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Abstract
What determines whether an epidemic unfolds in multiple waves? In the absence of
a vaccine, populations remain vulnerable to future outbreaks as long as susceptibility
levels stay above the herd immunity threshold. The effectiveness of mitigation poli-
cies is therefore critical: a highly effective lockdown can paradoxically increase the
likelihood of a second wave. This paper uses a calibrated model to study both the
decentralized equilibrium and the optimal policy in a scenario where mitigation is
only moderately effective. The findings show that equilibrium and optimal mitigation
strategies are qualitatively similar in this case. Fiscal costs decrease the optimal length
of the lockdown, narrowing the gap between equilibrium and optimal policies.We also
use the model to evaluate the welfare costs of deviating from the optimal policy.

Keywords Epidemic · Herd immunity · Equilibrium social distancing · Optimal
containment policies

JEL Classification E1 · I1 · H0

1 Introduction

Covid-19 has hit countries around the world in several successive waves. Countries
that have locked up more stringently at the start of the epidemic, such as New Zealand
or China, experienced rebounds of the disease in the latter stages of the pandemic.
The pandemic was truly over only once the vaccine roll-out had been completed and
herd immunity has been reached. Drawing on these experiences, this paper presents
a framework useful for understanding epidemic trade-offs. In particular, we study the
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important worst-case scenario, in which a vaccine is not available and reductions in
economic activity do little to halt the spread of the disease.1

Central to this analysis is the concept of lockdown effectiveness, which we define as
a percentage reduction in the basic reproduction numberR0 that a lockdown achieves.
It is a simple and intuitive measure of how powerful a lockdown is, and it can likely
be estimated in practice.

We characterize the threshold of lockdown effectiveness ε̄ such that if a lockdown is
more powerful than this threshold, an immediate and arbitrarily long lockdown results
in an unstable resting point: when a lockdown is lifted, the epidemic re-emerges and
there is a secondwave (even if there is no change in the epidemiological characteristics
of the disease). Moreover, we show that the more effective the lockdown is, the greater
the severity of the second wave: that is, there is a trade-off between the degree of
the initial suppression of the virus and the return of the disease further down the
line. It follows that, if in response to the second wave another round of restrictions is
implemented, the epidemic can again be stopped in its tracks, albeit temporarily: a third
and subsequent waves inevitably emerge once the successive rounds of restrictions are
lifted. The paper uses a phase diagram to visualize the disease dynamics, which makes
this logic particularly clear: if restrictions are powerful at stopping the spread of the
disease but if they are costly and so cannot be enforced forever (but instead come in
instalments), the epidemic will feature subsequent waves. In practice such a strategy
(of intermittent lockdowns after which the disease appears again and again) might
lead to epidemic fatigue (perhaps lowering lockdown effectiveness), and given the
prolonged duration, might result in a heightened likelihood of the emergence of new
variants. Thus, considering the potential for second and subsequent waves is crucial
when designing policies.

A case that is of particular interest from a risk-management point of view is the
pessimistic scenario - one in which maximummitigation measures and behaviors such
as strict lockdowns are not very effective: ε < ε̄. This might arise if the disease spreads
very easily, for example through breathing. In this case even drastically reducing eco-
nomic activity might do little to stop the disease spread.We analyze this scenario in
detail, solving for both a decentralized equilibrium and an optimal mitigation path.
Both can be fully characterized by a start and end-date of lockdown, with the maxi-
mum mitigation measures in between these two dates and no mitigation outside that
interval. Throughout we focus on the benchmark case where the only feasible way to
contain the disease in the long-run is to reach the herd immunity threshold. Budish
(2024) studies the complementary case: mitigation is sufficiently effective to bring the
effective reproduction number to below 1, thus resulting in falling infections, and the
society can wait for the development of a vaccine or a cure that ultimately ends the
disease.

The main result is that, in the worst-case scenario of no vaccine and ineffective
lockdown, the precautions taken by agents in the decentralized equilibrium and those
mandated by the planner in the social optimum are similar. Consequently, the disease
trajectories do not differ much. The restrictions are first activated at a similar time

1 Atkeson (2023) studies the interplay between vaccine development and deployment andmitigation efforts
early in the pandemic.
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following the emergence of a disease. The planner’s optimal lockdown tends to last
longer than the precautions taken by the agents in the decentralized setting.

The paper studies optimal policies of different breadths, depending on the infor-
mation set of the planner. At one extreme, the planner with perfect information would
restrict the behavior of the infected agents only; at the other, she may rely on broad
lockdown policies that restrict the behavior of everyone in the population, regardless
of their health status. We show that the main result is not qualitatively affected.2

An important contribution of this paper is to include fiscal costs of lockdowns in
the analysis. Fiscal costs arise since a decision to mitigate the disease is associated
with higher spending (for support programs) and lower tax revenues (due to curtailed
economic activity). The fiscal costs of lockdown matter for the optimal duration of
lockdown policies, and they constitute an externality in the decentralized equilibrium,
since an individual agent that draws on the pandemic emergency package is small
relative to the macroeconomy, and thus does not internalize the fact that these outlays
will ultimately need to be paid for. Assuming zero fiscal costs, the optimal lockdown
is around 2 weeks longer than under the baseline calibration. Because the planner
restricts activity for longer than the decentralized agents, the fiscal externality brings
the optimum and the equilibrium closer together. In other words, the epidemic and
fiscal externalities offset to some degree.

A final contribution of this paper is to characterize social welfare outside the opti-
mum. This is a useful contribution because in practice the authorities work with
imperfect information and data, and mistakes are inevitable. Analyzing the social
welfare function allows us to better understand the welfare impact of these mistakes.

Related literature
The literature on the macroeconomics of epidemics is, by now, vast, and this paper

makes no attempt to provide a comprehensive review. Early papers by Atkeson (2020),
Avery et al. (2020) andStock (2020) provide an economist’s perspective on the baseline
SIR epidemiology models. In an insightful and influential paper, Eichenbaum et al.
(2021) study a competitive equilibrium of a discrete time economy populated by
hand-to-mouth agents whose actions affect the rates of transmission of the disease
and compare it to the socially optimal mitigation policies. That paper also analyzes
the worst-case scenario, in that the calibration of the effectiveness is close to the one
we focus on below.3 Rachel (2023) complements this analysis by focusing on the case
when lockdown is highly effective, and shows in particular that the equilibrium and
the socially optimal epidemic trajectories look very different in that case. Mitigation
in the decentralized equilibrium results in a much lower rate of infection and a much
longer duration of the epidemic, as individuals try to avoid getting infected. On the
other hand, the planner takes advantage of the effectiveness of its tool by allowing
the infection rate to climb to high levels before implementing short and maximally-
stringent lockdown that brings the epidemic trajectory to the herd immunity threshold.

2 For instance, when lockdown effectiveness is low, even in the perfect information case the planner’s
restrictions imposed on the infected portion of the population do not halt the spread of the disease.
3 Several other papers studied individual social distancing decisions in a decentralized equilibrium and
socially optimal mitigation policies (Fenichel (2013), Toxvaerd (2020), Farboodi et al. (2021), Jones et al.
(2021), Alvarez et al. (2021), McAdams (2021), Piguillem and Shi (2022), Phelan and Toda (2022), Antràs
et al. (2023), McAdams et al. (2023)).
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Thus, there can be too much distancing in the decentralized equilibrium, relative to
what is socially optimal.4

There are three main contributions of the present paper to this important literature.
First, the paper illustrates the importance of lockdown effectiveness for determin-
ing the possibility of the second wave, and uses graphical apparatus developed in
Rachel (2023) to explain why in the worst-case scenario of no vaccine and moderately
effective mitigation, the equilibrium and the planner’s solutions are qualitatively and
quantitatively similar. Second, the model is sufficiently tractable to evaluate the social
welfare function for all lockdown policies, and to study not just the optimal but also
the suboptimal policies, and the gradient of welfare loss as the policymaker moves
away from the optimum. Finally, the third contribution is to study the role of the fiscal
cost of a lockdown numerically and demonstrate that under a reasonable calibration of
model parameters, the fiscal cost can play a substantial role quantitatively, shortening
the duration of optimal lockdown.5

Roadmap
The paper is structured as follows. Section2 describes the environment and intro-

duces the concept of lockdown effectiveness. Section3 characterizes the decentralized
equilibrium and optimal policy. Section4 uses the calibrated model to compute quan-
titative results. Section5 concludes.

2 Setup

As is standard in the macro-epi literature on general equilibrium models of the epi-
demic, the model consists of two blocks: an economic block and an epidemiological
block. We begin by describing the economic block, followed by the epidemiological
block.

4 Feng (2007) provides an epidemiological perspective on quarantine and isolation policies. Acemoglu et al.
(2021) consider optimal policy in a model with multiple risk groups, highlighting that targeted mitigation
policies improve the trade-off between economic activity and deaths. Garibaldi et al. (2020) use insights
from equilibrium search theory to characterize the equilibrium and analyze externalities. A complementary
paper by Miclo et al. (2022) studies the role of the healthcare system capacity constraints in shaping the
optimal mitigation policy.
5 The analysis of thefiscal footprint of lockdowns relates to the broader strandofworkonpolicy implications
of the Covid shock. Guerrieri et al. (2022) study whether the supply shock associated with the lockdown can
lead to aggregate demand deficiency and thus warrant monetary and fiscal loosening. Chang and Velasco
(2020) study the feedback loops between health outcomes and a range of policies, including fiscal policy.
Jordà (2020) provide a long-term historical perspective and find that the natural rate is significantly lower
in the years following a pandemic. Focusing on the most recent history, Bahaj and Reis (2020) describe
how the swap lines arrangements by the Fed impacted the funding markets. Kaplan et al. (2020) build
a HANK model of the pandemics and evaluate a range of policies to form a pandemic policy frontier.
Glover et al. (2023) consider heterogeneity along the age and workplace dimensions to point out where the
major disagreements on the severity and duration of mitigation policies lie. The paper also highlights the
importance of testing: the result that track and trace policies bring about significant welfare benefits relative
to other lockdown measures resonates with the findings of Berger et al. (2020) who consider conditional
quarantine policies and show that a given reduction in death rates can be achieved with looser mitigation
measures if more information is available.
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2.1 The economic environment

Time is continuous. At time-0, the economy is populated by a unit-measure of indi-
viduals who solve the following optimization problem:

max
n(t)∈{0,1}E0

∫ ∞

0
e−ρt u(c(t))dt s.t. c =

{
w if n = 1

h if n = 0
(1)

with u > 0, u′ > 0, u′′ ≤ 0. Each period, individuals decide whether to work and
behave normally (n = 1) or to isolate and stay at home (n = 0). The choice is binary,
meaning individuals either work or isolate. This is without loss of generality since in
the equilibria considered in this paper, the optimal actions are discrete. If individuals
work, they earn after-tax wage w. If they stay at home their income is equal to h,
which is composed of the government payment (share ψGOV ), working from home
income (share ψWFH ) and home production (share 1 − ψGOV − ψWFH ). There is
no saving, so consumption is equal to income in each period: c = w or h. We assume
that w > h, so that households choose to work in normal times.

Production technology is linear in labor with productivity A, markets are competi-
tive, and there is a government that taxes labor income at a rate τn :

Y (t) = AN (t) w = A(1 − τn).

The government spends the proceeds on an exogenous amount of public goods, Ḡ.
I assume that prior to the epidemic, the government runs a balanced budget, and
so Ḡ = τn A. The epidemic creates a hole in the government budget, both because it
lowers tax receipts and raises spending. For simplicity, we assume that the government
borrows the required funds andprocures the required output directly in the international
market. The government faces a constant exogenous interest rate r̄ . The tax rate τn is
fixed; instead, the government finances its debt by levying constant lump-sum post-
pandemic-tax τ every period on those who survived the virus, starting from some date
T̂ (after the epidemic has ran its course).6 Given these assumptions, the government’s
intertemporal budget constraint is:

(ψGOV h + τn(A − ψWFHh))

∫ ∞

0
e−r̄ t [(1 − λS(t))S(t)

+ (1 − λI (t)) I (t) + (1 − λR(t))R(t)] dt

≤
∫ ∞

T̂
e−r̄ t (S(t) + R(t)) τdt (2)

6 To be precise, the epidemic disappears asymptotically. We thus assume that time T̂ corresponds to the
level of susceptibility that is below the herd immunity threshold, and the level of infectiousness that is
sufficiently low. We clarify the meaning of all these concepts below.
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where λi , i ∈ {S, I , R} are the shares of active susceptible, infected and recovered
agents (denoted by S(t), I (t), R(t)), respectively - i.e. the agents who work. The left-
hand side of (2) is the net present value of the pandemic-driven losses. The first term
in parentheses is the (instantaneous) amount government pays to each person who
isolates. The second term is the loss of tax income, which is the loss of usual income
adjusted for the fact that government taxes income that results from working from
home.7 The integral computes the measure of individuals that have been isolating and
thus have received government payouts and pay less tax. The right-hand side is the
net present value of post-pandemic tax receipts.

2.2 The epidemiological block

The dynamics of the disease are modelled using a canonical SIR model with endoge-
nous behavior. Let β(t) denote the potentially time-varying disease transmission
coefficient. We assume that β(t) is a sum of two components:

β(t) = βnλI (t)λS(t) + βo.

In that setting, βn is the parameter guiding reducible infections, and βo is the share of
infections that remain no matter how strong mitigation is. The epidemic dynamics are
then described by a canonical SIR model:

Ṡ(t) = −β(t)S(t)I (t) (3)

İ (t) = β(t)S(t)I (t) − γ I (t) (4)

Ṙ(t) = γr I (t) (5)

Ḋ(t) = γd I (t), (6)

with given initial conditions8 and γ = γr + γd .
With a slight abuse of notation, let β represent the infection rate with no behavioral

response: β := βn + βo, and define the herd immunity threshold as S̄ := γ
β
. Two key

properties of this system are worth noting. First, every point with I (t) = 0 is a steady
state. Second, the number of infected will grow if and only if I (t) > 0 and S(t) > S̄
where

S̄ := γ

β
= 1

R0
(7)

7 For simplicity, we abstract from losses that result from the fact that some citizens die from the disease.
This effectively assumes that Ḡ is expressed in per capita terms.
8 Throughout the paper I assume that S0 = 1 − ε, I0 = ε and R0 = D0 = 0.
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is the herd immunity threshold (andR0 is the basic reproduction number).9 Combining
these twoproperties, it is clear that the herd immunity threshold divides the set of steady
states into two segments:

Lemma 1 Steady states of the system with I = 0 and S > S̄ are unstable, in the
sense that a small perturbation to the number of infected triggers dynamics that take
the system away from that steady state. Conversely, the steady states with I = 0 and
S < S̄ are stable.

Proof Follows directly from equation (4) and the definition of S̄. ��
These two segments and the herd immunity threshold will play a crucial role in

determining the epidemic dynamics.

Definition 1 The economy is in lockdown at t if λI (t) = 0 or λS(t) = 0 or both.

The relativemagnitudes of βn and βo parameters determine the effectiveness ofmit-
igation behavior and policy. We define the effective reproduction number in the usual
way: Rt := S(t)R0. Denoting with a subscript L the corresponding variables under
lockdown, we have the following proposition, which defines formally the lockdown
effectiveness ε.

Proposition 1 Lockdown effectiveness ε satisfies:

ε := R0 − RL
0

R0
= R(t) − RL(t)

R(t)
= S̄L − S̄

S̄L
= βn

βn + βo
. (9)

If ε > ε̄, an immediate lockdown leads to unstable suppression of the disease: lifting
the lockdown results in a second wave of infections. The threshold ε̄ is given by:

ε̄ = S̄

S̄ − 1

(
1 − log S̄ − 1

S̄

)
.

If ε > ε̂, an immediate lockdown suppresses the virus completely, preventing the
epidemic. But once the lockdown is lifted the epidemic starts over and follows the
no-lockdown trajectory. Threshold ε̂ is given by:

ε̂ = 1 − 1

R0
= 1 − S̄.

9 Other properties can be derived noting that the epidemic trajectory admits an analytical solution. Dividing

equation (4) by (3) we obtain a first-order ODE: d I
dS = −1+ S̄

S , which, given the initial conditions S0 and
I0, gives:

I (t) = −S(t) + S̄ log S(t) + I0 + S0 − S̄ log S0. (8)

Taking the limit as t → ∞ and noting that I (∞) = 0 shows that the initial basic reproduction number and
the eventual share of the population that will have encountered the virus S(∞) are tightly linked: R0 =
log S(∞)
S(∞)−1 . Since death rate is assumed to be an exogenous constant, total deaths that result from infection

are given by D(∞) = γd
γ (1 − S(∞)). Moreover, condition (7) and equation (8) imply that peak infection

rate implied by a simple SIR model with exogenous transmission rate is given by Imax = −S̄+ S̄ log S̄+1.
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Proof See Appendix. ��
The first part of Proposition 1 introduces and calculates the key feature of a lock-

down: its effectiveness (ε). Amore effective lockdown leads to a larger reduction in the
initial reproduction number. The measure of effectiveness is defined as the percentage
change inR0 (or equivalentlyR(t) and S̄) due to the implementation of a lockdown.
The Proposition demonstrates that this measure is equivalent to quantifying the share
of infectious activities curtailed during the lockdown, making it a natural and intuitive
indicator of effectiveness.

The second part of the Proposition establishes the threshold at which a lockdown
becomes sufficiently effective for rapid virus suppression, with the system’s resting
point under a full and immediate lockdown surpassing the herd immunity level S̄.
However, lifting restrictions prematurely can trigger a second wave of infections.

The third part introduces a higher threshold, ε̂, which represents the effectiveness
level required to completely halt the spread of the virus. Although halting the epidemic
seems advantageous, the proposition suggests that this only delays the problem: once
the lockdown is lifted, the epidemic resumes its original trajectory as if no lockdown
had occurred. This underscores a crucial aspect of the model- that a temporary lock-
down cannot suppress the virus if the level of susceptibility remains above S̄.

An important implication of Proposition 1 is the trade-off between the severity of
the first and second waves of the epidemic:

Proposition 2 Consider an immediate and arbitrarily long but finite-duration lock-
down policy lasting for a single interval of time, with ε̄ < ε < ε̂. The peak of the
second wave of the epidemic in terms of the highest attained infection rate and the pro-
portion of people who at some point contract the virus, 1− S(∞), are both increasing
in ε.

Proof See Appendix. ��

2.3 Graphical representation

The results in the propositions have a useful graphical representation. Figure1
shows the system dynamics, with and without behavioral or policy responses, in
a phase diagram developed in Rachel (2023).10 Both panels in Fig. 1 depict the
Susceptibles−I n f ected plane. The solid lineswith arrows depict disease trajectories
under different assumptions about policy and behaviour. The arrows show the direc-
tion of the evolution of the system. The solid vertical lines mark the herd immunity
thresholds in the different lockdown scenarios. We assume that an epidemic begins
with a small seed of infection and with near full susceptibility, so that the system starts
in the bottom-right corner of the diagram, with I close to but above zero and S close
to but below 1.

Consider first the trajectory of the disease as dictated by a standard SIR model
with constant infection rate β. This trajectory, and the system dynamics associated

10 Note that drawing the trajectory of the disease in a standard, constant-β SIR model requires only the
calibration of the herd immunity threshold S̄, which is equivalent to calibrating R0.
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with it, are identical in the two panels of the figure. In our parametrization, the herd
immunity threshold is γ

β
= 0.778

1.94 = 0.4. Since the epidemic starts with the level of

susceptibility close to one, and because S̄ < 1, the infection rate initially increases
and the susceptibility rate falls: the trajectory moves in the north-west direction in the
phase diagram. Eventually, the level of susceptibility reaches S̄. Due to the dynamics
of the system, the long-run steady-state level of susceptibility S(∞) exceeds the herd
immunity threshold. The difference between the two is the epidemic overshoot. In our
parametrization, around 30% of the population get infected after the herd immunity
threshold is reached.

The size of the arrows reflects the system’s dynamics described in Eqs. (3) and (4),
indicating that the system’s speed is greater the larger are the infection rate and the
susceptibility rate.

How does a lockdown affect the system’s dynamics?During a temporary lockdown,
the transmission rate β decreases, which temporarily raises the herd immunity thresh-
old. Thus, for the duration of the lockdown, the vertical herd immunity schedule shifts
to the right (we denote the temporarily raised herd immunity threshold under lock-
down with S̄L ). The dynamics of the system obey the same logic as before, but with
reference to the new, higher herd immunity threshold. For example, under lockdown,
the infection rate rises as long as S > S̄L , and peaks at S = S̄L .

We can now better understand the notion of lockdown effectiveness and the thresh-
olds characterized in Proposition 1. The key observation is that the size of the shift
in the herd immunity threshold is directly proportional to lockdown effectiveness: the
more effective the lockdown, the larger the rightward shift.

The Figure shows two key thresholds for lockdown effectiveness, as characterized
in Proposition 1. The left panel shows the dynamics of the disease under lockdown if
lockdown effectiveness is ε = ε̄, where the threshold is characterized analytically in
the proposition. This value of lockdown effectiveness means that if the lockdown is
implemented for long enough, the epidemic dynamics reach the resting point S(∞)

that is equal to the herd immunity threshold S̄. The right panel shows what happens
when lockdown is even more effective, with ε = ε̂. In this case, the herd immunity
threshold under lockdown increases to S̄L = 1. Consequently, the disease stops in its
tracks: the infection rate is declining monotonically from the initial seed of infection.

The key observation is that the two lockdown trajectories have very different impli-
cations when the lockdown ends. Once the lockdown is lifted, the herd immunity
threshold for the system’s dynamics returns to S̄ = γ

β
, 0.4 in our calibration. In the

panel on the left, the dynamics under lockdown reach a stable steady state region, with
the level of susceptibility smaller or (in this case) equal to S̄. There is no second wave
of infection when lockdown is lifted, and the epidemic ends. The situation is very
different in the right panel, where the highly effective lockdown kept the system close
to the initial starting point. Consequently, when the lockdown is lifted, the presence
of infected individuals leads to a renewed increase in the infection rate. We observe a
large second wave of infections as a result. Conditional on no further restrictions, the
system’s trajectory is similar to the path generated by the constant-β SIR model.
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Fig. 1 Lockdown effectiveness thresholds

Proposition 2 can now be visualized more easily. A more effective lockdown leaves
susceptibility at a higher level, resulting in a larger rise in infections and cumulative
deaths during the second wave after the lockdown is lifted.

2.4 Policy implications

The above discussion has clear implications for policy. In this simple benchmark
model, the goal of policy is to manage the epidemic while the susceptible population
remains above the herd immunity threshold. The objective is to reach herd immunity
with the number of infectious individuals at or near zero. An example of such a
trajectory is shown as the pink parabola in the left side of Fig. 1.Note that this trajectory
hits the x-axis right at the herd immunity threshold, leading to no “overshooting”. In
contrast, as illustrated in the right panel of Fig. 1, an extremely tight lockdown that is
eventually lifted does not significantly reduce cumulative deaths, relative to the naive
model. This is because the pandemic simply restarts, following essentially the same
trajectory as it would have done in the absence of any intervention.

In the numerical analysis below, we confirm this intuition and compare it to the
decentralized equilibrium outcomes.

2.5 What is missing from the baseline framework

Before analyzing equilibrium and optimal lockdown in the next section, it is important
to reflect on the key features of this baseline model.

First, it is important to note that the result that suppressing the virus with a finite-
length lockdown is impossible is a consequence of the SIR model’s mathematical
structure. In reality, it may be possible to reduce the number of infections enough to
control the disease until the very last patient recovers. Pollinger (2023) analyzes the
case of optimal suppression. Second, the model assumes a constant, exogenous death
rate, excluding any feedback between the number of currently infected individuals
and the probability of death or recovery. In practice, death rate might depend on
the number of infected because of healthcare systems’ capacity constraints. Indeed,
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the rationale for ’flattening the curve’ was to avoid overloading ICU capacity and
increasing deaths. For the analysis of this case, see ?. Third, the model ignores the
possibility of vaccine development. Instead the only way to put an end to the virus is
to achieve at least the level of herd immunity. Several papers in the literature tackle
this issue (see. for example, Atkeson (2020), Phelan and Toda (2022), Gans (2023)
and Avery et al. (2024)). Fourth, the model assumes that the immunity gained by the
recovered is permanent. When immunity is temporary, the disease becomes endemic
(Giannitsarou et al. 2021). In terms of the dynamics in the phase diagram, the trajectory
of a naive model with no behavioral response can feature a spiral - several consecutive
waves with ever smaller magnitudes, and asymptotic convergence to a steady state at
the level of susceptibility equal to the herd immunity threshold. Avery et al. (2024)
analyze the possibility of getting infected more than once, together with endogenous
decisions to get a vaccine.

3 Equilibrium and optimal lockdownwith " < "̄

We now proceed to describe the laissez-faire equilibrium and optimal policy under
the assumption that lockdown is not sufficiently effective to reduce the number of
infected: ε < ε̄.11 This case is particularly interesting as it represents a worst-case
scenario: we assume that not only there is no vaccine, but also the mitigation options
available to the agents and to the planner are relatively ineffective.

3.1 Competitive equilibrium

The formal definition of the pure strategy equilibrium is:

Definition 2 A perfect-foresight competitive equilibrium in pure strategies is a
sequence of macro variables Y and C , sequence of epidemic variables S, I , R, D,
sequence of labor supply choices {ni }i∈{S,I ,R} and the associated sequence of lock-
down indicators {λi (t)}i∈{S,I ,R} ∈ {0, 1}, the level of post-pandemic tax τ such that: (i)
households maximize their expected lifetime utility at time-0 taking the trajectory of
the epidemic, behavior of other individuals, wages, government spending and taxes as
given; (ii) government adjusts post-pandemic tax rate τ to satisfy demand for transfers,
meet its spending commitments and satisfy its intertemporal budget constraint; (iii)
the trajectory of the epidemic is consistent with the individual lockdown decisions;
(iv) markets clear.

11 In Rachel (2023), I solve the optimal control problems of a susceptible individual and the planner,
focusing on the opposite case of ε > ε̂. In that scenario, the epidemic trajectory in the decentralized
equilibrium features, at least for some interval of time, an interior level of mitigation, sufficient to keep
the effective reproduction number below 1. As a result, the decentralized equilibrium results in a relatively
low and declining rate of infections that is optimal given the private trade-off between health benefits and
economic costs. This contrasts with the scenario that we focus on in this paper: when mitigation is not
very effective, agents choose the maximum degree of mitigation (a corner solution) because the benefits
of mitigation outweigh the costs. Socially optimal restrictions in the case of highly effective lockdown
steer the epidemic towards the herd immunity threshold as fast as possible, which means that the epidemic
trajectory reaches high infection rates before restrictions are activated. Such high-infection-rate strategy is
not optimal when the lockdown is not effective, since it would result in a large epidemic overshoot.
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Such equilibrium exists when ε < ε̄.12 To characterize the equilibrium, note first
that the infected and the recovered individuals do not lock down voluntarily.13 The
value functions of the infected and the recovered individuals thus satisfy the following
Bellman equations:

ρW I = u(w) + πr

(
WR − W I

)
+ πd(0 − W I ) + Ẇ I (10)

ρWR = u(w) + Ẇ R (11)

with boundary conditions W I (T̂ ) = WR(T̂ ) = u(w−τ)
ρ

.14

A susceptible individual chooses the start and the end-date of the lockdown period,
{T0, T1}, to maximize her expected utility:

max{T0≥0,T1≥T0}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T0

0
e−ρt−∫ t

0 πW (s)ds
(
u(w) + πW (t)W I

)
dt

+ e− ∫ T0
0 πW (s)ds

∫ T1

T0
e
−ρt−∫ t

T0
πL (s)ds

(
u(h) + πH (t)W I

)
dt

+ e
− ∫ T0

0 πW (s)ds−∫ T1
T0

πH (s)ds
∫ ∞

T1
e
−ρt−∫ t

T1
πW (s)ds

(
u(w) + πW (t)W I

)
dt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.(12)

subject to the time-varying infection probabilities:

π(t) =
{

πW (t) = (βnλ + βo)I (t) no lockdown, t /∈ [T0, T1]
πH (t) = βo I (t) in lockdown, t ∈ [T0, T1] , (13)

whereπW denotes the infectionprobabilitywhenworking andπH denotes the infection
rate when staying at home. The three lines in expression (12) correspond to the utility
before, during and after mitigation, respectively.

The interior optimum satisfies the necessary conditions:

u(w) − u(h) = βn I (T0)
(
WS(T0, T1, t = T0) − W I

)
(14)

u(w) − u(h) = βn I (T1)
(
WS(T0, T1, t = T1) − W I

)
(15)

whereWS(T0, T1, t) is the expected lifetime utility of a susceptible individual at time
t , given the lockdown period starting at T0 and ending at T1. Note that this time-varying
value function depends on the start- and end- date of the lockdown, since these dates

12 See the Appendix for a proof.
13 Since there is no altruism, individuals care only about maximizing their expected utility. For infected or
recovered individuals there is no risk of re-infection, and because w − τ > h and there is no disutility of
labor, the optimal choice for these individuals is to always work.
14 Note that the cost of dying is the foregone utility of regaining health.
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will determine the epidemic trajectory (and hence infection risk facing an individual)
and the period over which a susceptible individual receives the reduced utility flow.

Conditions (14) and (15) emphasize the trade-offs present when deciding on their
personal social distancing strategy: individuals balance the instantaneous utility cost
of lockdown with the expected health benefit expressed in utility terms. This benefit is
determined by the increased probability of infection when not in lockdown, multiplied
by the difference in value between becoming infected and remaining healthy.

We now establish an important result regarding the timing of social distancing in
equilibrium.

Lemma 2 In a competitive equilibrium social distancing never starts in the initial
period t = 0.

Proof At t = 0, πW (0) − πH (0) = βn I (0) ≈ 0 but u(w) > u(h). Therefore, it is
optimal to postpone lockdown until a later date. ��

The equilibrium is a fixed point between the decision rule (pinned down by (14)
and (15)) and the epidemic trajectory (Eqs. (3) and (4)). This fixed point is found by
iterating on the pair (T0, T1) until the resulting epidemic trajectory satisfies conditions
(14) and (15).

We further characterize the decentralized equilibrium numerically below. Before
doing that, we first set out the planning problem.

3.2 Lockdown policies

Next, we consider the decision-making process of a planner whose objective is to
maximize population-wide lifetime utility. We consider the following distinct tools:

Definition 3 We define four types of lockdown instruments as follows:
Type 1: isolation of infected only: government sets {T0 ≥ 0, T1 ≥ T0}. λI (t) = 0

for t ∈ [T0, T1], and λI (t) = 1 otherwise. λS(t) = λR(t) = 1∀t .
Type 2: lockdown of susceptibles only: government sets {T0 ≥ 0, T1 ≥ T0}. λS(t) =

0 for t ∈ [T0, T1], and λS(t) = 1 otherwise. λI (t) = λR(t) = 1∀t .
Type 3: lockdown with immunity passports for the recovered: government sets

{T0 ≥ 0, T1 ≥ T0}. λS(t) = λI (t) = 0 for t ∈ [T0, T1], and λS(t) = λI (t) = 1
otherwise. λR(t) = 1∀t .

Type 4: broad lockdown: government sets {T0 ≥ 0, T1 ≥ T0}. λS(t) = λI (t) =
λR(t) = 0 for t ∈ [T0, T1], and λS(t) = λI (t) = λR(t) = 1 otherwise.

These tools are ranked from the most to the least information-intensive for the
planner. Type 1 represents an idealized case of a perfectly effective track-and-trace
strategy,where only the infected are isolated. The remaining three tools involve broader
lockdowns that restrict the behavior of larger portions of the population.

Although these tools differ in terms of the population segments they target, they all
lead to similar outcomes in terms of epidemic dynamics, as we explain below.

Lemma 3 Consider lockdown policies of the four types defined above and of fixed
timing {T0, T1}. All four policies have identical effect on the epidemic dynamics.
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Proof Under all four policies, β(t) is given by

β(t) =
{

βn + βo if t /∈ [T0, T1]
βo if t ∈ [T0, T1] .

��
This result might appear surprising at first but it is intuitive once we note that, as

long as either the infected or the susceptible are locked down, the reducible infections
fall to zero.

Lockdown effectiveness plays a crucial role in determining the features of optimal
policy. If lockdown is highly effective, it may create the risk of a secondwave. Optimal
policy avoids this by timing the lockdown to ensure that the epidemic’s trajectory
converges to S̄ as a resting point (see the derivation and discussion of this result in
Rachel (2023)). We instead now solve for the equilibrium and optimal policies when
lockdown is only moderately effective.

4 Quantitative analysis

4.1 Calibration

Macro Parameters
I calibrate the model to a weekly frequency, with the discount rate ρ = 0.96

1
52 − 1.

Thediscount rate in thismodel is primarily important because it affects the continuation
value of staying alive. The annual interest rate of 4% translates into value of statistical
life equal to $10 million, in line with the estimates in the literature (Andersson and
Treich (2011), Kniesner andViscusi (2019)). I assume that the government can borrow
in the international markets at 1%, broadlymatching the real borrowing costs observed
across the industrial economies (Rachel and Summers 2019). In line with Rachel
(2020), I calibrate A to 1

5 · 24 · 7 · 34, resulting in a per-capita annual income of
$60, 000. I set τn at 34%, reflecting the average tax rate in OECD economies.

The key parameter guiding the trade-off between the burden of death and the hard-
ship of lockdown is h, which represents the value of home production.15 We set h to
hit the replacement rate of 80%, so that:

h

A(1 − τn)
= 80%.

This choice is motivated by income support measures introduced by several countries,
which provided furloughed workers with up to 80% of their pre-shock salary. Further-
more, we assume that h is split equally between working from home, home production
and government transfer: ψWFH = ψHP = ψGOV = 1

3 . This is motivated by the

15 If h is high and close to the wage income obtained while working, then lockdown is a relatively painless
experience and we might expect the self-imposed lockdown to occur earlier and last for longer. Conversely,
when h is low, the trade-off betweenmaterial well-being and possibility of illness and death is much steeper.
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early estimates on the proportion of people that can work from home plus those who
work in the essential sectors, as well as the initial estimates of the share of workers who
have been furloughed (Dingel and Neiman (2020), Tomer and Kane (2020), Davies
(2020)).

Epidemiology Parameters
Next, we calibrate the epidemiological parameters, broadly aiming to reflect the

Covid-19 experience.
We assume that the initial seed of infection represents 0.1% of the total population.

The recovery and death parameters γr and γd are determined by the mortality rate
and the average time it takes to recover or die after contracting the virus. Since the
model is weekly, a baseline case fatality rate of 1% and an average disease duration
of 9 days,16 we have that πd = 0.01 · 7

9 and πr = 7
9 − πd .

In the baseline calibration we set the initial basic reproductive number to R0 =
2.5 (we explore robustness to doubling R0 below). This implies that the lockdown
effectiveness threshold ε̄ equals 0.39. We assume that lockdown effectiveness is less
than the threshold, with ε = 0.36. Consequently, maximum restrictions reduce R0
by 36% to 1.6 (see e.g. Flaxman et al. (2020) or Lavezzo et al. (2020) for real-time
studies of the infectiousness in the context of the Covid-19 pandemic). This calibration
of lockdowneffectiveness is qualitatively similar to the calibration inEichenbaumet al.
(2021).

4.2 Equilibrium and optimal lockdown

Figure2 shows the trajectories of the epidemic in the decentralized equilibrium and
under optimal lockdown policies. The main conclusion from this analysis is that the
equilibrium trajectory differs very little fromwhat is socially optimal. Both the planner
and agents in the decentralized setting initially delay implementing restrictions (except
if the planner knows exactly who is infected). The lockdown begins in week 4 or 5 of
the epidemic, and lasts for about 20 to 24 weeks. The lockdown ends once the level
of infectiousness is below 1% in all scenarios. Whether in the decentralized setting or
in the socially optimal solution, the precautions save many lives: around a third of the
population does not get sick, relative to the model with no behavioral response, and
hence around 1

3γd of deaths, where γd is the death rate, are avoided.
It is important to note that implementing optimal lockdown might present a chal-

lenge: agents begin isolation slightly before the planner’s preferred lockdown starting
date. This raises the question of implementability: whether in practice policymakers
have any tools at their disposal that could maintain normal activity levels among the
population during that time. One possible policy to address this timing discrepancy
could involve subsidizing social interactions during that brief period. For example,
a policy similar to the ’Eat Out To Help Out’ program implemented in the United
Kingdom in the summer of 2020, which subsidized 50% of restaurant bills, could

16 Lauer et al. (2020) and Liu et al. (2020) estimated that the average latent and infectious periods in the
case of Covid-19 were between 3-6 days, giving the overall duration of infection of around 9 days.
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Fig. 2 Equilibrium and optimal lockdown when ε < ε̄

be considered.17 See McAdams and Day (2024) for analysis of both “stay-at-home
orders” as well as “go-out orders” in the context of a political economy model of an
epidemic.18

4.3 Sensitivity to parameters

A striking result from the previous section is that the equilibrium and socially optimal
mitigation strategies are similar, leading to nearly identical disease trajectories. As
shown in Fig. 3, this result remains robust even under significant variations in the
epidemiological parameters. The left-most panel shows the baseline calibration of
the model. The middle panel shows the trajectories when the disease is much more
transmissible, withR0 = 5, inspired by the Omicron variant of the Covid-19 virus. In
this scenario, lockdown effectiveness and the infection fatality rate are held constant.
The trajectories reach a higher infection rate and result in higher cumulative levels of
infections. As a result, the epidemic is shorter in duration. However, as in the baseline
scenario, the equilibrium and optimal trajectories remain very similar.

In the right panel, we consider both a high transmission rate and an infection fatality
rate that is twice as high as the baseline. A more deadly disease results in a slightly
longer lockdown, as both individuals and the planner balance fewer infections against
more restrictions. However, the differences between the two strategies remain small.
This outcome is unsurprising given that both strategies involve maximum lockdown
for much of the epidemic, even in the baseline scenario. The potential to implement

17 This, of course, does not suggest that the “Eat Out To Help Out” policy was socially optimal. For an
empirical analysis of the ’Eat Out To Help Out’ policy, see Fetzer (2022).
18 A related issue of lockdown fatigue is analyzed in Carnehl et al. (2024).
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Fig. 3 Lockdown effectiveness thresholds. Note: for clarity of exposition, the figure shows only the broad
S+I+R lockdown

additional precautions due to the increased death risk is limited. This limitation applies
to both agents in the decentralized equilibrium and the planner.

4.4 The effects of fiscal externality

Recall that the government covers one-third of the lockdown costs while also facing
reduced tax revenues. How significant is the fiscal cost in shaping optimal lockdown
policy? In the case where fiscal costs are considered, the optimal lockdown is approx-
imately 12-14% (or 2 to 3 weeks) shorter compared to a scenario without fiscal costs
(Fig. 4). As a result, fiscal externalities bring the timing of restrictions in the optimal
policy closer to that in the decentralized equilibrium.19

4.5 Social welfare function

In practice, governments may lack complete information about the state of the epi-
demic and face operational constraints that limit their responsiveness. As a result,
implemented policies may differ from the optimal strategies described above. This
raises the question: how costly are such deviations?

To explore this, we can compute social welfare as a function of the lockdown’s start
and end dates. Figure5 shows social welfare as a function of any permissible pair of
start and end dates for lockdowns of the four types, when lockdown effectiveness is less
than ε̄. The vertical axis measures welfare loss in dollar terms, relative to a no-Covid
counterfactual. The black 45-degree line represents the “no lockdown” scenario.

Implementing lockdown after week 22 is ineffective because, by that point, the
epidemic has already run its course. In this region, the social welfare function slopes
downward as lockdown duration increases, reflecting the rising cost of longer lock-
downs.

While the shape of the social welfare function is similar for broad lockdowns, it
differs significantly for isolation of the infected. In this case, welfare decreases as the

19 This raises a natural question: what is the optimal level of income support during a lockdown, and how
does it influence the design of lockdown policy? These important questions are left for future research.
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Fig. 4 Activity level in the social optimum, with and without the fiscal externality. Note: for clarity of
exposition, the figure shows only the broad S+I+R lockdown

start date is delayed and increases as the end date is extended. This result is intuitive,
as the optimal strategy for isolating the infected involves immediate and permanent
isolation.

For broader lockdowns, the figure shows that starting and ending the lockdown too
early is not effective. An early and short lockdown leads to a large second wave later
on, offering minimal health benefits while incurring significant economic costs.

4.6 Health and economic impacts of lockdown policies

Table 1 compares the four optimal lockdown strategies to the no lockdown scenario and
the equilibrium lockdown, in terms of their epidemic, macro and welfare implications.
The lockdown instruments are again ordered from themost targeted (I -only lockdown)
to the broadest (the broad S + I + R lockdown).

The first three rows review the timing and the duration of lockdowns across the
scenarios. Equilibrium lockdown lasts for 20 weeks. The optimal lockdowns tend to
start around the same time, and last for longer. The duration of the optimal lockdown
falls with the breadth of the instrument, since the broader the lockdown, the higher
the economic cost.

The next three rows show how the epidemic develops under these different policies.
Immediate and permanent restrictions of I−only lockdown achieve the feasible min-
imum of cumulative infections. But the broader policies get quite close. Overall, the
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Fig. 5 The Social Welfare Function for the four lockdown instruments when lockdown lowersR0 to 1.6

different optimal lockdown policies yield a similar picture in terms of the development
of the disease, in line with the result in Proposition 3.20

The next three rows focus on the macroeconomic impact in the first year following
the outbreak. The macro impact varies substantially across the scenarios. As high-
lighted above, the hypothetical no lockdown scenario - in which neither behavioral
nor policy response to the virus are allowed - is associated with only aminor recession.
This outcome is highly unlikely in human populations, however, since decentralized
equilibrium mitigation leads to a large contraction in GDP of 15% in the first year;
aggregate consumption declines by less as home production and government transfers
provide a cushion. The required direct fiscal transfer is of the order of 7 percentage
points of GDP. These numbers rise further in magnitude in the case of the optimal
susceptible-only lockdown, simply due to its longer duration,21 and in case of S+ I+R
lockdown due to its breadth. The infected-only lockdown emerges as an effective and
cheap way to limit the spread of the virus, highlighting the huge economic benefit that

20 Relative to no lockdown, policies can reduce the share of people who contract the disease by over 20
percentage points by reducing the overshooting. Peak infections are reduced by a factor of two-and-a-half,
even though peak infections are not in the planner’s objective function in the baseline model (recall that the
death rate is exogenous and constant). Given the constant death rate, deaths decline in line with the share
of the population that contracted the virus.
21 Note that the macroeconomic costs rise less-than-proportionately with lockdown duration. This is
because the additional weeks happen at the end of the epidemic, when the number of susceptibles (who are
in lockdown) is much lower than at the beginning. In other words in the case of S-only lockdown the first
week of lockdown is always the most expensive.
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can be brought by massive testing programs that might enable such instrument to be
used in practice.

The final two rows of the table provide a summary measure that weighs the benefits
and costs of the lockdown strategies in terms of saved lives and lost economic activity.
When the virus first emerges and no mitigation strategies are possible, representative
consumer’s lifetimewelfare drops by around−0.9%, equivalent to $92,000 per capita
in terms of current income and consumption (in other words, one year and a half worth
of income). This largewelfare loss is reduced by a fifth with the equilibrium lockdown.
Optimal lockdown policies can improve on the equilibrium only marginally, except if
the authorities can identify and isolate the infected. If the government can only lock up
the susceptibles it will do so for longer than in equilibrium, but the gains from fewer
deaths are rather small (recall that at this point the epidemic moves slowly, so the extra
3 weeks of lockdown does not change the overall infection path all that much). If the
only tool at the government disposal is the S + I + R lockdown, then its optimal use
performs worse than the equilibrium outcome.22

5 Conclusion

This paper presents two sets of results. The first set examines lockdown effectiveness
and the potential for a second wave of infections. We demonstrated that the extent to
which policy or individual behavior can reduce the infection rate plays a critical role
in shaping both equilibrium dynamics and optimal policy outcomes.

The second set of results is quantitative and focuses on the case of limited lockdown
effectiveness. Under a baseline parametrization, the optimal broad S+ I+R lockdown
lasts approximately 22 weeks, and the resulting epidemic trajectory is similar to that
observed in the decentralized equilibrium. The numerical analysis indicates that fiscal
externalities significantly shorten the optimal lockdown by approximately 2-3 weeks.
Additionally, I documented the shape of the social welfare function, which enabled
an analysis of the welfare costs associated with mistimed policy interventions.

Appendix

Proof of Proposition 1

Proof Equation (9) follows from the definitions of R0 and S̄ and simple algebra.
Immediate lockdown (i.e one with T0 = 0) results in stable suppression if and only if

SL(∞) < S̄.

Because S̄ is fixed, to prove the result it suffices to show that SL(∞) is increasing in
ε. We have:

22 It is important to be cautious when making this comparison, as the planner in this case has a large
informational disadvantage relative to the individuals who know their health status perfectly.
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SL(∞) − S̄L log SL(∞) − 1 = 0.

Combining this with the result that S̄L = S̄
1−ε

(implied by Eq. (9)) yields:

SL(∞) − S̄

1 − ε
log SL(∞) − 1 = 0. (16)

Differentiating equation (16) with respect to ε and rearranging we get:

∂SL(∞)

∂ε
= S̄(1 − ε)−2 log SL(∞)

1 − S̄L
SL (∞)

≥ 0,

where the inequality follows from the fact that SL(∞) ≤ 1 and S̄L > SL(∞).
To find the value of the threshold note that it is pinned down by the condition

SL(∞) = S̄. Equation (9) implies that ε = 1 − S̄
S̄L
. And so:

−S̄ + S̄L log S̄ + 1 = 0.

Dividing by S̄L yields

− S̄

S̄L
+ log S̄ + 1

S̄L
= 0.

Therefore:

ε̄ − 1 + log S̄ + 1 − ε̄

S̄
= 0.

Rearranging:

ε̄ = S̄

S̄ − 1

(
1 − log S̄ − 1

S̄

)
.

The final part of the Proposition follows from the fact that ε̂ is defined by RL
0 =

S̄L = 1. The trajectory post-lockdown is the same as in the no lockdown scenario
because the initial seed of infection is assumed to be infinitesimally small. ��

Proof of Proposition 2

Proof Consider the trajectory of the epidemic from the end of the lockdown T1
onwards, which is characterized by:

I (t) = −S(t) + S̄ log S(t) + IR + SR − S̄ log SR,
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where (SR, IR) is the state of the system at T1, and so IR = −SR + S̄L log SR + 1.
For T1 sufficiently large, IR ≈ 0. Thus:

I (t) = −S(t) + S̄ log S(t) + SR − S̄ log SR .

The peak occurs at S(t) = S̄:

Imax = −S̄ + S̄ log S̄ + SR − S̄ log SR .

Differentiating with respect to ε :

∂ Imax

∂ε
=

(
1 − S̄

SR

)
∂SR
∂ε

> 0,

where the inequality follows from the fact that ε̄ < ε < ε̂ and ∂SR
∂ε

> 0.
The final resting point is given by:

0 = −S(∞) + S̄ log S(∞) + SR − S̄ log SR .

Differentiating:

∂S(∞)

∂ε
= S(∞)

S(∞) − S̄

(
1 − S̄

SR

)
∂SR
∂ε

> 0,

which proves the result. ��

Derivation of the first order conditions (14) and (15)

The first order necessary condition for T0 to be optimal is:

e−ρT0−
∫ T0
0 πW (s)ds (u(w) + πW (T0)V (T0))

−πW (T0)e
− ∫ T0

0 πW (s)ds
∫ T1

T0
e
−ρt−∫ t

T0
πH (s)ds

(u(h) + πH (t)V (t)) dt

−e− ∫ T0
0 πW (s)ds

(
e−ρT0 (u(h) + πH (T0)V (T0))

)

+e− ∫ T0
0 πW (s)ds

∫ T1

T0
πH (T0)e

−ρt−∫ t
T0

πH (s)ds
(u(h) + πH (t) (V (t)))

−(πW (T0) − πH (T0))e
−ρT1−

∫ T0
0 πW (s)ds−∫ T1

T0
πH (s)ds

W S(T1) = 0.

Re-arranging:

u(w) − u(h)
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+ (πW (T0) − πH (T0)) · (W I (T0)

−
∫ T1

T0
e
−ρ(t−T0)−

∫ t
T0

πH (s)ds
(
u(h) + πH (t)W I (t)

)
dt

−e
−ρ(T1−T0)−

∫ T1
T0

πH (s)ds
W S(T1)) = 0. (17)

Since WS(T0) =∫ T1
T0

e
−ρ(t−T0)−

∫ t
T0

πH (s)ds (
u(h) + πH (t)W I (t)

)
dt + e

−ρ(T1−T0)−
∫ T1
T0

πH (s)ds
W S(T1))

we obtain:

u(w) − u(h) + (πW (T0) − πH (T0)) · (W I (T0) − WS(T0)) = 0. (18)

The first order condition for T1 is:

−e
−ρT1−

∫ T0
0 πW (s)ds−∫ T1

T0
πH (s)ds

(
u(h) + πH (T1)W

I (T1)
)

−πL (T1)e
− ∫ T0

0 πW (s)ds−∫ T1
T0

πH (s)ds
∫ ∞
T1

e
−ρt−∫ t

T1
πW (s)ds

(
u(w) + πW (t)W I (t)

)
dt)

+e
− ∫ T0

0 πW (s)ds−∫ T1
T0

πH (s)ds

×
{
−e−ρT1

(
u(w) + πW (T1)W

I (T1)
)

+
∫ ∞
T1

πW (T1)e
−ρt−∫ t

T1
πW (s)ds

(
u(w) + πW (t)W I (t)

)
dt

}
= 0.

Re-arranging:

(
u(h) + πH (T1)W

I (T1)
)

−πH (T1)
∫ ∞

T1
e
−ρ(t−T1)−

∫ t
T1

πW (s)ds
(
u(w) + πW (t)W I (t)

)
dt)

−
(
u(w) + πW (T1)W

I (T1)
)

+
∫ ∞

T1
πW (T1)e

−ρ(t−T1)−
∫ t
T1

πW (s)ds
(
u(w) + πW (t)W I (t)

)
dt = 0.

which finally yields:

u(h) − u(w) + (πH (T1) − πW (T1))
[
W I (T1) − WS(T1)

]
= 0,

which is the same as in the text.

123



The second wave

Existence of the pure strategy equilibrium

Consider first the existence of the pure strategy equilibrium. LetL ⊂ R
2+ denote the set

of feasible lockdown strategies of a given effectiveness ε. Each element of the set is a
vector of two positive real numbers, {T0, T1}, with T0 ≤ T1. This set is closed. As long
as lockdown is not costless it is also bounded, since lockdown that lasts forever cannot
be optimal. This imposes a condition on the end of the lockdown: T1 ≤ T V where T V

is arbitrarily large but finite. Bounded in this way L is a compact set. Let E denote the
set of sequences fully characterizing the epidemic trajectory: E := {I , πW , πU }∞t=0.
Note thatE contains all the epidemic information that is relevant for individual problem
in (12). Let f : L → E be the correspondence that maps a given lockdown strategy
to the resulting epidemic trajectory, and let g : E → L be the correspondence that
maps the epidemic to optimal lockdown strategy. Finally, let F := f ◦ g, F : L → L
be the correspondence that maps a given lockdown strategy to optimal lockdown
strategies. An equilibrium is a fixed point of F . Kakutani’s Fixed Point Theorem
guarantees that F has a fixed point if set L is nonempty, compact and convex and F
is upper hemicontinuous and convex-valued, that is the set F(x) ⊂ L is nonempty
and convex for every x ∈ L. Clearly, the first four requirements are satisfied. But
convex-valuedness of F fails when ε > ε̄ because g is not convex-valued when the
infection curve is double-peaked. Loosely, a susceptible individual who faces a double
peak of infections can use the lockdown to avoid the risk of one or the other. A convex
combination of such strategies will result in a lockdown that happens in between the
two peaks, which is clearly suboptimal. This proves that g is not convex-valued and
conditions for the existence of a fixed point are not satisfied.
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permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
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