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Abstract

PAC-Bayes learning is a comprehensive setting for (i) studying the generalisation
ability of learning algorithms and (ii) deriving new learning algorithms by opti-
mising a generalisation bound. However, optimising generalisation bounds might
not always be viable for tractable or computational reasons, or both. For example,
iteratively querying the empirical risk might prove computationally expensive. In
response, we introduce a novel principled strategy for building an iterative learning
algorithm via the optimisation of a sequence of surrogate training objectives, inher-
ited from PAC-Bayes generalisation bounds. The key argument is to replace the
empirical risk (seen as a function of hypotheses) in the generalisation bound by its
projection onto a constructible low dimensional functional space: these projections
can be queried much more efficiently than the initial risk. On top of providing
that generic recipe for learning via surrogate PAC-Bayes bounds, we (i) contribute
theoretical results establishing that iteratively optimising our surrogates implies
the optimisation of the original generalisation bounds, (ii) instantiate this strategy
to the framework of meta-learning, introducing a meta-objective offering a closed
form expression for meta-gradient, (iii) illustrate our approach with numerical
experiments inspired by an industrial biochemical problem.

1 Introduction

Generalisation is arguably one of the central problems in machine learning. Among the different
techniques to study generalisation, PAC-Bayes has gained considerable traction over the past decade,
as evidenced by the surge in publications. We refer to the seminal works of Shawe-Taylor and
Williamson [1997], McAllester [1999], Catoni [2004, 2007] and to the recent surveys and monographs
from Guedj [2019], Hellström et al. [2023], Alquier [2024] for a thorough overview of the field.

One appealing feature is that PAC-Bayes learning is a comprehensive setting for (i) studying the
generalisation ability of learning algorithms and (ii) deriving new learning algorithms by optimising
a PAC-Bayes generalisation bound. This is the strategy pursued in a number of recent works, among
which Germain et al. [2009], Biggs and Guedj [2021], Germain et al. [2015], Viallard et al. [2023],
Zantedeschi et al. [2021], Rivasplata et al. [2019], Pérez-Ortiz et al. [2021], Zhou et al. [2019].

We now regard this strategy of substituting a generalisation bound to more classical training objectives
as established, and we focus here on the computational aspect of this strategy. Indeed, optimising
generalisation bounds might not always be viable for tractable or computational reasons, or both.
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Most PAC-Bayes bounds do not admit a close form minima formulation; moreover, such bounds
involve expectations and divergence terms which in general settings can not be evaluated in closed
form and thus require the use of approximation methods such as Monte-Carlo sampling (see amongst
others Seldin and Tishby [2010], Dziugaite and Roy [2017], Neyshabur et al. [2017], Mhammedi et al.
[2019]). Such approximation methods can prove computationally intensive, notably if the empirical
risk, whose expectation is optimised in the bound, is hard to query. Picard-Weibel et al. [2024] reports
that such queries proved to be the main computational bottleneck when optimising a PAC-Bayes
bound in a bio-chemical model calibration task. More generally, models whose predictions require
solving stiff ordinary differential equations (ODE) or partial differential equations (PDE), such as
naturally occurs in physics or biology inspired problems, result in empirical risks whose query can be
computationally expensive, in practice all but making numerous iterative computations of PAC-Bayes
objective’s gradients impracticable.

In response to the aforementioned difficulties for optimising PAC-Bayes generalisation bounds
in practice, we introduce a novel principled strategy designed to mitigate the computational cost
of querying the empirical risk, Surrogate PAC-Bayes Learning (SuPAC, see algorithm 1). We
build a learning algorithm which iteratively optimises a sequence of surrogate training objectives
in which the empirical risk is replaced by a proxy. This proxy is built as the orthogonal projection
of the true empirical risk on a functional vector space of finite dimension, which we conjecture
can be queried much more efficiently than the initial risk. A key motivation is that such surrogate
objectives can offer adequate approximations of the true objective valid much further away than the
linear approximation offered by the gradient, and enable larger optimisation steps. This effectively
decouples the complexity of querying the empirical risk and optimising PAC-Bayes objectives.

Our contributions. We list below our four main contributions, spanning theory, algorithmic,
application to meta-learning and numerical experiments.

1. We provide a generic recipe for learning via surrogate PAC-Bayes bounds, which we believe
is of practical interest for machine learning tasks involving computationally intensive models
with moderate dimension (e.g. physics models with less than few hundred parameters),

2. contribute theoretical results establishing that iteratively optimising our surrogates implies
the optimisation of the original generalisation bounds. This is established by Theorem 1 and
further developed in Corollary 1 and Theorem 2,

3. instantiate this strategy to the framework of meta-learning, introducing a meta-objective
with a closed form expression for meta-gradient,

4. illustrate our approach with numerical experiments inspired by an industrial biochemical
setting using an anaerobic digestion model.

Outline. The paper is organised as follows: in Section 2 we set the stage and introduce our
generic framework. In Section 3, we construct functional approximation spaces and establish generic
guarantees for our framework. In Section 4, we focus on Catoni’s bound [Catoni, 2007] and describe
a practical implementation of our framework. In Section 5, we investigate how our surrogate PAC-
Bayes minimisation strategy can be used in meta-learning settings. Numerical experiments are
described in Section 6. Future prospects are discussed in Section 7. The manuscript closes with
an appendix in which we gather (i) technical proofs in Appendix A, (ii) implementation details in
Appendix B.

2 A generic surrogate framework

Consider a measurable spaceH of predictors, denote P the set of all probability distributions onH,
andM(H) the set of measurable real valued functions. For a probability distribution π ∈ P , let
L1(π) (resp. L2(π)) denote the set of integrable (resp. square integrable) functions with respect to π.
For a f ∈ L1(π), π[f ] denotes the mean of f with respect to π (the notation is extended for functions
outputting vectors), while for functions in L2(π), Vπ[f ] denotes the variance of f (resp. covariance).

A PAC-Bayes bound, denoted PB, can generically be summarised as a real valued function of four
variables: a generic distribution π ∈ P , a prior distribution πp ∈ P , an empirical risk function R ∈ P ,
and other factors which we regroup as γ (e.g. the confidence level, the PAC-Bayes temperature, the
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size of the dataset). A PAC-Bayes theorem states that, under given assumptions on the data generation
mechanisms and risk, the average risk function R = E[R] satisfies for some function q

P
[
∀π ∈ P, π

[
R
]
≤ PB (π,R, πp, γ)

]
≥ 1− q(γ), (1)

where the probability is taken on the data generation mechanism. Due to the bound holding simul-
taneously for all distributions with high probability, it notably holds with high probability on the
minimiser of the bound, hence the PAC-Bayes minimisation task

arg inf
π∈P

PB (π,R, πp, γ) . (2)

We consider a restriction of this minimisation task on a subset Π ⊂ P of all probability distributions.
Such a restriction might be justified by various considerations, including storage of the calibrated
distribution, simplification of the minimisation task or even expert knowledge [Alquier et al., 2016,
Dziugaite and Roy, 2017, Picard-Weibel et al., 2024]. However, even this simplified minimisation
problem might prove computationally difficult for Gradient Descent (GD) based algorithm. This
is especially the case when evaluating the empirical risk is costly, e.g. when the prediction model
involves solving stiff ODEs or PDEs. As PAC-Bayes bounds depend on the π-mean of the empirical
risk, each gradient estimation rely on numerous new evaluations of the empirical risk. For ODEs
Ṡ = F (S, t, x) where F is very sensitive with respect to S, numerous evaluations of F are required
to obtain adequate numerical solutions in a given range [t0, t1]. These evaluations must moreover be
performed iteratively, and hence can not be parallelized. Moreover, implementing the ODE solver
in a way to benefit from GPU speed up when simulating for multiple parameters xs simultaneously
might not be practicable, since most ODE solver use a varying step size which will depend on x.
This will result in typically long model calls which can not be massively parallelised. To overcome
this difficulty, we introduce the Surrogate PAC-Bayes bound learning framework (SuPAC), which is
based on alternatively building and solving surrogate problems. It is designed to reduce the number
of calls to the risk - and consequently, in our ODE example, to the ODE solver.

Formally, we consider an approximation algorithm F : Π×M(H) 7→ M(H) in conjunction with
an approximate solving algorithm Solve : P ×Π×M(H) 7→ Π. Informally, F constructs a proxy
of the empirical risk valid for the current posterior estimation π; while Solve updates the posterior
estimation by solving the resulting surrogate objective (Algorithm 1).

Algorithm 1 Surrogate PAC-Bayes Learning
framework (SuPAC)

Require: PB, π0 ∈ Π, πp ∈ P , R ∈M(H)
π ← π0

while not converged do
f ← F(π,R)
π ← Solve(πp, π, f)

end while

Algorithm 1 offers a lot of leeway for building
surrogates (e.g., iteratively refining an ODE or
PDE solver, tailor-made surrogates for phys-
ical models, polynomial approximations) as
well as solving the surrogate problem. For
such a framework to be practicable, two con-
ditions should apply: the construction of the
surrogate and approximate solving should be
faster than solving the initial problem, and the
algorithm’s result should tend to diminish the
PAC-Bayes bound. Intuitively, the choice of
the approximation mechanisms plays a critical
role; indeed, the more precise the approxima-

tion, the more likely is the minima of the surrogate task to be close to the true minimiser, but the
harder the approximation task and the surrogate construction task.

3 Constructing surrogate function spaces

A core contribution of the present work is to show that for generic PAC-Bayes bounds and generic
probability families Π of dimension d, L2(π) orthogonal projection of the true score on a functional
vector space of dimension d+ 1 is sufficient to obtain convergence guarantees.

A few assumptions on the PAC-Bayes bounds, the risk R and the probability family Π are required.
Assumptions. (A1) Π = {πθ, θ ∈ Θ} is a parametric set indexed by an open subset Θ ⊆ Rd;

(A2) ∀θ ∈ Θ, πθ is absolutely continuous with respect to πp and dπθ

dπp
(x) = exp(ℓ(θ, x)) with

θ 7→ ℓ(θ, x) differentiable for all x;
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(A3) ∀θ ∈ Θ, ∃Nθ a neighbourhood of θ such that x 7→ supθ∈Nθ
|∂θℓ(θ, x)| ∈ L2(πθ);

(A4) R ∈ ∩θ∈ΘL2(πθ);

(A5) There exists P̃B such that PB(πθ, R, πp, γ) = P̃B(θ, πθ[R], πp, γ) (i.e. PB’s dependence on
the empirical risk is limited to the posterior average of the empirical risk). Moreover, P̃B is
differentiable with respect to its two first arguments.

We emphasise that these assumptions are valid for essentially all PAC-Bayes bounds, most risks, and
for a wide variety of probability distributions, and are thus rather more technical than restrictive.
Although the second assumption rules out probability distributions whose support is not included in
the prior support, we remark that such distributions usually yield vacuous PAC-Bayes bounds due to
penalisation terms (e.g., vacuous Kullback-Leibler divergence), and as such are already ruled out.
Most standard family of distributions, including Gaussian and Gaussian mixtures, satisfy (A1) to (A3)
for adequate parameterizations. The fourth assumption is automatically satisfied for all bounded risks,
which is a typical assumption of PAC-Bayes bounds, but also allows for unbounded risks provided
that they are square integrable (e.g. polynomials if Π span Gaussian would satisfy (A4)). The last
assumption is satisfied by most PAC-Bayes bound, e.g. those of McAllester [1999], Maurer [2004].

Since Π is parameterized by Θ, we will abuse notations for functions of Π and write G(θ) := G(πθ).
For a given θ, the functional vector space Fθ :=

{
fη,C : x 7→ η · ∂θℓ(θ, x) + C | η ∈ Rd, C ∈ R

}
provides a natural approximation space of dimension d+ 1. We are now in a position to state our
main approximation result.
Theorem 1. Under assumptions (A1) to (A5), replacing the empirical risk R by the proxy risk

fR,θ := arg inf
f∈Fθ

πθ[(R− f)2]

leaves the gradient of the objective PB invariant, i. e.

∂1PB(θ,R, πp, γ) = ∂1PB(θ, fR,θ, πp, γ).

This result also holds if the approximation space Fθ is replaced by Fθ + G := {f + g | f ∈ Fθ,G}
for any set G ⊂ L2(πθ).

Proof. Assumptions (A3) and (A4) allow differentiating θ 7→ πθ[R] = π
[ dπθ

dπ R
]

under the integral
sign (see Theorem 6.28 in Klenke [2020]), yielding ∇πθ[R] = πθ[R∂θℓ]. As such, the derivative of
P̃B(θ, πθ[R], πp, γ) with respect to θ equals ∂1P̃B(θ, πθ[R], πp, γ)+ ∂2P̃B(θ, πθ[R], πp, γ)πθ[R∂θℓ].

As the only dependence on the gradient with respect to R is on the value of π[R] at which the
derivative is evaluated and on the vector πθ[R∂θℓ], it follows that ∂θPB is not modified by replacing
R by a function f ∈ L2(πθ) satisfying the following linear system:

{
πθ[R∂θℓ] = πθ[f∂θℓ],

πθ[R] = πθ[f ].
(3)

By construction of Fθ, the linear system (3) is satisfied if and only if (f − R) ∈ F⊥
θ , where A⊥

denotes the orthogonal complement of A in L2(πθ). Hence for any set G ⊂ L2(πθ), the orthogonal
projection of R on F̃ = Fθ+G satisfies the linear system (3). Noticing that the orthogonal projection
fR,θ of R on space F̃ satisfies fR,θ = arg inff∈F̃ πθ[(R− f)2] ends the proof.

Informally, Theorem 1 guarantees that if searching for a PAC-Bayes posterior in a space of size
d, adequately projecting the score on a space of dimension at most d+ 1 preserves the immediate
surrounding of the PAC-Bayes objective. If the approximation built at θ maintains near optimal
performance for a large neighbourhood of θ, this surrogate task provides a valid approximation of the
true task for a wide range of distributions, and offers approximate solutions θ̃ much further away than
the range of validity of the objective’s gradient.

The extension of the result for Fθ + G implies that proxy score functions combining a known,
simplified model with a learnt correction term can be used. For G = {h}, it implies that the result
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holds if the approximation space consists of a fixed user defined proxy and a correction term. This
can have direct practical implications in settings where efficient, natural proxy are available; the
learnt corrective term would presumably be smaller, and hence the approximation’s validity larger.

A direct consequence of Theorem 1 is a fixed point characterisation of the minima of the PAC-Bayes
objective for instances of Algorithm 1 using GD based surrogate solver (see proof in Appendix A.1):

Corollary 1. Under assumptions (A1) to (A5), the minimiser θ̂ of the original PAC-Bayes bound is a
fixed point of any instance of Algorithm 1 such that:

• the approximation function is F(πθ, R) := arg inff∈Fθ
πθ[(R− f)2],

• the surrogate solving Solve strategy is any (corrected) gradient descent strategy starting
at the current θ, using update steps of form Updt(θ) = θ −M(π, θ, f, γ)∂θPB(θ, f, πp, γ),
where M stands for any function returning an endomorphism, for any number of steps, any
convergence criteria.

It should be stressed that Corollary 1 does not imply that Algorithm 1 improves on GD. Corollary 1
only guarantees that replacing the score by a low dimensional approximation is harmless locally.
Informally, if the approximation built at θ maintains near optimal performance for a large neighbour-
hood of θ, this surrogate task provides a valid approximation of the objective for this wide radius, and
can construct approximate solutions θ̃ much further away than the range of validity of the gradient.
SuPAC decouples the variations of the bound due to the evolution of θ and fθ,R; such a decoupling is
particularly interesting if the approximation fθ,R is stable.

4 Exponential family and Catoni’s bound

4.1 Closed form surrogate solution and fixed point property

Theorem 1 involves approximation of the empirical risk through orthogonal projection on a local
functional vector space Fθ of dimension at most d + 1. A setting of particular interest concerns
families of probabilities such that the space Fθ does not depend on θ. Exponential families, i.e.
family of distributions of the form

ΠT =

{
πθ |

dπθ

dπref
= exp(θ · T − g(θ) + h)

}
,

are a well studied class of probability family which satisfy this property (and essentially the only
such class if Θ is connected and the likelihood smooth, see Theorem 3 in Appendix A.3). The
approximation space can be written as F = {fC,θ := θ · T + C}. Without loss of generality, we
assume that functions (1, T1, . . . , Td) are linearly independent.

Exponential families define a tractable, yet flexible class of probability families, spanning from
simple, fixed variance distributions to multimodal distributions [Cobb et al., 1983]. They englobe
most familiar distribution families such as multivariate Gaussians, Beta and Gamma [Brown, 1986].
The approximation space they generate can equally vary. For Gaussian distributions, we remark that
F covers quadratic forms.

We now focus on the celebrated PAC-Bayes bound from Catoni [Catoni, 2007, Alquier, 2024],

PBCat(π, πp, R, (λ, δ, n, C)) = π[R] + λKL(π, πp) +
C2

8λn
− λ log(δ), (4)

where KL(ν, µ) = ν
[

dν
dµ

]
is the Kullback–Leibler divergence and λ is the PAC-Bayes temperature.

Catoni’s bound holds with probability 1− δ if 0 ≤ R ≤ C. Due to its particular form, minimising
the bound amounts to minimising the simpler objective ObjCat,λ := π[R] + λKL(π, πp).

For simplicity, we will assume that πp = πθp ∈ Θ. In this setting, (A1), (A2) and (A4) are
automatically verified. A key incentive to use Catoni’s bound is that the surrogate objective can
be solved in closed form; for risks of form fη,C , if the prior belongs to the exponential family, the
minimiser of Catoni’s bound on P belongs to Π, and it follows that

arg inf
θ

PBCat(πθ, πθp , fη,C) = θ̃(η) := θp − λ−1η,
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provided that θp − λ−1η ∈ Θ (if not, Catoni’s bound does not admit a minima) (see Lemma 2.2, and
Corollary 2.3 in Alquier [2024]). Since the posterior distribution does not depend on the constant
term C we will note fη for any fη,C ∈ F .

We can here use the exact solution of the surrogate PAC-Bayes bound rather than have to minimise
the bound through GD. The following lemma (proved in Appendix A.2) bridges the gap by showing
that the update rule using the closed form solution can be interpreted as a corrected GD step:

Lemma 1. Consider an exponential family Π := {πθ | θ ∈ Θ} with sufficient statistic T . Noting
F := {fη : x 7→ η · T (x) +C | η ∈ Rd, C ∈ R}, let fη ∈ F . Then for any prior parameter θp ∈ Θ,
for any parameter θ, the mapping θ̃(η) := θp − λ−1η satisfies:

θ̃ = −λ−1I(θ)−1∇θPBCat(θ, θp, fη, γ) + θ,

where I(θ) denotes Fisher’s information matrix.

A direct consequence of Lemma 1 is that Corollary 1 applies when using the exact solver for the
surrogate Catoni task. Since Fisher’s information is positive, it follows that the update direction θ̃− θ
always diminishes the bound locally. We summarise these results in the following theorem.

Theorem 2. The minimiser of Catoni’s PAC-Bayes objective on an exponential family is a fixed point
of Algorithm 1 with approximation function

F(πθ, R) := arg inf
f∈F

πθ[(R− f)2],

and surrogate solver

Solve(πp, θ, fη) := θp − λ−1η = arg inf
θ∈Θ

PBCat(θ, πp, fη, γ).

Moreover, for all θ,
∇PBCat · (Solve(πp, θ,F(θ,R))− θ) ≤ 0.

As noted above, the solution of the surrogate task must belong to Θ to define a probability distribution.
There is however no guarantee that such is the case for any approximated risk. For instance, if the risk
is estimated close to a local maxima by a quadratic function, the resulting surrogate task might not
have a minima, and hence the resulting θ(η) might fail to be a probability distribution, causing the
algorithm to break. Another difficulty lies in solving the approximation task. Involving an integral of
a function of the risk, the objective theoretically requires evaluations of the risk at all predictors. We
show in the next section how both these issues can be solved in practice.

4.2 Framework implementation: SuPAC-CE

Following Theorem 2, we propose an algorithm, SuPAC-CE (https://github.com/
APicardWeibel/surpbayes), designed to efficiently find the minimiser of Catoni’s bound on
Exponential families.

4.2.1 Implementing the approximation

As the surrogate PAC-Bayes bound is solved using a closed form expression, the computational
bottleneck of Algorithm 1 is the approximation task of computing η(θ) = arg infRd πθ[(fη −R−
πθ[fη −R])2]. Due to the form of fη, this is formally a least square weighted linear approximation
problem with infinite number of observations, whose solution can be explicitly written as η =
Vπ[T ]

−1π[R(T − π[T ])]. This solution can be approximated using a finite number of function
evaluations R(xi), replacing the probability π by an empirical counterpart πemp =

∑N
i=1 ωiδxi

.

Different choices of (xi, ωi) can be considered. A first approach consists in drawing i.i.d. samples
from πθ and considering uniform weights. This guarantees that the approximated objective is
unbiased. A main shortcoming of this approach, however, is that it disregards all previous risk
evaluations at each step. Corrections of the form dπθ

dπθ̃
can be used to salvage samples drawn from πθ̃,

all the while guaranteeing unbiased approximated objective. This however can drastically increase
the variance, and thus might not be practical.
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We advocate a generation agnostic approach for the weighing process, which treats all available
risk evaluations in a like manner. We assume thatH is a metric space. For all predictors (xi)i∈[1,N ]

whose risk R(xi) is known, target weights ω̃i are defined as the probability given to the Voronoi
cell xi by distribution πθ. This target weight can be approximated using Monte Carlo simulations
and solving nearest neighbour in (xi)i∈[1,N ] tasks. The distance used for the Voronoi cell can
depend on the distribution πθ –(e.g. Mahalanobis distance for Gaussian exponential families). This
approach requires, if the empirical distribution

∑
ωiδxi is to form an adequate approximation of

the distribution πθ, some queries from to πθ. The stack of function evaluation is hence appended at
each approximation step by evaluating samples from πθ. As this weight computation can bring some
overhead, it is only appropriate when risk queries are the main computational bottleneck.

4.2.2 Boundary issues

PAC-Bayes bounds typically hold for empirical risk functions satisfying moment bounds (with
respect to the data generation mechanism) or boundedness conditions (the latter being usually
required for Catoni’s bound). Such assumptions might no longer be met for the approximated risks. A
consequence is that the minimiser of the surrogate task might not exist. For instance, a local quadratic
approximation of the score near a local maxima can induce a surrogate task whose minima is − inf .

To ensure that for any score approximation fη,C , the surrogate solver always define a probability
distribution, two regularisation hyperparameters klmax and αmax are introduced. klmax ∈ R+ ∪+∞
determines the maximum step size allowed between two successive posterior estimation, measured
in Kullback–Leibler divergence. αmax ∈]0, 1] acts as a dampening hyperparameter. The corrected
update rule is changed to θ̃c(θ) = α̃(θ̃(η) − θ) + θ with α̃ the highest α ≤ αmax such that
KL(θ̃c, θ) ≤ klmax. Such α̃ can be easily obtained through a Newton scheme or dichotomy, noticing
that it is defined through f(α̃) = C for a non decreasing function f .

This modification does not impact the fixed point property of Theorem 2. Moreover, if the empirical
risk R belongs to F , choosing klmax <∞, αmax = 1 results in convergence in a finite number of
steps (resp. exponential convergence for αmax < 1) (see Appendix A.4).
Remark 4.1. While SuPAC-CE is designed to optimize Catoni’s PAC-Bayes bound (4), it can serve
as a work engine for the minimisation of other PAC-Bayes bounds. For instance, Proposition 2.1
from Germain et al. [2015] implies that Maureer-Langford-Seeger’s bound (MLS bound, Maurer
[2004], Langford and Seeger [2001] can be rewritten as

PBMLS = inf
λ>0

1− exp
(
−ObjCat,λ

λn − log(ξ(n)/δ
n

)
1− exp (−1/(λn))

.

As such, the minimisation of MLS bound could be performed by alternatively minimizing Catoni’s
objective at fixed temperature using SuPAC-CE and solving on the temperature at fixed posterior. The
generation agnostic weighing approach moreover implies that re-optimising Catoni’s objective after a
small change of temperature can be done with few new risk queries (see the strategy developped in
Section 5). This strategy is further developed in Picard-Weibel and Guedj [2024].

5 Surrogate Catoni in a Meta-Learning framework

Both the Bayes and PAC-Bayes framework offer a natural connection with Meta-Learning, as both
involve a natural inductive bias in the form of the prior. Previous work which studied Meta-Learning
for PAC-Bayes include Pentina and Lampert [2014], Amit and Meir [2018], Rothfuss et al. [2023],
Zakerinia et al. [2024]. The aim of PAC-Bayes Meta-Learning is the construction, from a sample
of independent train tasks, of a prior yielding optimal generalisation bounds on new unknown test
tasks. Such optimisation of the prior brings two benefits: tighter generalisation bounds (smaller
penalisation); and simplified PAC-Bayes learning task (better initial guess). For PAC-Bayes meta
learning, a natural training objective can be derived from the minimised PAC-Bayes bounds obtained
for each task. This defines the following meta training objective, analogue to an empirical risk at the
meta level:

M(πp) =
∑
i

inf
π∈Π

PB(π̂i, Ri, πp, ηi), (5)
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where π̂i denotes the task posterior and is a function of Ri, πp and ηi. The objective defined in
Equation (5) departs from previous formulations which typically involve a further penalisation term at
the meta level. We advance two justifications for this simplification. First, the extra penalisation term
involves divergence terms between a meta prior and meta posterior (both distributions on probability
distributions) which in practice make the bound vacuous and thus of limited practical interest. Second,
PAC-Bayes theory already offers guarantees on the generalisation performances of each test task,
limiting the need to assess the generalisation performance at the meta level. Arguably, the task
specific bound provided by using PAC-Bayes as inner algorithm is more informative than the "mean"
task bound offered by a meta PAC-Bayes algorithm (when PAC-Bayes learning is used both as inner
algorithm and meta training algorithm).

We consider that assumptions (A1) to (A5) hold, and also these further mild assumptions: the prior is
looked for in Π, i.e π = πθp ; the PAC-Bayes bound PB is differentiable w.r.t. θp. Then, noting θ̂i the
posterior parameter for each task, a simplification of the meta gradient occurs:

∇M(θp) = ∂θpPB(θ̂i(θp), Ri, θp, ηi) = ∂3PB(θ̂i, Ri, θp, ηi). (6)

Remarkably, the knowledge of the derivative of θ̂i with respect to θp is not required to compute the
meta gradient. This is due to ∂1PB being 0 when evaluated for the prior posterior. We stress that
such a simplification is specific to our meta-learning objective. It does not occur in meta-learning
strategies such as MAML [Finn et al., 2017], where the performance of each task is assessed on a
test set. In the context of PAC-Bayes, such reliance on test sets can be optimistically replaced by the
PAC-Bayes bounds, which give test guarantees with high probability. It is unclear whether such a
simplification occurs in previous PAC-Bayes Meta Learning objectives from the literature, as these
involve distributions on priors rather than a single prior.

A key consequence is that training the meta learning algorithm is as hard as cycling all the Bayesian
optimisation tasks. In a nutshell, meta learning is as hard as re optimising the bound for a new prior.

SuPAC-CE brings two main benefits when used in conjunction with meta-learning. First, by improving
the optimisation efficiency for a given prior, SuPAC-CE speeds up the meta-learning procedure.
Second, the "generation agnostic" weighing approach implies that risk revaluations from previous
optimisation procedures can be reused. As a consequence, re optimisation of a PAC-Bayes bound for
a new prior can conceivably be performed with few risk queries, bringing an additional speed-up.
Moreover, the setting considered for SuPAC-CE enjoys an analytical expression for meta-gradients,
∇M(θp) =

∑
i λi(∇g(θ̂i)−∇g(θp)) which can be efficiently evaluated.

6 Experiments

SuPAC-CE was assessed on the learning task described by Picard-Weibel et al. [2024]. A PAC-Bayes
bound is minimised on Gaussian distributions with block diagonal covariance in order to calibrate
30 parameters of a biological inspired numerical model describing anaerobic digestion processes,
ADM1 [Batstone et al., 2002]. This model relies on solving a stiff ODE to predict the evolution of
the states, and is therefore quite computationally intensive (about 3 seconds per model query in our
experiments).

We compared SuPAC-CE to standard GD on a synthetic dataset from Picard-Weibel et al. [2024],
using the same family of distributions and risk function. For SuPAC-CE, 160 risk queries where
performed for the initial step, and 32 for all further step. A maximal budget of 9600 empirical risk
queries was fixed; hyperparameters for the GD were selected after evaluating a grid on the first 1600
queries. Mean risks were assessed at test time by resampling new predictors from the posterior. The
PAC-Bayes temperature was set to 0.002. Training procedures were repeated 20 times.

The performance of the sequence of posteriors were compared by aligning the number of empirical
risk queries. Indeed, the main motivation of SuPAC-CE is the setting when querying the empirical
risk is computationally expensive, and can be assumed to be the computational bottleneck. This is
indeed the case for the anaerobic digestion example considered here. At equal number of risk queries,
SuPAC-CE required an extra 3.5% processing time compared to gradient descent, mainly caused by
the weighing process.

SuPAC-CE proved significantly more efficient at minimising the bound than GD (see Figure 1a). The
average performance of our algorithm proved better after 1800 queries than the best performance

8



(a) Optim. perf.

M
et

a 
O

bj
. (

)  
   

   
   

   
 M

et
a 

O
bj

. (
)

λ
=0

.1
λ

=0
.01

(b) Meta Learning

Figure 1: Experiments results. Figure 1a compares the optimisation performance of our algorithm
SuPAC-CE with gradient descent approaches on an biochemical calibration task. Optimisation
procedures were repeated 20 times; median performance and quantiles 0.2 and 0.8 are represented.
Figure 1b investigates train and test performance of the meta-learning approach of Section 5. Mean
test performance, as well as quantiles 0.2 and 0.8 for the sequence of built prior is assessed on
40 tasks and compared to the train performance. SuPAC-CE reduced the PAC-Bayes objective to
0.121± 0.004 (avg. risk of posterior of 0.102± 0.003).

obtained after the full 9600 queries for GD. The experiments also indicate that our procedure offers
much higher stability compared to GD, both during training and between the training duplicates. This
could be attributed to the "generation agnostic" weighing approach, which relies on all previous risk
evaluations at each step and is thus more stable. On the other hand, the noisy gradients estimates
have some probability of leading to problematic steps during GD, leading to sharp increase in the
objective. In our experiments, 4 out of 20 GD procedures thus led to a worse performance than the one
obtained by a single optimisation step of SuPAC-CE. The posterior distributions constructed through
SuPAC-CE obtained an average empirical risk of 0.102± 0.003, similar to the 0.101 value reported
in Picard-Weibel et al. [2024]. The resulting PAC-Bayes bound proved also similar (0.121± 0.004 vs.
0.122). Thus SuPAC-CE constructed as good a posterior as Picard-Weibel et al. [2024], but twenty
times faster.

Further assessments of SuPAC-CE’s performance for other hyperparameters values and comparison
to Nesterov accelerated GD were also conducted. SuPAC-CE proved to have a stable behaviour for
a wide range of hyperparameters value (0.25 ≤ αmax ≤ 0.75, 0.5 ≤ klmax ≤ 2), with instabilities
starting to appear for klmax > 5, and speed decrease for klmax < 0.1. Nesterov acceleration,
requiring some iterations to build up momentum, proved unable to compete with SuPAC-CE’s almost
instantaneous optimisation. Results for these experiments can be found in Appendix B.

Preliminary experiments were also performed for the meta-learning objective described in Section 5.
To facilitate the evaluation of the learnt meta priors, wholly synthetic risk functions were used in this
case, and PAC-Bayes objective minimised on Gaussian distributions. The risk functions considered
were bounded, smooth functions of R8, achieving their global minima at x0 ∼ N(x̃0,Σ0). x̃0 was
chosen so that ∥x̃0∥ = 2, and Σ0 such that only two of its eigenvalues are higher than 0.052 (drawn
at random between exp(−1) and exp(1)).

Such choices ensure that the original prior distribution, N (0, Ik), can be improved upon both by
shifting its mass centre and adjusting its covariance. The performance of the meta-learning algorithm
was assessed for two temperatures, λ = 0.1 and λ = 0.01. Meta training was performed using
stochastic gradient descent. The sequence of prior thus constructed was evaluated on a further 40 test
tasks, each time restarting the optimisation procedure from scratch, and evaluating the final score on
104 draws from the posterior.

The meta-learning algorithm was able to satisfactorily reduce the objective, from an initial average
generalisation bound of 0.61 (resp. 0.14) to 0.24 (resp. 0.050) after 150 gradient steps for λ = 0.1
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(resp. λ = 0.01). Most of the meta-objective reduction takes place during the early phase of training,
with the first 15 steps amounting to more than 80 % of the objective decrease. For both temperatures
tested, the average performance on the test tasks followed the objective decrease throughout training,
even though the number of queries per optimisation was minimal after the first meta step (less than
40), supporting both our meta-learning objective and the use of SuPAC-CE.

Full implementation details on the experiments can be found in Appendix B and in the source code
(https://github.com/APicardWeibel/surpbayes).

7 Discussion

The present work shows that it is possible to locally decouple the complexity related to querying the
empirical risk and the minimisation of a PAC-Bayes bound. A main motivation for such decoupling
is that the approximated risk function defines a non linear surrogate objective which might be valid
(i.e. close to the original objective) for a wider range of probabilities than the linear approximations
offered by the gradients. As a consequence, the surrogate bound solution can be reasonably allowed
to be much further away from the current posterior estimation than is the case for GD. A key
implementation difficulty remains picking the range of validity, i.e. how far away from the current
posterior the surrogate solver can be allowed to choose a distribution. Such a choice, formalised in
the selection of an adequate surrogate solving algorithm, is analogue to the choice of a step size in
gradient descent procedures, and balances the stability and speed of the procedure. Automating the
selection of the surrogate validity range offers an exciting prospect for the framework.

The Voronoi cell weighing approach used to solve the approximation problem is equivalent to
replacing the empirical risk function by a 1-nearest neighbour trained predictor, and approximating
this predictor. Variants following this two step approximation approach could be worth investigating.
Notably, an interesting perspective would be to approximate the empirical risk through Gaussian
processes, taking inspiration from Gaussian Optimisation. This would notably track the uncertainty
on the approximate risk on extrapolated values, which could drive the choice of new predictors to
evaluate and improve on the current random draws.

A key restriction of the present work is that our surrogate PAC-Bayes framework is only practicable
when the dimension of the predictor space and of the probability family are small (i.e. less than a
few hundreds). This is due to two factors; first of all, the larger the dimension of the probability
family, the larger becomes the approximation space, and hence the more empirical risk evaluations
are required. Notably, at least d + 1 evaluations of the empirical risk are required for probability
families of dimension d. The second factor is that the "generation agnostic" weighing approach
described in Section 4.2.1 is unlikely to give adequate performances ifH is high dimensional. This
effectively rules out deep learning settings, which have been recently the main focus of the PAC-
Bayes community. Still, we believe that PAC-Bayes learning offers meaningful prospects for a wide
range of physics, biology or medical inspired problems which involve few parameters and expensive
model computations, and therefore can be efficiently trained using our framework. Concrete fields of
application of SuPAC-CE include, but are not limited to, fluid dynamics simulations with dimension
reduction [Callaham et al., 2021], metabolic models for microbial communities [Cerk et al., 2024]
and greenhouse gas emission inverse problems [Nalini et al., 2022]. We remark that, as of now,
PAC-Bayes has not been much used outside of the learning community. While this can be vastly
attributed to a lack of awareness of PAC-Bayes theory outside of the learning community, the use of
PAC-Bayes was also hampered by the fact that previous PAC-Bayes algorithm required a prohibitive
number of simulations and hence computation time. We believe SuPAC-CE is a game changer in that
respect, due to its focus on limiting the number of risk queries, and readily usable implementation,
and we hope that this can be leveraged in different disciplines.

Conclusion. We introduced a generic framework for minimising PAC-Bayes bounds designed to
tackle computationally intensive empirical risks for low to moderate dimensional problems such as
naturally arise in physical models. We established that our optimisation strategy was theoretically
well supported. We instantiated this framework for the optimisation of bounds on exponential family,
and considered how this implementation could interact with meta-learning. Preliminary experiments
showed that our framework could significantly reduce the number of empirical risks queries when
calibrating a biochemical model, thus opening exciting new fields of applications for PAC-Bayes.
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A Technical proofs

A.1 Proof of Corollary 1

As assumptions (A1) to (A5) hold, Theorem 3 can be used. It implies that replacing R by fR,θ

does not change the gradient of PB. Hence, starting from θ = θ∗, since ∂1PB(θ∗, R, πp, γ) =

∂1PB(θ∗, fR,θ∗
, πp, γ) = 0, the update step in the solving strategy satisfies Updt(θ∗) = θ∗ −

M(π, θ, f, γ)× 0 = θ∗. Hence, by recursion, it follows that Solve(πp, πθ∗ , fR,θ∗
) = πθ∗ . Since we

assume that F(πθ, R) = fR,θ, this implies that πθ∗
is a fixed step of π → Solve(πp, π,F(π,R))), and

hence that the posterior is a fixed point of SuPAC for the specified F and Solve strategies, concluding
the proof.

A.2 Proof of Lemma 1

We consider the broader problem where the prior πp might not belong to the exponential family, but
any probability satisfying the following assumptions:
Assumptions. (A6) πp is absolutely continuous with respect to πref;

(A7) ∀θ ∈ Θ, h := log
(

dπp

dπref

)
∈ L2(πθ).

Note that when πp ∈ Π, one can use πref = πp for which assumptions (A6) and (A7) are automatically
fulfilled. The generalisation of the approximation space becomes

F = {fη,C := θ · T + C + λh},

which fits into the framework described in Theorem 1. For any fη ∈ F , the solver of Catoni’s bound
on all distributions is given by θ̃ = −λ−1η, provided this defines a probability distribution (else
Catoni’s bound does not reach its minima on Π or P). Note that the choice of θ̃ is coherent with the
formula given in Lemma 1 when the prior belongs to Π, since in that case h = θp · T , leading to a
change of coordinate in the definition of F .

Under the assumptions, Catoni’s bound is differentiable and its gradient with respect to θ can be
computed under the integral. Thus, for score fη ,

∇PBCat = πθ[fη(T −∇g(θ))] + λπθ[(θ · T − g(θ)− h)(T −∇g(θ))]
= πθ[(fη + λθ · T − g(θ)− λh)(T −∇g)]
= πθ[(fη + λθ · T − λh)(T − πθ[T ])]

= πθ[(η · T + C)(T − πθ[T ])] + λVπθ
[T ]θ

= Vπθ
[T ](η + λθ)

where we use the well known identity πθ[T ] = ∇g (see Brown [1986]). For exponential families,
the variance Vπθ

[T ] coincides with Fisher’s information, and hence the previous equality reads
∇PBCat = λI(θ)(θ − θ̃(η)), which implies Lemma 1.

A.3 Probability families with constant approximation space

Theorem 1 considers projections of the risk on a local vector space of functions Fθ. A special case of
interest concerns families of distributions such that the approximation set is constant. Exponential
families offer such a characteristic. We show here that exponential families (and its restrictions) are
the only smoothly parameterised distributions with this characteristic:
Theorem 3. For family of distributions satisfying the first three hypotheses of Section 3 such that,
moreover:

• Θ is a connected,

• θ → ℓ(θ, x) is twice continuously differentiable for all x.

If there exists a vector space of finite dimension F such that Fθ ⊂ F for all θ ∈ Θ, then there exists
an exponential family ΠT defined on Θ̃ and a connected, open set ΘΠ such that Π = {πθ | θ ∈ ΘΠ}.
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Proof. For F of dimension d̃+1, choose T1, . . . , Td̃, Td̃+1 = 1 a basis of F . Then, for all θ, there

exists a unique matrix A(θ) ∈ Rd,d̃, and a unique vector c ∈ Rd̃,1 such that

∂θℓ = (A(θ) c(θ))

 T1

· · ·
Td̃+1


Assume that A(θ) and c(θ) are differentiable (this is proved afterwards). Since ℓ is twice continuously
differentiable, it follows ∂θi∂θj ℓ = ∂θj∂θiℓ, and therefore that ∂θiAj,k = ∂θjAi,k and that ∂θjci =
∂θicj . This, in conjunction with the hypothesis that Θ is connected, implies that A(θ) is a gradient
of some β : Rd 7→ Rd̃ while c is the gradient of some −g : Rd 7→ R (see Lang [1999]). Hence,
ℓ(θ) = β(θ) · T (x)− g(θ) + h for h a solution of ∂θh = 0. Since Θ is connected, this implies that h
can not be a function of θ. Hence Π is the restriction of an exponential family on Θ.

It remains to show that A(θ) and c(θ) are differentiable. First of all, we remark that for all finite
collection of linearly independent real valued functions (f1, . . . , fn), there exists d points (x1, . . . , xn

such that (fi(xj))i,j≤n is inversible. Indeed, this result holds for a single function, since f1 must be
non zero. Then if the result holds for x1, . . . , xk, i.e. D = det((fi(xj))i,j≤k) ̸= 0 then consider the
matrix m(z) = (fi(x̃j)i,j≤k+1 with x̃j = xj if j ≤ k, x̃k+1 = z. Then the determinant of matrix m
is Dfk+1(z) +

∑
i≤k Cifi(z). Since f1, . . . , fk+1 are linearly independent and since D is not zero,

there must exist z such that det(m(z)) ̸= 0, which we can pick as xk+1. This proves the result by
recursion.

Since T1, . . . Td̃+1 are linearly independent, we can therefore pick such x1, . . . , xd̃+1. By definition
of A(θ) and c(θ), it follows that for all θ,

(A(θ) c(θ)) =


∂θ1ℓ(θ, x1) . . . ∂θ1ℓ(θ, xd̃+1)

...
...

∂θkℓ(θ, x1) . . . ∂θkℓ(θ, xd̃+1)


 T1(x1) . . . T1(xd̃+1)

...
...

Td̃+1(x1) . . . Td̃+1(xd̃+1)


−1

This implies that A and c are linear combinations of the differentiable functions (∂ℓ(·, xi))i∈[1,d̃+1],
and hence that they are differentiable.

A.4 Regularisation and convergence for Catoni’s bound

If R = fη ∈ F , the uncorrected step direction results in one step convergence, implying that the
update direction at θ is θ̂ − θ. This implies that all successive estimation θi belongs to the segment
[θ0, θ̂]. Note ∆θ = θ̂ − θ0. Since the normalisation function g is strictly convex, it follows that the
function t→ ∆θ · ∇g(θ0 + t∆θ) is non decreasing, and hence, for all t,

∆θ · ∇g(θ0) ≤ ∆θ · ∇g(θ0 + t∆θ) ≤ ∆θ · ∇g(θ̂).

Using the convexity of g, this implies that for t1 < t2, g(θ0+ t1∆θ)− g(θ0+ t2∆θ) ≤ (t1− t2)∆θ ·
∇g(θ0) while (t2 − t1)∆θ · ∇g(θ + t2∆θ) ≤ (t2 − t1)∆θ · ∇g(θ̂).
It follows that for all t1 < t2,

KL(θ0 + t2∆θ, θ0 + t1∆θ) ≤ (t2 − t1)∆θ · (∇g(θ̂)−∇g(θ0)).

This implies that for θi = θ0 + ti∆θ, θi+1 = θ0 + ti+1∆θ, if the condition KL(θi+1, θi) ≤ klmax

is active, then ti+1 − ti ≥ klmax

∆θ·(∇g(θ̂)−∇g(θ0))
. Since ti+1 − ti ≥ 0 and for all i, ti ≤ 1, this

implies that the condition is active a finite number of time at most. In the case of αmax = 1, this
implies convergence in a finite number of steps. For 0 ≤ αmax < 1, this implies that after some K,
ti+K = (1− αmax)

i(1− tK), and hence exponential convergence of (θi) to θ̂.
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B Implementation details

The code described in this section can be found in the publication repo: https://github.com/
APicardWeibel/surpbayes.

B.1 Further notes on SuPAC-CE

SuPAC-CE can be summarised in the following pseudo-code:

Algorithm 2 Surrogate Catoni solver for exponential families (SuPAC-CE)

Require: λ > 0, θ0 ∈ Θ, θp ∈ Θ, R ∈M(H), Ev = (xi, R(xi))
n
i=1, 0 < αmax ≤ 1, 0 < klmax

θ ← θ0
while not converged do

Draw i.i.d. xn+1, . . . , xn+k ∼ πθ

Ev, n← Ev ∪ ((xn+1, R(xn+1)), . . . , (xn+k, R(xn+k))), n+ k
ωi ← π[xi] ▷ Solving nearest neighbour problems
η∗, C = arg infη,C

∑
i≤n ωi(T (xi)−R(xi)− C)2

δθ = θ0 − λ−1η∗ − θ
α̃← sup{α | α < αmax,KL(θ + αδθ, θ) ≤ klmax}
θ ← θ + α̃δθ

end while

Our implementation is based on the pre-existing code source provided by Picard-Weibel et al.
[2024]. Part of the original code was reworked to fit our new setting. New classes for exponential
families of distributions were introduced, and implementation of the Gaussian family classes modified
accordingly. A modular and generic solver class for the minimisation of Catoni’s PAC-Bayes bound
on exponential families was introduced, as well as more specific implementations for probability
families outputting Gaussian distributions, using the Mahalanobis distance when approximating the
weights. These solvers rely on closed form expressions for the Kullback–Leibler divergence and its
derivative, inferred from the normalisation function and its derivatives.

The default weighing approach for the score approximation uses exact 1-NN for a user specified
number of samples ("n_estim_weights" argument), performed using Faiss library [Douze et al., 2024].
Another weight approximation method, relying on approximate k-NN solving, is also provided.

The corrected update rule parameter α̃ is estimated by dichotomy, using the fact that for all θ, δθ,
the function α → KL(θ + αδθ, θ) is not decreasing. The resulting α̃ is guaranteed to result in a
Kullback–Leibler step of less than klmax.

B.2 Experiments

B.2.1 Catoni’s bound minimisation

The implementation of ADM1 from Picard-Weibel et al. [2024] was used to perform the experiments,
and slightly modified to benefit from just-in-time compilation. The dataset used was the training part
of dataset "LF". The probability family (Gaussian with block diagonal covariance with fixed blocks)
and prior distribution considered in the original paper was used. For SuPAC-CE, the regularisation
hyperparameters were set to klmax = 1 and αmax = 0.5, while the number of samples generated to
evaluate the weights was set to 40 000. The optimisation algorithm was trained on 296 steps; for the
initial step, 160 risk queries were performed, while for all the remaining steps, 32 risk queries were
performed. This larger number of queries for the initial step is due to the necessity of having a least
more evaluations than the dimension of the family of probability.

Hyperparameters for GD were selected after assessing the grid per_step ∈ {80, 160}, step_size ×
{0.025, 0.05, 0.07} on a preliminary 1600 score queries budget, with 20 repeats. The larger step size
0.07 was rejected due to its erratic behaviour between repeats, obtaining both optimal and worse GD
performance. This erratic behaviour was also observed for step size 0.05 when estimating gradients
from 80 risk queries. On the other hand, for per_step set to 160, the step size of 0.025 clearly under-
performed compared to the step size of 0.05, although slightly more stable. This led to the selection of

16

https://github.com/APicardWeibel/surpbayes
https://github.com/APicardWeibel/surpbayes


 SuPAC 

Draw 
predictors 
Evaluate 

score

Weigh 
predictors

Linear 
least 

square

Update 
Posterior

Figure 2: Overview of SuPAC-CE. At each step, some new predictors are drawn from the current
posterior approximation and evaluated (top right figure). All evaluated predictors are then weighted
according to the weight of their Voronoi cell (bottom right figure). These weighted evaluations are
used to construct an optimal approximation of the score through a linear least square task (bottom
left figure). The approximated score is used to update the posterior using a closed form expression
(top left figure). This procedure is looped until convergence (center).

(a) η = 0.025 (b) η= 0.05 (c) η = 0.07

Figure 3: Preliminary GD optimisation procedures for different choices of hyperparameters. The
evaluations of each optimisation procedure was repeated 20 times; the median performance and 0.2
and 0.8 quantiles are represented. The performance of SuPAC-CE is given for comparison.

the two sets of hyperparameters, (per_step=80, step_size=0.025) and (per_step=160, step_size=0.05),
which had similar performances. Both were assessed, and the set of hyperparameters obtaining the
lowest score, (per_step=160, step_size=0.05), was kept for comparison (see Appendix B.2.1).

SuPAC-CE was further compared to Nesterov accelerated gradient descent (implementation in the
publication repo). Starting from the two sets of hyperparameters preselected for GD, optimisation
procedures using a momentum of 0.5, 0.9 and 0.95, and either the original step size or twice the
step size were assessed. Each of these 12 new optimisation procedures was repeated 8 times, and
compared to SuPAC-CE (see Appendix B.2.1). For no choice of hyperparameter values did Nesterov
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Figure 4: Comparison of the optimisation procedures as performed by SuPAC-CE and gradient
descent (GD) for the two selected sets of hyperparameters. Each optimisation procedure was repeated
20 times; the median performance and 0.2 and 0.8 quantiles are represented. SuPAC-CE was
performed with hyperparameters αmax = 0.5 and klmax = 1.

accelerated GD proved more efficient than SuPAC-CE (Appendix B.2.1). The increase of step size
in conjunction with the moderate momentum improved the speed of the optimisation procedure,
but at the cost of a higher risk of optimisation failure, leading to 3 out of 8 runs (resp. 2 out of
8 runs) for 160 simulations per step (resp. 80 simulations per step) with a final objective higher
than the initial objective. Higher momentum led to major instabilities, with less than 3 runs out
of 8 managing to reduce the objective below 0.2 (compared to 0.121 obtained by SuPAC-CE) for
all hyperparameter combinations. For the original step size, momentum appeared to improve the
stability of the procedures for all setting except moderate momentum for a per step hyperparameter
of 80. Higher momentum procedures led to a speed decrease, caused by the larger number of steps
necessary for momentum to build up.

The impact of SuPAC-CE’s hyperparameters was investigated by running further optimisation pro-
cedures with different choices of hyperparameters. A grid was assessed, with values of klmax in
{0.5, 1, 2} and αmax in {0.25, 0.5, 0.75}, with each optimisation process repeated ten times (see
Appendix B.2.1). The resulting optimisation procedures proved to all have similar performances, with
only a slight decrease in speed in the early phase between the most regularized and less regularized hy-
perparameters which was below the noise level after the fourth optimisation step (see Appendix B.2.1).
Two further sets of slow hyperparameters values ((klmax, αmax) ∈ {(0.1, 0.9), (0.01, 0.9)}) and fast
hyperparameters values ((klmax = 5, αmax = 0.1), (klmax = 10, αmax = 0)) were also assessed,
with 8 repeats (see Appendix B.2.1). The slow hyperparameters led to more stable and reproducible
optimisation procedures. For the small maximum step size of klmax = 0.01, the average performance
of the optimisation process was similar (i.e. difference below the noise level) to the performance of
the optimisation process with standard hyperparameters after 2000 risk queries. The highest maximal
step size assessed of klmax = 10 resulted in a final average PAC-Bayes bound of 0.147± 0.022, with
a standard deviation between runs of 0.061, significantly higher than the standard deviation for the
standard hyperparameters (0.0032, p-value of 1.95e− 09).

Computations were performed using Azure Machine Learning compute clusters with 32 cores and
Intel Xeon Platinum 8272CL processors.
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Figure 5: Comparison of the optimisation procedures as performed by SuPAC-CE and Nesterov
accelerated gradient descent (x axis: number of empirical risk queries). Each optimisation procedure
was repeated 8 times; the median performance and 0.2 and 0.8 quantiles are represented. SuPAC-CE
was performed with hyperparameters αmax = 0.5 and klmax = 1. Momentum of 0.5, 0.9 and 0.95
were assessed for Nesterov gradient descent. Both the original step size (η) parameter as well as
twice the step size parameter for gradient descent comparisons were investigated. At twice the step
size, all momentum accelerated procedures proved unstable. At the original step size, the momentum
tended to increase the stability of the procedure at the cost of speed. All Nesterov accelerated gradient
descent procedures assessed were slower than SuPAC-CE
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Figure 6: Comparison of SuPAC-CE with Nesterov accelerated gradient descent for a variety of
hyperparameters choices. Each optimisation procedure was repeated 8 times; the median performance
and 0.2 and 0.8 quantiles are represented. SuPAC-CE proved to be consistently more efficient for all
hyperparameters values tested. The hyperparameter for SuPAC-CE assessed in the main part of the
publication is highlighted.
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Figure 7: Performance of SuPAC-CE with extreme hyperparameters values. Each optimisation
procedure was repeated 8 times; the median performance and 0.2 and 0.8 quantiles are represented.
SuPAC-CE exhibited noticeable instabilities and speed loss for hyperparameters leading to insufficient
regularization (blue curve). Too much regularisation lead to speed decrease in the early phase of the
optimisation procedure (purple curve)

B.3 Meta-Learning experiments

For the meta-learning experiments, the tasks were generated as follow. Empirical risk functions of
form

Rω,A,x0 : x 7→ tanh(h(ω∥A(x− x0)∥2)/10) (7)
with h(x) = cos(x)+x were considered. These are such that x0 is the only global minima of Rω,A,x0 ,
while all xs such that ω∥A(x− x0)∥2 = π/2 + 2kπ are local minima. The distributions of the risk
parameters are as follow: x0 ∼ N (x̃0,Σ0), ω ∼ U( 32π,

5
2π) and Ai,j ∼ N (δi,j , σ

2 = 0.052). The
mean parameter x̃0 was initiated at random on the sphere of radius 2, while the covariance Σ0 was
initiated at random as

Σ0 = O × diag(σ2
1 , . . . , σ

2
d)×Ot,

where σ1, . . . , σd−2 = 0.05, σd−1, σd ∼ exp(U(−0.5, 0.5)) and O is drawn at random amongst
orthonormal matrices. The dimension of the predictor space d is fixed to 8.

The meta training process was performed as follow. The initial calibration phase for each task was
performed in 15 steps, with 100 score queries for the first five steps and 50 score queries for the
remaining steps. The hyperparameters were set to klmax = 0.5, αmax = 0.3 and 104 samples are
used to estimate weights. This initial meta step used a mini batch size of 10, a maximum meta kl
step of 0.2 and step size of λ−1. After all tasks have been trained once, the hyperparameters for
SuPAC-CE were modified: the number of steps was reduced to 4, and αmax set to 0.7. 20 risk queries
are performed on the first and third step, and none on the second and fourth. This accounts for the fact
that the posterior distribution updates are expected to be small at this stage. The mini batch size is
increased to 20. After 19 epochs, the step size is reduced to 0.5λ−1 and the maximum meta kl step to
0.1. After 30 more epochs, the step size was reduced to 0.4λ−1, and trained for a further 100 epochs.

The performance of sequence of priors was assessed in the following way. 40 test tasks were
drawn. For each prior, a full independent calibration was performed on each task, using 20 steps
of SuPAC-CE (100 risk queries for the first 5 steps, 50 for the remaining steps). The resulting
posterior performance is assessed by computing the bound using 104 fresh evaluations of the risk.
The mean of these performance over the task defines the meta test score. The dispersion of these test
performance between different test task is assessed by computing the quantiles 0.2 and 0.8 of the test
performances at a given prior. This procedure being quite computationally intensive, only the first ten
priors constructed and afterwards one prior out of five were assessed.

Computations were performed using Azure Machine Learning compute clusters with 16 cores and
Intel Xeon Platinum 8272CL processors.
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