
Characterizing Physical Adversarial Attacks on Robot Motion Planners

Wenxi Wu, Fabio Pierazzi, Yali Du, Martim Brandão

Abstract— As the adoption of robots across society increases,
so does the importance of considering cybersecurity issues such
as vulnerability to adversarial attacks. In this paper we investi-
gate the vulnerability of an important component of autonomous
robots to adversarial attacks—robot motion planning algorithms.
We particularly focus on attacks on the physical environment,
and propose the first such attacks to motion planners: “planner
failure” and “blindspot” attacks. Planner failure attacks make
changes to the physical environment so as to make planners
fail to find a solution. Blindspot attacks exploit occlusions and
sensor field-of-view to make planners return a trajectory which
is thought to be collision-free, but is actually in collision with
unperceived parts of the environment. Our experimental results
show that successful attacks need only to make subtle changes
to the real world, in order to obtain a drastic increase in failure
rates and collision rates—leading the planner to fail 95% of
the time and collide 90% of the time in problems generated
with an existing planner benchmark tool. We also analyze the
transferability of attacks to different planners, and discuss
underlying assumptions and future research directions. Overall,
the paper shows that physical adversarial attacks on motion
planning algorithms pose a serious threat to robotics, which
should be taken into account in future research and development.

I. INTRODUCTION

As the adoption of robotics across sectors and in safety-
critical applications gradually increases, cybersecurity aspects
of robotics become more and more an important concern.
Using adversarial attacks, some actors may purposefully
cause accidents involving robots, such as to cause economic,
reputational, or other harms. For example, a company may
provoke an accident involving a competitor company’s
robot, or it may subtly cause small damage that raises the
competitor’s maintenance costs, thus obtaining an unfair
economic advantage. As another example, motivated by recent
incidents of vandalism against robots [1], unhappy users with
enough resources may attempt to have robots removed without
getting caught, by repeatedly making them fail in subtle ways
that lower trust or efficiency of the system.

In this paper we particularly focus on adversarial attacks
to motion planning algorithms—which compute feasible
trajectories for the motion a robot that lead it to satisfy
a given task (e.g. reaching or grasping an object). While
various adversarial attacks on computer vision [2], [3] and
reinforcement learning algorithms [4] have recently been
proposed and analyzed, attacks on traditional motion planning
algorithms [5], [6] have not yet been investigated even though
they are widely used in robotics.

All authors are with King’s College London, UK. This work was supported
by the UKRI Centre for Doctoral Training in Safe and Trusted Artificial
Intelligence [EP/S023356/1], and EPSRC Grant no. EP/X015971/1. Wenxi
and Martim were also supported by The Great Britain Sasakawa Foundation.

Motion Planner

Adversarial Attack

Success

Failure

A feasible path found

No feasible path found

Environment

Environment

Plan
Motion Planner

Plan Plan

Plan

Failure Attack Object

Fig. 1: Illustration of “planner failure” attacks. These make
changes to the physical environment so as to make the planner
fail to find a solution to the motion planning problem.

Adversarial Attack

Environment Perceived
Environment

Motion
Planner

Task
Execution

Adversary has no access

Robot System

Blindspot

Collision

Blindspot

Blindspot Attack 1

Camera
View

Blindspot Attack 2

Fig. 2: Illustration of “blindspot” attacks. These make changes
to the environment so as to cause a collision between the
robot and objects which are not perceived by the camera
(due to field of view or occlusion). Attack 1: manipulating
an articulated object. Attack 2: placing a new object.

In this paper we address this gap by proposing and
characterizing the first adversarial attacks on traditional
(sampling-based) robot motion planning algorithms. We focus
on the particular case of physical adversarial attacks on
the environment—i.e. where the attacker has access to the
physical environment of the robot, and is thus able to change
object positions or place a new object in the scene. This
paper will show that appropriate methods can make small,
potentially imperceptible, changes to the environment that
drastically raise motion planner failure and collision rates.

We propose two types of adversarial attacks, which are
illustrated in Fig. 1 and 2. The first is called a “planner
failure” attack. The idea is that placing objects in carefully
chosen locations could lead a motion planner to fail, i.e.
to not find a feasible solution to a problem. This could be
because the object location made the problem unsolvable,
or because it made it drastically more difficult to solve and
thus unsolvable within the planner’s computation time budget.
The second adversarial attack is called a “blindspot attack”.
The idea is that an attacker can exploit a robot’s (lack of)



field of view, and purposefully cause a collision with an
object that is visually occluded. This could be done by either
occluding certain parts of the environment or placing obstacles
in visually-occluded areas. So, the attack makes the motion
planner find a path that seems to be collision-free because
obstacles are in a blindspot, but is actually in collision.

The contributions of the paper are the following:
1) We propose and characterize the first physical attacks

on robot motion planning algorithms: called “planner
failure” and “blindspot” attacks;

2) We evaluate the feasibility of the attacks, both qualita-
tively and quantitatively in motion planning problems
from an existing motion planning benchmark;

3) We show that both attacks are able to drastically raise
planner failure and collision rates through small changes
in the environment, thus making these important attacks
to consider in robot security.

II. RELATED WORK

Recent research has shown that it is possible to produce
inconspicuous adversarial attacks on computer vision algo-
rithms, for example leading neural networks to misclassify
objects [3], [7], [8], [9], to not recognize faces or pedestrians
[2], [10], or to overestimate the quality of a grasp [11].

Some distinctions can be made between these attacks. One
is between digital and physical attacks. Digital attacks make
perturbations to images [9], [8], while physical attacks make
perturbations to the physical world [3], [2], [7], [10] (which
then gets perceived by a camera). Physical attacks need to be
robust against real-world problem-space distortions [12], e.g.
camera distances and angles, lighting conditions [7], [10].
Examples of physical attacks include graffiti on stop signs
[3], stickers and small objects attached to objects [13], [11],
and stickers attached to the lens of a camera [14]. Our paper
similarly proposes physical attacks, but it focuses on attacking
motion planning instead of computer vision algorithms.

Another distinction of adversarial attacks is on whether they
are obtained through continuous optimization methods like
gradient descent, or through evolutionary methods. Most deep
neural network attacks are based on gradient descent [3], [2],
[8], but they are not applicable if the model or feature mapping
is neither invertible nor differentiable [12], in which case some
have recurred to sampling-based evolutionary methods [13]. In
this paper we show results of attacks on traditional sampling-
based motion planning algorithms (RRT-Connect [6], KPIECE
[15]), which are not differentiable, and so similarly to [13]
require sampling methods to optimize the attack.

In robotics, adversarial methods have mainly been proposed
as a way to robustify controllers. For example, controllers
based on reinforcement learning can be made more robust
by having an adversary apply forces on the robot during
training [16], [17]. Our paper focuses instead on traditional
motion planning algorithms, which are commonly deployed
in existing robots.

III. BACKGROUND

The goal of motion planning algorithms is to compute a
feasible path for a robot’s degrees of freedom (e.g. its position

in the world and its joint angles) that satisfies collision,
kinematics, and task constraints—such as avoiding obstacles,
staying within robot joint limits, and grasping an object. The
algorithm will generate a path that connects a start state to a
goal state, such that all the states in the path respect collision,
kinematics, or other constraints. Sampling-based motion
planning methods [5], [6], [15] can solve high-dimensional
and non-convex planning problems by decomposing the path
into waypoints which are randomly sampled and connected
to a tree that is gradually explored.

In this paper we evaluate our adversarial methods on RRT-
Connect [6] and BKPIECE [15] which are two efficient and
popular methods used in practice, and integrated into ROS
[18]. RRT-Connect expands two trees, one from the start
configuration and one from the goal, and tries to connect them
by using a greedy heuristic. The algorithm is typically faster
than RRT [5]. Bidirectional Kinodynamic Motion Planning by
Interior-Exterior Cell Exploration (BKPIECE) [15] is also a bi-
directional sampling-based algorithm, which selects nodes for
expansion based on their coverage, so as to focus computation
on yet-uncovered regions of space. It is typically faster than
Expansive Space Trees (EST) [19].

IV. PLANNER ATTACK METHODS

The goal of both methods proposed in this paper is to make
changes to the environment that lead to either planner failure
or a collision with the environment with high probability. We
now describe the assumptions behind these attacks.

A. Threat Model

1) Objectives: The goal of the adversary is to either make
a motion planner fail to find a path (“planner failure” attack)
or to make the planner produce a path that is in collision
with obstacles (“blindspot” attack). The adversary also has
the goal of producing inconspicuous attacks, i.e. changes to
the environment are small, or lead to states that are visually
similar to regular world states. This is to make failures look
natural, or look like an accident, thus lowering the chances
that the attack is recognized as such. Our attacks implement
inconspicuousness by adding very small objects (e.g. a small-
radius sphere) to the environment, or making small changes
to the state of articulated objects.

2) Incentives: We assume the adversary’s incentives are
to cause economic loss to those deploying or maintaining
robots, e.g. by lowering efficiency through high failure rates
or by raising collisions and thus damage to the robot or
environment. The incentive could also be to undermine the
reputation of robots, or those deploying robots.

3) Knowledge and Capability: We assume the adversary
generates attacks on the motion planner by manipulating the
environment where the robot operates. We thus assume the
adversary has knowledge of the (expectation of) location
of objects in the environment, typical tasks done in that
environment (e.g. geometry and location of object that will
be grasped at some point in the future), as well as knowledge
of the type of planner used and its parameters (e.g. RRT with
a 5 second time budget). These are reasonable assumptions,
as robots often operate in the same environment over long



periods of time, and conducting similar tasks. Also, the use of
certain planners (e.g. RRT) is widespread and so may be easy
to guess. Since the adversary has this knowledge, they do
not have to make environmental changes in real-time. They
can conduct various experiments in a simulated environment
so as to decide what change to the environment they should
make later on to implement the attack.

B. Common Definitions

Let E be the space of environments and E ∈ E be an
environment defined as set of “objects” E = {o1, ...oN}.
Each object in an environment is a tuple oi = (gi, θi, ri) of
geometry gi (e.g. a 3D mesh or primitive), a pose θi (e.g.
position and orientation in SE(3)), and a parent object with
respect to which the pose is defined ri (e.g. box with respect
to which its lid’s pose is defined).

Then let c : E ×A → E be a function that makes changes
to an environment E, using parameters a ∈ A and thus
obtaining a new environment E′ = c(E, a). In this paper we
consider two kinds of environment changes, corresponding to
two implementations of this environment-change function c:

1) Placing a new object at a given position and orientation
in the world, i.e. a is a new object a = (g, θ, r) and
E′ = c1(E, a) = E ∪ a;

2) Changing the position and orientation of existing
objects or parts-of-articulated-objects in the world (e.g.
opening/closing a door by a certain degree as illustrated
in Fig. 8). Here a = (i, θa) is a tuple of the index i
of an existing object in the world and a new pose θa,
and E′ = c2(E, a) is such that E′ = E for all objects
except i, where θ′i = θa.

The adversary has knowledge of a motion planning problem
(E, s, t) where s is a random variable representing the start
state of the robot in configuration space S, and t ∈ T are
target constraints in task space. We make t constant but allow
s to be a random variable, as it may be easy for an attacker
to predict a task (Section IV-A), but difficult for them to
predict the initial state of the robot when solving that task.

A “planner” is a function Fplan : E×S×T → P that returns
a feasible path p ∈ P that satisfies kinematics, collision, and
target constraints. We assume that the planner function Fplan
first obtains the visible part of the environment Ev ⊆ E
(i.e. the part of the environment that is visible by the robot’s
sensors from state s) and only then runs a motion planning
algorithm such as RRT on Ev . We do this in order to obtain a
realistic simulation of planning in the real-world, where some
objects are not seen by the cameras.1 If the planner fails to
find a feasible path, i.e. a path that satisfies constraints and
is not in collision with Ev , then p = ∅.

Finally, we define a convenience function for the success
of a planner fsuccess : P → {0, 1}, where fsuccess(p) = 0 if
p = ∅ and 1 otherwise. And a convenience function for the
existence of collisions between a path and an environment
fcollision : P × E → {0, 1}, where fcollision(p,E) = 1 if p is
in collision with E, and 0 otherwise.

1This will be important for the blindspot attack, as its goal is to raise the
chances of collision with unperceived parts of the environment.

Algorithm 1: Planner failure attack optimization
Data: E, t, and set of start configurations s1, ..., sM

1 a∗ ← [] ;
2 σ∗ ← 1

M

∑
i=1...M fsuccess(Fplan(E, si, t)) ;

3 for it = 1, ..., MaxIter do
4 a← SamplePhysicallyRealizable(A, E) ;
5 E′ ← c(E, a) ;
6 σ ← 1

M

∑
i=1...M fsuccess(Fplan(E

′, si, t)) ;
7 if σ < σ∗ then
8 σ∗ ← σ ;
9 a∗ ← a ;

10 return a∗, σ∗ ;

C. Planner Failure Attacks
We define “planner failure” attack as one that changes the

robot’s environment so as to lower the success rate of the
planner. The attack is illustrated in Fig. 1. The goal of the
attack is to solve the following optimization problem:

minimize
a

Es[fsuccess(Fplan(c(E, a), s, t))]. (1)

Intuitively, the goal is to find a single environment change
parameter a that leads to a new environment E′ = c(E, a),
on which the expected value of planner success (over many
start configurations) is as low as possible.

To solve this optimization problem, in this paper we
adopt a simple approach, which is to randomly sample a
within physically-realisable values for a fixed number of
iterations. We found this strategy to work well in practice,
though more advanced evolutionary algorithms [11], [20]
could also be used. Pseudo-code of our algorithm is shown
in Algorithm 1. As the pseudo-code shows, we compute the
expected value Es[fsuccess(Fplan(c(E, a), s, t))] by taking the
average of fsuccess over a set of different start configurations
s1, ..., sM ∈ S. We obtain these configurations through
random sampling for each motion planning problem and
keep them fixed throughout the optimization process. The
function SamplePhysicallyRealizable(A, E) performs uniform
sampling within the space of A until it finds a value of a
that does not lead to a collision between environment objects.
In the case where a is a new object to be placed in the
environment, i.e. c = c1, then SamplePhysicallyRealizable
will also guarantee that the new object is placed within a
certain threshold distance of E—to make sure that it could be
“attached” or “glued” to the environment. Throughout the rest
of the paper, therefore, we will refer to physical attacks as
any attacks on the physical environment, regardless of their
realism or implementation difficulty, and we will refer to
physically realizable attacks as those that also satisfy physical
and implementation constraints such as being collision-free
and attachable.2

In order to make the attacks inconspicuous, in this paper
we implement c1(E, a) as the placement of a small-radius

2Note that attacks far away from E, even though not attachable, could
potentially still be realized, e.g. through a transparent base or string from
the ceiling—though for simplicity we will not consider these in the paper.



sphere, i.e. a = (g, θ, r) where g is a small-radius sphere,
θ = (x, y, z) is a position, and r = ∅ (i.e. positions are
set w.r.t. the world reference frame). This type of attack is
similar to the idea of “one-pixel” attacks in computer vision
[8], since both make a point-wise change to the input.

D. Blindspot Attacks
We define “blindspot” attacks as those that lead the planner

Fplan to generate a path that, even though not in collision
with the visible environment Ev , is actually in collision with
the real environment E. The attack is illustrated in Fig. 2. As
shown in the figure, the adversary makes small changes to
the environment (e.g. the state of an articulated object such
as a door or lid; or the placement of a new obstacle) that
lead an object to be placed in an area that is not perceived
but likely to be used by the planned path—and thus lead to
a collision. The goal of a blindspot attack is to solve the
following optimization problem:

maximize
a

Es[fcollision(Fplan(c(E, a), s, t))]. (2)

Intuitively, the goal is to find a single environment change
parameter a that leads to a new environment E′ = c(E, a),
on which the expected value of path collision is as high
as possible. Similarly to planner failure attacks, we solve
this optimization problem using a sampling-based approach
equivalent to Algorithm 1, but which replaces fsuccess by
fcollision and the inequality in line 7 by σ > σ∗.

V. RESULTS

A. Experimental Setup
We evaluate our attack methods in the manipulation scenes

of MotionBenchMaker [21], which is a tool to generate
and benchmark datasets of realistic robot motion planning
problems. The robot is a mobile manipulator Fetch with
a 7-degree-of-freedom arm. We used MotionBenchMaker
to generate a set of 20 planning problems in BenchMaker’s
kitchen scene and box scene. All problems have the same start
configuration, but objects in the scene are randomly initialized
around the robot. For each problem, the target object that
the robot has to grasp is also randomly initialized (on top of
a shelf on the kitchen scene, and inside the box on the box
scene). The goal of each planning problem is a task-space
pose of the end-effector, which is always set to a pre-grasp
location with respect to the target object. When the planner
is able to obtain a path within a given tolerance of the target
pose, 1cm (translation) and 0.01rad (orientation) in each axis,
we consider the planner to have succeeded. To evaluate lines
2 and 6 of Algorithm 1 we use M = 20 start configurations
for each planning problem, and MaxIter is set to 50 unless
stated otherwise. We consider obstacle placement attacks
as physically realizable when they are within a threshold
distance of 10cm to the environment (allowing an attacker to
physically attach the object to the environment).

We evaluate our attacks on two popular sampling-based
motion planners: RRT-Connect [6] and BKPIECE [15]. We
selected these planners as they are both efficient and widely
adopted [22], [23]. All experiments were run on a laptop PC
with an 8-core 3GHz Intel® CoreTM i7 Processor.

Fig. 3: Visualization of 100 unconstrained “planner failure”
attacks (i.e. physical realizability not enforced) on one
problem from the box scene and one from the kitchen scene.

(a) Attack object (purple)
on the edge of the box.

(b) Attack object (purple)
next to target (green)

Fig. 4: Examples of physically realizable “planner failure”
attacks.

B. Planner Failure Attacks

Examples. To showcase planner failure attacks we simu-
lated the placement of small fixed-size (4cm-radius) spheres
as attacks. Fig. 3 shows 100 unconstrained attacks (i.e. not
necessarily physically realizable) to the RRT-Connect planner
in one problem from MotionBenchMaker’s box and kitchen
scenes. It took on average 437.5 seconds to generate 100
attacks. In the box problem, the robot has to reach inside the
box and place its end-effector in a pre-grasp pose to grasp
the green object. In the kitchen problem the robot has to
move the cylinder from the shelf into the dishwasher. All the
visualized attacks (purple spheres) lead the motion planner
to not find a feasible solution to the problem with non-zero
probability. We will analyze these probabilities later.

Most of the attacks shown in Fig. 3 lie in areas of
the environment that are occupied by the robot at the
goal configuration—however, some of these locations are
physically realizable and may be imperceptible to the user
due to the inconspicuous object size and location. Only
58% of these attacks are realizable (i.e. within 10cm of
the environment, so they could be “attached” to it). Fig. 4
shows two of the realizable attacks of the box problem. One
of them involves placing an object on the edge of the box,
while the other places an object next to the target.

Effectiveness. We then evaluated the effectiveness of
the attacks obtained with Algorithm 1. Fig. 5 shows the
success rate of the optimal attacks, averaged over 20 motion
planning problems. The figure also compares our method
to 1) the success rate of the planner before any attack; 2) a
baseline random-attack method (which randomly selects a
point in space to place the obstacle at); 3) the success rate
of unconstrained attacks that do not need to be physically



No attack Random Unconstrained Realizable
0

0.2

0.4

0.6

0.8

1

P
la

nn
er

 s
uc

ce
ss

 r
at

e

Fig. 5: Average planner success rate under “planner failure”
attacks on box-scene problems.

5 10 15 20 25 30 35 40 45 50

Number of iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
la

nn
er

 s
uc

ce
ss

 r
at

e

Unconstrained attacks
Realizable attacks

Fig. 6: Planner success rate as a function of the number of
iterations of our “planner failure” attack method.

realizable (i.e. where physical realizability is not enforced, and
therefore spheres may be flying in space). The figure shows
that RRT-Connect always finds a path to the 20 problems
(each from 20 different start configurations) when there is no
attack. Random attacks slightly reduce the success rate to 92%,
but our method leads to a drastically lower average success
rate of 5.0%. Interestingly, the figure also shows that, were
the attacker not constrained by physics, then unconstrained
attacks could lead the planner to have a success rate of 0%—
this is because of the higher flexibility available for where
to place obstacles (e.g. flying in space).

To investigate the trade-off between attack effectiveness
and the amount of computation resources used (i.e. algorithm
iterations), we computed the planner success rate achieved
when our algorithm is allowed to run for anywhere between
1 and 50 iterations. Fig. 6 shows the results. The figure
shows that our algorithm’s solution quickly reaches 10%
planner success rate, in under 10 iterations. It also shows
that physically realizable attacks take longer to converge
to the optimal solution, compared to unconstrained attacks,
due to the increased complexity of the space. As we used a
simple random sampling strategy to generate attacks, both
computation time and quality of the attacks could potentially
be further improved by using a more advanced evolutionary
[11], [20] or heuristic method.

Transferability. Finally, we evaluate the transferability of
planner failure attacks. Transferability measures the ability
of an attack to remain effective when applied to a different,
possibly unknown, planner [24]. We compute the success
rate of one motion planner when solving problems that
were attacked by assuming a different motion planner. To
do this, we used the attacks optimized for RRT-Connect,

TABLE I: Transferability and generalization of “planner
failure” attacks: success rate of attacks on different planners∗

RRTC-RRTC RRTC-BKP BKP-BKP
5.0% ± 20.5% 5.2% ± 18.7% 0% ± 0%

∗Note: Attacks are computed for a specific planner, and then tested on a
different planner, e.g. RRTC-BKP: computation on RRT-Connect and testing
on BKPIECE. Results shown are success rates on the test planner.

Fig. 7: Example of a “blindspot” attack, where the lid of a
box is fixed at an angle where the robot is not able to fully
perceive it, thus leading to a trajectory that is thought to be
collision-free but is actually in collision.

and computed the success rate of BKIPECE at solving
those problems. Table I shows the results. For comparison,
we also show the success rate of RRT-Connect at solving
those problems, and the success rate of BKPIECE at solving
problems with attacks optimized for BKPIECE. The table
shows that, when we transfered the attacks generated for
RRT-Connect to BKPIECE, the planner success rate was still
low, almost equal to when tested on RRTC (5.2% on BKP
vs 5.0% on RRTC). This shows that the failure attacks were
highly transferable to a different planner. Interestingly, the
table also shows that attacks optimized for BKPIECE lead this
algorithm to have a 0% success rate—meaning that BKPIECE
is easier to attack than RRT-Connect, which could be due to
lower amount of randomness in the planner’s outputs. This
also shows that our attack method is generalizable to other
planning methods.

The results in this section thus show that it is possible
to make very small changes to an environment that lead
traditional motion planners to drastically fail to find a solution
to a problem—and these attacks are also transferrable to other
planners. Such attacks could cause delays during robot use,
as they would require a human to intervene, or the robot to
start a recovery mechanism.

C. Blindspot Attacks

Example I. Fig. 7 shows an example of a blindpot attack,
where the occupancy cubes (colored according to height)
represent the regions of space that are perceived by the camera.
The trail of the robot arm is a path planned when using the
occupancy grid as occupied space. The figure shows that the
robot arm collides with the lid of the box because a large
section of the lid is not within the camera’s field of view.

Effectiveness. To showcase blindspot attacks on this
environment, we parameterized the attack a using the angle



(a) 15 Degree (b) 45 Degree (c) 90 Degree

Fig. 8: Real and perceived environment under different box
lid angles. Real environment shown in grey, perceived showed
with a colored occupancy grid.

15 30 45 60 75 90
Angle of Box Lid

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
e
q

u
e
n
cy

o
f

C
o
lli

si
o
n

Fig. 9: Collision frequency of paths under different box lid
angles, as an example “blindspot” attack. An attacker can
change this angle on purpose to make the robot to collide
with the environment. Larger angles make the attack more
inconspicuous, as 90o is the default state of the object.

of the box lid. Fig. 9 shows the frequency of plan collisions
for several values of a, from 15 to 90 degrees. The figure
shows that when the lid is wide open at 90 degrees, the
planned trajectory only collides with the environment 1% of
the time. This is because even though the lid is not perceived
by the camera, as shown in Fig. 8, it is too far away from the
region of space that is used by the obtained plans for there
to be collisions. However, when a is set to 45 degrees the
collision rate drastically increases to 63%, and then to 90%
at 30 degrees. This is because the access space into the box
is getting smaller but the camera cannot still perceive the lid
fully. Only when the lid angle is small—15 degrees—does
the robot start to perceive a large section of the lid (see Fig. 8)
and can thus compute mostly collision-respecting plans again,
with a collision rate of 25%. Fig. 9 thus represents the trade-
off between attack effectiveness (i.e. collision frequency) and
inconspicuousness (i.e. box lid angle values closer to 90
degrees are more inconspicuous, as this is assumed to be the
usual state of the object).

Example II. We then obtained results using the same
attack parameterization as that in the planner failure attacks
of Section V-B—i.e. a as a new 4cm-radius sphere to add
to the scene. Fig. 10 shows the attack obtained by running
our method on the box scene. As the figure shows, the attack
places the object inside the box, close to a lateral wall of
the box but in a location that is on the camera’s blindspot.
The sphere is not perceived as it is occluded by the frontal
wall of the box. RRT-Connect thus succeeds to find a feasible
(in the occupancy grid) trajectory, but this trajectory is in
collision with the placed obstacle when executed.

Collision: Object in Blindspot

Fig. 10: Example of “blindspot” attack computed by our
method, which places an object in a part of the environment
that is not perceived by the robot’s camera.

These results thus show that it is possible to make very
small changes to an environment—slightly lowering the lid of
a box from which objects are typically retrieved, or placing a
small obstacle in area that is occluded by other objects—that
lead traditional motion planners to compute paths that collide
with the environment, thus potentially causing damage to the
robot or the environment itself.

VI. CONCLUSIONS AND DISCUSSION

In this paper we proposed and evaluated two kinds of
physical attacks on robot motion planners. “Planner failure”
attacks occupy part of the perceived workspace, thus making
the planner fail to find a solution to the motion planning
problem. “Blindspot” attacks occupy space that is not per-
ceived by the robot’s sensors, causing planned trajectories to
collide with the environment.

Our results show that successful attacks need only to
make subtle changes to the real world, in order to obtain a
drastic increase in failure rates and collision rates—leading
the planner to fail 95% of the time and collide 90% of
the time in problems generated with MotionBenchMaker
[21]. Compared with other physical adversarial attacks in the
literature, ours have relatively high effectiveness (e.g. 55%
collision rates on a Reinforcement Learning attack in [4].
The results also showed that there is a trade-off between
computational resources spent and the effectiveness of the
attacks, but that attacks may transfer well to different planners
if optimal solutions are used.

By manual inspection of the generated attacks, we noticed
that many failure attacks that can significantly decrease the
success rate of the planner are actually very close to the
target object. This is expectable, as placing an object just
next to the target object will make grasping it impossible, but
at the same time leads the attack to be highly noticeable to
humans, which means they are more likely to be identified
as attacks. In the future, better metrics of inconspicuousness
should be investigated, for example through user studies.

Other directions of future research include the investigation
of possible defenses, such as the detection of small obstructing
objects, recognition of adversarial attacks, automatic recovery
plans that move objects around to make a problem feasible
[25], or mapping algorithms for blindspot-minimization.



REFERENCES

[1] J. A. Oravec, “Robo-rage against the machine: Abuse, sabotage, and
bullying of robots and autonomous vehicles,” in Good Robot, Bad
Robot: Dark and Creepy Sides of Robotics, Autonomous Vehicles, and
AI. Springer, 2022, pp. 205–244.

[2] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to
a crime: Real and stealthy attacks on state-of-the-art face recognition,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 1528–1540. [Online].
Available: https://doi.org/10.1145/2976749.2978392

[3] I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li, A. Prakash,
A. Rahmati, and D. Song, “Robust physical-world attacks on
machine learning models,” CoRR, vol. abs/1707.08945, 2017. [Online].
Available: http://arxiv.org/abs/1707.08945

[4] X. Pan, C. Xiao, W. He, S. Yang, J. Peng, M. Sun, M. Liu, B. Li,
and D. Song, “Characterizing attacks on deep reinforcement learning,”
in Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, 2022, pp. 1010–1018.

[5] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” in
Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C), vol. 1, 1999, pp. 473–479 vol.1.

[6] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No.00CH37065), vol. 2, 2000, pp.
995–1001 vol.2.

[7] S.-T. Chen, C. Cornelius, J. Martin, and D. H. Chau, “Shapeshifter:
Robust physical adversarial attack on faster r-cnn object detector,” in
Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14,
2018, Proceedings, Part I 18. Springer, 2019, pp. 52–68.

[8] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE Transactions on Evolutionary Computation,
vol. 23, no. 5, pp. 828–841, 2019.

[9] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial
examples for semantic segmentation and object detection,” 2017.

[10] S. Thys, W. Van Ranst, and T. Goedemé, “Fooling automated
surveillance cameras: adversarial patches to attack person detection,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, 2019, pp. 0–0.

[11] N. W. Alharthi and M. Brandao, “Physical and digital adversarial attacks
on grasp quality networks,” in 2024 IEEE International Conference
on Robotics and Automation (ICRA), May 2024.

[12] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing
properties of adversarial ml attacks in the problem space,” in 2020
IEEE symposium on security and privacy (SP). IEEE, 2020, pp.
1332–1349.

[13] X. Wei, Y. Guo, and J. Yu, “Adversarial sticker: A stealthy attack
method in the physical world,” 2022.

[14] J. Li, F. R. Schmidt, and J. Z. Kolter, “Adversarial camera
stickers: A physical camera-based attack on deep learning
systems,” CoRR, vol. abs/1904.00759, 2019. [Online]. Available:
http://arxiv.org/abs/1904.00759

[15] I. A. Sucan and L. E. Kavraki, “A sampling-based tree planner for
systems with complex dynamics,” IEEE Transactions on Robotics,
vol. 28, no. 1, pp. 116–131, 2012.

[16] L. Pinto, J. Davidson, and A. Gupta, “Supervision via competition:
Robot adversaries for learning tasks,” 2016.

[17] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust
adversarial reinforcement learning,” in Proceedings of the 34th
International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, D. Precup and Y. W. Teh, Eds.,
vol. 70. PMLR, 06–11 Aug 2017, pp. 2817–2826. [Online]. Available:
https://proceedings.mlr.press/v70/pinto17a.html

[18] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[19] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in Proceedings of international conference on
robotics and automation, vol. 3. IEEE, 1997, pp. 2719–2726.

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr 2002.

[21] C. Chamzas, C. Quintero-Peña, Z. K. Kingston, A. Orthey,
D. Rakita, M. Gleicher, M. Toussaint, and L. E. Kavraki,
“Motionbenchmaker: A tool to generate and benchmark motion
planning datasets,” CoRR, vol. abs/2112.06402, 2021. [Online].
Available: https://arxiv.org/abs/2112.06402

[22] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:
A review,” IEEE Access, vol. 2, pp. 56–77, 2014.

[23] C. Zhou, B. Huang, and P. Fränti, “A review of motion planning
algorithms for intelligent robots,” Journal of Intelligent Manufacturing,
vol. 33, no. 2, pp. 387–424, 2022.

[24] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea,
C. Nita-Rotaru, and F. Roli, “Why do adversarial attacks transfer?
explaining transferability of evasion and poisoning attacks,” in 28th
USENIX security symposium (USENIX security 19), 2019, pp. 321–338.

[25] Q. Liu and M. Brandao, “Generating environment-based explanations of
motion planner failure: Evolutionary and joint-optimization algorithms,”
in 2024 IEEE International Conference on Robotics and Automation
(ICRA), May 2024.


