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Nonmaximality of known extremal
metrics on torus and Klein bottle

M. A. Karpukhin

Abstract. The El Soufi-Ilias theorem establishes a connection between
minimal submanifolds of spheres and extremal metrics for eigenvalues of the
Laplace-Beltrami operator. Recently, this connection was used to provide
several explicit examples of extremal metrics. We investigate the properties
of these metrics and prove that none of them is maximal.
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§ 1. Introduction

Let M be a closed surface and g be a Riemannian metric on M. Then the
Laplace-Beltrami operator A acts on the space of smooth functions on M through

the formula
1 0 i Of
——= o Vlgle" 55 )
A/ |g| ox oxJ
It is known that the spectrum of A is discrete and consists only of eigenvalues.

Moreover, the multiplicity of any eigenvalue is finite and the sequence of eigenvalues
tends to infinity. We denote this sequence by

Af =

0=X(M,g) < M(M,g) < Aao(M,g) < A3(M,g) < -+,

where the eigenvalues are listed according to their multiplicities.
For a fixed M the following quantities can be considered as functionals on the
space of all Riemannian metrics on M,

Ni(M, g) = N(M, g) Area(M, g).

Some recent papers [1]-[10] deal with finding the supremum of these functionals in
the space of all Riemannian metrics on M.

An upper bound for A;(M,g) in terms of the genus of M was provided in
the paper [10] and the existence of such a bound for A;(M,g) was proved in [6].
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Exact upper bounds, sup A;(M, g), are known for a limited number of functionals:
A(S2,g) (see [4]), A1 (RP2, g) (see [7]), Ar(T2, g) (see []), Ay(KLg) (see [, [3])
Ao(S?, g) (see [9]). We refer the reader to the introduction to [11] for more details.

The functional A;(M,g) depends continuously on g but this functional is not
differentiable. However, it is known that for an analytic deformation g; of the
initial metric g the left and right derivatives of A;(M, g;) with respect to ¢ exist;
see, for example, [3], [12] and [13]. This motivates the following definition.

Definition 1 (see [2], [§]). A Riemannian metric g on a closed surface M is called
an extremal metric for a functional A;(M, g) if for any analytic deformation g; such
that go = ¢ the following inequality holds:

d d
—Ni(M, gt) <0< —A(M,g:)

dt t=0+ dt t=0—

Definition 2. A metric g is called a mazimal metric for a functional A;(M, g) if
for any metric h on M

Ai(M, g) = Ai(M, h).

The question of whether there exists a smooth maximal metric is itself not trivial.
For example, there is no smooth maximal metric for A5(S?, g) (see [9]).

The list of known extremal metrics is longer than the list of known exact upper
bounds for A;(M,g), but until now their maximality has not been studied. Here
we fill this gap, and investigate the maximality of all the known extremal metrics.
The list of currently known extremal metrics is as follows.

(A) Metrics on the Otsuki tori O, /,, which were studied in [11].
(B) Metrics on the Lawson tori and Klein bottles 7,, , studied in [14].
(C) Metrics on the surfaces 7, bipolar to Lawson surfaces, studied in [15].
(D) Metrics on the bipolar surfaces 6p /q to Otsuki tori, studied in [16].
In what follows the Klein bottle is denoted by K.

The definitions of these surfaces are given in the following sections. The main
result in our paper is the following theorem.

Theorem 1. There are no mazimal metrics among the metrics (A)—(D) apart
fmm ?371 .

Remark 1. The metric on the Lawson bipolar Klein bottle, 73 1, is maximal for the
functional A; (K, g), see [1], [5].

We also prove the following proposition.

Proposition 1. The metric on the Clifford torus is extremal for an infinite number
of functionals A;(M, g), but it is not maximal for any of them.

That the metric on the Clifford torus is extremal for an infinite number of func-
tionals A;(M,g) is known but, to the best of the author’s knowledge, has not yet
been published. In the present paper we fill this gap.
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In what follows we use the notation K (k), E(k) and II(n, k) for elliptic integrals
of the first, second and third kind respectively, see [17],

1 / V1 k2x2
dx,
V1= 221 — k222 1—x2

Tl ) = A (1 —na?)v1— 332\/1 o

The paper is organized in the following way. In §2 we prove lower bounds for
sup A, (T2, g) and sup A, (K, g). These bounds are used throughout the paper to
prove that the metrics (A)—(D) are nonmaximal. In §3.2 we recall a connection
between extremal metrics and minimal submanifolds of the unit sphere. Subsec-
tion 3.3 contains a description of Otsuki tori as SO(2)-invariant minimal submani-
folds of S? of cohomogeneity 1. Estimates for the extremal metrics (A)—(D) are
established in § 3.4 and §§4-6, respectively, and this completes the proof of Theo-
rem 1. Finally, § 7 contains the proof of Proposition 1.

§ 2. Lower bounds for sup A,,

The aim of this section is to prove the following proposition (cf. Corollary 4
in [18]).

Proposition 2. The following inequalities hold:

sup A, (T?, g) > 87r(n -1+ \7/%),
2\/§>

supA,(K,g) > 8r(n—1)+ 127TE( 3

where E(k) stands for the elliptic integral of the second kind.

2.1. Attaching handles using the method due to Chavel-Feldman. Let
M be a compact smooth Riemannian manifold of dimension n > 2. We pick two
distinct points py,ps € M. For € > 0 we define

B. := the union of open geodesic balls of radius € about p; and po,

Q. =M\ B,

I, :=0B. = 09..
Here the number ¢ is chosen to be less than a quarter of the injectivity radius of M
and less than a quarter of the distance between p; and po if p; and ps lie in the
same connected component of M. We say that the manifold M, is obtained from M
by adding a handle across I'. if

1) €. is isometrically embedded in M.,

2) there exists a diffeomorphism W.: M, \ Q. — [—1,1] x S*~! such that

ez ([ 3] o)

We denote the spectrum of the Laplace-Beltrami operator on M and M, by A; and
Aj(€), respectively. In [19], Chavel and Feldman obtained a sufficient condition for
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the convergence Aj(e) — A, as € tends to 0. In order to formulate this condition
we need the following definition.

Definition 3. For any compact connected Riemannian manifold X of dimension
n = 2, the isoperimetric constant ¢1(X) is defined by

) (vol,—1(Y))™
X) =inf
&) = oL, (1), vol, (X)) 1
where vol; stands for k-dimensional Riemannian measure, and Y ranges over all
compact (n — 1)-dimensional submanifolds of X that divide X into two open sub-
manifolds X7, X5 with common boundary Y.

Theorem 2 (Chavel and Feldman [19]). Assume that M. is connected for any e
and there exists a constant ¢ > 0 such that c1(M.) > c for all ¢ > 0. Then
lim. o Aj(e) = Aj forallj=1,2,....

Remark 2. Taking Y =T'., the assumption in the above theorem implies that
lir% vol, (M¢) = vol,,(M).
£—

In the same paper the existence of such M, is established for any surface M and
almost any pair of points p1,p2 € M.

Theorem 3. Let M be a compact 2-dimensional Riemannian manifold with Gaus-
sian curvature K and let

M = (M\ K~1(0)) Uint X~ 1(0)

be an open, dense subset of M. Suppose that p1,ps € M and one of the following
possibilities occurs:
e M is connected,
e M has two connected components and the p; lie in different connected com-
ponents.
Then M. can be constructed so that the assumption of Theorem 2 holds. In
particular, Area(M.) — Area(M) as e — 0.

Remark 3. Note that Chavel and Feldman [19] only considered the case of a con-
nected manifold M. However, their arguments can be extended almost unchanged
to the non-connected case stated above.

2.2. Proof of Proposition 2. Consider the flat equilateral torus 7.q with a lat-
tice of equilateral triangles. After a suitable rescaling of the metric we have
Area(Teq) = 47%/v/3 and A1(7eq) = 2. The Euclidean sphere S? of volume 47 also
has A\;(S?) = 2. Take n — 1 copies of S? denoted by S;, i = 1,2,...,n— 1. Thus for
Ty = Teq H?;ll S; we have \,,(T},) = 2 and therefore A, (T,,) = 87 (n -1+ w/\/?:)
Successive applications of Theorem 3 yield the existence of a sequence M., diffeo-
morphic to torus, such that A, (M.) — A,(T,) as ¢ tends to 0. This observation
completes the proof of the first inequality.

The second inequality can be proved in the same way. The only difference is
that instead of 7.y one has to use the Lawson bipolar Klein bottle 731 (see §5 for
a definition). It was proved in [5] that Ay(75,1) = 127E (21/2/3). By a suitable
rescaling of the metric on 731, one can assume that A\ (731) = 2 and then apply
the construction in the previous paragraph.
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§ 3. Otsuki tori

3.1. The connection with minimal submanifolds of the sphere. Let
1: M 9 S™ be a minimal immersion in the unit sphere with canonical metric gean-
We denote the Laplace-Beltrami operator on M associated with the metric ¥*gean
by A. We introduce Weyl’s eigenvalue counting function

N(A) = #{i [ \i(M, g) < A}

The following theorem provides an approach for constructing explicit examples of
(smooth) extremal metrics.

Theorem 4 (El Soufi and Ilias [3]). Let ¥: M & S™ be a minimal immersion in
the unit sphere S™ endowed with the canonical metric gean -
Then the metric ¢¥*gecan on M is extremal for the functional Ay 2y (M, g).

Therefore, if we start with a minimal submanifold N of the unit sphere and
compute N(2), then the metric induced on N by this immersion is extremal for
the functional Ay (2)(IV,g). However, for a given minimal submanifold there is no
algorithm for computing the exact value of N(2). Nevertheless, this approach was
successfully realized by Penskoi in the papers [11] and [14] for the metrics (A) and
(B), and also by the author in [16] for the metrics (D). Some of the ideas in this
approach were used in [15] for the metrics (C).

3.2. A reduction theorem for minimal submanifolds. Let M be a Rieman-
nian manifold equipped with a metric ¢’ and let G be a compact group acting on M
by isometries. For every point € M we shall denote the stability subgroup of x
by G,.

Definition 4. For two points z,y € M we say that z < y if G, C gG,g~' for
some g € G. The orbit Gz is an orbit of principal type if for any point y € M one
has x < y.

Let M* be the union of all orbits of principal type; then M* is an open dense
submanifold of M (see [20]). Moreover, M*/G carries a natural Riemannian met-
ric g defined by the formula g(X,Y) = ¢'(X’,Y’), where X and Y are tangent
vectors at x € M*/G, and X’ and Y’ are tangent vectors at 2’ € 7~ !(z) C M*
(where 7 is the projection) such that X’ and Y are orthogonal to the orbit 7= (z)
and dn(X') =X, dn(Y') =Y.

Let f: N & M be a G-invariant immersed submanifold, that is, a manifold
equipped with an action of G by isometries such that g - f(z) = f(¢ - «) for any
x € N.

Definition 5. The cohomogeneity of a G-invariant immersed submanifold NV is the
number dim N — v, where v is the dimension of the orbits of principal type.

For x € M*/G we define a volume function V(z) by the formula V(z) =
Vol(rm~1(x)). Also for each integer k > 1 we define a metric g, = V*/*¢.

Proposition 3 (Hsiang and Lawson [21]). Let f: N & M* be a G-invariant
immersed submanifold of cohomogeneity k, and let J\{*/G be equipped with the met-
ric g,. Then f: N & M* is minimal if and only if f: N/G & M*/G is minimal.
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3.3. Otsuki tori. Otsuki tori were introduced by Otsuki in [22]. We recall the
concise description given by Penskoi in [11]. For more details see §1.2 of [11].
Consider the action of SO(2) on the three-dimensional unit sphere S* C R* given
by the formula

a- (z,y,2,t) = (cosax + sin ay, — sin ax + cos ay, 2, t),

where a € [0,27) is a coordinate on SO(2). The space of orbits S?/SO(2) is the
closed half-sphere Si,

C+2H=1, ¢=0,

where the point (g, z,t) corresponds to the orbit (qcosa,gsina,z,t) € S3. The
space of principal orbits (S*)*/SO(2) is the open half-sphere

S0 = {(g,2,t) € $?|g > 0}.
We introduce the spherical coordinates in the space of orbits,

t = cos psiné,
z = cos @ cos b,
q = sin .

Since we are looking for minimal submanifolds of cohomogeneity 1, Hsiang-Lawson’s
metric is given by the formula

V2(dp? + cos? pdf?) = 4n? sin” p(dp? + cos? pdh?). (3.1)

Definition 6. An immersed minimal SO(2)-invariant two-dimensional torus in S?,
such that its image by the projection 7: S? — S?/S0(2) is a closed geodesic in
(S%)*/SO(2) endowed with the metric (3.1), is called an Otsuki torus.

The following proposition was proved in [11].

Proposition 4. Apart from the particular case given by the equation ¢ = w/4,

Otsuki tori are in one-to-one correspondence with rational numbers p/q such that
2

V2
2

< p,q¢>0, (p,q) =1

N =
ISH k]

Definition 7. We denote the Otsuki torus corresponding to p/q by O,,/,. Follow-
ing [11], we reserve the term ‘Otsuki tori’ for the tori Oy, q.

In order to fix our notation we give a sketch of the proof of Proposition 4.
Proof. We shall use the standard notation for the coefficients of the metric (3.1),
E = 4n%sin? ¢, G = 472 sin® p cos? .

As we know, the velocity vector of a geodesic has constant length. Suppose this
length equals 1. This assumption, together with the equation of geodesics for g,
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yields the following two equations:

. sina cosa
= ———, 3.2
2 cos? psin? ¢ (8:2)

o sin? ¢ cos? ¢ — sin? a cos® a 33
P = PTI S——T ; (3.3)
472 sin” p cos? ¢

where a is the minimum value of ¢ on the geodesic. Then the geodesic is situated in

the annulus a < ¢ < /2 —a. We choose a natural parameter ¢ such that ¢(0) = a.
We denote the difference between the value of 6 corresponding to ¢ = a and the

value of 0 closest to it corresponding to ¢ = 7/2 — a by Q(a). It is clear that

T/2—a

dy
Qa) = sinacosa/ .
a cos p+/sin? ¢ cos? ¢ — sin? a cos? a

The geodesic is closed if and only if Q(a) = pr/q. The rest of the proof follows
from the following properties of the function Q(a) (see [22]):
1) Q(a) is continuous and monotonic on (0, 7/4],
2) lim, o4 Q(a) = 7/2 and Q(7/4) = 7/V/2.

3.4. Estimates for Az,_1(0p/q). According to [11], the metric on an Otsuki
torus O,/ is extremal for the functional Asp—1(T?, g). The goal of this section is
to prove the following proposition.

Proposition 5. For all p, q such that (p,q) = 1 and 1/2 < p/q < V2/2, the
following inequality holds:

s

81 <2p -2+ \/§> > Agp_l(op/q).

In order to prove Proposition 5 we have to prove several auxiliary propositions.

Proposition 6. If a € (0,7/4) is such that Q(a) = pr/q, then
Aoy 1(0,/q) = 8mq cos aE(\/ 1 — tan? a).

Proof. We shall use the notation in Proposition 4. As we know,

VG =2
VEG '’

where ¢ = 2wsinacosa. Therefore, the length of the segment on the geodesic
7(Op/q) between the closest points with ¢ = a and ¢ = 7/2 — a is equal to 271,

where
[ sin g "

\/1 — sin? a cos? a/(sin? p cos? @)

o=+
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We express I in terms of elliptic integrals,

cosa xm cos?a 1—u
I = du

2 .
ina \/x2 (1 — 22) — cos?asin’a sin® a \/u(l—u)—cosza&n?a

1/1 \/(l—sin a)—(cos2a—sin2a)t 7COS / V11— (1—tan?a)t gt
~ 3 H1 1) B \/Tt)

1 2 V.93

1—(1-¢

=cosa \/ ( an”a)y dy:cosaE(\/l—tan2a).
0 V1—y?

Here we have used the following changes of variables:

cosp =, % =u, u = (cos® a — sin? a)t + sin” a, t = y>.

Since the maps 6 — 640y and 6 — 6y — 6 are isometries, the length of the geodesic
7(0,q) is equal to 4mq cos aE(V1 — tan® a). By Proposition 13 in [11], Agp—1(0, /)
is equal to twice the length of the geodesic w(O)/q)-

Proposition 7. If k € [0, 1] the following inequality holds:

2

Kk =5

E(k) > 0.
Proof. We expand the left-hand side using the definitions of F and K,

2 71'/2
K(k — V1 —k2sin®6df
() - 2_k2 / 1—k2sin%0 2_k2/0 o

/2 924in%26 —1
2_k2 0 1— k2sin%6

Since the integrand is negative on (0,7/4) and positive on (mw/4,7/2), one has

/"/2 2sin? 0 — 1 _/“/4 2sin® 0 — 1 /2 2sin?0 — 1

1— k2sin20 1 — k2sin?6 7/4 \/1—k2sin?0
/4 2 sin? 0—1 ™/2 9sin? 9—1
W V=

cos 20 df = 0.

/1o k2 /2 /0
‘We introduce the notation

®(a) = cos aE(\/ 1 — tan? a).
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Proposition 8. The function ®(a) is nondecreasing and ®'(a) < 1/2 for any
a € (0,7/4). In particular, 1 = ®(0) < ®(a) < ®(r/4) = 7/(2v/2).

Corollary 1. The following inequalities hold:
4v21%q > Nop_1(0,,,) = 87q. (3.4)

Remark 4. We should point out that while the manuscript was in preparation
inequality (3.4) appeared in the paper [23].

Proof of Proposition 8. Recall the following formulae for the derivatives of elliptic
integrals:

dE(k) _ E(k) — K(k) dK(k) _ E(k)  K(k) (35)
dk k ’ dk k(1 — k2?) ko’ '
oll(n, k) 1 (k? —n) (n? — k?) "
o = S0 ) (E(k) + S R () + ,k)), o
Oll(n, k k E(k ’
f% - n— k2 <k2()1 +H(”’k)>'

We introduce the notation 3 = v/1 — tan® a. Then

' (a) = cosa<—2 tana2 cigi)(l_[i;?z a)) —sinaE(0)
= —sina(E(ﬂ) + ié?i:gﬁgl)

- VOB (k) - 25 50)). (3.7

Now the fact that the function ®(a) is monotonic follows from Proposition 7.
To prove the second part, we return to formula (3.7). We have

2cos?aE(B) — K(B) )

cos2a —sin’a

' (a) = —sina(

B sina /”/2QCOSQa(l—ﬁzsiHQQ)—ldO
cos?a —sin®a Jy V11— [2sin?6
7'(‘/2 2'2071 ﬂ'/22'2071
=sina Sm—d@gsina SIH7dt9
0 1—/32sin%0 x4 /1 — 2
/2 in20 ™t 1
= —cosa/ cos20df = cosabln < -,
/4 2 /2 2

This completes the proof of Proposition 8.
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Proposition 9. The function (2/7)Qa) — ®(a) is increasing on the interval
(0,7/4).

Proof. In [23] the following formula was proved:

1 2
Qa) = H(—COS2 a7 V1 — tan? a).

sina sin“ a

Using (3.6), we obtain the following formula:

dQ(a) _ 1 K(m),QCOSGE<m).

da cos a cos 2a cos 2a

Recall the notation 3(a) = v/1 — tan® a. Then

_ 4233/2
o) = B (k) - 5 2580 (39

—_ 32 2
oo = (1)

Moreover, by formula (3.7) we find that

<I>’(a) _V (1 - ﬁ;g(Q - ﬁ2> (K(ﬁ) _ 5 _QﬁQE(ﬁ))

The inequality 2/7(2 — 3%) — /1 — 32 > 0 and Proposition 7 imply the inequality

2o - v =L (k) - 2w (2e- ) - Vi) 2o

0 k2 2 — 32

Corollary 2. Ifa € [1/5,7/4], then

%Q(a) — ®(a) > 2?\/%”

Proof. Using the tables of elliptic integrals given in the book [17], for instance, we

obtain the inequality
9 _
20(1) _of1) . 2VE-7
™ \5 5 3V3
The rest of the proof follows as the function on the left-hand side is monotonic.

Proposition 10. If £ € [0,1/5], then

) > Z(\% - 1)1.
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Proof. By formula (3.8) for £ € [0,1/5] we see that

_ 213/2
(6 = E= IO (K(3(6) - 55 B0

(D) (o),

In the last inequality we used the facts that K (k) is an increasing function, whilst
E(k) and ((a) are decreasing functions. The table of the elliptic integrals in [17]
provides the inequality

K(5(2)) 2 (5(1)) - 1 ( 2 )
which completes the proof.

Proof of Proposition 5. We want to prove that
W) > 8mq®(a),

V3

where Q(a) = pr/q. This inequality is equivalent to the following:

2}3 2\/§—7T

q qv3

Since Q(a) = pm/q, it is sufficient to prove that

>2\/§—7T
/3

Since ¢ > 3, Corollary 2 shows that inequality (3.9) holds for a € [1/5,7/4]. In
order to prove this inequality for a € [0,1/5] we note that by Proposition 8

2 2

—(a) — 2(a) = _((a) — &(0)) — (2(a) — 2(0))

™

8 <2p -2+
> O(a).

%Q(a) — ®(a) (3.9

for some &,m € (0,a). Moreover,

1 2p — 1
2" < p2q 9 = Sﬂ' 5T = Q(a) — Q(0) = a2’ (),
or

1 2a
Z < =08,
i €3]

Therefore, (3.9) follows from the inequality

%Q’(g) - % > i(2 — \%)Ql(ﬁ),

or the inequality

) > Z(\% - 1) o

The last inequality follows easily from Proposition 10.
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§ 4. Lawson surfaces

A Lawson tau-surface 7, is an immersed surface in the sphere S* defined by
the doubly-periodic immersion of R? in R?* given by the formula

(cos ma cos y, sinma cosy, cos kxsiny, sin kzsiny).

It was introduced by Lawson in [24]. He also proved that for each pair {m, k} such
that m > k > 1 and (m, k) = 1 the surfaces 7, are distinct compact immersive
surfaces in S®. Assume that (m,k) = 1; if both m and k are odd then 7., is
a torus, which we call a Lawson torus. Otherwise 7, is a Klein bottle, called
a Lawson Klein bottle.

Proposition 11 (Penskoi [14]). Let 7, 1 be a Lawson surface. Then the induced
metric on Tm i 15 an extremal metric for the functional Aj(M, g), where

5]

j=2 +m4k—1, (4.1)

M = T? if both m, k are odd and M =K otherwise.
The corresponding value of the functional is

Ai(T ) = 87rmE< -

Proposition 12. Let j be defined by formula (4.1). If Ty i is a Lawson torus, then

Aj(Tm) < 87 <j —14 ;g)

If T 1 is a Klein bottle, then

ANj(Tmp) <8m(j— 1)+ 127TE<2\3/§>.
Proof. Tt is sufficient to show that

(4.2)
Note that the function

cp(x):1+x—E(\/1—x2)

is positive on the interval [0,1]. Indeed,
/2 /2
E(z) :/ 1—x2sm2¢d¢</ 1 —sin?¢ + /(1 — 22)sin® v ) dop
A , (it )
=14++1—22.

Now divide both sides of (4.2) by m and denote the ratio k/m € [0,1] by z.

Since
24 12
fm? +k > m+k > m+1 >@’
2 2 2 2

inequality (4.2) follows from the positivity of ¢(x).
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§ 5. Bipolar surfaces to Lawson surfaces

Let I: N & S? be a minimal immersion. The Gauss map I*: N — S3 is defined
pointwise as the image of the unit normal in S* translated to the origin in R*. Then
the exterior product I = I A I* is an immersion of N in S® C RS. In [24] Lawson
proved that this immersion is minimal. The image I(N) is called the bipolar surface
to N.

We denote the bipolar surface to the surface 7,y by Ty . Lapointe proved
in [15] that

o if mk =0 (mod2), then 7, 1, is a torus carrying an extremal metric for the
functional Ayy,—2(T?, g) and

bl

m)

A4m—2(;m,k) = 167TmE(
m

o if mk =1 (mod4), then 7, is a torus carrying an extremal metric for the
functional As,, 2(T?, g) and

)

m)

AQm_g(?ch) = 87rmE<
m

o if mk =3 (mod4), then 7, x is a Klein bottle carrying an extremal metric
for A,,—2(Kl, g) and

m

Jm2 _ 2
Am72(,7‘:m’k;) = 47T’ITLE<M>

Proposition 13. If mk =1 (mod4), then the following inequality holds:

~ 7T
A2m72(7—m7k) < 87 (2m -3+ \/§> .
If mk =0 (mod 2), then the following inequality holds:
~ T
A4m72(7—m,k) < 87 (4m -3+ \/§> .
If mk = 3 (mod4), then the following inequality holds:
2v/2
3

8m(m — 3) + 127rE( ) > Az (Fone).

Proof. In order to prove the first inequality it is sufficient to prove that

/2 — k2
mE<m> < (2m—2). (5.1)
m
It is well-known that E(k) < /2 for k € [0,1]. This implies that it is sufficient to
prove that
mm < 4m — 4.
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This inequality holds for m > 5. The statement for 7, ; follows from the fact that
711 is a Clifford torus and A;(r1) = 472,

In the same way, in order to prove the second inequality in Proposition 13 it is
sufficient to prove that

7rm<4m—3+i.

V3

This inequality holds for m > 2.
The third inequality is equivalent to the following:

2(m — 3) + 3E(2\3@> > mE(ijn_kQ>

Since E(k) < /2, it is sufficient to prove that

<2g)m>63E<2‘3/§).

This inequality holds for m > 7. For the exceptional case {m,k} = {5,3} one has
to verify the third inequality explicitly using the tables of elliptic integrals in [17].

§ 6. Bipolar surfaces to Otsuki tori
The following proposition was proved in [16].
Proposition 14. The bipolar surface 6p/q to an Otsuki torus O, /4 is a torus.
If q is odd, then the metric on the bipolar Otsuki torus O
functional Aogiap—2(T?, g) and A2q+4p,2(5p/q) < 4v/2q72. N
If q is even, then the metric on the bipolar Otsuki torus O, is extremal for the
functional Agyop—2(T?, g) and Agiap—2(0p/,) < 2v/2q7>.
Proposition 15. If q is even, then the following inequality holds:

p/q 15 extremal for the

™
Agrop-2(0p)q) < 8 (q +2p -3+ \/3) :

If q is odd, then

7
A2q+4p72(0p/q) < 81 (2q +4p -3+ \/5)

Proof. If q is even, then we have
0
V3

We have used the inequalities 2p > g and p > 1 in order to prove the last inequality.
In the same way, if ¢ is odd, then we have

87r<q+ 2p — 3+ ) > 8m(q+ 2p — 2) > 12mq > 2v/27%g.

=

Now it is easy to see that Propositions 5, 12, 13 and 15 together with Proposi-
tion 2 imply Theorem 1.

8 (2(] +4p— 3+ ) > 8m(2q + 4p — 2) > 24mq > 4V/21%g.
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§ 7. The Clifford torus

We will represent the Clifford torus as a flat torus with a square lattice with
edges equal to 27. In this case the Laplace-Beltrami operator coincides up to a sign
with the classical two-dimensional Laplace operator. Therefore, using separation
of variables we obtain a basis of the following form for the eigenfunctions:

sin nx sin my, sin nx cos ly, cos kx sinmy, cos kx cos ly,

where n,m € Nand k,l € Z>o. The corresponding eigenvalues are equal to n?+m?,
n? + 12 k2 +m?, k2 + 2

Proposition 16. Weyl’s counting function N(X) for the Clifford torus is equal to

the number of integer points in the open disk of radius '\ with centre at the origin
of R2.

Proof. We introduce a one-to-one correspondence v between eigenfunctions and
integer points in R%. We set

v(sinnx sinmy) = (n,m),

(
v(sinnx cosly) = (n, =),

v(cos kxsinmy) = (—k,m),
(

v(cos kx cosly) = (—k, —I1).

We also note that the eigenvalue of the function f is equal to the square of the
distance between (0,0) and v(f). This observation completes the proof.

7.1. Proof of Proposition 1. It is easy to check that the set of functions
(sin kx, cos kz, sin ky, cos ky)

forms an isometric immersion of the Clifford torus in the unit sphere. The same is
true for the set

(sin kz sin ky, sin kx cos ky, cos kz sin ky, cos kx cos ky)
and the set

(sin kx sin ly, sin kx cos ly, cos kx sinly, cos kx cosly,

sin lz sin ky, sinlz cos ky, cos Lz sin ky, coslx cos ky),

where k # [. Therefore, according to Theorem 4, the metric on the Clifford torus
is extremal for the functionals AN(Tz)(']IQ,g), where 72 = n? + m? with n,m € Z,
and AN(rz)(TC’l) == 47‘[‘2’/“2.
Let B, be a disc of radius r. Then the simple estimate
\/§ 2
N(r?) > Area(B = e
(r<) rea(B,_ 3/ 77(7‘ 5 )

holds.
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So it is sufficient to prove that

2\ 2
2(7’{) >r2,

and this inequality holds for 72 > 6. For r? < 6 we have the inequality

87N (r?) > dmr?.

This inequality can be obtained by a direct enumeration of all possible values of 72.
This completes the proof of Proposition 1.

The author thanks A. V. Penskoi for posing this problem, for fruitful discussions
and for his invaluable help in the preparation of the manuscript.
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