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ABSTRACT

Context. The Euclid space satellite mission will measure the large-scale clustering of galaxies at an unprecedented precision, providing a unique
probe of modifications to the ΛCDM model.
Aims. We investigated the approximations needed to efficiently predict the large-scale clustering of matter and dark matter halos in the context of
modified gravity and exotic dark energy scenarios. We examined the normal branch of the Dvali–Gabadadze–Porrati model, the Hu–Sawicki f (R)
model, a slowly evolving dark energy model, an interacting dark energy model, and massive neutrinos. For each, we tested approximations for
the perturbative kernel calculations, including the omission of screening terms and the use of perturbative kernels based on the Einstein–de Sitter
universe; we explored different infrared-resummation schemes, tracer bias models and a linear treatment of massive neutrinos; we investigated
various approaches for dealing with redshift-space distortions and modelling the mildly nonlinear scales, namely the Taruya–Nishimishi–Saito
prescription and the effective field theory of large-scale structure. This work provides a first validation of the various codes being considered by
Euclid for the spectroscopic clustering probe in beyond-ΛCDM scenarios.
Methods. We calculated and compared the χ2 statistic to assess the different modelling choices. This was done by fitting the spectroscopic cluster-
ing predictions to measurements from numerical simulations and perturbation theory-based mock data. We compared the behaviour of this statistic
in the beyond-ΛCDM cases, as a function of the maximum scale included in the fit, to the baseline ΛCDM case.
Results. We find that the Einstein–de Sitter approximation without screening is surprisingly accurate for the modified gravity cases when com-
paring to the halo clustering monopole and quadrupole obtained from simulations and mock data. Further, we find the same goodness-of-fit for
both cases – the one including and the one omitting non-standard physics in the predictions. Our results suggest that the inclusion of multiple
redshift bins, higher-order multipoles, higher-order clustering statistics (such as the bispectrum), and photometric probes such as weak lensing,
will be essential to extract information on massive neutrinos, modified gravity and dark energy. Additionally, we show that the three codes used
in our analysis, namely, PBJ, Pybird and MG-Copter, exhibit sub-percent agreement for k ≤ 0.5 h Mpc−1 across all the models. This consistency
underscores their value as reliable tools.

Key words. gravitation – cosmology: theory – dark energy – large-scale structure of Universe

1. Introduction
The recently launched Euclid mission will measure the positions
and redshifts of billions of galaxies, granting us an unprecedented
picture of the large-scale structure of the Universe (Laureijs et al.
2011; Amendola et al. 2018; Euclid Collaboration 2024). This
will serve as a fantastic experimental test of the standard model of
cosmology, ΛCDM1, and as a means to constrain or detect devia-
tions from it. In particular, the Euclid mission will offer a unique
opportunity to probe and constrain modifications in both the mat-
ter and gravitational sectors (Euclid Collaboration 2020).

Euclid can thus offer insight into a more fundamental
description of gravity beyond General Relativity (GR), and per-
haps into one that could account for the ongoing accelerated
expansion of the Universe (Perlmutter 1999; Riess et al. 1998),
one of the most poorly understood phenomena in Nature. It could
also provide clues as to whether or not dark energy evolves over
time, or whether or not it interacts with CDM, the latter of which
can help solve emerging data-set tensions within ΛCDM (see
Pourtsidou & Tram 2016, for example).

A key observable that Euclid will provide is the power spec-
trum – the Fourier transform of the 2-point correlation func-
tion – of the galaxy distribution in redshift space. Given the
immense number of galaxies that Euclid will detect, the statis-
tical uncertainty on the measured power spectrum will be tiny.
In particular, Euclid is set to measure more than twenty mil-
lion galaxy redshifts (Amendola et al. 2018)2. Since there will
be more galaxy pairs found at small physical separations, the
statistical uncertainty will be smaller as we move to the mildly
nonlinear, small-scale, regime. There is therefore, potentially,
a wealth of cosmological and gravitational information to be
extracted by going beyond the linear, large-scale regime (see, for
example, Bernardeau et al. 2002; Nishimichi et al. 2007; Lacasa
2022; Bose et al. 2019).

In order to seize this opportunity, the precision of the data
must be matched with the accuracy of the theoretical predic-
tions, which becomes a challenge to maintain when nonlinear
effects become important. Further, if modelling uncertainty is

1 This model assumes the dominating energy components of the Uni-
verse are a constant dark energy, Λ, and cold dark matter (CDM), with
gravity described by Einstein’s general relativity (GR).
2 See also https://www.euclid-ec.org/public/
core-science/

not well estimated, then a biased picture of the Universe will be
inferred from the data (see, for example, Markovic et al. 2019;
Martinelli et al. 2021).

There exist various approaches to modelling large-scale
structure observables on scales where nonlinear effects become
significant. N-body simulations are powerful tools for this pur-
pose. However, they are not well-suited for data-theory inference
analyses due to their high computational cost. Another alterna-
tive is to employ faster, semi-analytical methods based on stan-
dard perturbation theory (SPT, see Bernardeau et al. 2002, for a
review), such as the effective field theory of large-scale structure
(EFTofLSS; Baumann et al. 2012; Carrasco et al. 2012) or other
related approaches (see for example Pueblas & Scoccimarro
2009; Pietroni et al. 2012). A procedure one can follow is to
model all relevant physics within the chosen perturbative frame-
work and then determine the range of scales where this approx-
imate method remains valid – where the theoretical uncertainty
is smaller than the statistical and known systematic uncertainties
– by comparison with an N-body benchmark measurement (see,
for example, Heitmann et al. 2016, 2019; Bose et al. 2019, 2017;
Rossi et al. 2021).

In this paper, we aim to quantify the uncertainty of various
approximations and approaches to the nonlinear redshift space
galaxy clustering power spectrum in beyond-ΛCDM cosmolo-
gies. The goal is to identify which such choices are worthy of
further assessment and eventual use in computationally demand-
ing, statistical analyses.

In particular, we have considered four representative theories
of gravity and dark energy that have been identified by the Euclid
consortium as target theories to test (Amendola et al. 2018): the
normal branch of the Dvali–Gabadadze–Porrati (DGP) model
of gravity (Dvali et al. 2000), f (R) gravity (Carroll et al. 2004;
Hu & Sawicki 2007), a time-varying dark energy component
(Chevallier & Polarski 2001; Linder 2003), and an interact-
ing dark matter – dark energy model with pure momentum
exchange (Simpson 2010; Pourtsidou et al. 2013). Two gravity
models provide examples of phenomenologically distinct types
of screening3, these being the Vainshtein mechanism (Vainshtein

3 Screening is a theoretical mechanism used to suppress additional
forces coming from modifications to gravity in the Solar System
(Brax et al. 2021), where experiments show theory must accord with
GR’s predictions (Will 2018).
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1972, in the case of DGP) and the chameleon mechanism
(Khoury & Weltman 2004, in the case of f (R) gravity). These
two gravity models also provide distinct effects on the linear
growth of structure, with f (R) inducing a modification to growth
that varies with physical scale while DGP induces a modification
that is scale independent.

The dark sector models provide two phenomenological
examples of possible deviations from a cosmological constant.
The time-varying dark energy model is the simplest way to
approximate and parameterise dark energy evolution as pre-
dicted by, for example, quintessence scalar field theories. The
specific interacting dark energy model we have chosen repre-
sents more complex dynamics and has been shown to be able
to address the tension between CMB and structure growth mea-
surements (Pourtsidou & Tram 2016; Carrilho et al. 2023).

On top of a modified gravitational or dark sector, we also
considered massive neutrinos, the total mass of which Euclid
is expected to measure with a high significance (see for exam-
ple Archidiacono et al. 2017). The effects of a massive neutrino
species becomes significant at the scales of interest and have
demonstrated a notable degeneracy with modifications to gravity
at low redshift (He 2013; Baldi et al. 2014; García-Farieta et al.
2019; Wright et al. 2019; Hagstotz et al. 2019; Moretti et al.
2023).

An additional choice we considered is the redshift
space distortion effect (Kaiser 1987). We looked at two
prominent models: the Taruya–Nishimishi–Saito (TNS) model
(Taruya et al. 2010) and the EFTofLSS model (Perko et al. 2016;
Chudaykin et al. 2020; D’Amico et al. 2020). We also examined
choices for how to resum infrared modes and model tracer bias.

This paper is structured as follows. In Sect. 2 we introduce
the four theories of gravity and dark energy that we consider. In
Sect. 3 we cover all the various nonlinear redshift-space power
spectrum models and approximations. In Sect. 4 we present the
N-body simulations which we then use to quantify the validity of
the various theoretical choices in Sect. 5. We summarised these
findings and our conclusions in Sect. 6.

2. Perturbation theory beyond-ΛCDM

We consider a perturbed flat Friedmann–Lemaître–Robertson–
Walker (FLRW) universe with a background metric given by
ds2 = −c2dt2+a2(t)δi jdxidx j, where a represents the scale factor.
The Hubble rate, H, is defined as H := ȧ/a, where a dot denotes
the derivative with respect to cosmic time t. We focus on scalar
perturbations, and we adopt the Newtonian gauge where the per-
turbed FLRW metric can be written as

ds2 = −c2 [1 + 2Φ(x, t)] dt2 + a2(t) [1 − 2Ψ(x, t)] δi jdxidx j , (1)

where the gravitational potential, Φ, appears in the time-time
component of the metric. To express the continuity and Euler
equations, we use the rescaled CDM velocity divergence, θ :=
∇ · v/(a H), and the CDM density contrast, δ := δρ/ρ, where ρ
and δρ are respectively the energy density background and per-
turbations.

SPT assumes that density and velocity perturbations are
small and can be expanded as

δ(k, a) =

∞∑
n=1

δn(k, a) , θ(k, a) =

∞∑
n=1

θn(k, a) , (2)

where δn, θn ∼ δn
1, with δ1 being the linear theory solution.

Explicitly we can write the nth order perturbations in terms of

scale and time dependent kernels Fn and Gn, defined implicitly
as

δn(k, a) =
1

(2π)3(n−1)

∫
d3 k1 · · · d3 kn δD(k − k1···n)

× Fn(k1, . . . , kn, a) δ1,i(k1) · · · δ1,i(kn) ,

θn(k, a) =
1

(2π)3(n−1)

∫
d3 k1 · · · d3 kn δD(k − k1···n)

×Gn(k1, . . . , kn, a) δ1,i(k1) · · · δ1,i(kn) , (3)

where k1···n = k1 + . . . + kn, δD denotes the Dirac delta and a
subscript ‘i’ denotes a quantity computed at some early initial
time. We define the linear growth rate of structure as

f := q
d ln δ1

d ln a
= −G1/F1 , (4)

where in the second equality we have used the linear version of
Eq. (5). This can now clearly be both time and scale-dependent,
as in f (R) gravity (see Sect. 2.4).

To solve for the kernels, Fn and Gn, we can write down
generic energy and momentum conservation equations for the
CDM density and rescaled velocity divergence perturbations, as
well as the Poisson equation which relates the Newtonian gravi-
tational potential (Φ) to the density perturbation4

a δ′(k, a) + θ(k, a)

= −

∫
d3 k1d3 k2

(2π)3 δD(k − k12)α(k1, k2) θ(k1, a) δ(k2, a) , (5)

a θ′(k, a) +

(
2 +

aH′(a)
H(a)

+
Ξ(a)
H(a)

)
θ(k, a) −

(
c k

a H(a)

)2

Φ(k, a)

= −
1
2

∫
d3 k1d3 k2

(2π)3 δD(k − k12) β(k1, k2) θ(k1, a) θ(k2, a) , (6)

−

(
c k

a H(a)

)2

Φ(k, a) =
3Ωm(a)

2
µ(k, a) δ(k, a) + S (k, a) , (7)

where a prime denotes a derivative with respect to the scale fac-
tor, Ωm is the total matter density fraction and Ξ encodes the
effects of a possible additional drag force, coming from, say, an
interaction within the dark sector (see Sect. 2.2). The kernels
α(k1, k2) and β(k1, k2) are given by

α(k1, k2) = 1 +
k1 · k2

|k1|
2 , (8)

β(k1, k2) =
(k1 · k2) |k1 + k2|

2

|k1|
2|k2|

2 . (9)

The function µ(k, a) expresses any linear modification to
GR in the Poisson equation (Bean & Tangmatitham 2010;
Silvestri et al. 2013; Pogosian et al. 2010) and S (k, a) captures
higher-order modifications, which include screening effects. Up
to third order, we have

S (k, a) =

∫
d3 k1d3 k2

(2π)3 δD(k − k12) γ2(k1, k2, a) δ(k1, a) δ(k2, a)

+

∫
d3 k1d3 k2d3 k3

(2π)6 δD(k − k123) γ3(k1, k2, k3, a)

× δ(k1, a) δ(k2, a) δ(k3, a) , (10)

4 The exact kernels can be obtained by solving these equations numeri-
cally as described in Taruya (2016), Bose & Koyama (2016) or by using
a Fast Fourier Transform decomposition.
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where the functions γ2 and γ3 are additional kernels coming
from higher-order scalar field interactions in the Klein–Gordon
equation (see Koyama et al. 2009, for example). For ΛCDM, we
have µ(k, a) = 1 and Ξ = γ2 = γ3 = 0. We now look at the forms
of these equations for various theories beyond-ΛCDM.

2.1. w0waCDM

For a dark energy fluid the equation of state parameter is defined
as w = pDE/(ρDEc2), where pDE and ρDE are the pressure and
the background energy density of the fluid. In ΛCDM, w = −1.
In general, w can be a function of time. One such (phenomeno-
logical) form was proposed by Chevalier–Polarski–Linder (CPL,
Chevallier & Polarski 2001; Linder 2003):

w(a) = w0 + (1 − a) wa , (11)

where w0 and wa are constants. This form is essentially the first
order Taylor expansion of w(a) about the present time, where we
have chosen the present day scale factor to be a = 1. Taking only
the first order Taylor expansion also implies we assume the equa-
tion of state is slowly evolving. Eq. (11) effectively changes the
background expansion H but leaves all other functional modifi-
cations to ΛCDM at their ΛCDM values, that is µ(k, a) = 1 and
Ξ = γ2 = γ3 = 0.

2.2. Dark Scattering model

Dark Scattering is an interacting dark energy model in
which dark energy exchanges momentum with dark mat-
ter without energy exchange (Simpson 2010; Pourtsidou et al.
2013; Pourtsidou & Tram 2016; Baldi & Simpson 2015, 2017;
Bose et al. 2018a). The modifications to Eq. (10) are given by
µ(k, a) = 1 and γ2 = γ3 = 0. On the other hand, we have a cou-
pling between dark matter and dark energy perturbations which
appears in the Euler equations for each species (Simpson 2010;
Baldi & Simpson 2015).

In Eqs. (5), (6) we made the assumption that the fluctuations
of dark energy propagate at the speed of light, ensuring that
they remain significantly smaller than the fluctuations of other
species. This allows the rescaled velocity divergence of the dark
energy fluid, θDE, to be effectively neglected in the Euler equa-
tion. Then, the interaction introduces only an additional drag
force on the left-hand side of Eq. (6), given by

Ξ(a) = [1 + w(a)] ξ c ρDE(a) , (12)

where ξ := σD/(mcc2). Here mc is the dark matter particle mass
andσD is the cross-section of the interaction. ξ is treated as a free
parameter of the theory. It is positive (or zero) and proportional
to the strength of the modification to ΛCDM, with ΛCDM being
recovered for ξ → 0 or w→ −1.

2.3. Dvali–Gabadadze–Porrati gravity

The Dvali–Gabadadze–Porrati (DGP) model has been intro-
duced by Dvali et al. (2000) and describes a model where mat-
ter lives on a four-dimensional brane which is embedded in a
five-dimensional Minkowski background. This model is repre-
sentative of the class of models exhibiting the Vainshtein mech-
anism, which screens additional scalar field-sourced forces at
small physical scales (Vainshtein 1972).

We consider the normal branch of DGP, which is free of
ghost instabilities (see Luty et al. 2003; Gorbunov et al. 2006;

Charmousis et al. 2006). In this model dark matter particles fol-
low geodesics, implying that Ξ = 0 in Eq. (6). The relation
between Φ and δ is described by Eq. (7), with (see for exam-
ple Bose & Koyama 2016; Bose et al. 2018b)

µ(k, a) = 1 +
1

3 β(a)
, (13)

γ2(k1, k2, a) = −

[
H0

H(a)

]2 1
24β3(a) Ωrc

(
Ωm,0

a3

)2

(1 − µ2
1,2) ,

(14)

γ3(k1, k2, k3, a) =

[
H0

H(a)

]2 1
144β5(a) Ω2

rc

(
Ωm,0

a3

)3

× (1 − µ2
2,3)(1 − µ2

1,23) , (15)

where H0 and Ωm,0 are the Hubble parameter and total matter
density fraction today,

β(a) := q1 +
H(a)
H0

1
√

Ωrc

(
1 +

a H′(a)
3H(a)

)
. (16)

The third order kernel, γ3, needs to be symmetrised and µi, j =

k̂i · k̂ j is the cosine of the angle between ki and k j (recall ki j =

ki + k j). Here Ωrc := c2/(4r2
c H2

0), where rc represents the scale
above which gravity deviates from GR, meaning rc → ∞, or
Ωrc → 0, is the GR-limit of the theory (see Dvali et al. 2000).
In this work we assume that the background expansion, H, is
exactly the one of a flat ΛCDM model (Schmidt 2009).

2.4. f (R) gravity

In this work we consider the specific form for f (R) pro-
posed by Hu & Sawicki (2007). This model is representative
of the class of models exhibiting the Chameleon mechanism
(Khoury & Weltman 2004), which screens in a phenomenologi-
cally distinct way to Vainshtein screening.

As with DGP, in this theory we have Ξ = 0, and have the
following modifications to the Poisson equation (Koyama et al.
2009; Taruya et al. 2014; Bose & Koyama 2016)

µ(k, a) = 1 +

(
k
a

)2 1
3Π(k, a)

, (17)

γ2(k1, k2, a) = −
3

16

(
k H0

a H(a)

)2 (
Ωm,0

a3

)2
Υ5(a)

f 2
0 (3Ωm,0 − 4)4

×
1

Π(k, a) Π(k1, a) Π(k2, a)
, (18)

and

γ3(k1, k2, k3, a)

=
1

32

(
k H0

a H(a)

)2 (
Ωm,0

a3

)3 1
Π(k, a) Π(k1, a) Π(k2, a) Π(k3, a)

×

−5
Υ7(a)

f 3
0 (3Ωm,0 − 4)6

+
9
2

1
Π(k23, a)

 Υ5(a)
f 2
0 (3Ωm,0 − 4)4

2 ,
(19)

where we have implicitly assumed the constraint coming from
the 1-loop integral: k = k1 + k2 for γ2 and k = k1 + k2 + k3 for
γ3. Again, we note that γ3 must be symmetrised. The functions
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Π and Υ are given by

Π(k, a) =

(
k
a

)2

+
Υ3(a)

2 f0 (3Ωm,0 − 4)2 , (20)

Υ(a) =
Ωm,0 + 4a3 (1 −Ωm,0)

a3 . (21)

Here we set f0 = c2| fR0|/H2
0 , where fR0 is the value of fR =

d f (R)/dR today, which gauges the strength of the modification
to GR. The GR-limit is given by fR0 → 0. As with the DGP case,
we also assume a ΛCDM background expansion, H.

3. Nonlinear modelling

When mapping the underlying theories described in the previ-
ous section to the observable quantity of interest, there are sev-
eral choices one can make. This range of choices expands sig-
nificantly when we wish to model scales where nonlinearities
become important. In this section, we present a number of such
choices which we test to varying degrees against N-body simu-
lations in Sect. 5.

3.1. The quasi-nonlinear power spectrum

Our goal is to calculate the power spectrum of the dark matter
density and velocity fluctuations. This can be defined as

(2π)3δD(k + k′) Pab(k, a) := 〈ϕa(k, a)ϕb(k′, a)〉 , (22)

where we have introduced the duplet ϕa := (δ, θ), and 〈·〉 denotes
an ensemble average. By expanding δ and θ using Eq. (2), we
can perturbatively express the power spectrum as a leading-order
term plus a next-to-leading-order (nlo) term

Pab(k, a) = Pab
11(k, a) + Pab

nlo(k, a) + . . . , (23)

where the leading term, Pab
11, is the ‘tree-level’ or linear power

spectrum. The nlo or ‘1-loop’ term can be expressed as the sum
of three quantities,

Pab
nlo(k, a) = Pab

22(k, a) + Pab
13(k, a) + Pab

31(k, a) , (24)

where we have used the notation

(2π)3δD(k + k′) Pab
i j (k, a) = 〈ϕa

i (k, a)ϕb
j (k′, a)〉 . (25)

The ellipses in Eq. (23) represent terms of higher-order, includ-
ing contributions from 2-loop order and beyond. We define the
‘1-loop’ power spectrum as

Pab
1−loop := Pab

11(k, a) + Pab
nlo(k, a) . (26)

3.2. Redshift space

So far we have worked in ‘real’ space coordinates, r, or its
Fourier equivalent. But astronomical observations are composed
of angular positions and redshifts, which contains all depth infor-
mation. This means we must convert our theoretical predictions
to redshift space coordinates, s. This involves peculiar velocity
information which combines with the Hubble velocity to give
the total measured redshift. In terms of positional coordinates,
this is expressed as

s = r +
vz(r, a)
a H(a)

ẑ , (27)

where we have taken the line-of-sight direction to be along the
real space z-axis, and vz is the projection of the peculiar velocity
along that axis. Conservation of mass then implies the translation

δs(s, a) =

∣∣∣∣∣∂s
∂r

∣∣∣∣∣−1

[1 + δ(r, a)] − 1 , (28)

where a superscript ‘s’ denotes a redshift-space quantity. If we
Fourier transform the redshift-space density field and take the
ensemble average with itself at two points, we can arrive at the
following expression for the redshift-space power spectrum at 1-
loop order (Matsubara 2008; Heavens et al. 1998; Taruya et al.
2010),

Ps
1−loop(k, µ) = Pδδ

1−loop(k) + 2µ2Pδθ
1−loop(k) + µ4Pθθ

1−loop(k)

+ A(k, µ) + B(k, µ) + C(k, µ)

− k2µ2 σ̃2
v

[
F1(k) + G1(k) µ2

]2
Pδδ

11,i(k) , (29)

where we have dropped the explicit time dependence of all func-
tions for compactness, except for Pδδ

11,i which is computed at
some fixed early time. Here µ is the angle between the line of
sight direction ẑ and the wave mode k5. The linear theory esti-
mate for the velocity dispersion, σ̃v, is given by

σ̃2
v =

1
6π2

∫
dq G2

1(q) Pδδ
11,i(q) . (30)

We refer the reader to Bose & Koyama (2016), Taruya et al.
(2010) for expressions for A(k, µ), B(k, µ), and C(k, µ). These
terms come from higher-order interactions between the density
and velocity perturbations. We give their explicit forms in terms
of the kernels defined in Eq. (3) in Appendix A.

Equation (29) performs poorly when modelling nonlinear
redshift-space effects. In particular, it does not capture the
fingers-of-god (FoG) effect, caused by the large positional distor-
tions of measured objects towards the centres of potential wells,
coming from their high peculiar velocities. Higher-order pertur-
bation theory (higher than third order), has been shown to have
poor convergence at the level of the power spectrum (see, for
example, Carlson et al. 2009), and is also very computationally
expensive. To move further into the nonlinear regime, a number
of proposals have been made in the past decade which modify
Eq. (29) by introducing new degrees of freedom, or nuisance
parameters, quantifying our uncertainty on nonlinear effects.

We consider two prominent such proposals, both of which
have been applied in the biggest galaxy survey to date, the BOSS
survey (Beutler et al. 2017; Ivanov et al. 2020; D’Amico et al.
2020; Carrilho et al. 2023). Both of these can also be computed
with a number of fast public codes, discussed next.

3.2.1. Codes

In this work we use a number of codes. In particular, we adopt:
– The publicly available MG-Copter code (Bose & Koyama

2016), recently absorbed by the ReACT code6 (Bose et al.
2020b, 2021, 2023) which solves the first, second and third
order continuity and Euler equations simultaneously and
numerically for each external momentum;

5 Not to be confused with the linear Poisson equation modification,
µ(k, a), which always appears with its arguments.
6 Download ReACT: https://github.com/nebblu/ACTio-
ReACTio
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– The publicly available PyBird code7 (D’Amico et al.
2021b), which uses a Fast Fourier Transform (FFT) decom-
position and has been used in recent BOSS analyses
(for instance see Zhang et al. 2022; D’Amico et al. 2021b;
Piga et al. 2023, for ΛCDM, wCDM, and nDGP respec-
tively);

– The PBJ code (Moretti et al. 2023; Oddo et al. 2020,
2021; Rizzo et al. 2023), which implements the model of
Ivanov et al. (2020) taking advantage of the FAST-PT algo-
rithm (McEwen et al. 2016; Fang et al. 2017), and has also
been used in recent BOSS analyses for Dark Scattering
(Carrilho et al. 2023). This code is planned to be made public
soon.

We summarise the codes in Table 1 along with relevant imple-
mentations. MG-Copter is by far the slowest, needing to solve
eight sets of Eqs. (5), (6) for each external mode k to find the
perturbative kernels up to third order. More quantitatively, to
compute the first two multipoles of Eq. (29) in ΛCDM at fifty
values of k in the range [0.01, 0.3] h Mpc−1, it takes roughly
45 s on a MacBook Pro 2018 model. By comparison, PBJ and
PyBird only need to compute a set of products on a fixed grid
by using the FFT method, which allows them to produce the
same result in roughly 20 ms. Of course, this assumes a spe-
cific scale dependence of the perturbative kernels, which may
not be known or even analytically available. This is not true for
MG-Copter which only requires the specification of H, µ, γ2, γ3
and Ξ.

We have performed validation of these codes both in
real (see Eq. 26) and redshift space (see Eq. 29) to sub-
percent precision for ΛCDM, w0waCDM, nDGP, and Dark
Scattering (see Appendix C for some of these comparisons).
Additionally, MG-Copter, PBJ and PyBird have been val-
idated independently against large N-body simulations in a
number of papers: see Bose & Koyama (2016), Bose et al.
(2017, 2018a) for MG-Copter, Oddo et al. (2021), Carrilho et al.
(2021), Tsedrik et al. (2023) for PBJ and Nishimichi et al.
(2020), D’Amico et al. (2020) for PyBird.

Within the Euclid collaboration, both PBJ and PyBird are
being used to fit measurements from the Flagship simulation
(Potter et al. 2017), with results to be presented in a series of
papers. Finally, PBJ has been ported to the Euclid likelihood
code, named CLOE, and will be used to perform the official anal-
ysis of the spectroscopic sample for ΛCDM.

3.2.2. Effective Field Theory of Large-Scale Structure

The effective field theory of large-scale structure (EFTofLSS)
prescription for the redshift-space matter power spectrum
can be written as (D’Amico et al. 2020; Ivanov et al. 2020;
Chudaykin et al. 2020)

Ps
EFT(k, µ) = Ps

1−loop(k, µ) + P̃s
ctr(k, µ) , (31)

where the second term, P̃s
ctr(k, µ), contains ‘counterterms’ which

are used to model nonlinear effects, and contains a number of
free constants that must be fit to the data.

In PBJ the EFTofLSS counterterms are given by

P̃s
ctr(k, µ) = −2k2 Pδδ

11(k)
(
c̃0 + c̃2 f µ2 + c̃4 f 2µ4

)
. (32)

This model has therefore a total of three nuisance parameters at
the dark matter level, {c̃0, c̃2, c̃4}, with dimensions h−2 Mpc2.

7 Download PyBird: https://github.com/pierrexyz/pybird.

In PyBird a slightly different, dimensionless, basis is used
for the counterterms (see D’Amico et al. 2021b; Piga et al. 2023,
for example). One has

Ps
ctr(k, µ) = 2Pδδ

11(k)
(

k
kM

)2

(b1 + f µ2)
(
cctr + cr,1µ

2 + cr,2µ
4
)
,

(33)

where kM = 0.7 h Mpc−1 parametrises the inverse spatial exten-
sion scale of galaxies. The total number of nuisance parameters
is therefore the same: {cctr, cr,1, cr,2}.

When we only consider the monopole and quadrupole of
Eq. (31), as is done in the majority of this paper, we can set
c̃4 = cr,2 = 0. This yields the following mapping between the
two different counterterm bases

cctr = −
k2

M

(
35b1c̃0 + 30c̃0 f + 3c̃2 f 2

)
35b2

1 + 30b1 f + 3 f 2
, (34)

cr,1 = −
35k2

M(b1c̃2 − c̃0)

35b2
1 + 30b1 f + 3 f 2

. (35)

This mapping was obtained after imposing that the monopole
and the quadrupole of the two different expressions used for the
counterterm, Eqs. (32), (33), have to be the same respectively.

We remind the reader that in theories such as f (R), the
growth rate, f = −G1(k, a)/F1(k, a), is both time and scale-
dependent, and the linear power spectrum has additional scale
dependencies coming from F1(k, a): Pδδ

11 = F2
1(k, a)Pδδ

11,i.

3.2.3. Taruya–Nishimichi–Saito

The TNS prescription is given by (Taruya et al. 2010)

PTNS(k, µ) = DFoG(µ2k2σ2
v)

[
Pδδ

1−loop(k) + 2µ2Pδθ
1−loop(k)

+ µ4Pθθ
1−loop(k) + A(k, µ) + B(k, µ)

]
, (36)

where A and B terms are as in Eq. (29), and the C term has
been omitted as it can be largely absorbed in DFoG (Taruya et al.
2010). The damping factor DFoG encodes a phenomenological
description of the FoG damping. This is a function of the velocity
dispersion, σv, which is taken to be a free nuisance parameter.
Here we assume this function takes a Lorentzian form so that

DFoG(k2µ2σ2
v) :=

1
1 + (k2µ2σ2

v)/2
. (37)

This form has been shown to be good at describing nonlinear
effects (see for example Bose et al. 2020a). This model then has
a single nuisance parameter at the dark matter level, {σv}, with
units h−1 Mpc, which represents an effective velocity dispersion,
not to be confused with the linear estimate given in Eq. (30).

3.3. Tracer bias

The next step to connect theory with the spectroscopic observ-
able is to translate the dark matter spectrum to that of galaxies,
which are biased tracers of the CDM distribution. As a proxy,
one can consider the CDM halo power spectrum. This can be
modelled incorporating an appropriate bias model.
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Table 1. Summary of codes used in this work.

Name Solving method Speed [ms] Beyond-ΛCDM Models RSD Model Resummation

PBJ FFT O(10) DGPUSA,EdS, DSEdS, w0waCDMEdS TNS, EFTofLSS WnW
PyBird FFT O(10) DGP, w0waCDM EFTofLSS Lagrangian
MG-Copter Solve Eqs. (5), (6) per k O(10000) f (R), DGP, DS, w0waCDM TNS, EFTofLSS WnW

Notes. We show each code’s method of solving for the SPT kernels (see main text for more details), the computational speed (in order of magnitude
in ms) and available modelling. ‘EdS’ and ‘USA‘ subscripts indicate only the Einstein–de Sitter and Unscreened approximations are available for
that model (see Sect. 3.6). Here ‘DS’ stands for Dark Scattering and ‘WnW’ stands for Wiggle-no-Wiggle (see Sect. 3.4). We note that MG-Copter
only supports an EdS implementation of the WnW – EFTofLSS model.

3.3.1. Eulerian bias expansion

A general Eulerian perturbative bias expansion can be used
to relate the halo density field to the dark matter den-
sity field, with the (scale-independent) coefficients of each
term being treated as free parameters to be fit to observa-
tions (McDonald & Roy 2009; Chan et al. 2012; Assassi et al.
2014; Senatore 2015; Mirbabayi et al. 2015; Desjacques et al.
2018; Fujita et al. 2020). The terms in the bias expansion that
are relevant for the calculation of the 1-loop power spectrum of
halos are

δhalo = b1δ+
b2

2
δ2 +bG2G2

(
Φ̃ | x

)
+bΓ3Γ3 +b∇2δ∇

2δ+noise , (38)

where b1 and b2 are the linear and quadratic bias parameters, ∇2δ
is a higher-derivative operator and ‘noise’ denotes the stochastic
contributions uncorrelated with δ and with zero means, encod-
ing shot-noise. The ∇2δ term is completely degenerate with
the effects of the first counterterm (see for example Perko et al.
2016, and Eq. (32)) and so we do not consider it further here,
as was also done in previous EFTofLSS-based clustering data
analyses (Ivanov et al. 2020; D’Amico et al. 2020). G2 and Γ3
are non-local operators which take into account the large-scale
tidal fields at leading and next-to-leading order. In configuration
space, they are defined as:

G2

(
Φ̃ | x

)
:=

[
∇i j Φ̃(x)

] 2
−

[
∇ 2 Φ̃(x)

] 2
, (39)

and

Γ3(x) := G2

(
Φ̃ | x

)
− G2

(
Φ̃v | x

)
, (40)

where the potentials Φ̃ and Φ̃v are defined as Φ̃ = ∇−2δ, Φ̃v =
−∇−2 (θ/ f ). We have also defined ∇i j := ∇i∇ j and ∇2 := ∇i∇i.

Moving to redshift space, we obtain the following halo
redshift-space power spectrum (see Senatore & Zaldarriaga
2014, for example)

Ps
g(k, µ) = DFoG(k2µ2σ2

v)
[
Ps

g,1−loop(k, µ) + Ps
g,noise(k, µ)

]
+ Ps

ctr(k, µ) . (41)

The term in square brackets is what we get from taking the
ensemble average of the redshift space halo density perturbation
in Eq. (38).

We have also included the nonlinear corrections coming
from the EFTofLSS and TNS. In the EFTofLSS, DFoG(k2µ2σ2

v) =
1 and the counterterms Ps

ctr(k, µ) are given by Eqs. (32), (33)
for PBJ and PyBird respectively. In TNS, Ps

ctr(k, µ) = 0 while
DFoG(k2µ2σ2

v) is given by Eq. (37). Further, in the TNS case we
do not include the last two terms of Eq. (29), in accordance with
Taruya et al. (2010).

The power spectrum of the stochastic part of Eq. (38), and as
appearing in PBJ, is given by

Ps
g,noise(k, µ) = N +

1
n̄

(
ε0k2 + ε2µ

2k2
)
, (42)

where n̄ is the galaxy number density in units of h3 Mpc−3 and
N, ε0, ε2 are constants with dimensions h−3 Mpc3, h−2 Mpc2 and
h−2 Mpc2, respectively. Pybird uses the same modelling, with
dimensionless parameters cε,0 = Nn̄, cε,1 = ε0k2

M and cε,2 =

ε2k2
M/ f to give

Ps
g,noise(k, µ) =

1
n̄

cε,0 + cε,1
k2

k2
M

+ cε,2 f µ2 k2

k2
M

 . (43)

In this work we set ε0 = ε2 = 0 and only consider the con-
stant stochastic term, N, as done in the flagship BOSS anal-
ysis (Beutler et al. 2017) and in Ivanov et al. (2020). We have
checked that the addition of ε0 does not significantly improve
the fits to the simulations. ε2 however was found to improve
the modelling significantly and has been included in some
EFTofLSS-BOSS analyses (for example D’Amico et al. 2020).
We have indeed checked that the goodness-of-fit to selected sim-
ulations does improve by including ε2. Despite this, we choose
to omit it in order to keep the complexity of the model minimal,
which should not affect relative differences between ΛCDM and
beyond-ΛCDM scenarios.

In the notation of Eq. (29), the 1-loop part can be expanded
as

Ps
g,1−loop(k, µ) = b2

1Pδδ
1−loop(k) + 2b1µ

2Pδθ
1−loop(k) + µ4Pθθ

1−loop(k)

+ A(k, µ, b1) + B(k, µ, b1) + C(k, µ, b1)

− k2µ2σ̃2
v

[
b1F1(k) + G1(k) µ2

]2
Pδδ

11,i(k)

+ Bs
g,22(k, µ) + Bs

g,13(k, µ) , (44)

where we now have included the linear bias contributions explic-
itly for the 1-loop spectra and implicitly for the A, B, and C cor-
rection terms (see Appendix A).

The last two terms of Eq. (44) include the contributions from
the higher-order bias. In this work we treat these terms under the
Einstein–de Sitter approximation outlined in Sect. 3.6. We make
this approximation explicit in the relevant expressions to follow.
Our reasoning is that any additional scale dependencies com-
ing from beyond-ΛCDM physics can be absorbed by the higher-
order bias coefficients, and indeed a full derivation of these terms
for general cosmologies and theories of gravity has proven not to
be necessary under the considerations of this paper (see Sect. 5).

Under this assumption, the higher-order bias terms can
be expressed as (see Appendix A of Ivanov et al. 2020, for
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example)

Bs
g,22(k, µ) = 2

∫
d3q Pδδ

11(q) Pδδ
11(|k − q|)

× Zb,2(q,k − q)
[
b2

2
+ bG2 S b(q, k − q)

]
, (45)

Bs
g,13(k, µ) = 6 Zb,1(µ) Pδδ

11(k)
∫

d3q Zsym
b,3 (q,−q,k) Pδδ

11(q) , (46)

where S b(k1,k2) = (k1 · k2)2/k2
1k2

2 − 1. We note here that we
have included the linear growth implicitly in the linear spectra
and have assumed it is calculated at the external wave mode,
for example Pδδ

11(q) = F2
1(k, a) Pδδ

11,i(q). The Zb,n kernels can be
written as (see Scoccimarro et al. 1999; Bernardeau et al. 2002,
see)

Zb,1(µ) = b1 + f µ2 , (47)

Zb,2(k1,k2) = 2b1FEdS
2 (k1,k2) + 2 fµ2GEdS

2 (k1,k2)

+ f µ k
[
µ1

k1
(b1 + fµ2

2) +
µ2

k2
(b1 + f µ2

1)
]

+
b2

2
+ bG2 S b(k1,k2) , (48)

Zb,3(k1,k2,k3) =
b2

2
f µ k

µ1

k1
+ bG2 f µ k

µ1

k1
S b(k2,k3)

+ b2FEdS
2 (k1,k2) + 2bG2 S b(k1,k23) FEdS

2 (k2,k3)

+ 2bΓ3 S b(k1,k23)
[
FEdS

2 (k2,k3) −GEdS
2 (k2,k3)

]
,

(49)

where ‘EdS’ means the kernel is an Einstein–de Sitter expres-
sion. We note that f = −G1(k, a)/F1(k, a) is calculated exactly
for the theory of gravity or dark energy under consideration at
the external wave mode, k. Further, the Zb,3 kernel needs to be
symmetrised to get Zsym

b,3 and variables k and µ are the amplitude
of the sum of the momenta k = k1 + k2 + k3 and cosine of angle
between k̂ and the line of sight ẑ.

Now we report here the mapping among the different bias
bases used in the analyses of this work for both PBJ and Pybird
codes. The bias basis used by PBJ is presented in Eq. (38), and
uses [b1, b2, bG2 , bΓ3 ], while Pybird adopts the basis presented
in D’Amico et al. (2020), that we indicate with [b̂1, b̂2, b̂3, b̂4].
There is a one-to-one correspondence between the two
bases:

b1 = b̂1 , (50)

b2 = −2(b̂1 − b̂2 − b̂4) , (51)

bG2 =
2
7

[
b̂2 +

7
4

(aγ − 2)b̂1

]
, (52)

bΓ3 =

a2
γ

2
−

aγa

2
+ 1

 b̂1 +
2
7

aγb̂2 −
2

21
b̂3 . (53)

Here aγ and aγa are the bootstrap time-dependent functions
introduced in D’Amico et al. (2021a) and are usually fixed to
their EdS values aEdS

γ = 10/7 and aEdS
γa = 3/7. We fix bΓ3 = 0

because it is degenerate with bG2 , as well as b∇2δ = 0 as it is
degenerate with a counterterm. We vary all the other parameters.

Further, using the TNS model, we wish to test the Local
Lagrangian relationship (Sheth et al. 2013; Baldauf et al. 2012;
Saito et al. 2014) for beyond-ΛCDM cases, which is known to
hold well for ΛCDM. Again, we adopt this choice for the TNS
model only, as was applied in the BOSS survey (Beutler et al.

2017). This leaves us with only the following bias parameters in
the TNS case {b1, b2,N}, which are those used in Beutler et al.
(2017) and can be related to the basis used in McDonald & Roy
(2009) through Saito et al. (2014). To map these to the basis used
in Assassi et al. (2014), which is used in our EFTofLSS models,
see Desjacques et al. (2018).

3.3.2. Scale-dependent Q-bias

For the gravity and dark energy models that produce a scale-
independent modification to the linear growth factor F1(a), one
does not expect any significant additional scale-dependencies
entering the bias expansion (see, for example, Valogiannis et al.
2020; Valogiannis & Bean 2019). However, this is not the case
in f (R) which yields a scale-dependent growth factor F1(k, a)
and growth rate f (k, a). To address possible scale-dependent
modifications to the bias parameters, we also tested the phe-
nomenological ‘Q-bias’ prescription for the linear bias of
Song et al. (2015),

b1(k) = b0
1 + A2k2

1 + A1k
, (54)

which was shown to match N-body halo measurements well.
This introduces two new free parameters {A1, A2} with dimen-
sions h−1 Mpc and h−2 Mpc2 respectively, characterising possi-
ble scale-dependencies of the linear bias. To keep the degrees of
freedom comparable to the Eulerian bias expansion, when adopt-
ing this model, we set all higher-order bias terms in Eq. (44) to
zero, and simply replace b1 with Eq. (54).

3.4. Infrared-Resummation

A further complication comes from the baryonic acoustic
oscillations whose imprint on the power spectrum should be
treated properly to avoid percent-level oscillatory inaccuracies
(Carrasco et al. 2014; Blas et al. 2016). To treat this insufficient
damping of the baryon acoustic oscillations, various resumma-
tion methods have been proposed. This is particularly relevant
for the EFTofLSS and we do not adopt an infrared-resummation
scheme in the TNS case. We describe the method implemented
by each EFTofLSS code below.

3.4.1. Wiggle-no-Wiggle decomposition

PBJ and MG-Copter adopt a “Wiggle-no-Wiggle” (WnW)
decomposition approach, both under the Einstein–de Sitter
approximation (see Sect. 3.6). This resummation method is
based on a splitting of the linear power spectrum into a “wiggle”
part (containing the baryon acoustic oscillations features) and
a “no-wiggle”, broadband part (Baldauf et al. 2015; Vlah et al.
2015; de la Bella et al. 2017):

Pδδ
11 = Pw

11 + Pnw
11 . (55)

The loop integrals of Eq. (44) are then computed separately on
the two components, and resummed with a damping applied to
the wiggle component. Specifically, PBJ computes the smooth
component by convolving the Eisenstein and Hu fit for the
broadband linear spectrum (Eisenstein & Hu 1997) with a Gaus-
sian filter:

Pnw
11 (k) = PEH(k) [F ∗ R] (k) , (56)

where PEH is the Eisenstein and Hu prescription for the lin-
ear matter power spectrum, R = Pδδ

11(k)/PEH(k) and F is a 1D
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Gaussian filter, so that the convolution reads

[F ∗ R] (k) =
1
√

2πλ

∫ qmax

qmin

dq
q

R(q) exp
{
−

(ln k/q)2

2λ2

}
, (57)

with λ being the dimensionless width of the Gaussian filter.
We then compute the loop integrals using the linear (Ps

1−loop)
and smooth power spectra (Ps,nw

1−loop), with their difference being
the loop corrections to the wiggle component (Ps,w

1−loop = Ps
1−loop−

Ps,nw
1−loop). Finally, we construct the infrared-resummed 1-loop

power spectrum as

Ps,IR−resum
NL (k) = (b1 + f µ2)2

{
Pnw

11 (k)

+e−k2Σ2(k,`osc) Pw
11(k)

[
1 + k2Σ2(k, `osc)

]}
+ Ps,nw

1−loop(k) + e−k2Σ2(k,`osc) Ps,w
1−loop(k) , (58)

where Σ2(k, `osc) is the RSD damping function computed as

Σ2(k, `) =
1
2

{
Ξ0(`)

(
1 + 2 f µ2 + f 2µ2

)
+ Ξ2(`)

[
(k̂ · ˆ̀)2 + 2 fµ µ` (k̂ · ˆ̀) + f 2µ2µ2

`

]}
, (59)

and we have defined

Ξ0(`) =
2
3

∫ ∞

0

dp
2π2 e−p2/Λ2

IR Pδδ
11(p)

[
1 − j0(p `) − j2(p `)

]
, (60)

Ξ2(`) = 2
∫ ∞

0

dp
2π2 e−p2/Λ2

IR Pδδ
11(p) j2(p `) . (61)

Here jn are the spherical Bessel functions of order n and µ` is
the angle between ` and the line of sight. ΛIR is a cutoff scale. In
PBJ we do not include the exponential cutoff but rather trun-
cate the upper bound of the integral to ks. PyBird also uses
these functions (see Sect. 3.4.2), but instead of a cutoff, it sets
ΛIR = 0.2 h Mpc−1. `osc = |`osc| is set to be the baryon acoustic
oscillations scale.

For PBJ, we adopt the following choice of parameters: qmin =
k e−4λ, qmax = k e4λ, ks = 0.2 h Mpc−1, λ = 0.25 and `osc =

102.707 h−1 Mpc with ˆ̀osc and k̂ having the same orientation. We
note that `osc is in principle degenerate with cosmology, and in
a full cosmological analysis it should also be varied. This being
said, the impact of varying this parameter in such an analysis has
been checked internally within the Euclid Collaboration and has
been found to be minimal.

3.4.2. Lagrangian resummation

Pybird adopts a different approach to resummation, explic-
itly developed in Senatore & Zaldarriaga (2014). The details of
the numerical implementation are explained in D’Amico et al.
(2021b).

The Lagrangian resummation starts from the expression
of the overdensity as a functional of the displacement field
ψ(y, t) := l(y, t) − y, where l(y, t) is the final position of the
particle and y is the initial position. The overdensity is given as

1 + δ(x, t) =

∫
d3y δ(3)

D [x − y − ψ(y, t)]

=

∫
d3y

∫
d3k

(2π)3 ei k·[x−y−ψ(y,t)] . (62)

In redshift space, one needs to separate the components perpen-
dicular and parallel to the line of sight

1 + δs(s, t) =

∫
d3y δ(2)

D [s⊥ − y⊥ − ψ
s
⊥(y, t)]

× δ(1)
D [s‖ − y‖ − ψs

‖
(y, t) − ψ̇s

‖
(y, t)/H]

=

∫
d3y

∫
d2k⊥
(2π)2

∫
dk‖
2π

ei k⊥·[s⊥−y⊥−ψs
⊥(y,t)]

× ei k‖
[
s‖−y‖−ψs

‖
(y,t)−ψ̇s

‖
(y,t)/H

]
. (63)

Here ψs
‖
(y, t) = (ψs(y, t) · ẑ) ẑ and ψs

⊥(y, t) = ψs(y, t) − ψs
‖
(y, t).

From Eq. (63), it is easy to derive the power spectrum

P(k⊥, k‖) =

∫
d3y e−i k·yKr(k, y) , (64)

where

Kr(k, y) =

〈
ei k⊥·[ψs

⊥(y)−ψs
⊥(0)]e

i k‖

[
ψs
‖
(y)−ψs

‖
(0)+

ψ̇s
‖

(y,t)−ψ̇s
‖

(0,t)

H

]〉
= exp

∞∑
N=1

1
N!

〈{
i k⊥ · ∆⊥(y) + i k‖

[
∆‖(y) + ∆̇‖(y)/H

]}N
〉
,

(65)

having defined ∆(y) := ψ(y) − ψ(0). Now, one only resums the
linear displacement field on large scales, while expanding per-
turbatively the short-scale displacements and the density field.
In practice, one cuts off the displacement integrals in the expo-
nential, as done in Eqs. (60), (61). After some lengthy algebra,
one arrives at the formula

P`(k)
∣∣∣
N =

N∑
j=0

∑
`′

4π(−i)`
′

∫ ∞

0
dr r2Q``′

||N− j(k, r) ξ`
′

j (r) , (66)

where P`(k)
∣∣∣
N is the resummed (`-th multipole of the) power

spectrum up to order N, ξ`j(r) is the j-th loop order term in Eule-
rian perturbation theory of the (`-th multipole of the) correlation
function, and Q``′

||N− j(k, r) is given by

Q``′

||N− j(k, r) = i`
′ 2` + 1

2

×

∫ 1

−1
dµk

∫
d2r̂
4π

e−ik·rF||N− j(k, r)L`(µk)L`′ (µr) ,

(67)

F||N− j(k, r) = T0,r(k, r) T−1
0,r ||N− j(k, r) , (68)

T0,r(k, r) = exp
{
− k2Σ2(k, r)

}
, (69)

where d2r̂ is an angular integration and µ = µk is now an integra-
tion variable. Here T−1

0,r ||N− j(k, y) means that we need to pertur-
batively expand (in powers of Pδδ

11) T−1
0,r up to loop order N − j.

If in PyBird the option optiresum is chosen, the correla-
tion function is split in a smooth part and a baryon acoustic oscil-
lations peak, and Eq. (66) is only applied to the baryon acoustic
oscillations peak. The result is then added to the smooth power
spectrum. For all PyBird results shown in this paper we have
used optiresum.

We find that optiresum and the WnW decomposition are
highly consistent, but are both significantly discrepant with the
Lagrangian resummation predictions. The reader is directed to
Appendix C for more details on these comparisons.
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3.4.3. Resummation in scale-dependent models

We discuss now the extension of the infrared-resummation pro-
cedure to models where the linear growth is scale-dependent, as
in the f (R) model of Sect. 2.4 or when massive neutrinos are con-
sidered (see next section). Both infrared-resummation schemes
discussed above consider contributions of the form (we discuss
only real space, for simplicity)

−
k2

3

∫
d3q

(2π)3 e−q2/Λ2
IR

Pδδ
11(q)
q2

[
P(k) − P(|k − q|)

]
, (70)

where the power spectra inside square brackets are computed at a
given order in perturbation theory. The cutoff ensures that q � k
in most of the integration domain. If P(k) contains a new scale, as
is the case for `osc in Pw(k), the difference in parentheses is either
of order Pw

11(k) q2`2
osc (for q `osc � 1) or Pw

11(k) (for q `osc � 1, as
the oscillations in the second term inside parentheses average out
in this limit). Both regimes give a contribution to Eq. (70) which
is k2 enhanced with respect to other perturbative contributions of
the same order, and therefore should be resummed.

If, on the other hand, no oscillatory feature is present in P(k),
the difference inside parentheses can be approximated as

[
P(k) − P(|k − q|)

]
' −

1
2

d2P(k)
dk2 q2x2 , (71)

with

x =
k · q
k q

. (72)

For an approximately scale-invariant power spectrum, the sec-
ond derivative gives a contribution of order P(k)/k2 and, conse-
quently, Eq. (70) is not k2-enhanced. Therefore, in resummation
schemes which focus on the wiggly part of the power spectrum,
as in WnW or in the optiresum option of PyBird, only lead-
ing contributions are resummed. In other schemes, as the full
Lagrangian one, also subleading contributions are included, The
difference between the two methods is of order 2-loop terms. The
wiggle-no-wiggle method has been derived as an approximation
of the Lagrangian resummation in Lewandowski & Senatore
(2020).

In scale-dependent models the separation between leading
and next-to-leading contributions could be, potentially, compli-
cated by the presence of a new scale. However, considering for
definiteness f (R), we can show that it is not the case. Indeed,
even assuming that the whole scale-dependence of the function
µ(k, a) of Eq. (18) is inherited by the power spectrum would
imply a contribution to Eq. (71) proportional to

∂2 ln µ(k, a)
∂k2 � `2

osc , (73)

where the inequality holds in the whole relevant k-range for the
f (R) models considered in this work. We conclude that the extra-
scale-dependence induced in f (R) is always subdominant with
respect to the one induced by baryon acoustic oscillations, and
does not require any modification of the infrared-resummation
schemes with respect to those for scale-independent models.
Pybird implements this scheme, and computes the linear power
spectrum in Eqs. (60), (61) by taking the scale-dependent linear
growth into account.

Since the scale-dependence in f (R) is much stronger than
that induced by massive neutrinos, the above conclusions extend
also to models with nonvanishing neutrino masses.

3.5. Massive neutrinos

With the measurements of flavour oscillations (Fukuda et al.
1998; Ahmed et al. 2004), massive neutrinos entered the realm
of standard physics. These have been shown to have a signifi-
cant effect on cosmological observables (Lesgourgues & Pastor
2006; Wright et al. 2019; Bose et al. 2021). We look to include
these effects in Eq. (41).

Since galaxies are biased tracers of the CDM plus baryon
field only (see Villaescusa-Navarro et al. 2014; Castorina et al.
2014; Costanzi et al. 2013, for example), we only consider the
effects of massive neutrinos on the CDM+baryon (cb) spectrum,
and opt to include them only through the linear cb power spec-
trum P(cb)

11 (k, a). We do not include higher order massive neutrino
effects in the kernels Fapp

n and Gapp
n (‘app’ stands for approxi-

mate), which are calculated assuming a single CDM matter fluid.
This differs slightly from the prescription of Wright et al. (2019),
which was shown to work very well by comparing to simula-
tions. In particular, we do not include the effects of massive neu-
trinos on the growth rate f . We have checked that this effect is
sub-percent for neutrino masses considered here.

In practice, we use the following initial linear spectrum in
the 1-loop integrals

P(cb)
11,i (k) =

P(cb)
11 (k, a)

F(m)2
1 (k, a)

, (74)

where F(m)
1 (k, a) assumes no massive neutrino contribution but

the same total matter contribution to the background evolution
and Poisson equation, Ωm. We have checked that using Ωcb
instead makes negligible difference on the final RSD power
spectrum predictions. On the other hand, P(cb)

11 (k, a) has the full
massive neutrino and modified gravity or dark energy depen-
dence, which we calculate using the Boltzmann code MGCAMB
(Zucca et al. 2019). The goal is to check for any deterioration
of this approximation between the ΛCDM and beyond-ΛCDM
comparisons with the simulation measurements.

3.6. Approximations

The efficient calculation of the 1-loop power spectrum can be
challenging, particularly when the modifications include some
sort of scale-dependence, for example in f (R) gravity. The
numerical approach, as adopted by the MG-Copter code, is both
time consuming and prone to numerical inaccuracies making it
ill-suited for fast and comprehensive statistical analyses. On the
other hand, the FFT approach, as adopted by PyBird and PBJ is
highly computationally efficient and free from numerical insta-
bilities. The challenge is extending the FFT to non-trivial kernels
as introduced by modifications to gravity. Alternatively, one can
apply various approximations to the computation which are eas-
ily implemented in current FFT frameworks.

Motivated by these issues, we examine various approxima-
tions that can alleviate computational cost while maintaining
the desired degree of accuracy for the halo power spectrum in
redshift space. These approximations, relevant for the loop inte-
grals implicit in the first two lines of Eq. (44), are computed by
rescaling the approximate second and third order kernels with
the appropriate linear growth factors as follows,

F2(k1, k2) =
F1(k1) F1(k2)

Fapp
1 (k1) Fapp

1 (k2)
Fapp

2 (k1, k2) ,

G2(k1, k2) =
f (k12) F1(k1) F1(k2)

f app(k12) Fapp
1 (k1) Fapp

1 (k2)
Gapp

2 (k1, k2) ,
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F3(k1, k2, k3) =
F1(k1) F1(k2) F1(k3)

Fapp
1 (k1) Fapp

1 (k2) Fapp
1 (k3)

Fapp
3 (k1, k2, k3) ,

G3(k1, k2, k3) =
f (k123) F1(k1) F1(k2) F1(k3)

f app(k123) Fapp
1 (k1) Fapp

1 (k2) Fapp
1 (k3)

×Gapp
3 (k1, k2, k3) , (75)

where we have dropped the time dependence for compactness
and we remind the reader that f (k) = −G1(k)/F1(k) is the growth
rate. Recall that ‘app’ stands for approximate. The approxima-
tions we consider for the kernels are
1. The Einstein–de Sitter approximation (EdS): Fapp

1 (k, a) =

F1(k, a) and Gapp
1 (k, a) = G1(k, a), but the higher-order ker-

nel’s scale dependence are given by the standard Einstein–
de Sitter universe (Ωm(a) = 1) expressions, FEdS

n and GEdS
n

(see Bernardeau et al. 2002). The time dependence is then
given by the appropriate factors of F1 and G1, for example
Fapp

2 (k1, k2) = F1(k1, a) F1(k2, a) FEdS
2 (k1, k2).

2. The unscreened approximation (USA): Fapp
1 (k, a) = F1(k, a)

and Gapp
1 (k, a) = G1(k, a) and the higher-order kernels are

computed by solving the perturbation evolution equations
using S (k) = 0 (see Eq. 7), that is we ignore the effects of
higher-order mode-coupling terms responsible for screening.

3. The ΛCDM-screened approximation (ΛCDM-scr): Fapp
1 (k)

and Gapp
1 (k) are the ΛCDM growth factors which are scale-

independent to a very good approximation: FΛCDM
1 (k, a) ≈

FΛCDM
1 (a) and GΛCDM

1 (k, a) ≈ GΛCDM
1 (a). The higher-order

kernels are computed using the approximate expression for
S (k) as given in Appendix B. This expression does not
depend on the integrated momentum mode and hence allows
it to be decomposed using a FFT approach.

4. Simulations

Before discussing our results, we list the various simulations we
consider in Table 2. We describe each of these in detail below.

4.1. The ELEPHANT simulations

The Extended LEnsing PHysics using ANalaytic ray
Tracing (ELEPHANT) simulations (Cautun et al. 2018;
Hernández-Aguayo et al. 2019) are a suite of five indepen-
dent realisations of the GR (ΛCDM), F6 ( fR0 = −10−6),
F5 ( fR0 = −10−5), N5 (H0rc/c = 5) and N1 (H0rc/c = 1)
models, where F stands for an f (R) model and N for a
DGP model. The simulations were run with the ECOSMOG
adaptive mesh refinement code (Li et al. 2012, 2013) and
they follow the evolution of 10243 dark-matter particles in a
cubical box of length 1024 h−1Mpc, giving a mass resolution
of mp = 7.78 × 1010 h−1 M�. Their initial conditions were
generated at z = 49 using the Zel’dovich approximation with
the MPgraphic code (Prunet et al. 2008) and the cosmolog-
ical parameters are consistent with those of the Wilkinson
Microwave Anisotropy Probe (WMAP) data release nine
collaboration (Hinshaw et al. 2013),

{Ωb,0,Ωm,0, h, ns, As} = {0.046, 0.281, 0.697, 0.971, 2.297 × 10−9} ,

where As is the amplitude of primordial scalar perturbations, ns
is the scalar spectral index and Ωb,0 is the baryon density fraction
today. The halo catalogues were constructed with the rockstar
halo finder (Behroozi et al. 2013), where we chose the M200c
halo mass definition, which is the mass enclosed within a sphere
of radius r200c with 200 times the critical density of the universe.

These simulations offer one of the largest suites of modified
gravity simulations available. There are larger volume simula-
tions (see for example Arnold et al. 2019), but single realisation,
and so the effective volume the ELEPHANT simulations provide is
deemed optimal. The unavailability of simulations with a volume
comparable to Euclid largely stems from the fact that running
large volume modified gravity simulations is currently extremely
computationally challenging (see Arnold et al. 2022, and refer-
ences therein).

4.2. The DAKAR simulations

We made use of the DAKAR simulations presented in Baldi &
Simpson (2017) which were run using a modified version of
the GADGET-2 N-body code (Springel 2005) which consistently
implements the effects of the momentum exchange within the
dark sector. The simulations consisted of 10243 dark matter
particles in a periodic cosmological box of length 1 h−1 Gpc,
evolved from a starting redshift of zi = 99. The resulting CDM
particle mass is mc = 8×1010 h−1 M−� and the spatial resolution
is ε = 24 h−1 kpc. The cosmological parameters are

{Ωb,0,Ωm,0, h, ns, As} = {0.048, 0.308, 0.678, 0.966, 2.115×10−9}.

We refer the interested reader to Baldi & Simpson (2017) for a
more extended description of the simulations and of the modified
N-body code.

We note that these simulations have a very limited volume,
far smaller than that to be probed by Euclid. As will be seen in
Sections 5.2 and 5.3, the approximations considered for the Dark
Scattering model are extremely good even without introducing
bias degrees of freedom, and more so when considering recent
lensing and clustering constraints on this model (Carrilho et al.
2023; Carrion et al. 2024).

4.3. The DEMNUni simulations

The “Dark Energy and Massive Neutrino Universe” (DEMNUni)
simulations (Carbone et al. 2016; Parimbelli et al. 2022) have
been produced with the aim of investigating large-scale struc-
tures in the presence of massive neutrinos and dynamical dark
energy, and they were conceived for the nonlinear analysis
and modelling of different probes, including dark matter, halo,
and galaxy clustering (see Castorina et al. 2015; Moresco et al.
2017; Zennaro et al. 2018; Ruggeri et al. 2018; Bel et al. 2019;
Parimbelli et al. 2021, 2022; Guidi et al. 2023; Baratta et al.
2023; Gouyou Beauchamps et al. 2023, and Carella et al., in
prep.), weak lensing, CMB lensing, SZ and ISW effects
(Roncarelli et al. 2015; Carbone et al. 2016; Fabbian et al.
2018; Hernández-Molinero et al. 2024), cosmic void statistics
(Kreisch et al. 2019; Schuster et al. 2019; Verza et al. 2019,
2022, 2023; Vielzeuf et al. 2023), and cross-correlations among
these probes (Cuozzo et al. 2024). The DEMNUni simulations
combine a good mass resolution with a large volume to include
perturbations both at large and small scales. They are charac-
terised by a softening length ε = 20 h−1 kpc, a comoving vol-
ume of 8 h−3 Gpc3 filled with 20483 dark matter particles and,
when present, 20483 neutrino particles. The simulations are ini-
tialised at zi = 99 with Zeldovich initial conditions. The initial
power spectrum is rescaled to the initial redshift via the rescal-
ing method developed in Zennaro et al. (2017). Initial conditions
are then generated with a modified version of the N-GenIC soft-
ware, assuming Rayleigh random amplitudes and uniform ran-
dom phases. The DEMNUni simulations were run using the tree
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Table 2. Simulations and associated cosmological or gravitational models considered in this work.

ELEPHANT DAKAR DEMNUni
V = 5 × 1 h−3 Gpc3 V = 1 h−3 Gpc3 V = 8 h−3 Gpc3

Code | fR0| Ωrc Code w0 wa ξ [bn GeV−1] Code w0 wa
∑

mν [eV]

F5 10−5 – w09 −0.9 0 10 CPL3 −1.1 −0.3 0.00
F6 10−6 – w11 −1.1 0 10 CPL3-16 −1.1 −0.3 0.16
N1 – 0.25 CPL2 −1.1 0.3 50 CPL4 −0.9 0.3 0.00
N5 – 0.01 – – – – CPL4-16 −0.9 0.3 0.16

Notes. We show the volume of each simulation box, noting that for ELEPHANT we have five realisations. Further, each simulation set has a ΛCDM
simulation with the same initial seeds as the beyond-ΛCDM simulations.

particle mesh-smoothed particle hydrodynamics (TreePM-SPH)
code P-Gadget3 (Springel 2005), specifically modified as in
Viel et al. (2010) to account for the presence of massive neutri-
nos. This modified version of P-Gadget3 follows the evolution
of CDM and neutrino particles, treating them as two separated
collisionless components.

The reference cosmological parameters are cho-
sen to be close to the baseline Planck 2013 cosmology
(Planck Collaboration XVI 2014)

{Ωb,0,Ωm,0, h, ns, As} = {0.05, 0.32, 0.67, 0.96, 2.127 × 10−9}.

Given these values, the reference (i.e., the massless neu-
trino case) CDM-particle mass resolution is mp

CDM = 8.27 ×
1010 h−1 M� and is decreased according to the mass of neutrino
particles, in order to keep the same Ωm,0 among all the DEMNUni
simulations. In fact, massive neutrinos are assumed to come as a
particle component in a three mass-degenerate scenario. There-
fore, to keep Ωm,0 fixed, an increase in the massive neutrino den-
sity fraction yields a decrease in the CDM density fraction.

5. Results

5.1. Setup

We tested the various beyond-ΛCDM modelling approaches
against measurements from N-body simulations, with the
ΛCDM case serving as a performance benchmark. We con-
sidered the redshift space power spectrum monopole and
quadrupole as they contain most of the cosmological and gravita-
tional information, and only considered z = 1, as this will be one
of the lowest targeted redshifts of the Euclid clustering probe
(see, for example, Euclid Collaboration 2020; Amendola et al.
2018; Laureijs et al. 2011), with the higher redshifts relying less
on the accuracy of nonlinear modelling, and where modified
gravity or dark energy effects on the power spectra are less pro-
nounced.

The analyses we performed are limited by the speed of
MG-Copter which is capable of providing the spectra predic-
tions without employing any of the approximations outlined in
Sect. 3.6. Because of this, we restricted our analysis to the calcu-
lation of the minimum χ2 statistic between the theory predictions
and simulation measurements, comparing this statistic between
the various modelling choices. This gave us a basic measure of
the applicability of each choice without having to perform more
expensive Bayesian parameter inference analyses. Our results
aim at informing and optimising such future parameter posterior
analyses (for example, D’Amico et al., in prep.).

We performed two separate analyses, one for CDM and one
for CDM halos. The first tested the validity of the approxima-

tions outlined in Sect. 3.6 as at the level of CDM we have a very
reduced nuisance parameter set with which to fit the simulations.
The second analysis tested the robustness of all the modelling
approaches detailed in Sect. 3; the various kernel approxima-
tions of Sect. 3.6, the two RSD models, the two bias schemes,
and massive neutrino modelling as described in Sect. 3.

The χ2 statistic is given by

χ2(kmax) =
1

Nd.o.f.

kmax∑
k=kmin

∑
`,`′=0,2

[
Ps
`,data(k) − Ps

`,model(k)
]

× Cov−1
`,`′ (k)

[
Ps
`′,data(k) − Ps

`′,model(k)
]
, (76)

where Ps
`

is the `th multipole of the redshift space CDM or halo
power spectrum and Cov`,`′ is the Gaussian covariance matrix
between the different multipoles. In the case of a Gaussian
covariance, the number of degrees of freedom are given by
Ndof = 2 Nbins − Nparams, where Nbins is the number of k-bins
summed over and Nparams is the number of free parameters in the
theoretical model. In this case, Nparams is just be the number of
nuisance parameters (bias and RSD) as we fixed the cosmologi-
cal ones to the fiducial values.

We used a Gaussian, linear covariance between the mul-
tipoles (see Appendix C of Taruya et al. 2010, for details).
This has been shown to reproduce N-body results up to k ≤
0.3 h Mpc−1 at z = 1 (Taruya et al. 2010). We used the simu-
lation volume (see Table 2) to calculate the covariance, and in
the case of halos, we assumed b1 as measured from the simula-
tions. No supersample covariance was included. The effects of
this was shown to be minimal in past surveys (Wadekar et al.
2020), and will be investigated in the context of Euclid in an
upcoming Euclid paper. As we mostly use simulations with a
finite size, no supersample contribution should be included in
these cases.

Further, no shot noise term was considered. We have found
that including a shot noise term based on the simulation-
measured halo number density yields unreasonably good fits by
our theoretical prescriptions to the simulations. More specifi-
cally, we found χ2 ≈ 1 for kmax ≤ 0.6 h Mpc−1 and beyond in
some cases. This is likely because the models are efficient at fit-
ting shot noise above a certain scale. We have checked that the
relative behaviour of the χ2 between ΛCDM and beyond-ΛCDM
models is unchanged around χ2 ∼ 1 with and without the shot
noise contribution. This gives us confidence that the χ2 ∼ 1 crite-
ria we used is still meaningful to compare the relative goodness-
of-fit between the various approximations considered.

On this note, a few things should be mentioned. The actual
measurements from Euclid will encode a larger number den-
sity of tracers than the simulations considered making us more
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sensitive to inaccuracies in the modelling. For example, the
ELEPHANT halo measurements at z = 1 have n̄ ≈ 3.1 ×
10−4 h3 Mpc−3 while Euclid is expected to have over twice this
density of tracers (Euclid Collaboration 2020). Further, Euclid
will measure galaxies not halos, which come with additional
bias modelling considerations. Lastly, despite having fixed the
cosmology and gravity to their fiducial values, such goodness-
of-fit comparisons do not ensure an absence of bias in the recov-
ered parameters in a full posterior analysis, which can emerge
from complex degeneracies between nuisance and cosmological
parameters, and the shape of the full parameter space posterior
distribution.

The simulations also all have smaller volumes than the
expected Euclid survey volume, V(0.9 ≤ z ≤ 1.1) =
7.94 h−3 Gpc3 (Euclid Collaboration 2020), except for DEMNUni,
which has a slightly larger volume. This limits our capacity to
make robust statements for Euclid based on the simulation mea-
surements alone.

To address these issues, we performed some analyses on
mock data produced using the theoretical prescriptions. In this
case we could employ a larger volume in the covariance as well
as the Euclid-estimated shot noise contribution, n̄ = 6.86 ×
10−4 h3 Mpc−3 (Euclid Collaboration 2020). In what follows,
this number density and V = 8.8 h−3 Gpc3 is assumed in the
covariance whenever we refer to a Euclid-like setting. This vol-
ume is larger than the expected volume of Euclid at this red-
shift bin, which accounts partially for any additional information
coming from higher redshift bin observations.

On this point, we remark that in all our analyses we only vary
the redshift space and bias model nuisance parameters, which
will be fit at every redshift bin in the Euclid spectroscopic anal-
ysis. This means our results will not likely degrade with the
inclusion of other redshift bins. It is also true that all considered
beyond-ΛCDM effects are diminished at higher redshifts, and so
the tested approximations will perform better at all other Euclid
redshift bins (see Table. 1 of Euclid Collaboration 2020, for the
specific binning). It should however be noted that the lessening
of modifications to ΛCDM can be compensated by the larger
volumes probed at higher redshifts.

We use the largest value of kmax, the maximum applicable
wave mode, at which theory gives a good fit to the simulation
measurements, as our performance metric for testing the approx-
imations and modelling approaches. To determine this, we fol-
lowed the procedure of Bose et al. (2020a):
1. We performed a least-squares fit to the N-body data by vary-

ing the set of nuisance parameters but fixing all cosmologi-
cal and gravitational parameters to their fiducial values. We
repeated this for k-bins within 0.125 h Mpc−1 ≤ kmax ≤

0.300 h Mpc−1.
2. We then calculated the 1σ confidence intervals (∆χ2) on a χ2

distribution using Ndof degrees of freedom.
3. The model validity scale kmax was then chosen as the largest

value of kmax which has [χ2(kmax) − ∆χ2(kmax)] ≤ 1. A χ2

value of one indicates a good fit to the data.
This procedure provides a fair estimate of the range of validity
of the models in which we can recover the fiducial cosmology
with a 1σ criterion. This procedure was validated in ΛCDM
in Bose et al. (2020a), Markovic et al. (2019) using a Markov
Chain Monte Carlo analysis.

We imposed the physically motivated priors b1, σv > 0 in
the fits. Otherwise all fits assume an extremely wide prior on all
other nuisance parameters, representing minimal prior informa-
tion. We made this choice, as it is now known from the results of
Carrilho et al. (2023), Simon et al. (2023), that the choice of nar-

row priors on nuisance parameters can lead to differences in the
inferred marginal posteriors of cosmological parameters. While
also shown in the aforementioned references that prior volume
effects are important and increase with the size of the priors8,
our results are not affected, since we are maximising the poste-
rior, which is this case of large priors is equivalent to a maximum
likelihood estimation of the parameters.

5.2. Approximation selection

We begun by performing direct spectra comparisons for the
approximations outlined in Sect. 3.6 in order to evaluate the
effectiveness of each approximation. To do this, we compared
the monopole and quadrupole as predicted using the TNS model
(see Eq. 36) under the various approximations against the full,
most rigorous numerical calculation. We considered the TNS as
opposed to the 1-loop SPT prediction (see Eq. 29) as it can probe
smaller scales while not invoking too many degrees of freedom
which may be degenerate with the approximation’s effects. We
fixed the free parameter, σv, for all the predictions, to the exact
value which is given in the figures. This value was chosen to
be the best-fit value found by comparing to the respective dark
matter P0 and P2 simulation measurements, where χ2(kmax) ∼ 1
(see Eq. (76)). The hexadecapole comparisons are also shown
to check the approximation’s accuracy at modelling even greater
nonlinear RSD effects.

We note that for f (R) and DGP, the EdS and USA approx-
imations have been examined in real space, and to a lesser
extent in redshift space, in Bose & Koyama (2016), Bose et al.
(2017, 2018b), Aviles et al. (2021). On the other hand, the
ΛCDM-scr approximation has not been tested at all, and is
presented for the first time in this work. For Dark Scattering
and w0waCDM, the EdS approximation was mildly tested at
the level of the redshift space power spectrum in Bose et al.
(2018a), Carrilho et al. (2021). Given that PyBird has recently
been extended to include the exact calculation for both DGP
(Piga et al. 2023) and w0waCDM (D’Amico et al. 2021b), we
restrict ourselves to f (R) and Dark Scattering in this section.

Despite Dark Scattering having been tested independently in
other works, we also performed a limited test of the EdS approx-
imation. We show this in Fig. 1 along with multipole errors
coming from a Gaussian covariance with our Euclid-like vol-
ume at z = 1. In particular we considered the largest modi-
fication to ΛCDM, the CPL2 case (see Table 2). We see that
the EdS deviates by more than 2% in the quadrupole at small
scales, which may signal that this approximation is inadequate
for Euclid. We have checked that lowering the coupling parame-
ter, ξ, produces better consistency but, more importantly, chang-
ing the RSD degree of freedom can account for the entire devi-
ation down to less than 0.5% for monopole and quadrupole, and
brings all multipole ratios well within the monopole error assum-
ing the Euclid-like volume at this redshift bin. Given this, we find
the EdS to be a good approximation for low interaction strengths
within the Dark Scattering model. We investigate this further in
the next section. Further, we note that in the limit ξ → 0 we
recover w0waCDM and so we confirm that for mild w0waCDM
modifications, the EdS approximation is very good.

In Fig. 2 we show the f (R) case. Here, scale dependen-
cies in the linear growth factor and rate cause the EdS and
USA approximations to break down completely, with deviations

8 Solutions to this issue are currently being investigated in the liter-
ature, including using Jeffreys priors (Donald-McCann et al. 2023) or
profile likelihoods (Moretti et al. 2023; Holm et al. 2023).
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Fig. 1. Ratio of the EdS approximation to the exact calculation of the redshift space matter power spectrum multipoles, computed with the TNS
prescription, for the Dark Scattering model with equation of state of dark energy described by the CPL parametrization (see Eq. 11) with w0 = −1.1
and wa = 0.3 (denoted CPL2 in the text, see Table 2), and at redshift z = 1. Blue solid, orange dashed and green dotted lines denote the monopole,
the quadrupole and the hexadecapole ratios, respectively. In the top-left, bottom-left and bottom-right panels, we use σv = 5.2 h−1 Mpc and
ξ = 50 bn GeV−1, ξ = 30 bn GeV−1 and ξ = 10 bn GeV−1, respectively. In the top-right panel, we use σv = 5.14 h−1 Mpc in the EdS prediction,
which is the value obtained by refitting to the exact calculation which uses σv = 5.2 h−1 Mpc. Blue and beige bands indicate errors on the
monopole and quadrupole assuming a ΛCDM Gaussian covariance with V = 8.8 h−3 Gpc3 and no shot noise contribution (we compare dark matter
multipoles). We note that the hexadecapole error fills the plot and so we have omitted it.

significantly larger than the Euclid-like measurement errors.
This has already been shown in the literature (see, for exam-
ple, Aviles et al. 2021). Remarkably though, the ΛCDM-scr
approximation is sub-percent consistent with the exact ker-
nel calculation for all scales considered and well within the
Euclid-like error bands. This provides a promising implemen-
tation for analyses pipelines which can use the FFT approach
with this approximation. We investigate this further in the next
section.

To summarise, the EdS approximation works very well for
models inducing a scale-independent modification to the linear
growth of structure, such as DGP, w0waCDM or Dark Scattering.
In the case of the former, the absence of a scalar field mass term
and any environment dependence of the modification, leaves its
impact on scales below the crossover scale rc uniform. Simi-
larly, the latter two models give no additional scale dependencies
in the Poisson equation nor the Euler or continuity equations
Eqs. (5), (6), (10). This ensures deviations to the scale depen-
dencies of the standard EdS kernels are minimal. On the other
hand, f (R) gravity comes with a scalar field potential term and
associated mass, which induces a scale-dependent modification
of the linear growth of structure. It also has the more complex,
environment-dependent, Chameleon screening mechanism. This
breaks the EdS approximation as well as makes the omission
of screening more noticeable on the resulting power spectrum.
The ΛCDM-scr approximation attempts to match the large and
small scale behaviour of γ2 and γ3 without introducing addi-
tional scale dependencies from integrated wave modes, allowing
the perturbative kernels to remain accurate (see Appendix B for
more details).

5.3. Dark matter χ2 tests

This analysis validated the necessary approximations currently
needed by the FFT-based fast codes described in Table 1. In par-
ticular, we tested the EdS approximation for Dark Scattering, the
EdS and USA for DGP and f (R), and the ΛCDM-scr approxima-
tion for f (R). We restricted all these tests to the TNS model of
RSD as only this implementation in MG-Copter uses the exact
kernel calculations. If the approximation does sufficiently well
using the TNS, we expect that it should do equally well or bet-
ter in the EFTofLSS case which makes use of more RSD fitting
parameters. Further, our ultimate goal is to test these approxima-
tions at the level of CDM halos, which we do in the next section.
As we are only considering CDM, to compute the minimum χ2 as
a function of kmax, we only vary the TNS RSD nuisance parameter,
σv, in order to minimise the χ2 statistic given in Eq. (76).

In Fig. 3 we show the results for all cases. The top panel show
the ELEPHANT simulation DGP model results. In this case, the low
modification (N5, exact) does equally well as the ΛCDM case.
The high modification (N1, exact) does slightly worse, which
is expected as nonlinearities are amplified by the significantly
enhanced growth, causing SPT to break down at smaller k. In both
cases, the EdS combined with the USA approximation does very
well, following the goodness of fit of the exact prediction.

In the middle panel, we show the ELEPHANT simulation
f (R) results. Here the high modification case (F5, exact) does
equally well as ΛCDM, while we see a much better fit in the
low modification case (F6, exact). This is in part due to the
degeneracy between damping effects induced by modified grav-
ity and the TNS damping parameter σv. The added damping of
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Fig. 2. Ratio of the three approximations considered in this paper to the exact calculation of the redshift space matter power spectrum multipoles,
computed with the TNS prescription, for two f (R) models: | fR0| = 10−5 and σv = 5.8 h−1 Mpc (left panels), and | fR0| = 10−6 and σv = 5.6 h−1 Mpc
(right panels), at redshift z = 1. The top, middle and bottom panels show the USA, the USA and EdS, and the ΛCDM-scr approximations,
respectively. Blue and beige bands indicate errors on the monopole and quadrupole assuming a ΛCDM Gaussian covariance with V = 8.8 h−3 Gpc3

and no shot noise contribution. We note that the hexadecapole error fills the plot and so we have omitted it.

the quadrupole due to f (R) increases the effectiveness of σv in
damping both multipoles appropriately. This only works to an
extent as illustrated by the F5 case. As the damping from f (R) is
also redshift dependent, we do not expect this result to hold for
all redshifts.

Reassuringly, the ΛCDM-scr approximation does only
slightly worse than the exact computation. On the other hand, the
EdS combined with the USA approximation does significantly
worse than the exact computation in the F5 case. This was
expected given Fig. 2. Despite this poor performance, it is yet
to be seen if this approximation is sufficient (or necessary) at
the level of CDM halos, when we introduce a number of bias
parameters.

Finally, the bottom panel shows the Dark Scattering simu-
lation results. In this case, we find the EdS approximation is a
good approximation in all cases, even in the high interaction case
(CPL2), with all cases following the ΛCDM goodness of fit very
closely.Thiswasexpectedgiven the toprightpanelofFig.1.Based
on this, we do not consider Dark Scattering in the next section.

Finally, we comment on the particularly small χ2 in the
ELEPHANT simulations at small kmax. This is likely due to the
very small scatter in these measurements as they are the aver-
ages of five realisations, yielding small χ2 despite the smaller
error expressed in the covariance. In the absence of this scat-
ter at linear scales, the nonlinear models applied here, with their
additional degree of freedom, will over-fit the data as seen. Mov-
ing to nonlinear scales, the size of the errors (larger in DAKAR),
begins to play a bigger role as the measurements from both sim-
ulations are very low in scatter. This is also seen to some extent
in the next section.

5.4. Halo χ2 tests

Having validated the various approximations in the TNS case at
the level of CDM, we move to compare the goodness of fit in the
beyond-ΛCDM models to the ΛCDM case at the level of CDM

halos. These are biased tracers of the CDM distribution and so
serve as a proxy for galaxies, and a means to test the modelling
prescriptions in the presence of bias degrees of freedom.

In the TNS case, we primarily adopted the model used in
the flagship BOSS survey analysis (Beutler et al. 2017), which
has two bias degrees of freedom b1 and b2, as well as a shot
noise parameter N. We also considered a Q-bias model inde-
pendently for the f (R) cases (see Eq. 54) which has three
degrees of freedom, on top of which we also include the shot-
noise parameter N. These are in addition to the TNS RSD
parameter, σv.

In the EFTofLSS analyses for biased tracers we adopted a
model with three perturbative biases, b1, b2 and bG2 , one shot-
noise parameter, N, and two counterterms, c̃0 and c̃2. Adding
more shot-noise or counterterm parameters gradually improves
the reached kmax but, at the same time, could erase the infor-
mation about the specific model analysed, since many of these
EFTofLSS parameters may be degenerate with the beyond-
ΛCDM ones. This will be investigated in an upcoming Euclid
paper (D’Amico et al., in prep.). Our main goal here is to com-
pare the ΛCDM to beyond-ΛCDM scenarios, which should not
depend on the inclusion of the additional shot-noise parameters.
Since in EFTofLSS analyses these parameters are fixed and/or
marginalised analytically, we fixed all the higher-order nuisance
parameters to zero.

We summarise the best-fit results for all models with Eule-
rian bias in Table 3. The TNS model with the Q-bias prescription
fits are shown in Table 4.

5.4.1. f (R) and DGP

We present the dependence on the χ2 as a function of kmax for the
ELEPHANT simulations in Fig. 4. Here we show both EFTofLSS
and TNS model predictions for DGP (top two panels) and f (R)
(bottom three panels). We find that the Eulerian bias expansion,
keeping scale-independent bias coefficients, is effective for the
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Fig. 3. Reduced χ2 for the fit of the redshift space matter power spectrum multipoles, computed with the TNS prescription, to the one from
numerical simulations, as a function of kmax and at redshift z = 1. In the top panel we consider the DGP ELEPHANT simulations, in the middle panel
the f (R) ELEPHANT simulations, and in the bottom panel the Dark Scattering DAKAR simulations. Crosses indicate the exact computation while
circles indicate the EdS and USA approximations. For the f (R) models, the ΛCDM-scr approximation is shown as pentagons. The ΛCDM case is
shown as grey squares. The error bars are the 1σ errors on the χ2 statistic with Nd.o.f. = 2Nk − 1 degrees of freedom, where Nk are the number of
wave modes used in calculating χ2. We subtract one because the TNS model has one degree of freedom.

DGP case. Both levels of modification follow the ΛCDM trend
very closely, with the high modification doing slightly better at
the mid-range of scales presented. Further, the EdS and USA
are very good approximations, following the exact computation
almost exactly as was seen in Fig. 3. This holds for both TNS
and EFTofLSS cases.

In the f (R) case, we tested two different bias models and both
EdS and USA as well as the ΛCDM-scr approximations. The
bias models we examine are the Q-bias and Eulerian bias (see
Sect. 3.3). For the Eulerian bias, we assume EdS kernels for the
higher-order bias terms and scale-independent bias coefficients.
Interestingly, when the bias degrees of freedom were introduced,
the EdS and USA approximations seem to become much more
applicable, with the inaccuracy it incurs likely being absorbed by
the bias degrees of freedom. We also note that there is little differ-
ence between the TNS Eulerian bias prescription and the Q-bias
model, despite the Q-bias having one additional parameter.

It is also interesting to note that all f (R) cases do better in
terms of their fit to the simulations (a lower χ2) than the ΛCDM
fits. This could be because of an increased efficiency of the bias
and RSD degrees of freedom to damp both multipoles appro-
priately in the presence of f (R) effects, as was noted in the
CDM case. We also see this enhanced fit in the EFTofLSS case
which applies the EdS and USA approximation. This improved
efficiency of the RSD models to capture the full shape of the
power spectrum when f (R) effects are present does not neces-
sarily mean we will gain more information as it also suggests
there are no distinct f (R) features at these scales, but rather just
an overall damping of the spectrum, highly degenerate with σv
or counterterms.

This being said, we do note that an improved fit to the full
shape does not mean there are no additional features in the mul-

tipoles coming from f (R), specifically ones that are not pure
damping in nature. These effects may become relevant with
smaller error bars. Moreover, both the damping and these possi-
ble additional features are crucially dependent on the modifica-
tion strength, which we can see clearly in Fig. 4 with the F6 case
fitting the data marginally better than the ΛCDM case, while the
F5 case fitting the multipole measurements significantly better.

An important point here is that we have fit the simulation
data using a linear covariance that assumes the simulation vol-
ume, which is much less than that which Euclid will be probing.
We do however omit shot noise which would improve the fits at
small scales. We have found that including shot noise contribu-
tions, based on number densities from the halo catalogue mea-
surements, enables the TNS model to fit the data to well beyond
k > 0.5 h Mpc−1. This is likely due to the model simply fitting
the shot noise which it can do efficiently.

To check whether or not the approximations are good enough
for Euclid, we checked the multipoles using the best-fit param-
eters determined from the simulations. In particular, we inves-
tigated the case which is expected to perform worst: the USA
combined with EdS for the F5 case, which we saw in Fig. 2
performed terribly for dark matter. In Fig. 5 we show the ratio
of the monopole and quadrupole for the TNS EdS and USA
approximation for F5 to the exact solution with the ELEPHANT-
based simulation best-fit parameters found in Table 3. We also
overlay as bands the expected cosmic variance and shot noise
errors expected from the Euclid survey at the z = 1 redshift
bin (Euclid Collaboration 2020). As dotted lines we show the
EdS and USA approximation prediction but without refitting
the nuisance parameters and using the same fits as the exact
solution. This highlights how the nuisance parameters are effec-
tively accounting for the approximation, even to within Euclid
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Table 3. Summary of TNS and EFTofLSS fits to the simulations.

TNS EFTofLSS

Model Approx. kmax χ2 {b1, b2,N, σv} kmax χ2 {b1, b2, bG2 ,N, c̃0, c̃2}

ΛCDM Exact 0.21 1.14 {2.22, 0.94,−627, 4.34} 0.18 1.04 {2.20, 0.11, 0.05, 733, 5.39, 33.6}
EdS 0.21 1.16 {2.22, 0.77,−535, 4.32} 0.18 1.08 {2.21, 0.12, 0.03, 654, 4.98, 39.92}

N5 Exact 0.19 1.12 {2.17,−0.32, 306, 4.20} 0.18 1.09 {2.19,−0.02, 0.01, 400, 1.47, 34.11}
EdS and USA 0.19 1.12 {2.17,−0.39, 365, 4.18} 0.18 1.13 {2.19,−0.02,−0.01, 309, 0.92, 40.57}

N1 Exact 0.22 1.17 {2.12, 0.56,−553, 4.84} 0.18 0.95 {2.12,−0.10,−0.03, 0,−2.21, 38.16}
EdS and USA 0.22 1.19 {2.12, 0.39,−443, 4.84} 0.18 0.98 {2.12,−0.01,−0.05,−297,−4.38, 46.82}

F6 Exact 0.21 1.12 {2.20, 1.00,−637, 4.27} – – –
EdS and USA 0.21 1.15 {2.21, 0.96,−692, 4.49} 0.18 1.00 {2.19,−0.04, 0.04, 0.16,−0.64,−5.45}

ΛCDM-scr 0.21 1.12 {2.20, 0.83,−566, 4.33} – – –
F5 Exact 0.26 0.99 {2.11, 1.07,−769, 4.62} – – –

EdS and USA 0.26 1.04 {2.12, 1.18,−1030, 5.21} 0.21 1.18 {2.07, 0.37,−0.14, 0.17,−4.21,−7.54}
ΛCDM-scr 0.26 0.97 {2.10, 0.90,−672, 4.62} – – –

ΛCDM Exact 0.20 1.12 {2.12,−1.38, 1118, 3.12} 0.19 0.98 {2.17,−0.09,−0.41, 1666,−4.85, 32.91}
EdS 0.20 1.12 {2.12,−1.36, 1108, 3.12} 0.19 1.02 {2.17,−0.07,−0.43, 1592,−4.87, 39.18}

CPL3 Exact 0.19 0.97 {2.08,−0.92, 747, 3.53} 0.19 1.02 {2.16,−0.93,−0.82, 2200,−0.65, 13.17}
EdS 0.19 0.97 {2.08,−0.93, 751, 3.53} 0.19 1.07 {2.11,−0.22,−0.46, 1403,−5.86, 41.34}

CPL4 Exact 0.20 1.11 {2.31, 2.96,−603, 3.09} 0.19 1.02 {2.16,−0.32,−0.66, 1262,−4.53, 16.55}
EdS 0.20 1.11 {2.31, 3.00,−597, 3.06} 0.19 1.04 {2.31, 0.20,−0.54, 1720,−2.99, 39.77}

ΛCDM-16 Exact 0.22 1.10 {2.21,−1.95, 1326, 3.00} 0.21 1.11 {2.23, 0.98,−0.46, 1433,−2.65, 50.17}
EdS 0.22 1.10 {2.21,−1.95, 1326, 3.00} 0.20 1.09 {2.23, 0.58,−0.44, 1578,−3.03, 51.02}

CPL3-16 Exact 0.19 0.97 {2.20,−0.53, 522, 3.45} 0.19 1.00 {2.22,−1.83,−0.55, 3182,−14.14,−2.22}
EdS 0.19 0.85 {2.23, 1.75,−560, 3.61} 0.19 0.94 {2.18, 0.16,−0.35, 1366,−10.98, 45.87}

CPL4-16 Exact 0.22 1.07 {2.37,−1.94, 1622, 2.42} 0.19 1.10 {2.24,−0.31,−0.49, 1239,−15.73, 13.38}
EdS 0.22 1.10 {2.39, 3.82,−146, 2.61} 0.19 1.06 {2.38, 0.01,−0.34, 2283,−7.25, 35.05}

Notes. We show the approximations employed, the highest kmax with its associated value of the reduced χ2 and best-fitting model parameter. The
upper table shows the ELEPHANT fits, the lower table the DEMNUni fits. We note that b2 and N are normalised differently in the different models,
so they are not expected to have similar values. b1, b2 and bG2 are dimensionless. N has dimensions h−3 Mpc3. σv and {c̃0, c̃2} have dimensions
h−1 Mpc and h−2 Mpc2 respectively.

Table 4. Q-bias TNS fits for f (R) ELEPHANT models.

Model Approximation kmax χ2 {b0, A1, A2,N, σv}

F6 Exact 0.23 1.10 {2.17, 0.02,−2.00, 912, 3.48}
EdS and USA 0.23 1.10 {2.18, 0.04,−2.00, 886, 3.71}

ΛCDM-scr 0.23 1.10 {2.18, 0.06,−2.00, 940, 3.52}
F5 Exact 0.26 0.96 {2.07,−0.12,−1.40, 322, 4.10}

EdS and USA 0.26 1.00 {2.08,−0.11,−1.15, 137, 4.74}
ΛCDM-scr 0.26 0.98 {2.07,−0.13,−1.04, 196, 4.26}

Notes. A1 and A2 have units h−1 Mpc and h−2 Mpc2 respectively. N has dimensions h−3 Mpc3 and σv has units h−1 Mpc.

precision. Without this freedom the approximation fails, even
before the shot noise begins to dominate.

To further investigate whether or not the approximations
applied here would be valid in a Euclid-like setting, we pre-
pared a mock data vector using the TNS model and exact SPT
kernel predictions9, and attached to it a covariance computed
with Euclid-like shot noise and volume (V = 8.8 h−3 Gpc3 and
n̄ = 6.86×10−4 h3 Mpc−3, see Sect. 5.1). We further added scatter
to the mock data vector using this covariance. Then, we fitted the
theoretical prescriptions using approximations to this data vec-
tor and checked the goodness of fit as a function of kmax. The fits

9 We used the values of the nuisance parameters found at the kmax given
in Table 3.

are shown in Fig. 6. All approximations do as well as the exact
calculation (which the mock data vector was produced with), and
give a χ2 ≈ 1 for a large range of kmax, exceeding that determined
by fitting the simulations.

We also fitted this mock data vector in the f (R) cases using
a pure ΛCDM modelling (µ(k, a) = 1 and S (k) = 0), which
also shows an excellent fit to the mock data. This suggests that
the nuisance parameters are completely degenerate with f (R)
effects, at least for | fR0| ≤ 10−5 and over the range of scales
that our models are valid within, even in a Euclid-like setup.

One way of checking this hypothesis is to observe the
behaviour of the nuisance parameters as a function of kmax. We
find, in the TNS case, that the best-fit linear bias b1 and σv
are ∼5% and ∼10% consistent between all approximations and
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Fig. 4. Reduced χ2 for the fit of the redshift space halo power spectrum multipoles, computed with the TNS and the EFTofLSS prescriptions, to
the measured multipoles from the DGP and f (R) ELEPHANT simulations, as a function of kmax and at redshift z = 1. From top to bottom, TNS fit
to DGP, EFTofLSS fit to DGP, TNS fit to f (R) with | fR0| = 10−5, TNS fit to f (R) with | fR0| = 10−6, and EFTofLSS fit to f (R). Crosses, circles and
pentagons indicate the exact computation, the EdS and USA approximation and the ΛCDM-scr approximation, respectively. The ΛCDM cases
are shown as black (TNS) and grey (EFTofLSS) squares. The error bars are the 1σ errors on the χ2 statistic with Ndof = 2Nk − Nx degrees of
freedom, where Nk are the number of wave modes used in calculating χ2. We use Nx = 4 for the TNS model using Eulerian bias and Nx = 5 for
EFTofLSS and the TNS model with Q-bias. All EFTofLSS exact and f (R) calculations are performed using PyBird, while the DGP EdS and USA
calculations are performed using PBJ. The ΛCDM predictions are made using the exact kernel calculations.

the exact results over the full range of kmax, with b1 also being
consistent with the simulation measurement. Interestingly, the
best-fit values of σv in the ΛCDM-scr approximation match
extremely well with the exact solution, which confirms it being
a very good approximation for the SPT kernels. Differing val-
ues of σv for the other approximations and Q-bias model indi-
cate that the effects of f (R) are being absorbed by a change
in this parameter. Similarly, b2 and N also vary significantly,
both as a function of kmax and between the various approxi-
mations. Such degeneracies will likely be able to be broken by
using a combination of redshift bins, giving far more informa-
tion about the evolution of structure, as well as the bispectrum
for example, which will yield more information on bias param-
eters, particularly if the modelling prescription for both statis-
tics is consistent (Hashimoto et al. 2017; Philcox et al. 2022;
Tsedrik et al. 2023; Ivanov et al. 2022). We leave further investi-
gation of this to future work which should employ large-volume
simulations.

5.4.2. w0waCDM and massive neutrinos

In Fig. 7 we show the χ2 as a function of kmax for the DEMNUni
simulations (see Table 2). The TNS and EFTofLSS model pre-
dictions for the massless neutrino cases are shown in the top two
panels, while the bottom two panels show the massive neutrino
cases (

∑
mν = 0.16 eV). We find that the EdS approximation

does equally well to the exact kernel calculations for all cases,
at least until the χ2 ≈ 1. Further, all beyond-ΛCDM cases fol-
low very similar trends to the ΛCDM case. This suggests that the
EdS approximation is sufficiently accurate for w0waCDM cases,
and our linear-only treatment of massive neutrinos (see Sect. 3.5)
is equally good in all cases.

As with the DGP and f (R) cases, we find that the TNS model
shows slightly lowerχ2 over the full range of kmax considered than
EFTofLSS, but both RSD models have roughly a kmax(χ2 ≈ 1) ≈
0.19 h Mpc−1. This is similar to the kmax for most of the ELEPHANT
simulations (except F5), despite the DEMNUni simulations having
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Fig. 5. Ratio of the USA and EdS approximation to the exact calculation
of the redshift space matter power spectrum multipoles, computed with
the TNS prescription, for the | fR0| = 10−5 (F5) model at redshift z = 1.
The models assume the fits as found in Table 3. The dotted lines show a
USA and EdS prediction where the nuisance parameters are not refit to
the simulation data, and take the same values as the exact computation.
Blue and beige bands indicate errors on the monopole and quadrupole
assuming a Euclid-like Gaussian covariance with V = 8.8 h−3 Gpc3 and
n̄ = 6.86 × 10−4 h3 Mpc−3.

a larger volume. This is likely compensated by the slightly lower
σ8 of these simulations, and hence slightly lower levels of non-
linearity, leading to a better performance of SPT.

The volume of the DEMNUni simulations is comparable to
the volume Euclid will probe at z = 1 and so we did not perform
any additional tests of the EdS approximation against SPT mock
data. On the other hand, we did test the importance of including
massive neutrinos. We created a mock data vector using the exact
calculation of the SPT kernels and including massive neutrino
effects assuming

∑
mν = 0.16 eV in the linear Pcb power spec-

trum (see Sect. 3.5), again using the best-fit nuisance parameters
found in Table 3. We then created a covariance with the Euclid-
like volume and tracer number density (V = 8.8 h−3 Gpc3 and
n̄ = 6.86 × 10−4 h3 Mpc−3) and a linear bias as given in Table 3.
Using this covariance, we added scatter to the mock data. We
then fitted this mock data vector using the massless neutrino
modelling. The fits of the various theoretical predictions to the
mock data vectors are shown in Fig. 8.

Surprisingly, we find all massless neutrino fits, both in
ΛCDM and w0waCDM, follow the massive neutrino modelling
fits almost perfectly, with χ2 ≈ 1 at all kmax considered. This fur-
ther suggests that the effects of massive neutrinos with masses∑

mν ≤ 0.16 eV are degenerate with nuisance parameters, at
least at a fixed redshift bin and only with the clustering power
spectrum. This is expected as the FoG damping effect, controlled
by the free parameter σv in the TNS model or counterterms in
EFTofLSS, are likely highly degenerate with the effects of mas-
sive neutrinos, which act to damp power on small scales.

We await further tests to be performed in D’Amico et al., in
prep. to further explore these results. Unlike screening, the inclu-
sion of massive neutrinos at the linear level is not significantly
computationally expensive and so no approximation needs to be
made in principle.

6. Conclusions

In this paper we have investigated various theoretical approx-
imations in beyond-ΛCDM scenarios, necessary for the com-

putational demands of forthcoming Euclid galaxy clustering
analyses, as well as different RSD models. Before listing our
results, as a reference for the reader, we provide a summary of
previous related works and their main conclusions.

6.1. Previous work

The Einstein–de Sitter (EdS) approximation has been investi-
gated in a number of works. Bose et al. (2018b) compare the EdS
approximation to simulations and the exact 1-loop real space
matter power spectrum in DGP using the EFTofLSS. They find
this is a very good approximation, especially given the addi-
tional degrees of freedom of the EFTofLSS. Bose et al. (2017)
perform Markov Chain Monte Carlo analyses on DGP simula-
tions using the EdS TNS redshift space dark matter multipoles
with and without screening effects, finding a 2σ bias is incurred
on the growth rate, f , when screening is omitted at z = 1 for
a survey of Vs = 20 h−3Gpc3, but not for Vs = 10 h−3Gpc3.
Further, Carrilho et al. (2021) check the EdS approximation for
the Dark Scattering real space spectra against the exact solutions
and find sub-percent agreement for z = 1, for scales less than
k ≈ 0.25 h Mpc−1 and for ξ comparable to the values considered
in this paper.

Regarding tracer bias schemes, D’Amico et al. (2021a)
show that the scale-independent bias parameters are likely
a good approximation for models of gravity inducing a
scale-independent growth factor and rate of structure forma-
tion, without explicitly comparing to simulations. A num-
ber of other works have developed exact calculations for
redshift space correlations for dark matter and biased trac-
ers, but have not explicitly investigated the need for this
by comparing, directly or through best-fit analyses, to
simulations or mock data (Aviles & Cervantes-Cota 2017;
Aviles et al. 2021; Valogiannis et al. 2020; Valogiannis & Bean
2019; Bose & Koyama 2016, 2017; Bose et al. 2018a), specifi-
cally when higher order nuisance parameters are included. We do
however note that Aviles et al. (2021) find the local Lagrangian
approximation to be valid for f (R) gravity.

6.2. This work

In this work we have considered the TNS and EFTofLSS models
for RSD with an Eulerian bias expansion. We further consid-
ered the local Lagrangian bias relation, known to hold well for
ΛCDM and f (R) (Aviles et al. 2021). For the scale-dependent
theory, f (R), we also investigate the phenomenological Q-bias
model (see Eq. (54)).

These approximations were checked by comparing the
monopole and quadrupole of both dark matter and halo cluster-
ing to high quality numerical simulations as well as standard
perturbation theory (SPT) based mock data generated with a
minimal amount of approximations. For all comparisons, we
have fixed cosmology and only varied the model nuisance
parameters related to RSD, nonlinear clustering and tracer bias.
Our main conclusions are summarised below.

6.2.1. Dark Matter

The EdS approximation without screening predictions gives an
equally good χ2 fit to the simulation dark matter multipoles as
the predictions without these approximations in DGP. The EdS
approximation is generally excellent for DGP, w0waCDM, and
Dark Scattering models, both at the level of dark matter and
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Fig. 6. Same as the TNS panels of Fig. 4 but fitting to a fiducial SPT-mock data vector using the exact prediction for the SPT kernels and the
Eulerian bias (red crosses, and blue crosses for the N5 model). The model parameters are those found in Table 3. The mock data vector is given
scatter using a Euclid-like Gaussian covariance, using V = 8.8 h−3 Gpc3 and n̄ = 6.86 × 10−4 h3 Mpc−3 and the same linear bias as the mock data.
The fits are also made using the same covariance. We delimit the kmax which was used to choose the best-fit bias and RSD nuisance parameters
when comparing to the ELEPHANT simulations, roughly corresponding to the values found in Table 3. The black triangles indicate a modelling
where no f (R) effects are accounted for, i.e. a pure ΛCDM modelling.

halos. It does however give a significantly worse fit for f (R).
On the other hand, the ΛCDM-screened approximation (see
Appendix B) for f (R) gravity, developed in this work, gives an
equally good fit to the simulation dark matter multipoles as the
exact SPT predictions. This approximation is suitable for a fast
Fourier transform implementation.

6.2.2. Halos

The EdS approximation without screening predictions gives an
equally good χ2 fit to the simulation halo multipoles as the
predictions without these approximations, both in f (R) grav-
ity and DGP. Further, both Eulerian and Q-bias prescriptions
give equally good fits to the simulation data, with the local
Lagrangian bias relation seeming to be valid for all beyond-
ΛCDM scenarios, with the χ2 of these scenarios being compara-
ble to that of ΛCDM.

We found that not modelling any f (R) effects, both in the bias
terms and in the perturbation theory kernels, gives an equally
good fit to the SPT- f (R) mock data as the exact kernel com-
putation. This suggests such effects can efficiently be absorbed
into higher-order bias and RSD nuisance parameters. In fact, we
have noted a significant change in the RSD and higher order bias
parameters from the fiducial mock values in these fits. Particu-
larly prominent shifts were noted for the largest approximations,
for example using the Einstein–de Sitter and unscreened approx-
imations for f (R) gravity. These shifts also grew with the maxi-
mum scale, kmax, included in the fit.

Similarly, not modelling any massive neutrino effects gives
an equally good fit to the SPT-ΛCDM and -w0waCDM mock
data as the modelling including massive neutrinos, for

∑
mν ≤

0.16 eV. This suggests such effects can also be efficiently
absorbed into higher-order bias and RSD nuisance parameters.
We note that changes in these parameters away from the fiducial
mock values was also noted in the fits, in support of this claim.

Lastly, TNS and EFTofLSS both give a similar value of
kmax such that |χ2(kmax) − 1| . 0.15 when fit to the simula-
tions, with the TNS yielding a slightly larger kmax systemati-
cally over all beyond-ΛCDM scenarios10. This range is roughly
0.19 h Mpc−1 ≤ kmax ≤ 0.21 h Mpc−1, with the exception being
the strong f (R) modification where we find the TNS model can
fit the data well up to kmax ≈ 0.26 h Mpc−1. This is likely due
to an enhanced efficiency of the phenomenological fingers-of-
god RSD damping parameter σv when strong f (R) effects are
at play.

We note that we do not vary cosmological parameters, and so
these results, in particular the use of the various approximations
considered for the perturbative kernels and bias, does not ensure
an unbiased estimation of cosmology. They do however strongly
suggest large degeneracies between screening and massive neu-
trino effects and higher-order bias as well as RSD effects. If val-
idated, this would mean that a power spectrum monopole and
quadrupole analysis at a single redshift will offer no significant
information on modified gravity. This result was known in the
case of massive neutrinos due to their degeneracies with bias
parameters (see Marulli et al. 2011; Villaescusa-Navarro et al.
2018; Hahn et al. 2020, for example), but not in the case of mod-
ified gravity, which is a key finding of this work.

This result may change when including higher-order mul-
tipoles or statistics (García-Farieta et al. 2021), such as the

10 Note that we have not included the EFTofLSS ∼µ2k2 shot-noise term,
which improves the fit.
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Fig. 7. Same as Fig. 4 but for the DEMNUni simulation models. We show the cases without massive neutrinos (top two panels: TNS upper, EFTofLSS
lower) and with massive neutrinos (bottom two panels: TNS upper, EFTofLSS lower).

hexadecapole or bispectrum, galaxy lensing, or informative
priors on nuisance parameters, which will help to break clear
degeneracies between beyond-ΛCDM effects and bias parame-
ters (Chan & Blot 2017; Bose & Taruya 2018; Bose et al. 2020a;
Markovic et al. 2019; Bose et al. 2019; Tsedrik et al. 2023;
Kacprzak & Fluri 2022). Such informative priors must be chosen
carefully though, as they can lead to biases on the inferred cos-
mology or gravitational model (Carrilho et al. 2023; Simon et al.
2023). If such priors can however be identified, or if we can iden-
tify a more efficient nuisance parameter set, through for example
principal component analyses (see for example Eifler et al. 2015)
or machine learning methods (Piras & Lombriser 2023), then
the theoretical approximations used, particularly in the case
of f (R) or scale-dependent models, must be revised. In this
case a more accurate prescription, such as the ΛCDM-screened
approximation, can be applied. Conversely, we can use the
methods presented here to gain information on the appropriate
width of nuisance parameter priors. For example, we find that σv
changes by up to 10% when employing approximate perturbative
kernels. So, any prior must be at least so wide about some central
value if we choose to employ such an approximation in a real
analysis.

In light of these findings, we do not advocate additional
effort in either improving computational efficiency to calculate

the exact beyond-ΛCDM SPT kernels or theoretically develop-
ing new, more accurate kernel approximations. We also deem
the Eulerian bias expansion, with constant bias coefficients to
be sufficient for the considered beyond-ΛCDM cases. The RSD
models perform similarly and so we do not advocate one over
the other. This being said, tools and theoretical prescriptions
are already available which can compute the clustering multi-
poles highly accurately and efficiently for DGP, Dark Scatter-
ing, w0waCDM, and massive neutrinos (D’Amico et al. 2021b;
Noriega et al. 2022; Piga et al. 2023; Carrilho et al. 2023). A
forthcoming Euclid paper (D’Amico et al., in prep.) will pro-
vide a more detailed Markov Chain Monte Carlo-based analyses
of both RSD models.

In summary, the main contribution of this work to Euclid is
to have identified useful approximations for determining scale
cuts in beyond-ΛCDM scenarios, which will require both high-
volume simulation measurements and computationally expen-
sive Markov Chain Monte Carlo analyses. On this note, this work
has instructed the minimal extension of current internal pipelines
for beyond-ΛCDM theories, in particular for the TNS model. We
have also developed a useful theoretical approximation (ΛCDM-
screened) in the case where standard approximations in f (R)-
gravity break under the combined power of the Euclid spec-
troscopic probe. This approximation can be integrated easily
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Fig. 8. Same as Fig. 6 but for the w0waCDM DEMNUni cosmologies (see Table 2). The mock data vector in this case includes massive neutrinos
(
∑

mν = 0.16 eV), and the black squares use the same modelling as the mock data. The crosses assume
∑

mν = 0.0 eV in the modelling.

into codes employing the Fast Fourier transform method such
as PyBird and PBJ.

Finally, we have also validated the clustering predictions
from various SPT based codes being employed within the Euclid
consortium. In particular, we have found the predictions from
PBJ, Pybird and MG-Copter (now part of ReACT) (see Table 1)
to be in sub-percent agreement for k ≤ 0.5 h Mpc−1 (see
Appendix C).
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Baldauf, T., Mirbabayi, M., Simonović, M., & Zaldarriaga, M. 2015, Phys. Rev.

D, 92, 043514
Baldi, M., & Simpson, F. 2015, MNRAS, 449, 2239
Baldi, M., & Simpson, F. 2017, MNRAS, 465, 653
Baldi, M., Villaescusa-Navarro, F., Viel, M., et al. 2014, MNRAS, 440, 75
Baratta, P., Bel, J., Gouyou Beauchamps, S., & Carbone, C. 2023, A&A, 673,

A1
Baumann, D., Nicolis, A., Senatore, L., & Zaldarriaga, M. 2012, JCAP, 07, 051
Bean, R., & Tangmatitham, M. 2010, Phys. Rev. D, 81, 083534
Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2013, ApJ, 762, 109
Bel, J., Pezzotta, A., Carbone, C., Sefusatti, E., & Guzzo, L. 2019, A&A, 622,

A109
Bernardeau, F., Colombi, S., Gaztanaga, E., & Scoccimarro, R. 2002, Phys.

Rept., 367, 1

A275, page 22 of 29

http://www.euclid-ec.org
http://linker.aanda.org/10.1051/0004-6361/202348784/1
http://linker.aanda.org/10.1051/0004-6361/202348784/1
http://linker.aanda.org/10.1051/0004-6361/202348784/2
http://linker.aanda.org/10.1051/0004-6361/202348784/3
http://linker.aanda.org/10.1051/0004-6361/202348784/4
http://linker.aanda.org/10.1051/0004-6361/202348784/4
http://linker.aanda.org/10.1051/0004-6361/202348784/5
http://linker.aanda.org/10.1051/0004-6361/202348784/5
http://linker.aanda.org/10.1051/0004-6361/202348784/6
http://linker.aanda.org/10.1051/0004-6361/202348784/7
http://linker.aanda.org/10.1051/0004-6361/202348784/8
http://linker.aanda.org/10.1051/0004-6361/202348784/9
http://linker.aanda.org/10.1051/0004-6361/202348784/9
http://linker.aanda.org/10.1051/0004-6361/202348784/10
http://linker.aanda.org/10.1051/0004-6361/202348784/10
http://linker.aanda.org/10.1051/0004-6361/202348784/11
http://linker.aanda.org/10.1051/0004-6361/202348784/12
http://linker.aanda.org/10.1051/0004-6361/202348784/13
http://linker.aanda.org/10.1051/0004-6361/202348784/14
http://linker.aanda.org/10.1051/0004-6361/202348784/14
http://linker.aanda.org/10.1051/0004-6361/202348784/15
http://linker.aanda.org/10.1051/0004-6361/202348784/16
http://linker.aanda.org/10.1051/0004-6361/202348784/17
http://linker.aanda.org/10.1051/0004-6361/202348784/18
http://linker.aanda.org/10.1051/0004-6361/202348784/18
http://linker.aanda.org/10.1051/0004-6361/202348784/19
http://linker.aanda.org/10.1051/0004-6361/202348784/19


Euclid Collaboration: A&A, 689, A275 (2024)

Beutler, F., Seo, H.-J., Saito, S., et al. 2017, MNRAS, 466, 2242
Blas, D., Garny, M., Ivanov, M. M., & Sibiryakov, S. 2016, JCAP, 07, 028
Bose, B., & Koyama, K. 2016, JCAP, 08, 032
Bose, B., & Koyama, K. 2017, JCAP, 08, 029
Bose, B., & Taruya, A. 2018, JCAP, 10, 019
Bose, B., Koyama, K., Hellwing, W. A., Zhao, G.-B., & Winther, H. A. 2017,

Phys. Rev. D, 96, 023519
Bose, B., Baldi, M., & Pourtsidou, A. 2018a, JCAP, 04, 032
Bose, B., Koyama, K., Lewandowski, M., Vernizzi, F., & Winther, H. A. 2018b,

JCAP, 04, 063
Bose, B., Koyama, K., & Winther, H. A. 2019, JCAP, 10, 021
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Appendix A: Redshift space correction terms

In this appendix we present the general forms for the A, B and C
corrections terms in Eq. (29) as well as their linear bias depen-
dence. These can be matched to the EdS expressions in, for
example, Scoccimarro et al. (1999), Bernardeau et al. (2002) by
expanding Eq. (44). We note that these are the forms that are
also found in MG-Copter, which can be found here. Following
Bose & Koyama (2016) we have

A(k, µ) = −(k µ)
∫

d3q
[
µq

q
Bσ(q, k − q,−k)

+
k µ − q µq

|k − q|2
Bσ(k − q, q,−k)

]
, (A.1)

where µq = q̂ · ẑ and the cross bispectrum is given in terms of
the general kernels and linear bias as

Bσ(k1, k2, k3) = 2

×
{[

b1F1(k2) − µ2
k2

G1(k2)
] [

b1F1(k3) − µ2
k3

G1(k3)
]
G2(k2, k3)

× P11,i(k2) P11,i(k3)

+
[
b1F1(k3) − µ2

k3
G1(k3)

] [
b1F2(k1, k3) − µ2

k2
G2(k1, k3)

]
G1(k1)

× P11,i(k1) P11,i(k3)

+
[
b1F1(k2) − µ2

k2
G1(k2)

] [
b1F2(k1, k2) − µ2

k3
G2(k1, k2)

]
G1(k1)

× P11,i(k1) P11,i(k2)
}
. (A.2)

The B term is given as

B(k, µ) = (k µ)2
∫

d3q F(q) F(k − q) , (A.3)

with

F(q) =
µq

q
G1(q)

[
b1F1(q) − µ2

qG1(q)
]

P11,i(q) . (A.4)

Finally, the C term is given as

C(k, µ) = (k µ)2
∫

d3 p d3q δD(k − p− q) P11,i(p) P11,i(q)

×
µ2

p

p2 G2
1(p)

[
b1F1(q) − µ2

qG1(q)
]2
. (A.5)

Appendix B: ΛCDM-screened for f (R)
In this approximation we have the following modifications to the
Poisson equation

µ(k, a) = 1 +

(
k
a

)2 1
3Π(k, a)

, (B.1)

γ
app
2 (k − q, q, a) = γ2(k, 0, a)

Π(0, af)
Π(q, af)

{
Π(0, af)
Π(q, af)

+
[Π(k, af) − Π(0, af)]

[
Π(q, af) − Π(0, af)

]
Π2(q, af)

}
,

γ
app
2 (k,−q, a) = γ2(k, 0, a)

Π(0, af)
Π(q, af)

,

γ
app
2 (k, q − k, a) =

q2

k2 γ
app
2 (k − q, q, a) , (B.2)

where af is the final scale factor at which the power spectrum
is computed. For γ3 we use the following expressions for their
cyclic permutations

γ
app
3 (q, k,−q, a) = γ

app
3 (q,−q, k, a) = γ3(0, k, 0, a)

Π2(0, af)
Π2(q, af)

,

γ
app
3 (k, q,−q, a) = γ3(k, 0, 0, a)

Π2(0, af)
Π2(q, af)

. (B.3)

The terms depending on the loop momentum q in these expres-
sions are evaluated at a fixed value for the scale factor, a = af ,
allowing a factorization of scale and time integrations. More-
over, the momentum dependence is only through powers of

a2
f Π2(q, af) = q2 + m2(af) , (B.4)

where, from Eq. (21),

m2(af) :=
a2

f Υ3(af)
2 f0 (3Ωm,0 − 4)2 , (B.5)

which are well suited for an extension of the FFT approach for
the fast evaluation of loop integrals.

Appendix C: Code and implementation validation

We have performed some basic validation tests between the
three perturbation theory codes used in this work. In particu-
lar, we have compared predictions for the 1-loop SPT dark mat-
ter monopole, quadrupole and hexadecapole (see Eq. 29) which
involves no free nuisance parameters. We have done this for
ΛCDM and DGP at z = 0.5 where nonlinearities are larger com-
pared to z = 1, providing a better validation test. We have also
compared the different resummation implementations described
in Sect. 3.4. Additionally, we note that the χ2 obtained from the
different codes when comparing the 1-loop SPT prediction to
the ΛCDM ELEPHANT simulations at z = 1 are extremely similar
over a large range of kmax (see Eq. 76).

C.1. Code validation

In Fig. C.1 we show the ratio of the 1-loop SPT multipoles
between the various codes for ΛCDM (left) and DGP (right)
for k ≤ 0.5 h Mpc−1 at z = 0.5, without infrared-resummation
applied. For all cases we used the MG-Copter prediction as our
reference spectrum. We have also included error bands from
a ΛCDM Gaussian covariance assuming V = 3.8 h−3 Gpc3 at
z=0.5, estimated using Laureijs et al. (2011).11 In the ΛCDM
case, we find sub-0.5% agreement between MG-Copter, PBJ and
an additional code by Atsushi Taruya (AT).12 We note that PBJ
and AT’s code both implement the expression for the 1-loop red-
shift space power spectrum as given by Matsubara (2008) while
MG-Copter uses the expression given in Eq. (29) (see also Eq. 23
of Taruya et al. 2010). These comparisons highlight the equiva-
lence of these expressions. Further, the oscillations seen in the
top left panel are caused by the interpolation over k. These three
predictions have all made use of the Einstein–de Sitter (EdS)
approximation.

11 Note the difference in volume taken here and in the main text for a
Euclid-like setup comes from the different redshifts considered.
12 Download this code: http://www2.yukawa.kyoto-u.ac.jp/
~atsushi.taruya/cpt_pack.html.
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Fig. C.1. The ratio of the SPT 1-loop monopole (blue solid), quadrupole (orange dashed) and hexadecapole (green dotted) between different codes
for ΛCDM (left) and DGP (right) at z = 0.5 without infrared-resummation applied. The MG-Copter prediction is taken as the reference in all
plots. The top left shows the prediction by Atsushi Taruya’s code, the middle left and top right plots show the PBJ predictions and the bottom left
and bottom right show the Pybird predictions. Atsushi Taruya’s code and PBJ predictions are computed using the EdS approximation and without
screening in the DGP case. We also adopt these approximations in their respective reference spectra from MG-Copter. Pybird predictions are
exact and so are the respective MG-Copter reference spectra. The DGP parameter is set to Ωrc = 0.25. Blue and beige bands indicate errors on
the monopole and quadrupole assuming a ΛCDM Gaussian covariance with V = 3.8 h−3 Gpc3 and no shot noise contribution. We note that the
hexadecapole error fills the plot and so we have omitted it.

In the bottom left panel we compare the exact kernel predic-
tions between MG-Copter and Pybird. We find sub-1% agree-
ment in this case, with the monopole being sub-0.5%. Interest-
ingly, we observe almost the same discrepancy between these
two codes when applying the EdS approximation. We have
found that these predictions can be brought into better agreement
by retuning the Fast Fourier Transform (FFT) bias parameter in
Pybird. We note that the spike observed in the monopole is due
to numerical instabilities in MG-Copter.

We observe similar agreement in the DGP scenario. In this
case we compare MG-copter to PBJ, both using the EdS and
unscreened approximations as this is the only current imple-
mentation in PBJ. Again we observe sub-0.5% agreement. For
the comparison with Pybird we use the exact time and screen-
ing predictions for both codes and observe sub-1% agreement
between the predictions, with some oscillations caused by inter-
polation.

Finally, we find all comparisons are within the estimated
measurement errors down to scales well beyond the expected
validity regime of the predictions, which at this lower redshift
will be lower than the rough estimates found in Table 3 (kmax ≤

0.2 h Mpc−1).

C.2. Resummation

In Fig. C.2 we move on to compare the different infrared-
resummation implementations, considering only ΛCDM, and
again for k ≤ 0.5 h Mpc−1 at z = 0.5. In this case, PBJ and

MG-Copter only have the wiggle-no-wiggle (WnW) decompo-
sition approach (see Sect. 3.4), both within the EdS approxima-
tion, while Pybird has the option of both Lagrangian and the
approximate optiresum method. The former codes also have
slightly different WnW implementations, but despite these dif-
ferences, we still observe sub-1% agreement. This suggests that
the infrared-resummation prescription will have little impact on
inferred parameter posteriors from upcoming data analyses.

On the other hand, applying the Lagrangian resummation
method leads to significant differences, far outside the esti-
mated measurement errors within the predictions validity range
and for all multipoles. As discussed in Sect. 3.4.3 the pres-
ence of the baryon acoustic oscillations scale, `osc, provides
a clear criterion to identify the leading contributions in k2 at
each order in perturbation theory. Both WnW and PyBird’s
optiresum exploit this criterion and then resum the same class
of contributions at each order. The full Lagrangian resumma-
tion, on the other hand, is applied to the full power spectrum,
and therefore also includes subleading contributions like those
in Eq. (71). These are genuine higher-order contributions but,
on the other hand, there is no guiding principle on why to
include them while neglecting other contributions of the same
order.

The difference between WnW and the Lagragian resumma-
tion may be degenerate with counterterms, which is left to be
seen. A full comparison between PBJ and Pybird at the pos-
terior level will be conducted in a forthcoming Euclid paper
(D’Amico et al., in prep.).
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Fig. C.2. The ratio of the SPT 1-loop monopole (blue solid), quadrupole (orange dashed) and hexadecapole (green dotted) between different codes
for ΛCDM at z = 0.5. The MG-Copter prediction is taken as the reference in all plots. The left panels show the ratios using the WnW or optiresum
resummation. The top left panel shows the PBJ prediction and the bottom panel the Pybird prediction, both predictions being computed using
the EdS approximation. The right panel shows the same as the bottom left plot but now with Pybird applying the full Lagrangian resummation
method. Blue and beige bands indicate errors on the monopole and quadrupole assuming a ΛCDM Gaussian covariance with V = 8.8 h−3 Gpc3

and no shot noise contribution. We note that the hexadecapole error fills the left plot and so we have omitted it but include it in the right hand plot
as a green band.
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