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Abstract. In the present paper we use twistor theory in order to solve
two problems related to harmonic maps from surfaces to Euclidean
spheres Sn. First, we propose a new approach to isoperimetric inequal-
ities based on energy index. Using this approach we show that for any
positive k, the k-th non-zero eigenvalue of the Laplacian on the real
projective plane endowed with a metric of unit area, is maximized on
the sequence of metrics converging to a union of (k− 1) identical copies
of round sphere and a single round projective plane. This extends the
results of P. Li and S.-T. Yau for k = 1 (1982); N. Nadirashvili and A.
Penskoi for k = 2 (2018); and confirms the conjecture made in [KNPP].
Second, we improve the known lower bounds for the area index of min-
imal two-dimensional spheres and minimal projective planes in Sn. In
the course of the proof we establish a twistor correspondence for Jacobi
fields, which could be of independent interest for the study of moduli
spaces of harmonic maps.

1. Introduction

1.1. Laplacian eigenvalues. Let (M, g) be a closed surface with Riemann-
ian metric g. The Laplace-Beltrami operator, or simply the Laplacian, is a
natural operator ∆g, defined in local coordinates by the formula

∆gu = − 1√
|g|

∂

∂xi

(√
|g|gij ∂u

∂xj

)
It is well-known that for closed surfaces the spectrum of this operator

consists only of eigenvalues of finite multiplicities. Thus, they form a se-
quence

0 = λ0(M, g) < λ1(M, g) 6 λ2(M, g) 6 λ3(M, g) 6 . . . ,

where eigenvalues are written with multiplicities.
Furthermore, we define normalized eigenvalues

λ̄k(M, g) = λk(M, g)Areag(M).

Consider the quantity

Λk(M) = sup
g
λ̄k(M, g).

The problem of isoperimetric eigenvalue inequalities is concerned with find-
ing the exact value of Λk(M) for all pairs {M,k} and understanding for
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2 M. KARPUKHIN

which metrics the supremum is achieved. We refer to such metrics as maxi-
mal for λ̄k.

For k = 1 Yang and Yau [YY] have shown that for an orientable surface
of genus γ one has

(1) Λ1(M) 6 8π

[
γ + 3

2

]
,

where [x] stands for the integer part of x. The non-orientable version of
inequality (1) was proven in [Kar1]. Furthermore, it was shown by the
author in [Kar2] that inequality (1) is strict for γ > 2.

Inequality (1) in combination with the result of [Kar1] means that for all
surfaces M one has Λ1(M) < +∞. The exact values of Λ1(M) are known
only for a few M .

• Hersch [Her], 1970: Λ1(S2) = 8π and the supremum is achieved only
for the round metric of constant curvature.
• Li and Yau [LY], 1982: Λ1(RP2) = 12π and the supremum is achieved

only for the round metric of constant curvature.

• Nadirashvili [N1], 1996: Λ1(T2) = 8π2
√

3
and the supremum is achieved

only for the flat equilateral metric, see also [CKM].
• Jakobson, Nadirashvili, Polterovich [JNP], 2005, and El Soufi, Gia-

comini, Jazar [EGJ], 2006: the metric that achieves Λ1(KL) is char-
acterised as the metric induced by the unique minimal immersion to
Sn by the first eigenfunctions.
• Nayatani, Shoda [NaySh], 2019: for an orientable surface Σ2 of genus

2 one has Λ1(Σ2) = 16π. The metric is induced on a Bolza surface
by a hyperelliptic covering of S2. The metric on a Bolza surface was
conjectured to be maximal in [JLNNP]. The authors of [JLNNP]
confirmed their conjecture using numerical calculations.

For k > 1 Korevaar [Kor] (see also [GY, Has]) confirmed the conjecture
of Yau [Y, Problem 71] and proved that there exists a universal constant C,
such that

Λk(M) 6 Ck(γ + 1).

Thus, Λk(M) < +∞ for all k. Until very recently, the only known results for
k > 1 were Λ2(S2) (see [N2, P1]), Λ3(S2) (see [NS]) and Λ2(RP2) (see [NP]).

In [KNPP] the author jointly with Nadirashvili, Penskoi and Polterovich
has obtained the first general result that covers all values of k.

Theorem 1.1 (K., Nadirashvili, Penskoi, Polterovich [KNPP]). For all k >
1 one has Λk(S2) = 8πk. Moreover, for any smooth metric g on S2 and k > 1
one has

λ̄k(S2, g) < 8πk.

The supremum in the definition of Λk(S2) is achieved on a sequence of met-
rics converging to a union of k touching round spheres.
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Furthermore, in the same paper [KNPP] it was conjectured that the sit-
uation for the projective plane RP2 is similar to that of S2. The main result
of the present paper is the proof of that conjecture. In particular, we prove
the following theorem.

Theorem 1.2. For all k > 1 one has Λk(RP2) = 4π(2k+ 1). Moreover, for
any smooth metric g on RP2 and k > 1 one has

(2) λ̄k(RP2, g) < 4π(2k + 1).

The supremum in the definition of Λk(S2) is achieved on a sequence of met-
rics converging to a union of k − 1 identical round spheres and a standard
projective plane touching each other, such that the ratio of the areas of the
projective plane and the spheres is 3 : 2.

Remark 1.3. The fact that the sequence of metrics described in the theorem
saturates the bound (2) is a well-known fact going back to [CE]. The main
statement of Theorem 1.2 is the inequality (2) itself.

Remark 1.4. Theorem 1.2 was previously proved by Li and Yau in [LY] for
k = 1; and by Nadirashvili and Penskoi in [NP] for k = 2. The result for
k > 3 is new.

Remark 1.5. Our proof of Theorem 1.2 is drastically different from that of
Theorem 1.1 and requires novel ideas outlined in the next section.

1.2. Energy index of harmonic maps. A map Φ: (M, g)→ (N,h) from
a Riemannian surface to a Riemannian manifold is called harmonic if it is a
critical point of the energy functional

Eg(Φ) =
1

2

∫
M
|dΦ|2g dvg.

Energy index indE(Φ) is defined to be the Morse index of Φ as a critical
point of Eg(Φ), see Definition 3.1 for a more precise formulation.

There is a classical connection established in [N1, ESI] between extremal
metrics for eigenvalue functionals and harmonic maps Φ: (M, g) → Sn ⊂
Rn+1, where Sn is equipped with the standard round metric. Let us briefly
recall this connection in case M = S2, for more details see Section 2 be-
low. It follows from the Euler-Lagrange equation for the harmonic map
that the pull-backs of coordinate functions on Rn+1 are eigenfunctions with
eigenvalue 2 of the operator ∆gΦ , where gΦ = 1

2 |dΦ|2gg. The spectral index
indS(Φ) is defined to be the smallest k such that λk(M, gΦ) = 2, see Def-
inition 2.7 for a more precise formulation. The results of [ESI] state that
the metrics gΦ are extremal metrics for the functionals λ̄indS(Φ)(S2, g) and,
moreover, an inverse statement holds with some modifications.

In the present paper we introduce a novel method of studying Λk(M).
The main idea is the interplay between the two notions of index of a har-
monic map Φ, indS(Φ) and indE(Φ). The following proposition holds for
any surface M , not necessarily S2 or RP2.
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Proposition 1.6. Let Φ: (M, g)→ Sn be a linearly full harmonic map, i.e.
the image Φ(M) is not contained in any proper equatorial subsphere. Then
one has

indS(Φ) >
indE(Φ)

n+ 1
.

The proof of this proposition is fairly straightforward and is inspired
by [FS, Section 6]. In case M = S2 or M = RP2 one can prove a more
general statement, see Theorem 3.4. The proof of Theorem 3.4 is more
complicated and uses twistor theory, see Section 4.

The main reason our proof of Theorem 1.2 works is that for M = S2 we
are able to prove an inequality in the opposite direction.

Theorem 1.7. Let Φ: S2 → Sn be a linearly full harmonic map. Then

(n− 2)indS(Φ) 6 indE(Φ).

We believe that the inequalities of this type have a variety of applications
not only to spectral theory but also to the study of minimal surfaces and
harmonic maps. We demonstrate this by improving the known upper bounds
for the energy index of harmonic spheres in Sn.

Recall [Bar, C] that for any linearly full harmonic map Φ: S2 → Sn one
has n = 2m and Eg(Φ) = 4πd, where d is the integer referred to as harmonic
degree (or, simply, degree) of Φ.

Theorem 1.8. Let Φ: S2 → S2m be a linearly full harmonic map of degree
d. Then one has the following inequality

indE(Φ) > 2(m− 1)(2d− [
√

8d+ 1]odd + 2),

where [x]odd denotes the largest odd number not exceeding x.

Remark 1.9. Any harmonic map S2 → S2m is weakly conformal and, there-
fore, is a branched minimal immersion. In particular, the area index coin-
cides with the energy index. Thus, Theorem 1.8 gives the same bound for
the area index of branched minimal spheres in Sn.

Let us compare Theorem 1.8 to similar results in the literature. By Re-
mark 1.9, the energy index coincides with the area index. The existing
literature on the subject of area index of minimal submanifolds in spheres is
largely concerned with unbranched hypersurfaces. The only general results
in codimension greater than 1 we were able to find are [MU, E3]. In [MU]
the authors show that the index of any linearly full unbranched minimal
sphere of degree d in S4 is equal to 4d − 2. In [E3] the author proved that
the index of any linearly full unbranched minimal sphere of degree d in S2m

is at least 4d + 2(m − 3). The bound of Theorem 1.8 is weaker than both
these results in case m = 2, but is stronger than the bound of [E3] once
m > 2 and holds for branched surfaces as well.

For any harmonic map Φ: RP2 → S2m, its pre-composition with an an-

tipodal projection yields a harmonic map Φ̃ : S2 → S2m. We use twistor

correspondence to show the relation between indE(Φ) and indE(Φ̃).
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Proposition 1.10. Let Φ: RP2 → S2m be a linearly full harmonic map and

let Φ̃ : S2 → S2m be its antipodal lift. Then one has

indE(Φ) =
1

2
indE(Φ̃).

Finally, we make a remark about our proof of Theorem 1.7 that could
be of interest to specialists in twistor theory. One of the main technical
steps in our proof of Theorem 1.7 is a first order twistor correspondence
for harmonic maps to S2m which we prove in Section 4.5. In other words,
we show that each Jacobi field can be lifted to a vector field on the twistor
space satisfying certain properties. We call these lifts twistor fields. This
is an extension of the results in [LW2], where the authors proved a similar
first order correspondence for harmonic spheres in S4.

1.3. Plan of the proof. Let us outline the plan and the main ideas of the
proof of Theorem 1.2. First, we use existence theory for maximal metrics
developed in [P2, P3] to reduce Theorem 1.2 to an inequality between the
degree and the spectral index of a harmonic map Φ: RP2 → S2m. To prove

this inequality, we apply Theorem 1.8 to the lift Φ̃ of Φ and, finally, combine
Propositions 1.6 and 1.10.

Theorem 1.7 is the main ingredient that allows this plan to come to
fruition. Its proof relies on the geometry of the moduli space of harmonic
maps S2 → S2m. In particular, the moduli space admits an action of the
group SO(2m + 1,C) defined via twistor correspondence. Our main obser-
vation is that this action preserves the energy index. This observation is
inspired by the work of Ejiri [E1], where SO(2m + 1,C)-invariance of the
spectral index is proved. As a result, a choice of appropriate elements of
SO(2m+ 1,C) leads to the proof of Theorem 1.7 by induction on m.

Organization of the paper. The paper is organized as follows. In Sec-
tion 2 we recall the background on the the theory of maximal metrics, define
spectral index and reduce Theorem 1.2 to an inequality between the degree
and the spectral index. Section 3 is devoted to energy index and inequali-
ties between indices. Theorem 1.6 is proved in Section 3.2. In Sections 3.3
and 3.6 we show Theorems 1.7 and 1.8. Finally, Section 3.7 contains the
proof of Theorem 1.2.

The proofs of some of the auxiliary statements in Section 3 are left to Sec-
tion 4. In particular, in Section 4.3 we prove Theorem 1.10 and in Section 4.5
we establish the first order twistor correspondence.

Acknowledgements. The author is grateful to A. Fraser, A. Penskoi,
I. Polterovich and R. Schoen for fruitful discussions. The author thanks
V. Medvedev and I. Polterovich for remarks on the preliminary version of
the manuscript.
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2. Spectral index and extremal metrics

2.1. Preliminaries on harmonic maps from the sphere and projec-
tive plane. Let (M, g) be a Riemannian surface and let Φ: (M, g) → Sn
be a harmonic map. It is equivalent to the following equation, see e.g. [EL,
Example 4.14],

(3) ∆gΦ = |∇Φ|2gΦ,

where ∆g is applied component-wise. The energy Eg(Φ) of Φ satisfies

Eg(Φ) =
1

2

∫
M
|∇Φ|2g dvg = Area( 1

2
|∇Φ|2g g)

(M).

The map Φ is called linearly full if its image is not contained in a proper
equatorial subsphere of Sn. Recall that the energy is invariant under con-
formal change of metric on M and, therefore, the harmonicity of Φ depends
only on the conformal class of the metric g.

If M = S2 or M = RP2, then up to a diffeomorphism there is a unique
conformal class of metrics on M . Thus, without loss of generality we may
assume that in either case g is the standard round metric and, furthermore,
we will often suppress the metric g in the notations. The theory of harmonic
maps S2 → Sn is a classical subject of differential geometry. Below we recall
some results of this theory, for more detailed exposition see Section 4 below.

Theorem 2.1 (Calabi [C], Barbosa [Bar]). Let Φ: S2 → Sn be a linearly
full harmonic map. Then the following holds,

• Φ is weakly conformal, i.e. Φ is a branched minimal immersion;
• n = 2m;

• E(Φ) = 4πd, where d is a natural number satisfying d > m(m+1)
2 .

The number d is referred to as degree of the harmonic map Φ.

Remark 2.2. Sometimes d is referred to as twistor or harmonic degree of Φ.

Barbosa also defined the action of the group SO(2m+ 1,C) on the space
of all linearly full harmonic maps S2 → S2m. We will recall the definition
of this action in Section 4.6, for now it is sufficient to know that this action
preserves the degree of Φ.

Assume now that we have a harmonic map Φ: RP2 → Sn. If π : S2 → RP2

is an antipodal projection, we let Φ̃ : S2 → Sn be the composition Φ̃ = Φ◦π.

Applying Theorem 2.1 to Φ̃ and noting that 2E(Φ) = E(Φ̃), one obtains the
following theorem.

Theorem 2.3. Let Φ: RP2 → Sn be a linearly full harmonic map. Then

• Φ is weakly conformal, i.e. Φ is a branched minimal immersion;
• n = 2m;

• E(Φ) = 2πd, where d is a natural number satisfying d > m(m+1)
2 .

We call d the degree of the harmonic map Φ.
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Example 2.4. Veronese maps. We recall that the spectrum of ∆ on the round
S2 of unit radius is given by numbers lm = m(m + 1), each repeated with
multiplicity 2m+ 1. The corresponding eigenspaces Em consist of harmonic
polynomials of degree m in R3 restricted to S2. It turns out (see e.g. [C]) that
there exists a basis {fmj } of Em such that Φm = (fm1 , . . . , f

m
2m+1) is a linearly

full harmonic map Φm : S2 → S2m. Moreover, the degree Φm saturates the

lower bound in Theorem 2.1, i.e. deg(Φm) = m(m+1)
2 = 1

2 lm. If m is even,

then the map Φm induces a map Ψm : RP2 → S2m, which saturates the lower
bound of Theorem 2.3.

In the paper [E2] Ejiri studied whether there are further restrictions on
harmonic maps from the projective plane. In particular, he proved the
following theorem.

Theorem 2.5 (Ejiri [E2]). Let Φ: RP2 → S2m be a linearly full harmonic
map. Then the following holds,

• m is even;

• If deg(Φ) = m(m+1)
2 , then up to an isometry of S2m, Φ coincides

with the Veronese map Ψm.

Remark 2.6. In [G] it is shown that any harmonic map Φ: RP2 → S4 has
odd degree. It would be interesting to see if a similar statement holds for
spheres of higher dimension.

2.2. Spectral index. To each harmonic map Φ: (M, g) → Sn one can as-
sociate the following Schrödinger operator, see e.g. [E1],

Lg,Φ(u) = ∆gu− |∇Φ|gu
acting on functions on M . This operator is conformally covariant in the
sense that for a conformal metric g̃ = e2ωg one has Lg̃,Φ = e−2ωLg,Φ. The
associated quadratic form is given by

QΦ,S(u) =

∫
M
|∇u|2g − |∇Φ|2gu2 dvg

and is conformally invariant. As a result, the number of negative eigenvalues
of Lg,Φ as well as the kernel kerLg,Φ do not depend on the choice of a metric
in a conformal class.

Definition 2.7. Spectral index indS(Φ) is a number of negative eigenvalues
of Lg̃,Φ for some (any) metric g̃ conformal to g. Similarly, spectral nullity
nulS(Φ) is the dimension kerLg̃,Φ for some (any) metric g̃ conformal to g.

Remark 2.8. Equation (3) implies that the components of Φ lie in kerLg,Φ,
so that for a linearly full harmonic map Φ: (M, g)→ Sn one has nulS(Φ) >
n+ 1.

Remark 2.9. In [MR, Nay, E1] these numbers are simply referred to as index
and nullity. We decided to add the epithet ”spectral” to distinguish it from
the energy index defined below.
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Remark 2.10. The operator Lg,Φ appears naturally in various geometric
contexts, e.g. in the study of complete minimal surfaces in R3, see e.g. [MR,
Nay].

Let us now make a particular choice of metric. Set gΦ = 1
2 |∇Φ|2gg, then

LgΦ,Φ = ∆gΦ − 2. Then the components of Φ are eigenfunctions of ∆gΦ

with the eigenvalue 2. As a result, indS(Φ) is the number of eigenvalues of
∆gΦ smaller than 2 and nulS(Φ) is the multiplicity of the eigenvalue 2. We
remark that, in general, gΦ is a metric with isolated conical singularities at
branch points of Φ. However, it does not affect the discussion above as long
as one works with the Friedrichs extension of the Laplacian, see e.g. [Kar2,
Section 2.3]. Finally, if Φ is weakly conformal then gΦ = Φ∗gSn .

Example 2.11. Veronese surfaces. Using the definition of Veronese surfaces
Φm and Ψm in Example 2.4 it is easy to compute their spectral index.
Indeed,

indS(Φm) =

m−1∑
i=0

(2i+ 1) = m2.

If m is even, then

indS(Ψm) =

m
2
−1∑

i=0

(4i+ 1) =
m(m− 1)

2
.

2.3. Extremal metrics for λ̄k. In the present section we review the the-
ory of extremal metrics for functionals λ̄k(M, g) briefly mentioned in the
introduction. We set

Λk(M, [g]) = sup
g̃∈[g]

λ̄k(M, g̃),

where [g] is a class of metrics conformal to g. Similar to the previous section
it is convenient to allow g to have conical singularities at isolated points of
M . Thus, [g] = {g̃| g̃ = f2g}, where f ranges over smooth functions with
isolated zeroes.

The functional λ̄i(M, g) depends continuously on the metric g, but this
functional is not differentiable. However, Berger proved in the paper [Ber]
that for an analytic family of metrics gt there exist the left and the right
derivatives with respect to t. This motivates the following definition, see the
papers [ESI, N1].

Definition 2.12. A Riemannian metric g on a closed surface M is called
extremal for the functional λ̄i if for any analytic deformation gt such that
g0 = g the following inequality holds,

d

dt
λ̄i(M, gt)

∣∣∣
t=0+
× d

dt
λ̄i(M, gt)

∣∣∣
t=0−
6 0.

Similarly, g is called conformally extremal if the same inequality holds for
conformal deformations, i.e. for deformations satisfying [gt] = [g] for all t.
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Theorem 2.13 (Nadirashvili [N1], El Soufi and Ilias, [ESI], see also [KNPP]).
If g is conformally extremal for the functional λ̄i(M, g) then there exists a
harmonic map Ψ: (M, g)→ Sn whose components are λi-eigenfunctions. In
particular, indS(Φ) 6 i. If g is extremal, then Ψ can be chosen to be weakly
conformal.

Conversely, if Φ: (M, g) → Sn is a harmonic map to the unit sphere,
then the metric gΦ is conformally extremal for the functional λ̄indS(Φ). Fur-
thermore, if Φ is weakly conformal, i.e. if Φ: (M, gΦ) → Sn is a branched
minimal immersion, then gΦ is extremal for the functional λ̄indS(Φ).

In particular, if there exists a metric that realizes the quantities Λk(M)
or Λk(M, [g]), then this metric is extremal or conformally extremal respec-
tively. Such metrics are called maximal for λ̄k or conformally maximal for
λ̄k respectively. The existence of such metrics was studied in [N1, P2, P3].
For the sake of brevity we only state the result for M = RP2.

Theorem 2.14 (Petrides [P3], see also [KNPP]). Assume that

(4) Λk(RP2) > Λk−1(RP2) + 8π,

then there exists a metric g on RP2, smooth outside of possible isolated
conical singularities, such that λ̄k(RP2, g) = Λk(RP2). In particular, there
exists a harmonic map Φ: RP2 → Sn of spectral index at most k, such that
g = gΦ.

Remark 2.15. It follows from the results of [CE] that if inequality (4) fails,
then Λk(RP2) = Λk−1(RP2) + 8π.

Remark 2.16. We refer the reader to [P3] for the case of an arbitrary surface
M .

2.4. Relation between spectral index and degree. The majority of the
present paper is devoted to the proof of the following theorem.

Theorem 2.17. Let Φ: RP2 → Sn be a harmonic map of degree d. Then
one has

indS(Φ) >
d− 1

2
.

Moreover, the equality is achieved iff d = 3.

In this section we show that Theorem 2.17 implies Theorem 1.2.

Proof of Theorem 1.2. The proof is by induction on k. For k = 1 Theo-
rem 1.2 holds by the results of Li and Yau [LY].

By the step of induction, Λk(RP2) = 4π(2k+1). Assume that Λk+1(RP2) >
4π(2k + 3) = Λk(RP2) + 8π, then by Theorem 2.14 the value Λk+1(RP2) is
attained for some metric g, smooth outside finitely many conical singulari-
ties. According to Theorem 2.13 there exists a harmonic map Φ: RP2 → Sn
such that indS(Φ) 6 k+ 1, g = gΦ and λ̄k+1(RP2, g) = Λk+1(RP2). Let d be
the degree of Φ, then one has 4π(2k+ 3) < λ̄k+1(RP2, g) = 2AreagΦ(RP2) =
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2Eg(Φ) = 4πd. Thus, one has d > 2k+3. At the same time, indS(Φ) 6 k+1
and by Theorem 2.17 one has

k + 1 > indS(Φ) >
d− 1

2
>

2k + 2

2
= k + 1.

We arrive at a contradiction.
Assume now that for some k > 1 and some metric g one has the equality

Λk(RP2) = λ̄k(RP2, g) = 4π(2k + 1). Then g is maximal and by Theo-
rem 2.13 there exists a harmonic map Φ, such that deg(Φ) = 2k + 1 and
indS(Φ) 6 k. Since k > 1, one has d := deg(Φ) > 3 and the inequality in
Theorem 2.17 is strict. Thus, one obtains

k > indS(Φ) >
d− 1

2
=

2k

2
= k,

where once again we arrive at a contradiction. �

Example 2.18. By Examples 2.4 and 2.11, for Veronese immersions Ψm : RP2 →
S2m one has deg(Ψm) = m(m+1)

2 and indS(Ψm) = m(m−1)
2 . Then

2indS(Ψm) + 1 = m(m− 1) + 1 >
m(m+ 1)

2
,

where the last inequality holds because by Theorem 2.5 one has m >
2. Moreover, the equality is achieved only for m = 2 and in that case
deg(Ψm) = 3. As a result, we see that Theorem 2.17 holds for Veronese
immersions.

3. Energy index

3.1. Energy index. If Φ: (M, g) → (N,h) is a harmonic map between
Riemannian manifolds, the Jacobi (or index) operator is defined on sections
of Φ∗TN by the following formula, see e.g. [EL],

Jg,Φ(V ) = ∆Φ
g V − trgR

N (V, dΦ)dΦ,

where ∆Φ
g is a positive Laplacian associated to the induced connection

on Φ∗TN and RN is the Riemann curvature tensor of N , RN (X,Y )Z =
∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. In the following we assume M is a surface
and N = Sn is a Euclidean sphere of unit radius. In this case the Jacobi
operator Jg has the following coordinate representation. The bundle Φ∗TSn
can be identified with a subbundle Φ⊥ of the trivial bundle M ×Rn+1 con-
sisting of vectors orthogonal to Φ. Then one has

Jg,Φ(V ) = πΦ⊥
(
∆gV − |∇Φ|2gV

)
,

where ∆g is a Laplacian on M applied component-wise and πΦ⊥ is the

orthogonal projection onto Φ⊥. Note that Jg,Φ is conformally covariant in
the same way as Lg,Φ. In the following we sometimes omit the subscript Φ
if the map can be inferred from context.
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The associated quadratic form QΦ,E is given by

QΦ,E(V ) =
n+1∑
i=1

∫
M

(
|∇V i|2g − |∇Φ|2g(V i)2

)
dvg

and is conformally invariant, which is why omit the index g in the notation.
Note that the domain domQΦ,E of QΦ,E consists of Rn+1-valued functions
V on M satisfying V ·Φ = 0, i.e. for each point x ∈M one has V (x) ⊥ Φ(x).

Similarly to the spectral index, we define the energy index.

Definition 3.1. Energy index indE(Φ) is a number of negative eigenvalues
of Jg̃,Φ for some (any) metric g̃ conformal to g. Similarly, energy nullity
nulE(Φ) is the dimension ker Jg̃,Φ for some (any) metric g̃ conformal to g.
The fields in ker Jg̃,Φ are referred to as Jacobi fields along Φ.

Remark 3.2. One of the ways to produce Jacobi fields along Φ is to consider
harmonic deformations of Φ. Assume that Φt is a family of harmonic maps,
such that Φ = Φ0. Then X = d

dt |t=0Φt is a Jacobi field, see e.g. [LW2].
Jacobi fields obtained in this way are called integrable. The question of
determining whether all Jacobi fields are integrable is quite subtle and is
related to the smoothness of the corresponding moduli space, see [LW1, LW2]
for results in this direction.

3.2. Bounds between indices. The main idea of the present paper is the
interplay between indS(Φ) and indE(Φ) for a harmonic map Φ. Indeed,
looking at the definition of the corresponding quadratic forms, one sees that
QΦ,E(V ) =

∑
QΦ,S(V i). However, the domain domQΦ,E complicates the

considerations.

Theorem 3.3. Let Φ: (M, g)→ Sn be a linearly full harmonic map. Then
one has

(5) indS(Φ) >
indE(Φ)

n+ 1
.

Proof. Let U− be the negative space of QS , i.e. dimU− = indS(Φ). Assume
the contrary, i.e. (n + 1)indS(Φ) < indE(Φ). Then there exists a vector-
function X ∈ domQE , such that QE(X) < 0 and∫

M
Xf dvg = 0

for all f ∈ U−, i.e. all components Xi, i = 1, . . . , n + 1 are orthogonal to
U−. Thus, QS(Xi) > 0 and one concludes

0 > QE(X) =
n+1∑
i=1

QS(Xi) > 0.

This contradiction completes the proof. �
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Theorem 3.4. Let Φ: (M, g)→ S2m be a linearly full harmonic map, where
M is either S2 or RP2. Then one has

(6) indS(Φ) >
indE(Φ) + nulE(Φ)−m(2m+ 1)

2m+ 1

Proof. The proof is very similar to the previous one. The idea is to make
use of Jacobi fields. The new ingredient is the following proposition, whose
proof is postponed until Section 4.4.

Proposition 3.5. Let Φ: (M, g) → S2m be a linearly full harmonic map,
where M is either S2 or RP2. Let X be a Jacobi field, such that

∆gX
i = |∇Φ|2gXi,

i.e. for all i = 1, . . . , 2m + 1 one has Xi ∈ ker(LΦ). Then X is trivial,
in a sense that there exists a constant matrix A ∈ so(2m + 1,R) such that
X = AΦ.

Remark 3.6. In [Bar] it is shown that if two linearly full harmonic maps
Φ1,Φ2 : S2 → S2m have the same energy density, then they differ by an
isometry of S2m. Proposition 3.5 is an infinitesimal version of this fact.

Assume the contrary to inequality (6). Let U− be the negative subspace
of QS . Since dim so(2m + 1,R) = m(2m + 1), there exists a non-trivial
vector field X (i.e. not of the form AΦ for A ∈ so(2m + 1,R)) such that
QE(X) 6 0 and ∫

M
Xf dvg = 0

for all f ∈ U−, i.e. all components Xi, i = 1, . . . , 2m+ 1 are orthogonal to
U−. Thus, QS(Xi) > 0 and one concludes

0 > QE(X) =

n+1∑
i=1

QΦ(Xi) > 0.

Therefore, Xi ∈ ker(LΦ) and, thus, X is a Jacobi field. We arrive at a
contradiction with Proposition 3.5. �

3.3. Bound for the energy index I. The goal of this section is to prove
Theorem 1.7. Let us restate it.

Theorem 3.7. Let Φ: S2 → S2m be a linearly full harmonic map. Then

indE(Φ) > 2(m− 1)indS(Φ).

The idea is to use the action of the group SO(2m + 1,C) on the space
of linearly full harmonic maps S2 → S2m defined by Barbosa [Bar] and
described in Section 4.6. In order to do that, one needs to understand how
this action affects indS and indE . For the spectral index this problem was
solved by Ejiri.
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Theorem 3.8 (Ejiri [E1], see also [Kot]). For every linearly full harmonic
map Φ: S2 → S2m there exists a 1-parameter subgroup At ⊂ SO(2m+ 1,C)
such that harmonic maps Φt = AtΦ satisfy the following properties,

1) harmonic maps Φt converge in compact-open topology to a harmonic

map Φ∞ into a subsphere S2(m−1) ⊂ S2m.
2) for all t one has nulS(Φt) = nulS(Φ) = nulS(Φ∞) and, as a result,

indS(Φt) = indS(Φ) = indS(Φ∞).

Remark 3.9. Technically speaking, in [E1] Ejiri showed the convergence of
the corresponding twistor lifts. However, it is known that twistor corre-
spondence is a homeomorphism, see e.g. [F2]. Furthermore, harmonic maps
S2 → S2m are analytic and, thus, convergence in compact-open topology
implies C∞-convergence.

Ejiri used this theorem to show that the following holds.

Corollary 3.10. For every harmonic map Φ: S2 → S2m of index d > 1 one
has indS(Φ) > d+ 1.

In the present paper we show that the action of SO(2m+ 1,C) preserves
the energy index as well.

Proposition 3.11. The action of SO(2m + 1,C) on the moduli space of
linearly full harmonic maps S2 → S2m preserves nulE.

The proof is postponed until Section 4.6.

Corollary 3.12. For Φt defined as in Theorem 3.8 one has nulE(Φt) =
nulE(Φ) 6 nulE(Φ∞). As a result, indE(Φt) = indE(Φ) > indE(Φ∞).

Proof. Remark 3.9 implies continuity of eigenvalues of the Jacobi operator
JΦ with respect to Φ. Thus, the function indE+nulE is upper semicontinuous
whereas the function indE is lower semicontinuous. Thus, the assertion
easily follows from Proposition 3.11. �

Proof of Theorem 3.7. Similarly to the argument of Ejiri in [E1], we apply
Theorem 3.8 repeatedly. Starting with Φ we obtain a map Φ∞ with the
image inside a proper subsphere.

Proposition 3.13. Let Ψ: (M, g) → Sn be a harmonic map with the im-

age in a k-dimensional proper equatorial subsphere. Let Ψ̃ be the same
harmonic map considered as a linearly full map to Sk. Then indE(Ψ) =

(n− k)indS(Ψ) + indE(Ψ̃).

Proof. Up to an orthogonal transformation of Rn+1 we can assume that the
image of Ψ lies in the subspace defined by xk+2 = . . . = xn+1 = 0. Then the
domain of Jg,Ψ decomposes dom(Jg,Ψ) = dom(J

g,Ψ̃
) ⊕ C∞(M,V ⊥), where

the second summand corresponds to smooth V ⊥-valued vector-functions.
Moreover, on C∞(M,V ⊥) the operator Jg,Ψ acts as Lg,Ψ applied to each

component separately. Therefore, indE(Ψ) = indE(Ψ̃)+(n−k)indS(Ψ). �
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On the next step we apply Theorem 3.8 to a linearly full map Φ̃∞. On
each step we are decreasing the dimension m and after finitely many steps we
obtain a map Ψ: S2 → S2m with the image in a two-dimensional subsphere

such that indE(Φ) > 2(m − 1)indS(Ψ) + indE(Ψ̃) > 2(m − 1)indS(Ψ) and
indS(Φ) = indS(Ψ).

To finish the proof, we recall that by Theorem 3.8, indS(Ψ) = indS(Φ).
One obtains

indE(Φ) > 2(m− 1)indS(Ψ) = 2(m− 1)indS(Φ),

which concludes the proof of Theorem 3.7. �

3.4. Bound on spectral index. In order to effectively use the bound of
Theorem 3.7 one needs to obtain a lower bound on indS(Φ). It turns out
that for our purposes, the bound of Corollary 3.10 is not sufficient. In this
section we modify the methods of Ejiri to show the following proposition.

Proposition 3.14. Let Φ: S2 → S2m be a harmonic map of degree d. Then

(7) indS(Φ) > 2d− nulS(Φ) + 2.

Proof. Similarly to the proof of Theorem 3.7, one can apply Theorem 3.8
repeatedly to obtain a harmonic map Φ with the same spectral index and
spectral nullity, whose image lies in a two-dimensional subsphere. Therefore,
it suffices to prove the proposition for m = 1.

The case of m = 1 was studied in detail for e.g. in [EK, MR, Nay]. In
that case Φ is either holomorphic or anti-holomorphic and harmonic degree
coincides with the usual definition of degree for (anti-)holomorphic maps.
Up to conjugation we assume that Φ is a holomorphic map of degree d. Let
Md be the space of all such maps. It is easy to see that it is a connected
complex manifold.

Proposition 3.15 (Montiel, Ros [MR]; Ejiri, Kotani [EK]). The set Nd =
{Φ ∈Md |nulS(Φ) > 3} is a proper analytic subset of Md. Moreover, for all
Φ ∈Md \Nd one has indS(Φ) = 2d− 1.

Proposition 3.15 proves the inequality (7) when nulS(Φ) = 3. Assume
nulS(Φ) > 3, then Φ ∈ Nd. Since Nd is a proper analytic subset, there
exists an analytic deformation Φt ∈ Md such that Φ0 = Φ and Φt 6∈ Nd

for t 6= 0. Since the eigenvalues of a LΦ are continuous with respect to Φ
(see Remark 3.9), the function ind(Φt)+nul(Φt) is an upper-semicontinuous
function of t. As a result,

indS(Φ) + nulS(Φ) > lim
t→0

(indS(Φt) + nulS(Φt)) = 2d+ 2.

�

Remark 3.16. We remark that the bound (7) is likely not optimal. In [E1, p.
116] Ejiri suggests that one should always have indS(Φ) = 2d− 1

2(nulS(Φ)−
1).
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3.5. Bounds on nullities. Both Theorem 3.4 and Proposition 3.14 refer to
nulE and nulS respectively. In this section we collect the information about
these quantities necessary for our proof of Theorem 2.17.

Proposition 3.17 (Ejiri [E1], Kotani [Kot]). For any harmonic map Φ: S2 →
S2m the spectral nullity nulS(Φ) is odd.

Proposition 3.18 (Kotani [Kot]). Let Φ: S2 → S2m be a harmonic map of
degree d. Then one has

(8) d >
nulS(Φ)2 − 1

8
.

Equivalently, using notations of Theorem 1.8,

nulS(Φ) 6 [
√

8d+ 1]odd.

Idea of the proof. Without loss of generality Φ is linearly full. Recall that
nulS(Φ) > 2m + 1. In [Kot] Kotani proves that if nulS(Φ) = 2m + 2ν + 1,
then Φ can deformed to a linearly full map Ψ: S2 → S2m+2ν of the same
degree. Thus, the inequality (8) follows from Theorem 2.1. �

Theorem 3.19 (Fernandez [F1], Kotani [Kot]). Let Φ: S2 → S2m be a
linearly full harmonic map of degree d. Then one has

nulE(Φ) > 4d+ 2m2.

Proof. In both papers [F1, Kot], the authors show that the space of linearly
full harmonic maps S2 → S2m of degree d is a complex algebraic variety
of pure complex dimension at least 2d + m2. Therefore, at each point the
tangent cone to the moduli space is of real dimension at least 4d+2m2. Since
tangent cone is a set of equivalence classes of analytic arcs, by Remark 3.2,
the real dimension of the cone of integrable Jacobi fields is at least 4d+2m2.
Thus, the linear span of this cone forms a subspace in a space of Jacobi
fields of dimension at least 4d+ 2m2. �

Remark 3.20. We remark that Fernandez [F1] proved that the complex di-
mension is exactly 2d+m2. It does not imply, however, that one has equality
in Theorem 3.19.

3.6. Bound on energy index II. To prove Theorem 1.8 one combines
Theorem 3.7 with Propositions 3.14 and 3.18 to arrive exactly at

indE(Φ) > 2(m− 1)(2d− [
√

8d+ 1]odd + 2).

Finally, we state a slightly more general version of Proposition 1.10, whose
proof we once again postpone until Section 4.3.

Theorem 3.21. Let Φ: RP2 → S2m be a linearly full harmonic map and let

Φ̃ : RP2 → S2m be a lift of Φ via the antipodal projection. Then

indE(Φ) =
1

2
indE(Φ̃), nulE(Φ) =

1

2
nulE(Φ̃).
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3.7. Proof of Theorem 2.17. Without loss of generality, assume that
Φ: S2 → S2m is linearly full. By Theorem 3.7, Proposition 3.14, Theo-
rem 3.19 and Theorem 3.4 one has

(9) indS(Φ) >
(2d− nulS(Φ) + 2)(m− 1) + 2d−m−m2

2m+ 1
.

At the same time, nulS(Φ) > 2m + 1 and 8d > nulS(Φ)2 − 1 by Proposi-
tion 3.18. We claim that the combination of these inequalities with The-
orem 2.5 yields Theorem 2.17 unless (m, d) ∈ {(2, 3), (2, 4), (4, 10)}. The
statement is purely computational.

Proof. Assume that the assertion of Theorem 2.17 fails, i.e. d−1
2 > indS(Φ).

Combining it with (9) one obtains

d− 1

2
>

(2d− nulS(Φ) + 2)(m− 1) + 2d−m−m2

2m+ 1
.

After elementary transformations, the inequality becomes

(10) (2m− 2)nulS(Φ) + 2m2 + 3− 4m > (2m− 1)d.

It follows that

(2m− 2)nulS(Φ) +m(2m− 2) > (2m− 1)d+ 2m− 3 > (2m− 2)d,

where we used that for maps from RP2 one has m > 2. Cancelling the factor
(2m− 2) yields

nulS(Φ) +m > d.

Combining with (8) one obtains

(11) nulS(Φ) +m >
nulS(Φ)2 − 1

8
.

Solving this quadratic inequality yields

nulS(Φ) 6
8 +

√
64 + 4(8m+ 1)

2
6 8 +

√
8m+ 1,

where we used the inequality
√
a+ b 6

√
a+
√
b. Combining this with (11)

one obtains,

8 +
√

8m+ 1 > nulS(Φ) > d−m > m(m− 1)

2
,

where we are using d > m(m+1)
2 . Taking into account m > 2 is an integer,

the last inequality holds only for m 6 6. Then by Theorem 2.5, m = 2, 4, 6.
For these values of m we work directly with inequality (10).

For m = 2, combining (10) with inequality (8) yields

(12) 2nulS(Φ) + 3 > 3d >
3(nulS(Φ)2 − 1)

8
,

which yields nulS(Φ) 6 6. Since nulS(Φ) is odd and nulS(Φ) > 2m+ 1 = 5,
one has nulS(Φ) = 5. Then (12) yields 13 > 3d > 9, i.e. d = 3, 4.
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By similar arguments for m = 4 one has

6nulS(Φ) + 19 > 7d >
7(nulS(Φ)2 − 1)

8
,

which similarly implies nulS(Φ) = 9. Then 73 > 7d > 70, i.e. d = 10.
For m = 6 one obtains

10nulS(Φ) + 51 > 11d >
11(nulS(Φ)2 − 1)

8
,

which yields nulS(Φ) 6 10 and contradicts nulS(Φ) > 2m+ 1 = 11. �

Finally, let us deal with the exceptional cases.

1) Assume d = 3. By Theorem 2.5, Φ is a Veronese immersion. Then
Theorem 2.17 claims indS(Φ) = 1. This is shown in Example 2.11,
see also [LY].

2) Assume d = 4. Then Theorem 2.17 claims indS(Φ) > 1. By the
result of Li and Yau [LY], the only map of spectral index 1 has
degree 3, therefore for a map of degree 4, one has indS(Φ) > 1.

3) Assume m = 4 and d = 10. Then d = m(m+1)
2 and by Theorem 2.5,

up to an isometry Φ is a Veronese immersion. In this case the theo-
rem follows from Example 2.18, where we checked Theorem 2.17 for
Veronese immersions.

4. Twistor correspondence

In this section we first recall the twistor correspondence [C, Bar] with an
emphasis on the notion of harmonic sequence [CW1, CW2]. For the pur-
poses of our exposition, one should think of the harmonic sequence as a
convenient setup for coordinate computations. Theorems 3.21 and 3.4 are
proved in Sections 4.3 and 4.4 respectively. The first order twistor corre-
spondence is established in Section 4.5. In Section 4.6 we recall the action
of SO(2m + 1,C) and use the first order twistor correspondence to prove
Proposition 3.11.

4.1. Harmonic sequence. In the present section we discuss the concept
of harmonic sequence introduced by Chern and Wolfson in [CW1, CW2],
see also [EW]. Below, we follow the presentation in [BJRW]. Recall that
the property of being harmonic depends only on the conformal class [g]
of the metric on a Riemannian surface M . In order to define a harmonic
sequence one requires a complex structure on M , therefore, we require M
to be orientable and fix a choice of orientation on M . A surface M with a
conformal class and an orientation can be endowed with a canonical complex
structure, making M a Riemann surface. We will discuss the dependence
on orientation in Remark 4.1 below.

Let L ⊂ CPn×Cn+1 be a tautological bundle over CPn, i.e L = {(l, v) |v ∈
l}. Let M be a Riemann surface. There is a correspondence between smooth
maps ψ : M → CPn and line subbundles of a trivial bundle M ×Cn+1 →M
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given by ψ ↔ ψ∗L. We endow M × Cn+1 with the usual Hermitian inner
product 〈·, ·〉 and the induced Hermitian connection. Moreover, one has the

holomorphic bundle isomorphism T (1,0)CPn ∼= hom(L,L⊥). We endow all
these bundles with Hermitian connections induced from the Hermitian con-
nection on the trivial C-bundle. Then by Koszul-Malgrange theorem all line
subbundles of M×Cn+1 are automatically holomorphic. The composition of
the complexified differential of ψ with the projection onto T (1,0)CPn yields
the map dCψ ∈ hom(TCM ⊗ ψ∗L,ψ∗L⊥). Taking the (1, 0)-part of dCψ
defines

(13) ∂ : T (1,0)M ⊗ ψ∗L→ ψ∗L⊥.

Similarly, the (0, 1)-part of dCψ defines

(14) ∂̄ : T (0,1)M ⊗ ψ∗L→ ψ∗L⊥

Let g be any metric compatible with the complex structure on M . Assume
that ψ : (M, g) → CPn is a linearly full (i.e. its image is not contained in a
proper projective subspace) harmonic map, where CPn is endowed with the
Fubini-Study metric. In local complex coordinates the harmonicity can be
expressed as

(∇dψ)

(
∂

∂z̄
,
∂

∂z

)
= (∇dψ)

(
∂

∂z
,
∂

∂z̄

)
= 0,

which is equivalent to the fact that ∂ (∂̄) defined in (13) (in (14)) is a(n)
(anti-)holomorphic morphism of bundles. Thus their images can be defined
across zeroes of dψ and give rise to a line subbundle L1 (L−1). Denoting
ψ∗L by L0 we have a holomorphic map

∂0 : T (1,0)M ⊗ L0 → L1

and an antiholomorphic map

∂̄0 : T (0,1)M ⊗ L0 → L−1

Bundles L1 and L−1 correspond to maps ψ1, ψ−1 : M → CPn. It is proved
in [CW1] that if ψ0 = ψ is harmonic then so are ψ1 and ψ−1. Repeating the
process one constructs a sequence of bundles {Lp}, holomorphic maps

∂p : T (1,0)M ⊗ Lp → Lp+1

and antiholomorphic maps

∂̄p : T (0,1)M ⊗ Lp → Lp−1.

This collection of data is referred to as a harmonic sequence associated to
ψ = ψ0.

The map ∂p is a holomorphic section of (T (1,0)M)∗ ⊗ L∗p ⊗ Lp+1 and
therefore one has

(15) 0 6 c1((T (1,0)M)∗ ⊗ L∗p ⊗ Lp+1) = 2γ − 2 + c1(Lp+1)− c1(Lp),

where γ is the genus of M .
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If ∂p ≡ 0 (∂̄p ≡ 0) but ∂p−1 6≡ 0 (∂̄p−1 6≡ 0), then we say that the harmonic
sequence terminates with Lp at the right (left). In this case the map ψp is
antiholomorphic (holomorphic) and the harmonic sequence coincides with
its Frenet frame.

Remark 4.1. The harmonic sequence associated to ψ depends on the choice
of the orientation. Let ψ denote the same map ψ considered as a map
from M , the surface with the same conformal class of metrics, but with the
opposite orientation. If z is a local holomorphic coordinate on M , then z̄ is
a local holomorphic coordinate on M . As a result, the roles of ∂p and ∂̄p are

reversed. Thus, if {Lψi } is a harmonic sequence associated to ψ and {Lψ̄i } is

a harmonic sequence associated to ψ, then Lψ−i = Lψ̄i .

Let π be a projection π : Sn → RPn and i be an embedding i : RPn →
CPn. Since i is totally geodesic, for any harmonic map Φ: (M, g) → Sn
the composition ψ = i ◦ π ◦ Φ is harmonic. Moreover, Φ is linearly full
iff ψ is linearly full. For the remainder of this section we assume M = S2.
Therefore, one can omit the metric g from the notations and let n = 2m. Let
{Li} be the harmonic sequence associated to ψ. We remark the following
properties.

1) One has 〈Φ,Φ〉 = 1. Therefore, 〈∂zΦ,Φ〉 = 〈∂z̄Φ,Φ〉 = 0, i.e. Φ is
parallel.

2) Φ: M → Sn ⊂ Rn+1 ⊂ Cn+1 is a global nowhere zero section of L0.
Since Φ is parallel, L0 is trivial and c1(L0) = 0.

3) L̄p = L−p.
4) If Φ is linearly full, then the harmonic sequence always terminates

with L−m at the left and with Lm at the right, see e.g. [Bar, C]. Note
that Barbosa does not use the language of harmonic sequences, but
his maps Gi are exactly local holomorphic sections of L−i. The map
ψ−m associated to L−m is a holomorphic curve and is called the
directrix of Φ.

5) If Φ is linearly full, the trivial bundle S2 ×C2m+1 is a direct sum of
all the elements in harmonic sequence, i.e.

S2 × C2m+1 =
m⊕

i=−m
Li.

4.2. Twistor correspondence. Let us denote by (·, ·) the C-bilinear ex-
tension of the usual Euclidean inner product on R2m+1 to C2m+1. A C-
linear subspace V ⊂ C2m+1 is called isotropic if (·, ·)|V ≡ 0 or, equivalently,
if V ⊥ V̄ . The twistor space Zm of S2m is defined to be the space of all
m-dimensional isotropic subspaces of C2m+1 considered as a complex sub-
manifold of the Grassman manifold Grm,2m+1(C). If L ⊂ Zm × C2m+1 is

the tautological bundle over Zm, the holomorphic tangent bundle T (1,0)Zm
is isomorphic to the subbundle homs(L,L⊥) ⊂ hom(L,L⊥) consisting of
morphisms skew symmetric with respect to (·, ·).
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The twistor projection πm : Zm → S2m sends V to the unit normal to
V ⊕ V̄ (the direction of the normal is dictated by a choice of the orienta-
tion on S2m). The projection πm is a Riemannian submersion and induces

a decomposition of T (1,0)Zm into vertical and horizontal distributions. The
vertical distribution VZm is the kernel of the differential dπm. The hor-
izontal distribution is the orthogonal complement HZm = (VZm)⊥. If

L0 = (L ⊕ L̄)⊥ ⊂ Zm × C2m+1, then under the isomorphism T (1,0)Zm ∼=
homs(L,L⊥) one has HZm ∼= hom(L,L0) and VZm ∼= homs(L, L̄). A holo-
morphic map Ψ: S2 → Zm is called horizontal if the image of the (1, 0)-part

of the differential dΨ: T (1,0)M → T (1,0)Zm lies in the horizontal distribution
HZm.

Theorem 4.2 (Twistor correspondence, Barbosa [Bar]). One has the fol-
lowing,

1) If Ψ: S2 → Zm is a horizontal holomorphic map, then ±πm ◦Ψ are
harmonic maps. All harmonic maps S2 → S2m can be obtained in
this way.

2) Let Φ: S2 → S2m be a linearly full harmonic map and let {Li} be the

corresponding harmonic sequence. Set L<0 =
⊕−1

i=−m Li. The map

Ψ: S2 → Zm given by z 7→ L<0(z) is the only horizontal holomorphic
map satisfying πm◦Ψ = ±Φ. The map Ψ is referred to as the twistor
lift of Φ.

4.3. Jacobi operator. In this section we discuss the relationship between
Jacobi operator and harmonic sequence. This results in a proof of Theo-
rem 3.21. Let Φ: S2 → S2m be a linearly full harmonic map. Let {Li} be the

harmonic sequence associated to Φ and set L<0 =
⊕−1

i=−m Li; L>0 = L<0 =⊕m
i=1 Li. Let V be a vector field in domQΦ,E , i.e. V ⊥ L0. Decompose

V = V+ + V− into L>0 and L<0-parts. Since V is real and L>0 = L<0, one
has V+ = V−.

Lemma 4.3. Extend the Jacobi operator Jg to C-valued vector fields by C-
linearity. Then L>0 and L<0 are Jg-invariant. Furthermore, the following
are equivalent,

1) JgV = λV ;
2) JgV+ = λV+;
3) JgV− = λV− .

Proof. Let π⊥0 be an orthogonal projection onto L>0 ⊕ L<0 = L⊥0 . Recall
that

JgV = π⊥0

(
∆gV − |∇Φ̃|2gV

)
.

For any local complex coordinate z, let g = e2ωdzdz̄. Then one has

JgV =
4

e2ω
π⊥0

(
− ∂2V

∂z∂z̄
−

(
∂Φ̃

∂z
,
∂Φ̃

∂z̄

)
V

)
.
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Our main observation is that the operator ∂2

∂z∂z̄ maps L<0 to L<0 ⊕ L0 and

L>0 to L>0 ⊕ L0. In other words π⊥0
∂2

∂z∂z̄ leaves the spaces L>0 and L<0

invariant. Thus, these spaces are Jg-invariant and the statements 1) =⇒ 2)
and 1) =⇒ 3) follow.

At the same time 2) ⇐⇒ 3) since Jg is real and V+ = V−. Assuming
either 2) or 3) one has

JgV = JgV− + JgV+ = λV− + λV+ = λV.

�

Let V be a real vector field in domQΦ,E so that V = 2<V+. We define
the conjugate vector field V ∗ to be V ∗ = 2=V+, where < and = denote the
real and imaginary part respectively.

Lemma 4.4. The operation of taking conjugate vector field satisfies the
following properties,

1) (JgV )∗ = Jg(V
∗).

2) (V ∗)∗ = −V .

Proof. By Lemma 4.3 the decomposition of JgV into L>0 and L<0-parts is
JgV = JgV+ + JgV−. Therefore, one has

(JgV )∗ = −i(JgV+ − JgV−) = Jg(−i(V+ − V−)) = Jg(V
∗).

If V ∗ = 2=V+, then V ∗ = 2<(−iV+) and therefore one has

(V ∗)∗ = 2=(−iV+) = −2<(V+) = −V.

�

Lemma 4.4 implies that the conjugation is 1-to-1 linear map that preserves
the eigenspaces of Jg. Furthermore, it does not have real eigenvectors and,
therefore, both indE(Φ) and nulE(Φ) are even.

Finally, we are ready to prove Theorem 3.21. Let Ψ be a linearly full
harmonic map Ψ: RP2 → S2m and let Φ: S2 → S2m be its antipodal lift.
Set Φσ = Φ ◦ σ, where σ is the antipodal involution on S2. Since σ inverses
orientation and Φ is a lift of Ψ, one has that Φσ is the same map as Φ, but
with the orientation of S2 reversed. Using the notations of Remark 4.1 one
has that Φσ = Φ. Therefore, LΦ

>0 = LΦσ
<0 and LΦ

<0 = LΦσ
>0. As a result, one

has σ∗LΦ
>0 = LΦ

<0 and σ∗LΦ
<0 = LΦ

>0.
The involution σ induces an isometric involution σ∗ on domQE,Φ. Since it

is an isometry, it commutes with Jg,Φ, therefore, it preserves a decomposition
of domQE,Φ into σ-odd and σ-even fields. The eigenvalues of Jg,Ψ coincide
with the eigenvalues of Jg,Φ restricted to the space of σ-even fields. Let V
be a σ-even field. We claim that the conjugate V ∗ is a σ-odd field. Indeed,

σ∗(V ∗) = 2σ∗=V+ = −2iσ∗(V+ − V−)

= 2i(σ∗V− − σ∗V+) = −2=(σ∗V ) = −(σ∗V )∗,
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where we used that the application of σ∗ interchanges LΦ
<0 and LΦ

>0. Simi-
larly, the conjugate of an odd field is an even field. Thus, for each eigenvalue
λ of Jg,Φ exactly half of the corresponding eigenfunctions are even. Applying
it to negative and to zero eigenvalues implies Theorem 3.21.

4.4. Jacobi fields. The purpose of this section is to define the first order
analog of twistor correspondence, i.e. to lift any Jacobi field to a vector
field on the twistor space Zm satisfying additional properties. The first
order correspondence has been established in [LW2] for m = 2. The main
difficulty is the presence of branch points. It has been overcome in [LW2]
for m = 2 with the help of an isomorphism Z2

∼= CP3. The authors indicate
that their methods are specific to m = 2. Below we propose a different
approach using harmonic sequence that allows us to extend the 1-st order
twistor correspondence to an arbitrary value ofm. Finally, we remark that in
the most general context the 1-st order twistor correspondence was studied
in [S]. However, the author considers local lifts away from branch points, so
we can not use their results directly.

In the remainder of the paper we only work with S2, so we once and
for all fix the orientation so that we can always speak of the corresponding
harmonic sequence. Let Φ be a linearly full harmonic map Φ: S2 → S2m and
{Li} be the corresponding harmonic sequence. We denote by Σs ⊂ S2 the set
of higher singularities of Φ, i.e. the discrete set of zeroes of all maps ∂i and
∂̄i. Let Σ′ = S2 \Σs and f0 = Φ. Thus, on Σ′ these operators are invertible.
Then by [BJRW] for any local complex coordinate z one can choose local
nowhere zero holomorphic sections fp of Lp such that the following formulae
hold,

∂fp
∂z

= fp+1 +

(
∂

∂z
ln |fp|2

)
fp;

∂fp
∂z̄

= −γp−1fp−1;

γp =
|fp+1|2

|fp|2
;

∂2

∂z∂z̄
ln |fp|2 = γp − γp−1;

∂2

∂z∂z̄
ln γp = γp+1 − 2γp + γp−1.

(16)

Note that γ0 = γ−1 =
(
∂Φ
∂z ,

∂Φ
∂z̄

)
and 1

|f−p|2 = γ−p . . . γ−1.

Let V = V0 be a Jacobi field along Φ. Assume that there is a one pa-
rameter family of harmonic maps Φt, such that V = d

dt |t=0Φt, i.e. V is
integrable. Then one has the corresponding family of local sections (ft)p.

Setting Vp = d
dt |t=0(ft)p and taking the t derivatives of (16) yields a series

of recursive formulae relating Vp and fp for various values of p. In general,
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it is unknown whether all Jacobi fields are integrable. Nevertheless, one can
use these recursive formulae to define Vp starting from {fp} and V0. This is
a motivation for the definitions below.

Let γ̂0 = 1
4πΦ(∆V ). Set γ̂−1 = γ̂0. For p > 0 define inductively

(17) γ̂−p−1 =
∂2

∂z∂z̄

(
γ̂−p
γ−p

)
+ 2γ̂−p − γ̂−p+1

and

V−p−1 = − 1

γ−p−1

(
∂V−p
∂z̄

+ γ̂−p−1f−p−1

)
.

Proposition 4.5. One has

∂V−p
∂z

= V−p+1 +

(
∂

∂z
ln |f−p|2

)
V−p −

∂

∂z

 −1∑
i=−p

γ̂i
γi

 f−p

Proof. The proof is by induction.
Base of the induction: p = 1. Recall that V0 is a Jacobi field and, there-

fore, by definition of γ̂−1 one has

∂2V0

∂z̄∂z
= −γ−1V0 − γ̂−1f0

Thus, by definition of V−1 one has

∂V−1

∂z
=

∂

∂z

(
− 1

γ−1

)(
∂V0

∂z̄
+ γ̂−1f−1

)
− 1

γ−1

(
∂2V0

∂z̄∂z
+
∂γ̂−1

∂z
f−1 + γ̂−1

(
f0 +

(
∂

∂z
ln |f−1|2

)
f−1

))
=

∂

∂z

(
1

γ−1

)
γ−1V−1 −

1

γ−1

(
−γ−1V0 +

(
∂γ̂−1

∂z
+ γ̂−1

∂

∂z
ln |f−1|2

)
f−1

)
.

Using that γ−1 = |f−1|−2 completes the proof of the base.
Step of the induction: assume the formula is proved for p, we prove it for

p+ 1. First remark that by the step of induction

∂2

∂z∂z̄
V−p =

∂

∂z̄

V−p+1 +

(
∂

∂z
ln |f−p|2

)
V−p −

∂

∂z

 −1∑
i=−p

γ̂i
γi

 f−p

 .

After applying the definition of V−p−1 to the expression
∂V−p−1

∂z and using the
above formula, we obtain an expression involving the vectors V−p, V−p−1,
f−p and f−p−1 with some coefficients. The coefficients are as follows.

Before V−p,

− 1

γ−p−1

(
−γ−p +

∂2

∂z∂z̄
ln |f−p|2

)
= − 1

γ−p−1
(−γ−p + γ−p − γ−p−1) = 1.
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Before V−p−1,

∂

∂z

(
1

γ−p−1

)
γ−p−1+

∂

∂z
ln |f−p|2 =

∂

∂z

(
− ln γ−p−1 + ln |f−p|2

)
=

∂

∂z
ln |f−p−1|2.

Before f−p,

− 1

γ−p−1

γ̂−p−1 −
∂2

∂z∂z̄

 −1∑
i=−p

γ̂i
γi

− γ̂−p
 = 0,

where we have used that by definition of γ̂i one has

∂2

∂z∂z̄

 −1∑
i=−p

γ̂i
γi

 =
−1∑
i=−p

(γ̂i−1 − 2γ̂i + γ̂i+1)

= γ̂−p−1 − γ̂−p − γ̂−1 + γ̂0 = γ̂−p−1 − γ̂−p.

Before f−p−1,

− 1

γ−p−1

(
∂γ̂−p−1

∂z
+ γ̂−p−1

∂

∂z
ln |f−p−1|2 − γ̂−p−1

∂

∂z
ln |fp|2

+γ−p−1
∂

∂z

 −1∑
i=−p

γ̂i
γi

 = − ∂

∂z

 −1∑
i=−p

γ̂i
γi


− 1

γ−p−1

(
∂γ̂−p−1

∂z
− γ̂−p−1

∂

∂z
ln γ−p−1

)
= − ∂

∂z

 −1∑
i=−p−1

γ̂i
γi

 ,

which completes the proof. �

Set L>0 =
⊕m

p=0 Lp, L60 =
⊕m

p=0 L−p, L>0 =
⊕m

p=1 Lp, L<0 =
⊕m

p=1 L−p.
We let π>0, π60, π>0, π<0 be the corresponding orthogonal projections.

Recall that to each linearly full harmonic map Φ: S2 → S2m we as-
sociated a holomorphic twistor lift Ψ: S2 → Zm. Since Ψ∗T (1,0)Zm ∼=
homs(L<0, L>0), we need to construct an element of homs(L<0, L>0) from
the Jacobi field V0. This motivates the following definitions. We set l−p ∈
hom(L−p, L>0), p = 0, . . . ,m and l ∈ hom(L<0, L>0) by setting locally on
Σ′ that l−p(f−p) = π>0V−p for p > 0 and l(f−p) = l−p(f−p) for p > 1.
Our next goal is to extend l across singular points and to show that l ∈
homs(L<0, L>0)

In the following we use the notation ∂z,p for the map ∂p
(
∂
∂z , ·

)
: Lp →

Lp+1. Similarly, we use ∂̄z̄,p for the map ∂̄p
(
∂
∂z̄ , ·

)
: Lp → Lp−1.

Proposition 4.6. For all p > 0 one has the following,

(18) ∇z̄l−p = l−p−1 ◦ ∂̄z̄,−p,

where ∇ is the connection in hom(L−p, L>0). In particular, l−p and l are
independent of the choice of a local complex coordinate.
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Moreover,
∇z̄l = 0,

where ∇ is a connection in hom(L<0, L>0), i.e. l is holomorphic on Σ′.

Proof. Both sides of (18) are linear maps, therefore, it is sufficient to check
the relation for a specific section. Let us substitute f−p and check that the
equality is satisfied.

Note that ∂
∂z̄Lp ⊂ Lp−1 ⊕ Lp and therefore, π>0

∂
∂z̄π>0 = π>0

∂
∂z̄ . Thus,

(∇z̄l−p)(f−p) = π>0
∂

∂z̄
(π>0V−p)− l−p

(
π−p

∂

∂z̄
f−p

)
= π>0

∂

∂z̄
V−p

= π>0(−γ−p−1V−p−1 − γ̂−p−1f−p−1) = π>0(−γ−p−1V−p−1)

= l−p−1(−γ−p−1f−p−1) = l−p−1(∂̄z̄,−p(f−p)).

Therefore, one has the following expression,

l−p−1 = (∇z̄l−p) ◦ (∂̄z̄,−p)
−1,

which allows one to show the independence of the choice of coordinates by
induction on p.

To prove the second equality, we once again substitute f−p and check that
the equality holds. Similarly to the previous computation, one has

(∇z̄l)(f−p) = π>0
∂

∂z̄
(π>0V−p)− l

(
∂

∂z̄
f−p

)
= π>0

∂

∂z̄
V−p − l(−γ−p−1f−p−1)

= −π>0(γ−p−1V−p−1 − γ−p−1V−p−1) = 0.

�

The equation (18) sheds light on the behaviour of l in the neighbour-
hood of higher singularities. Recall that ∂̄z̄,−p : L−p → L−p−1 is an anti-
holomorhic map.

Proposition 4.7. There exists a non-negative integer K, such that for any
point x ∈ Σs and any local holomorphic coordinate z with z(x) = 0, one has
that z̄K l can be extended smoothly across x.

Proof. Since L<0 =
⊕m

i=1 L−p it is sufficient to show the existence of K for
each l−p, p = 0, . . . ,m. We prove the assertion by induction on p. The base
is p = 0. Indeed, l0 is defined on S2, since f0 is nowhere zero section and V0

is defined everywhere on S2.
Suppose that the assertion is proved for p. Let s−p−1 be a local anti-

holomorphic section of L−p−1 in the neighbourhood of x such that s−p−1(x) 6=
0. If kx is the ramification order of ∂̄−p at x, then there exists a local holo-
morphic coordinate z with z(x) = 0 and a local anti-holomorphic section
s−p of L−p such that s−p(x) 6= 0 and ∂̄z̄,−p(s−p) = z̄kxs−p−1. Then by
formula (18) one has

(∇z̄(z̄K+1l−p))(s−p) = (K + 1)z̄K l−p(s−p) + z̄K+1l−p−1(∂̄z̄,−p(s−p))

= (K + 1)z̄K l−p(s−p) + z̄K+1+kx l−p−1(s−p−1).
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Since other terms in the equality are smoothly defined across x, the section
z̄K+1+kx l−p−1(s−p−1) can be smoothly extended to x. As s−p−1(x) 6= 0

and l−p−1 is linear, it follows that z̄K+1+kx l−p−1 can be smoothly defined
at x. Finally, since Σs is discrete and finite, the numbers kx are uniformly
bounded in x. Therefore, one can choose a possibly bigger K ′ that satisfies
the assertion of the proposition. �

Proposition 4.8. The section l can be smoothly extended across Σs.

Proof. The statement is a consequence of two previous propositions. On one
hand, l is holomorhic, i.e. it can only have removable singularities, poles or
essential singularities on Σs. On the other hand z̄K l is smooth, so l can
not have either poles or essential singularities. Thus, all singularities are
removable. �

Remark 4.9. This proof is reminiscent of [LW2, Lemma 2.9].

In the following proofs we will often check certain equalities on Σ′, where
we can use the explicit expressions for local sections f−p, and then conclude
the equality at singular points by continuity.

Proposition 4.10. For all p > 0 one has that (l−p(·), ·) is a zero section of
(L∗−p)

2.

Proof. The proof is by induction on p. The base p = 0 is by definition since
V0 ⊥ f0. For p > 0 one has that (l−p(·), ·) = (l(·), ·), i.e. it is defined on S2

and it sufficient to check the equality for f−p, i.e. that (f−p, V−p) = 0.
Suppose that (f−p, V−p) = 0. Differentiating it with respect to z̄ yields

(−γ−p−1f−p−1, V−p) + (f−p,−γ−p−1V−p−1 − γ̂−p−1f−p−1) = 0.

For all p > 0 one has (f−p, f−p−1) = 0 and, thus,

(19) (f−p, V−p−1) + (f−p−1, V−p) = 0.

LetH(·, ·) = (l−p−1(·), ·) = (l(·), ·), we claim thatH is an anti-holomorphic
section of (L2

−p−1)∗. Indeed,

(∇zH)(f−p−1, f−p−1)

=
∂

∂z
(V−p−1, f−p−1)− (l−p−1(∇L−p−1

z f−p−1), f−p−1)− (l(f−p−1),∇L−p−1
z f−p−1)

= (V−p +
∂

∂z

(
ln |f−p−1|2

)
V−p, f−p−1) + (V−p−1, f−p +

∂

∂z

(
ln |f−p−1|2

)
f−p−1)

− 2
∂

∂z

(
ln |f−p−1|2

)
(V−p−1, f−p−1) = 0,

where in the last equality we used (19).
At the same time, according to (15), for p > 0 one has c1(L−p−1) 6 −2(p+

1) < 0, i.e. (L∗−p−1)2 does not have non-zero anti-holomorphic sections.
Therefore H ≡ 0 and the proof is complete. �
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Corollary 4.11. For all p, q > 0 and for all v ∈ L−p, w ∈ L−q one has that

(l−p(v), w) + (v, l−q(w)) = 0.

In particular, l ∈ homs(L<0, L>0).

Proof. Let Hp,q be a bilinear form on L−p ⊗ L−q defined by Hq,p(v, w) =
Hp,q(v, w) = (l−p(v), w) + (v, l−q(w)). The proposition asserts that Hp,q are
all identically zero. By Proposition 4.10 for all p > 0 one has Hp,p = 0.
Moreover, by equality (19) in the proof of Proposition 4.10 one also has
Hp,p+1 = 0.

We prove the assertion by induction on p+ q. If p+ q = 0, then p = q = 0
and H0,0 = 0, so the base is proved. Assume that Hp,q = 0 for all p+q = N .

For any such p, q applying ∂
∂z̄ to Hp,q(f−p, f−q) yields,

0 = −γ−p−1Hp+1,q(f−p−1, f−q)− γ−q−1Hp,q+1(f−p, f−q−1).

Moreover, γi 6= 0 on Σ′. Thus, on Σ′ all functionals Hp′,q′ with p′+q′ = N+1
can be obtained from one another by a multiplication by a nowhere zero
function. However, by the discussion at the beginning of the proof, at least
one of these functionals is zero, and, therefore, all of them are. �

This proposition allows us to prove Proposition 3.5.

Proof of Proposition 3.5. It is sufficient to prove the statement for M = S2.
Indeed, if M = RP2 one can lift V to an even Jacobi field and apply the
proposition to the lift.

The condition in the proposition is equivalent to γ̂−1 = γ̂0 = 0. Thus,
by (17), γ̂−p = 0 for all p.

For any complex local coordinate z define a local section A ∈ hom(Cn,Cn)
on Σ′ in the following way. On L60 we set Af−p = V−p and for v ∈ L>0

we set Av = Av̄. Since V0 is real, the definition is consistent on L0. Fur-
thermore, since γ̂−p = 0 we see that the sequence {V−p} satisfy the exact
same differential equations as {f−p}. As a result, the definition of A does
not depend on the choice of a local complex coordinate.

We claim that A is constant, i.e. ∂
∂zA = ∂

∂z̄A = 0. Indeed, if p > 0, then(
∂

∂z
A

)
(f−p) =

∂

∂z
(Af−p)−A

(
∂

∂z
f−p

)
=

∂

∂z
V−p −A

(
f−p+1 +

∂

∂z
ln |f−p|2f−p

)
= 0,

by Proposition 4.5 since γ̂−p = 0 for all p. Similarly, if q > 0, then(
∂

∂z̄
A

)
(f−q) =

∂

∂z̄
(Af−q)−A

(
∂

∂z̄
f−q

)
=

∂

∂z̄
V−q −A(−γ−q−1f−q−1) = 0,

by definition of V−q−1. Conjugating the two previous computations yields
the claim that A is constant.
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Finally we prove that A ∈ so(2m+ 1). Note that Af0 ⊥ f0 by definition.
Furthermore, for p, q > 0 one has (Af−p, f−q) = (l−p(f−p), f−q). Therefore
by Corollary 4.11 one has (Af−p, f−q) + (f−p, Af−q) = 0. Taking conjugate
yields (Afp, fq) + (fp, Afq). Finally, we show that

(20) (Af−p, fq) + (f−p, Afq) = 0.

First of all, we already proved (20) for any q and p = 0. Thus, it is sufficient
to show (20) for p > 1. We show it by induction on q. The base q = 0 is
already established. Suppose (20) is proved for q. To show it for q + 1 we
apply ∂

∂z to both sides of (20),(
A
∂f−p
∂z

, fq

)
+

(
Af−p,

∂fq
∂z

)
+

(
∂f−p
∂z

,Afq

)
+

(
f−p, A

∂fq
∂z

)
=

(
Af−p,

∂fq
∂z

)
+

(
f−p, A

∂fq
∂z

)
= (Af−p, fq+1) + (f−p, Afq+1),

where we used the step of induction twice. As a result, we have that A
is skew symmetric with respect to (·, ·) on C2m+1. Thus, its restriction to
R2m+1 is an element of so(2m+ 1). �

For any section s ∈ hom(L<0, L>0) we define its vertical part sV and
horizontal part sH to be sH , sV ∈ hom(L<0, L>0) such that sV = π>0s, s

H =

π0s. This corresponds to taking vertical and horizontal parts in T (1,0)Zm.

Proposition 4.12. One has

(∇zl)V = l0 ◦ ∂z,−1 ◦ π−1.

Proof. We check the statement for f−p on Σ′ and then use continuity to
conclude it on Σ. We treat cases p = 1 and p > 1 separately.

Case p > 1. In this case ∇L<0
z f−p = ∂

∂zf−p and one has,

(∇zl)V (f−p) = π>0
∂

∂z
(π>0V−p)− π>0l

(
∂

∂z
f−p

)
.

Furthermore, since ∂
∂zL−p ⊂ L−p ⊕ L−p+1 one has that π>0

∂
∂zπ>0 = π>0

∂
∂z

and therefore,

(∇zl)V (f−p) = π>0

V−p+1 +

(
∂

∂z
ln |f−p|2

)
V−p −

∂

∂z

 −1∑
i=−p

γ̂i
γi

 f−p


− π>0

(
V−p+1 +

(
∂

∂z
ln |f−p|2

)
V−p −

∂

∂z

)
= 0.

Case p = 1. In this case ∇L<0
z f−1 =

(
∂
∂z ln |f−1|2

)
f−1 and computations

similar to the previous one yield

(∇zl)V (f−1) = π>0

(
V0 +

∂

∂z
ln |f−1|2V−1

)
− π>0

((
∂

∂z
ln |f−1|2

)
V−1

)
= π>0(V0) = l0(V0) = l0(∂z,−1(f−1)).
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�

Furthermore, let l∗ ∈ hom(L60, L>0) be the adjoint to l with respect to
the bilinear form (·, ·).

Proposition 4.13. The adjoint l∗ satisfies the following properties

1) l∗|L<0 = −lV ;
2) l∗|L0 = −l0;
3) V0 = −2<(l∗(f0));
4) (∇zl)V = −l∗ ◦ ∂−1(∂z) ◦ π−1

Proof. Items 1) and 2) follow directly from Corollary 4.11.
To prove 3) we note that V0 = (π>0+π<0)V0. At the same time L>0 = L<0

and V0 is real. Therefore, π<0V0 = (π>0V0) and

V0 = π>0(V0) + (π>0V0) = 2<(π>0(V0)) = −2<(l∗(f0)).

Item 4) follows from Proposition 4.12 and item 2). �

4.5. Twistor fields. Motivated by the contents of the previous section we
propose the following definition.

Definition 4.14. Given a linearly full harmonic map Φ: S2 → S2m with a
twistor lift Ψ: S2 → Zm we say that a section l of Ψ∗T (1,0)Zm (or, equiva-
lently, a section of homs(L<0, L>0)) is a twistor field along Ψ if,

1) l is holomorphic, and
2) (∇zl)V = −l∗ ◦ ∂z,−1 ◦ π−1.

Remark 4.15. Our concept of twistor field coincides with the concept of
infinitesimal holomorphic horizontal deformation defined in [LW2], see the
discussion after Proposition 4.17.

Let us summarize the contents of the previous section using the language
of twistor fields.

Proposition 4.16. Let Φ be linearly full harmonic map Φ: S2 → S2m with
a twistor lift Ψ: S2 → Zm. Then there is a first-order twistor lift map T ,
V 7→ l from the space of Jacobi fields along Φ to the space of twistor fields
along Ψ with a left inverse I given by l 7→ −2<(l∗(Φ)).

The goal of this section is to show that the first order twistor lift is a
1-to-1 correspondence. We will achieve it two steps: first we show that
the left inverse I is in fact well-defined, i.e. for any twistor field l, I(l) is
a Jacobi field. Second, we show that I is injective. We start with some
general properties of twistor fields.

Proposition 4.17. The field l is twistor iff l∗ ∈ hom(L60, L>0) satisfies
the following properties,

1) l∗ is holomorphic and
2) (∇zl∗)|L<0 = ∂z,0 ◦ lH .
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Proof. Let v be a local section of L<0 and w be a local section of L60. Then
one has

((∇z̄l)(v), w) = (∇z̄(l(v)), w)− (l(∇z̄v), w) =

(
∂

∂z̄
(l(v)), w

)
−
(
l

(
∂

∂z̄
v

)
, w

)
,

since (L−1, w) = 0 and ∂
∂z̄v is a local section of L<0. Continuing the com-

putations, one has

((∇z̄l)(v), w) =
∂

∂z̄
(l(v), w)−

(
l(v),

∂

∂z̄
w

)
−
(
∂

∂z̄
v, l∗(w)

)
=

∂

∂z̄
(v, l∗(w))−

(
∂

∂z̄
v, l∗(w)

)
−
(
v, l∗(

∂

∂z̄
w)

)
=

(
v,

∂

∂z̄
(l∗(w))

)
−
(
v, l∗(

∂

∂z̄
w)

)
= (v, (∇z̄l∗)(w)).

Thus, one concludes that l is holomorphic iff l∗ is holomorphic.
Let u, v be two local sections of L<0. Using similar ideas as before, one

has

((∇zl)(v), u) + ((l∗ ◦ ∂−1(∂z) ◦ π−1)v, u) =

(
∂

∂z
(l(v)), u

)
− (l(∇<0

z v), u)

+ ((∂z,−1 ◦ π−1)v, lH(u)) =
∂

∂z
(v, l∗(u))−

(
l(v),

∂

∂z
u

)
− (∇<0

z v, l∗(u))

+

(
∂

∂z
v, lH(u)

)
=

∂

∂z
(v, l∗(u))− (v, l∗(∇60

z u))−
(
∂

∂z
v, l∗(u)

)
−
(
v,

∂

∂z
lH(u)

)
= (v, (∇zl∗)(u))− (v, (∂z,0 ◦ lH)(u))

�

Let us clarify the geometric meaning of condition 2) in the definition
of twistor fields. In [LW2] the field l along Ψ is called an infinitesimal
horizontal deformation if there is a family of maps Ψt → Zm such that
Ψ0 = Ψ, d

dt

∣∣
t=0

Ψt = l and the vertical part of dΨt is o(t) as t → 0. We
claim that this definition is equivalent to condition 2) of Proposition 4.17.
Thus, twistor fields are precisely those fields along a horizontal holomorphic
map Ψ that preserve the properties of being horizontal and holomorphic up
to the first order. In order to prove the claim let Lt<0, Lt>0 and Lt0 be the

subspaces Ψt, Ψt and (Ψt ⊕Ψt)
⊥. The field l = d

dt

∣∣
t=0

Ψt is an infinitesimal
horizontal deformation iff

∂

∂z

(
Lt<0

)
⊂ Lt<0 ⊕ Lt0 + o(t) = Lt60 + o(t).

For w ∈ L60 the value l∗(w) is computed by taking a family wt ∈ Lt<0 and
setting

l∗(w) = −π>0

(
d

dt

∣∣∣
t=0

wt

)
.
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Let v ∈ L<0 and let vt ∈ Lt<0 be a family. Then for the vector ∂
∂zv ∈ L60

there is a corresponding family ∂
∂zvt. Note that ∂

∂zvt ∈ L
t
60 for all v iff l is

an infinitesimal horizontal deformation. Set ut = πt>0
∂
∂zvt be the projection

onto Lt>0, so that

l∗
(
∂

∂z
v

)
= −π>0

(
d

dt

∣∣∣
t=0

(
∂

∂z
vt − ut

))
.

Finally we conclude,

(∇zl∗)(v) = − ∂

∂z
π>0

(
d

dt

∣∣∣
t=0

vt

)
+ π>0

(
d

dt

∣∣∣
t=0

(
∂

∂z
vt − ut

))
= ∂z,0π0

d

dt

∣∣∣
t=0

vt − π>0

(
d

dt

∣∣∣
t=0

ut

)
= ∂z,0l

H(v)− π>0

(
d

dt

∣∣∣
t=0

ut

)
.

Rearranging the terms yields the claim.

Theorem 4.18. If l is a twistor field, then

π>0

(
∂2

∂z∂z̄
l∗(f0)

)
= −γ0l

∗(f0).

In particular, I(l) is a Jacobi field.

Proof. First, we claim that since l∗(f0) ∈ L>0 one has that

π>0

(
∂2

∂z∂z̄
l∗(f0)

)
= ∇>0

z ∇>0
z̄ l∗(f0)− ∂z,0π0

∂

∂z̄
l∗(f0).

Then, by properties 1) and 2) of the twistor field (since ∂
∂z̄f0 ∈ L<0), one

has

∇>0
z ∇>0

z̄ l∗(f0) = ∇>0
z l∗

(
∂

∂z̄
f0

)
= l∗

(
∂2

∂z∂z̄
f0

)
+ ∂z,0l

H

(
∂

∂z̄
f0

)
.

Finally, we claim that ∂z,0π0
∂
∂z̄ l
∗(f0) + ∂z,0l

H( ∂∂z̄f0) = 0. Indeed, it is

sufficient to show π0
∂
∂z̄ l
∗(f0) + lH( ∂∂z̄f0) = 0. Since both terms lie in L0, it

is sufficient to pair it with f0.(
π0

∂

∂z̄
ρ∗(f0), f0

)
=

(
∂

∂z̄
ρ∗(f0), f0

)
= −

(
f0, ρ

H

(
∂

∂z̄
f0

))
.

Finally, the statement about I follows easily from Lemma 4.3.
�

Proposition 4.19. One has ker(I) = 0.

Proof. Let l be a twistor field such that l∗(f0) = 0. Then lH = 0 and the
holomorphic nature of l implies that for any local section v of L<0 one has
∂
∂z̄ l(v) = l

(
∂
∂z̄

)
.
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We prove by induction on p that for any local section w on L−p one has
(w, l(v)) = 0. The base p = 0 is equivalent to lH = 0. To prove the step of
the induction, we apply ∂

∂z̄ to (w, l(v)) = 0 to obtain

0 =

(
∂

∂z̄
w, l(v)

)
+

(
w, l

(
∂

∂z̄
v

))
= (∂̄z̄,pw, l(v)),

where we used the step of the induction in the last equality. Since ∂̄z̄,p is
an isomorphism on Σ′, continuity implies that (w′, l(v)) = 0 for any local
section w′ ∈ Γ(L−p−1). �

As a result, we arrive at the following,

Theorem 4.20. The linear map T is an isomorphism between Jacobi fields
along a linearly full harmonic map Φ: S2 → S2m and twistor fields along its
twistor lift Ψ: S2 → Zm.

4.6. Action of SO(2m + 1,C). The group SO(2m + 1,C) naturally acts
on the twistor space Zm by sending an isotropic subspace V to an isotropic
subspace AV . The action is holomorphic and preserves horizontal distribu-
tion. As a result, for any horizontal holomorphic map Ψ: S2 → Zm and any
A ∈ SO(2m+ 1,C), the map AΨ is horizontal and holomorphic. The action
on a linearly full harmonic map Φ: S2 → S2m is defined by the correspond-
ing action on its twistor lift Ψ: S2 → Zm, i. e. AΦ = πmAΨ. Note that Φ
is linearly full iff AΦ is linearly full.

For A ∈ SO(2m + 1,C) the differential of the action defines the map

A∗ : Ψ∗T (1,0)Zm → (AΨ)∗T (1,0)Zm. In this section we prove that A∗ maps
twistor fields to twistor fields and since (A∗)

−1 = (A−1)∗, the application of
Theorem 4.20 implies Proposition 3.11.

Let {Li} be a harmonic sequence associated to linearly full map Φ and let

{LAi } be a harmonic sequence associated to AΦ. We set LA<0 =
⊕−1

i=−m L
A
i

and, similarly use notations LA>0, LA>0 and LA60 for objects constructed from

the sequence {LAi }. By the exact form of the twistor correspondence, one

has that AL<0 = LA<0. Since L>0 = L<0 and LA>0 = LA<0, one also has

AL>0 = LA>0. Furthermore, one has AL60 ⊥ AL>0 and, therefore, AL60 =

LA60.

The map A∗ is easy to describe using the identification Ψ∗T (1,0)Zm with
homs(L<0, L>0). SinceAL<0 = LA<0, under this identification (AΨ)∗T (1,0)Zm
becomes homs(AL<0, (AL<0)⊥) and the map A∗ acts as

(A∗l)(Av) = πA>0(A(l(v))),

where πA>0 is the projection onto LA>0 = (AL<0)⊥. The following proposition
is a consequence of the fact that SO(2m+1,C) acts holomorphically on Zm.
We give a proof for completeness.

Proposition 4.21. The map A∗ preserves holomorphic fields.
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Proof. Let l be a holomorphic section of homs(L<0, L>0) and v be a local
section of L<0. Recall that πA>0

∂
∂z̄π

A
>0 = πA>0

∂
∂z̄ . Then one has

∇z̄((A∗l)(Av)) = πA>0

∂

∂z̄
πA>0(Al(v)) = πA>0

∂

∂z̄
(Al(v)) = πA>0A

∂

∂z̄
l(v)

= πA>0Al

(
∂

∂z̄
v

)
= (A∗l)

(
A
∂

∂z̄
v

)
= (A∗l)

(
∂

∂z̄
Av

)
,

where in the third and the last equality we used that A is a constant matrix,
so it commutes with taking the derivatives. �

Proposition 4.22. The map A∗ preserves twistor fields.

Proof. Since A∗ preserves holomorphic fields, it is sufficient to check that
the second condition in the definition of twistor fields is preserved. We split
the proof into several steps.

First we establish the expression for (A∗l)
∗. The claim is that for all local

sections w of L<0 one has (A∗l)∗(Aw) = πA>0Al
∗(w). Indeed, let u be a local

section of L60. Then one has,

((A∗l)∗(Aw), Au) = (Aw, (A∗l)(Au)) = (Aw, πA>0Al(u)) = (Aw,Al(u))

= (w, l(u)) = (l∗(w), u) = (Al∗(w), Au) = (πA>0Al
∗(w), Au).

Let u be a local section of L<0. Then one has

πA<0

∂

∂z
Au−Aπ<0

∂

∂z
u =

(
∂

∂z
Au− ∂Az,−1π

A
−1Au

)
−
(
A
∂

∂z
u−A∂z,−1π−1u

)
= A∂z,−1π−1u− ∂Az,−1π

A
−1Au,

where we continue to use the superscript A to denote objects associated to
AΦ.

Finally, we are in position to complete the proof. Suppose that l satisfies
the second condition in the definition in the twistor field and let u be a local
section of L<0. Then one has

(∇Az (A∗l))
V (Au) = πA>0

∂

∂z
Al(u)− (A∗l)

V

(
π<0

∂

∂z
Au

)
=

(
πA>0Al

(
π<0

∂

∂z
u

)
− πA>0Al

∗(∂z,−1π−1u)

)
− πA>0Al

(
A−1π<0

∂

∂z
Au

)
.
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Furthermore, since AL60 = LA60, one has π>0Al
H = 0. Therefore, one can

use Proposition 4.13, item 1), to continue with the last term as follows

πA>0Al

(
A−1πA<0

∂

∂z
Au

)
= πA>0Al

V

(
A−1πA<0

∂

∂z
Au

)
= −πA>0Al

∗
(
A−1πA<0

∂

∂z
Au

)
= −πA>0Al

∗
(
π<0

∂

∂z
u

)
− πA>0Al

∗(∂z,−1π−1u)

+ πA>0Al
∗(A−1∂Az,−1π

A
−1Au) = πA>0Al

(
π<0

∂

∂z
u

)
− πA>0Al

∗(∂z,−1π−1u)

+ (A∗l)
∗(∂Az,−1π

A
−1Au).

Putting it together with the previous equality yields,

(∇Az (A∗l))
V (Au) = −(A∗l)

∗(∂A−1(∂z)π
A
−1Au),

which is exactly the condition for A∗l.
�
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