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Abstract

We introduce a novel classification framework for time-series impu-
tation using deep learning, with a particular focus on clinical data. By
identifying conceptual gaps in the literature and existing reviews, we de-
vise a taxonomy grounded on the inductive bias of neural imputation
frameworks, resulting in a classification of existing deep imputation strate-
gies based on their suitability for specific imputation scenarios and data-
specific properties. Our review further examines the existing method-
ologies employed to benchmark deep imputation models, evaluating their
effectiveness in capturing the missingness scenarios found in clinical data
and emphasising the importance of reconciling mathematical abstraction
with clinical insights. Our classification aims to serve as a guide for re-
searchers to facilitate the selection of appropriate deep learning imputa-
tion techniques tailored to their specific clinical data. Our novel perspec-
tive also highlights the significance of bridging the gap between compu-
tational methodologies and medical insights to achieve clinically sound
imputation models.

1 Introduction

In key areas such as finance [78], healthcare [25] and weather forecasting [26],
predictive analytics frequently rely on extensive, diverse, and multimodal time
series data. These datasets are complex, exhibiting characteristics such as
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skewed and long-tailed distributions and typically comprise a large number of
multimodal and interrelated variables sampled at varying frequencies. The com-
plexity is further compounded by the prevalence of non-random missingness,
which is informative of the underlying data structure and highly influences the
quality of predictive models performing downstream tasks.

Recent advances in deep learning techniques have outperformed traditional
statistical and machine learning imputation methods when applied to large and
heterogeneous time-series datasets [91]. These models, herein referred to as deep
imputers, do not make strong assumptions about the underlying distribution
of the data and learn directly from the data itself, allowing them to capture
complex patterns and relationships without being constrained by predefined
distributions. Such flexibility is particularly valuable in dealing with large and
heterogeneous time-series datasets, where the underlying distribution may be
unknown or highly variable.

The literature contains a wide variety of deep imputers based on various
architectures including convolutional neural networks (CNNs) [35], recurrent
neural networks (RNNs) [77], and multi-layer perceptrons (MLPs) [2]. Several
recent reviews exist, categorising existing methods in a number of ways. For
example, [27] classifies deep imputers by the type of missingness handled (e.g.,
missing completely at random, missing at random or missing not at random)
and the neural architectures employed. In contrast, [91] classifies imputers based
on their abilities to model and quantify stochasticity. Furthermore, because of
unique characteristics and challenges in healthcare datasets, some literature
reviews have focused on surveys specific to medical time series such as [44]
and [48]; particularly on benchmarking performance across multiple datasets
and exploring how different deep imputers perform across different data types
and levels of correlations among the variables modelled.

Examining the literature on deep imputers, particularly those benchmarking
model performance using medical datasets, often shows disparities in reported
performance depending on the task, architecture, implementation approach and
training data [24]. Our review has also uncovered a variety of data processing
and masking techniques used to simulate missingness during experimental eval-
uation; those are yet to be systematically studied, leaving a critical gap in our
understanding of the factors leading to the performance metrics reported in ex-
isting literature reviews. More importantly, the current level of scrutiny of the
various types of deep imputers is insufficient to make an informed choice of the
appropriateness of a given model for a specific task or dataset. To our knowl-
edge, no comprehensive review thoroughly examines deep imputers beyond their
architecture and general performance metrics.

We have therefore endeavoured to ask the following questions to support
the assessment of the suitability of a given deep imputer for a given task: a)
what are the characteristics of a given multivariate time series that make a
particular category of deep imputers more suitable than others? b) what is the
effect of the data processing steps adopted by a given model on the rigor of
evaluation and subsequent performance? c) what are the distinct properties of
medical time-series data and how effectively does the current paradigm of deep
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imputers account for them?
Our review builds on the latest review of deep imputers in the context of

electronic health records (EHRs) [48] by offering a road map that connects the
characteristics of deep imputers to the mechanisms by which they influence
model performance for a given dataset with different types of missingness. We
present a taxonomy grounded in the concept of inductive bias [6], which refers
to the preferences, priors or assumptions a deep learning model inherently makes
about the data, guiding its generalisation from training data to unseen test data.
Moreover, we examine the extent to which data processing and experimental
methods reflect real-world missingness in healthcare datasets and investigate
current gaps in the benchmarking techniques found in the literature. Our goal is
to enhance the understanding of deep imputation mechanisms, improve model
and architecture selection, and refine evaluation methodologies for data with
specific attributes, thereby addressing the current shortcomings in deep learning
imputation research for EHR data.

2 Background

2.1 Characteristics of EHR Data

The intended use of EHR data to support clinical care and inform treatment
decisions introduces a unique set of characteristics that directly impact the
imputation process. Specifically, EHR time series are inherently multimodal,
capturing patient health dynamics through continuous measurements (e.g.,
heart rate), discrete events (e.g., medication changes) and ordinal data (e.g.,
cancer stages). These multimodal variables are recorded asynchronously at
intervals which vary according to clinical needs. For example, heart rate is
sampled more frequently than capillary blood glucose, and laboratory tests are
conducted when clinicians anticipate a need [42].

As the variables recorded in EHRs jointly capture a patient’s treatment
journey, they exhibit multiple forms of dependencies. Many variables are cross-
sectionally correlated, which can introduce redundancy by overemphasising
certain features. For example, clinical practice often dictates ordering test pan-
els and laboratory tests are seldom requested in isolation; ordering electrolyte
tests typically includes kidney function tests, and calcium tests require concur-
rent albumin measurements to adjust calcium levels [68]. The correlations are
particularly problematic given that clinical insights often lie within the extreme
values of skewed distributions of clinical variables, such as abnormally high
or low blood sugar. An imputation model, therefore, needs to accurately discern
those informative outliers which mark physiological events, from noise.

The dependencies among EHR time-series also extend across the temporal
dimension, encompassing short-term and long-term temporal dependen-
cies that hold significant meaning within a patient’s trajectory. Immediate
physiological responses reveal acute body reactions, while prolonged interven-
tions or chronic conditions manifest long-term effects. For example, a heart
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attack will result in immediate-term changes in blood pressure and heart rate,
intermediate-term changes in renal function, and long-term varying effects on
many features of interest if it leads to heart failure. Accurately modelling these
temporal dependencies requires understanding the sequential patterns in EHRs,
and balancing the impact of historical health events against recent ones. More-
over, temporal locality, which refers to physiological events occurring closely
together in time, plays significant roles in clinical diagnosis. For instance, re-
curring patterns of irregular heartbeats persisting over short periods are char-
acteristic of atrial fibrillation. Finally, many variables adhere to the notion of
temporal invariance, whereby certain physiological patterns maintain clinical
relevance regardless of the specific moment in the patient’s timeline and regard-
less of temporal shift. For example, the presence of elevated troponin levels
in blood tests consistently indicates heart injury, regardless of when the test
is conducted within the patient’s clinical timeline. Here, the imputation must
maintain the salience of the variables adhering to temporal invariance.

Finally, medical time-series distributions are often highly-skewed; they ex-
hibit a natural class imbalance where the amount of training data available for
a given outcome of interest is generally low. To illustrate, consider a warning
system for in-hospital cardiac arrest, which requires training on patient records
whose hospital stays culminate in a cardiac arrest. Cardiac arrest incidence
is estimated to be as low as 2.3% of intensive care unit admissions [3], which
makes the target population a minority with much less training data available
compared to the majority (no cardiac arrest) class. Class imbalance is further
amplified by the variability in clinical presentations of patients with the same
disease [59], making the group of interest (those with a given clinical presenta-
tion) only a minority in any patient population.

2.2 EHR Missingness Beyond Traditional Frameworks

The complex characteristics of EHR data raise the question: how can one ef-
fectively model missingness and develop imputation strategies that preserve
the dependencies and clinical meaning of the data? Following Rubin’s classi-
fication [75], missing data mechanisms are traditionally classified into Missing
Completely at Random (MCAR), Missing at Random (MAR), and Missing Not
at Random (MNAR), reflecting the relationship between missingness in both ob-
served and unobserved data. While Rubin’s framework remains fundamental in
missing data analysis and continues to be used for classifying imputation models
in the latest literature reviews [48, 91], it fails to fully capture the complexities
of EHR data. In EHRs, missingness often results from the documentation prac-
tices involved in routine patient care and may patient-specific insights [7]. For
example, a lab test might be missing because it was not ordered for a given pa-
tient, or because normal results are not typically recorded. Such practices blur
the distinction between missing and observed variables [33, 90] and complicate
the practicality of the categorical distinctions of MCAR, MAR and MNAR [33].

A more pertinent issue in EHRs is structured missingness [62], where the
large volumes of heterogeneous and multimodal data, along with specific modes
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of data collection, cause missing values to exhibit associations and structural
patterns. This non-random, multivariate associative pattern of missing values
fundamentally hinders large-scale machine learning. In EHRs, structured miss-
ingness naturally arises from the asynchronous and decision-driven nature of
healthcare data collection [90]. Over 60% of EHR data is missing not at ran-
dom [54] due to irregular sampling intervals dictated by clinical decisions and
carry meaningful insights.

Figure 1: Taxonomy of Deep Imputers. On the left, the foundational neural
network architectures are listed: RNN, GNN, Attention mechanisms, CNN, and
MLP. The middle section classifies these architectures into broader categories
based on their imputation frameworks, such as GAN, MDN, Neural OD, VAE
and Diffusion models. Architectures and frameworks are labeled accordingly.
The right section of the diagram lists deep imputation models developed using
these methodologies, like TSI-GNN, MRNN, BRITS, Sim-GAN, and GP-VAE,
among others.

3 Taxonomy of Deep Imputers

Our multidimensional exploration of the literature on deep imputers is depicted
in Figure 1 and further detailed in Table 1. Our taxonomy is based on the
following principles:

1) The effectiveness of an imputation model in interpreting the complexity and
missingness patterns of a given dataset relies on the fundamental connection
between the dataset’s characteristics and the model’s inductive bias [32]. In-
ductive bias refers to the set of assumptions, preferences, or constraints that
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guide the learning process to reduce the space of possible solutions by prioritis-
ing one solution over another, independent of the observed data. This signifi-
cantly influences the model’s behaviour, generalisation capabilities, robustness,
and ultimately shapes the resulting imputations. Inductive bias can take several
forms related to the complexity of the learned representation, the underlying
data distribution, or preferences regarding the learned parameters [32]. Since
our review focuses on understanding the link between existing deep imputers
and specific data properties and tasks, we highlight two types of inductive bias:
preference bias, which dictates a model’s assumptions in hypothesis selection by
prioritising certain functions over others, effectively shaping its preferences for
certain types, patterns, or relationships, and uncertainty bias, which dictates
how a model accounts for uncertainty in its produced output.

2) Modern deep imputers are a combination of neural architectures and frame-
works. A network’s architecture dictates the physical structure and design of
the neural network itself, including the arrangement of layers, the type of neu-
rons used, and how these neurons are connected, e.g. convolutional networks.
On the other hand, a framework dictates how this structure is employed and
trained to perform the imputation task. Frameworks are higher-level constructs
that define the algorithmic approach that leverages a given neural architec-
ture, e.g. a recurrent architecture could be trained within an encoder-decoder
or a generative adversarial network (GAN) framework. Each architecture and
framework has its own inductive bias, shaping the model’s approach to handling
missing data and influencing its performance in different scenarios.

We first examine existing imputation architectures, focusing on the induc-
tive biases that influence their generalisation capabilities and effectiveness in
addressing various types of missingness, data structures, and task complexities.
We then distinguish between architecture and the conceptual or mathematical
frameworks that utilise a neural network for imputation. Here, inductive bias
dictates how a framework approaches specific challenges within the imputation
task, shaping the effectiveness of different models across varied scenarios. Fi-
nally, different frameworks vary in their approaches to handling uncertainty
in the resulting imputations. Here, a model’s inductive bias reflects the methods
employed to incorporate uncertainty into its imputation outputs, for example,
whether uncertainty can be directly modelled through probabilistic means or
variability in the model’s outputs.

In our subsequent discussion, we outline the general inductive biases associ-
ated with each class of architectures and frameworks. For each class, we detail
the deep imputation models found in the literature, discussing their specific in-
ductive biases. We also highlight the latest developments aimed at enhancing
these models to handle data that falls outside their inherent biases, as well as
known areas for improvement and ongoing research. Our granular distinction
aims to illuminate the strengths and limitations of existing methods for spe-
cific datasets, providing a roadmap to assess a model’s suitability for various
imputation contexts.
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3.1 Neural Network Architectures

3.1.1 Recurrent Neural Networks (RNNs)

are intuitively fit for handling temporal sequences [60]. Their inherent inductive
bias favours learning temporal dependencies between variables over time, as
a result of the recurrent nature of their architecture, which allows them to
maintain an internal state across time steps. This bias aligns with the sequential
and dynamic nature of medical event sequences, enabling RNNs to effectively
capture patient trajectories.

Vanilla RNNs are especially suited for capturing short-term temporal corre-
lations in EHRs, but struggle with modeling long-term dependencies, especially
when faced with known EHR issues such as irregular sampling and diverse record
lengths. To address these, modified RNN architectures have been introduced
in imputers, e.g., GRUD [11] which incorporates temporal decay into its archi-
tecture effectively managing time-sensitive missing data. Subsequent models,
including MRNN [103] and BRITS [10] integrate solutions to handle irregular
sampling into their architectures for more accurate and contextually relevant
data imputation. Despite these advances, RNN imputers have yet to accommo-
date mixed variable types and multi-dimensional time-series [101]. Developing
more sophisticated RNN variants that can seamlessly model the complex inter-
play between continuous and discrete variables within medical time series data
remains a crucial next step.

3.1.2 Convolutional Neural Networks (CNNs)

possess an inductive bias towards capturing local patterns, embodying the prin-
ciple of temporal locality for detecting acute physiological changes that can mark
important clinical events, e.g. tachycardia. One-dimensional (1D) CNNs excel
in identifying these pivotal moments by focusing on short-term local variations
within the data [46], thus facilitating prompt clinical intervention and effective
patient monitoring.

The exploration of two-dimensional (2D) CNNs extends the utility of CNNs
to capture complex spatial relations across variables [37]. Innovations such as
TimesNet [95] and Tiled CNNs [93] employ techniques like Gramian Angular
Fields to encode multiple time series as images and leverage spatial correla-
tions. This approach allows CNNs to unearth patterns that span multiple time
points and variables, effectively revealing relationships characteristic of physio-
logical signals. For example, multi-channel 2D CNNs can concurrently analyse
ECG readings, respiratory rates, and oxygen saturation levels, offering a com-
prehensive representation of patient health status. However, while these models
provide significant insights, they also introduce challenges related to the com-
plexity of transforming and interpreting time series in 2D spaces, potentially
obscuring the temporal sequence and causality inherent in the data. Therefore,
making the transition from 1D to 2D CNNs requires careful consideration [85]
to ensure that temporal information is preserved and accurately represented
across time-series.
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3.1.3 Transformers

deviate from traditional sequence processing methods by capturing long-range
dependencies through self-attention, enabling the representation of global con-
textual relationships within data [88]. The intrinsic inductive bias of Trans-
formers towards comprehensive contextuality aligns well with the multifaceted,
long-sequence semantics of medical data, enhancing the recognition of com-
plex, multivariate temporal patterns of patient trajectories across extended time
frames. The global perspective of Transformers is particularly advantageous in
identifying subtle, yet clinically significant patterns that might be overlooked by
models with a narrower focus. However, adapting the Transformer to medical
time series data requires bespoke modifications to preserve the strict sequen-
tial integrity that defines these datasets [13, 104] and to capture equally-useful
short-term temporal associations [21]. Models such as DeepMVI [4], NRTSI [79],
SAITS [23], GLIMA [84], and MTSIT [102] and CrosFormer [106] incorporate
temporal encoding and locality-enhanced attention to maintain sequential co-
herence while leveraging global dependencies. However, the success of these
sophisticated Transformer-based approaches heavily relies on the breadth and
depth of available data. The scarcity of comprehensive, publicly accessible med-
ical time series datasets remains a significant barrier, underlining the necessity
for expanded data resources for healthcare analytics.

3.1.4 Graph Neural Networks (GNNs)

[107] stand out for their ability to model the complex relational structures
prevalent in medical data, e.g., modeling the dependencies between health in-
dicators such as heart rate, blood pressure, and laboratory results. The foun-
dational inductive bias of GNNs towards capturing spatial relationships allows
these models to represent health variables and their interdependencies as nodes
and edges within a graph. This representation not only facilitates the preser-
vation of temporal sequences but also enriches the representation to a broader
context derived from interconnected health parameters.

Several works have demonstrated the application of GNNs to address the
challenges of medical time series imputation. Models like GACN [100] inter-
weave Graph Attention Networks (GAT) [89] and temporal convolution layers to
model spatio-temporal dependencies within the imputation process. Similarly,
SPIN [57] and GRIN [19] leverage multi-layered attention mechanisms and graph
recurrent imputation networks to enhance initial time series representations by
using complex relational insights before imputation. Advanced architectures
such as AGRN [14] and MDGCN [47] utilise bidirectional recurrent structures,
integrating graph convolution with RNN cells to capture spatio-temporal rela-
tions. Here, the translation of time series into effective graph structures presents
considerable challenges, notably the absence of natural graph representations in
traditional time series datasets [105]. Although recent models like TSI-GNN [31]
explored incorporating temporal information into bipartite graphs through an
extension of graph representation learning, constructing and interpreting these
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graph models require significant computational efforts and domain knowledge,
limiting their scalability and practicality. Furthermore, seamlessly incorporat-
ing temporal information into the GNN framework has proven difficult [96],
especially aligning the static nature of graphs with the dynamic progression of
medical time series [43].

Table 1: Chronological overview of deep learning models specialized for medical
time series imputation.

Model Year Architecture Framework Inductive bias Uncertainty Quantification Missingness Mechanisms

MRNN [103] 2017 RNN - Sequential ✘ MAR
GRUD [11] 2018 RNN - Sequential ✘ MCAR, MNAR
BRITS [10] 2018 RNN - Sequential ✘ MAR

Tiled CNN [93] 2015 CNN - Locality ✘ MAR

GLIMA [84] 2020 Attention - Globality ✘ MCAR, MAR
MTSIT [102] 2022 Attention - Globality ✘ MCAR, MAR
SAITS [23] 2023 Attention - Globality ✘ MCAR

TSI-GNN [31] 2021 GNN - Relational ✘ MCAR

MIWAE [58] 2019 CNN VAE Locality, Stochasticity ✘ MCAR, MAR
GP-VAE [28] 2020 CNN VAE Locality, Stochasticity ✔ MCAR, MAR, MNAR
V-RIN [63] 2020 RNN VAE Sequential, Stochasticity ✔ MCAR, MAR
HI-VAE [64] 2020 MLP VAE Stochasticity ✘ MCAR
Shi-VAE [5] 2022 RNN VAE Sequential, Stochasticity ✘ MAR
supnot-MIWAE [45] 2023 CNN, Attention VAE Locality, Globality, Stochasticity ✔ MNAR

CDNet [51] 2022 RNN MDN Sequential, Mixture ✔ -

VIGAN [80] 2017 CNN GAN Locality, Adversariality ✘ -
GRUI-GAN [52] 2018 RNN GAN Sequential, Adversariality ✘ -
E2GAN [53] 2019 RNN GAN Sequential, Adversariality ✘ -
SSGAN [61] 2021 RNN GAN Sequential, Adversariality ✘ MCAR
Sim-GAN [67] 2022 CNN GAN Locality, Adversariality ✘ -

CSDI [86] 2021 Attention Diffusion Globality, Gradualism ✔ MCAR, MAR, MNAR
SSSD [1] 2023 CNN Diffusion Locality, Gradualism ✔ MCAR, MAR, MNAR
CSBI [15] 2023 CNN, Attention Diffusion Locality, Globality, Gradualism ✔ MAR
DA-TASWDM [97] 2023 Attention Diffusion Globality, Gradualism ✘ MAR

CRU [76] 2022 RNN Neural ODE Sequential, Continuity ✔ MAR
CSDE [66] 2022 MLP Neural ODE Continuity ✔ -

3.2 Learning Frameworks

In modern deep imputers, a network architecture provides the learning mech-
anisms for a learning framework, which guides the imputation process towards
plausible generalisations of the data to capture and replicate complex data dis-
tributions. This synergy ensures that the generated data reflects realistic and
clinically relevant patterns. Additionally, neural frameworks offer various ap-
proaches to quantifying confidence in the resulting imputation, crucial given
that accurate modeling of EHR data directly impacts subsequent downstream
tasks and clinical decision-making. Different neural frameworks employ varied
paradigms for representing and handling uncertainty, which we include in our
discussion to explore the diverse strategies for managing the inherent unpre-
dictability of healthcare data.

3.2.1 Variational Autoencoders (VAEs)

consist of an encoder and a decoder network. The encoder maps input data
to a latent space distribution, while the decoder reconstructs data from this
distribution. During training, VAEs optimise a variational lower bound on the
log-likelihood of the data, ensuring the latent space captures key features of
the input distribution. Using an expressive neural network architecture, VAEs
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effectively learn representations that reflect common properties of EHRs, such
as skewness and multimodality.

Inductive Bias & Handling Uncertainty: VAEs assume that data is
generated from a latent space with a known, usually Gaussian, distribution [56]
and aim to learn a distribution which captures the underlying structure of the
data. As such, VAEs are inherently probabilistic models and provide a measure
of uncertainty by learning the probability distribution of the latent space.

State of the Art: VAE variants such as the Heterogeneous Incomplete Vari-
ational Autoencoder (HI-VAE) [64], Mixed VAE (VAEM) [55], and MIWAE [58]
handle missingness in diverse data types. GP-VAE [28] is a known early impu-
tation model based on a Gaussian process. GP-VAE’s performance plummets
with heterogeneity in observations and extended missingness. V-RIN [63] aims
to bypass GP-VAE’s distribution-related imputation bias by incorporating an
uncertainty-aware Gated Recurrent Unit (GRU) to blend temporal dynamics
with the imputed data. Supnot-MIVAE [45] extends this approach by intro-
ducing an additional classifier to refine the evidence lower bounds, enhancing
imputation accuracy for classification tasks. Shi-VAE [5] further expands these
capabilities by including LSTMs for better temporal structure handling and
effectively addressing missing data episodes.

Limitations: The success of VAEs depends on their ability to create mean-
ingful data representations that align with their assumed distribution. With
EHR data, this may lead to oversimplifications which obscure vital clinical sub-
tleties. While hybrid VAE models such as V-RIN and Shi-VA bypass the dis-
tribution problem by incorporating temporal dynamics, these models face sig-
nificant challenges in producing interpretable, clinically relevant outputs. Fur-
thermore, the computational intensity for training VAEs, especially when inte-
grating temporal dynamics, remains a barrier for their wide adoption for large
medical datasets.

3.2.2 Mixture Density Networks (MDNs)

[9] combine the predictive power of deep neural networks with the probabilistic
precision of mixture models to model the conditional probability distribution of
targets based on inputs. MDNs comprise a neural network architecture that out-
puts parameters of a mixture model (e.g., mean and variance, mixture weights)
conditioned on the input data. This enables MDNs to predict a range of possible
outcomes or data paths.

Inductive Bias & Handling Uncertainty: MDNs assume that the data
is generated from a mixture of probability distributions. This bias towards
probabilistic rather than singular outcome representations aligns with the high
variance in outcomes and treatment responses observed in medical time series.
Consequently, MDNs can directly capture uncertainty through a mixture of
weights and variances in the assumed distributions.

State of the Art: A highly-performing example is CDNet [51], which
effectively models imputed feature distributions and addresses the heterogene-
ity and irregularity of EHR data by integrating an MDN with a GRU and a
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Regularized Attention Network (RAN). In CDNet, the GRU captures time de-
pendencies, while the MDN handles latent variable sampling through a mix
of neural networks and distributions. This setup allows CDNet to potentially
capture complex relationships within EHR data.

Limitations: A key challenge in all MDN models is the ability to optimally
configure the model to fully exploit its theoretical potential for capturing com-
plex relationships while avoiding overfitting and maintaining the interpretability
and clinical relevance of the output.

3.2.3 Generative Adversarial Networks (GANs)

[17] establish a framework where two neural networks, a generator and a dis-
criminator, compete in a zero-sum minimax game. The generator is tasked with
replicating real data distributions to produce synthetic data samples that are
indistinguishable from real data, while the discriminator learns to differentiate
between real and synthetic samples. The training process involves iteratively
updating the generator and discriminator networks to improve the quality of
generated samples.

Inductive Bias & Handling Uncertainty: GANs have an inductive bias
towards generating realistically diverse data distributions, as the generator aims
to fool the discriminator. This bias enables the adversarial model to effectively
generate and impute incomplete multivariate time-series. However, GANs in-
herently lack direct mechanisms to quantify uncertainty within the imputations,
and their application to establishing confidence in the generated data is still in
its early stages [65].

State of the Art: Two prominent GAN examples found in the literature
are GRUI-GAN [52] and E2GAN [53]. GRUI-GAN employs a modified GRU
to account for the temporal irregularity of incomplete time series. The model
adapts the GRU in both the discriminator and generator to learn the distri-
bution of the entire dataset, the implicit relationships between observations,
and the temporal information of the dataset. In the second phase, the input
’noise’ of the GAN’s generator is trained so that the generated time series closely
resembles the original incomplete time series, increasing the likelihood of high-
quality generated data. However, optimising the noise vector of GRUI-GAN
has proven difficult [53]. To address this, E2GAN integrates the GAN structure
with a denoising autoencoder, streamlining the imputation by bypassing direct
noise optimisation. Advances continue with frameworks like NAOMI [50], which
adopts a non-autoregressive approach to minimise cumulative errors in extended
sequences, offering a more robust solution for datasets with significant missing-
ness. Additionally, SSGAN [61] enhances the GAN paradigm by incorporating
elements such as a temporal reminder matrix and additional classification layers
to improve imputation quality.

Limitation: GANs have the potential to greatly enhance medical research
by creating diverse and comprehensive datasets, including those representing
unrepresented conditions and groups. Nevertheless, their inability to quan-
tify confidence in the generated data necessitates additional methods, adding
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complexity to their practical use. The adversarial training process, though
innovative, can induce instabilities like “mode collapse” observed in NAOMI
and Sim-GAN, where the generator produces limited and repetitive outputs in-
stead of capturing the full diversity of the data. Such limitations are especially
significant in clinical settings, where the reliability of data and predictions is
paramount.

3.2.4 Diffusion Models

[39, 82] employ a stochastic process to gradually generate synthetic data, pro-
gressing from random noise towards distributions that mimic the observed data.
During training, diffusion models learn to reverse this process by denoising syn-
thetic samples to match observed data.

Inductive Bias & Handling Uncertainty: Diffusion models assume
that data evolves over time according to a diffusion process, inherently biasing
them towards solutions that mimic this generating process and away from those
that do not. Although diffusion models do not provide an explicit mechanism
to quantify uncertainty, they iteratively incorporate noise into the diffusion pro-
cess, allowing for the generation of stochastic samples that reflect the variability
in the data. Additionally, diffusion models can estimate uncertainty by measur-
ing the divergence between predicted and observed data distributions at each
time step.

State of the Art: Examples of diffusion models include NETRATE
[30] and MedDiff [38], which integrate temporal dynamics and domain-specific
knowledge into the diffusion process to better handle time-dependent varia-
tions and complex medical scenarios. CSDI [86] leverages observed data sub-
sets to guide the generation process but encounters scalability issues due to
the quadratic complexity induced by the transformer-based architecture [81].
To tackle this, SSSD [1] substitutes transformers with structured state-space
models [34], while CSBI [15] and MIDM [92] enhance efficiency and accuracy
by modelling the diffusion process as a Schrödinger bridge problem [18] and
sampling noise from the conditional distribution of observed representations.
PriSTI [49] and DA-TASWDM [97] further push the boundaries by integrat-
ing spatio-temporal dependencies and dynamic temporal relationships. SPD [8]
represents a paradigm shift by modelling time series from a continuous perspec-
tive, better aligning with the stochastic and irregular nature of medical data
timelines.

Limitations: In most diffusion models, computational efficiency, clinical
relevance, and accuracy remain challenges. While models like PriSTI and DA-
TASWDM mark significant advances in personalised and contextually relevant
imputations, the lack of straightforward and explicit mechanisms to quantify
and communicate uncertainty significantly hampers their practical utility.
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3.2.5 Neural Ordinary Differential Equations (Neural ODEs)

embed a neural network modeled by some function f into an ODE frame-
work [12], which describes the temporal evolution of the data using differential
equations. Once trained, an ODE model uses the learned function to simulate
the dynamics of the data over time or make predictions about future states
based on current observations.

Inductive Bias & Handling Uncertainty: ODE models assume that the
underlying temporal evolution of the data data can be described by a system
of ordinary differential equations. This bias favours continuous data transitions
aligning with the functions learned by the model [66,76], enabling Neural ODEs
to capture gradual transitions within patient timelines, potentially overcoming
the issue of irregular sampling of EHR data [73]. These models do not directly
facilitate uncertainty measurement, but uncertainty can be incorporated as a
stochastic process into the differential equations, allowing for the propagation
of uncertainty through time. Additionally, ODE models can estimate uncer-
tainty by comparing model predictions with observed data and adjusting model
parameters to minimise the discrepancy.

State of the Art: The utility of Neural ODEs have been demonstrated
through various extensions and applications. ODE-GRU-D [36] extends GRU-D
by using an ODE solver to precisely decipher the decay dynamics within time
series, thus refining control over decay rates compared to the original GRU-D.
Additionally, CRU [76] offers a probabilistic recurrent framework for irregularly
sampled time series, utilising a linear stochastic differential equation (SDE) [87]
within a latent space structure, thereby incorporating the analytic solutions
of continuous-discrete Kalman filter [94] formulations with medical time se-
ries analysis. Similarly, CSDE [66] presents a novel probabilistic framework
that overcomes the limitations of traditional dynamic models by incorporat-
ing Markov dynamic programming [40] and multi-conditional forward-backward
losses, facilitating rigorous training and ensuring theoretical optimality.

Limitations: Solving the differential equations of Neural ODEs is compu-
tationally demanding and is sensitive to the initial set conditions. Furthermore,
the robustness and domain relevance of Neural ODE-based imputations is criti-
cally reliant on the model’s capability to accurately capture the underlying dy-
namics from medical datasets, which may be compounded by data sparsity. The
sophisticated mathematical underpinnings of Neural ODEs can deter clinical ap-
plicability due to the abstract nature of their outputs, making it challenging for
clinicians to derive clear, actionable insights.

4 Mind the Gaps

Having established our taxonomy of the state-of-the-art deep imputers, we now
critically appraise the practical aspects of the current paradigm, particularly is-
sues that have a direct impact on clinical utility. We first explore experimental
design, identify issues that contribute to inconsistencies in model evaluation,
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and highlight visible gaps between the capabilities of existing deep imputers
and the specific requirements of the medical domain. We then turn our discus-
sion to model reliability, particularly our ability to quantify one’s uncertainty
in the resulting imputation. Here, we highlight the importance of post-hoc un-
certainty quantification methods, particularly for models based on deterministic
architectures. Finally, this section highlights the potential for integrating clin-
ical insight with the imputation process to ensure that the generated values
align with clinical protocols and are both statistically plausible and clinically
meaningful. Our discussions underscore the need for more rigorous, transpar-
ent, and comprehensive approaches to performance and reliability evaluation,
particularly in handling complex missingness patterns and data distributions.

4.1 Mind the Masking Gap

During experimental evaluation of a deep imputer, masking is used to simu-
late incomplete data conditions by designating certain data points as missing
during training and evaluation. Masking provides a controlled way to test how
an algorithm handles incomplete datasets and is thus essential for performance
evaluation. Our examination of the literature identified a wide discrepancy in
the preprocessing steps employed by different models and potential misalign-
ments between the masking techniques used and the missingness assumptions
the models are designed to handle. Our observations are summarised below.

Misalignment with Missingness Assumptions: As shown in Table 1,
deep imputers have been designed to recognise different flavours of missingness
(MCAR, MAR, MNAR). During experimental evaluation, however, all mod-
els shown in Table 1 use random masking (Figure 2 (a)) to generate missing
datasets, predominantly producing MCAR scenarios. This approach oversim-
plifies the correlations embedded within the EHR time-series, which are reflected
in complex missingness patterns across time and cross-sectionally. As discussed
in section 2.1, these patterns arise from the underlying physiological processes
and recording practices of clinical workers.

Interestingly, the literature contains masking techniques that can capture
spatio-temporal MNAR missingness patterns of medical datasets [20], including
temporal masking (Figure 2 (b)), which captures missinngess patterns over time,
spatial masking (Figure 2 (c)), which captures cross-sectional missingness and
block masking (Figure 2 (d)), which combines the two to concurrently capture
different flavours of temporal and cross-sectional correlations and dependencies.
Despite their direct applicability to biomedical domains, they are rarely used to
evaluate imputation models operating on medical datasets. The only examples
using spatio-temporal masking of time-series come from the traffic domain [47,
99].

The above problem is exasperated by the lack of information in published
work. With the exception of BRITS and CSDI, the use of random masking is
not mentioned in the experimental design, and one must examine the accom-
panying code to discern it. While the use of random masking facilitates model
evaluation, it contrasts with the complex and informative MNAR patterns ob-
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served in real-world EHRs [29] which many deep imputers have been designed to
address. The discrepancy between the theoretical model and experimental eval-
uation technique therefore highly undermines a deep imputer’s capacity, leaving
it under-evaluated.

Under-reporting of Masking Pipelines: There are significant discrep-
ancies and under-reporting of when masking is introduced during experimen-
tal evaluation. Data could be pre-masked before being ingested by the model
or masked dynamically during the training phase. Traditional pre-masking
methods, while more straightforward, limit the model’s training to incomplete
datasets, reducing its ability to learn from the entire range of clinical fea-
tures and associated dependencies. In contrast, adopting in-mini-batch masking
strategies promises a more dynamic approach by iteratively masking different
subsets of the same dataset across training epochs. However, this approach
risks overfitting, as the model may become too focused on the artificial missing
patterns and fail to recognise the original data structures. Therefore, the deci-
sion of when masking is introduced can have a profound impact on the model’s
capacity to interpret the diverse missing patterns found in a given dataset [70].
Despite the potential impact on the results, this aspect of the experimental de-
sign is not reported in most deep imputers discussed in this survey, except for
BRITS and GRUD, which mask before training, and CSDI and STAITS, which
use in-mini-batch masking during training.

Overlooked Design Decisions There are other decisions that highly in-
fluence the resulting masked data but are not discussed in most of the deep
imputation literature. An important issue is the methodology used to imple-
ment masking. Generally, masking can be implemented using overlaying [22] or
augmenting [16] as shown in Figures 2 e-f. Overlaying involves adding artificial
missingness in addition to the original missingness the dataset contains, while
augmentations only mask complete data, separating the artificial missingness
generated from the original missingness. Choosing the type of masking has con-
sequences during model training and evaluation. Although overlaying exposes
the model to a broader array of missing data scenarios leading to more robust
training and effective imputation strategies, it requires complex evaluation pro-
cesses and increases the risk of overfitting. On the other hand, augmenting
simplifies the model’s learning process by allowing it to learn from the arti-
ficially introduced missingness without interference from the original missing
patterns, but may not fully equip the model to handle the intricate missingness
patterns in real-world data. In addition to the above, there is growing evidence
that multiple masking, which refers to repeatedly applying masking operations
to generate diverse examples during model training, is an effective strategy for
improving imputation performance [72]. However, it is unclear how any of the
deep imputers implement masking, creating a big gap in our understanding of
the rigour of the evaluation techniques, especially in models designed to accom-
modate non-random EHR missingness.
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(a) Random Masking (b) Temporal Mask-
ing

(c) Spatial Masking

(d) Block Masking (e) Augmentation (f) Overlaying

Figure 2: Masking techniques and approaches demonstrated over a time-series
of five features (x1 − x5) and five time points (t1 − t5): (a) random masking,
(b) temporal masking, (c) spatial masking, (d) block masking. The yellow cells
indicate those labeled as missing via masking. In (e) augmentation and (f)
overlaying, the blue cells indicate cells that are missing within the original data.
In (e), the masked (yellow) cells have no overlap with the original missingness
in the data. Green: masked data coming from both the original missingness
and artificial missingness. In (f), overlaying masks cells from either the original
missingness or simulates artificial missingness from non-missing data.
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4.2 Mind the Uncertainty Gap

Accurate imputation is crucial for downstream prediction tasks. In addition, the
ability to quantify one’s confidence in the resulting imputation enables under-
standing the limitations and reliability of the generated data. The correlation
between imputation accuracy and uncertainty is subtle and model-dependent
and has been shown to weaken with increased data diversity [41]. Therefore, a
dedicated component for quantifying imputation uncertainty is particularly crit-
ical for high-stake medical downstream tasks. For example, [11] demonstrated
that accurate imputation in GRUD significantly improves the prediction of pa-
tient outcomes in the ICU. Similarly, [28] showed that the ability of GP-VAE
to quantify uncertainty improves the interpretability and trustworthiness of im-
puted laboratory tests by clinical staff.

The Current State of Uncertainty Quantification: The importance
of establishing one’s confidence in the resulting imputation is not currently re-
flected in the state-of-the-art of medical deep imputers. Neural architectures
such as RNNs, CNNs, and transformers are different flavours of deterministic
imputers with no inherent capabilities to quantify uncertainty. Highly per-
forming models such as GRUD [11] and BRITS [10] effectively handle temporal
dependencies and irregular sampling, but do not measure uncertainty. Although
generative frameworks such as VAEs and MDNs are naturally probabilistic and
can provide measures of confidence in the resulting imputation, they are com-
putationally complex. Moreover, their uncertainty quantification mechanisms
rely on distribution-specific assumptions and are highly dependent on the mod-
els’ inductive bias, limiting the ability to generate interpretable insights that
are directly applicable to the complex missingness patterns observed in medical
time series.

Need for Post-Hoc Uncertainty Quantification: Given the diversity
of deep imputers and the distribution-dependent nature of non-deterministic
models, there is a need for general post-hoc uncertainty quantification mecha-
nisms that can be utilised regardless of the imputer’s underlying architecture
or framework. Such independent components will allow uncertainty quantifica-
tion after training, avoiding potential performance degradation and associated
model complexities. These methods can employ model-agnostic uncertainty es-
timates independent of the inductive bias of the imputation model, enhancing
imputation robustness and reliability across different models and datasets.

There is a small but growing number of work proposing post-hoc uncer-
tainty quantification for efficient and effective deep imputation architectures.
A prominent example is DEARI [69], which extends BRITS by integrating a
self-attention mechanism to enhance imputation accuracy and employs a post-
hoc Bayesian marginalization strategy to provide reliable uncertainty bounds.
CF-RNN [83] adapts the inductive conformal prediction framework to time-
series forecasting, which constructs prediction intervals that may potentially
undercover the response when conditioned on certain missing patterns. An-
other approach which remains unexplored is to adopt a multiple imputation
framework [74], which involves creating multiple imputed datasets from the pre-
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dictive distribution conditional on the observed data and combining the results
to account for uncertainty. Applying the principles of multiple imputations in
conjunction with deep imputers can enhance post-hoc uncertainty quantification
by generating diverse imputation scenarios and ensuring robust estimates. This
approach, though not immediately obvious in its application to deep learning
models, merits investigation to improve the scalability and reliability of impu-
tation models.

4.3 Mind the Knowledge Gap

While medicine is data-rich, it is also knowledge-rich and acknowledging the
existing body of clinical knowledge can have a great impact on the reliability
and interpretability of the imputed data. The incorporation of domain knowl-
edge into neural network architectures can have a direct influence on alleviating
the possible discrepancies between the imputer’s inductive bias and the pat-
terns embedded within the data. For instance, RNNs can be fine-tuned with
clinical temporal patterns to capture treatment effects or disease progression,
while CNNs can be adapted to embed clinical significance into spatial-temporal
relationships. This idea is recognised by a few recent imputation attempts such
as [71] where conditional statements derived from clinical guidelines are used to
guide the imputation process, ensuring that the generated values are not only
statistically plausible but also clinically meaningful. Another example is [98]
where signal temporal logic (STL) is used to define clinically meaningful tempo-
ral patterns used as a dictionary to guide the training process, greatly improving
the alignment between established clinical protocols and model output. These
efforts, however, are a minority and the importance of domain knowledge has
not made its mark on the deep imputation models most cited in the literature.

Knowledge to Enhance Performance in Skewed Distributions: In-
corporating medical knowledge into the imputation process can also alleviate
the issue of skewed distributions and class imbalance prevalent in medical time-
series. By embedding domain knowledge, imputation models can ensure that
imputed values for infrequent events, such as in-hospital cardiac arrests, are
clinically plausible and contextually appropriate. This approach reduces the
risk of biased imputations that favor the majority class, ultimately leading to
more reliable and clinically relevant predictions. Incorporating medical knowl-
edge can also improve the model’s ability to handle the variability in clinical
presentations, ensuring that imputed data maintains its integrity across diverse
patient populations.

5 Conclusion

In this review, we have examined deep learning imputation approaches for EHR
data, highlighting the relationship between the inductive biases of these models
and the distinct characteristics of medical time-series. By analysing these bi-
ases, we emphasise the need to balance mathematical abstraction with clinical
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insights to improve the interpretability and applicability of imputation tech-
niques. We identify issues in data masking, timing, implementation, and the
need for post-hoc uncertainty quantification and highlight the importance of
incorporating domain and expert knowledge in our current paradigm, revealing
gaps in our current research and identifying avenues for further research. This
study highlights the challenges and potential innovations of bridging data sci-
ence and clinical practice. Our goal is to develop models that better align with
clinical complexities, promoting advancements that are both methodologically
robust and clinically relevant.
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Paolo Masulli, Sebastian Otte, and Stefan Wermter, editors, Artificial
Neural Networks and Machine Learning – ICANN 2021, pages 241–252,
2021.

[100] Yongchao Ye, Shiyao Zhang, and James JQ Yu. Spatial-temporal traffic
data imputation via graph attention convolutional network. In Interna-
tional Conference on Artificial Neural Networks, pages 241–252. Springer,
2021.

[101] Joonyoung Yi, Juhyuk Lee, Kwang Joon Kim, Sung Ju Hwang, and Eunho
Yang. Why not to use zero imputation? correcting sparsity bias in training
neural networks. In Eighth International Conference on Learning Repre-
sentations, ICLR 2020. International Conference on Learning Represen-
tations, 2020.
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