoof 2019, the bona fide samples were from VCTK [238]. ASVspoof 2021

also includes a new "deepfake" subset. However, we exclude it from our experiments as its

evaluation database overlaps with the LA subset.

WaveFake contains 117,985 generated audio clips from six generative architectures of

varying sizes [239]. The architectures are primarily generative adversarial networks (Mel-

GAN [189], Parallel WaveGAN [240], HiFI-GAN [241] and variants), although the dataset

also includes samples from WaveGlow, a flow-based generative model [242]. They use an

English language dataset, LJSpeech [190], and a Japanese language dataset, JSUT [243], to

create the audio. Both datasets contain a single female speaker. In total, WaveFake con-

tains ten subsets. We use utterances from LJSpeech and JSUT as the bona fide samples.

We only use the WaveFake samples for testing. We use the first 80% of the samples for

training and the remainder for testing.

FMFCC is a Mandarin language dataset designed for the inaugural fake media forensic

challenge of the China Society of Image and Graphics [244]. The training set contains

4,000 bona fide and 6,000 deepfake utterances. The test set contains 3,000 bona fide and

17,000 deepfake utterances. The bona fide utterances came from 58 speakers of varying

ages and genders, while the deepfakes originated from thirteen TTS and VC systems.

CFAD is a Mandarin language dataset for deepfake detection research [195]. The dataset

contains clean, noisy, and codec-compressed variants. We only use the clean variants for

our experiments. The train split includes 12,800 bona fide utterances from four corpora
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(AISHELL1, [245] AISHELL3 [246], THCHS30 [247] andMagicRead [248]) and 25,600 deep-

fake utterances generated from eight TTS algorithms. All deepfakes used one corpus as a

basis for generation, AISHELL3 [246]. The test split divides into seen and unseen speaker

subsets. We only use the seen subset to evaluate the anomaly detectors’ generalisation per-

formance on another unseen dataset. The seen split contains 14,000 bona fide and 28,000

deepfake utterances.

We disregard the deepfake samples in the training split and only use bona fide utterances

for our anomaly detection experiments. We devise two training scenarios to reflect in-

stances where the bona fide distribution is narrow and diverse:

• Unpooled: We only use bona fide samples from one dataset (e.g., ASVspoof 2019).

• Pooled: We combine the bona fide samples from all datasets (i.e., ASVspoof 2019,

WaveFake, FMFCC, CFAD).

We leave out 20% of the training data for validation. We evaluate one dataset at a time

(e.g., ASVspoof 2019) for both the unpooled and pooled scenarios.

We measure the generalisation capability of our models by evaluating them with the In-

The-Wild (ITW) dataset [14]. ITW aims to reflect more realistic audio conditions. The

dataset contains recordings from 58 English-speaking celebrities and politicians. In total,

it has 17.2 hours of deepfake and 20.7 hours of bona fide audio. The deepfake clips came

from publicly available video and audio files explicitly advertising speech deepfakes. The

curators manually matched the audio data with bona fide samples from the same speaker

with similar noise, emotion and duration. We do not use ITW to train any models.

6.2.2 Approach

We vary the underlying embedding by altering the architecture and fine-tuning objectives.

We compare the strengths and weaknesses of different shallow detectors by training them

on fixed underlying embeddings.

6.2.2.1 Architecture

We only use transformers in our experiments, as they have recently surpassed CNN per-

formance on audio tasks [249]. We primarily use state-of-the-art representation learning

architectures designed to process speech and audio. We include a vision transformer to
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measure how the pre-training modality affects results. Appendix B.2 contains a more de-

tailed overview of the models.

• HuBERT is a self-supervised model designed for speech [216]. It is an adaptation

of BERT [82]. It uses the masked prediction loss to learn the sequential structure

of speech. As HuBERT used an English-language dataset for training [250], we also

used a version of HuBERT1 trained on WenetSpeech, a Mandarin-language dataset

[251]. We refer to this version as HuBERTzh while we refer to the original version

as HuBERTen.

• Wav2Vec 2.0 is another self-supervised speech model [218]. It uses a contrastive

learning objective to learn speech representations [219]. Like HuBERT, we also vary

the language. Therefore, we have two variants: Wav2vec2en and Wav2vec2zh2.

• Audio spectrogram transformer (AST) specialises in audio classification [249].

It takes two-dimensional spectrograms as input and splits them into overlapping

patches. The authors showed that AST outperformed state-of-the-art CNNs on au-

dio classification tasks. We use a version fine-tuned on AudioSet [252].

• Self-supervised audio spectrogram transformer (SSAST): SSAST uses the same

underlying architecture as AST but uses masked imagemodelling as the pre-training

objective [253]. We use a version fine-tuned on AudioSet [252] and Librispeech

[250].

• Vision transformer (VIT) specialises in image classification [121]. It is the inspi-

ration behind the AST and has an identical architecture. We include VIT pre-trained

on ImageNet [95] in our experiments to see if an architecture pre-trained on audio

is more advantageous.

As a benchmark, we record anomaly detection performance onmore traditional feature en-

gineering approaches. We use the raw waveform, STFT, and methods designed for speech

processing, including Mel spectrograms, MFCCs [254] and LFCCs [255]. We use the tor-

chaudio library [256] with default settings to pre-process the utterances.

1https://huggingface.co/TencentGameMate/chinese-hubert-base
2https://huggingface.co/TencentGameMate/chinese-wav2vec2-base

https://huggingface.co/TencentGameMate/chinese-hubert-base
https://huggingface.co/TencentGameMate/chinese-wav2vec2-base
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6.2.2.2 Training objectives

Some anomaly detection works state that using embeddings from pre-trained networks is

competitive [16, 84, 96]. Others state fine-tuning with the bona fide training data elicits a

better, more compact embedding [67]. We investigate both approaches. Hence, we include

both pre-trained and fine-tuned variants:

Pre-trained. We extract the embeddings without additional fine-tuning.

Centre loss is a common objective in one-class learning. It aims to minimise the distance

between bona fide samples and a prototypical embedding [66, 67]. The loss makes the

training embedding more compact. Consequently, deepfakes (which have different fea-

tures) should lie further away. However, the centre loss can cause feature collapse, where

all embeddings map to a single point [66, 67]. We control this by only fine-tuning for one

epoch, as we found training for longer did not improve detection performance.

Open set. While fine-tuning to optimise a single class is prone to collapse, other stud-

ies show that classification models with careful hyperparameter tuning can identify OOD

samples [257]. Using classification models to find OOD samples is typically called open-

set detection [22]. We reconfigure the bona fide training paradigm into an open-set setup

using metadata. Although gathering a sufficient variety of deepfakes for training is cum-

bersome, bona fide samples are easier to find. Therefore, we fine-tune the transformers to

classify between the different bona fide sources depending on the metadata label.

We choose hyperparameters using random search and select based on the highest valida-

tion accuracy on the closed set classes. The hyperparameters we vary are the underlying

pre-trained model (which are defined in §6.2.2.1), loss function (cross-entropy, adversarial

reciprocal points learning (ARPL), and additive angular margin (AAM)), and learning rate.

Some previous literature claims a specialised loss function improves OOD detection on im-

ages [258] whereas others claim cross-entropy is sufficient [257]. We investigate whether

this is the case for audio data.

We fine-tune for one epoch only for comparability with the pooled centre loss arrange-

ment. The open set training tasks are as follows:

• Dataset source. We train the model to classify between the bona fide data sources

(ASVspoof 2019 [163], FMFCC [244], AISHELL1 [245], AISHELL3 [246], MagicRead
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[248], THCHS30 [247], LJSpeech [190], JSUT [243]). There are eight classes in total.

• Language. We train the model the model to classify between the three source lan-

guages (English, Mandarin, Japanese).

• GMM clusters. Previous research found that pre-trained speech models can group

speakers despite not being specifically trained to do so [232, 259]. We investigate

whether this characteristic enables fine-tuning. We pass the training data through

the pre-trained transformer and extract the embeddings. We use the embeddings

to train a GMM. We set the number of Gaussian components using hyperparameter

selection. We then assign the labels for each training datum using the GMM. Finally,

we use the GMM labels to fine-tune the model.

6.2.3 Anomaly detection

Once we have trained the transformers, we pass the data through them and extract em-

beddings after each fully connected layer. We choose to include all hidden embeddings

instead of solely the pre-logits layer, as other works show anomalies may manifest in dif-

ferent layers [46, 94]. For example, HuBERTbase has thirteen blocks, so we obtain a stack

of thirteen embeddings for one datum. We concatenate the embeddings from each layer

and mean pool in the time axis. Literature suggests mean pooling benefits downstream

tasks [260]. We generate embeddings for training and test data in the same way.

We use the training embeddings to construct various shallow anomaly detectors. These

include 𝑘-NN [16], cosine similarity (cosine) [133], isolation forest (iForest) [261], Maha-

lanobis distance [96], and residual norms (norms) [262].

6.3 Results

We commence by analysing detector performance in §6.3.1. We start with detector perfor-

mance to make the anomaly scoring approach consistent for the subsequent sections. We

then identify the best-performing embeddings across datasets and training regimes. §6.3.2

analyses the effect of different ablations on performance. We attempt to understand why

some embeddings are better than others by looking at ways to measure embedding quality

in §6.3.3. We also break results down by dataset to see if there are any trends. Finally, we

compare one-class anomaly detection performance to supervised classifiers in §6.3.4.
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6.3.1 Overall performance

6.3.1.1 Cosine similarity is the best detector, but not by a significant margin

Figure 6.2: Critical difference diagram comparing the detectors in a pairwise manner. The hori-
zontal scale denotes the average rank of each detector. Statistical differences (𝑝 < 0.05)
would be denoted by horizontal lines between the ranks. We did not identify statistical
differences between any of the detectors.

Figure 6.2 ranks the detectors, fixed by dataset, architecture and fine-tuning mode. Cosine

similarity ranks the highest. But, there is no statistical difference between the methods.

This ranking suggests the detectors assess test data similarly, and the choice of detector is

not as important as other design choices. Nonetheless, the superior performance of cosine

similarity and 𝑘-NN indicate that a reasonable representation clusters bona fide samples

tightly and in the same direction.

We report the following results using cosine similarity as the detector. Although other

speech deepfake works report equal error rate3 or F1 scores, we found that AUROC cor-

relates highly with these metrics4. Therefore, we use AUROC as the performance metric

to ensure consistency across the thesis.

6.3.1.2 Deepfakes are detectable with one-class anomaly detection

We aggregate the AUROC scores for all datasets to isolate the impact of the pre-trained em-

beddings. Figure 6.3 shows that the pre-trained embeddings can elicit scores greater than

random performance. However, AST performs the best. After AST, SSAST is the best em-

bedding, followed by VIT, the Wav2vec2 models, and the HuBERT models. These results

suggest that audio-specific features are better than general visual features. However, using

embeddings trained from solely bona fide speech is insufficient for drawing out discrim-

inative features unique to deepfakes. The deep embeddings also outperform the shallow

embeddings, potentially as deep embeddings are better at capturing hierarchical features

3EER - the percentage at which the false positive and false positive rates are equal. Values closer to zero
are more desirable.

4Our results showed a correlation of -0.99 between AUROC and EER and a correlation of 0.93 between
AUROC and F1.
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Figure 6.3: Box plot comparing cosine AUROCs for each pre-trained and baseline embedding, or-
dered by median performance. The orange box plots are raw embeddings and the blue
box plots are neural embeddings.

lost in shallow feature engineering. These results confirm neural embeddings might be

better frontend features for detection systems [215].

6.3.2 Ablation studies

We proceed to investigate how detection performance shifts under fine-tuning and hyper-

parameter changes.

6.3.2.1 Fine-tuning with a centre loss achieves better results, although perfor-

mance depends on the diversity of the training data

Figure 6.4 shows how fine-tuning affects performance. Fine-tuning offers benefits over the

pre-trained embedding because it allows the bona fides to fit a more compact space. This

advantage is most prominent when training unpooled datasets with centre loss.

However, fine-tuning results highly correlate with pre-trained performance (Figure 6.5).

Therefore, it is essential to choose an appropriate pre-trained model for fine-tuning. Cen-

tre loss performance declines in the pooled scenario, where the bona fide data has more

diverse properties. Grouping different distributions masks these diverse characteristics. In
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Figure 6.4: Box plot comparing cosine AUROCs for each fine-tuning method.
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(a) Scatter plot comparing pre-trained
and centre loss AUROCs. 𝜌 = 0.69.
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(b) Bar chart comparingmedian pre-trained and centre
loss AUROCs.

Figure 6.5: Charts comparing pre-trained and centre-loss AUROCs grouped by dataset and under-
lying embeddings on unpooled and pooled bona fide data.
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this case, training with an open set objective is more beneficial.

Predicting the dataset source is better than using language or GMM clusters for labelling.

This result may be due to differing recording environments for each dataset, which is more

important than the source language or content of the utterances.

Although GMM is slightly better than random, it assumes the bona fide distributions are

Gaussian. Without learning to correct the clusters through another learning mechanism,

such clusterings may give erroneous assignments [263].

Following suggestions that pre-processing can increase the discriminative features be-

tween bona fide and spoof utterances [213], we investigate whether this is also the case

for anomaly detection.

6.3.2.2 Standardisation does not improve deepfake detection
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Figure 6.6: Bar chart showing how standardisation affects detection performance without Raw-
Boost, grouped by embedding and dataset on unpooled and pooled bona fide data.

OOD detection strategies in the vision domain often require standardised embeddings

[16, 134]. The assumption is that two samples from the same distribution should map to

similar features [148] and the anomaly scorers should focus on the underlying data struc-

ture rather than irrelevant variations like magnitude or scale. We investigate whether this

is necessary for speech deepfake detection.

We extract the embeddings per Figure 6.1 and standardise each dimension independently

by removing themean and scaling to unit variance. Figure 6.6 compares anomaly detection

performance on standardised and non-standardised features. Standardising the data leads

to a significant decrease in mean performance.
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6.3.2.3 Data augmentation can boost deepfake detection formore specialised pre-

trained embeddings
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Figure 6.7: Bar chart showing how RawBoost affects detection performance without standardisa-
tion, split by underlying embedding.

Previous studies showed that spoof detectors trained on ASVspoof 2019 did not label noisy

deepfakes suspicious [164], as the noise degraded the learnt discriminative features. This

weakness was partly the motivation for developing ASVspoof 2021 [165]. Works suggest

diversifying the training embeddings with augmentations might improve generalisation

to bona fides, as the models will overfit less to irrelevant features like noise.

We investigate whether data augmentation improves generalisation to bona fides in the

one-class setting and, consequently, deepfake detection. We augment the input wave-

forms with RawBoost [264] as it does not require external data sources. In addition, the

method was designed specifically for anti-spoofing to mimic telephony scenarios. Al-

though augmentations like pitch shift and SpecAugment can boost performance on other

audio-related tasks [265], they might erode discriminative deepfake features. As an alter-

native, RawBoost emulates noise from encoding, transmission, microphones, and ampli-

fiers through convolutive and additive noise.

We use the best-performing parameters as reported in the original paper. We apply con-

volutive noise followed by impulsive signal-dependent additive noise. We then follow the

extraction protocol per Figure 6.1.

Figure 6.7 compares anomaly detection performance on augmented and non-augmented
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data. RawBoost has a positive effect overall. This impact is greatest for the models spe-

cialising in speech (HuBERT and Wav2Vec2), although the more general-purpose models

also experience a small benefit.

6.3.3 Dataset and embedding analysis

6.3.3.1 Per dataset analysis

We seek to understand why some deepfakes are more detectable than other types and if

there are differences based on the underlying synthesis method. Table 6.1 displays the

ranking for all datasets for each pre-training embedding. We include full AUROC scores

in the Appendix (Table C.5 and Table C.6).

Table 6.1: Rankings of each dataset (1 - highest scoring dataset, 69 - lowest scoring dataset) by pre-trained

cosine AUROC for each embedding.

Dataset AST SSASTVIT Wav2vec2zh HuBERTzh HuBERTen Wav2vec2en

ASVspoof 2019 A07 22 3 4 19 14 12 6

ASVspoof 2019 A08 19 14 15 17 17 16 9

ASVspoof 2019 A09 14 23 2 15 8 11 13

ASVspoof 2019 A10 31 6 7 20 15 13 7

ASVspoof 2019 A11 11 11 6 13 6 8 5

ASVspoof 2019 A12 32 19 8 22 16 15 15

ASVspoof 2019 A13 23 1 1 14 1 6 3

ASVspoof 2019 A14 27 22 16 18 18 14 8

ASVspoof 2019 A15 38 26 21 23 22 18 20

ASVspoof 2019 A16 44 17 19 25 21 19 17

ASVspoof 2019 A17 49 48 57 53 49 45 38

ASVspoof 2019 A18 16 51 45 28 27 29 27

ASVspoof 2019 A19 54 46 52 54 55 56 55

ASVspoof 2021 A07 37 27 44 35 34 31 31

ASVspoof 2021 A08 42 34 50 36 37 33 33

ASVspoof 2021 A09 33 38 42 33 31 30 37

ASVspoof 2021 A10 47 29 41 38 35 32 32

ASVspoof 2021 A11 28 31 40 26 30 28 29

Continued on next page
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Table 6.1: Rankings of each dataset (1 - highest scoring dataset, 69 - lowest scoring dataset) by pre-trained

cosine AUROC for each embedding. (Continued)

ASVspoof 2021 A12 53 35 46 41 39 34 36

ASVspoof 2021 A13 41 25 32 29 28 26 28

ASVspoof 2021 A14 56 41 49 37 41 36 40

ASVspoof 2021 A15 63 42 51 42 46 39 43

ASVspoof 2021 A16 60 36 48 46 44 40 35

ASVspoof 2021 A17 59 57 60 59 58 53 48

ASVspoof 2021 A18 35 58 53 50 50 47 46

ASVspoof 2021 A19 62 53 61 60 63 62 56

CFAD AISHELL1 F01 25 20 20 31 29 24 41

CFAD AISHELL1 F02 15 5 17 27 32 38 44

CFAD AISHELL1 F03 30 37 18 47 45 43 49

CFAD AISHELL1 F04 21 16 26 24 25 27 34

CFAD AISHELL1 F05 13 43 25 12 23 20 14

CFAD AISHELL1 F06 20 7 23 34 38 35 50

CFAD AISHELL1 F07 17 55 24 21 24 21 19

CFAD AISHELL1 F08 9 39 14 9 20 17 11

CFAD AISHELL3 F01 43 45 55 51 52 55 58

CFAD AISHELL3 F02 24 13 30 32 42 51 54

CFAD AISHELL3 F03 36 69 31 48 43 49 57

CFAD AISHELL3 F04 26 33 35 30 26 42 42

CFAD AISHELL3 F05 12 52 27 7 11 23 18

CFAD AISHELL3 F06 39 21 34 49 54 54 59

CFAD AISHELL3 F07 18 65 28 16 19 25 21

CFAD AISHELL3 F08 10 49 22 6 10 22 16

CFAD MagicRead F01 68 32 59 57 65 59 53

CFAD MagicRead F02 50 4 36 45 51 48 47

CFAD MagicRead F03 69 56 56 58 56 57 52

CFAD MagicRead F04 58 15 43 44 47 46 39

CFAD MagicRead F05 48 40 39 39 36 41 25

Continued on next page
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Table 6.1: Rankings of each dataset (1 - highest scoring dataset, 69 - lowest scoring dataset) by pre-trained

cosine AUROC for each embedding. (Continued)

CFAD MagicRead F06 66 9 37 55 57 52 51

CFAD MagicRead F07 55 47 38 43 40 44 30

CFAD MagicRead F08 34 44 33 40 33 37 23

CFAD THCHS30 F01 3 28 10 8 13 7 22

CFAD THCHS30 F02 1 2 3 1 4 1 10

CFAD THCHS30 F03 8 30 29 11 12 10 26

CFAD THCHS30 F04 4 24 11 4 7 4 12

CFAD THCHS30 F05 6 12 13 3 3 3 1

CFAD THCHS30 F06 5 18 5 10 9 9 24

CFAD THCHS30 F07 7 10 12 5 5 5 4

CFAD THCHS30 F08 2 8 9 2 2 2 2

FMFCC 67 59 58 69 69 69 69

WaveFake JSUT Multi

Band MelGAN

64 66 63 66 66 63 62

WaveFake JSUT Parallel

WaveGAN

65 54 67 62 62 64 68

WaveFake LJSpeech Con-

former

29 63 54 52 48 50 45

WaveFake LJSpeech Full

Band MelGAN

52 64 65 67 67 66 67

WaveFake LJSpeech HiFi-

GAN

57 62 69 68 68 68 66

WaveFake LJSpeech Mel-

GAN

61 68 62 61 61 67 65

WaveFake LJSpeech Mel-

GAN Large

40 67 47 64 60 65 64

WaveFake LJSpeech

Multi Band MelGAN

46 60 64 63 59 58 61

WaveFake LJSpeech Par-

allel WaveGAN

51 50 68 65 64 61 63

Continued on next page
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Table 6.1: Rankings of each dataset (1 - highest scoring dataset, 69 - lowest scoring dataset) by pre-trained

cosine AUROC for each embedding. (Continued)

WaveFake LJSpeech

Waveglow

45 61 66 56 53 60 60

The rankings of datasets suggest that language is irrelevant to detectability, indicating the

synthesis method and the quality of the original bona fide data is the cause for the varying

difficulty. The language used for model pre-training does not affect the detection perfor-

mance of datasets in different languages. We can take CFAD THCHS30 F02 [195, 247] as

an example. This type of deepfake was generated using a Griffin-Lim [266] vocoder from a

Mandarin language dataset comprising forty speakers recorded using carbonmicrophones

in an office. This dataset was the easiest to detect for most embeddings, including those

trained using Mandarin and those trained using English data.

There were similarities between the easiest and hardest-to-detect datasets across the neu-

ral architectures and fine-tuning tasks, suggesting deep architectures capture similar dis-

criminative features and make similar labelling mistakes. For instance, ASVSpoof2019 13

(where spoofs come from a combined neural network-based voice conversion and TTS

system) obtained an average AUROC of 98.85% across pre-trained embeddings, 99.67% on

the centre-loss models, 98.82% on the metadata open set models, 90.25% on the language

open set models and 84.67% on the GMM models.

In contrast, all struggled to detect CFAD MagicRead F03, a neural vocoder-based system

designed for low-power devices. It achieved an mean AUROC of 57.72% across the pre-

trained embeddings, 60.19% on the centre-loss models, 27.05% on the metadata open set

models, 14.96% on the language open set models, and 32.30% on the GMMmodels. Overall,

CFAD THCHS subsets were the easiest to detect, while WaveFake and FMFCC were the

most challenging.

Although there are similarities across the neural architectures, the difficulty ranking across

the shallow embeddings differs. For instance, the LFCC embedding achieved a mean AU-

ROC of 90.85% on CFAD AISHELL3 F065, whereas the centre loss embeddings averaged

83.89%.

5The bona fide dataset was AISHELL3 and the deepfakes were made using HiFiGAN (a neural
vocoder)[241], using AISHELL3.
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We also visualise how similar the datasets are in the neural embeddings using dendro-

grams. We follow the methodology in the ASVspoof 2019 paper to make the dendrograms

[182].

We extract the test embeddings per Figure 6.1. We use the test embeddings as we include

deepfakes in our analysis. We whiten embeddings using the mean and standardisation of

each dataset and unit-normalise them. We then compute the pairwise cosine similarities

between attacks using the following equation:

𝐷(𝑿𝑖, 𝑿𝑗 ) =
1
|𝑿𝑖|

∑
𝒙∈𝑿𝑖

min
𝒚∈𝑿𝑗

(1 − 𝑠(𝒙, 𝒚)) (6.1)

where 𝑿𝑖 and 𝑿𝑗 denote the collections of vectors in distinct datasets, 𝑠(𝒙, 𝒚) is the cosine

similarity between embeddings 𝒙 and 𝒚, and |𝑿𝒊| denotes the number of vectors in 𝑿𝒊. We

split out the bona fide and deepfake subsets, resulting in 53 datasets (8 bona fide and 45

deepfake). For CFAD, all deepfakes originate from AISHELL3. and the spoof datasets are

reused for the different CFAD subsets. Consequently, we get a 53 × 53 distance matrix. We

run agglomerative clustering on the matrix to get the final visualisations.

Figure 6.8 shows the results of the AST embeddings. We noticed similar trends across the

architectures. TTS deepfakes (e.g. ASVspoof 2019 and 2021 A08 to A14) tend to be distant

from their bona fide counterparts, while VC deepfakes (ASVspoof 2019 A17 to A19) and

more traditional spoofs were closer. For CFAD, the traditional deepfakes (F01 and F02)

were closer to the AISHELL3 bona fide set, while the GAN-based methods (F05, F07, F08)

were further away. We noteWaveFake uses a subset of the same neural synthesis methods

as CFAD, such as MelGAN and parallel WaveGAN. However, WaveFake’s deepfakes lie

closer to the bona fide samples. This behaviour suggests the nature of the bona fide data

also affects detection difficulty.

Based on this analysis, the following factors appear to influence the difficulty of detecting

speech deepfakes:

1. Speech synthesis method: TTS methods are more distinct from bona fide than VC

methods.

2. Noise: THCHS30 bona fide speakers were the easiest to identify across the models.
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Figure 6.8: Agglomerative clustering of the bona fide and deepfake subsets using pre-trained AST
embeddings.
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As a carbon microphone recorded the speakers, the bona fide recordings might con-

tain artefacts distinct from the deepfakes. However, an attacker could circumvent

this issue by adding noise and compression to the deepfakes.

3. The number of bona fide speakers to attack: WaveFake only contained samples

from one speaker, unlike the other datasets. A smaller number of speakers would

make it easier for a synthesis method to mimic the targets’ characteristics.

6.3.3.2 No reliable method to measure embedding quality exists
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(d) RankMe.

Figure 6.9: Scatter plots comparing measures of embedding quality against AUROCs for all
datasets, grouped by underlying pre-trained embedding and fine-tuning regime.

As our approach involves multiple hyperparameters, we investigate whether there is a

way to quantify embedding quality to aid hyperparameter selection. Measuring embed-

ding quality is important for anomaly detection as our validation sets only contain benign

data. We implement several measures that claim to link downstream performance with

unsupervised learning. These measures are (described in more detail in §2.2.2):

• Alpha [59]: A covariance-based method that claims lower values signal more sen-

sitivity to small changes in input stimuli. Values closer to 1 are desirable.
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• Area under cumulative explained variance (AUCEV) [61]: The cumulative ex-

plained variance of the singular values. AUCEV measures the extent of dimension

collapse. An AUCEV of 1 indicates severe dimensional collapse, whereas an AUCEV

of 0.5 suggests no collapse. AUCEVs closer to 0.5 are better.

• Compactness [68]: Average cosine similarity between each bona fide embedding

and the mean bona fide prototype. Lower values are preferred.

• RankMe [60]: Estimated embedding rank. Larger values are better because they

exhibit less dimensional collapse.

Figures 6.9a to 6.9d compare anomaly detection AUROC against the above four measures.

We group results from all datasets, architectures, and fine-tuning modes.

There is no correlation between anomaly detection performance and any of the measures.

Values correspond more closely to the underlying pre-trained model and the fine-tuning

mode.

There is also no relationship between anomaly detection performance and AUROC when

filtering by model and fine-tuning method. For instance, when looking at centre loss AST

only, the correlations are -0.07, -0.04, 0.15 and 0.01 between anomaly detection and alpha,

AUCEV, compactness, and RankMe respectively.

6.3.3.3 Discriminative features lie in low-dimensional subspaces

The success of rudimentary anomaly detectors indicates discriminative features lie in a

low-dimensional subspace. We investigate this by ablating the residual norm approach

[262]. A.1.1 explains the details of this method.

We look at how anomaly detection performance changes when varying the proportion of

features ablated because the absolute dimensionalities depend on the architecture. The

percentages we examined were {0.2%, 0.5%, 1%, 2%, 4%, 8%, 16%, 33%, 67%, 99%}.

Figure 6.10 summarises the results for all datasets on the unpooled centre loss models. Sur-

prisingly, the residual norm approach is on par with the shallow anomaly detectors even

at the smallest dimensionalities. Across datasets and models, the median cosine AUROC

was 89.85%, whereas the median AUROC when using 0.02% of residuals was 84.80%. This

proportion of residuals exhibits the highest AUROC scores, reinforcing the idea that the
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Figure 6.10: Line plot comparing residual norm AUROC scores against the percentage of features
using the residual norm method.

discriminative features are low-dimensional. The plateau at higher dimensionalities also

suggests this.
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Figure 6.11: Box plot comparing residual norm AUROC scores using 0.02% of residuals per fine-
tuning objective.

The centre loss objective encourages low-dimensional embeddings. Figure 6.11 compares

AUROC scores using 0.02% of residuals for the different training objectives. Open set

performance is worse. The shallow feature-engineered embeddings do not improve using

the residual norm approach either.
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Figure 6.12: Heatmap comparing dCKA values between embeddings.

6.3.3.4 Deep embeddings learn essential speech recognition features

Figure 6.12 compares dCKA values to measure the similarities between learnt embeddings.

Values closer to 1 suggest higher similarities. We use an aggregate dCKA score for compa-

rability with the shallow feature-engineering embeddings. AST exhibits moderate similar-

ities with the different embeddings, except for raw waveforms. dCKA values between raw

waveforms and the other pre-trained embeddings are also low. These results suggest com-

bining shallow features with pre-trained embeddings could counteract the shortcomings

of the neural architectures.

When comparing dCKA values between pre-trained architectures and the other shallow

embeddings, there are higher similarities with the features designed for speech recogni-

tion (Mel spectrograms, LFCCs and MFCCs) compared to STFT and the raw waveforms.

This observation suggests that the neural architectures learn features more specific to core

speech recognition.
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6.3.4 Generalisation to unseen data

6.3.4.1 General-purpose features are better for generalisation to unseen data

The previous experiments concentrate on anomaly detection using bona fide samples sim-

ilar to those seen at training. We investigate if our anomaly detection approach can gener-

alise to unseen bona fide and deepfake utterances. Initial experiments with ITW showed

that high-performing classifiers trained to detect ASVspoof deepfakes degrade from 200%

to 1,000% [14]. We analyse the robustness of our anomaly detectors on ITW.

0 20 40 60 80
AUROC (%)  is better

AST

VIT

Wav2vec2en

HuBERTen

Wav2vec2zh

SSAST

HuBERTen

Figure 6.13: Bar chart comparing the anomaly detection performance of different pooled centre-
loss fine-tuned embeddings on ITW, a dataset containing unseen bona fide and deep-
fake utterances.

Figure 6.13 is a box plot of cosine AUROC scores on centre-loss fine-tuned embeddings.

It shows that most embeddings experience a performance degradation on ITW. However,

AST and VIT can detect speech deepfakes with relative reliability, with AUROC scores of

94.10% and 79.99% respectively (or EERs of 11.15% and 27.84%). This performance is much

higher than the supervised models reported by Müller et al. [14], where the best per-

forming supervised embedding (RawNet 2 [213]) achieved an EER of 33.94%. Our results

indicate that one-class anomaly detectors may be more stable under domain shifts. Our

results also reinforce that speech-specific models may overfit to in-distribution features,
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whereas more general-purpose features are more robust.

6.3.4.2 Supervised classifiers outperform one-class detectors, except under bona

fide distribution shifts
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Figure 6.14: Scatter plots comparing cosine anomaly detection AUROCs against supervised logis-
tic classifiers on centre-loss fine-tuned embeddings. The dotted 𝑥 = 𝑦 line denotes
where the anomaly detectors and supervised classifiers perform at parity.

Although deepfake detection using one-class classifiers is possible, we want to understand

how they compare to supervised equivalents. We do not use an explicit backend in our

supervised setup to ensure we only study the embedding and not the ability of the super-

vised classifiers. In particular, we extract the embeddings in the same way as the one-class

protocol. We use these embeddings to train linear classifiers and random forests. We train

the supervised classifiers using the provided annotated bona fide and deepfake samples in

the training set, so there is no dataset leakage. When evaluating ITW, we do not include

any ITW samples in the training set and instead use the in-distribution bona fide datasets

(i.e., the training splits for ASVspoof 2019, WaveFake, FMFCC, CFAD). Figure 6.14 depicts

the differences between the one-class and supervised setups. We report linear classifica-

tion instead of random forest performance because the classification scores between the

two classification methods are highly correlated (𝜌 = 0.91).

Figure 6.14a compares supervised scores to one-class detection for each architecture for

the seen datasets. Supervised classifiers are an upper limit for one-class performance as

they see more information (deepfake examples) at training. In most cases, supervision

beats one-class learning. This difference is more prominent in the unpooled scenario.

However, we confirm anomaly detection outperforms supervised classifiers when evalu-
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ating ITW using VIT and AST (Figure 6.14b). Our results indicate that one-class strategies

may be more reliable when there are bona fide distribution shifts.

6.3.5 Ensembling
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Figure 6.15: Bar charts comparing cosine AUROC scores using different embeddings on pooled
data.

Our dataset analysis (§6.3.3.1) and dCKA study (§6.3.3.4) suggest that neural architectures

and shallow feature-engineering methods use different discriminative features. We inves-

tigate whether ensembling can use these differences to improve detection performance.

We concatenate embeddings from centre-loss AST and LFCC. We chose these embeddings

because AST is the best-performing neural architecture, LFCC is relatively distinct from

AST according to dCKA scores, and LFCC is the best-performing shallow feature.

Figure 6.15 compares the ensemble’s results against the two embeddings individually.

However, the ensemble performs worse than the individual embeddings, suggesting suc-

cessful ensembling requires more sophisticated feature aggregation methods.

6.4 Conclusion

We conclude by outlining the limitations, directions for future work, and main contribu-

tions.

6.4.1 Limitations and future work

We use modality-neutral methods (centre and open set losses combined with mean-pooled

embeddings) for our anomaly detection approach. The pre-trained networks vary in size
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and pre-training objective. Considering these variations in the anomaly detection pipeline

would make comparing the pre-trained models more challenging. However, our approach

does not fully exploit the expressivity of audio neural networks. Unlike modalities like

images, time and frequency domains in audio could manifest discriminative features in

different ways. Future work could examine the impact of time and frequency in more

detail. Alternatively, studies could focus on one model to adapt the original pre-training

method to deepfake detection.

In addition, we extract embeddings from all hidden layers of the models. Although pre-

vious works show no guaranteed method for identifying which intermediate embeddings

work best [81], using all layers is computationally expensive. Follow-up experiments could

repeat the experiments per layer to understand the networks better.

Moreover, our results suggest that shallow embeddings learn different features from the

neural embeddings. Although our initial ensembling experiment was not fruitful, ensem-

bling could rectify some weaknesses of deep pre-trained models. Additional research on

the discriminative features in different speech synthesis methods and further work on fu-

sion approaches could make one-class deepfake detection more promising.

6.4.2 Summary

This chapter studies whether one-class detectors can identify speech deepfakes. We anal-

yse the performance of various pre-trained embeddings and the effect of fine-tuning with

bona fide data. We show that one-class deepfake detection is possible, and the choice of

representation space is more important than the detector. Although fine-tuning with bona

fide data can help, the underlying pre-trained architecture is more indicative of down-

stream performance. Architectures pre-trained on more diverse datasets like audio or im-

ages are more versatile than those specially trained for speech. However, careful augmen-

tation methods like RawBoost [264] can improve detection.

We show existing unsupervised methods that measure embedding quality are ineffective

for our anomaly detection setup. However, we demonstrate that core discriminative fea-

tures occupy a low-dimensional subspace in the embedding space.

Our dataset analysis indicates neural embeddings are better at identifying TTS deepfakes

but struggle with VC methods. This behaviour appears to be a shortcoming of neural
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embeddings.

Finally, we demonstrate that one-class detectors are more robust than supervised classi-

fiers when there is a distribution shift on bona fide data. Although supervised classifiers

surpass one-class detectors on in-distribution bona fide data, one-class detectors can gen-

eralise better on ITW.

Our study highlights the value of one-class approaches for speech deepfake detection. Al-

though no infallible solution exists, combining one-class detectors with supervised classi-

fiers is more likely to generalise to unseen attacks.



7 | Tabular data

While self-supervised learning has improved anomaly detection in domains like images

and text [113, 210], these techniques have not yielded the same benefits for tabular data

[15].

Self-supervised learning uses pretext tasks to learn the intrinsic characteristics of training

data in place of using labels. Images and text have spatial or sequential biases which

serve as natural starting points for pretext tasks. Therefore, understanding the typical

characteristics of a domain allows one to choose a suitable pretext task. One example is

colourising greyscale images [30]. Colourisation requires knowledge of object boundaries

and semantics. These aspects are helpful for image classification [33, 34]. In the case of text,

predicting the nextword in a sentence is a common choice [31, 32]. These predictions allow

models to learn about grammatical structures and vocabulary. In contrast, the starting

points for tabular data are unclear.

A recent study indicated that self-supervised learning does not help tabular anomaly de-

tection [15]. Reiss et al. compared two self-supervised methods with 𝑘-NN on the original

features. Even though the self-supervised methods were designed for tabular data, they

found that 𝑘-NN on the original features worked the best.

We seek to understand why this is the case. Firstly, we extend the experiments to in-

clude a more comprehensive suite of pretext tasks. In addition, we incorporate synthetic

test cases and analyse the underlying learnt representations. Our results reinforce that

self-supervision does not improve tabular anomaly detection performance and indicate

deep neural networks introduce redundant features, which reduces the effectiveness of

anomaly detectors. Conversely, we can recover performance using a subspace of the neu-

ral network’s representation. We also show that self-supervised learning can outperform

the original representation of purely localised anomalies and those with different depen-
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dency structures.

In addition to the above investigations, we ran a series of experiments to benchmark

anomaly detection performance in a setting where we do not have access to anomalies

during training. We include our findings as a complement to the self-supervision results

and to provide practical insight into scenarios where specific detectors work better than

others.

Our contributions are as follows:

1. We reconfirm the ineffectiveness of self-supervision for tabular anomaly detection.

2. We empirically investigate why self-supervision does not benefit tabular anomaly

detection.

3. We introduce a comprehensive one-class anomaly detection benchmark using sev-

eral self-supervised methods.

4. We provide practical insights and identify instances where particular anomaly de-

tectors and pretext tasks may be beneficial.

§7.1 covers the experimental approach. We evaluate our findings in §7.2. Finally, we sum-

marise our work and conclude in §7.3. The contents of this chapter were published in

Patterns Analysis and Applications [267].

Self-supervised learning and anomaly detection for tabular data

The literature covering self-supervision for anomaly detection in tabular data is more lim-

ited than in other domains like images and text. GOAD [23] extends the GEOM approach

of Golan and El-Yaniv [80] from the image domain to a more generalised setting. GEOM

showed that compared to OCSVMs trained on pixel space, outputs from CNNs trained to

predict image rotations were more reliable for anomaly detection. GOAD applies random

affine transformations to the data and trains a neural network to predict these transfor-

mations. At inference, they apply all possible transformations to the test data, obtain the

prediction of each transformation from the network and aggregate the predictions to pro-

duce the anomaly score. The network should be able to predict the correct modification

with higher confidence for the benign data versus the anomalies.

ICL [268] adapts the InfoNCE objective [39, 40]. It considers one sample at a time. Taking
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a sample 𝐱𝑖 of dimensionality 𝑑, ICL splits 𝐱𝑖 into two parts. The dimensionality of the

two parts depends on a given window size, 𝑘 (𝑘 < 𝑑). The first part 𝐚𝑖 is a continuous

section of size 𝑘, while the second 𝐛𝑖 is its complement of size 𝑑 − 𝑘. A Siamese neural

network containing two heads with dimensionalities 𝑘 and 𝑑 − 𝑘 aims to push the repre-

sentations together. The negatives are other contiguous segments of 𝐱𝑖 of size 𝑘. As the

neural network should be capable of aligning the benign data and not anomalies, the loss

is the anomaly score.

Although both methods claim to be state-of-the-art for tabular anomaly detection, Reiss

et al. [15] did not find this to be the case. They replicated the pipelines of GOAD and ICL.

In addition, they used the trained neural networks of GOAD and ICL as feature extractors.

After extracting the features, they ran 𝑘-NN on the new representations. They compared

the original implementation and their feature extraction pipelines to 𝑘-NN on the original

data. Although GOAD and ICL are specifically designed to process tabular data, Reiss et al.

found that 𝑘-NN on the original data was the best-performing approach. However, they

did not run a hyperparameter search to optimise the choice of 𝑘 (leaving it as 𝑘 = 5). They

also used the original architectures designed for GOAD and ICL, which differ from each

other. This choice could be another confounding factor affecting results.

7.1 Method

We introduce the datasets used in the study, the baseline, our main approach, and the

methodology for additional ablation studies.

7.1.1 Datasets

Weuse 26multi-dimensional point datasets fromOutlier Detection Datasets (ODDS) [269].

Each datum comprises one record, which contains multiple attributes. Table 7.1 sum-

marises the properties of the datasets. We treat each dataset as distinct. We train and test

separate anomaly detection models for each dataset.

We follow the data split protocols described in previous tabular anomaly detection litera-

ture [23, 268]. We randomly select 50% of the benign data for training, with the remainder

used for testing. The test split includes all anomalies. The training split did not use any

anomalies as we adopted a one-class setup. We partition the training set further by leaving



Tabular data | 115

20% for validation.

Table 7.1: Summary of ODDS datasets.

Dataset Total size Number of anomalies (%) Dimensionality

Annthyroid 7,200 534 (7.4%) 6
Arrhythmia 452 66 (14.6%) 274
BreastW 683 239 (35.0%) 9
Cardio 1,831 176 (9.6%) 9
Glass 214 9 (4.2%) 9
Heart 224 10 (4.4%) 44
HTTP 567,469 2,211 (0.4%) 3
Ionosphere 351 126 (35.8%) 33
Letter 1,600 100 (6.3%) 32
Lympho 148 6 (4.1%) 18
Mammography 11,183 260 (2.3%) 6
MNIST 7,603 700 (9.2%) 100
Musk 3,062 97 (3.2%) 166
Optdigits 5,216 150 (2.9%) 64
Pendigits 6,870 156 (2.3%) 16
Pima 768 268 (34.9%) 8
Satellite 6,435 2,036 (31.6%) 36
Satimage-2 5,803 71 (1.2%) 36
Seismic 2,584 170 (6.5%) 11
Shuttle 49,097 3,511 (6.6%) 9
SMTP 95,156 30 (0.03%) 3
Speech 3,686 61 (1.7%) 400
Thyroid 3,772 93 (2.4%) 6
Vertebral 240 30 (12.5%) 6
Vowels 1,456 50 (3.4%) 12
WBC 278 21 (5.6%) 30
Wine 129 10 (7.7%) 13
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7.1.2 Baseline approach

We run 𝑘-NN, iForest, LOF, OCSVM, and residual norms on the raw training data. We

provide further detail on the detectors in Appendix A. Even though Reiss et al. [15] only

use 𝑘-NN in their experiments, we use multiple detectors to establish whether 𝑘-NN is the

best detector or if there are other more appropriate detectors depending on the type of

anomalies present. We analyse our findings in §7.2.7. Another anomaly detection study,

ADBench [270], follows a similar protocol but assumes anomalies are present in the train-

ing data. Our experiments establish whether a purely one-class setup affects overall detec-

tor ranking. We use scikit-learn [271] to implement all detectors except for 𝑘-NN, which

uses the Faiss library [272].

We also investigate the detectors’ sensitivity to different configurations by varying the

hyperparameters. For 𝑘-NN and LOF, we report results for 𝑘 = {1, 2, 5, 10, 20, 50}. For

the residual norms, we look at how results change with a proportion of features, with

percentages {10%, 20%, ..., 90%}. We record our findings in §7.2.7. For the self-supervised

tasks, we report the results based on the best hyperparameter configuration derived from

these ablations. We retain the default scikit-learn parameters for iForest and OCSVM,

which uses a radial basis function kernel.

The detectors run directly on the data and a standardised version. We standardise each

dimension independently by removing the mean and scaling to unit variance. We also

experimented with fully whitening the data but found attribute-wise standardisation gave

similar results.

7.1.3 Self-supervision details

This section outlines the pretext tasks, architectures, and feature extraction workflow used

in the experiments.

7.1.3.1 Pretext tasks

Although tabular data lacks overt intrinsic properties like those in images or text, we

choose self-supervised tasks that we hypothesise can take advantage of its structure.

Firstly, we adapt ICL [268] and GOAD [23] to use them as pretext tasks. We do not directly

implement ICL and GOAD as they score anomalies in an end-to-end manner. Our exper-
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iments focus on how representations from different pretext tasks affect shallow detection

performance. Therefore, we refer to the ICL-inspired task as "EICL" (embedding-ICL).

As GOAD uses random affine transformations, we can consider this a combination of pre-

dicting rotation and stretches. This configuration conflates two different tasks and could

be trivial to solve. Therefore, we attempt to align it closer to the RotNet [35, 113] exper-

iments for image-based anomaly detection by training a model to classify orthonormal

rotations. This pretext task should profit from the rotationally invariant property of tabu-

lar data [273]. Hence we refer to the GOAD-inspired task as "Rotation".

The additional objectives used in the experiments are as follows:

Predefined shuffling prediction (Shuffle): We pick a permutation of the dimensions

of the data from a fixed set of permutations and shuffle the order of the attributes based

on the selection. The model learns to predict that permutation.

Predefined mask prediction (Mask classification): Given a mask rate 𝑟 (𝑟 < 𝑑), we

initialise predefined classes that indicate which attributes to mask. We perform masking

by randomly selecting another sample 𝐱𝐣 from the training set and replacing the chosen

attributes in 𝐱𝐢with those from 𝐱𝐣. We follow the protocol outlined in Yoon et al. [274]. This

approach generated better representations compared to alternative masking strategies like

imputation, and constructing a mask classification pretext task outperformed alternative

supervised and semi-supervised methods on tabular classification tasks. The model learns

to classify which predefined class was applied.

Masked columns prediction (Mask columns): The model picks which attributes were

masked given a mask rate 𝑟 . For example, if only the first attribute was masked, a correct

classification should identify the first attribute and should not pick the other attributes.

This is different from the mask classification task, where the predefinedmask class is given

a label from a fixed set of combinations rather than from the particular attribute that has

been masked (for example, if there are only two classes, the labels for mask classification

are 0 or 1).

Denoising autoencoding (Autoencoder): Given a mask rate 𝑟 , we perturb 𝐱𝐢 by ran-

domly selecting another sample 𝐱𝐣 and replacing a subset of 𝐱𝐢’s attributes with those of

𝐱𝐣. The perturbed 𝐱𝐢 is the input. Given this input, the model learns to reconstruct the
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unperturbed 𝐱𝐢.

Contrastive learning: We create positive views of 𝐱𝐢 by rotating the data using an or-

thonormal matrix (Contrastive rotation), permuting the attributes per the shuffle task

(Contrastive shuffle), or masking the attributes per the mask classification task (Con-

trastive mask). We treat other data points in a minibatch as negatives. We only apply

one augmentation at a time to isolate their effects.

7.1.3.2 Network architectures and loss functions

We use the same neural network architectures to control for any potential effects on

performance. Per the findings of Gorishniy et al. [275], we use ResNets [276] and FT-

Transformers. Gorishniy et al. examined the performance of several deep learning archi-

tectures on tabular classification and regression, including multilayer perceptrons, recur-

rent neural networks, ResNets and transformers. Their results indicated that ResNets and

FT-Transformers were the best overall. Based on these findings, we restrict our architec-

tures to the most promising variants. FT-Transformer is a transformer specially adapted

for tabular inputs where each transformer layer operates on the feature level of one datum.

We train both architectures on all objectives except for EICL, where we only use ResNets.

As EICL requires specific partitioning of the features, the FT-Transformer architecture

would need to be modified. This modification is out of the scope of our experiments. We

retain the same architecture (e.g., the number of blocks) for each pretext task and only

vary the dimensionality of the output layer. The dimensionality corresponds to the num-

ber of preset classes for the rotation, shuffle, and mask classification tasks. The output

dimensionality of the autoencoder task mirrors the input dimensionality. For the con-

trastive objectives (including EICL), we set the output as one of {128, 256, 512} depending

on validation performance.

As previous literature has claimed specialised loss functions can improve out-of-

distribution detection on other modalities [257, 258], we examine these to confirmwhether

they also improve tabular anomaly detection.

For the rotation, shuffle, and mask classification tasks, we use cross-entropy, adversarial

reciprocal points learning (ARPL) [258], and additive angular margin (AAM) [277]. ARPL

is a specialised loss function for out-of-distribution detection. The probability of a datum
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belonging to a class is proportional to its distance to a reciprocal point. They define re-

ciprocal points as "otherness" in the learnt feature space. AAM is a loss function typically

used for facial recognition. AAM specifically enforces interclass similarity and ensures

interclass separation using a specified margin. This results in more spherical features for

each class. We include AAM as some literature claims spherical per-class features make

out-of-distribution detection easier [68]. Finally, we incorporate the cross-entropy loss as

studies have shown models trained with this loss function can meet or outperform spe-

cialised losses like ARPLwith careful hyperparameter selection [257]. We experiment with

MSE and mean absolute error (MAE) for the autoencoders. We use the binary cross en-

tropy (BCE) loss for masked column prediction, as multiple masked columns correspond

to more than one label for each datum. For the contrastive objectives, we experiment with

both InfoNCE and VICReg. We summarise all the possible model configurations in Table

7.2.

Table 7.2: Summary of the model configurations.

Anomaly
detectors

Architectures Self-supervised tasks Loss functions

𝑘-NN
iForest
LOF
OCSVM
Residual norms

ResNet
FT-Transformer

Rotation Cross-entropy
ARPL
AAM

Shuffle
Mask classification
Mask columns BCE
Autoencoder MSE

MAE
EICL

InfoNCE
VICReg

Contrastive - rotation
Contrastive - shuffle
Contrastive - mask

7.1.3.3 Model selection

Due to the number of potential hyperparameter combinations, we perform random

searches to determine the most appropriate models for anomaly detection. We pick hy-

perparameters randomly and train on the training split for each self-supervised task and

dataset. As we cannot evaluate using anomalies, we select models that achieve the lowest

loss on the benign validation data. As we want to analyse the effect of different loss func-

tions and architecture, the hyperparameter sweep stage results in a maximum of twelve
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configurations for each dataset and task. For example, the models trained on the rota-

tion task would include ResNets and FT-Transformers, each architecture also includes the

cross-entropy, ARPL, and AAM losses. There are also different configurations for stan-

dardised and non-standardised input data.

7.1.3.4 Feature extraction

After training, we obtain the learnt features by passing input data through the self-

supervised models. We extract the features from the penultimate layer. As we fix the

architecture for the different tasks, we obtain 128-dimensional embeddings for ResNets

and 192-dimensional embeddings for FT-Transformer. We train the anomaly detectors us-

ing the new training features and test them using the transformed test features. We do

not apply any augmentations during inference to ensure a fair comparison between the

self-supervised tasks. Figure 7.1 shows the workflow.

Tabular input data Augmented input
data Encoder

Feature extraction

Anomaly Normal

Pr
oj

ec
to

ra b c
1 2 3
4 5 6

a' b' c'
2 3 1
5 6 4

Anomaly detector

Score function

Training only

Evaluation only

p(x) ≤ 𝜏 p(x)> 𝜏

Figure 7.1: Self-supervised anomaly detection workflow. The data are augmented and fed through
the projector only during training.

7.1.4 Additional ablations

In addition to evaluations with the ODDS dataset, we run more experiments to understand

detector performance and scenarios where some self-supervised objectives may perform

better than others.
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7.1.4.1 Synthesised anomalies

Although ODDS contains several datasets, the datasets may mix different types of anoma-

lies. These mixes can make it difficult to diagnose why one representation performs better

than another. Therefore, we evaluate how the pretext tasks and their learnt representa-

tions fare with synthesised anomalies. We keep the benign data in the train and test splits

and only generate anomalies by perturbing the properties of the benign training data. We

use the four synthetic anomaly categories as defined in ADBench [270, 278]. We use the

code from ADBench to create all types.

• Local anomalies deviate from their local cluster. We use Gaussian mixture models

(GMM) to learn the underlying benign distribution. The covariance matrix from the

GMM 𝚺̂ undergoes scaling by a factor 𝛼 to generate the anomalies (𝚺̂ = 𝛼𝚺̂). We use

𝛼 = 2 in our experiments.

• Cluster anomalies use GMMs to learn the benign distribution. A factor 𝛽 scales the

mean feature vector to create the cluster anomalies. We use 𝛽 = 2 in our experi-

ments.

• Global anomalies originate from a uniform distribution 𝑈[𝛿 ⋅min(𝐗𝑘
𝑖 ), 𝛿 ⋅max(𝐗𝑘

𝑖 )].

𝛿 is a scaling factor, and the minimum andmaximum values of an attribute𝐗𝑘
𝑖 define

the boundaries. We use 𝛿 = 0.01.

• Dependency anomalies do not follow the regular dependency structure seen in be-

nign data. We use vine copulas to learn the benign distribution and Gaussian kernel

density estimators to generate anomalies. Vine copulas are graphical models that

build a 𝑑-dimensional dependence structure from two-dimensional building blocks,

called pair-copulas. The underlying graph structure consists of a nested sequence

of trees, called vines [279].

7.1.4.2 Corrupted input data

Previous work hypothesises neural networks underperform on tabular classification and

regression because of their rotational invariance and lack of robustness to uninformative

features [273]. We investigate if this is the case for anomaly detection. Simultaneously, we

explore the shallow anomaly detectors’ sensitivity to corrupted attributes. Understanding

these results can give a practical insight into what self-supervision objectives and anomaly
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detectors work best when the data is noisy or incomplete. For our ablations, we follow

Grinsztajn et al. [273] and apply the following corruptions to the raw data:

1. Adding uninformative features: We add extra attributes to the input data 𝐗. We

select a subset of attributes to imitate. We then generate features by sampling from

a multivariate Gaussian based on the mean and interquartile range of the subset’s

values. We experiment with different proportions of additional features and limit

the maximum number of extra attributes to no greater than the existing number of

features in the dataset.

2. Missing values: We randomly remove a proportion of the entries and replace the

missing values using the mean of the attribute the value belongs to. We apply this

transformation to both the train and test sets.

3. Removing important features: We train a random forest classifier to classify be-

tween benign samples and anomalies. We then drop a proportion of attributes based

on the feature importance values output by the random forest, starting from the least

important. This corruption violates the one-class assumption within our anomaly

detection setup. However, we use this to analyse the robustness of the detectors and

self-supervised models.

4. Selecting a subset of features: Similar to (3), we train a random forest classifier.

We retain a proportion of attributes based on the feature importance values output

from the random forest, starting from the most important.

After corrupting the data, we follow the same process of training the self-supervised mod-

els and feature extraction for the neural network experiments.

7.2 Results

Weorganise our results as follows: §7.2.1 reconfirms the ineffectiveness of self-supervision

for tabular anomaly detection and summarises the main results at a high level. We investi-

gate this phenomenon through a series of case studies and ablations. §7.2.2 and §7.2.3 drill

down on performance using a subset of ODDS (HTTP) and simplified toy scenarios. Our

working hypothesis is that self-supervision introduces irrelevant directions. We empiri-

cally verify our hypothesis by investigating the residual space of the embeddings in §7.2.4.
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We attempt to compare the properties of the self-supervised pretext tasks by replacing

ODDS anomalies with synthetic variants in §7.2.5. Finally, we investigate the effect of

architecture and detector choices in §7.2.6.

7.2.1 Self-supervision results

30 40 50 60 70 80 90 100
1-NN anomaly detection AUROC (%)  is better
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Mask classification

Rotation
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Autoencoder

Contrastive rotation

Contrastive mask

Contrastive shuffle

EICL

Mask columns

Figure 7.2: Box plot comparing nearest neighbour AUROCs for each of the embeddings, ordered
by median performance. For each self-supervised task, we filter the results by archi-
tecture and loss function to include the embedding with the best-performing results.

12345678910

Mask columns
EICL

Contrastive mask
Contrastive shuffle

Autoencoder Contrastive rotation
Rotation
Mask classification
Shuffle
Baseline (Raw)

Figure 7.3: Critical difference diagram comparing the embeddings in a pairwise manner. The hor-
izontal scale denotes the average rank of each embedding. The dark lines between
different detectors indicate a statistical difference (𝑝 < 0.05) in results when running
pairwise comparison tests. The baseline scores greatly outrank the pretext tasks. In
contrast, the scores among the pretext tasks are more closely aligned.

No self-supervision task outperforms the baseline. Figure 7.2 summarises the near-

est neighbour performance derived from the embeddings of each self-supervised approach.

We aggregate performance by representation rather than dataset to concentrate on the in-

fluence each representation has on performance. No self-supervision task exceeds 𝑘-NN

on the raw tabular data. When comparing results at a pairwise level, Figure 7.3 shows that

the baseline scores greatly outrank the self-supervised objectives. Similarly, performance
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using the self-supervised embeddings drops in the presence of corrupted data (Appendix,

Figure C.12). These results extend the findings in Grinszstajn et al. [273] that neural net-

works are also more sensitive to corrupted attributes in the anomaly detection task. When

excluding the baseline, the classification-based tasks (shuffle, mask classification, and ro-

tation) outperform their contrastive and reconstructive counterparts.
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Figure 7.4: Box plot comparing detector performance on the self-supervised embeddings.

We observe similar results when we use different shallow detectors to perform anomaly

detection (Figure 7.4), with one exception. Using residual norms on the embedding space

is a slightly better choice than 𝑘-NN, as the interquartile range of scores is narrower. How-

ever, they still lag behind 𝑘-NN scores on the original embeddings. We also observe that

OCSVM performs consistently worse across all tasks.

7.2.2 A case study on HTTP

To understand why self-supervision does not help, we explore one ODDS dataset in detail.

We proceed to test our reasoning on toy datasets and then analyse the remaining ODDS

datasets.

We use HTTP for our analyses. HTTP is a modified subset of the KDD Cup 1999 competi-

tion data [280]. The competition task involved building a detector to distinguish between

intrusive (attack) and typical network connections. The dataset initially contained 41 at-

tributes from different sources, including HTTP, SMTP, and FTP. The ODDS version only
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uses the "service" attribute from the HTTP information as it is considered one of the most

basic features. The resulting subset is three-dimensional and comprises over 500,000 ob-

servations. Out of these samples, 2,211 (0.4%) are attacks.

It is easy to find attackswhen running detectors directly on the rawODDS variant ofHTTP.

In our experiments, all shallowmethods achieve AUROCs between 87.9% and 100% on non-

standardised data, with the median score being 99.7%. Further investigations show the at-

tacks are separate from typical connections. A supervised logistic regressionmodel trained

to classify the two classes achieves 99.6% AUROC, even with only 200 sample anomalies

for training.

0 20 40 60 80 100
1-NN anomaly detection AUROC (%)  is better

Baseline (Raw)
Contrastive rotation

Rotation
Shuffle

Mask columns
Autoencoder

Contrastive shuffle
EICL

Mask classification
Contrastive mask

Figure 7.5: Bar chart comparing baseline and self-supervised embedding results on HTTP.

However, we observe peculiar results when using representations devised from the pretext

tasks for HTTP. 𝑘-NN performance drops drastically across the majority of tasks (Figure

7.5), sometimes yielding scores worse than random. Conversely, the other detectors main-

tain their performance. For example, when extracting features from the rotation task1,

𝑘-NN obtains 71.8% AUROC, while iForest, OCSVM, and residual norms preserve AU-

ROCs around 99%. In addition, logistic regression continues to classify anomalies with

99% AUROC in the supervised setting using the rotation task representations. As 𝑘-NN is

susceptible to the curse of dimensionality, these initial results suggest the neural network

representation introduces directions that obscure informative distances between the typ-

ical and intrusive samples. Moreover, as iForest uses a splitting strategy for detection, its

consistent results indicate some direction signalling anomalousness exists.
1Using the best-performing rotation model, which is an FT-Transformer trained with ARPL loss.
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7.2.3 Toy data analysis

It can be challenging to draw conclusions based on existing datasets, as they are large

and often contain uninterpretable features. Therefore, we pivot to toy examples to un-

derstand these behaviours. We devise nine two-dimensional toy datasets of varying diffi-

culty (Appendix, Figure C.13). Like the experiments on the ODDS, we first evaluate per-

formance directly on the two-dimensional representations. We then train ResNets on a

two-class rotation prediction task, extract features from the penultimate embedding and

re-run the detectors on the new space. We use this setting as rotations can be performed

on two-dimensional data, and ResNets require fewer computational resources than the

FT-Transformers. We apply the same architecture as the ODDS experiments, such that the

extracted features are in a 128-dimensional space.

(a) Original 2D data
(b) t-SNE visualisation of the

self-supervised features

Figure 7.6: Visualisations of the multiple Gaussian toy dataset. Light blue are the benign data and
orange are the anomalies. The features extracted from the neural network appear to
be more narrow (b) and stretched compared to their original 2D representation (a).

Regardless of whether the network can or cannot identify the rotation applied to the data,

we observe behaviours consistent with ODDS inmost toy instances. Compared to the orig-

inal two-dimensional results, detection performance drops for almost all detectors after

extracting representations from the ResNets. As two dimensions are sufficient to capture

the characteristics of the datasets, projecting the data to a 128-dimensional space only re-

sults in a stretched and narrow representation without extra information. The t-SNE plots

highlight this activity. We show an example of the multiple Gaussian dataset in Figure 7.6.

We project the embeddings extracted from the ResNets to a lower dimensional space us-

ing the residual eigenvectors from the training data to verify whether the curse of di-

mensionality affects performance. We conduct this projection because the residual norm
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Figure 7.7: Nearest neighbour performance on the toy datasets. The raw embedding (blue) is the
best in almost all instances. However, the self-supervision embeddings (orange) im-
prove when projecting to a lower dimensional space (green).

method outperforms 𝑘-NN in the self-supervised experiments. Therefore, we hypothesise

that projecting to a smaller space should reduce the distracting influence of the primary

principal components. Consequently, running shallow detectors in this new space should

garner improvements. We discard half of the directions for the toy experiments to form

64-dimensional embeddings. The anomaly detectors perform better in this new space (Fig-

ure 7.7), corroborating the view that the neural network embeddings introduce irrelevant

directions.

We can also use the toy scenarios to attempt to understand the behaviour of the detectors

such as OCSVM. Our experiments suggest OCSVM fails when anomalies lie in the centre
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of the benign data. For example, the AUROC for OCSVM trained on the raw ring data

signalled random performance at 50%, whereas 𝑘-NN could detect the anomalies perfectly.

7.2.4 Analysing ODDS embeddings
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(a) Classification results on the raw embeddings.
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(b) Differences between linear classification performance on the raw embeddings com-
pared to the self-supervised embeddings, aggregated across the ODDS datasets.
Changes greater than 0 mean the self-supervision embedding reduced separability.

Figure 7.8: Supervised linear classification results (benign versus anomaly) on raw data (a) and
supervised classification comparisons against the self-supervised embeddings (b).

We now proceed to run ablations on ODDS. Previous studies have shown that super-
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vised classification performance correlates highly with out-of-distribution detection per-

formance [257]. Therefore, we train linear classifiers on the self-supervised and original

representation and compare classification performance. If there is a drop in performance

on the self-supervised embeddings, the results would suggest the neural networks trans-

form the data in a way that mixes anomalies with the benign samples. We could con-

sequently attribute the poor self-supervised performance to this mixing rather than the

presence of irrelevant directions.

Figure 7.8a shows classification scores on the raw data. Most datasets are almost perfectly

linearly separable in this embedding space, indicating that anomaly detectors should per-

form well. Figure 7.8b depicts the mean difference between the raw and self-supervised

classification performances. Except for EICL, the differences between linear classifica-

tion performance on the raw embeddings and the self-supervised embeddings are close to

zero. These trends suggest the self-supervised embeddings retain reasonable separability

between the benign data and anomalies. We can rule out the mixing effect and conclude

that self-supervision generally does not affect the separability of the two classes.
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Figure 7.9: Ablation study showing how shallow detector results vary with subspace dimension-
ality, starting with the lowest eigenvalues.

We now investigate the residual space of the embeddings by extending the toy dataset

analyses to ODDS. We take the smallest eigenvalues (from 1% to 90% in 10% increments)

to project the neural network embeddings to their residual representations. We proceed

to re-run the shallow anomaly detectors in the new space. Figure 7.9 shows the results.

We aggregate both ResNet and FT-Transformer scores as we observed similar behaviour

across the two architectures. Reducing the dimensionality indeed boosts performance.
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On all of the shallow detectors, using the entire representation space (100% dimensionality

in Figure 7.9) results in lower AUROC scores than using a subset. Throwing away the top

10% of principal components garnersmost improvements, although performance generally

remains stable when discarding more components - up to the top 90%.

This observation aligns with previous findings that show residual directions capture in-

formation important for out-of-distribution detection [262, 281]. The magnitude of benign

data is minute in this space which is not necessarily the case for anomalies. Based on these

results, we do not need complete neural network representations to perform anomaly de-

tection as a subset suffices.

7.2.5 Synthetic anomalies

Anomaly detection depends on two factors: the nature of the benign data and the nature of

anomalies. Both classes can originate from complex, irregular distributions. These aspects

make it difficult to pinpoint the causes of results on ODDS and other curated datasets. We

attempt to disentangle these factors by analysing performance on synthetic anomalies.

The anomalies curated in ODDS are a composite of these types. We calculated the corre-

lation between the ODDS and the synthetic anomaly scores and found that the datasets

exhibited correlations between multiple synthetic categories, highlighting the complex

qualities of the anomalies. For example, when analysing the raw data representations,

𝑘-NN on the curated Letter anomalies correlates strongly with local (𝜌 = 0.84), global

(𝜌 = 0.49), and dependency (𝜌 = 0.94) anomaly scores.

Figures 7.10a to 7.10d show the results across the four synthetic types. We show compar-

isons using 𝑘-NN as we found similar behaviours across the detectors. The contrastive

objectives outperform the baseline in the local (Figure 7.10a) and cluster anomaly (Figure

7.10b) scenarios. This result suggests contrastive tasks are better at discerning differences

at a local neighbourhood level.

No self-supervised approach beats the baseline when faced with global anomalies (Figure

7.10c). This result contributes to the idea that self-supervised representations introduce

irrelevant directions. Since the global anomalies scatter across the representation space,

these additional directions mask the meaningful distances between the anomalies and be-

nign points. As a result, methods like 𝑘-NN become less effective. In addition, the ranking
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(a) Local anomalies (𝛼 = 2).
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(b) Cluster anomalies (𝛽 = 2).
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(c) Global anomalies (𝛿 = 0.01).
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(d) Dependency anomalies.

Figure 7.10: Bar plots comparing synthetic anomaly results across the representations.

of the self-supervised tasks aligns most closely with their rankings on ODDS (Figure 7.13),

which potentially highlights the overall properties of the ODDS datasets.

For the dependency anomalies, rotation and mask classification surpass the baseline (Fig-

ure 7.10d). Conversely, contrastive tasks perform the worst. Using a rotation or mask

classification pretext task could help promote the intrinsic property that tabular data are

non-invariant, which may help identify this type of anomaly.

7.2.6 Architectural choices for self-supervision

We analyse the effects of architectures and loss functions on performance to provide start-

ing points for improving deep learning methods for tabular anomaly detection. We illus-

trate the results using 𝑘-NN as we observe similar behaviours across detectors.

ResNets outperform transformers. Our experiments indicate that ResNets are a better

choice than FT-Transformer (Figure 7.11a). This result may be due to transformers needing

more training data during the learning phase [121] - the ODDS datasets are relatively small.

Standardisation is not necessary. Standardising data before training neural networks

does not offer much benefit (Figure 7.11b). Due to the small size of the datasets, standard-

isation does not affect learning rates or performance.
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(b) Standardisation results.
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(c) Classification losses.
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(d) Contrastive losses.

Figure 7.11: Comparisons of how architecture and losses affect performance on the self-
supervised embeddings.

ARPL is a better choice for classification-type losses. ARPL significantly outperforms

cross-entropy and AAMwhen training classification-type tasks (Figure 7.11c). Specialised

losses like ARPL might represent "other" spaces better in the context of smaller datasets.

InfoNCE is better than VICReg for contrastive-type losses. This result (Figure 7.11d)

may be due to the intricacies of VICReg, which requires balancing three components (pair

similarity, variance and covariance).

7.2.7 Benchmarking unsupervised anomaly detection

Finally, we compare the performance of each of the detectors overall to see how well they

perform in one-class settings. We aggregate results across the baseline and self-supervised

embeddings to provide a more generalised understanding of detector behaviour.

Figures 7.12 and 7.13 summarise the overall performances of each anomaly detector on

ODDS. Even with the inclusion of self-supervised representations, 𝑘-NN performs best.

Our findings align with other works highlighting 𝑘-NN as a performant anomaly detector
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Figure 7.12: Box plot comparing detector performance on the raw and standardised data. The
results include all hyperparameter variations where available.

12345

OCSVM
LOF

iForest
Residual norm
k-NN

Figure 7.13: Critical difference diagram ranking the different detectors usingWilcoxon paired dif-
ference tests. The lines between different detectors indicate a statistical difference
(𝑝 < 0.05) in results when running pairwise comparison tests.

[16, 67, 78]. However, apart from 𝑘-NN and residual norm, Figure 7.13 shows no signif-

icant statistical differences between the detectors, suggesting the detectors make similar

classification decisions. 𝑘-NN might be a sensible starting point that does not make strong

assumptions about the benign distribution. Nonetheless, the choice of underlying rep-

resentation should take precedence over the detector when designing anomaly detection

systems.

7.2.7.1 Hyperparameter ablations

We now examine the sensitivity of the detectors to changes in hyperparameters. These

experiments were conducted directly on the raw ODDS data only to understand detec-

tor performance in an optimal representation space. By doing so, these results enable a

better understanding of the detectors’ inductive biases and why they may deteriorate in

suboptimal self-supervised representations.
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Figure 7.14: Line plot showing how 𝑘-NN varies with the change in the number of nearest neigh-
bours, aggregated across the ODDS datasets, with 95% confidence intervals.

𝑘-NN: Figure 7.14 shows performance remains relatively stable to changes in 𝑘, suggesting

the choice of this hyperparameter is trivial. As 𝑘-NN considers global relationships, this

result indicates that anomalies in ODDS already lie in distinct regions separate from the

benign raw data.
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Figure 7.15: Line plot showing how LOF varies with the change in the number of nearest neigh-
bours, aggregated across the ODDS dataset, with 95% confidence intervals.

LOF: Figure 7.15 illustrates how LOF performance changes with 𝑘. Although LOF and 𝑘-

NN consider points in a neighbourhood, LOF ismore sensitive to the number of neighbours

(as evidenced by the increase in performance when 𝑘 = 1 and 𝑘 = 5 for LOF). However, it

is unclear how to choose a value of 𝑘 so that LOF is competitive with the other detectors

in the one-class setting.

Residual norms: Figure 7.16 shows how performance varies with the percentage of at-

tributes used. There are no notable trends, although performance remains better than ran-

dom, even with a small subset (10%) of features. The number of relevant attributes in the

original representation space is dataset-dependent as ODDS contains datasets from differ-

ing tasks. It is unclear how to choose the number of features to maximise the performance

of residual norms in the original dataset space.
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Figure 7.16: Line plot showing how residual norm varies with the change in residual dimension-
ality, aggregated across the ODDS dataset, with 95% confidence intervals.

7.2.7.2 Corrupted input data
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(a) Additional features.
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(b) Removing features.
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(c) Selecting features.
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(d)Missing values.

Figure 7.17: Ablations showing how detector performance varies with changing levels of corrupt
data.

Adding uninformative features: All detectors are sensitive to irrelevant features (Figure
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7.17a). Although residual norms do not achieve the highest performance, it is more stable

under increasing noise levels. This result may be due to the residuals capturing the most

meaningful directions of the data. In contrast, 𝑘-NN performance declines the most.

Removing and selecting important features: Overall, performance plateaus at around

50% of attributes, suggesting half of the raw features are irrelevant for anomaly detection.

iForest and OCSVM are the most stable under varying subsets of features (Figures 7.17b

and 7.17c).

Missing values: Most detectors exhibit a slight decline in AUROC with increasing pro-

portions of missing values (Figure 7.17d). LOF is the exception, as performance drops

significantly.

Overall, the results indicate 𝑘-NN is the best-performing detector when faced with clean

and relevant features. However, the relative ranking of detectors changes in the presence

of corrupted input data. As observed in our self-supervised results (§7.2.4), residual norms

might be better at filtering out noisy directions. Furthermore, when there are fewer rele-

vant features, iForest may be a better choice.

7.3 Conclusion

We conclude by outlining the limitations, directions for future work, and main contribu-

tions.

7.3.1 Limitations and future work

We limited our experiments to the ODDS, which is not necessarily representative of all tab-

ular anomaly datasets. Several datasets underwent preprocessing during the curation of

ODDS, which could affect results. For example, the values in HTTP were log-transformed.

In addition, the datasets are relatively small. As neural networks (particularly transform-

ers) benefit from large amounts of data [121], it is unclear if self-supervision would be

more advantageous in the big data case. Contrastive objectives are particularly reliant on

large datasets and batch sizes [39, 40]. Additional ablations could examine the effects of

dataset size on representation quality and detection performance.

Furthermore, we isolated our analyses by extracting embeddings at the penultimate layer
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and running shallow anomaly detection algorithms. Although feature extraction at this

stage combined with simple detectors is a popular strategy [16, 67, 78, 134], different parts

of the neural network could provide more informative features [46]. Moreover, we chose

to use shallow detectors to prioritise studying the effect of representations rather than

studying the detection approach. The original implementations of ICL and GOAD evalu-

ate anomalies using an entire neural network pipeline and use specific architectures for

the tasks. Adapting these implementations for a pretext task with different architectures

deviates from the original setup and could affect performance. Future work could look

at extending the experiments to examine how varying pretext tasks with deep anomaly

detection could yield better results [66].

Another direction for future work that focuses on representation quality could replace the

one-class detectors with semi-supervised or supervised classifiers. We decided to concen-

trate on one-class detectors to align with the anomaly detection field [1, 15, 282]. However,

anomalies can manifest in different ways, and it could be challenging for an unsupervised

detector to capture the relevant features for a specific task in practice. Incorporating prior

knowledge about anomalies through weak or semi-supervised detection approaches could

improve detection [1].

In addition, studies focusing on improving deep tabular anomaly detectors could also start

examining regularisation strategies. Our experiments suggest neural networks add irrel-

evant features, hence regularisation during the training process could help to control this

behaviour.

7.3.2 Summary

We trained multiple neural networks on various self-supervised pretext tasks to learn new

representations for ODDS, a series of tabular anomaly detection datasets. We ran a suite

of shallow anomaly detectors on the new embeddings and compared the results to the per-

formance of the original data. None of the self-supervised representations outperformed

the raw baseline, confirming the observations in [15].

We conducted ablations to try to understand this behaviour. Our empirical findings sug-

gested that neural networks introduce irrelevant features, which degrade detector capa-

bility. As benign and anomalous data were easily distinguishable in the original tabular
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representations, neural networks merely stretched the data. They did not introduce any

additional informative information. However, we demonstrated performance was recov-

erable by projecting the embeddings to a residual subspace.

As the anomalies from ODDS derive from complex distributions, we repeated the experi-

ments on synthetic data to understand the pretext tasks’ influence on detecting particular

anomaly types. We showed in specific scenarios that self-supervision can be beneficial.

Contrastive tasks were better at picking up localised anomalies, while classification tasks

were better at identifying differences in dependency structures.

Finally, we studied different shallow detectors by aggregating performances across the

baseline and self-supervised representations. We showed that localised methods like 𝑘-

NN and LOF worked best on ODDS but were susceptible to performance degradation with

corrupted data. In contrast, iForest was more robust. Our findings provided practical

insights into when one detector might be preferable to another.

Overall, our findings complement theories of why and when self-supervised learning

works. Effective self-supervised pretext tasks learn to compress the input data when there

are irrelevant features [283, 284, 285]. Our findings suggest current deep learning ap-

proaches do not improve performance when the original feature space succinctly repre-

sents the benign data. This situation is often the case for tabular data, andwe demonstrated

this by showing performance degrades when removing features in the original space. If

the feature space did not succinctly represent the benign data, we would not observe such

large degradations. This setup differs from other domains. For example, pixels in images

contain lots of semantically irrelevant information. Therefore, neural networks can distil

information from pixels to extract useful semantic features and self-supervision is benefi-

cial.



8 | Conclusion

This thesis aimed to understand what types of representations enable one-class anomaly

detection. To do so, we studied anomaly detection performance across different modali-

ties. We conclude by summarising our findings, outlining strengths and weaknesses, and

indicating areas of future research.

8.1 Contributions

We recap our findings for each modality covered in the thesis.

8.1.1 Images

We started with images (Chapter 3), as most anomaly and OOD detection research focuses

on this modality [13, 17, 45, 72]. We presented a knowledge distillation framework to fo-

cus on what types of representations worked best for anomaly detection. We varied the

underlying representation by altering the teacher model and training a student model to

match the outputs of the teacher. We assessed anomalousness using the MSE between

the student and teacher. This scoring method outperformed alternatives like Mahalanobis

distance, suggesting that non-parametric detectors may be preferable. We evaluated our

approach on an X-ray security dataset. Our method boosted the anomaly detection AU-

ROC from 92.65% in a previous benchmark to 96.41% [17].

When analysing the representations, we found that teachers trained on semantic and rota-

tion classification tasks worked best for semantic anomaly detection. Separability between

benign and anomalous samples is insufficient for a reasonable representation. Instead,

higher L2 gradient norms, which indicate more susceptibility to adversarial perturbations,

are stronger signals for better representational candidates. For instance, we showed that

SimCLR trained on CIFAR-10 underperformed on our anomaly detection tasks. Upon
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analysing the representation, it could reasonably separate samples in a supervised setting

but had low L2 gradient norms.

8.1.2 Text

We then studied the effect of different representations for textual anomaly detection (Chap-

ter 4). Starting from a pre-trained model [82, 83], we fixed the dataset and fine-tuned

the models with various self-supervised objectives. We aimed to cover a range of self-

supervision types by analysing masked language modelling [82], causal language mod-

elling [129], and contrastive learning through SimCSE [135]. We used the self-supervision

loss as the anomaly score.

Our approach worked better than other methods like bag-of-words, CVDD [116] and

ELECTRA [130]. We demonstrated that these methods relied heavily on word frequency

statistics through our word order anomaly experiments. Our fine-tuning approach set a

straightforward baseline for future anomaly detection work. However, the findings sug-

gest there is no clear-cut best self-supervision objective. The most appropriate choice

depends on the type of anomaly. SimCSE is better at measuring differences in sentiment,

causal language modelling is better at identifying discrepancies in word order, and masked

language modelling lies between the two.

8.1.3 Speech

We pivoted to audio anomaly detection in Chapter 5, which is less explored compared to

images and text. Due to the range of applications, we focused on speech deepfakes, which

have already caused real-life harm [5, 6].

Chapter 5 created a benchmark for measuring how capable humans are at detecting

speech deepfakes. We ran these experiments as we found a gap in the literature. Most

speech deepfake detection work has concentrated on automatic speaker verification

[163, 164, 165], with few studies looking at how humans perceive speech deepfakes. We

asked 500 participants to listen to twenty clips and decide if they were spoken by a gen-

uine human or by AI. No indication was given of the frequency of genuine or deepfake

samples. We conducted the experiments in English and Mandarin and introduced a fa-

miliarisation treatment to see if humans could train to get better at detection. Our results

suggest humans are unreliable, detecting deepfakes only 73% of the time. This proportion
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is not definitive and is likely optimistic, as the participants knew they would encounter

deepfakes in the experiment. We also did not use state-of-the-art speech synthesisers to

generate the deepfakes. Detection performance was similar between English and Man-

darin participants, and familiarisation did not improve performance. However, we showed

humans performed better than automated classifiers on OOD data. Our results highlight

two directions for future research. As AI becomes more mainstream, a better understand-

ing of how humans interact with AI is required. Secondly, future research should look at

improving deepfake detection algorithms to generalise better to novel conditions. In the

meantime, crowdsourcing human responses to assess deepfakes is a viable response.

Chapter 6 explores the viability of one-class detectors. Previous works on speech deepfake

detection focus on binary classifiers [206, 207, 208], which generalise poorly to distribution

shifts in both the bona fide and deepfake classes [14].

We analyse the performance of various pre-trained representations and the impact of dif-

ferent fine-tuning strategies. We show that one-class detectors can detect speech deep-

fakes, and general-purpose audio models offer the most benefit. Effective anomaly de-

tection models occupy a low-dimensional subspace. Deep representations identify TTS

deepfakes more consistently than VC deepfakes. This issue persists across deep represen-

tations.

Moreover, our results suggest that one-class classifiers are more robust to bona fide dis-

tribution shifts than supervised classifiers. Overall, our analysis highlights the value of

one-class methods for speech deepfake detection.

8.1.4 Tabular data

Our final Chapter (Chapter 7) investigates why deep learning representations do not im-

prove tabular anomaly detection. The experiments build on a previous proof-of-concept

that showed raw features outperformed specialist deep tabular anomaly detectors [15]. We

trained shallow anomaly detectors with representations formed from appropriate tabular

pretext tasks. None of these representations were better than the raw baseline. Further

ablation studies suggested that the neural networks introduced irrelevant features. How-

ever, we demonstrated performance was recoverable by projecting the embeddings to a

residual subspace.
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We also provided insights that may help practitioners wishing to implement anomaly de-

tectors. Although the representation is the most crucial aspect of anomaly detection, lo-

calised detectors like 𝑘-NN outperformed the other detectors. However, these localised

detectors were susceptible to performance degradation on corrupted data. In these situa-

tions, isolation forests may be preferable.

In addition, we indicated there might be specific scenarios where self-supervised pretext

tasks may be beneficial. Contrastive tasks were better at finding localised anomalies, while

classification tasks were better at pinpointing changes in dependency structures.

8.2 Summary

Our analyses across modalities suggest there is no panacea for anomaly detection. The

choice of representation affects performance more than the detector. Deep representation

learning methods only aid anomaly detection if the mapping removes redundant informa-

tion and captures the core semantic features in the benign data distributions. Learning

such a mapping is generally implausible for tabular data as we do not know what the

inductive biases are. In contrast, regularities in images, text, and audio means there are

straightforward pretext tasks we can leverage.

An appropriate representation depends on the characteristics of the benign data and the

anomalies. Using embeddings from a pre-trainedmodel is a sensible starting point. Models

trained on mass amounts of data should incorporate prior information about both classes.

Our results suggest that models trained on a similar domain are preferable but should not

be too task-specific. Highly specialised models would not contain sufficient discrimina-

tive features to identify anomalies. For example, the speech experiments in Chapter 6

show speech and audio networks are better than image-based networks. However, a more

general-purpose audio network encodes anomalous features more explicitly than a speech

network.

Pre-trained representations offer the most benefit, although fine-tuning can give a slight

performance boost. The choice of fine-tuning objective depends again on the benign data

and anomalies. The centre loss is a domain-neutral choice but is prone to representa-

tional collapse and is less effective for multimodal distributions. Constructing a classifica-

tion task using metadata or perturbations can aid more fine-grained anomalous variants,
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whereas contrastive objectives are better for clustered anomalies. Overall, a reasonable

rule of thumb for anomaly detection across modalities is fine-tuning a pre-trained net-

work trained on a diverse dataset with benign data.

There is no consistent metric for measuring the quality of representations. Our results

in images and text suggest separability between anomalies and benign data is insufficient

for good anomaly detection. Measures like L2 gradient norms and eigenspectrum alphas

might provide some hints but are architecture and dataset-specific, making large-scale

comparisons challenging. This issue is addressable by incorporating prior knowledge of

anomalies, reducing the potential evaluation space. The choice of metric should be task-

dependent. Perhaps evaluating the detectors on carefully curated validation sets or human

comparisons would be the most explainable and relevant way to measure representation

quality.

When analysing the practical aspects of anomaly detection, we find no detector is sig-

nificantly better than another. Non-parametric methods like nearest neighbour distance

work slightly better than the others but decline in the presence of corrupted features. Our

initial experiments suggest ensemble methods like isolation forest may be more robust,

but further investigation is required. Introducing a sense of "otherness" is beneficial for

the pretext tasks. We can include a concept of otherness through the data or the objective.

One could create synthetic anomalies through perturbations or external datasets, although

this relies on knowledge of the anomalies. Regarding objectives, cross-entropy loss per-

forms reasonably well for classification-based tasks, but ARPL might be better for small

data regimes.

8.2.1 Ethical considerations

Security measures often include anomaly detectors. The thesis highlights examples such

as deepfake detection. Although detectors can help detect suspicious activity, anomaly

detectors in high-stakes settings could negatively impact people. For example, there are

reports that AI text detectors are unfairly biased against non-native speakers [286], and

biometric systems often perform poorly on deeper skin tones [287].

Solely automated decisions with discriminatory outcomes could breach UK laws [288]. De-

velopers should test their detectors on benign edge cases and apply safeguards to mitigate
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harm. For example, they should ensure there are ways for people to challenge a detector

and request meaningful human review.

Malicious actors could use anomaly detectors to improve their attacks. For instance, they

could use a detector’s outputs to refine their deepfake generation pipeline and evade future

defences. The cat-and-mouse dilemma is a perpetual issue in security. However, open

research on defences benefits the larger security community. Developers can also restrict

access to their defences, such as limiting white-box access and only providing binary pass

or fail results.

8.2.2 Limitations

We conducted our anomaly detection experiments in settings that do not necessarily re-

flect realistic deployment environments. One aspect is the choice of datasets. The datasets

that we analysed are specifically designed for academic research. Hence, they are clean and

carefully labelled. Although we ran some preliminary experiments to see how anomaly

detection changed with noisy speech (Chapter 5) and synthetically corrupted tabular data

(Chapter 7), more experiments with corrupted data (such as missing features or contami-

nation) would be beneficial.

We also primarily analyse semantic anomalies. In this setting, samples are either purely

benign or completely unusual. In practice, the situation may be more unclear. Adver-

saries might conceal anomalies by mixing themwith genuine content. For example, partial

speech deepfakes [289] contain a mixture of bona fide and synthesised utterances. Future

work could extend our anomaly detection studies to partial anomalies or look at how to

alter decision functions to take partial anomalies into account.

We investigate various techniques for measuring the quality of the representations. Al-

though we decided to incorporate new representation learning techniques, our results

would be more comparable if we used the same approaches across modalities. Measuring

representations using only the training data may not illustrate the actual representation

space. We show that anomaly detection performance depends on the nature of benign data

and anomalies. We have acknowledged this drawback in the Background section (§2.2.2).

In practice, incorporating a wide range of measures, acknowledging their pros and cons,

and analysing performance across all subsets of data might be better.
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Other aspects beyond representation also contribute to the choice of anomaly detector. A

detector might be precise but not usable if it is too slow. Alternatively, we should consider

the decision-making process after observing anomaly detector outputs. Do we rely on

the detector to make the decisions, or do they require human oversight? Moreover, the

interpretability of a detector’s outputs could also influence the utility of a detector. These

concerns are outside of the scope of the thesis but are worth considering when deploying

anomaly detection models.

8.2.3 Future work

Our results show that fine-tuning a pre-trained network is a reasonable benchmark for

anomaly detection. When running this benchmark in practice, future work should look at

a detector’s interpretability and resilience to corrupted inputs. These aspects are crucial

because the data pipeline is not always as clean as the academic setting. Starting points

could include comparing anomaly detector outputs to human decisions (per our speech

deepfake experiments in §5.1), studying performance changes under varying degrees of

data corruption, or evaluating more fine-grained anomalies.

Another issue with one-class learning is that there are multiple ways in which OOD sam-

ples canmanifest, especially in high-dimensional spaces like images. Including prior infor-

mation about anomalies narrows this problem space. Although collecting genuine anoma-

lies might be challenging, future work could use synthetic proxies instead [154].

Moreover, we examine anomaly detection performance on one modality at a time. Recent

research has pivoted to multimodal models [290, 291]. Additional work could study how

anomaly detectors perform in a multimodal setting to identify overarching trends.

An alternative approach that complements anomaly detection is to flip the problem state-

ment. Instead of searching for unusual instances, we could probe for signs that an instance

is benign. In some situations, trying to search for signs of unusualness is an impossible

task. Wemight have a better understanding of credibility. The C2PA provenance standards

are one initiative adopting this angle [292]. One can establish an asset’s source and edits

by looking at its metadata. Although C2PA primarily aims to combat disinformation, we

could potentially build machine learning detection models with similar decision-making

rationale. Taking X-ray baggage imagery, we could incorporate features like what goes
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into a typical traveller’s luggage. Provenance could be a sensible complement to anomaly

detection.

Overall, our experiments show that anomaly detectors have utility. They generalise better

to unseen anomalies than binary classifiers. Nonetheless, anomaly detection is only one

part of safety. Ultimately, we should look at how to include anomaly detectors in a more

holistic decision-making pipeline. As technology and AI become more central to our lives,

studies beyond the scope of representation learning are necessary. Building on the impact

of our work that shows humans cannot reliably detect deepfakes, further studies on how

anomaly detectors can complement human capabilities would be insightful.
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A | Out-of-distribution sample

detectors

OOD sample detectors are either shallow or deep.

Shallow approaches do not perform any representation learning. They only classify points

and rely on fixed feature maps. Traditionally, hand-crafted feature engineering (e.g., mel

spectrograms for audio [24]) produced feature maps. Embeddings from deep neural net-

works have replaced hand-crafted features. Neural network embeddings require less hy-

perparameter tuning and can better exploit the intrinsic properties of data [26, 293]. How-

ever, the two-stage process of shallow detectors may struggle to scale to large and complex

datasets.

In contrast, deep variants simultaneously transform data to a new subspace and perform

classification. The end-to-end setup eliminates the need for manual feature engineer-

ing and automatically can learn hierarchical representations for data. Nevertheless, deep

methods come with disadvantages. They are more data-hungry [294] and are less inter-

pretable than shallow methods [42].

The choice of detector depends on whether its assumptions are more appropriate than

another for the downstream task. We summarise the methods that are used in this thesis

below. Ruff et al. [1] and Salehi et al. [22] contain a more detailed overview of the various

approaches.

A.1 One-class detectors

Beyond the shallow versus deep categorisation, detectors can be categorised by how they

assess anomalies. Broadly, these decisions are classification-based, probabilistic, use re-

constructions, or use distances.
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Figure summarising one-class approaches.

Figure A.1: Graph depicting one-class approaches spanned by model type and depth (from Ruff et
al. [1]).

Classification models learn a decision boundary that separates the data into two classes

(benign or anomalous) according to some labelling regime. This arrangement is more com-

plicated in the one-class setting as no labelled anomalous training samples are available.

One-class models address this using proxy anomalies, such as the origin.

Probabilistic approaches use generative modelling to approximate the benign data dis-

tribution. Points lying in low-density regions are deemed more anomalous.

Reconstructionmethods, also known as dictionarymethods, assume the building blocks

of a feature space can reconstruct benign data but cannot construct anomalies. Methods

using dictionaries use either linear or non-linear manifold learning techniques (e.g., prin-

cipal components analysis or autoencoders) to determine the building blocks [46, 262, 295].

Distance-based methods differ from the previous approaches as they do not involve an

explicit a priori training phase [1]. Evaluations on test points occur in an online fashion.

Each distance-based method has a predefined way of measuring distance. Given this dis-

tance and a set threshold, if the test point lies far from the training data, it is deemed more

anomalous.

The below sections and FigureA.1 highlight shallow and deepmethods from the above four

categories. Generally, methods for anomaly and novelty detection are interchangeable.

A.1.1 Shallow methods

One-class support vectormachine (OCSVM) assumes benign data lies in a high-density

region [282]. Taking the origin as an anchor in the absence of anomalous training data,

it learns a maximum margin hyperplane that separates most training data from the ori-

gin. The algorithm considers a test datum’s distance to the learnt hyperplane to classify

anomalies. The method classifies a point as an anomaly if it lies on the side of the hy-

perplane closer to the origin. Given a dataset  = {𝒙1, ..., 𝒙𝑛}, the objective function for

OCSVM is as follows:
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min
𝒘,𝜌,𝝃

1
2
||𝒘||2 − 𝜌 +

1
𝜈𝑛

+
𝑛
∑
𝑖=1

𝜉𝑖 (A.1)

s.t. (𝒘 ⋅ 𝜃(𝒙𝑖)) ≥ 𝜌 − 𝜉𝑖, 𝜉𝑖 ≥ 0, ∀𝑖 (A.2)

Where 𝒘 is the maximum margin hyperplane, 𝜌 is the distance from the origin to the

hyperplane and 𝝃 are the slack variables. ||𝒘||2 is a regulariser, 𝜈 is a hyperparameter that

controls the trade-off between the two terms, and 𝜃(𝒙𝑖) is a kernel transformation of the

data points.

Support vector data description (SVDD) closely relates to OCSVM [65]. Instead of find-

ing amaximummargin hyperplane to separate the two classes, it learns the smallest hyper-

sphere to capture most of the benign data. Any points that lie outside of the hypersphere

are considered anomalies. SVDD is equivalent to OCSVM when using Gaussian kernels.

The objective function is as follows:

min
𝑅,𝒄𝝃

𝑅2 +
1
𝜈𝑛

𝑛
∑
𝑖=1

𝜉𝑖 (A.3)

s.t. ||𝜃(𝒙𝑖) − 𝒄||2 ≤ 𝑅2, 𝜉𝑖 ≥ 0, ∀𝑖 (A.4)

Where 𝑅 > 0 is a radius, 𝒄 is a centre in the feature space, 𝝃 are the slack variables and 𝜈

is a trade-off parameter. The scoring function is therefore ||𝜃(𝒙𝑖) − 𝒄||2. If it is greater than

𝑅2, the point is anomalous.

The Mahalanobis distance measures the distance between a point and a distribution. It

assumes the data follows a normal distribution. Any point exceeding a given distance

threshold is considered unusual. The score is as follows:

√
(𝒙 − 𝝁)𝑇 ⋅ Σ−1 ⋅ (𝒙 − 𝝁) (A.5)

Where 𝒙 is the point that is evaluated, 𝝁 is the mean of the distribution and Σ is the

covariance matrix of the distribution.



Out-of-distribution sample detectors | 151

Gaussian mixture models (GMM) are a type of probabilistic model. It assumes the un-

derlying distribution of the benign data is amixture of Gaussians. In the one-class anomaly

detection setting, a GMM is fit on the benign data. Points lying in low-density regions are

considered more unusual.

In addition to the distributional assumption, the effectiveness of GMMs relies on tuning

multiple parameters. These parameters include the number of components, the mixing

weights between each component (the probability that a datum belongs to one compo-

nent), and the initialisation methods for the component.

Principal components analysis (PCA) is a linear dimensionality reduction method. It

transforms the data into a new coordinate system where most data is characterisable us-

ing fewer dimensions than the original input dimensionality. The principal components,

which describe the primary variance directions, are the new coordinate system. The eigen-

vectors of the data’s covariance matrix denote the principal components.

Anomaly detectors using PCA assume the principal components can describe benign

points but fail to depict anomalies. The scoring function is the reconstruction error be-

tween the original data and its reconstruction using PCA [295].

Residual norms are closely related to PCA. They have achieved state-of-the-art perfor-

mance for out-of-distribution detection on images [262]. Given 𝐗 as the in-distribution

data matrix of training samples, we find the principal subspace 𝐖 from the matrix 𝐗𝑇𝐗.

This subspace spans the eigenvectors of the 𝐾 largest eigenvalues of 𝐗𝑇𝐗. We assume

anomalies have more variance on the components with smaller explained variance [281].

Therefore, we project 𝐗 to the subspace spanned by the smallest eigenvalues of 𝐾 (repre-

sented by 𝐖⟂) to encapsulate the residual space. We take its norm as the anomaly score:

||𝐱𝑊
⟂
|| (A.6)

𝑘-nearest neighbours (𝑘-NN) assumes benign data closely surround other similar sam-

ples in the feature space, while anomalies have relatively fewer nearby neighbours. Despite

being a simple approach, 𝑘-NN remains competitive in big data instances [15, 16, 67, 78, 79].

𝑘-NN typically uses features extracted from pre-trained classification neural networks

[16, 67, 79] for anomaly detection in domains where such networks are available, such
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as images.

Local outlier factor (LOF) is a density-based outlier detection method [296]. It compares

the local density of a data point against its 𝑘-nearest neighbours. If the point’s density is

significantly lower, it is deemed anomalous.

Isolation forest (iForest) is an ensemble-based algorithm [261]. It uses a set of isolation

trees. Each tree aims to isolate the training data into leaves. The tree construction algo-

rithm randomly selects an attribute and a random split inside the attribute’s range until

each data point lies in a leaf. Each observation is assigned a score by calculating the length

of the root node to the leaf and averaging across the trees. Points with shorter path lengths

are considered more unusual, as the algorithm assumes anomalies are easier to isolate.

A.1.2 Deep methods

Deep SVDD (DSVDD) is similar to SVDD. In addition to the smallest hypersphere, it learns

a new mapping for the data using an autoencoder [66]. It is faster and performs better fea-

tures than shallow SVDD, which relies on quadratic-scaling kernel functions to transform

input data [297]. The objective function is as follows:

min


1
𝑛

𝑁
∑
𝑖=1

||𝜃(𝒙𝑖;) − 𝒄||2 +
𝜆
2

𝐿
∑
=1

||𝐖||2 (A.7)

The first term is the centre loss, where 𝜃(𝒙𝑖;) is the neural mapping of 𝒙𝑖. The second

term is a network weight decay regulariser with hyperparameter 𝜆 > 0.

Unlike shallow SVDD, DSVDD does not explicitly penalise the radius. The authors state

the same effect is achievable through neural mapping. However, DSVDD requires engi-

neering tricks to avoid feature collapse. Examples include fixing the centre representation

instead of learning it, removing bias terms from the neural network architecture and using

unbounded activation functions.

Pre-trained anomaly detection adaptation (PANDA) [67] also uses a centre loss like

DSVDD. However, it uses a pre-trained network to extract features. The method uses early

stopping and elastic weight regularisation to prevent feature collapse.

Autoencoders are a type of neural network that learns to recreate input data. They are
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capable of performing non-linear dimensionality reduction. Sometimes, modifications to

autoencoders (e.g., adding a denoising aspect [102] or using variational inference to train

[298]) can improve the learnt representation. Like PCA, the anomaly scorer of choice is the

input reconstruction error [71]. Improvements to autoencoder-based anomaly detection

incorporate the latent reconstruction error [45, 46].

Geometric-transformation classification (GEOM) [80] and similar methods (Rotation

prediction [113] or GOAD [23]) transform the one-class configuration to an open-set prob-

lem using perturbations. These methods transform the benign data subspace 𝐗 into 𝐾

subspaces 𝐗𝟏, ..., 𝐗𝐊 using augmentations (e.g., rotations, reflections, translations). A neu-

ral network learns to predict the perturbation applied to the data. The overarching idea is

that a trained neural network can correctly predict benign data augmentations but cannot

do so on anomalies. Therefore, the anomaly score is typically the classification confidence

or the loss.

A.2 Multiple class detectors

Detectors in this category rely on the training set subclasses to perform inference.

Mahalanobis approaches are extendable to multiple classes. Instead of comparing a test

datum’s distance to the mean and covariance of the entire training set, the computation

compares its distance to the mean and covariance of each subclass [96]. We take the small-

est distance between the datum and a subclass as the anomaly score. Extensions of this

approach divide this score using the background value, which is the original one-class

Mahalanobis distance [299].

Maximum softmax methods use the intuition that classification networks are less con-

fident on OOD samples. Therefore, the highest confidence from the softmax layer of a

network serves as the score [13]. Extensions to this work involve adversarially perturbing

the inputs to improve in-distribution and OOD separability [300] or using the values from

the logits layer [301].



B | Neural network architectures

In this section, we outline the different neural network architectures used in the thesis.

B.1 Inductive biases of different architectures

Neural networks learn to map input data to a specified output. Different architectures

leverage different inductive biases. These biases guide the model to focus on particular

elements of the data. These assumptions help adapt anomaly detection pipelines to varying

modalities. The architectures that primarily feature in the thesis are as follows:

B.1.1 Convolutional neural networks

Convolutional neural networks (CNNs) specialise in processing grid-like data. They use

filters (also known as kernels) to learn relevant features. These filters, optimised through

training, slide across the input data to extract localised patterns. This setup also enables

CNNs to be spatially invariant, meaning that they are well-suited for tasks where the lo-

cation of relevant features is unimportant [101]. Several studies also suggest CNNs learn

hierarchical representations [101]. The earlier layers of a CNN recognise more rudimen-

tary edges and textures, while the later layers focus on more complex objects, such as

semantic categories [101]. CNNs are a popular option for processing images [26] and two-

dimensional audio representations, such as spectrograms [302].

B.1.2 Transformers

Transformers specialise in learning context across sequential data. Initially proposed for

text [127], they have quickly become the architecture of choice for other modalities like

images and audio [121, 249]. The core aspect of transformers is the self-attention mech-

anism [127]. Self-attention allows a model to determine the importance of different parts

of an input sequence and weight these based on the output. Transformers across varying
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tasks and modalities have the following commonalities:

Embedding: A tokeniser splits the input sequence into smaller units called tokens. The

tokeniser also maintains a dictionary of possible tokens. Using the dictionary, it maps

the tokens into numerical token IDs so the model can process them. The tokeniser also

ensures all inputs are the same length by truncating longer sequences or padding shorter

ones.

Additional steps are needed to process image and audio data, which are not discrete. The

first step in processing images is to divide the image into non-overlapping patches. The

transformer pipeline projects the image to a lower dimensional space and flattens it to a

one-dimensional sequence [121]. For audio data, the same steps apply to its spectrogram

representation [249]. Alternatively, a feature encoder learns to map the waveforms into

discrete components [216, 217, 218].

Positional encoding: As the self-attention mechanism processes entire sequences, trans-

formers need additional guidance to capture positional information. The data processing

procedure adds fixed positional encodings to input sequences. These embeddings depict

the token position in text and the row and column position of the patch in images.

Attention: Transformers learn three weight matrices in each self-attention block: the

query weights 𝐖𝐐, the key weights 𝐖𝐊, and the value weights 𝐖𝐕. The queries are

elements we want to learn contextual information about. For an input token 𝐱𝐢, the query

vector is 𝐪𝐢 = 𝐱𝐢𝐖𝐪. We learn these relationships from keys. These keys are the same as

the queries in self-attention, hence for 𝐱𝐢, its corresponding key is 𝐤𝐢 = 𝐱𝐢𝐖𝐤. Separate

𝐖𝐐 and𝐖𝐊 matrices mean that attention does not need to be symmetric. If token 𝑖 gives

relevant context to token 𝑗 , the reverse does not need to apply. The values contain the

actual information associated with each element. So for a datum 𝐱𝐢, this is 𝐯𝐢 = 𝐱𝐢𝐖𝐯.

The dot product between the queries and keys is the attention score. The score is nor-

malised and scaled with a softmax and scaling factor (
√
𝑑𝑘) to ensure numerical stability

during training. Finally, the normalised attention scores multiplied by the value matrix

produce the final context vectors. In matrix notation (𝐐 = 𝐗⋅𝐖𝐐, 𝐊 = 𝐗⋅𝐖𝐊, 𝐕 = 𝐗⋅𝐖𝐕),

attention is as follows:
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Attention(𝐐, 𝐊, 𝐕) = softmax
(
𝐐𝐊𝑇
√
𝑑𝑘 )

𝐕 (B.1)

Self-attention is parallelisable and is faster than sequential architectures like recurrent

neural networks.

Multiple heads: Transformers use multiple attention heads to capture different relation-

ships. For example, in text, one could attend to the next word in a sequence while another

could attend to nouns.

B.2 Overview of neural networks used
Images

ResNet

DenseNet

Text

BERT

RoBERTa

Speech

VIT

AST

SSAST

HuBERT

Wav2vec2

Tabular

ResNet

FT-Transformer

Figure B.1: Tree diagram of neural networks used by modality.

ResNet is a CNN architecture that introduced the concept of skip connections to resolve

the vanishing gradient problem [276]. Deeper neural networks perform better because

they learn more complex hierarchical features [101]. The backpropagation process means

neural network weights update using a proportion of the gradient of the loss function.

The gradient updates can be close to zero when backpropagating from the output layer to

the input layer. As a result, these "vanishing gradients" can hinder training [303]. ResNets

use residual blocks to mitigate this problem and to enable deeper networks. A residual

block is a series of convolutional layers with skip connections. Namely, if the input is 𝒆,

the output would be 𝐹(𝒆)+𝒆, where 𝐹(𝒆) is the output of the convolutional layers. ResNets

have benefitted tasks beyond image classification, including audio [302] and tabular data

classification [275].

DenseNet is another CNN architecture that addresses the vanishing gradient problem

[112]. It uses dense connections instead of skip connections. The inputs of each convolu-
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tional layer comprise the output from the previous layer and all other preceding layers in

the block. Namely, if the block has 𝑙 layers, the 𝑙-th layer’s output 𝒆𝑙 is the concatenation

of the preceding feature maps: 𝑥𝑙 = 𝐹([𝒆0, 𝒆1, ..., 𝒆𝑙−1]).

BERT, or "bidirectional encoder representations from transformers", is an NLP model in-

troduced in 2018 [82]. BERT uses a conditional prediction task to learn features. In par-

ticular, it uses a masked language modelling objective, which enables the model to learn

contextual information in a bidirectional manner. The original version of BERT masks

15% of tokens with either a [MASK] token or a random word. The model learns to deci-

pher the correct word using a fixed vocabulary set. BERT also trains with a next-sentence

prediction task. This task predicts whether a given sentence follows another one in the

text. However, follow-up work suggests the BERT’s main benefit comes from the masked

language modelling task [83].

RoBERTa improves on BERT’s training process [83]. The model trains for longer and

with more data. The authors also remove the next-sentence prediction task and alter the

masking scheme. BERT only generated masks during the pre-processing stage. This setup

means the model sees repeated masked sequences during training. RoBERTa addresses

this by producing masked sequences on-the-fly to encourage better representations.

Vision transformers (VIT) adapt the original transformer model for computer vision

[121]. They do so by splitting the image into non-overlapping patches. The patch size

is a hyperparameter that depends on the downstream task. A feature encoder (similar

to a convolution layer) linearly projects and flattens the patches into lower-dimensional

vectors.

Audio spectrogram transformer (AST) adapts VIT to audio using two-dimensional

spectrograms as input [249]. The original AST uses pre-trained VIT weights as a base,

as transformers need more data to train than CNNs [121].

Self-supervised audio spectrogram transformer (SSAST) uses AST as the underlying

architecture. However, it differs from AST as it uses self-supervised learning [253]. The

task, "masked spectrogram patch modelling", combines conditional prediction and per-

turbation classification. The model receives patches of a two-dimensional spectrogram as

input. A learnable mask embedding replaces a portion of the patches randomly. The model

learns to find the correct patch from all masked patches and reconstruct it.
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Wav2vec 2.0 is a self-supervised speech representation model [218]. Wav2vec 2.0 also

uses a mask classification pretext task. Its feature encoding module processes raw wave-

forms into learnt discrete units using a convolutional feature encoder and a quantisation

module. After feature encoding, a learnable mask embedding replaces some patches ran-

domly. Wav2vec 2.0 looks at 100 patches for each masked position and identifies the orig-

inal unperturbed patch. The remaining patches are negative distractors. These distractors

come from other locations in the same sequence. It differs from Wav2vec 1.0 [217] as it

uses a transformer instead of a CNN for the primary representation learning architecture.

Hidden-unit BERT (HuBERT) is another self-supervised speech representation model

[216]. HuBERT uses an alternating two-step training process. The first stage learns the

discrete speech units. This process involves converting the raw audio waveform into latent

features and 𝑘-means clustering. At initialisation, the initial features are mel-frequency

cepstrum coefficients [304]. At later stages, the model reuses the latent parts from an inter-

mediate layer of HuBERT’s transformer encoder. The second step adapts BERT’s masked

language modelling task [82]. A learnable mask vector replaces 50% of the latent feature

vectors, and the model predicts the correct units. The prediction logits use the cosine sim-

ilarity between the transformer outputs and the hidden embeddings from the first step.

The loss only uses the masked positions. HuBERT’s loss objective differs from Wav2vec

2.0 as it uses cross-entropy loss instead of a contrastive loss.

Feature tokenizer + Transformer (FT-Transformer) adapts transformers to tabular data

[275]. The feature tokeniser model transforms numerical and categorical features to em-

beddings and applies a stack of transformer layers to the embedding. Therefore, every

transformer layer operates on the feature level of one datum.
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C.1 Images
Table C.1: Anomaly detection results for the "cat" class in the Cats vs. Dogs dataset.

Anomaly Detection Method (AUROC)

Teacher
Representation

Classification
Acc.

Knowledge
Distillation

MSE Mahalanobis
(Diagonal)

Mahalanobis
(Full)

Baseline 83.40 88.67 88.51 75.70 85.11

Random 64.11 48.46 52.50 52.03 53.52
STLClassification 71.28 58.99 60.43 57.05 55.59
CIFAR Classifica-
tion

87.57 82.08 90.74 77.34 70.77

STL RotNet 75.87 40.67 41.11 43.82 42.58
CIFAR RotNet 76.65 54.54 51.11 51.26 54.82
CvD RotNet 70.12 49.39 50.71 50.35 49.00
STL AE 64.66 59.71 55.98 54.62 59.22
CIFAR AE 64.11 59.31 54.75 54.05 59.37
CvD AE 64.47 50.67 51.25 50.71 50.38
STL DAE 64.69 58.19 57.37 55.04 62.04
CIFAR DAE 66.13 58.61 53.92 52.89 59.57
CvD DAE 57.23 50.37 51.64 51.08 51.84
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Table C.2: Anomaly detection results for the "dog" class in the Cats vs. Dogs dataset.

Anomaly Detection Method (AUROC)

Teacher
Representation

Classification
Acc.

Knowledge
Distillation

MSE Mahalanobis
(Diagonal)

Mahalanobis
(Full)

Baseline 83.40 90.07 89.57 76.54 86.74

Random 64.11 53.28 47.99 48.63 48.83
STL Classifica-
tion

71.28 64.66 65.96 60.56 57.09

CIFAR Classifica-
tion

87.57 81.88 93.84 79.12 79.05

STL RotNet 75.87 69.15 66.30 60.73 65.34
CIFAR RotNet 76.65 58.83 51.59 51.62 56.87
CvD RotNet 70.12 50.97 47.44 48.23 50.28
STL AE 64.66 44.35 48.33 48.58 44.31
CIFAR AE 64.11 43.94 49.38 48.85 42.83
CvD AE 64.47 51.90 48.61 49.14 50.88
STL DAE 64.69 49.10 45.31 46.73 40.99
CIFAR DAE 66.13 48.23 49.35 49.37 43.43
CvD DAE 57.23 51.37 49.11 49.27 49.48
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Table C.3: Anomaly detection results for unimodal CIFAR-10 configuration, averaged over each
class.

Anomaly Detection Method (AUROC)

Teacher
Representation

Knowledge
Distillation

MSE Mahalanobis
(Diagonal)

Mahalanobis
(Full)

Baseline 95.44 94.83 94.99 89.96

Random 60.09 58.73 58.69 57.25
STL Classification 85.29 88.45 89.05 82.66
FMNIST Classification 57.60 56.53 56.58 56.60
STL RotNet 70.71 70.28 70.00 66.32
FMNIST RotNet 57.90 54.91 55.32 52.81
CIFAR RotNet 85.35 85.99 85.98 84.88
CIFAR SimCLR 54.18 33.84 34.36 50.85
STL AE 62.85 61.16 62.17 61.03
FMNIST AE 63.50 60.77 59.82 59.24
CIFAR AE 61.03 60.82 61.74 59.33
STL DAE 60.21 62.48 63.00 63.33
FMNIST DAE 60.19 58.98 59.42 57.47
CIFAR DAE 60.06 55.53 57.41 58.52
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Table C.4: Anomaly detection results for multimodal CIFAR-10 configuration, averaged over each
class.

Anomaly Detection Method (AUROC)

Teacher
Representation

Knowledge
Distillation

MSE Mahalanobis
(Diagonal)

Mahalanobis
(Full)

Baseline 87.60 57.20 57.39 69.57

Random 50.98 51.16 51.10 51.13
STL Class. 76.28 54.03 55.81 63.33
FMNIST Class. 51.08 50.70 50.77 50.81
STL RotNet 55.31 52.96 52.83 52.90
FMNIST RotNet 51.46 50.37 50.54 50.52
CIFAR RotNet 61.35 59.90 60.16 53.59
CIFAR SimCLR 49.37 31.19 31.31 43.45
STL AE 51.47 51.12 50.77 51.54
FMNIST AE 51.89 51.16 51.46 51.29
CIFAR AE 51.64 51.01 51.55 51.22
STL DAE 51.26 51.36 51.61 52.04
FMNIST DAE 52.31 51.11 51.14 51.06
CIFAR DAE 50.84 50.36 50.04 50.99
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C.2 Text

C.2.1 Semantic anomaly detection results
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(b) AG News (Multimodal)
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(c) 20 Newsgroups (Unimodal)
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(d) 20 Newsgroups (Multimodal)
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(e) Reuters-21578 (Unimodal)
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(f) Reuters-21578 (Multimodal)
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Figure C.1: Median semantic anomaly detection results split by dataset.
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C.2.2 Word order anomaly detection results
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(b) AG News (Multimodal)
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(c) 20 Newsgroups (Unimodal)
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(d) 20 Newsgroups (Multimodal)
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(f) Reuters-21578 (Multimodal)
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Figure C.2: Median word order anomaly detection results split by dataset. The figures include all
𝑛-gram runs.
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C.2.3 Shallow embedding results
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Figure C.3: Shallow anomaly detection results using other detectors.

C.3 Speech

C.3.1 Human-level speech deepfake detection results
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Figure C.4: Confidence-adjusted accuracy scores per clip (English, unary, no familiarisation).
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Figure C.5: Confidence-adjusted accuracy scores per clip (English, unary, familiarisation).
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Figure C.6: Confidence-adjusted accuracy scores per clip (English, binary, no familiarisation).
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Figure C.7: Confidence-adjusted accuracy scores per clip (English, binary, familiarisation).
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Figure C.8: Confidence-adjusted accuracy scores per clip (Mandarin, unary, no familiarisation).
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Figure C.9: Confidence-adjusted accuracy scores per clip (Mandarin, unary, familiarisation).
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Figure C.10: Confidence-adjusted accuracy scores per clip (Mandarin, binary, no familiarisation).
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Figure C.11: Confidence-adjusted accuracy scores per clip (Mandarin, binary, familiarisation).
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C.3.2 One-class automated speech deepfake detection results

Table C.5: Pre-trained cosine AUROCs (with ranks) for each dataset and representation.

Dataset AST SSAST VIT Wav2vec2zh HuBERTzh HuBERTen Wav2vec2en

ASVspoof 2019 A07 95.20 (22) 96.65 (3) 97.67 (4) 99.34 (19) 99.73 (14) 99.36 (12) 98.27 (6)

ASVspoof 2019 A08 96.80 (19) 89.07 (14) 94.28 (15) 99.48 (17) 99.68 (17) 99.07 (16) 97.16 (9)

ASVspoof 2019 A09 98.22 (14) 83.49 (23) 98.53 (2) 99.60 (15) 99.84 (8) 99.54 (11) 96.87 (13)

ASVspoof 2019 A10 89.03 (31) 94.79 (6) 97.06 (7) 99.21 (20) 99.71 (15) 99.35 (13) 98.15 (7)

ASVspoof 2019 A11 98.72 (11) 92.43 (11) 97.21 (6) 99.63 (13) 99.90 (6) 99.70 (8) 98.93 (5)

ASVspoof 2019 A12 88.22 (32) 87.03 (19) 97.00 (8) 99.12 (22) 99.71 (16) 99.19 (15) 96.65 (15)

ASVspoof 2019 A13 94.72 (23) 97.53 (1) 99.14 (1) 99.62 (14) 99.95 (1) 99.80 (6) 99.07 (3)

ASVspoof 2019 A14 92.34 (27) 83.55 (22) 93.95 (16) 99.48 (18) 99.61 (18) 99.22 (14) 97.26 (8)

ASVspoof 2019 A15 83.37 (38) 82.31 (26) 92.47 (21) 98.67 (23) 98.93 (22) 98.75 (18) 94.75 (20)

ASVspoof 2019 A16 79.29 (44) 88.05 (17) 93.20 (19) 97.29 (25) 98.98 (21) 98.68 (19) 96.31 (17)

ASVspoof 2019 A17 72.24 (49) 58.35 (48) 57.47 (57) 74.11 (53) 74.56 (49) 78.38 (45) 83.18 (38)

ASVspoof 2019 A18 97.77 (16) 54.3 (51) 70.95 (45) 96.75 (28) 96.72 (27) 92.84 (29) 91.76 (27)

ASVspoof 2019 A19 69.65 (54) 61.67 (46) 65.17 (52) 71.59 (54) 63.42 (55) 62.81 (56) 65.44 (55)

ASVspoof 2021 A07 84.68 (37) 81.62 (27) 73.6 (44) 91.83 (35) 90.26 (34) 90.93 (31) 88.82 (31)

ASVspoof 2021 A08 81.78 (42) 73.53 (34) 65.92 (50) 91.59 (36) 86.83 (37) 88.94 (33) 85.13 (33)
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Dataset AST SSAST VIT Wav2vec2zh HuBERTzh HuBERTen Wav2vec2en

ASVspoof 2021 A09 87.66 (33) 68.64 (38) 75.2 (42) 94.15 (33) 91.00 (31) 91.27 (30) 84.19 (37)

ASVspoof 2021 A10 76.12 (47) 79.21 (29) 75.53 (41) 90.47 (38) 88.82 (35) 90.27 (32) 87.93 (32)

ASVspoof 2021 A11 91.78 (28) 77.9 (31) 75.94 (40) 97.06 (26) 94.94 (30) 93.14 (28) 90.40 (29)

ASVspoof 2021 A12 70.89 (53) 73.46 (35) 70.14 (46) 87.96 (41) 85.58 (39) 88.77 (34) 84.52 (36)

ASVspoof 2021 A13 81.95 (41) 82.93 (25) 82.71 (32) 96.16 (29) 96.25 (28) 95.67 (26) 91.47 (28)

ASVspoof 2021 A14 68.35 (56) 66.53 (41) 65.93 (49) 91.47 (37) 85.36 (41) 88.16 (36) 82.33 (40)

ASVspoof 2021 A15 63.75 (63) 66.34 (42) 65.56 (51) 86.19 (42) 79.49 (46) 86.87 (39) 78.69 (43)

ASVspoof 2021 A16 65.9 (60) 70.34 (36) 66.45 (48) 82.92 (46) 80.50 (44) 86.75 (40) 84.6 (35)

ASVspoof 2021 A17 66.05 (59) 50.47 (57) 54.74 (60) 63.8 (59) 62.91 (58) 66.89 (53) 73.61 (48)

ASVspoof 2021 A18 86.89 (35) 49.84 (58) 62.83 (53) 77.84 (50) 74.48 (50) 73.91 (47) 75.31 (46)

ASVspoof 2021 A19 65.49 (62) 53.19 (53) 54.62 (61) 63.39 (60) 57.63 (63) 57.19 (62) 61.81 (56)

CFAD AISHELL1 F01 94.07 (25) 86.94 (20) 92.83 (20) 95.27 (31) 95.95 (29) 95.91 (24) 81.29 (41)

CFAD AISHELL1 F02 98.00 (15) 96.38 (5) 93.74 (17) 96.85 (27) 90.96 (32) 87.83 (38) 77.35 (44)

CFAD AISHELL1 F03 89.07 (30) 69.80 (37) 93.58 (18) 79.71 (47) 80.04 (45) 83.73 (43) 72.55 (49)

CFAD AISHELL1 F04 95.78 (21) 88.59 (16) 90.88 (26) 97.38 (24) 97.22 (25) 94.47 (27) 84.74 (34)

CFAD AISHELL1 F05 98.34 (13) 63.23 (43) 91.14 (25) 99.63 (12) 98.93 (23) 98.68 (20) 96.70 (14)

CFAD AISHELL1 F06 96.57 (20) 94.24 (7) 92.23 (23) 93.79 (34) 85.91 (38) 88.51 (35) 72.40 (50)

CFAD AISHELL1 F07 97.45 (17) 50.55 (55) 91.84 (24) 99.20 (21) 97.97 (24) 98.01 (21) 95.15 (19)



Supplem
entary

results
|

170

Dataset AST SSAST VIT Wav2vec2zh HuBERTzh HuBERTen Wav2vec2en

CFAD AISHELL1 F08 99.49 (9) 67.34 (39) 94.83 (14) 99.74 (9) 99.2 (20) 98.94 (17) 96.93 (11)

CFAD AISHELL3 F01 80.47 (43) 62.28 (45) 61.00 (55) 77.12 (51) 66.92 (52) 65.18 (55) 56.97 (58)

CFAD AISHELL3 F02 94.34 (24) 89.26 (13) 86.96 (30) 94.63 (32) 81.66 (42) 68.95 (51) 66.68 (54)

CFAD AISHELL3 F03 86.70 (36) 43.28 (69) 84.6 (31) 78.51 (48) 80.6 (43) 70.44 (49) 60.60 (57)

CFAD AISHELL3 F04 93.38 (26) 76.68 (33) 82.09 (35) 96.04 (30) 96.94 (26) 85.36 (42) 79.29 (42)

CFAD AISHELL3 F05 98.62 (12) 53.99 (52) 90.59 (27) 99.85 (7) 99.82 (11) 97.17 (23) 96.10 (18)

CFAD AISHELL3 F06 82.89 (39) 84.67 (21) 82.18 (34) 77.90 (49) 65.78 (54) 66.24 (54) 55.50 (59)

CFAD AISHELL3 F07 97.26 (18) 47.68 (65) 90.23 (28) 99.59 (16) 99.6 (19) 95.83 (25) 94.44 (21)

CFAD AISHELL3 F08 99.24 (10) 57.90 (49) 92.46 (22) 99.86 (6) 99.83 (10) 97.74 (22) 96.33 (16)

CFAD MagicRead F01 49.13 (68) 77.06 (32) 56.3 (59) 66.99 (57) 56.97 (65) 61.01 (59) 66.92 (53)

CFAD MagicRead F02 72.19 (50) 96.55 (4) 81.29 (36) 83.18 (45) 68.60 (51) 70.64 (48) 75.11 (47)

CFAD MagicRead F03 38.84 (69) 50.48 (56) 57.99 (56) 63.81 (58) 63.32 (56) 62.46 (57) 67.16 (52)

CFAD MagicRead F04 66.72 (58) 88.91 (15) 74.94 (43) 84.77 (44) 78.38 (47) 77.66 (46) 82.89 (39)

CFAD MagicRead F05 74.02 (48) 66.89 (40) 76.71 (39) 90.06 (39) 88.33 (36) 86.05 (41) 92.27 (25)

CFAD MagicRead F06 54.02 (66) 93.73 (9) 80.11 (37) 67.98 (55) 62.92 (57) 68.52 (52) 68.4 (51)

CFAD MagicRead F07 69.44 (55) 60.06 (47) 79.37 (38) 85.17 (43) 85.50 (40) 82.57 (44) 89.92 (30)

CFAD MagicRead F08 87.41 (34) 62.28 (44) 82.4 (33) 88.98 (40) 90.80 (33) 88.09 (37) 93.64 (23)

CFAD THCHS30 F01 99.88 (3) 79.90 (28) 96.59 (10) 99.82 (8) 99.79 (13) 99.76 (7) 93.84 (22)
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Dataset AST SSAST VIT Wav2vec2zh HuBERTzh HuBERTen Wav2vec2en

CFAD THCHS30 F02 99.94 (1) 96.84 (2) 98.46 (3) 99.96 (1) 99.93 (4) 99.95 (1) 96.99 (10)

CFAD THCHS30 F03 99.63 (8) 78.34 (30) 88.46 (29) 99.69 (11) 99.81 (12) 99.56 (10) 92.2 (26)

CFAD THCHS30 F04 99.87 (4) 83.06 (24) 96.17 (11) 99.90 (4) 99.89 (7) 99.84 (4) 96.92 (12)

CFAD THCHS30 F05 99.71 (6) 89.69 (12) 95.27 (13) 99.91 (3) 99.94 (3) 99.87 (3) 99.34 (1)

CFAD THCHS30 F06 99.86 (5) 87.51 (18) 97.64 (5) 99.72 (10) 99.83 (9) 99.63 (9) 92.68 (24)

CFAD THCHS30 F07 99.69 (7) 92.56 (10) 95.72 (12) 99.87 (5) 99.93 (5) 99.81 (5) 99.06 (4)

CFAD THCHS30 F08 99.89 (2) 93.99 (8) 96.66 (9) 99.93 (2) 99.95 (2) 99.88 (2) 99.32 (2)

FMFCC 49.86 (67) 49.83 (59) 56.88 (58) 37.55 (69) 36.98 (69) 33.91 (69) 24.58 (69)

WaveFake JSUT Multi Band MelGAN 62.32 (64) 47.28 (66) 52.69 (63) 55.28 (66) 56.19 (66) 56.62 (63) 53.18 (62)

WaveFake JSUT Parallel WaveGAN 55.66 (65) 50.64 (54) 48.01 (67) 58.59 (62) 57.83 (62) 56.4 (64) 50.68 (68)

WaveFake LJSpeech Conformer 91.33 (29) 48.12 (63) 62.39 (54) 76.83 (52) 76.86 (48) 70.04 (50) 75.38 (45)

WaveFake LJSpeech Full Band MelGAN 70.98 (52) 48.11 (64) 50.14 (65) 52.43 (67) 52.79 (67) 55.98 (66) 51.07 (67)

WaveFake LJSpeech HiFiGAN 67.95 (57) 48.17 (62) 44.82 (69) 51.49 (68) 52.34 (68) 54.21 (68) 51.27 (66)

WaveFake LJSpeech MelGAN 65.49 (61) 45.81 (68) 52.82 (62) 58.66 (61) 58.11 (61) 55.21 (67) 51.31 (65)

WaveFake LJSpeech MelGAN Large 82.77 (40) 45.86 (67) 68.57 (47) 58.35 (64) 59.65 (60) 56.12 (65) 51.73 (64)

WaveFake LJSpeech Multi Band MelGAN 77.16 (46) 48.89 (60) 50.91 (64) 58.56 (63) 60.75 (59) 61.79 (58) 53.34 (61)

WaveFake LJSpeech Parallel WaveGAN 71.11 (51) 56.18 (50) 46.72 (68) 57.99 (65) 57.22 (64) 58.51 (61) 53.14 (63)
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Dataset AST SSAST VIT Wav2vec2zh HuBERTzh HuBERTen Wav2vec2en

WaveFake LJSpeech Waveglow 77.81 (45) 48.62 (61) 48.12 (66) 67.10 (56) 65.88 (53) 59.07 (60) 53.73 (60)



Supplem
entary

results
|

173

Table C.6: Shallow feature-engineered cosine AUROCs (with ranks) for each dataset

Dataset Raw waveform LFCC Mel spectrogram MFCC STFT

ASVspoof 2019 A07 81.17 (18) 99.9 (2) 99.96 (1) 99.97 (2) 92.11 (5)

ASVspoof 2019 A08 78.57 (25) 99.17 (9) 99.48 (10) 99.29 (10) 83.62 (25)

ASVspoof 2019 A09 86.85 (7) 99.7 (8) 99.96 (2) 99.88 (7) 91.93 (6)

ASVspoof 2019 A10 82.10 (15) 99.87 (3) 99.93 (7) 99.95 (3) 90.6 (10)

ASVspoof 2019 A11 84.92 (11) 99.72 (7) 99.95 (4) 99.92 (4) 91.46 (9)

ASVspoof 2019 A12 81.55 (16) 99.74 (6) 99.94 (6) 99.87 (8) 89.9 (11)

ASVspoof 2019 A13 90.28 (3) 99.97 (1) 99.93 (8) 99.99 (1) 94.01 (2)

ASVspoof 2019 A14 89.9 (4) 99.75 (5) 99.95 (3) 99.91 (5) 91.83 (7)

ASVspoof 2019 A15 85.86 (8) 99.76 (4) 99.95 (5) 99.89 (6) 92.91 (3)

ASVspoof 2019 A16 81.13 (20) 99.16 (10) 99.84 (9) 99.56 (9) 85.36 (21)

ASVspoof 2019 A17 52.08 (55) 53.51 (53) 57.26 (49) 54.36 (51) 48.07 (64)

ASVspoof 2019 A18 61.14 (41) 57.37 (45) 60.21 (46) 56.37 (45) 49.2 (61)

ASVspoof 2019 A19 59.24 (44) 54.99 (49) 56.01 (51) 55.45 (47) 57.49 (41)

ASVspoof 2021 A07 77.17 (29) 93.74 (18) 94.23 (17) 93.18 (18) 86.5 (17)

ASVspoof 2021 A08 75.66 (31) 91.22 (28) 91.35 (29) 89.84 (30) 78.61 (30)

ASVspoof 2021 A09 81.29 (17) 92.21 (23) 93.17 (21) 90.8 (26) 86.49 (18)
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Dataset Raw waveform LFCC Mel spectrogram MFCC STFT

ASVspoof 2021 A10 78.58 (24) 93.44 (20) 93.96 (19) 92.86 (19) 85.15 (23)

ASVspoof 2021 A11 81.17 (19) 92.79 (21) 93.84 (20) 92.21 (20) 85.47 (20)

ASVspoof 2021 A12 78.58 (23) 92.22 (22) 92.71 (25) 90.92 (23) 85.23 (22)

ASVspoof 2021 A13 86.86 (6) 94.72 (16) 94.57 (16) 95.02 (15) 89.76 (12)

ASVspoof 2021 A14 87.04 (5) 92.17 (25) 92.89 (23) 90.89 (24) 86.78 (16)

ASVspoof 2021 A15 83.47 (13) 92.19 (24) 92.85 (24) 90.85 (25) 88.42 (13)

ASVspoof 2021 A16 77.48 (28) 90.43 (31) 91.46 (28) 89.88 (28) 80.01 (28)

ASVspoof 2021 A17 52.7 (53) 50.61 (56) 52.47 (53) 51.25 (52) 51.61 (47)

ASVspoof 2021 A18 59.71 (43) 54.88 (51) 56.08 (50) 54.81 (49) 51.36 (49)

ASVspoof 2021 A19 57.26 (46) 54.66 (52) 55.07 (52) 55.39 (48) 56.09 (42)

CFAD Aishell1 F01 75.45 (32) 92.14 (26) 90.01 (30) 91.27 (22) 71.17 (36)

CFAD Aishell1 F02 73.71 (33) 97.69 (12) 97.37 (11) 97.47 (12) 68.71 (38)

CFAD Aishell1 F03 70.67 (34) 72.51 (37) 66.39 (42) 68.84 (37) 67.24 (39)

CFAD Aishell1 F04 85.14 (9) 95.23 (15) 95.07 (15) 94.58 (16) 82.91 (26)

CFAD Aishell1 F05 90.66 (2) 77.35 (35) 83.54 (34) 74.19 (35) 97.42 (1)

CFAD Aishell1 F06 77.78 (27) 97.99 (11) 97.32 (12) 97.68 (11) 73.16 (35)

CFAD Aishell1 F07 84.17 (12) 70.34 (39) 72.00 (38) 68.14 (39) 77.01 (32)

CFAD Aishell1 F08 93.53 (1) 56.03 (48) 62.80 (44) 54.44 (50) 91.54 (8)



Supplem
entary

results
|

175

Dataset Raw waveform LFCC Mel spectrogram MFCC STFT

CFAD Aishell3 F01 52.98 (52) 70.81 (38) 70.63 (39) 70.30 (36) 52.16 (45)

CFAD Aishell3 F02 52.36 (54) 93.75 (17) 92.09 (26) 93.47 (17) 52.67 (44)

CFAD Aishell3 F03 51.10 (59) 50.69 (55) 52.33 (54) 49.86 (54) 51.13 (51)

CFAD Aishell3 F04 68.45 (36) 85.72 (33) 88.28 (31) 84.49 (32) 69.53 (37)

CFAD Aishell3 F05 80.6 (21) 66.55 (42) 78.43 (36) 67.57 (40) 92.69 (4)

CFAD Aishell3 F06 51.82 (57) 90.85 (29) 86.47 (32) 91.32 (21) 51.48 (48)

CFAD Aishell3 F07 51.84 (56) 44.34 (67) 57.79 (48) 47.65 (57) 49.97 (55)

CFAD Aishell3 F08 82.33 (14) 56.45 (46) 65.62 (43) 56.19 (46) 83.83 (24)

CFAD MagicRead F01 54.01 (48) 87.65 (32) 84.39 (33) 84.24 (33) 50.26 (54)

CFAD MagicRead F02 53.84 (49) 97.51 (13) 96.83 (13) 95.73 (13) 49.53 (59)

CFAD MagicRead F03 51.82 (58) 69.99 (41) 62.46 (45) 66.48 (42) 46.58 (67)

CFAD MagicRead F04 68.75 (35) 93.53 (19) 91.63 (27) 90.05 (27) 67.15 (40)

CFAD MagicRead F05 84.96 (10) 70.22 (40) 67.67 (41) 63.34 (43) 41.91 (69)

CFAD MagicRead F06 53.72 (50) 97.25 (14) 96.12 (14) 95.48 (14) 50.3 (53)

CFAD MagicRead F07 57.78 (45) 65.56 (43) 58.42 (47) 57.1 (44) 52.83 (43)

CFAD MagicRead F08 61.07 (42) 54.89 (50) 52.23 (55) 49.92 (53) 74.9 (34)

CFAD THCHS30 F01 65.10 (39) 74.43 (36) 76.94 (37) 68.27 (38) 77.44 (31)

CFAD THCHS30 F02 67.64 (38) 91.70 (27) 92.94 (22) 89.85 (29) 78.82 (29)
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Dataset Raw waveform LFCC Mel spectrogram MFCC STFT

CFAD THCHS30 F03 64.76 (40) 50.81 (54) 47.57 (57) 37.03 (65) 75.46 (33)

CFAD THCHS30 F04 78.18 (26) 82.03 (34) 80.51 (35) 76.22 (34) 86.18 (19)

CFAD THCHS30 F05 78.71 (22) 56.13 (47) 44.05 (59) 36.92 (66) 46.49 (68)

CFAD THCHS30 F06 68.12 (37) 90.60 (30) 94.00 (18) 88.71 (31) 80.58 (27)

CFAD THCHS30 F07 75.82 (30) 47.65 (60) 29.93 (69) 26.25 (68) 86.81 (15)

CFAD THCHS30 F08 46.03 (67) 45.86 (64) 32.86 (68) 25.73 (69) 88.07 (14)

FMFCC 43.23 (68) 64.11 (44) 68.2 (40) 66.58 (41) 47.87 (65)

WaveFake JSUT Multi Band MelGAN 54.11 (47) 50.01 (57) 45.84 (58) 47.78 (56) 51.98 (46)

WaveFake JSUT Parallel WaveGAN 53.31 (51) 47.49 (62) 48.84 (56) 47.90 (55) 51.21 (50)

WaveFake LJSpeech Conformer 38.66 (69) 43.51 (68) 41.34 (63) 47.46 (58) 46.80 (66)

WaveFake LJSpeech Full Band MelGAN 48.34 (66) 45.58 (65) 41.46 (62) 44.78 (62) 48.81 (62)

WaveFake LJSpeech HiFiGAN 50.93 (60) 47.55 (61) 40.25 (64) 45.21 (61) 50.44 (52)

WaveFake LJSpeech MelGAN 49.33 (62) 47.45 (63) 41.91 (60) 45.37 (60) 49.71 (57)

WaveFake LJSpeech MelGAN Large 48.65 (65) 47.66 (59) 41.55 (61) 45.48 (59) 49.58 (58)

WaveFake LJSpeech Multi Band MelGAN 50.72 (61) 48.09 (58) 38.5 (65) 44.32 (63) 49.51 (60)

WaveFake LJSpeech Parallel WaveGAN 49.13 (63) 38.59 (69) 34.44 (67) 36.08 (67) 49.91 (56)

WaveFake LJSpeech Waveglow 48.67 (64) 44.39 (66) 36.11 (66) 42.48 (64) 48.37 (63)
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Figure C.12: Box plot comparing nearest neighbour AUROCs for each of the self-supervised pre-
text tasks on corrupted input data.
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Figure C.13: Illustrations of the toy test data. Blue points are normal whereas orange points are
anomalous.
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