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Purpose: To characterize brain aging in the above conditions and its clinical relevance.  

Study Type: Retrospective.  

Population: A total of 2913 healthy controls (HC), with 1395 females; 331 multiple sclerosis (MS); 189 

neuromyelitis optica spectrum disorder (NMOSD); 239 Alzheimer’s disease (AD); 244 Parkinson’s disease (PD); 

and 338 cerebral small vessel disease (cSVD).  

Field Strength/Sequence: 3.0 T/Three-dimensional (3D) T1-weighted images.  

Assessment: The brain age was estimated by our previously developed model, using a 3D convolutional neural 

network trained on 9794 3D T1-weighted images of healthy individuals. Brain age gap (BAG), the difference between 

chronological age and estimated brain age, was calculated to represent accelerated and resilient brain conditions. We 

compared MRI metrics between individuals with accelerated (BAG ≥ 5 years) and resilient brain age (BAG  ≤ -5 

years) in HC, and correlated BAG with MRI metrics, and cognitive and physical measures across neurological 

disorders. Statistical Tests: Student’s t test, Wilcoxon test, chi-square test or Fisher’s exact test, and correlation 

analysis. P < 0.05 was considered statistically significant.  

Results: In HC, individuals with accelerated brain age exhibited significantly higher white matter hyperintensity 

(WMH) and lower regional brain volumes than those with resilient brain age. BAG was significantly higher in MS 

(10.30 ± 12.6 years), NMOSD (2.96 ± 7.8 years), AD (6.50 ± 6.6 years), PD (4.24 ± 4.8 years), and cSVD (3.24 ± 5.9 

years) compared to HC. Increased BAG was significantly associated with regional brain atrophy, WMH burden, and 

cognitive impairment across neurological disorders. Increased BAG was significantly correlated with physical 

disability in MS (r = 0.17).  

Data Conclusion: Healthy individuals with accelerated brain age show high WMH burden and regional volume 

reduction. Neurological disorders exhibit distinct accelerated brain aging, correlated with impaired cognitive and 

physical function.  

Level of Evidence: 4  

Technical Efficacy: Stage 2  
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Plain Language Summary 

Estimated brain age, derived from neuroimaging using the deep learning method, serves as an indicator of 

brain health in both healthy individuals and those with various neurological disorders. Estimated brain age 

can identify asymptomatic individuals with older-appearing brains, linked to higher burdens of white matter 

hyperintensities and volume reduction of specific brain regions in the general population. Neurological 

disorders, including multiple sclerosis, neuromyelitis optica spectrum disorder, Alzheimer’s disease, 

Parkinson’s disease, and cerebral small vessel disease, exhibit varying degrees of deviation from the normal 

aging trajectory and accelerated brain aging, implying poorer cognitive function and more severe physical 

impairments. 
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Introduction   

Age is an important risk factor for neurological disorders(1). Inflammatory demyelinating diseases, 

including multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), tend to be more 

common in younger people(2), whereas neurodegenerative diseases, such as Alzheimer’s disease (AD), 

Parkinson’s disease (PD), and cerebral small vessel disease (cSVD), are more prevalent in older people (3-5). 

These five neurological disorders are closely associated with age regarding the initial presentation and 

disease duration.  

Additionally, brain aging in diseased-free people is heterogeneous. Age-related brain changes may result in 

different trajectories of cognitive impairment and different burdens of MRI white matter hyperintensities 

(WMH) (4). Therefore, it is important to identify individuals who deviate from normal aging at a given age 

(5). However, aging is a complex and multifactorial process influenced by genetic, environmental, and 

stochastic factors. Aging does not affect people uniformly, leading to different age-health trajectories (6, 7). 

Chronological age can serve as a basic benchmark but may fail to capture the aging process fully. In contrast, 

biological age may more accurately reflect the aging process and its associations with age-related diseases 

and lifespan(8). 

Estimated brain age derived from MR images is considered a form of biological age, serving as a robust 

index of the complex and multidimensional alterations occurring throughout the brain with aging(9, 10),  

which can be used to model trajectories of general brain health(11). The brain age gap (BAG) is defined as 

the difference between brain age and chronological age(12). A negative BAG indicates that the brain appears 

younger than expected, suggesting delayed brain aging, while a positive BAG indicates a brain age that is 

older than expected for the chronological age(10).  
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Estimated brain age determination has the potential to aid in identifying asymptomatic individuals who are 

experiencing atypical aging and could be at increased risk of future ill health(13). In healthy individuals, a 

BAG ≤ −5 years indicates resilience to brain aging, while a BAG ≥ 5 years can be considered to represent 

accelerated brain aging(9, 14). There is still insufficient research on the correlations between these aging 

patterns and changes in specific brain regions, white matter hyperintensity (WMH) burden, and cognitive 

function in both normal aging individuals and those with neurological disorders. Although Kaufmann and 

colleagues reported a range of people with psychiatric and neurological disorders exhibiting distinct patterns 

of brain aging(15), they did not examine the impact of WMH burden. 

Here we aim to identify the MRI and clinical characteristics of advanced accelerated brain aging in healthy 

individuals and to explore brain aging patterns in patients with neurological disorders, including 

inflammatory demyelinating, neurodegenerative, and cerebrovascular diseases. 

Materials and Methods 

Participants 

The study received ethical approval from the local ethics committee's institutional review board (Beijing 

Tiantan Hospital, Capital Medical University, No. KY-2019-050-02, KY-2019-140-02, and KY-2024-221-

02), and each participant provided written informed consent in the local dataset. A cohort of 2,913 healthy 

controls (HC) was included from six centers in China from October 2020 to October 2022 and the 

Cambridge Centre for Ageing and Neuroscience (Cam-CAN) dataset(16) (http://www.mrc-

cbu.cam.ac.uk/datasets/camcan/) (Supplementary Table 1). HC subjects were defined as having no evidence 

of neurological or psychiatric disorders(17). The demyelinating patient cohort consisted of MS and NMOSD 

patients who were retrospectively selected from the above six centers in China from November 2009 to 

http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
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April 2018 and prospectively recruited from Beijing Tiantan Hospital between December 2018 and 

September 2021 (Supplementary Table 1). In total, 331 MS patients and 189 AQP4+ NMOSD patients were 

selected in the current study. We retrospectively included AD, PD, and cSVD patients from Beijing Tiantan 

Hospital between December 2018 and October 2022. Two experienced neurology specialists (more than five 

years) made the diagnosis of neurological diseases in each center. Patients were excluded who met the 

following criteria: (a) a history of severe head injury or surgery and (b) a history of other disorders affecting 

the central nervous system. (c) poor quality T1-weighted imaging (T1w) and T2 fluid-attenuated inversion 

recovery (FLAIR) images(18). A flowchart of the included and excluded participants is shown in Fig. 1. 

Clinical data 

All participants' data were recorded: age, sex, and Mini-Mental State Examination (MMSE) and Montreal 

Cognitive Assessment (MoCA) scores. PD patients completed Hoehn and Yahr scale (HY) for disease 

severity (19) and the Movement Disorders Society-Unified Parkinson’s Disease Rating Scale (MDS-

UPDRS-III) score(20). Patients with MS and NMOSD, as well as some of HC also completed the Paced 

Auditory Serial Addition Task (PASAT), California Verbal Learning Test-Second Edition (CVLT-II), Brief 

Visuospatial Memory Test-Revised (BVMT-R), Symbol Digit Modalities Test (SDMT), and Expanded 

Disability Status Scale (EDSS), as shown in Fig.1. 

Imaging  

3D T1w images with 1 mm isotropic resolution and two- or three-dimensional FLAIR images were acquired 

using 3.0 T MRI systems from Philips Healthcare (Eindhoven, Netherlands), GE Healthcare (Milwaukee, 

WI, USA) and Siemens Healthineers (Erlangen, Germany). The system and acquisition parameter details are 

provided in Supplementary Table 2.   
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Imaging segmentation  

Brain age and brain morphology were evaluated using 3D T1w images; WMH volume was evaluated using 

FLAIR images (n=2,873) (Supplementary Table 1).FLAIR images were segmented to quantify WMH 

volume using the Lesion Segmentation Tool version 3.0.0(21) (https://www.applied-statistics.de/lst.html). 

Brain segmentation was performed on 3D T1w images using FreeSurfer version 6.0.0 (22) 

(http://surfer.nmr.mgh.harvard.edu/) using the following approach: T1w images underwent automated 

cortical reconstruction, motion correction, intensity normalization, and intensity inhomogeneity correction 

and then were transformed and skull-stripped before normalization into Talairach space to obtain 

morphometric estimates. Cortical gray matter volumes were extracted using the Desikan–Killiany atlas and 

subcortical structures were segmented. Global MRI measures, including subcortical gray matter volumes 

(sGMV), cortical gray matter volumes (cGMV), cerebral white matter volumes (WMV), cerebrospinal fluid 

(CSF) and estimated total intracranial volumes (eTIV) were also extracted.  

Brain age estimation model 

The preprocessing steps for the 3D T1-weighted images included affine registration to Montreal 

Neurological Institute (MNI) space and skull stripping. The intensity of the registered images was 

normalized by dividing their signal intensity by the mean intensity within the cerebral mask. The scans were 

then resampled to 1 mm isotropic resolution using linear interpolation, serving as the input of the brain age 

estimation model (23). The brain age- estimation model we employed was based on a previous study that 

used deep learning to establish the model from 3D T1w images in a sample of 9,794 healthy individuals  

(23). This model achieved a mean absolute error of 2.63 years in the developmental validation set and 

demonstrated robustness across different scanners and centers(23). Brain age estimation is affected by age-

https://www.applied-statistics.de/lst.html)
http://surfer.nmr.mgh.harvard.edu/
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dependent biasand tends to be overestimated in younger individuals while underestimated in older 

individuals (24). Therefore, we applied the adjustment method to remove the dependency of BAG on 

chronological age and reduce uncertainty in BAG estimates (see Supplementary Materials) (25). In our next 

analysis, the estimated brain age was corrected. 

Statistical analysis 

Statistical analyses were conducted using R software version 4.1.3. Graphs were plotted using the ggplot2 

package. Categorical variables were compared using the chi-square test or Fisher’s exact test as appropriate. 

Continuous variables were compared using the Student’s t test and Wilcoxon test. Cohen’s d effect sizes 

were calculated to examine group separation. Brain tissue volume, cognitive score, and WMH volume were 

compared between HC with accelerated brain aging (BAG ≥ 5 years) and those resilient to brain aging 

(BAG ≤ -5 years). Patients were compared with age- and sex-matched subsets of the HC group (ratio, 1:2) 

using the two-sample Wilcoxon test and Student’s t test. Partial correlation analysis of BAG, cognitive 

scores, and WMH volume was performed in healthy individuals.  Correlations of BAG with cognitive scores 

and EDSS scores in MS and AQP4+ NMOSD patients, as well as with HY stage and MDS-UPDRS-III in 

PD patients, were analyzed using Kendall's tau-b correlation, adjusting for age and sex. Correlations of BAG 

with MRI measurements were also assessed using Kendall's tau-b, adjusting for age, sex, and eTIV. False 

discovery rate (FDR) correction was applied in multiple comparisons. All statistical tests were two-sided. P 

< 0.05 was considered significant. Cohen’s d values were categorized as follows: < 0.2 (negligible effect), 

0.2 - 0.49 (small effect), 0.5 - 0.79 (moderate effect), ≥ 0.8 (large effect)(26). 

Results 

Participants and Brain Age Estimation Model 
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Overall, 4,254 individuals were included (mean age, 50.3 ± 15.2 years). The participants with neurological 

disorders comprised 1,341 patients (570 males and 771 females), including 311 with MS, 189 with NMOSD, 

239 with AD, 244 with PD, and 338 with cSVD. The HC group comprised 2,913 participants (1,518 males 

and 1,395 females; Supplementary Table 3).  Estimated brain age was significantly correlated with 

chronological age in this group (r = 0.97) (Supplementary Fig.1 and 2). 

Comparison of MRI and clinical measures between HC with accelerated brain aging and those resilient 

to brain aging 

There were 316 accelerated brain agers (mean chronological age: 49.33 ± 15.73 years) and 278 resilient 

brain agers (mean chronological age: 49.66 ± 14.48 years). There was no difference in sex or chronological 

age between the two groups (Supplementary Table 4). 60.25% (47/78) of cortical or subcortical regions 

exhibited lower volumes in accelerated brain agers (BAG ≥ 5 years) compared to resilient brain agers (BAG 

≤ -5 years). The top three effect sizes (|Cohen’s d|) of brain region volume alterations were in the left 

accumbens, right accumbens, and right ventral diencephalon (Cohen’s d = −0.54, −0.53, and −0.37, 

respectively; pFDR <0.001). No brain regions showed higher volume in the HC with accelerated brain aging 

(Supplementary Table 5). Furthermore, WMH burden and CSF volume were significantly higher in HC with 

accelerated brain aging (see Supplementary Table 4). Global MRI measures (cGMV, sGMV and WMV), as 

well as all cognitive tests, did not significantly differ between the two groups.  

BAG was significantly correlated with WMH volume (r = 0.18) (Supplementary Table 6) after adjusting for 

age and sex. 

The BAG in age- and sex-matched healthy individuals and patients with neurological disorders 

Compared with age- and sex-matched HC, brain age was significantly higher in both MS patients (mean 

BAG = 10.30 years; Cohen’s d = 1.30; 95% CI, 1.15–1.45) and AQP4+ NMOSD patients (BAG = 2.96 
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years; Cohen’s d = 0.63; 95% CI, 0.35–0.71; Fig. 2; Table 1). The difference in the BAG between MS and 

AQP4+ NMOSD patients was significant (Fig. 2a). Brain age was also significantly higher in AD patients 

(BAG = 6.50 years; Cohen’s d = 1.13; 95% CI, 0.97–1.31) and PD patients (BAG = 4.24 years; Cohen’s d = 

0.90; 95% CI, 0.74–1.06) than in HC (Fig. 2; Table 1). Similarly, brain age was significantly higher in cSVD 

patients than in HC (BAG = 3.24 years; Cohen’s d = 0.60; 95% CI, 0.47–0.73; Fig. 2; Table 1). The effect 

sizes for the BAG were largest in MS patients (Fig. 2).  

Correlations between increased BAG and MRI measurements in patients with neurological disorders 

The regions with lower brain regional volumes related to higher BAG in the left and right hemispheres were 

approximately symmetrical in all patient groups (Fig. 3). Among the brain regions where volume correlated 

with BAG, the regions with the highest effect sizes, differed by diagnostic group. Increased BAG was most 

strongly associated with volume reduction in specific brain regions across different disorders: the right 

accumbens (r = -0.39) in MS patients, the left caudal middle frontal gyrus (r = -0.20) in NMOSD patients, 

the left inferior parietal gyrus (r = -0.26) in AD patients, the right pars orbitalis gyrus (r = -0.10) in PD 

patients, and the left thalamus (r = -0.18) in cSVD patients (Fig. 3). 

As for global MRI measures, increased BAG in MS, AQP4+ NMOSD, AD, PD, and cSVD patients was 

significantly associated with reduced cGMV and sGMV. Decreased WMV was significantly associated with 

increased BAG in AD, cSVD and MS patients but not in PD or AQP4+ NMOSD patients (Fig. 4). 

WMH volumes were higher in all neurological disorder patients than in age- and sex-matched HC; the effect 

size was largest for MS patients (Cohen’s d = 1.06), followed by cSVD patients (Cohen’s d = 0.70) and AD 

patients (Cohen’s d = 0.68; Supplementary Table 7). WMH volume was significantly correlated with BAG 

in all disease groups, as shown in Fig. 4.  

Correlations between increased BAG and clinical scores in patients with neurological disorders 
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In MS patients, increased BAG was significantly associated with MoCA, PASAT, and SDMT scores (r = 

−0.18, −0.14, and −0.24, respectively). Increased BAG was significantly correlated with worse scores on 

MMSE in AQP4+ NMOSD patients (r = −0.13). Increased BAG was significantly associated with worse 

physical disability (i.e., EDSS scores) in MS patients (r = 0.17) but not AQP4+ NMOSD patients (r = 0.08; 

pFDR = 0.13). In AD patients, increased BAG was significantly linked to lower scores on MMSE and 

MoCA (r = −0.21 and −0.23, respectively). No correlation was found between MMSE and MoCA scores and 

BAG in PD patients (r = −0.003 and −0.04, respectively; pFDR > 0.05). No correlation was found between 

HY scale and MDS-UPDRS-III scores and BAG in PD patients (r = −0.01 and −0.09, respectively; pFDR > 

0.05). Increased BAG was significantly associated with lower scores on MoCA in cSVD patients (r = −0.16; 

Fig. 4). 

Discussion 

In this study, we used the brain age estimation paradigm and investigated the brain age gap in large groups 

of healthy individuals and patients with neurological disorders. Healthy individuals with accelerated brain 

aging exhibit higher white matter hyperintensity burden and lower regional brain volumes, especially in 

deep gray matter. Brain age has the potential to serve as a screening tool to identify asymptomatic 

individuals with accelerated brain aging, suggestive of a higher risk of poor health outcomes. In addition, 

our results indicate varying degrees of deviation from normal aging, with the following disorders ranked in 

descending order of deviation: MS, AD, PD, cSVD, and AQP4+ NMOSD. BAG varied among patients with 

neurological disorders and was associated with brain atrophy in specific regions and WMH burden. Deep 

gray matter (e.g., the accumbens and thalamus) showed atrophy associated with increased BAG in 

neurological disorders. Furthermore, higher BAG was significantly correlated with lower cognitive scores 

across multiple neurological diseases and with poorer disability in MS patients. 
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Comparison of MRI measurements and clinical scores in HC with accelerated brain aging and resilient 

brain aging 

Compared with resilient brain agers (BAG less than -5 years), advanced brain agers (BAG more than +5 

years) showed widespread volume reduction of cortical or subcortical regions, with the large effect size seen 

in the deep gray matter nuclei (such as the accumbens, thalamus and amygdala). This volume reduction of 

brain regions, especially in the deep gray matter, impacts the acceleration of brain aging(27). It has been 

demonstrated that the nucleus accumbens and amygdala exhibit the steepest rates of volume loss during 

normal aging(28). Therefore, it can be inferred that the difference in deep gray matter nuclei between 

accelerated brain agers and resilient brain agers may not be significant, as there is no difference in 

chronological age (49.33 ± 15.73 years vs. 49.66 ± 14.48 years). However, individuals with accelerated 

brain aging showed reduced deep gray matter nuclei, particularly in the accumbens. This suggests structural 

alterations associated with accelerated brain aging occurred earlier than expected. This finding supports that 

brain age can be used as a screening tool to identify individuals with accelerated brain aging(10), though 

longitudinal validation is still needed. The volume of WMH increases with BAG, controlling for the effects 

of age and sex, indicating that WMH also promotes accelerated brain aging, which is consistent with 

previous studies(9, 29, 30). Brain age can capture subtle and widespread changes in the structure of the brain, 

both in clinical and population-based samples(10). 

Our findings indicate that BAG is not linked to cognitive function in healthy participants, which is 

inconsistent with previous studies(9, 15). Brain plasticity can protect against aging and brain reserve may 

protect against cognitive impairment(31). Thus, even with increased brain age, individuals may still be 

within the “normal” cognitive range for their chronological age. Moreover, differences in cognitive ability 
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were not observed between the accelerated and resilient brain agers, suggesting that brain structural changes 

may precede cognitive impairment in the general population.  

Correlations between BAG and MRI measurements and clinical scores across neurological disorders 

Neurological diseases exhibited distinct patterns of accelerated aging despite other unexplained contributing 

factors (10). Identifying age-related diseases can help identify individuals at risk for poor health outcomes, 

as the aging process and disease processes often interact. With progression or conversion from a clinically 

isolated episode to MS(32) and from mild cognitive impairment to AD(33, 34), the BAG increases. Baseline 

BAG was an independent predictor of worsening EDSS in both NMOSD and MS(23), as well as the 

progression of cognitive impairment in AD(33, 34). The BAG in all disease groups was significantly 

associated with cGMV and sGMV, which agrees with previous reports(35, 36) and indicates that reduction 

in gray matter is a major factor contributing to a higher BAG. The brain regions that exhibit atrophy (e.g., 

the accumbens and thalamus) affect cognitive domains that are commonly affected in MS, AQP4+ NMOSD, 

AD and cSVD patients(37). These deep gray matter alterations are a hotspot for both age- and disease-

related changes(10), as they were observed in healthy individuals with accelerated brain aging as well.  

Distinct spatial patterns of BAG-related atrophy associations were observed across neurological diseases, 

which provide insight into the underlying pathological processes. The atrophied brain regions associated 

with BAG involve a wide range of cortical and subcortical nuclei, particularly the putamen, accumbens, and 

thalamus in MS patients. The deep gray matter, specifically the thalamus, experiences a fast decline, which 

leads to worsening disability in MS patients(38), and BAG was a predictive biomarker of physical ability in 

MS patients(39). The atrophy associated with BAG in MS patients is not only indicative of accelerated 

aging, but it is also linked to cognitive and physical abilities. This supports the clinical meaningfulness of 

brain age for potentially describing physical and cognitive abilities in MS patients.  
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Reduced regional volume in the left rostral middle frontal gyrus was mostly associated with the BAG, 

followed by deep gray matter nuclei in NMOSD patients. It has been shown that cortical atrophy of the 

middle frontal gyrus cortex, which has a low expression level of AQP4, is associated with cognitive 

impairment(39). Besides, gray matter atrophy, especially in deep gray matter, was only found in NMOSD 

patients with cognitive impairment(40). These cognitive-related structural changes in NMOSD patients 

support our results that higher BAG in AQP4+ NMOSD patients correlated with poor cognitive ability. In 

the current study, there was no association between BAG and EDSS scores in AQP4+ NMOSD patients, 

which contradicted the results obtained in the previous study(23). These inconsistent results may be 

attributed to differences in inclusion criteria and the heterogeneous nature of NMOSD patient groups. In 

addition, BAG increased faster than normal chronological aging in MS, with an additional 0.61 years of 

brain aging per year in a longitudinal study (32). Evidence indicates that, while MS and NMOSD share 

features like chronic inflammation, similar age groups, and large lesions with axonal loss, NMOSD typically 

does not show chronic progressive degeneration(41). This aligned with another study, which adjusted for sex, 

age at diagnosis, baseline EDSS, and normalized brain volume, finding that NMOSD patients’ brains appear 

younger than those of MS patients(23). Although our results did not consider these adjustments, they were 

still consistent with these findings. 

In AD patients, we observed a broader spectrum of atrophic regions compared to those with PD, which may 

have contributed to higher BAG values in AD patients. Similarly, a previous study showed that AD patients 

have a significantly “older-appearing” brain than PD patients(42). Accelerated brain age in PD (average: 

range from +0.75 to +2.9 years) was mild to moderate as compared with HC (42-44). AD patients showed 

marked deviation from normal aging patterns, which correlated with cognitive impairment (i.e., MMSE and 

MoCA scores), as reported in previous studies(33, 45). Our findings suggest that BAG in Parkinson's disease 
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(PD) patients did not show correlations with disease severity, cognitive function or motor symptoms, which 

partly contrasts with a previous study(44). Accelerated biological age was significantly related to disease 

duration, and worse cognitive and motor impairment but not to disease severity in PD patients(44). However, 

another study indicated a correlation between BAG based on white matter and MoCA scores (r = -0.15), 

while no correlation was found with MDS-UPDRS-III scores and disease duration adjusting for age and sex 

(42). Possible reasons for these discrepancies may include limited clinical data and few atrophic brain 

regions associated with BAG in PD patients in our study. We intend to expand the sample size in future 

studies to investigate the relationship between BAG and both motor and non-motor symptoms in PD patients. 

Structural alterations of the thalamus have been linked to cognitive impairment in cSVD patients(46), and 

cSVD patients with higher BAG may have poor cognition in our study, suggesting that the brain age 

estimated model can capture key brain region alterations. In addition, higher cSVD burden was associated 

with faster rates of cognitive impairment, implying that brain age has the potential to serve as a measure of 

cSVD burden and cognitive impairment. 

There was a significant correlation between WMH volume and BAG values in all disease groups. 

Additionally, WMH volumes were associated with cognitive and clinical outcomes(47). This indicates that 

greater WMH burden may be associated with accelerated aging, reflecting a potential decline in brain health. 

Brain age and WMH burden reflect brain health from different yet complementary dimensions.(9). 

Limitations 

In this study, we included a large sample of healthy individuals and those with neurological disorders in the same brain 

age model. Our results revealed significant heterogeneity in brain aging in the general population, and accelerated 

aging observed across multiple neurological disorders. However, the study has several limitations. First, this was 

cross-sectional; future longitudinal studies of healthy individuals and patients with neurological disorders 
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are warranted to determine how the BAG changes over time and examine the association of the baseline 

BAG with a patient’s clinical outcome. Second, WMH segmentation was performed using a mixture of 2D 

and 3D FLAIR images, with the latter being more reliable(48). Third, deep learning methods are a “black 

box”, and the interpretability of brain age estimation needs further improvement. Fourth, we did not consider 

lifestyle and genetic factors, hormonal levels, or other risk factors influencing brain age. These factors may 

explain the heterogeneity of brain aging in healthy individuals(29). Distinguishing changes in brain function 

and structure due to normal aging from those caused by neurological diseases is challenging. Fifth, the 

cognitive and clinical assessments implemented were relatively limited. Further studies are warranted to 

address comprehensive clinical and cognitive measures. Sixth, while we sought to include a diverse range of 

diseases, this inevitably results in a broad spectrum and heterogeneity, complicating the ability to conduct 

comprehensive analyses and discussions within the scope of this study. Future studies could focus on more 

targeted patient selection to better assess the impact of different diseases. 

Conclusions  

Within the uniform framework of the brain age estimation model, individuals with accelerated brain aging 

(BAG ≥ 5 years) exhibit higher white matter hyperintensity burdens and volume reduction in specific brain 

regions in the general population, which helps identify individuals at age-related risk. Furthermore, 

neurological disorders show varying degrees of deviation from the trajectory of normal aging, most notably 

in AD and MS patients. Higher BAG implies lower cognitive scores across various neurological diseases 

and greater disability in MS patients. 
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Table 

Table 1. Patient characteristics of various neurological disorders and age- and sex-matched HC 

Variables HC MS 

P 

HC 

AQP4+ P 

HC AD 

P 

HC PD 

P 

HC cSVD 

P 

value NMOSD value value value value 

Number 624 331  374 189  411 239  471 244  648 338  

Age, mean 

(SD), y 

37.0 

(10.7) 

36.2 

(11.0) 

0.264 

43.4 

(13.3) 

43.1 

(13.5) 

0.84 

67.1 

(8.7) 

68.1 

(8.7) 

0.16 

59.7 

(11.8) 

60.0 

(11.7) 

0.68 

59.9 

(9.3) 

60.4 

(9.5) 

0.405 

Sex, female 

(%) 

390 

(62.5%

) 

211 

(63.7%) 

0.705 

342 

(91.4%) 

173 

(91.5%) 

0.971 

242 

(58.9%

) 

145 

(60.7

%) 

0.715 

223 

(47.3

%) 

119 

(48.8

%) 

0.78 

238 

(36.7

%) 

123 

(36.4

%) 

0.917 

BAG, mean 

(SD), y 

0.28 

(3.6) 

10.3 

(12.6) 

<0.00

1*** 

0.08 

(3.7) 

2.96 

(7.8) 

<0.00

1*** 

0.29 

(4.0) 

6.50 

(6. 6) 

<0.00

1*** 

0.25 

(4.1) 

4.24 

(4.8) 

<0.00

1*** 

0.23 

(4.0) 

3.24 

(5.9) 

<0.00

1*** 

Brain age, 

mean (SD), y 

36.7 

(11.0) 

45.8 

(16.5) 

<0.00

1*** 

44.2 

(13.2) 

46.7 

(15.6) 

0.044

* 

66.9 

(9.3) 

73.9 

(8.3) 

<0.00

1*** 

60.0 

(12.8) 

64.2 

(12.9) 

<0.00

1*** 

60.1 

(10.6) 

63.5 

(9.9) 

<0.00

1*** 

Duration, 

median 

[IQR], m 

NA 

23.9[6,6

0.1] 

 NA 

36.5[10,

84] 

 NA 

24.0[1

2,48] 

 NA 

72.0[4

8,108] 

 NA 

24.0[1

2,36] 

 

Relapses, 

median [IQR] 

NA 2.0[1,4]  NA 2.0[1,4]  NA NA  NA NA  NA NA  

MMSE, 

median [IQR] 

30.0 

[29,30] 

29.0[27,

29.5] 

<0.00

1*** 

30.0[29,

30] 

29.0[27,

30] 

0.001

*** 

29.0[28

,29] 

18.0 

[11,24] 

<0.00

1*** 

29.0[2

8,29] 

26.0[2

4,28] 

<0.00

1*** 

29.0[2

8,29] 

23.0[1

7.27] 

<0.00

1*** 

MoCA, 

median [IQR] 

28.0[25

,29] 

27.0[24,

28] 

0.036

* 

27.0[24,

29] 

26.0[22,

28] 

0.042

* 

24.0[22

,27] 

13.0[6,

19] 

<0.00

1*** 

23.0[2

2,26] 

22.5[1

9,25] 

<0.00

1*** 

24.0[2

2,26] 

20.0[1

6,24] 

0.011

* 

SDMT, 

median [IQR] 

65.0[62

,72.25]  

50.0[38.

8,56.3] 

<0.00

1*** 

65.5[62.

5,68.5] 

41.0[30.

9,52.3] 

<0.00

1*** 

NA NA  NA NA  NA NA  

CVLT-II, 

median [IQR] 

115[87.

5,129.5

] 

72.0[59,

98] 

<0.00

1*** 

129[107.

8,135] 

77.0[54,

100] 

<0.00

1*** 

NA NA  NA NA  NA NA  

PASAT, 

median [IQR] 

54.0[50

,59] 

44.0[34.

3,49.8] 

0.006

** 

NA 

39.5[30,

47.8] 

NA NA NA  NA NA  NA NA  

BVMT-R, 

median [IQR] 

48.0[34

.3,58] 

37.0[27,

50] 

0.004

** 

57.0[46.

8,58] 

34.0[24,

48] 

0.005

** 

NA NA  NA NA  NA NA  

HY, median 

[IQR]) 

NA NA  NA NA  NA NA  NA 

3.0[2.5

,3.0] 

 NA NA  

MDS-

UPDRS-III, 

median [IQR] 

NA NA  NA NA  NA NA  NA 

43.0[3

5,54] 

 NA NA  

EDSS, 

median [IQR] 

NA 

2.25[1.5,

3.5] 

 NA 

3.5[2.5,5

.0] 

 NA NA  NA NA  NA NA  
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cGMV, mean 

(SD), ml 

481.6(5

0.3) 

452.0 

(50.0) 

<0.00

1*** 

458.8 

(44.8) 

430.09(4

0.0) 

<0.00

1*** 

436.4 

(45.4) 

391.3 

(47.7) 

<0.00

1*** 

453.4 

(49.1) 

444.3 

(46.6) 

0.032

* 

454.0 

(44.6) 

439.0 

(45.9) 

0.032

* 

sGMV, mean 

(SD), ml 

58.8 

(5.1) 

53.0 

(7.1) 

<0.00

1*** 

56.4 

(4.7) 

54.0 

(5.0) 

<0.00

1*** 

53.5 

(4.9) 

50.3 

(6.1) 

<0.00

1*** 

55.4 

(5.2) 

54.4 

(5.7) 

0.021

* 

55.6 

(4.9) 

54.2 

(5.7) 

0.002

** 

WMV, mean 

(SD), ml 

472.8 

(55.2) 

440.6 

(64.2) 

<0.00

1*** 

451.5 

(50.6) 

439.9 

(46.8) 

0.011

* 

441.4 

(58.5) 

419.3 

(54.4) 

<0.00

1*** 

458.0 

(61.0) 

459.0 

(60.1) 

0.998 

465.0 

(58.2) 

454.0 

(61.5) 

0.011

* 

CSF, mean 

(SD), ml 

1009.1(

235.75) 

1342.6(4

17.0) 

<0.00

1*** 

9964.4(2

12.3) 

1102.8(2

95.7) 

<0.00

1*** 

1128.7(

282.3) 

1516.9

(504.4) 

<0.00

1*** 

1088.5

(261.3) 

1220.0

(295.4) 

<0.00

1*** 

1123.4

(267.2) 

1292.1

(370.9) 

<0.00

1*** 

Abbreviations: AD, Alzheimer's disease; AQP4+ NMOSD, aquaporin 4 antibody seropositive neuromyelitis optica spectrum disorders; BVMT-R, Brief 

Visuospatial Memory Test-Revised; CVLT-II, California Verbal Learning Test-Second Edition; EDSS, expanded disability status scale; HC, healthy controls; HY, 

Hoehn and Yahr scale; cGMV, cortical gray matter volume; sGMV, subcortical gray matter volume; MDS-UPDRS-III, Movement Disorders Society-Unified 

Parkinson’s Disease Rating Scale; MoCA, Montreal Cognitive Assessment; MMSE, Mini-Mental State Examination; MS, multiple sclerosis; NA, not available; 

PASAT, Paced Auditory Serial Addition Task; PD, Parkinson's disease; SD, standard deviation; SDMT, Symbol Digit Modalities Test; WMV, white matter volume.  

*p <0.05, **p <0.01, ***p <0.001 

MMSE and MoCA scores were not adjusted for education on account of the lack of education information in most of the normal population. 
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Figure Legends 

 

Fig. 1. Study flow chart. 

Abbreviations: AD, Alzheimer's disease; AQP4+ NMOSD, aquaporin 4 antibody seropositive neuromyelitis 

optica spectrum disorders; BVMT-R, Brief Visuospatial Memory Test-Revised; CVLT-II, California Verbal 

Learning Test-Second Edition; EDSS, expanded disability status scale; HY, Hoehn and Yahr scale; MDS-

UPDRS-III, Movement Disorders Society-Unified Parkinson’s Disease Rating Scale; MoCA, Montreal 

Cognitive Assessment; MMSE, Mini-Mental State Examination; MS, multiple sclerosis; PASAT, Paced 
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Auditory Serial Addition Task; PD, Parkinson's disease; SDMT, Symbol Digit Modalities Test; cSVD, 

cerebral small vessel disease. 
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 Fig. 2. BAG in various neurological disorders and age- and sex-matched HC. 

(a) BAG in patients with MS, AQP4+ NMOSD, AD, PD, cSVD and HC. (b) Distribution of BAG and 

different accelerated brain aging among neurological disorders (c) Cohen’s d effect sizes according to 

neurological disorders, compared with matched HC. *** p<0.001. 

Abbreviations: AD, Alzheimer's disease; AQP4+ NMOSD, aquaporin 4 antibody seropositive neuromyelitis 

optica spectrum disorders; BAG, brain age gap; HC, healthy controls; MS, multiple sclerosis; PD, 

Parkinson's disease; cSVD, cerebral small vessel disease. 



 27 / 29 

 

      

 

 

Fig. 3. Kendall's tau-b correlations between BAG and brain region atrophy in patients with 

neurological disorders. 

Correlations between BAG and brain atrophy according to neurological disorders in the left and right 

hemispheres. 
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Abbreviations: AD, Alzheimer's disease; AQP4+ NMOSD, neuromyelitis optica spectrum disorder; MS, 

multiple sclerosis; PD, Parkinson's disease; cSVD, cerebral small vessel disease.  
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Fig. 4. Kendall's tau-b correlations among BAG, MRI measurements and clinical scores in patients 

with neurological disorders. 

Abbreviations: AD, Alzheimer's disease; AQP4+ NMOSD, aquaporin 4 antibody seropositive neuromyelitis 

optica spectrum disorders; BVMT-R, Brief Visuospatial Memory Test-Revised; CVLT-II, California Verbal 

Learning Test-Second Edition; EDSS, expanded disability status scale; HY, Hoehn and Yahr scale; MDS-

UPDRS-III, Movement Disorders Society-Unified Parkinson’s Disease Rating Scale; cGMV, cortical gray 

matter volume; sGMV, subcortical gray matter volume; MoCA, Montreal Cognitive Assessment; MMSE, 

Mini-Mental State Examination; MS, multiple sclerosis; PASAT, Paced Auditory Serial Addition Task; PD, 

Parkinson's disease; SDMT, Symbol Digit Modalities Test; cSVD, cerebral small vessel disease; WMH, 

white matter hyperintensity; WMV, white matter volume.  

*pFDR <0.05, **pFDR <0.01. ***pFDR <0.001; NA, not available; FDR, after false discovery rate 

correction.  


