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Abstract

The i-th eigenvalue λi of the Laplace-Beltrami operator on a surface can

be considered as a functional on the space of all Riemannian metrics of unit

volume on this surface. Surprisingly only few examples of extremal metrics

for these functionals are known. In the present paper a new countable family

of extremal metrics on the torus is provided.
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Introduction.

LetM be a closed surface and g be a Riemannian metric onM . Let us consider the
associated Laplace-Beltrami operator ∆ acting on the space of smooth functions
on M ,

∆f = − 1
√

|g|
∂

∂xi
(
√

|g|gij ∂f
∂xj

)

.

It is well-known that the spectrum of ∆ is non-negative and consists only of eigen-
values, each eigenvalue has finite multiplicity and the eigenfunctions are smooth.
Let us denote the eigenvalues of ∆ by

0 = λ0(M, g) < λ1(M, g) 6 λ2(M, g) 6 λ3(M, g) 6 . . . ,

where eigenvalues are written with multiplicities.
The eigenvalues possess the following property,

∀t > 0 λi(M, tg) =
λi(M, g)

t
,
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Therefore, given a fixed surface M one has supλi(M, g) = +∞, where supremum
is taken over the space of all Riemannian metrics on M . But if we consider
supremum over the space of all Riemannian metrics on M of unit area then the
question about the value of supλi(M, g) becomes more interesting. In fact, in the
case dimM = 2 we can consider functionals

Λi(M, g) = λi(M, g)Area(M, g)

unvariant under the transformation g 7→ tg and investigate their supremum over
the space of all Riemannian metrics.

It is known that functionals Λi(M, g) are bounded from above. Yang and Yau
proved in the paper [20] that for an orientable surface M of genus γ the following
inequality holds,

Λ1(M, g) 6 8π(γ + 1).

Moreover, Korevaar proved in the paper [13] that there exists a constant C such
that for any i > 0 and any compact surface M of genus γ the following inequality
holds,

Λi(M, g) 6 C(γ + 1)i.

However, Colbois and Dodziuk proved in the paper [4] that for any manifold M
of dimension dimM > 3 the functional λi(M, g) is not bounded on the space of
Riemannian metrics g on M of unit volume.

The functional Λi(M, g) depends continously on the metric g, but this func-
tional is not differentiable. However, Berger proved in the paper [1] that for an
analytic family of metrics gt there exist the left and right derivatives with respect
to t. This is a motivation for the following definition, see the papers [6, 16].

Definition 1. A Riemannian metric g on a closed surfaceM is called an extremal
metric for the functional Λi(M, g) if for any analytic deformation gt such that
g0 = g the following inequality holds,

d

dt
Λi(M, gt)

∣

∣

∣

t=0+
6 0 6

d

dt
Λi(M, gt)

∣

∣

∣

t=0−
.

The detailed list of surfaces M and values of index i such that maximal or at
least extremal metrics are known is quite short and can be found in the introduc-
tion to the paper [18].

It turns out that extremal metrics are closely related to minimal submanifolds
of the spheres. Let M # Sn be a minimally immersed submanifold of the unit
sphere Sn ⊂ Rn+1. We denote by ∆ the Laplace-Beltrami operator on M associ-
ated with the induced metric g on M . Let us introduce the eigenvalues counting
function

N(λ) = #{i|λi(M, g) < λ}.
This function is often called the Weyl’s function. The following theorem provides
a general approach to finding smooth extremal metrics.

Theorem 1 (El Soufi and Ilias, [7]). Let M # Sn be a minimally immersed
submanifold of the unit sphere Sn ⊂ Rn+1. Then the metric induced on M by the
immersion is extremal for the functional ΛN(2)(M, g)
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We also need to recall another result concerning minimal submanifolds of the
sphere. This theorem can be found e.g. in the book [12].

Theorem 2. Let M # Sn be a minimally immersed submanifold of the unit
sphere Sn ⊂ Rn+1. Then the restrictions x1|M , . . . , xn+1|M on M of the standart
coordinate functions of Rn+1 are eigenfunctions of the Laplace-Beltrami operator
on M with eigenvalue dimM .

Thus, it is possible to take an immersed minimal surface M in the sphere,
then compute N(2) and deduce that the metric induced on M by the immersion
is extremal for ΛN(2)(M, g). This approach was successfully realized for the first
time by Penskoi in the papers [18, 19] for Otsuki tori and Lawson tau-surfaces.
Although, we should mention that Lapointe in the paper [14] used some of these
ideas in investigation of bipolar surfaces to Lawson tau-surfaces. The work of La-
pointe was inspired by the paper [10] where Jakobson, Nadirashvili and Polterovich
proved that the metric on the Lawson bipolar surface τ̃3,1 is extremal for the func-
tional Λ1(Kl, g). Later, El Soufi, Giacomini and Jazar proved in the paper [5] that
this metric is the unique extremal metric.

In the present paper the extremality of the bipolar surfaces to Otsuki tori
is investigated. The definition of Otsuki tori and bipolar surfaces are given in
Sections 1.2 and 1.3 respectively. At this point it is sufficient to know that for

every rational number
p

q
such that (p, q) = 1,

1

2
<
p

q
<

√
2

2
, there exists a minimal

immersed surface in S4 denoted by Õ p

q
. The main result of this paper is the

following theorem.

Theorem 3. The bipolar surface Õ p

q
to an Otsuki torus is a torus. If q is odd

then the metric on Õ p

q
induced by the immersion is extremal for Λ2q+4p−2(T

2, g).

If q is even then the metric induced by the immersion on Õ p

q
is extremal for

Λq+2p−2(T
2, g).

The paper is organized in the following way. The Otsuki tori and their bipolar
surfaces are defined in Sections 1.2 and 1.3. A convenient parametrization of
bipolar surfaces is given in Section 1.4. Section 2 contains the proof of the main
theorem.

1 Bipolar surfaces to Otsuki tori.

1.1 Reduction theorem for minimal submanifolds. LetM be a Rieman-
nian manifold equipped with a metric g′ and I(M) be its full isometry group. Let
G ⊂ I(M) be a compact isometry group. Let us denote by π the natural projection
π : M →M/G.

Denote by M∗ the union of all orbits of principal type, then M∗ is an open
dense submanifold of M . The subset M∗/G of M/G is equipped with a nat-
ural Riemannian metric g defined by the formula g(X,Y ) = g′(X ′, Y ′), where
X,Y are tangent vectors at x ∈ M∗/G and X ′, Y ′ are tangent vectors at a point

3



x′ ∈ π−1(x) ⊂ M∗ such that X ′ and Y ′ are orthogonal to the orbit π−1(x) and
dπ(X ′) = X, dπ(Y ′) = Y .

Let f : N # M be a G-invariant immersed submanifold, i.e. a manifold
equipped with an action of G by isometries such that g · f(x) = f(g · x) for
any x ∈ N .

Definition 2. A cohomogeneity of a G-invariant immersed submanifold N is the
number dimN − ν, where ν is the dimension of the orbits of principal type.

Let us define for x ∈ M∗/G a volume function V (x) by the formula V (x) =

Vol(π−1(x)). Also for each integer k > 1 let us define a metric gk = V
2

k g.

Proposition 1 (Hsiang, Lawson [9]). Let f : N #M∗ be a G-invariant immersed
submanifold of cohomogeneity k, and let M∗/G be equipped with the metric gk.
Then f : N #M∗ is minimal if and only if f̄ : N/G#M∗/G is minimal.

1.2 Otsuki tori. Otsuki tori were introduced by Otsuki in the paper [17].
Let us recall the concise description by Penskoi from the paper [18]. For more
details see Section 1.2 of the paper [18]. Consider the action of SO(2) on the
three-dimensional unit sphere S3 ⊂ R4 given by the formula

α · (x, y, z, t) = (cosαx+ sinαy,− sinαx + cosαy, z, t),

where α ∈ [0, 2π) is a coordinate on SO(2). The space of orbits S3/SO(2) is the
closed half-sphere S2+,

q2 + z2 + t2 = 1, q > 0,

where a point (q, z, t) corresponds to the orbit (q cosα, q sinα, z, t) ∈ S
3. The space

of principal orbits (S3)∗/SO(2) is the open half sphere S2>0 = {(q, z, t) ∈ S2|q > 0}.
It is natural to introduce the spherical coordinates in the space of orbits,







t = cos ν sinλ,
z = cos ν cosλ,
q = sin ν

Since we look for minimal submanifolds of cohomogeneity 1, the Hsiang-Lawson’s
metric is given by the formula

V 2(dν2 + cos2 νdλ2) = 4π2 sin2 ν(dν2 + cos2 νdλ2). (1)

Definition 3. An immersed minimal SO(2)-invariant two-dimensional torus in
S3 such that its image by the projection π : S3 → S3/SO(2) is a closed geodesics
in (S3)∗/SO(2) equipped with the metric (1) is called an Otsuki torus.

The following proposition can be found in the paper [18].

Proposition 2. Except one particular case given by the equation ψ = π
4 , Otsuki

tori are in one-to-one correspondence with rational numbers p

q
such that

1

2
<
p

q
<

√
2

2
, p, q > 0, (p, q) = 1.
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Definition 4. By O p

q
we denote the Otsuki torus corresponding to p

q
. Following

the paper [18] we reserve the term ”Otsuki tori” for the tori O p

q
.

In order to fix notations we give a sketch of the proof of Proposition 2.

Proof. Let us use the standard notation for the coefficients of the metric (1),

E = 4π2 sin2 ν, G = 4π2 sin2 ν cos2 ν.

The equation of geodesics for λ̈ reads

λ̈+
1

G

∂G

∂ν
ν̇λ̇ = 0.

Hence, 2πc = Gλ̇ is an integral of motion and

λ̇ =
c

2π cos2 ν sin2 ν
. (2)

As we know the velocity vector of a geodesic has a constant length. Suppose this
length equals 1. Then

Eν̇2 +Gλ̇2 = 1 ⇔ ν̇2 =
sin2 ν cos2 ν − c2

4π2 sin4 ν cos2 ν
(3)

This implies sin2 ν cos2 ν − c2 > 0 and sin2 ν cos2 ν = c2 iff ν̇ = 0.
Since the point corresponding to ν = 0 does not belong to (S3)∗/SO(2),

there exists a minimal value a of the coordinate ν on a geodesic. Therefore
c = ± sina cos a and the geodesics are situated in the annulus a 6 ν 6

π
2 − a.

We choose a natural parameter t such that ν(0) = a.
Equations (2) and (3) imply

dν

dλ
= ± cos ν

√

sin2 ν cos2 ν − sin2 a cos2 a

sin a cos a
.

The right hand side of this equation equals 0 only at ν = a and ν = π
2 − a.

Let us denote by Ω(a) the distance between the value of λ corresponding to
ν = a and the closest to it value of λ corresponding to ν = π

2 − a. It is clear that

Ω(a) = sin a cos a

π
2
−a
∫

a

dν

cos ν
√

sin2 ν cos2 ν − sin2 a cos2 a
.

The geodesic is closed iff Ω(a) =
p

q
π. The rest of the proof follows from

properties of the function Ω(a), see the paper [17],

1) Ω(a) is continuous on
(

0,
π

4

]

,

2) lim
a→0+

Ω(a) =
π

2
and Ω

(π

4

)

=
π√
2
.
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The Otsuki tori O p

q
are minimally immersed into S3 by

Ia : [0, 2π)× [0, t̃) → R
4

Ia(α, t) = (cosα sin ν(t), sinα sin ν(t), cos ν(t) cosλ(t), cos ν(t) sinλ(t)),

where Ω(a) = p

q
π and t is a natural parameter on the corresponding closed geodesic

π(O p

q
) such that min

t
ν(t) = ν(0) = a and t̃ is the length of this geodesic.

1.3 Construction of bipolar surfaces. Following the papers [11, 15], we
define the surface Õ p

q
bipolar to O p

q
as an exterior product of I and I∗, where I∗

is a unit vector normal to the torus O p

q
and tangent to S3. By a straightforward

computation one obtains

I∗a = 2π sin ν(λ̇ cos2 ν cosα, λ̇ cos2 ν sinα, ν̇ sinλ− λ̇ cos ν sin ν cosλ,

− ν̇ cosλ− λ̇ cos ν sin ν sinλ),

where the dot denotes the derivative with respect to t, and

Ia ∧ I∗a =

2π sin ν(0, cosα(λ̇ cosλ cos ν − ν̇ sinλ sin ν), cosα(λ̇ sinλ cos ν + ν̇ cosλ sin ν),

sinα(λ̇ cosλ cos ν − ν̇ sinλ sin ν), sinα(λ̇ sinλ cos ν + ν̇ cosλ sin ν), ν̇ cos ν).

(4)

The paramerized surface Ia ∧ I∗a is a minimal (see a proof in the paper [15])
immersed submanifold in the equator S4 ⊂ S5. But formula (4) is inconvenient.
In the next section another parametrization of Õ p

q
is proposed.

1.4 Paramerization of Õ p

q
. Let us now apply the Hsiang-Lawson’s reduction

theorem (Proposition 1) in the case of M = S4 and G = SO(2). Let x, y, z, u, v be
the standard coordinates in R5 and S4 be the standard unit sphere in R5. Let us
consider an action of SO(2) given by the formula

α·(x, y, z, u, v) = (cosαx−sinαy, sinαx+cosαy, cosαz−sinαu, sinαz+cosαu, v),

where α ∈ [0, 2π) is a coordinate on SO(2).

The principal orbits are circles of radius
√

x2 + y2 + z2 + u2, the exceptional
orbits are the poles N = (0, 0, 0, 0, 1) and S = (0, 0, 0, 0,−1). It is easy to see, that
for each principal orbit there are exactly two points on the equatorial sphere S3

of the unit sphere S4 given by the equation y = 0. Therefore, the space of orbits
(S4)∗/SO(2) can be identified with the quotient of this equatorial sphere S3 by
the action of Z2 given by

σ(x, 0, z, u, v) = (−x, 0,−z,−u, v), (5)
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where σ is the nontrivial element of Z2. Let us call the equatorial sphere given by
the equation y = 0 a generalized space of orbits. Let us denote by p the quotient
map from the generalized space of orbits to the space of orbits,

p : S3\{N,S} → (S4)∗/SO(2).

Let us denote by π̃ the natural projection of (S4)∗ onto the space of orbits.
Let g1 be the Hsiang-Lawson’s metric on the space of orbits. The preimage

p−1(s) of a closed geodesic s in the space of orbits is either a closed geodesic γ
in (S3\{N,S}, p∗g1) such that σγ = γ, or a pair of closed geodesics {γ1, γ2} in
(S3\{N,S}, p∗g1) such that σγ1 = γ2. Thus, each geodesic in the space of orbits
is the image p(γ) of some geodesic γ in the generalized space of orbits.

It is useful to introduce the spherical coordinates in the generalized space of
orbits,















x = cosϕ sin θ,
z = cosϕ cos θ cos ρ,
u = cosϕ cos θ sin ρ,
v = sinϕ.

Then the pullback of the volume function to the generalized space of orbits is given
by the formula V (ϕ, θ, ρ) = 2π sinϕ.

These coordinates induce coordinates on S4 by the following formulae,























x = cosα cosϕ sin θ,
y = sinα cosϕ sin θ,
z = cosα cosϕ cos θ cos ρ− sinα cosϕ cos θ sin ρ,
u = sinα cosϕ cos θ cos ρ+ cosα cosϕ cos θ sin ρ,
v = sinϕ,

where α ∈ [0, π). The metric on S4 is given by the formula,

cos2 ϕdα2 + dϕ2 + cos2 ϕdθ2 + cos2 ϕ cos2 θ(dαdρ + dρ2), (6)

and the induced metric on the generalized space of orbits is given by the formula,

g = dϕ2 + cos2 ϕdθ2 + cos2 ϕ cos2 θ sin2 θdρ2.

Minimal SO(2)-invariant submanifolds of cohomoheneity 1 of the sphere S4

correspond to closed geodesics in the space of orbits (S4)∗/SO(2). According to
the discussion at the beginning of this section, in order to find these submanifolds
it is sufficient to find closed geodesics in S3\{N,S} equipped with the metric

g1 = V 2g = 4π2 cos2 ϕ(dϕ2 + cos2 ϕdθ2 + cos2 ϕ cos2 θ sin2 θdρ2).

Indeed, for any closed geodesic s in the space of orbits there exists a closed geodesic
γ in the generalized space of orbits such that p(γ) = s. Therefore, the minimal
submanifold π̃−1(s) coincides with the submanifold π̃−1(p(γ)). Moreover, the
image by p of a geodesic in the generalized space of orbits is a geodesic in the

7



space of orbits. Hence, the set of submanifolds π̃−1(p(γ)) is exactly the set of
minimal SO(2)-invariant submanifolds of cohomoheneity 1.

Since the coefficients of the metric g1 do not depend on ρ, the 2-dimensional
sphere defined by ρ = 0 is the totally geodesic 2-sphere equipped with the metric

g̃1 = 4π2 cos2 ϕ(dϕ2 + cos2 ϕdθ2).

Let us now look for minimal submanifolds of the special type. Consider the
sphere S2 ⊂ S4 defined by y = 0, ρ = 0. Then for a closed geodesic γ(t) =
(ϕ(t), θ(t)) in the space (S2\{N,S}, g̃1) one has the corresponding immersed min-
imal submanifold π̃−1(p(γ)) in S4. The immersion J is given by the formula

x = cosα cosϕ(t) sin θ(t),

y = sinα cosϕ(t) sin θ(t),

z = cosα cosϕ(t) cos θ(t),

u = sinα cosϕ(t) cos θ(t),

v = sinϕ(t),

(7)

where α ∈ [0, 2π).

Proposition 3. The set of bipolar surfaces Õ p

q
coincides with the set of minimal

surfaces π̃−1(p(γ)) ⊂ S4, where γ is a closed geodesic in the space (S2\{N,S}, g̃1).

Proof. In the same way as in the proof of Proposition 2, one obtains

θ̇ =
cos2 b

2π cos4 ϕ
(8)

and

ϕ̇ = ±
√

cos4 ϕ− cos4 b

2π cos3 ϕ
. (9)

By Jb(α, t) denote the immersion of the minimal submanifold corresponding to
a geodesic such that the minimal value of ϕ(t) equals to b, where t is a natural
parameter on the geodesic π̃(Jb). Let us show that for any point γ(t) on the
geodesic π(Ia) there exists a neighbourhood U of a point t ∈ R/(lZ), where l is
the length of the geodesic π(Ia), and a function τ(t) defined on U , such that Ia ∧
I∗a(α, τ(t)) = Jb(a)(α, t), where cos4 b(a) = 4 sin2 a cos2 a. Comparing equations
(4) and (7) one obtains

sinϕ(t) = 2πν̇(τ(t)) cos ν(τ(t)) sin ν(τ(t)). (10)

Let us consider the case ν̇ > 0 and ϕ̇ > 0. On the one hand, using formula (3),
one has

sinϕ(t) =

√

cos2 ν(τ(t)) sin2 ν(τ(t)) − c2

sin ν
, (11)
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where c = sin a cosa. Applying
d

dt
to equation (11) and using formula (3) one

obtains

ϕ̇(t) cosϕ(t) = τ̇ (t)
c2 − sin4 ν(τ(t))

2π sin4 ν(τ(t)) cos ν(τ(t))
.

On the other hand, combining equations (9) and (10) one has the following formula,

ϕ̇(t) cosϕ(t) =
c2 − sin4 ν(τ(t))

2π(sin4 ν(τ(t)) + c2)
.

Therefore, one obtains a differential equation for τ(t),

τ̇ =
sin4 ν(τ) cos ν(τ)

sin4 ν(τ) + c2
. (12)

Let τ(t) be a solution of this equation. Comparing equations (4) and (7) one has
the following formulae,

cosϕ(t) sin θ(t) = 2π sinψ(τ(t))(λ̇ cosλ cosψ − ν̇ sinλ sin ν)(τ(t)),

cosϕ(t) cos θ(t) = 2π sinψ(τ(t))(λ̇ sinλ cosψ + ν̇ cosλ cos ν)(τ(t)).
(13)

One should prove that for a function θ(t) defined by implicit formulae (13)
differential equation (8) holds. This can be shown by a straightforward calculation
(we omit it in order to shorten the paper). This completes the proof.

1.5 Properties of the new parametrization. Let us denote by t0 the length
of the geodesic π̃(Õ p

q
) with respect to the metric g̃1. As coordinates on the torus

Õ p

q
we take the parameter α ∈ [0, 2π) on SO(2) and a natural parameter t ∈ [0, t0)

on the geodesic π̃(Õ p

q
) = (ϕ(t), θ(t)) such that min

t
ϕ(t) = ϕ(0) = b.

Proposition 4. The function sinϕ(t) has exactly 2q zeroes on [0, t0), the functions
cos θ(t) and sin θ(t) both have exactly 2p zeroes on [0, t0). If q is even then the

immersion Jb is invariant under the transformation (α, t) 7→
(

α+ π, t+
t0
2

)

.

The immersion J is not invariant under any other transformations.

Proof. Let us remark that the immersions Ia and Jb are well-defined even if the
corresponding geodesics are not closed. We proved in Proposition 3 that the
bipolar surface to Ia corresponds to the geodesic π̃(Jb), where

cos4 b = 4 sin2 a cos2 a. (14)

Hence, π(Ia) is closed iff π̃(Jb) is closed.
According to formula (4), the geodesic π̃(Jb) admits another parametrization

in terms of λ(s) and ν(s), where s is a natural parameter on π(Ia). It is easy to
see that this parametrization is one-to-one outside of self-intersection points, i.e.
for the map

β(s) = 2π sin ν(λ̇ cosλ cos ν − ν̇ sinλ sin ν, λ̇ sinλ cos ν + ν̇ cosλ sin ν, ν̇ cos ν),

9



where s ∈ [0, t̃), there is no point s̃ such that β([0, s̃)) = β([s̃, t̃)) = β([0, t̃)).

Indeed, since a 6 ν 6
π

2
− a, the last coordinate is equal to zero only at zeroes

of ν̇(s), i.e at sd =
t̃d

2q
, where d = 0, 1, . . . , 2q − 1 and λ(sd) =

pd

q
π. Hence, there

exists d = 0, 1, . . . , 2q − 1 such that s̃ = sd. Moreover, ν(sd) = a if d is even and

ν(sd) =
π

2
−a if d is odd. The value of 2πλ̇ sin ν cos ν =

sin a

sin ν cos ν
is equal to

1

cos a
for each point sd. Therefore, cosλ(sd) = cosλ(0) = 1 and sinλ(sd) = sinλ(0) = 0.

This holds for s0 = 0 and possibly for sq. In the latter case ν(sq) =
π

2
− a and

(2πν̇ sin ν cos ν)(sq + ε) < 0 for sufficiently small ε. This contradicts the fact that
(2πν̇ sin ν cos ν)(ε) > 0.

The previous statement implies that the function sinϕ(t) has the same quantity
of zeroes as 2πν̇(t) sin ν(t) cos ν(t), i.e. sinϕ(t) has exactly 2q zeroes.

Let us introduce a function analogous to Ω(a). The function Ξ(b) equals the
distance between the nearest points on the geodesic π̃(Jb) with ϕ = b and ϕ = −b,

Ξ(b) = cos2 b

−b
∫

b

1

cosϕ
√

cos4 ϕ− cos4 b
dϕ.

In Section 2.7 the following proposition is proved.

Proposition 5. The function Ξ(b) is increasing and continuous on the interval
(

−π
2
, 0
)

. The following equality holds, lim
b→0−

Ξ(b) =

√
2

2
π.

The geodesic π̃(Jb) is closed iff Ξ(b) =
r

s
π, where r, s ∈ Z>0. Without loss of

generality one can assume that (r, s) = 1. Since sinϕ(t) has 2q zeroes, one has
s = q. According to formula (14), the function b(a) increases as a increases. So, we
have two increasing continuous functions Ω(a) and Ξ(b(a)) such that their values

at the point a =
π

4
coincide and

Ω(a) =
p

q
π ⇔ Ξ(b(a)) =

r

q
π. (15)

We claim that such two functions coincide. Indeed, let us introduce the following
sets,

AΩ(s) =
{p

s
π | Ω(0) < p

s
π < Ω

(π

4

)

, (p, s) = 1
}

AΞ(s) =
{p

s
π | Ξ(b(0)) < p

s
π < Ξ

(

b
(π

4

))

, (p, s) = 1
}

.

On the one hand, condition (15) implies that |AΩ(s)| = |AΞ(s)| for any s. On
the other hand, suppose that Ω(0) 6= Ξ(b(0)). Then for a sufficiently large s one
has |AΩ(s)| 6= |AΞ(s)|. This observation leads to a contradiction, hence Ω(0) =

Ξ(b(0)) =
1

2
π. Then AΩ(s) = AΞ(s) and we denote this set simply by A(s). Let

10



us consider the inverse functions f = Ω−1 and g = (Ξ ◦ b)−1. These functions

are monotonous and continous on the interval

(

1

2
π,

√
2

2
π

)

. Condition (15) means

that for any s one has f(A(s)) = g(A(s)). By monotonicity of f and g, f(x) = g(x)
for any x ∈ A(s). Therefore f and g coincide on the dense subset

⋃

s

A(s) of interval,

hence by continuity f(x) ≡ g(x) and Ω(a) = Ξ(b(a)). Then since Ω(a) = Ξ(b(a)),
the functions cos θ(t) and sin θ(t) have 2p zeroes.

Since each orbit has exactly two intersection points with the generalized space
of orbits, the immersion Jb is invariant under some tranformation if and only if
the corresponding geodesic γ = π̃(Õ p

q
) is invariant under the action of Z2 given

by the formula (5). This means that Imγ contains the point (b, π). According to
the first statement of this proposition, if (ϕ(t1), θ(t1)) = γ(t1) and ϕ(t1) = b then

θ(t1) =
2kp

q
π, where k = 0, 1, . . . , q − 1. Hence, θ(t1) can be equal to (2l + 1)π if

and only if q ≡ 0 mod 2 and k =
q

2
. This implies that t1 =

t0
2
. Since the map

(ϕ, θ) 7→ (ϕ, θ + π) is an isometry of the orbit space, Jb is invariant under the

transformation (α, t) 7→
(

α+ π, t+
t0
2

)

.

2 Proof of the Theorem

2.1 Relation to the theory of periodic Sturm-Liouville problems. In
this section the eigenvalue counting problem for the Laplace-Beltrami operator
on the bipolar Otsuki torus Õ p

q
is reduced to the same problem for the periodic

Sturm-Liouville operator.

Proposition 6. Let Õ p

q
be a bipolar surface to an Otsuki torus O p

q
parametrized

by immersion Jb(α, t) as in Section 1.5. Then the corresponding Laplace-Beltrami
operator is given by the formula

∆f = − 1

cos2 ϕ(t)

∂2f

∂α2
− ∂

∂t

(

4π2 cos2 ϕ(t)
∂f

∂t

)

. (16)

Proof. The metric on the sphere S4 is given by formula (6). Since ρ = 0, the
metric on Õ p

q
is given by the formula

cos2 ϕ(t)dα2 + (ϕ̇(t)2 + θ̇(t)2 cos2 ϕ(t))dt2.

But the length of the velocity vector of π̃(O p

q
) is equal to 1, therefore,

4π2 cos2 ϕ(t)(ϕ̇(t)2 + θ̇(t)2 cos2 ϕ(t)) = 1.

Hence the metric on Õ p

q
equals to

h = cos2 ϕ(t)dα2 +
1

4π2 cos2 ϕ(t)
dt2 (17)

and formula (16) could be obtained by a direct calculation.
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Proposition 7. A number λ is an eigenvalue of ∆ if and only if there exists
l ∈ Z>0 and an eigenvalue λ(l) of the following periodic Sturm-Liouville problem

d

dt

(

4π2 cos2 ϕ(t)
dh(t)

dt

)

+

(

λ− l2

cos2 ϕ(t)

)

h(t) = 0,

h(t+ t0) ≡ h(t),

(18)

such that λ(l) = λ.

Proof. Let us remark that ∆ commutes with
∂

∂α
. It follows that ∆ has a basis

of eigenfunctions of the form h(l, t) cos(lα) and h(l, t) sin(lα). Substituting these
eigenfunctions into the formula ∆f = λf one obtains equation (18). Since f(α+
2π, t) ≡ f(α, t+t0) ≡ f(α, t), one has l ∈ Z and the boundary condition in formula
(18).

The equation (18) is written in the classical form of the periodic Sturm-Liouville
problem, and the following proposition holds, see e.g. book [3].

Proposition 8. Consider a periodic Sturm-Liouville problem in the form

− d

dt

(

p(t)
d

dt
h(t)

)

+ q(t)h(t) = λh(t), (19)

where p(t), q(t) > 0 and p(t+ t0) ≡ p(t), q(t+ t0) ≡ q(t). Let us denote by λi and
hi(t) (i = 0, 1, 2, . . .) the eigenvalues and eigenfunctions of the problem (19) with
the periodic boundary conditions

h(t+ t0) ≡ h(t). (20)

Let us also denote by λ̃i and h̃i(t) (i = 1, 2, . . .) the eigenvalues and eigenfunctions
of the problem (19) with antiperiodic boundary conditions

h(t+ t0) ≡ −h(t). (21)

Then the following inequalities hold,

λ0 < λ̃1 6 λ̃2 < λ1 6 λ2 < λ̃3 6 λ̃4 < λ3 6 λ4 < . . .

For λ = λ0 there exists a unique (up to multiplication by a non-zero constant)
eigenfunction h0(t). If λ2i+1 < λ2i+2 for i > 0 there is a unique (up to multiplica-
tion by a non-zero constant) eigenfunction h2i+1(t) with eigenvalue λ2i+1 of multi-
plicity 1 and there is a unique (up to multiplication by a non-zero constant) eigen-
function h2i+2(t) with eigenvalue λ2i+1 of multiplicity one. If λ2i+1 = λ2i+2 then
there is two-dimensional eigenspace spaned by h2i+1(t) and h2i+2(t) with eigen-
value λ = λ2i+1 = λ2i+2 of multiplicity two. The same holds in case λ̃2i+1 < λ̃2i+2

and λ̃2i+1 = λ̃2i+2

The eigenfunction h0(t) has no zeros on [0, t0). The eigenfunctions h2i+1(t)
and h2i+2(t) each have exactly 2i+2 zeros on [0, t0). The eigenfunctions h̃2i+1(t)
and h̃2i+2(t) each have exactly 2i+ 1 zeros on [0, t0).

12



Corollary 1. Let hi(l, t) and λi(l) be the i-th eigenfunction and the i-th eigenvalue
of problem (18) for a fixed l. Then the eigenspace of the Laplace-Beltrami operator
∆ with eigenvalue λ has a basis consisting of functions of the form

hi(l, t) cos(lα),

where l ∈ Z>0 and there exists i such that λi(l) = λ, and

hi(l, t) sin(lα),

where l ∈ N and there exists i such that λi(l) = λ.

Proof. The statement follows from Propositions 7 and 8 for a fixed l.

2.2 Rayleigh quotient. Let us now investigate properties of eigenvalues λi(l)
as functions of l. One of the most efficient tools for this investigation is a Rayleigh
quotient. The Rayleigh quotient for the problem (19) is defined by the following
formula,

R[v] =

∫ t0

0 p(t)v̇2 + q(t)v2dt
∫ t0

0
v2dt

.

The following proposition can be found e.g. in the book [8].

Proposition 9 (Variational principle). For the eigenvalue λ0 of the problem (19)
with the boundary condition (20) one has

λ0 = inf
v
R[v],

where infimum is taken over the space of t0-periodic functions v ∈ H1.
For the first eigenvalue λ̃1 of the problem (19) with the boundary condition (21)

one has
λ̃1 = inf

u
R[u],

where infimum is taken over the space of t0-antiperiodic functions v ∈ H1.

Corollary 2. For any smooth t0-periodic function f one has the inequality

λ0 6 R[f ].

For any smooth t0-antiperiodic function g one has the inequality

λ̃1 6 R[g].

Corollary 3. For the family of the periodic Sturm-Liouville problems (18) one
has λ0(l) > λ0(l

′) as long as l > l′.

Proposition 10. The following inequality holds,

λ0(2) > 2.

13



Proof. Let us use the variational principle for the problem (18) with l = 2,

λ0(2) = inf
v

t0
∫

0

(

4π2 cos2 ϕ(t)v̇2 +
4

cos2 ϕ(t)

)

v2dt

t0
∫

0

v2dt

> inf
v

t0
∫

0

4

cos2 ϕ(t)
v2dt

t0
∫

0

v2dt

> 4 > 2.

By Theorem 2, the functions (7) are eigenfunctions of the Laplace-Beltrami op-
erator on the Õ p

q
. It follows from formulae (7) that the functions cosϕ(t) sin θ(t)

and cosϕ(t) cos θ(t) are eigenfunctions of the problem (18) with l = 1. Propo-
sition 4 implies that both functions have exactly 2p zeros. Hence, one can set
h2p−1(1, t) = cosϕ(t) sin θ(t) and h2p(1, t) = cosϕ(t) cos θ(t). In the same way
sinϕ(t) is an eigenfunction of the problem (18) with l = 0 and sinϕ(t) has exactly
2q zeros. Hence, either h2q−1(0, t) = sinϕ(t) or h2q(0, t) = sinϕ(t).

It turns out that the most difficult part of this paper is to prove that h2q(0, t) =
sinϕ(t).

2.3 Periods of eigenfunctions. Suppose that the coefficients p(t), q(t) have
a period less than t0. We are interested in the eigenfunctions with the same period.

Proposition 11. Let hi(t) be the eigenfuctions of the periodic Sturm-Liuville prob-

lem (19,20) with
t0
2n

-periodic coefficients enumerated as in Proposition 8. Then the

t0
2n

-antiperiodic solutions of the problem (19) are h2n(2k+1)−1(t) and h2n(2k+1)(t),

where k ∈ Z.

Proof. Let us consider the following Sturm-Liouville problem,

− d

dt

(

p(t)
dh(t)

dt

)

+ q(t)h(t) = λh(t),

h(t) ≡ −h
(

t+
t0
2n

)

.

By Proposition 8, its eigenvalues λ̃i form a sequence

λ̃1 6 λ̃2 < λ̃3 6 λ̃4 < . . .

Since
t0
2n

-antiperiodic solutions are also t0-periodic, the corresponding eigen-

functions h̃i(t) are solutions of the problem (19,20). The eigenfunctions h̃2i−1(t)

and h̃2i(t) have exactly 2i − 1 zeros on the interval

[

0,
t0
2n

)

. Hence, they have

2n(2i+1) zeros on the interval [0, t0). There are only two solutions of the equation
(19,20) possesing this quantity of zeroes, therefore h̃2i−1(t) ≡ h2n(2i−1)−1(t) and

h̃2i(t) ≡ h2n(2i−1).
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The following proposition can be proved in the same way.

Proposition 12. Let hi(t) be the eigenfuctions of the periodic Sturm-Liouville

problem (19,20) with
t0
n
-periodic coefficients enumerated as in Proposition 8. Then

t0
n
-periodic solutions of the problem (19) are h0, h2nk−1 and h2nk, where k ∈ Z.

2.4 Estimates for λ2q−1(0). The main goal of this section is to prove that
the inequality λ2q−1(0) < 2 holds. Due to Proposition 11, λ2q−1(0) is equal to the
first eigenvalue of the following problem,

− d

dt

(

4π2 cos2 ϕ(t)
dh(t)

dt

)

= λh(t),

h

(

t+
t0
2q

)

≡ −h(t).

The application of Corollary 2 with f(t) = sin
2qπt

t0
yields

λ2q−1(0) < R[f ] =

16q2π4

t0
2q
∫

0

cos2 ϕ(t) cos2
2qπt

t0
dt

t20

t0
2q
∫

0

sin2
2qπt

t0
dt

=
32π4q3

t30

t0
2q
∫

0

cos2 ϕ(t)

(

1 + cos
4qπt

t0

)

dt.

According to Proposition 4, the integrand has a symmetry of the form t 7→
t0
2q

− t and cosϕ(t) is increasing on

(

0,
t0
4q

)

. Hence, one obtains

t0
2q
∫

0

cos2 ϕ(t) cos
4qπt

t0
dt =

2

t0
4q
∫

0

cos2 ϕ(t) cos
4qπt

t0
dt < 2 cos2 ϕ

(

t0
8q

)

t0
4q
∫

0

cos
4qπt

t0
dt = 0.

Therefore, it is sufficient to prove that

32π4q3

t30

t0
2q
∫

0

cos2 ϕ(t)dt < 2.
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It follows from formula (9) and Proposition 4 that ϕ(t) is a smooth monotonous

function on

(

0,
t0
2q

)

. The obvious equality t0 = 2q

t0
2q
∫

0

dt holds. Thus, using the

change of variables t→ ϕ(t) one obtains

32π4q3

t30

t0
2q
∫

0

cos2 ϕ(t)dt = π2

b
∫

−b

cos5 ϕ
√

cos4 ϕ− cos4 b
dϕ





b
∫

−b

cos3 ϕ
√

cos4 ϕ− cos4 b
dϕ





3 .

Hence, the question is reduced to estimating this ratio of integrals. Let us denote

the numerator by I1(b) and the denominator by I2(b), where b ∈
[

0,
π

2

]

. We use

notations K ,E and Π for the complete elliptic integrals of first, second and third
kind respectively (see e.g. the book [2]),

K(k) =

1
∫

0

1√
1− x2

√
1− k2x2

dx, E(k) =

1
∫

0

√
1− k2x2√
1− x2

dx,

Π(n, k) =

1
∫

0

1

(1− nx2)
√
1− x2

√
1− k2x2

dx.

Proposition 13. The function
I1(b)

I32 (b)
is decreasing on

(

0,
π

2

)

.

Proof. One has

I2(b) =

sin b
∫

− sin b

1− y2
√

(1 − y2)2 − cos4 b
dy =

1
∫

−1

1− x2 sin2 b
√
1− x2

√

1 + cos2 b− x2 sin2 b
dx.

Here the following changes of variables were used, sinϕ = y, y = x sin b. In the
same way

I1(b) =

1
∫

−1

(1− x2 sin2 b)2
√
1− x2

√

1 + cos2 b− x2 sin2 b
dx.

Let us remark that

d(x
√
1− x2

√

1 + cos2 b− x2 sin2 b)

dx
=

3x4 sin2 b− 4x2 + 1 + cos2 b
√
1− x2

√

1 + cos2 b− x2 sin2 b
.

Integrating over the interval [−1, 1], one obtains the following equality,

1

3

1
∫

−1

3x4 sin2 b− 4x2 + 1 + cos2 b
√
1− x2

√

1 + cos2 b− x2 sin2 b
dx = 0.
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One can subtract this formula from the I1(b). Hence, the following equality holds,

I1(b) =
2

3

1
∫

−1

(3− sin2 b− sin2 b cos2 b)− 2x2 sin2 b

2
√
1− x2

√

1 + cos2 b− x2 sin2 b
.

Let us introduce the notation k2 =
sin2 b

1 + cos2 b
. Then, it follows, that

I1(b) =
4

3

√

2

1 + k2

(

E(k)− (1− k2)(1 + 3k2)

4(1 + k2)
K(k)

)

I2(b) = 2

√

2

1 + k2

(

E(k)− 1− k2

2
K(k)

)

.

Since k(b) is an increasing function, it is sufficient to prove that I1
I3

2

is a decreasing

function of k. Using classical formulae for the derivatives of the elliptic integrals

dE(k)

dk
=
E(k)−K(k)

k
,

dK(k)

dk
=

E(k)

k(1 − k2)
− K(k)

k
, (22)

one gets

dI2(k)

dk
= 2

√

2

(1 + k2)3
1− k2

2k
(E(k)−K(k)) (23)

and

dI1(k)

dk
= 2

√

2

(1 + k2)3
1− k2

2k

(

E(k)− 1 + 3k2

1 + k2
K(k)

)

.

Since
(

I1(k)

I32 (k)

)

′

=
I ′1(k)I2(k)− 3I1(k)I

′

2(k)

I42 (k)
,

it is sufficient to prove that I ′1(k)I2(k) − 3I1(k)I
′

2(k) < 0. Using two previous
formulae one has

I ′1(k)I2(k)− 3I1(k)I
′

2(k) =
2(1− k2)

k(1 + k2)2
E(k)

(

(1 − k2)K(k)− E(k)
)

. (24)

It is well-known that K(k) is an increasing function. The equality (22) implies

that k(1 − k2)
dK(k)

dk
= E(k) − (1 − k2)K(k) > 0. Hence, the last factor in

formula (24) is negative. Therefore, the right hand side of formula (24) is negative.

Corollary 4. The following inequality holds, I2(a) <
π√
2
.

Proof. It is well-known that E(k) < K(k). Therefore, according to formula (23),
the function I2(b) is decreasing. Thus, one obtains the inequality I2(b) < I2(0) =

1√
2

1
∫

−1

dx√
1− x2

=
π√
2
.
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Proposition 14. For b ∈ (0, π2 ) the following inequality holds,

π2 I1(b)

I2(b)3
< 2.

Proof. The statement follows from Proposition 13 and the equality π2 I1(0)

I32 (0)
=

2.

This completes the proof of the inequality λ2q−1(0) < 2.

2.5 Proof of the theorem. It follows from Theorem 1 that in order to prove
Theorem 3 it is sufficient to prove that N(2) = 2q + 4p − 2 if q is odd and
N(2) = q + 2p − 2 if q is even. According to Proposition 10, λ0(2) > 2. By
Corollary 3, one has λ0(l) > 2 as l > 2. Then due to Proposition 8, λi(l) > 2,
when l > 2 and k > 0. For l = 0, λ2q−1(0) < λ2q(0) = 2. Hence, we have 2q
eigenfunctions of the problem (18) with l = 0 with eigenvalues less than 2. If q is
even, then we need to take into account the invariance under the transformation

(α, t) 7→
(

α+ π, t+
t0
2

)

. The application of Proposition 12 for n = 2 leaves q

eigenfunctions. By Proposition 8 one has λ2k+1 > λ2k. Hence, for l = 1 the
following inequality holds, λ2p−2(1) < λ2p−1(1) = λ2p−2 = 2. In the same way one
obtains 2p− 1 eigenfunctions if q is odd and p− 1 eigenfunctions if q is even (here
one should apply Proposition 11). According to Corollary 1, any eigenfunction of
the problem (18) with l > 1 provides exactly two eigenfunctions of the Laplace-
Beltrami operator on Õ p

q
. Thus, if q is odd then one has N(2) = 2q+2(2p− 1) =

2q + 4p− 2. If q is even then one has N(2) = q + 2(p− 1) = q + 2p− 2.

2.6 The value of the corresponding functional.

Proposition 15. If q is odd then Λ2q+4p−2(Õ p

q
) = 8qπI2(a) < 4

√
2qπ. If q is

even then Λq+2p−2(Õ p

q
) = 4qπI2(a) < 2

√
2qπ.

Proof. By formula (17) for the metric h on the torus Õ p

q
one has

√
deth =

1

2π
.

Hence the corresponding value of the functional is equal to

2

t0
∫

0

2π
∫

0

1

2π
dϕdα = 2t0.

For even q one need to take into account the invariance under the transformation

(α, t) 7→
(

α+ π, t+
t0
2

)

, so this value has to be divided by two. Arguing as in

Section 2.4 one obtains that

t0 = 2q

t0
2q
∫

0

dt = 4qπI(b).

The application of Corollary 4 yields the desired inequalities.
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2.7 Proof of Proposition 5. Let us consider Ξ(b) as a function of b ∈
(

0,
π

2

)

.

One has to prove that Ξ(b) is decreasing on this interval. Let us begin with
expressing Ξ(b) in terms of elliptic integrals,

cos2 b

b
∫

−b

1

cosϕ
√

cos4 ϕ− cos4 b
dϕ = cos2 b

sin b
∫

− sin b

1

(1− y2)
√

(1− x2)2 − cos4 b
dϕ

= cos2 b

1
∫

−1

1

(1− x2 sin2 b)
√
1− x2

√

1 + cos2 b − x2 sin2 b
=

2
cos2 b√
1 + cos2 b

Π

(

sin2 b,
sin b√

1 + cos2 b

)

= 2
1− n√
2− n

Π

(

n,

√

n

2− n

)

,

where n = sin2 b. Here the following changes of variables were used, sinϕ = y,

y = x sin b. Now the equality lim
b→0

Ξ(b) =

√
2

2
π follows from sustituting n = 0 into

this formula. Using the formulae for the derivatives of Π(n, k),

∂Π(n, k)

∂n
=

1

2(k2 − n)(n− 1)

(

E(k) +
1

n
(k2 − n)K(k) +

1

n
(n2 − k2)Π(n, k)

)

,

∂Π(n, k)

∂k
=

k

n− k2

(

E(k)

k2 − 1
+ Π(n, k)

)

,

one obtains

dΞ(n)

dn
=

1

2n
√
2− n

(

E

(√

n

2− n

)

−K

(√

n

2− n

))

< 0.
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