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Nonmaximality of known extremal
metrics on torus and Klein bottle

M. A. Karpukhin

Abstract. The El Soufi-Ilias theorem establishes a connection between
minimal submanifolds of spheres and extremal metrics for eigenvalues of the
Laplace-Beltrami operator. Recently, this connection was used to provide
several explicit examples of extremal metrics. We investigate the properties
of these metrics and prove that none of them is maximal.

Bibliography: 24 titles.

Keywords: extremal metrics, bipolar surface, Otsuki tori, Lawson tau-
surfaces.

§ 1. Introduction

Let M be a closed surface and g be a Riemannian metric on M . Then the
Laplace-Beltrami operator ∆ acts on the space of smooth functions on M through
the formula

∆f = − 1√
|g|

∂

∂xi

(√
|g|gij ∂f

∂xj

)
.

It is known that the spectrum of ∆ is discrete and consists only of eigenvalues.
Moreover, the multiplicity of any eigenvalue is finite and the sequence of eigenvalues
tends to infinity. We denote this sequence by

0 = λ0(M, g) < λ1(M, g) 6 λ2(M, g) 6 λ3(M, g) 6 · · · ,

where the eigenvalues are listed according to their multiplicities.
For a fixed M the following quantities can be considered as functionals on the

space of all Riemannian metrics on M ,

Λi(M, g) = λi(M, g) Area(M, g).

Some recent papers [1]–[10] deal with finding the supremum of these functionals in
the space of all Riemannian metrics on M .

An upper bound for Λ1(M, g) in terms of the genus of M was provided in
the paper [10] and the existence of such a bound for Λi(M, g) was proved in [6].
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Exact upper bounds, sup Λi(M, g), are known for a limited number of functionals:
Λ1(S2, g) (see [4]), Λ1(RP2, g) (see [7]), Λ1(T2, g) (see [8]), Λ1(Kl, g) (see [1], [5]),
Λ2(S2, g) (see [9]). We refer the reader to the introduction to [11] for more details.

The functional Λi(M, g) depends continuously on g but this functional is not
differentiable. However, it is known that for an analytic deformation gt of the
initial metric g the left and right derivatives of Λi(M, gt) with respect to t exist;
see, for example, [3], [12] and [13]. This motivates the following definition.

Definition 1 (see [2], [8]). A Riemannian metric g on a closed surface M is called
an extremal metric for a functional Λi(M, g) if for any analytic deformation gt such
that g0 = g the following inequality holds:

d

dt
Λi(M, gt)

∣∣∣
t=0+

6 0 6
d

dt
Λi(M, gt)

∣∣∣
t=0−

.

Definition 2. A metric g is called a maximal metric for a functional Λi(M, g) if
for any metric h on M

Λi(M, g) > Λi(M,h).

The question of whether there exists a smooth maximal metric is itself not trivial.
For example, there is no smooth maximal metric for Λ2(S2, g) (see [9]).

The list of known extremal metrics is longer than the list of known exact upper
bounds for Λi(M, g), but until now their maximality has not been studied. Here
we fill this gap, and investigate the maximality of all the known extremal metrics.
The list of currently known extremal metrics is as follows.

(A) Metrics on the Otsuki tori Op/q, which were studied in [11].
(B) Metrics on the Lawson tori and Klein bottles τm,k, studied in [14].
(C) Metrics on the surfaces τ̃m,k bipolar to Lawson surfaces, studied in [15].
(D) Metrics on the bipolar surfaces Õp/q to Otsuki tori, studied in [16].

In what follows the Klein bottle is denoted by K.
The definitions of these surfaces are given in the following sections. The main

result in our paper is the following theorem.

Theorem 1. There are no maximal metrics among the metrics (A)–(D) apart
from τ̃3,1 .

Remark 1. The metric on the Lawson bipolar Klein bottle, τ̃3,1, is maximal for the
functional Λ1(K, g), see [1], [5].

We also prove the following proposition.

Proposition 1. The metric on the Clifford torus is extremal for an infinite number
of functionals Λi(M, g), but it is not maximal for any of them.

That the metric on the Clifford torus is extremal for an infinite number of func-
tionals Λi(M, g) is known but, to the best of the author’s knowledge, has not yet
been published. In the present paper we fill this gap.
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In what follows we use the notation K(k), E(k) and Π(n, k) for elliptic integrals
of the first, second and third kind respectively, see [17],

K(k) =
∫ 1

0

1√
1− x2

√
1− k2x2

dx, E(k) =
∫ 1

0

√
1− k2x2

√
1− x2

dx,

Π(n, k) =
∫ 1

0

1
(1− nx2)

√
1− x2

√
1− k2x2

dx.

The paper is organized in the following way. In § 2 we prove lower bounds for
sup Λn(T2, g) and sup Λn(K, g). These bounds are used throughout the paper to
prove that the metrics (A)–(D) are nonmaximal. In § 3.2 we recall a connection
between extremal metrics and minimal submanifolds of the unit sphere. Subsec-
tion 3.3 contains a description of Otsuki tori as SO(2)-invariant minimal submani-
folds of S3 of cohomogeneity 1. Estimates for the extremal metrics (A)–(D) are
established in § 3.4 and §§ 4–6, respectively, and this completes the proof of Theo-
rem 1. Finally, § 7 contains the proof of Proposition 1.

§ 2. Lower bounds for sup Λn

The aim of this section is to prove the following proposition (cf. Corollary 4
in [18]).

Proposition 2. The following inequalities hold:

sup Λn(T2, g) > 8π
(
n− 1 +

π√
3

)
,

sup Λn(K, g) > 8π(n− 1) + 12πE
(

2
√

2
3

)
,

where E(k) stands for the elliptic integral of the second kind.

2.1. Attaching handles using the method due to Chavel-Feldman. Let
M be a compact smooth Riemannian manifold of dimension n > 2. We pick two
distinct points p1, p2 ∈M . For ε > 0 we define

Bε := the union of open geodesic balls of radius ε about p1 and p2,
Ωε := M \Bε,
Γε := ∂Bε = ∂Ωε.

Here the number ε is chosen to be less than a quarter of the injectivity radius of M
and less than a quarter of the distance between p1 and p2 if p1 and p2 lie in the
same connected component of M . We say that the manifold Mε is obtained from M
by adding a handle across Γε if

1) Ωε is isometrically embedded in Mε,
2) there exists a diffeomorphism Ψε : Mε \ Ω2ε → [−1, 1]× Sn−1 such that

Mε \ Ωε = Ψ−1
ε

([
−1

2
,
1
2

]
× Sn−1

)
.

We denote the spectrum of the Laplace-Beltrami operator on M and Mε by λj and
λj(ε), respectively. In [19], Chavel and Feldman obtained a sufficient condition for
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the convergence λj(ε) → λj as ε tends to 0. In order to formulate this condition
we need the following definition.

Definition 3. For any compact connected Riemannian manifold X of dimension
n > 2, the isoperimetric constant c1(X) is defined by

c1(X) = inf
Y

(voln−1(Y ))n

(min(voln(X1), voln(X2)))n−1
,

where volk stands for k-dimensional Riemannian measure, and Y ranges over all
compact (n− 1)-dimensional submanifolds of X that divide X into two open sub-
manifolds X1, X2 with common boundary Y .

Theorem 2 (Chavel and Feldman [19]). Assume that Mε is connected for any ε
and there exists a constant c > 0 such that c1(Mε) > c for all ε > 0. Then
limε→0 λj(ε) = λj for all j = 1, 2, . . . .

Remark 2. Taking Y = Γε, the assumption in the above theorem implies that

lim
ε→0

voln(Mε) = voln(M).

In the same paper the existence of such Mε is established for any surface M and
almost any pair of points p1, p2 ∈M .

Theorem 3. Let M be a compact 2-dimensional Riemannian manifold with Gaus-
sian curvature K and let

M̃ = (M \K−1(0)) ∪ intK−1(0)

be an open, dense subset of M . Suppose that p1, p2 ∈ M̃ and one of the following
possibilities occurs:

• M is connected;
• M has two connected components and the pi lie in different connected com-

ponents.
Then Mε can be constructed so that the assumption of Theorem 2 holds. In

particular, Area(Mε) → Area(M) as ε→ 0.

Remark 3. Note that Chavel and Feldman [19] only considered the case of a con-
nected manifold M . However, their arguments can be extended almost unchanged
to the non-connected case stated above.

2.2. Proof of Proposition 2. Consider the flat equilateral torus τeq with a lat-
tice of equilateral triangles. After a suitable rescaling of the metric we have
Area(τeq) = 4π2/

√
3 and λ1(τeq) = 2. The Euclidean sphere S2 of volume 4π also

has λ1(S2) = 2. Take n− 1 copies of S2 denoted by Si, i = 1, 2, . . . , n− 1. Thus for
Tn = τeq

∐n−1
i=1 Si we have λn(Tn) = 2 and therefore Λn(Tn) = 8π

(
n− 1 + π/

√
3
)
.

Successive applications of Theorem 3 yield the existence of a sequence Mε, diffeo-
morphic to torus, such that Λn(Mε) → Λn(Tn) as ε tends to 0. This observation
completes the proof of the first inequality.

The second inequality can be proved in the same way. The only difference is
that instead of τeq one has to use the Lawson bipolar Klein bottle τ̃3,1 (see § 5 for
a definition). It was proved in [5] that Λ1(τ̃3,1) = 12πE

(
2
√

2/3
)
. By a suitable

rescaling of the metric on τ̃3,1, one can assume that λ1(τ̃3,1) = 2 and then apply
the construction in the previous paragraph.
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§ 3. Otsuki tori

3.1. The connection with minimal submanifolds of the sphere. Let
ψ : M # Sn be a minimal immersion in the unit sphere with canonical metric gcan.
We denote the Laplace-Beltrami operator on M associated with the metric ψ∗gcan
by ∆. We introduce Weyl’s eigenvalue counting function

N(λ) = #{i | λi(M, g) < λ}.

The following theorem provides an approach for constructing explicit examples of
(smooth) extremal metrics.

Theorem 4 (El Soufi and Ilias [3]). Let ψ : M # Sn be a minimal immersion in
the unit sphere Sn endowed with the canonical metric gcan .

Then the metric ψ∗gcan on M is extremal for the functional ΛN(2)(M, g).

Therefore, if we start with a minimal submanifold N of the unit sphere and
compute N(2), then the metric induced on N by this immersion is extremal for
the functional ΛN(2)(N, g). However, for a given minimal submanifold there is no
algorithm for computing the exact value of N(2). Nevertheless, this approach was
successfully realized by Penskoi in the papers [11] and [14] for the metrics (A) and
(B), and also by the author in [16] for the metrics (D). Some of the ideas in this
approach were used in [15] for the metrics (C).

3.2. A reduction theorem for minimal submanifolds. Let M be a Rieman-
nian manifold equipped with a metric g′ and let G be a compact group acting on M
by isometries. For every point x ∈ M we shall denote the stability subgroup of x
by Gx.

Definition 4. For two points x, y ∈ M we say that x 4 y if Gx ⊂ gGyg
−1 for

some g ∈ G. The orbit Gx is an orbit of principal type if for any point y ∈ M one
has x 4 y.

Let M∗ be the union of all orbits of principal type; then M∗ is an open dense
submanifold of M (see [20]). Moreover, M∗/G carries a natural Riemannian met-
ric g defined by the formula g(X,Y ) = g′(X ′, Y ′), where X and Y are tangent
vectors at x ∈ M∗/G, and X ′ and Y ′ are tangent vectors at x′ ∈ π−1(x) ⊂M∗

(where π is the projection) such that X ′ and Y ′ are orthogonal to the orbit π−1(x)
and dπ(X ′) = X, dπ(Y ′) = Y .

Let f : N # M be a G-invariant immersed submanifold, that is, a manifold
equipped with an action of G by isometries such that g · f(x) = f(g · x) for any
x ∈ N .

Definition 5. The cohomogeneity of a G-invariant immersed submanifold N is the
number dimN − ν, where ν is the dimension of the orbits of principal type.

For x ∈ M∗/G we define a volume function V (x) by the formula V (x) =
Vol(π−1(x)). Also for each integer k > 1 we define a metric gk = V 2/kg.

Proposition 3 (Hsiang and Lawson [21]). Let f : N # M∗ be a G-invariant
immersed submanifold of cohomogeneity k , and let M∗/G be equipped with the met-
ric gk . Then f : N # M∗ is minimal if and only if f : N/G # M∗/G is minimal.
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3.3. Otsuki tori. Otsuki tori were introduced by Otsuki in [22]. We recall the
concise description given by Penskoi in [11]. For more details see § 1.2 of [11].
Consider the action of SO(2) on the three-dimensional unit sphere S3 ⊂ R4 given
by the formula

α · (x, y, z, t) = (cosαx+ sinαy,− sinαx+ cosαy, z, t),

where α ∈ [0, 2π) is a coordinate on SO(2). The space of orbits S3/SO(2) is the
closed half-sphere S2

+,
q2 + z2 + t2 = 1, q > 0,

where the point (q, z, t) corresponds to the orbit (q cosα, q sinα, z, t) ∈ S3. The
space of principal orbits (S3)∗/ SO(2) is the open half-sphere

S2
>0 = {(q, z, t) ∈ S2|q > 0}.

We introduce the spherical coordinates in the space of orbits,
t = cosϕ sin θ,
z = cosϕ cos θ,
q = sinϕ.

Since we are looking for minimal submanifolds of cohomogeneity 1, Hsiang-Lawson’s
metric is given by the formula

V 2(dϕ2 + cos2 ϕdθ2) = 4π2 sin2 ϕ(dϕ2 + cos2 ϕdθ2). (3.1)

Definition 6. An immersed minimal SO(2)-invariant two-dimensional torus in S3,
such that its image by the projection π : S3 → S3/ SO(2) is a closed geodesic in
(S3)∗/SO(2) endowed with the metric (3.1), is called an Otsuki torus.

The following proposition was proved in [11].

Proposition 4. Apart from the particular case given by the equation ψ = π/4,
Otsuki tori are in one-to-one correspondence with rational numbers p/q such that

1
2
<
p

q
<

√
2

2
, p, q > 0, (p, q) = 1.

Definition 7. We denote the Otsuki torus corresponding to p/q by Op/q. Follow-
ing [11], we reserve the term ‘Otsuki tori’ for the tori Op/q.

In order to fix our notation we give a sketch of the proof of Proposition 4.

Proof. We shall use the standard notation for the coefficients of the metric (3.1),

E = 4π2 sin2 ϕ, G = 4π2 sin2 ϕ cos2 ϕ.

As we know, the velocity vector of a geodesic has constant length. Suppose this
length equals 1. This assumption, together with the equation of geodesics for θ̈,
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yields the following two equations:

θ̇ =
sin a cos a

2π cos2 ϕ sin2 ϕ
, (3.2)

ϕ̇2 =
sin2 ϕ cos2 ϕ− sin2 a cos2 a

4π2 sin4 ϕ cos2 ϕ
, (3.3)

where a is the minimum value of ϕ on the geodesic. Then the geodesic is situated in
the annulus a 6 ϕ 6 π/2−a. We choose a natural parameter t such that ϕ(0) = a.

We denote the difference between the value of θ corresponding to ϕ = a and the
value of θ closest to it corresponding to ϕ = π/2− a by Ω(a). It is clear that

Ω(a) = sin a cos a
∫ π/2−a

a

dϕ

cosϕ
√

sin2 ϕ cos2 ϕ− sin2 a cos2 a
.

The geodesic is closed if and only if Ω(a) = pπ/q. The rest of the proof follows
from the following properties of the function Ω(a) (see [22]):

1) Ω(a) is continuous and monotonic on (0, π/4],
2) lima→0+ Ω(a) = π/2 and Ω(π/4) = π/

√
2.

3.4. Estimates for Λ2p−1(Op/q). According to [11], the metric on an Otsuki
torus Op/q is extremal for the functional Λ2p−1(T2, g). The goal of this section is
to prove the following proposition.

Proposition 5. For all p, q such that (p, q) = 1 and 1/2 < p/q <
√

2/2, the
following inequality holds:

8π
(

2p− 2 +
π√
3

)
> Λ2p−1(Op/q).

In order to prove Proposition 5 we have to prove several auxiliary propositions.

Proposition 6. If a ∈ (0, π/4) is such that Ω(a) = pπ/q , then

Λ2p−1(Op/q) = 8πq cos aE
(√

1− tan2 a
)
.

Proof. We shall use the notation in Proposition 4. As we know,

ϕ̇ = ±
√
G− c2√
EG

,

where c = 2π sin a cos a. Therefore, the length of the segment on the geodesic
π(Op/q) between the closest points with ϕ = a and ϕ = π/2 − a is equal to 2πI,
where

I =
∫ π/2−a

a

sinϕ√
1− sin2 a cos2 a/(sin2 ϕ cos2 ϕ)

dϕ.
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We express I in terms of elliptic integrals,

I =
∫ cos a

sin a

x
√

1− x2√
x2(1− x2)− cos2 a sin2 a

dx =
1
2

∫ cos2 a

sin2 a

√
1− u√

u(1− u)− cos2 a sin2 a
du

=
1
2

∫ 1

0

√
(1− sin2 a)− (cos2 a− sin2 a)t√

t(1− t)
dt =

1
2

cos a
∫ 1

0

√
1− (1− tan2 a)t√

t(1− t)
dt

= cos a
∫ 1

0

√
1− (1− tan2 a)y2√

1− y2
dy = cos aE

(√
1− tan2 a

)
.

Here we have used the following changes of variables:

cosϕ = x, x2 = u, u = (cos2 a− sin2 a)t+ sin2 a, t = y2.

Since the maps θ 7→ θ+ θ0 and θ 7→ θ0− θ are isometries, the length of the geodesic
π(Op/q) is equal to 4πq cos aE(

√
1− tan2 a). By Proposition 13 in [11], Λ2p−1(Op/q)

is equal to twice the length of the geodesic π(Op/q).

Proposition 7. If k ∈ [0, 1] the following inequality holds:

K(k)− 2
2− k2

E(k) > 0.

Proof. We expand the left-hand side using the definitions of E and K,

K(k)− 2
2− k2

E(k) =
∫ π/2

0

dθ√
1− k2 sin2 θ

− 2
2− k2

∫ π/2

0

√
1− k2 sin2 θ dθ

=
k2

2− k2

∫ π/2

0

2 sin2 θ − 1√
1− k2 sin2 θ

dθ.

Since the integrand is negative on (0, π/4) and positive on (π/4, π/2), one has∫ π/2

0

2 sin2 θ − 1√
1− k2 sin2 θ

dθ =
∫ π/4

0

2 sin2 θ − 1√
1− k2 sin2 θ

dθ +
∫ π/2

π/4

2 sin2 θ − 1√
1− k2 sin2 θ

dθ

>
∫ π/4

0

2 sin2 θ − 1√
1− k2/2

dθ +
∫ π/2

π/4

2 sin2 θ − 1√
1− k2/2

dθ

= − 1√
1− k2/2

∫ π/2

0

cos 2θ dθ = 0.

We introduce the notation

Φ(a) = cos aE
(√

1− tan2 a
)
.
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Proposition 8. The function Φ(a) is nondecreasing and Φ′(a) < 1/2 for any
a ∈ (0, π/4). In particular, 1 = Φ(0) 6 Φ(a) 6 Φ(π/4) = π/(2

√
2).

Corollary 1. The following inequalities hold:

4
√

2π2q > Λ2p−1(Op/q) > 8πq. (3.4)

Remark 4. We should point out that while the manuscript was in preparation
inequality (3.4) appeared in the paper [23].

Proof of Proposition 8. Recall the following formulae for the derivatives of elliptic
integrals:

dE(k)
dk

=
E(k)−K(k)

k
,

dK(k)
dk

=
E(k)

k(1− k2)
− K(k)

k
, (3.5)

∂Π(n, k)
∂n

=
1

2(k2 − n)(n− 1)

(
E(k) +

(k2 − n)
n

K(k) +
(n2 − k2)

n
Π(n, k)

)
,

∂Π(n, k)
∂k

=
k

n− k2

(
E(k)
k2 − 1

+ Π(n, k)
)
.

(3.6)

We introduce the notation β =
√

1− tan2 a. Then

Φ′(a) = cos a
(
−2 tan a

E(β)−K(β)
2 cos2 a(1− tan2 a)

)
− sin aE(β)

= − sin a
(
E(β) +

E(β)−K(β)
cos2 a− sin2 a

)
=

√
(1− β2)(2− β2)

β2

(
K(β)− 2

2− β2
E(β)

)
. (3.7)

Now the fact that the function Φ(a) is monotonic follows from Proposition 7.
To prove the second part, we return to formula (3.7). We have

Φ′(a) = − sin a
(

2 cos2 aE(β)−K(β)
cos2 a− sin2 a

)
= − sin a

cos2 a− sin2 a

∫ π/2

0

2 cos2 a(1− β2 sin2 θ)− 1√
1− β2 sin2 θ

dθ

= sin a
∫ π/2

0

2 sin2 θ − 1√
1− β2 sin2 θ

dθ 6 sin a
∫ π/2

π/4

2 sin2 θ − 1√
1− β2

dθ

= − cos a
∫ π/2

π/4

cos 2θ dθ = cos a
sin 2θ

2

∣∣∣∣π/4

π/2

6
1
2
.

This completes the proof of Proposition 8.
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Proposition 9. The function (2/π)Ω(a) − Φ(a) is increasing on the interval
(0, π/4).

Proof. In [23] the following formula was proved:

Ω(a) =
1

sin a
Π

(
−cos 2a

sin2 a
,
√

1− tan2 a

)
.

Using (3.6), we obtain the following formula:

dΩ(a)
da

=
1

cos a cos 2a
K

(√
1− tan2 a

)
− 2 cos a

cos 2a
E

(√
1− tan2 a

)
.

Recall the notation β(a) =
√

1− tan2 a. Then

Ω′(a) =
(2− β2)3/2

β2

(
K(β)− 2

2− β2
E(β)

)
, (3.8)

Ω(a) =

√
2− β2

1− β2
Π

(
− β2

1− β2
, β

)
.

Moreover, by formula (3.7) we find that

Φ′(a) =

√
(1− β2)(2− β2)

β2

(
K(β)− 2

2− β2
E(β)

)
.

The inequality 2/π(2− β2)−
√

1− β2 > 0 and Proposition 7 imply the inequality

2
π

Ω′(a)− Φ′(a) =

√
2− β2

k2

(
K(β)− 2

2− β2
E(β)

)(
2
π

(2− β2)−
√

1− β2

)
> 0.

Corollary 2. If a ∈ [1/5, π/4], then

2
π

Ω(a)− Φ(a) >
2
√

3− π

3
√

3
.

Proof. Using the tables of elliptic integrals given in the book [17], for instance, we
obtain the inequality

2
π

Ω
(

1
5

)
− Φ

(
1
5

)
>

2
√

3− π

3
√

3
.

The rest of the proof follows as the function on the left-hand side is monotonic.

Proposition 10. If ξ ∈ [0, 1/5], then

Ω′(ξ) >
π

4

(
π√
3
− 1

)−1

.
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Proof. By formula (3.8) for ξ ∈ [0, 1/5] we see that

Ω′(ξ) =
(2− β(ξ)2)3/2

β(ξ)2

(
K(β(ξ))− 2

2− β(ξ)2
E(β(ξ))

)
> K

(
β

(
1
5

))
− 2

2− β2(1/5)
β2(1/5)

E

(
β

(
1
5

))
.

In the last inequality we used the facts that K(k) is an increasing function, whilst
E(k) and β(a) are decreasing functions. The table of the elliptic integrals in [17]
provides the inequality

K

(
β

(
1
5

))
− 2

2− β2(1/5)
β2(1/5)

E

(
β

(
1
5

))
>
π

4

(
π√
3
− 1

)−1

,

which completes the proof.

Proof of Proposition 5. We want to prove that

8π
(

2p− 2 +
π√
3

)
> 8πqΦ(a),

where Ω(a) = pπ/q. This inequality is equivalent to the following:

2
p

q
− 2

√
3− π

q
√

3
> Φ(a).

Since Ω(a) = pπ/q, it is sufficient to prove that

2
π

Ω(a)− Φ(a) >
2
√

3− π

q
√

3
. (3.9)

Since q > 3, Corollary 2 shows that inequality (3.9) holds for a ∈ [1/5, π/4]. In
order to prove this inequality for a ∈ [0, 1/5] we note that by Proposition 8

2
π

Ω(a)− Φ(a) =
2
π

(Ω(a)− Ω(0))− (Φ(a)− Φ(0))

= a

(
2
π

Ω′(ξ)− Φ′(η)
)

> a

(
2
π

Ω′(ξ)− 1
2

)
for some ξ, η ∈ (0, a). Moreover,

1
2q
π 6

2p− q

2q
π =

p

q
π − 1

2
π = Ω(a)− Ω(0) = aΩ′(ξ),

or
1
q
<

2a
π

Ω′(ξ).

Therefore, (3.9) follows from the inequality

2
π

Ω′(ξ)− 1
2
>

2
π

(
2− π√

3

)
Ω′(ξ),

or the inequality

Ω′(ξ) >
π

4

(
π√
3
− 1

)−1

.

The last inequality follows easily from Proposition 10.
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§ 4. Lawson surfaces

A Lawson tau-surface τm,k is an immersed surface in the sphere S3 defined by
the doubly-periodic immersion of R2 in R4 given by the formula

(cosmx cos y, sinmx cos y, cos kx sin y, sin kx sin y).

It was introduced by Lawson in [24]. He also proved that for each pair {m, k} such
that m > k > 1 and (m, k) = 1 the surfaces τm,k are distinct compact immersive
surfaces in S3. Assume that (m, k) = 1; if both m and k are odd then τm,k is
a torus, which we call a Lawson torus. Otherwise τm,k is a Klein bottle, called
a Lawson Klein bottle.

Proposition 11 (Penskoi [14]). Let τm,k be a Lawson surface. Then the induced
metric on τm,k is an extremal metric for the functional Λj(M, g), where

j = 2
[√

m2 + k2

2

]
+m+ k − 1, (4.1)

M = T2 if both m, k are odd and M = K otherwise.
The corresponding value of the functional is

Λj(τm,k) = 8πmE
(√

m2 − k2

m

)
.

Proposition 12. Let j be defined by formula (4.1). If τm,k is a Lawson torus, then

Λj(τm,k) < 8π
(
j − 1 +

π√
3

)
.

If τm,k is a Klein bottle, then

Λj(τm,k) < 8π(j − 1) + 12πE
(

2
√

2
3

)
.

Proof. It is sufficient to show that

j > mE

(√
m2 − k2

m

)
. (4.2)

Note that the function

ϕ(x) = 1 + x− E
(√

1− x2
)

is positive on the interval [0, 1]. Indeed,

E(x) =
∫ π/2

0

√
1− x2 sin2 ψ dψ 6

∫ π/2

0

(√
1− sin2 ψ +

√
(1− x2) sin2 ψ

)
dψ

= 1 +
√

1− x2.

Now divide both sides of (4.2) by m and denote the ratio k/m ∈ [0, 1] by x.
Since [√

m2 + k2

2

]
>

[
m+ k

2

]
>

[
m+ 1

2

]
>
m

2
,

inequality (4.2) follows from the positivity of ϕ(x).
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§ 5. Bipolar surfaces to Lawson surfaces

Let I : N # S3 be a minimal immersion. The Gauss map I∗ : N → S3 is defined
pointwise as the image of the unit normal in S3 translated to the origin in R4. Then
the exterior product Ĩ = I ∧ I∗ is an immersion of N in S5 ⊂ R6. In [24] Lawson
proved that this immersion is minimal. The image Ĩ(N) is called the bipolar surface
to N .

We denote the bipolar surface to the surface τm,k by τ̃m,k. Lapointe proved
in [15] that

• if mk ≡ 0 (mod 2), then τ̃m,k is a torus carrying an extremal metric for the
functional Λ4m−2(T2, g) and

Λ4m−2(τ̃m,k) = 16πmE
(√

m2 − k2

m

)
;

• if mk ≡ 1 (mod 4), then τ̃m,k is a torus carrying an extremal metric for the
functional Λ2m−2(T2, g) and

Λ2m−2(τ̃m,k) = 8πmE
(√

m2 − k2

m

)
;

• if mk ≡ 3 (mod 4), then τ̃m,k is a Klein bottle carrying an extremal metric
for Λm−2(Kl, g) and

Λm−2(τ̃m,k) = 4πmE
(√

m2 − k2

m

)
.

Proposition 13. If mk ≡ 1 (mod 4), then the following inequality holds:

Λ2m−2(τ̃m,k) < 8π
(

2m− 3 +
π√
3

)
.

If mk ≡ 0 (mod 2), then the following inequality holds:

Λ4m−2(τ̃m,k) < 8π
(

4m− 3 +
π√
3

)
.

If mk ≡ 3 (mod 4), then the following inequality holds:

8π(m− 3) + 12πE
(

2
√

2
3

)
> Λm−2(τ̃m,k).

Proof. In order to prove the first inequality it is sufficient to prove that

mE

(√
m2 − k2

m

)
6 (2m− 2). (5.1)

It is well-known that E(k̃) 6 π/2 for k̃ ∈ [0, 1]. This implies that it is sufficient to
prove that

πm 6 4m− 4.
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This inequality holds for m > 5. The statement for τ̃1,1 follows from the fact that
τ̃1,1 is a Clifford torus and Λ1(τ1,1) = 4π2.

In the same way, in order to prove the second inequality in Proposition 13 it is
sufficient to prove that

πm 6 4m− 3 +
π√
3
.

This inequality holds for m > 2.
The third inequality is equivalent to the following:

2(m− 3) + 3E
(

2
√

2
3

)
> mE

(√
m2 − k2

m

)
.

Since E(k̃) < π/2, it is sufficient to prove that(
2− π

2

)
m > 6− 3E

(
2
√

2
3

)
.

This inequality holds for m > 7. For the exceptional case {m, k} = {5, 3} one has
to verify the third inequality explicitly using the tables of elliptic integrals in [17].

§ 6. Bipolar surfaces to Otsuki tori

The following proposition was proved in [16].

Proposition 14. The bipolar surface Õp/q to an Otsuki torus Op/q is a torus.
If q is odd, then the metric on the bipolar Otsuki torus Õp/q is extremal for the

functional Λ2q+4p−2(T2, g) and Λ2q+4p−2(Õp/q) < 4
√

2qπ2 .
If q is even, then the metric on the bipolar Otsuki torus Õp/q is extremal for the

functional Λq+2p−2(T2, g) and Λq+2p−2(Õp/q) < 2
√

2qπ2 .

Proposition 15. If q is even, then the following inequality holds:

Λq+2p−2(Õp/q) < 8π
(
q + 2p− 3 +

π√
3

)
.

If q is odd, then

Λ2q+4p−2(Õp/q) < 8π
(

2q + 4p− 3 +
π√
3

)
.

Proof. If q is even, then we have

8π
(
q + 2p− 3 +

π√
3

)
> 8π(q + 2p− 2) > 12πq > 2

√
2π2q.

We have used the inequalities 2p > q and p > 1 in order to prove the last inequality.
In the same way, if q is odd, then we have

8π
(

2q + 4p− 3 +
π√
3

)
> 8π(2q + 4p− 2) > 24πq > 4

√
2π2q.

Now it is easy to see that Propositions 5, 12, 13 and 15 together with Proposi-
tion 2 imply Theorem 1.



1742 M. A. Karpukhin

§ 7. The Clifford torus

We will represent the Clifford torus as a flat torus with a square lattice with
edges equal to 2π. In this case the Laplace-Beltrami operator coincides up to a sign
with the classical two-dimensional Laplace operator. Therefore, using separation
of variables we obtain a basis of the following form for the eigenfunctions:

sinnx sinmy, sinnx cos ly, cos kx sinmy, cos kx cos ly,

where n,m ∈ N and k, l ∈ Z>0. The corresponding eigenvalues are equal to n2+m2,
n2 + l2, k2 +m2, k2 + l2.

Proposition 16. Weyl’s counting function N(λ) for the Clifford torus is equal to
the number of integer points in the open disk of radius

√
λ with centre at the origin

of R2 .

Proof. We introduce a one-to-one correspondence ν between eigenfunctions and
integer points in R2. We set

ν(sinnx sinmy) = (n,m),
ν(sinnx cos ly) = (n,−l),
ν(cos kx sinmy) = (−k,m),
ν(cos kx cos ly) = (−k,−l).

We also note that the eigenvalue of the function f is equal to the square of the
distance between (0, 0) and ν(f). This observation completes the proof.

7.1. Proof of Proposition 1. It is easy to check that the set of functions

(sin kx, cos kx, sin ky, cos ky)

forms an isometric immersion of the Clifford torus in the unit sphere. The same is
true for the set

(sin kx sin ky, sin kx cos ky, cos kx sin ky, cos kx cos ky)

and the set

(sin kx sin ly, sin kx cos ly, cos kx sin ly, cos kx cos ly,
sin lx sin ky, sin lx cos ky, cos lx sin ky, cos lx cos ky),

where k ̸= l. Therefore, according to Theorem 4, the metric on the Clifford torus
is extremal for the functionals ΛN(r2)(T2, g), where r2 = n2 + m2 with n,m ∈ Z,
and ΛN(r2)(TCl) = 4π2r2.

Let Br be a disc of radius r. Then the simple estimate

N(r2) > Area(Br−
√

2/2) = π

(
r −

√
2

2

)2

holds.
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So it is sufficient to prove that

2
(
r −

√
2

2

)2

> r2,

and this inequality holds for r2 > 6. For r2 < 6 we have the inequality

8πN(r2) > 4πr2.

This inequality can be obtained by a direct enumeration of all possible values of r2.
This completes the proof of Proposition 1.

The author thanks A. V. Penskoi for posing this problem, for fruitful discussions
and for his invaluable help in the preparation of the manuscript.
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equation”, Mosc. Math. J. 12:1 (2012), 173–192.

[15] H. Lapointe, “Spectral properties of bipolar minimal surfaces in S4”, Differential
Geom. Appl. 26:1 (2008), 9–22.

http://zbmath.org/?q=an:1109.58029
http://zbmath.org/?q=an:1109.58029
http://zbmath.org/?q=an:1109.58029
http://dx.doi.org/10.2140/pjm.2000.195.91
http://dx.doi.org/10.2140/pjm.2000.195.91
http://dx.doi.org/10.1016/j.geomphys.2007.09.008
http://dx.doi.org/10.1016/j.geomphys.2007.09.008
http://www.ams.org/mathscinet-getitem?mr=0292357
http://www.ams.org/mathscinet-getitem?mr=0292357
http://dx.doi.org/10.4153/CJM-2006-016-0
http://dx.doi.org/10.4153/CJM-2006-016-0
http://zbmath.org/?q=an:0794.58045
http://zbmath.org/?q=an:0794.58045
http://zbmath.org/?q=an:0503.53042
http://zbmath.org/?q=an:0503.53042
http://zbmath.org/?q=an:0503.53042
http://dx.doi.org/10.1007/BF02246788
http://dx.doi.org/10.1007/BF02246788
http://zbmath.org/?q=an:1071.58024
http://zbmath.org/?q=an:1071.58024
http://zbmath.org/?q=an:0446.58017
http://zbmath.org/?q=an:0446.58017
http://zbmath.org/?q=an:0446.58017
http://dx.doi.org/10.1002/mana.201200003
http://dx.doi.org/10.1002/mana.201200003
http://dx.doi.org/10.2748/tmj/1178229047
http://dx.doi.org/10.2748/tmj/1178229047
http://zbmath.org/?q=an:0257.53048
http://zbmath.org/?q=an:0257.53048
http://mi.mathnet.ru/eng/mmj452
http://mi.mathnet.ru/eng/mmj452
http://dx.doi.org/10.1016/j.difgeo.2007.12.001
http://dx.doi.org/10.1016/j.difgeo.2007.12.001


1744 M. A. Karpukhin

[16] M.A. Karpukhin, “Spectral properties of bipolar surfaces to Otsuki tori”, J. Spectr.
Theory (to appear); arXiv: abs/1205.6316.

[17] P. F. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and
scientists, 2nd ed., Springer-Verlag, New York–Heidelberg 1971.

[18] B. Colbois and A. El Soufi, “Extremal eigenvalues of the Laplacian in a conformal
class of metrics: the «Conformal Spectrum»”, Ann. Global Anal. Geom. 24:4
(2003), 337–349.

[19] I. Chavel and E.A. Feldman, “Spectra of manifolds with small handles”, Comment.
Math. Helv. 56:1 (1981), 83–102.

[20] D. Montgomery, H. Samelson and C.T. Yang, “Exceptional orbits of highest
dimension”, Ann. of Math. (2) 64:1 (1956), 131–141.

[21] W.-Y. Hsiang and H.B. Lawson, “Minimal submanifolds of low cohomogeneity”,
J. Differential Geometry 5:1 (1971), 1–38.

[22] T. Otsuki, “Minimal hypersurfaces in a Riemannian manifold of constant
curvature”, Amer. J. Math. 92:1 (1970), 145–173.

[23] Z. Hu and H. Song, “On Otsuki tori and their Willmore energy”, J. Math. Anal.
Appl. 395:2 (2012), 465–472.

[24] H. B. Lawson, “Complete minimal surfaces in S3”, Ann. of Math. (2) 92:3 (1970),
335–374.

Mikhail A. Karpukhin
Moscow State University;
Independent University of Moscow
E-mail : karpukhin@mccme.ru

Received 27/FEB/13 and 10/JUN/13
Translated by M. KARPUKHIN

http://arxiv.org/abs/1205.6316
http://zbmath.org/?q=an:0213.16602
http://zbmath.org/?q=an:0213.16602
http://dx.doi.org/10.1023/A:1026257431539
http://dx.doi.org/10.1023/A:1026257431539
http://dx.doi.org/10.1023/A:1026257431539
http://dx.doi.org/10.1007/BF02566200
http://dx.doi.org/10.1007/BF02566200
http://dx.doi.org/10.2307/1969951
http://dx.doi.org/10.2307/1969951
http://zbmath.org/?q=an:0219.53045
http://zbmath.org/?q=an:0219.53045
http://dx.doi.org/10.2307/2373502
http://dx.doi.org/10.2307/2373502
http://dx.doi.org/10.1016/j.jmaa.2012.05.042
http://dx.doi.org/10.1016/j.jmaa.2012.05.042
http://dx.doi.org/10.2307/1970625
http://dx.doi.org/10.2307/1970625
mailto:karpukhin@mccme.ru

	§1 Introduction
	§2 Lower bounds for $\sup\Lambda_n$
	2.1 Attaching handles using the method due to Chavel-Feldman
	2.2 Proof of Proposition 2

	§3 Otsuki tori
	3.1 The connection with minimal submanifolds of the sphere
	3.2 A reduction theorem for minimal submanifolds
	3.3 Otsuki tori
	3.4 Estimates for $\Lambda_{2p-1}(O_{p/q})$

	§4 Lawson surfaces
	§5 Bipolar surfaces to Lawson surfaces
	§6 Bipolar surfaces to Otsuki tori
	§7 The Clifford torus
	7.1 Proof of Proposition 1

	Bibliography

