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Abstract 

The atomic structures of nanoclusters are predicted using global 

optimisation techniques that aim to locate local minima (LM) on the potential 

energy landscape. This research evaluates the effectiveness of replacing density 

functional theory (DFT) with standard interatomic potentials (IP), variable 

charge potentials, machine learning potentials (ML-IP: GAP), and neural 

network potentials (NN-IP: MACE). It also assesses the newly published 

“universal potentials,” which are a complete set of MACE potentials trained on 

data from the Materials Project Database, applicable to all elements. 

Monte Carlo Deterministic Quenching and an Evolutionary Algorithm are 

employed to find IP LM of (AlF3)n for fixed values of n, from 1 to 11, and bulk 

cuts for n = 27 and 64. Parameters (A = 3760.0008, ρ = 0.2220) for the Al3+-F⁻ 

Born-Mayer potential were fitted to reproduce the AlF3 α-bulk phase, whilst 

keeping fixed F⁻-F⁻ Buckingham potential parameters, which were taken from 

earlier work on lattice and intrinsic defect properties of bulk rare-earth fluorides. 

(AlF3)6 is the smallest LM nanocluster composed of octahedral corner-sharing 

secondary building units, a structural feature consistent with bulk AlF3 phases. 

Aluminium hydride nanoclusters were generated by data-mining the 

aluminium fluoride LM. Notably, aluminium hydride exhibits analogous 

configurations to aluminium fluoride and demonstrate comparable stability. To 

analyse the structures in terms of primary or secondary building units requires 

the ability to first determine their coordination numbers. A method for defining 

coordination numbers was developed and applied, although in many cases this 

proved problematic. 

The third system was brought to my attention by colleagues within the 

department: 25 gold atoms capped by 18 L-cysteine ligands, i.e., nanoclusters 

of Au25(Cys)18. An earlier study deduced from the XRD observations a more 

spherical Au₂₅ core as compared to the new data recently obtained. Here, a 

model for this system was developed by first applying global optimisation to 

determine the atomic structure of naked Au25, to which the L-cysteine ligands 

were added. 
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Impact statement 

This is the first study on the structure prediction of bare AlF3 and AlH3 

nanoclusters, extended to a L-cysteine coated gold, Au25(Cys)18, nanocluster. 

The nanocluster properties can be tailored to enhance their effectiveness and 

efficiency in applications, from everyday technologies to industrial processes. 

Their high surface-to-volume ratio significantly reduces the quantity of 

material needed if surface interactions are critical. Nanoclusters have a wide 

range of applications in catalysis, sensing, and biomedical imaging. 

Understanding how nanocluster properties change with size, gaining an 

insight in the relationship between the structure, thermodynamical stability and 

chemical properties is critical for developing, optimising, and exploiting their 

use in applications. My research focuses on modelling the atomic structure and 

properties of nanoclusters. This thesis documents the progress made in finding 

and applying a suitable “computationally cheap” measure to evaluate candidate 

structures with the aim of efficiently predicting the atomic structures of 

nanoclusters. The work follows my MSc project on predicting clusters of Ti3N4 

where traditional atomistic models fail. In my PhD study, the suitability of 

variable charge potentials (VCP), developed for bulk Ti3N4 systems, were 

tested for modelling clusters. I found that VCPs are not suitable as cost 

functions, as multiple local minima were generated for every unique targeted 

configuration. Consequently, the direction of my study changed to considering 

the suitability of both more traditional and machine learning (ML) interatomic 

potentials for clusters with 1:3 stoichiometry. The integration of machine 

learning with traditional computational methods significantly reduces the 

computer resources required for structural predictions, making high-precision 

simulations more accessible and efficient.  

Employing global optimisation techniques – Monte Carlo deterministic 

quenching and an evolutionary algorithm as implemented in the in-house 

software, Knowledge Led Master Code (KLMC) – stable, low-energy atomic 

structures of nanoclusters have been predicted for Al compounds that showed 

analogous configurations and comparable stability. The findings on the Lewis 
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acidity and catalytic potential of AlF3 nanoclusters have direct implications for 

designing and optimising new catalysts. A model for the structure of L-cysteine 

protected, or thiolated gold clusters is generated providing insights into their 

properties and stability which are vital for their applications. The properties of 

the thiolated gold clusters are compared with experiment. The approach 

employed can be adapted to other complex systems, facilitating the discovery 

of new materials with tailored properties. 

This thesis lays a strong foundation for further research into nanocluster 

structures and their properties. Future work could explore more advanced ML 

techniques, including non-harmonic mode-coupling effects, to enhance the 

accuracy of ML interatomic potentials. Experimental validation of the 

predicted structures and properties will be crucial for translating these insights 

into practice. 

The research contained in this thesis has been communicated to the broad 

scientific community at several conferences in the UK, Italy and South Africa. 

Four manuscripts for publication, based on the material included in this thesis 

and work completed alongside, are in preparation including: structure 

prediction of AlF3 clusters; experimental and computational study of 

Au25(Cys)18; Au clusters deposited on reduced graphene oxides; and structure 

prediction of pyrene polymers. 

  



  v 

Acknowledgements 

First and foremost, I would like to express my deepest gratitude and love 

to my wife, Kathleen Drake. Your unwavering patience, support, and 

encouragement have been my anchor throughout this journey. Thank you for 

standing by me, postponing our wedding, and providing endless 

encouragement, allowing me to achieve this milestone. From my foundation 

year and BSc in Sheffield to my Ph.D. in London, you have patiently supported 

me over the past ten years. With your unwavering encouragement, I can now 

conclude my student journey and embark on my career as a Scientist. 

I am also profoundly grateful to my parents and brother. Since deciding to 

study abroad during my national military service, they have continuously 

supported me. I am proud to show my family that I have reached one of the 

most significant milestones of my life, and I dedicate this achievement to them. 

I would like to sincerely thank my supervisor, Prof. Scott M. Woodley, for 

providing me with this invaluable opportunity and for his unwavering guidance, 

insights, and support throughout my Ph.D. journey. His dedication and advice 

have been instrumental in the completion of my research. Despite the 

unprecedented challenges posed by the COVID-19 pandemic and the national 

lockdown that began four months into my Ph.D. and lasted until the end of my 

second year, he was always ready to offer feedback, guidance, and personal 

advice. 

My sincere thanks also go to my secondary supervisor, Prof. Sir C. Richard 

A. Catlow, for his guidance and advice. I am also grateful to Dr. Alexey A. 

Sokol for his advice on both academic and personal matters and for our 

enriching discussions on various cultures. 

I would like to thank my office colleagues: Dr. Woong Kyu Jee, Dr. Isa T. 

Lough, and Cyril Xu. I greatly enjoyed our time together in the office and the 

pub, discussing science and sharing memorable moments. I am glad we 

navigated our postgraduate journey together. Additionally, I extend my 

gratitude to Dr. Alin-Marin Elena for helping me to hands-on ML-IP, and to 



  vi 

my experimental collaborator Dr. Gi Byung Hwang for the excellent research 

collaborations and valuable life advice. 

Thank you all for your contributions and support, which have been 

instrumental in my academic journey. With these experiences and your support, 

I am now prepared to contribute to making the world a better and more 

advanced place for the future. 

  



  vii 

Contents 

Declaration _______________________________________________ i 

Abstract __________________________________________________ ii 

Impact statement _________________________________________ iii 

Acknowledgements _________________________________________ v 

1. Introduction ___________________________________________ 1 

1.1. Dimensionality _________________________________________ 1 

1.2. Nanoclusters ___________________________________________ 1 

1.2.1. Applications ______________________________________________ 2 

1.2.2. Experimental Approaches ___________________________________ 3 

1.3. 1D materials ___________________________________________ 4 

1.4. 2D materials ___________________________________________ 5 

2. Theory and Computational Methods _______________________ 6 

2.1. Interatomic Potentials ___________________________________ 6 

2.1.1. Two-Body Potentials _______________________________________ 7 

2.1.2. Shell model ______________________________________________ 11 

2.1.3. Electrostatics ____________________________________________ 13 

2.1.4. Many-Body Potentials _____________________________________ 14 

2.1.4.1. Embedded Atom Method potential _______________________ 14 

2.1.4.2. Modified Embedded Atom Method _______________________ 17 

2.1.4.3. Charge Optimized Many-Body Potential ___________________ 18 

2.2. Machine Learning Interatomic Potential ___________________ 19 



  viii 

2.2.1. Gaussian Process Regression ________________________________ 20 

2.2.2. Neural Network Interatomic Potentials ________________________ 21 

2.2.3. Multi Atomic Cluster Expansion (MACE) _______________________ 23 

2.2.4. Training Machine Learning Interatomic Potentials _______________ 25 

2.2.4.1. Vibrational Mode _____________________________________ 29 

2.3. Electronic Structure Method _____________________________ 31 

2.3.1. Density Functional Theory (DFT) _____________________________ 32 

2.3.1.1. Functionals __________________________________________ 33 

2.3.1.2. Basis Sets ____________________________________________ 35 

2.4. Local Optimisation Algorithms ___________________________ 35 

2.4.1. Zeroth-Order Method: Powell’s method _______________________ 36 

2.4.2. First-Order Method: Conjugate Gradient Method _______________ 38 

2.4.3. Second-order Method: Newton’s method and Quasi-Newton Method 39 

2.4.3.1. Second-order Method: Rational Function Optimisation method 40 

2.5. Global optimisation method _____________________________ 42 

2.5.1. Challenges of Global Optimisations ___________________________ 43 

2.5.2. Data Mining _____________________________________________ 44 

2.5.3. Monte Carlo Deterministic Quenching ________________________ 45 

2.5.4. Genetic Algorithm ________________________________________ 47 

2.5.5. Method for Constructing Clusters Cut from the Bulk phase of AlF3. __ 49 

3. Aluminium Fluoride ___________________________________ 53 

3.1. Introduction __________________________________________ 53 

3.2. The Interatomic Potentials for Aluminium Fluoride __________ 55 



  ix 

3.2.1. Interatomic Potential for Short-Range Al-F Interactions ___________ 55 

3.2.2. F-F Four region Buckingham Potential _________________________ 61 

3.2.3. Two-stage approach to predicting DFT LM structures ____________ 63 

3.2.4. Convergence of the GA global optimisations ___________________ 66 

3.3. Results and Discussions _________________________________ 69 

3.3.1. Global Optimisation _______________________________________ 69 

3.3.1.1. Efficiency of Global Optimisation Methods _________________ 72 

3.3.1.2. Finding Effective Simulation Box Size ______________________ 72 

3.3.2. Comparison with The Two-Body Potentials _____________________ 75 

3.3.3. Density Of States _________________________________________ 76 

3.3.4. AlF3 Nanocluster Structures _________________________________ 80 

3.3.5. Top-Down Approach - Bulk Cut Clusters _______________________ 97 

3.3.6. First and Second Order Energy, and Dipole Moment ____________ 100 

3.3.7. Coordination Number ____________________________________ 104 

3.3.8. Lewis Acidity ____________________________________________ 110 

3.3.8.1. Structural Factor _____________________________________ 111 

3.3.8.2. Chemical factor ______________________________________ 114 

4. Aluminium Hydride ___________________________________ 119 

4.1. Introduction _________________________________________ 119 

4.2. Interatomic Potential for Al-H Interactions ________________ 120 

4.2.1. Al-H Buckingham Potential ________________________________ 120 

4.2.2. H-H Buckingham Potential _________________________________ 120 

4.2.3. Calculation of C Parameter for H-H Interaction _________________ 121 



  x 

4.2.4. Refinement of Cutoff Distances in the Four-Region Buckingham ___ 122 

4.2.5. Spring Constant for H-H Interaction _________________________ 123 

4.3. Results and Discussions ________________________________ 123 

4.3.1. Global Optimisation – Data Mining __________________________ 123 

4.3.2. AlH3 nanocluster structures ________________________________ 124 

5. Thiolated gold cluster, (Au)25(Cys)18 _____________________ 143 

5.1. Introduction _________________________________________ 143 

5.2. Au25 cluster __________________________________________ 144 

5.3. L-cysteine protected Au25 ______________________________ 151 

5.3.1. Structural Properties _____________________________________ 151 

5.3.2. Electronic Properties _____________________________________ 158 

6. Machine Learning Interatomic Potential _________________ 163 

6.1. Pairwise Interaction __________________________________ 164 

7. Conclusion _________________________________________ 188 

Acronyms ______________________________________________ 190 

List of Figures ___________________________________________ 192 

List of Tables ____________________________________________ 201 

Bibliography ____________________________________________ 202 



  1 

1. Introduction 

1.1. Dimensionality 

Materials science is a broad field that examines different forms of materials, 

from single atoms to large, solid materials. Between these extremes are small 

clusters of atoms known as nanoclusters, such as AlF3, AlH3, and Au. Unlike large 

materials that have a regular, repeating pattern in all directions, these nanoclusters 

generally do not follow these patterns due to their definite shape and size, which 

is why they are often termed zero-dimensional (0D). 

In addition to 0D nanoclusters, materials can also be classified based on their 

dimensionality: two-dimensional (2D) structures like graphene1, and one-

dimensional (1D) structures such as nanowires and nanotubes 2,3 that resemble tiny 

wires. However, this study emphasises 0D nanoclusters structures of AlF3, AlH3, 

Au, and Ti3N44. These nanoclusters are compact and do not extend infinitely in 

any direction, making them intriguing subjects of study as they exhibit behaviours 

distinct from larger materials. 

Exploring these 0D nanoclusters offers a novel perspective in materials 

science research. Their size, shape, and composition help in tweaking their 

properties right at the atomic level5. By closely studying AlF3, AlH3, Au, and 

Ti3N44 nanoclusters, we can gain a better understanding of their unique 

characteristics and how they differ from larger materials. This study aims to bridge 

the gap between the atomic scale and the macroscopic domain of solid materials, 

enriching the discourse in materials science through the concept of dimensionality. 

 

1.2. Nanoclusters 

In recent years, the scientific community has seen a growing interest in the 

study of nanoclusters, thanks to their unique properties and potential applications 

in various fields like catalysis 6, optics7,8, and materials science. Nanoclusters, 

usually comprising a small number of atoms or molecules, can adopt various 
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configurations9–12. These configurations significantly alter the behaviour of these 

entities compared to their bulk counterparts, frequently giving them new 

characteristics that are highly valuable for both theoretical investigation and 

practical applications. 

A particularly significant area of nanocluster research is the study of 

inorganic clusters comprising transition and post-transition elements. In this area, 

clusters of compounds such as AlF3, AlH3, Ti3N4, and Au exhibit a diverse range 

of structural, electronic, and chemical properties that have not been extensively 

explored compared to larger-sized materials. 

The majority of the work presented in this thesis focuses on the systematic 

exploration of AlF3, AlH3, and Au clusters, using a range of computational 

methodologies detailed in the following chapter. The nanoclusters studied contain 

fewer than 254 atoms, typically less than 1 nm across, therefore placing them at 

the smaller end of the nanocluster size range. The main goal of this study is to 

better understand the relationship between the structure and properties of these 

nanoclusters, which could help harness their potential in different technological 

areas. 

To explore the structural predictions of these nanoclusters, we use a variety 

of theoretical tools, including interatomic potentials (IP), machine learning 

interatomic potentials (ML-IP), and density functional theory (DFT) methods. 

These tools help us to thoroughly analyse the structures of the nanoclusters and 

understand how these factors affect their physical and chemical properties. The 

detailed comparison of different materials and nanocluster sizes, supported by 

predicted clusters, aims to identify the cluster size at which they begin to exhibit 

bulk-like structural or physical properties. 

 

1.2.1. Applications 

Much like their oxide counterparts, AlF3 and AlCl3 nanoclusters show 

significant potential for a variety of applications similar to those of Au and ZnO 

nanoclusters. For instance, the optical properties of Au nanoclusters suggest 



  3 

potential applications in optoelectronics13 or photovoltaics14, akin to how ZnO and 

TiO2 nanoclusters are employed in sunscreens15. Although specific applications 

for AlF3 and AlH3 nanoclusters are yet to be extensively documented, their 

chemical and physical properties suggest potential uses in areas like catalysis, 

similar to the role ZnO16 and CuO17,18 nanoclusters play in gas sensing. The 

exploration of these applications requires a combination of theoretical and 

experimental approaches to fully unlock the potential of these nanoclusters in 

advancing technological frontiers. 

 

1.2.2. Experimental Approaches 

The journey into unearthing the properties and behaviour of nanoclusters 

encompasses a broad spectrum of experimental methodologies, each tailored to 

extract specific facets of information. Among these, Scanning Tunnelling 

Microscopy (STM) emerges as a key technique, enabling the atomistic imaging of 

surfaces19,20. By employing a fine tip in close proximity to the nanocluster, a 

quantum tunnelling current aids in mapping the electronic states, thus revealing 

the topography and electronic structure of nanoclusters. This method has been 

instrumental in capturing real-space images of nanoclusters, providing critical 

insights into their structural morphology. 

Alongside STM, electron microscopy techniques such as Transmission 

Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) provide 

detailed architectural insights into nanoclusters. TEM, which transmits electrons 

through ultra-thin samples, provides high-resolution images21,22, while SEM scans 

the surface with electrons to provide detailed images with depth perception 23. 

These techniques have been pivotal in visualising the structural and compositional 

attributes of nanoclusters. Notably, in collaborative efforts, HR-TEM has been 

used to observe the Au₂₅(L-Cystein)₁₈ (or Au₂₅(Cys)₁₈) nanocluster, 

complementing computational studies to provide a more comprehensive 

understanding of this particular nanocluster; this study will be published in the 

near future. 
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Mass Spectrometry (MS) is also an essential tool in nanocluster research, 

enabling the precise determination of the mass-to-charge ratio of ionised species 

24,25. This methodology reveals the compositional diversity and stoichiometry of 

nanoclusters, forming a foundation theoretical predictions and computational 

validations. 

Moreover, techniques such as gas-phase condensation have been employed 

to produce and study nanoclusters like CoPt in a gas-phase condensation 

apparatus26. Nuanced techniques such as Two-Photon Excited Fluorescence Near-

Field Scanning Optical Microscopy (TPEF NSOM) and the investigation of 

ligand-protected metal nanoclusters have opened up additional avenues to explore 

the structure of nanoclusters27. The use of various experimental methods has 

enhanced our understanding of nanoclusters ,  opening up new possibilities for 

their applications. This combined experimental and computational approach is 

crucial in bridging the gap between the nanomaterials and larger scales in 

materials science, leading to new discoveries and a deeper understanding of the 

field. 

 

1.3. 1D materials 

One-dimensional (1D) materials exhibit nanoscale characteristics in two 

dimensions, embodying a blend of nanoparticle-like and bulk-like attributes due 

to the confinement of their electrons in two out of three dimensions. This category 

encompasses nanowires and nanotubes, both of which have attracted attention 

owing to their tunability and potential applications in nanotechnology. Among 1D 

materials, carbon nanotubes stand out as highly recognised entities 28,29. Unlike 

nanowires, they possess a hollow structure and have found utility in the fabrication 

of particularly robust composite materials, such as those used in bicycle frames, 

and also as probe tips for atomic force microscopes 30. On the other hand, 

nanowires have been instrumental in the field of transistor technology, aiding in 

the miniaturisation of transistor sizes 31. 
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1.4. 2D materials 

Two-dimensional (2D) materials are a significant group primarily derived 

from layered structures. They are defined by having two surfaces or interfaces that 

are just nanometres apart. These materials might appear as standalone thin films 1, 

as layers on a 3D material 32, or as part of layered structures 33. What makes 2D 

materials particularly noteworthy is their similarity to more common materials in 

certain aspects, like having a band structure that changes with the layer thickness³³. 

They also have unique properties, including a high surface-to-volume ratio and 

the ability to exhibit quantum effects 34. 

Graphene 1 is especially important among these materials. It can act as a base 

for adding nanoclusters, creating a useful setting to study nanoscale interactions. 

For instance, reduced graphene oxide (rGO) is often used as a base to enhance the 

effects of catalysts35–37 such as improving the photocatalytic power of TiO₂. 

Studying 2D materials helps us understand how different material structures 

interact, opening up new possibilities for advancements in nanotechnology. 
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2. Theory and Computational Methods 

2.1. Interatomic Potentials 

The exploration of material behaviour on atomic and molecular scales 

necessitates a robust theoretical framework that can accurately describe the 

interactions between atoms and molecules. At the core of this framework is the 

idea of IPs. IPs are crucial for understanding and predicting the properties and 

behaviours of materials. They describe how the energy between atoms changes 

based on their positions, helping us model the forces and movements in a system 

of interacting particles. They are essential for bridging quantum mechanics with 

classical mechanics, enabling the simulation and analysis of large systems that 

would be too complex to handle with purely ab initio calculations. In this study, 

IPs are employed at the stage of global optimisation on the energy landscape of 

nanoclusters. 

IPs are fundamental to molecular dynamics (MD) simulations, which are 

crucial for studying how material systems change under various conditions. By 

using suitable IPs, researchers can explore various material phenomena such as 

phase transitions, mechanical properties, thermal transport, and reaction dynamics, 

among others. 

The construction and choice of IPs are of paramount importance as they 

significantly impact the accuracy and reliability of simulations and predictions. 

Various forms of IPs 38,39 have been developed, each tailored to capture specific 

types of interactions and material systems. In this chapter, the focus is on the IPs 

employed, elucidating their relevance and application in the explored contexts. 

The effort to improve and create new IPs remains an active field of research, 

aiming to expand our understanding of materials science and engineering. This 

work also provides a strong basis for studying nanoclusters and other complex 

materials through theory and computation. 
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2.1.1. Two-Body Potentials 

The development of IPs has been a cornerstone in computational chemistry, 

with origins extending back to the early 20th century. A seminal contribution from 

this era was made by Lennard-Jones (LJ)40 in the 1920s, who introduced a specific 

pair potential tailored for noble gases. This groundbreaking work laid the 

foundation for subsequent advancements in the field, emphasising the importance 

of accurate modelling of atomic interactions. 

The LJ potential is characterised by two terms: 

𝑉"𝑟!"	$ =
$

%!"#$
− &

%!"
% ,	 Eqn 1 

The first term, 𝑟'(), describes the strong electronic repulsion between atoms 

at very short distances, preventing an unphysical overlap of their electron clouds. 

This repulsion is influenced by the size of the interacting particles, with larger 

atoms or ions experiencing stronger repulsion due to an increased likelihood of 

electron cloud overlap. The parameter A represents the strength of the repulsive 

interaction and is related to the size of the ions or atoms involved. 

The second term, or 	𝑟'* term, describes attractive forces between atoms due 

to van der Waals (vdW) interactions, which arise from induced dipole–induced 

dipole interactions. This term can be theoretically derived from two linear 

harmonic dipole oscillators41,42. The parameter B quantifies the strength of the 

electron shell dispersion between atoms i and j, representing the depth of the 

potential well and indicating the strength of the vdW interactions between the 

atoms. 

In computational chemistry, the LJ potential is crucial for studying noble 

gases and modelling non-reactive systems, demonstrating its ongoing relevance. 

Over a decade after the creation of the LJ potential, the Buckingham potential was 

formulated 43: 



  8 

𝑉"𝑟!"	$ = 𝐴!" 𝑒𝑥𝑝 -−
%!"
+!"	
. − ,!"

%!"%
, Eqn 2 

This new potential substituted the repulsive r -12 component in the LJ potential 

with an exponential function of distance that more accurately reflects reality. 

Parameters 𝐴!" , 𝜌-. , and 𝐶!"  describe the ionic size, the extent of shielding (or 

compressibility), and the intensity of the electron shell dispersion between atoms 

i and j, respectively. (Note that the A term in the LJ and Buckingham potentials 

are different and not directly comparable) N.B. the A term in LJ and Buckingham 

potentials are different. The exponential repulsive term ensures strong repulsion 

at short distances, reflecting the incompressibility of the atomic cores.  

When modelling charged systems, interactions between cations often lack the 

electron shell dispersion term, − ,!"
%!"%

, since they typically have low polarisability. 

Therefore, cations often give negligible contributions to vdW energies and forces. 

𝑉"𝑟!"$ =
/!/"
%!"

, Eqn 3 

In many cases, the Coulomb potential, as shown in Eqn 3 for cation–anion 

interactions, can lead to an unphysical behaviour known as the Coulomb 

catastrophe. The qi and qj represents the charges of ions i and j, and 𝑟!"  is the 

interatomic distance between atoms i and j. In contrast, anion–anion interactions 

do exhibit some electron shell dispersion. This feature, represented by the second 

term of the Buckingham potential, can also result in an unphysical behaviour 

known as the Buckingham catastrophe at short interatomic distances between 

anions. To avoid this issue, the Buckingham potential is often paired with other 

more repulsive but quickly decaying potentials at short distances to model material 

systems robustly. 
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Figure 1. Upper Panel depicts the fitted Buckingham potential4 for N – N 

interactions (parameters: A = 5896.8405 eV, ρ = 0.2737 Å), represented by a red 

solid line, alongside the N – N Morse potential shown as a blue solid line. Lower 

Panel shows a specific range of the Al – F Born-Mayer potential; the inset focuses 

on the equilibrium distances⁴⁴. In these representations, the Al–F Born-Mayer 

potential is marked by a blue solid line, the Al – F Coulomb potential by a grey 

dashed line, and the total potential (a combination of the Al–F Born-Mayer and 

Al – F Coulomb potentials) by a red dashed line. 

An illustrative example of the Buckingham catastrophe can be seen in the 

upper part of Figure 1, where the N – N Buckingham potential is shown as a red 

solid line, and an alternative interatomic potential, the N – N Morse potential, is 

presented as a blue solid line. While the N – N Buckingham potential was effective 

for simple structure optimisations, we faced the Buckingham catastrophe during 

the global optimisation of nanoclusters. This issue arose during the initial random 
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structure generation process in the global optimisation, which placed N and N 

atoms closer than 1.65 Å. The inclusion of the Coulomb potential on the 

Buckingham potential further expanded the range of the Coulomb catastrophe as 

the opposite charged system has infinite attraction at short distance (grey dashed 

line in the small panel of figure 1). As a solution, we fitted the N – N Morse 

potential to the N – N Buckingham potential as an alternative IP, as the Morse 

potential does not exhibit the unphysical short-range attraction found in the 

Buckingham potential. 

The Morse potential is given by: 

𝑉"𝑟!"$ = 𝐷0[1 − 𝑒'12%!"'%'3]) − 𝐷0, Eqn 4 

where, 𝑉"𝑟!"$is the potential energy between atoms i and j, 𝐷0 is the well depth 

(the bond dissociation energy), a is a parameter related to the stiffness of the bond, 

𝑟0 is the equilibrium bond distance, 𝑟!"is the interatomic distance between atoms i 

and j. 

By fitting the Morse potential parameters 𝐷0, a, and 𝑟0  to reproduce the 

behaviour of the N – N interactions, we avoided the unphysical attractions at short 

distances that led to the Buckingham catastrophe. 

The lower part of Figure 1 provides another example, displaying the Al – F 

Born-Mayer potential and the F – F four-region Buckingham potential. The 

specific range where the Coulomb catastrophe might occur is when the interatomic 

distance between Al and F atoms is rAl-F < 0.057 Å. In this instance, we avoided 

the Coulomb catastrophe thanks to the global optimisation software's automated 

fragmentation and collapse detection algorithm, based on ionic radii. However, 

this algorithm could not prevent the earlier N – N Buckingham catastrophe 

example, as the Buckingham catastrophe region extended significantly beyond the 

detection range of the collapsed structure algorithm. 

The Born-Mayer potential used for Al –F interactions is given by: 
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𝑉"𝑟!"$ = 𝐴!"exp	(−
%!"
+!"
), Eqn 5 

where, 𝑉"𝑟!"$ is the potential energy between atoms i and j, 𝐴!" is a parameter 

representing the magnitude of the repulsive interaction, %!"
+!"

 is a parameter related 

to the effective size or "hardness" of the atoms, 𝑟!" is the interatomic distance 

between atoms i and j. 

Numerous distinct interatomic potentials (IPs) have been developed, 

including cluster potentials such as the Embedded Atom Method (EAM) 44,45, the 

Modified Embedded Atom Method (MEAM) 46–48, and charge-optimized many-

body potentials 49,50. These IPs are more complex due to the multitude of factors 

they incorporate to accurately represent material behavior with more terms, such 

as angular, dihedral angle, etc. A distinguishing feature of these potentials is their 

mathematical formulations, which are designed to capture the essential physics of 

the material systems they aim to model. While IPs offer the advantage of lower 

computational costs when studying target materials, the process of fitting or 

parameterizing even simple IPs for specific materials has proven challenging. In 

contrast, recent advancements in machine-learning interatomic potentials (ML-

IPs)51,52 have largely addressed the difficulties associated with parameterization 

and have improved accuracy 53,54. 

In the current chapter, we will introduce the method that was used to study 

AlX3 (X = F, H), and Au(Cys)18. Subsequently, we will introduce the training 

methods for ML-IPs. 

 

2.1.2. Shell model 

The shell model, proposed by Dick and Overhauser 55, is able to empirically 

describe the dipolar polarisability of a cation or anion by considering a discrete 

core (nucleus and inner electrons) and a shell (valence electrons) which are 

superimposed onto each other (Figure 2). The core and shell are separated but are 

joined by a harmonic spring with the force constant kcs Electronic polarisability, 
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𝛼, is modelled by allowing the charged shell to move in response to forces from 

nearest neighbour ions. 

(A) 

 

(B) 

 
Figure 2. Demonstration of the polarised shell model: (A) a (ZnO)4 nanocluster 

structure with the structural rigid ion model (solid dashed line) and the shell model 

(transparent) superimposed; and (B) shows a simplified diagram of the shell model 

of a polarised ion: the solid blue/smaller circle is the qcore charged core of an 

cation/anion and the light blue/bigger circle is the qshell charged shell of an 

cation/anion. The shell and core are interlinked with a harmonic spring (purple) 

which has a spring constant, k. 

𝜇!456705 = 𝛼	𝐸 = 𝑞8𝑟78, Eqn 6 

where,  𝜇!456705 is the induced dipole moment, α is the electronic 

polarisability, E is the electric field, 𝑞8 is the charge of the shell,  𝑟78 is the 

displacement between the core and the centre of the shell. Similarly, the short-

range interactions are usually defined to act on the shell, but Coulomb interactions, 

Eqn 3, act on both the core and the shell. The spring constant k is related to the 

polarisability by: 
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𝑘8 = 𝑞8)/:, Eqn 7 

where, 𝑘8 is the core–shell force constant, 𝑞8is the charge of the shell, α is the 

electronic polarisability. Here, the short-range interactions are usually defined to 

act on the shell, but Coulomb interactions (see Eqn 3) act on both the core and the 

shell. The polarisability decreases as the force of the core–shell interaction 

increases because the shell and core are tightly bound. The strength of binding 

between the core and shell can be described by Hooke’s law: 

𝐸78 =
(
)
𝑘8	𝑟78), Eqn 8 

where,	𝐸78 	is	 the	elastic	energy	between	 the	core	and	shell,	k	 is	 the	spring 

constant, 𝑟78  is the displacement between the core and the shell. Thus, the 

polarisability is dependent on the local chemical environment. However, the point-

charge shell model is not sufficient to explicitly describe the complex nature of 

extensive electron clouds to reflect higher-order moments of electric fields and 

charge density. 

 

2.1.3. Electrostatics 

In our computational approach, we primarily focus on two-body potentials to 

enhance efficiency. For compounds like AlF₃ and AlH₃, where both aluminium 

(Al) and fluorine/hydrogen (F/H) ions are charged and polarisable, the Coulomb 

potential is a fundamental component. This potential represents the interactions 

between point charges and their associated shells. The Coulomb potential for any 

pair of point charges is given by Eqn 3. 

Transitioning to the context of nanoclusters, the Madelung potential, typically 

associated with long-range Coulombic interactions in ionic crystals, takes on a 

nuanced role. Due to the smaller size and fewer ions in nanoclusters compared to 

bulk materials, the Madelung potential is inherently weaker, as there are fewer 

atoms contributing to the overall electrostatic interactions. This reduced Madelung 

potential allows nanoclusters to exhibit a wide range of configurations since they 

are not as tightly bound by the electrostatic constraints seen in bulk materials. 
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Additionally, the reduced electrostatic constraints in nanoclusters allow for 

more flexibility in the structural arrangement of atoms. This leads to diverse and 

potentially more reactive configurations, which is particularly important in 

applications such as catalysis. The ability to adopt various configurations can 

enhance the catalytic activity of nanoclusters, making them highly versatile and 

efficient in different chemical processes. 

 

2.1.4. Many-Body Potentials 

In the complex world of atomic and molecular interactions, understanding the 

forces between atoms is crucial for determining how materials behave and what 

their properties are. While pair potentials provide a simplified representation of 

these interactions by considering them in isolation, they often fall short in 

capturing the complexities arising from simultaneous interactions among multiple 

atoms. This is where many-body potentials come into play. 

Many-body potentials provide a comprehensive framework that takes into 

account interactions involving more than two atoms simultaneously. By 

considering the collective effects of multiple neighbouring atoms, these potentials 

offer a more nuanced and accurate depiction of real-world phenomena in atomic 

systems. In essence, they recognise that the energy of an atom in a material is not 

just influenced by pairwise interactions but by the broader environment of 

surrounding atoms. 

Within the scope of many-body potentials, various models and methods have 

been developed to address specific material systems and interactions. This chapter 

briefly introduces important potentials such as the EAM45,56, Potential, the 

MEAM47,48, and the COMB349,50 potential. 

 

2.1.4.1. Embedded Atom Method potential 

The EAM is a computational approach widely used to model the behaviour 

of metallic systems. It is particularly useful for simulating the properties of metals 
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and alloys because it effectively captures the interactions between atoms in these 

materials. The fundamental concept of EAM is that the energy of each atom in the 

system is influenced not just by the positions of nearby atoms, but also by the 

electron density generated by these atoms. 

In EAM, the total energy of a system is considered to be the sum of two main 

contributions: the embedding energy and the pair potential energy. The embedding 

energy is the energy required to place an atom into the electron cloud created by 

its neighbouring atoms. The pair potential energy represents the interaction energy 

between pairs of atoms, similar to the classical pair potentials used in simpler 

models. 

𝐸 = ∑ 𝐸!! ,  Eqn 9 

where 𝐸! is the energy associated with atom iii. 

The energy 𝐸! consists of two parts: the embedding energy 𝐹(𝜌!) and the pair 

potential energies involving atom i. The embedding energy term depends on the 

local electron density	𝐹(𝜌!)  at atom i, which is created by all the other atoms in 

the vicinity. The embedding energy function 𝐹(𝜌!)  describes how the energy 

changes as the electron density varies. The pair potential energy term represents 

the interaction energies between atom i and its neighbouring atoms j, separated by 

distances 𝑟!" The pair potential 𝜙"𝑟!"$ captures how the energy changes with the 

distance between two atoms. 

Thus, the energy associated with atom i can be written as: 

𝐸! = 𝐹(𝜌!) +
(
)
∑ 𝜙"𝑟!"$!;" , Eqn 10 

where, the factor of 1/2 avoids double-counting the pair interactions. 

The local electron density 𝜌! at atom i is a sum of contributions from all other 

atoms j: 
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𝜌! = ∑ 𝑓"𝑟!"$!;" , Eqn 11 

where, 𝑓"𝑟!"$ is the contribution to the electron density at atom i due to atom j, 

and it depends on the distance 𝑟!"between atoms i and j. Typically, 𝑓"𝑟!"$decreases 

as the distance 𝑟!" increases. 

Putting it all together, the total energy E of the system can be written as: 

𝐸 = ∑ 𝐹(𝜌!)! + (
)
∑ 𝜙"𝑟!"$!;" , Eqn 12 

where, E is the total energy of the system, 𝐹(𝜌!) is the embedding energy of atom 

i, dependent on the local electron density 𝜌!, 𝜙"𝑟!"$ is the pair potential energy 

between atoms i and j. The first term, ∑ 𝐹(𝜌!)! ,represents the sum of the 

embedding energies for all atoms. The second term, (
)
∑ 𝜙"𝑟!"$!;" , accounts for 

the pairwise interaction energies between atoms, The factor of 1/2 prevents 

double-counting the interactions since each pair is considered only once. 

To illustrate, consider a simple example with two atoms at a distance r. Each 

atom contributes to the electron density at the other atom. If we denote the 

contribution from one atom as 𝑓(𝑟), the local electron density at each atom is 𝜌 =

𝑓(𝑟). The embedding energy for each atom is given by 𝐹(𝜌). The pair potential 

energy between the two atoms is 𝜙"𝑟!"$. The total energy E for this two-atom 

system is: 

𝐸 = 2𝐹(𝜌) + 𝜙(𝑟), Eqn 13 

here, 2𝐹(𝜌) is the sum of the embedding energies for the two atoms, 𝜙(𝑟)	is the 

pair potential energy between the two atoms. 

The EAM potential provides a more realistic representation of atomic 

interactions in metallic systems by considering both the embedding of atoms into 

the electron density and the pairwise interactions. This dual approach allows for 

more accurate simulations of the physical properties of metals and alloys, making 

EAM a valuable tool in computational chemistry and materials science. 
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2.1.4.2. Modified Embedded Atom Method  

The MEAM46–48,53,57 builds on the EAM by introducing angular terms to 

capture bond directionality, making it suitable for a broader range of materials, 

including ceramics and covalent compounds. MEAM's model is articulated as: 

𝐸 = ∑ 𝐹(𝜌!)! + (
)
∑ 𝜙!""𝑟!"$!;" + ∑ ∑ 𝐺"𝜃!"<$<;!,"!;" , Eqn 14 

In this equation 14, 𝐸 represents the total energy of the system. The first term, 

∑ 𝐹(𝜌!)! , sums the embedding energies 𝐹(𝜌!) for all atoms i in the system. The 

embedding energy 𝐹(𝜌!) depends on the local electron density 𝜌! at atom i, which 

accounts for the electron density contributions from neighbouring atoms. This 

term captures how the energy changes as an atom is "embedded" in the electron 

cloud of surrounding atoms. 

The second term, (
)
∑ 𝜙!""𝑟!"$!;" , represents the pair potential energies 

between pairs of atoms. Here, 𝜙!""𝑟!"$ is the pair potential energy between atoms 

i and j, and 𝑟!" is the distance between these two atoms. The summation runs over 

all unique pairs i and j (with 𝑖 ≠ 𝑗), and the factor of 1/2 ensures that each pair 

interaction is only counted once, avoiding double-counting. 

The third term, ∑ ∑ 𝐺"𝜃!"<$<;!,"!;" , accounts for the angular dependence of 

atomic interactions, which is crucial for materials with directional bonding. In this 

term, 𝜃!"< is a function that describes the angular potential energy associated with 

the angle 𝜃!"<  formed by atoms i, j, and k. The angle 𝜃!"<  is defined by the 

positions of these three atoms, capturing the directional characteristics of the 

bonds in the material. The double summation runs over all unique combinations 

where 𝑖 ≠ 𝑗 and 𝑘 ≠ 𝑖, 𝑗, effectively considering all possible angles involving 

atom i and its neighbours. 

This formulation allows MEAM to account for the geometric arrangement of 

atoms, which is crucial for materials like silicon and carbon that exhibit strong 

directional bonding due to their covalent nature. The inclusion of angular terms 

increases computational demands and requires extensive parameter calibration to 

accurately represent the material's properties. However, MEAM's ability to model 
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complex materials makes it a versatile tool in computational studies, extending 

beyond metals to include semiconductors, ceramics, and other complex materials. 

 

2.1.4.3. Charge Optimized Many-Body Potential  

Classical potentials like the EAM and MEAM have their merits, but they fall 

short of capturing intricate charge interactions. The COMB3 potential 49,50,58 a 

sophisticated method rooted in quantum mechanical principles, fills this gap. It 

includes many-body interaction terms and dynamically adjusts atomic charges 

during simulations. This is crucial for systems where electrostatic forces are 

significant, such as mixed ionic-covalent materials and complex interfaces. 

COMB3 is designed to handle dynamic charge variations, which are key to 

accurately simulating electrostatic forces in various materials. The energy E in a 

COMB3-modelled system is expressed as: 

𝐸 = ∑ 𝐹(𝜌!)! + (
)
∑ 𝑉!""𝑟!" , 𝑞! , 𝑞"$!;" + 𝐸elec, Eqn 15 

where, E represents the total energy of the system. The first term, ∑ 𝐹(𝜌!)!  sums 

the embedding energies 𝐹(𝜌!) for all atoms i in the system. The embedding energy 

𝐹(𝜌!) depends on the local electron density 𝜌!  around atom i, reflecting how the 

energy changes as an atom is embedded in the electron cloud of its neighbours. 

The second term, (
)
∑ 𝑉!""𝑟!" , 𝑞! , 𝑞"$!;" , accounts for the pairwise interaction 

energies between atoms. Here, 𝑉!""𝑟!" , 𝑞! , 𝑞"$ is the pairwise interaction potential 

between atoms i and j, which depends on the interatomic distance 𝑟!"  and the 

charges 𝑞!  and 𝑞"  of the interacting atoms. The factor 1/2 ensures that each 

interaction is counted only once, preventing double-counting. 

The third term, 𝐸elec, stands for the electrostatic energy of the system. This 

energy is calculated based on dynamically optimised charges that adjust in real 

time during simulations. 

The Charge Equilibration (QEq) 52,59 methodology within COMB3 modifies 

atomic charges based on their surroundings, effectively capturing charge transfer 
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and polarisation effects. This dynamic adjustment of charges ensures accurate 

simulations of systems with significant electrostatic interactions. However, this 

added layer of complexity can be computationally demanding, as it requires 

charge optimisation at each simulation step. 

Overall, the primary strength of COMB3 lies in its ability to simulate a wide 

variety of materials with different electronic properties, making it a versatile and 

powerful tool in computational studies, despite the increased computational 

demands. 

 

2.2. Machine Learning Interatomic Potential 

The landscape of computational materials science is ever-changing. Classical 

approaches like DFT and potentials such as the EAM have been cornerstones in 

the field. However, these traditional methods come with computational 

bottlenecks and limitations in capturing complex atomic interactions due to 

computational costs or accuracy reasons. 

Enter ML algorithms 53,60–62 which have revolutionised the way we approach 

materials science. ML-IP are at the forefront of this transformation, offering a 

blend of computational efficiency and accuracy. These potentials are trained on 

comprehensive datasets, often sourced from experimental observations, first-

principles methods like DFT, or empirical data, to deliver highly precise 

predictions for atomic and molecular systems. 

Computational efficiency is a critical consideration when selecting methods 

for simulating material properties, especially for large systems or when extensive 

sampling is required. Traditional classical IP, DFT, and ML-IP, such as the 

Message Passing Atomic Cluster Expansion (MACE), each offer different 

balances between computational cost and accuracy. 

Classical IPs are the most computationally efficient, allowing simulations of 

millions of atoms over long timescales. They use simplified mathematical forms 

to model atomic interactions, which can make them up to 106 times faster than 

DFT calculations51,63. This efficiency makes classical IPs ideal for large-scale 
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molecular dynamics simulations where computational speed is essential. However, 

their simplified nature can limit their accuracy, particularly in systems where 

electronic effects play a significant role. 

DFT provides a more accurate description by explicitly accounting for the 

electronic structure of materials. It is widely used for calculating material 

properties with high precision. However, DFT is computationally intensive, with 

the computational cost scaling roughly with the cube of the number of electrons 

in the system (O(N3)). This scaling makes DFT impractical for large systems or 

long timescale simulations, limiting its application to smaller systems with fewer 

atoms. 

ML-IPs like MACE offer a compromise between the efficiency of classical 

IPs and the accuracy of DFT. ML-IPs are trained on DFT data to predict atomic 

interactions, enabling them to achieve near-DFT accuracy while significantly 

reducing computational cost. For instance, MACE potentials leverage message-

passing neural networks to model both local and many-body interactions 

efficiently. They can be up to 104 times faster than DFT calculations while 

maintaining comparable accuracy, making them suitable for simulating larger 

systems than those typically accessible with DFT. Compared to classical IPs, ML-

IPs are generally about 10 to 100 times slower, but the substantial increase in 

accuracy often justifies the additional computational cost. 

This balance between accuracy and efficiency makes ML-IPs particularly 

valuable for studies requiring detailed atomic-level insights without the 

prohibitive computational expense of DFT. They enable simulations of larger 

systems or longer timescales than feasible with DFT, while providing more 

accurate results than classical IPs. 

 

2.2.1. Gaussian Process Regression 

Gaussian Process Regression (GPR) 64, a pillar in the domain of machine 

learning, offers a non-parametric approach to data modelling. At its core, GPR 

provides a way to predict a continuous output variable based on a set of input 
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variables. Instead of establishing a fixed form for the function that maps inputs to 

outputs, GPR expresses this function as a probability distribution over all possible 

functions. When applied to computational materials science, GPR serves as the 

foundation for the Gaussian Approximation Potential (GAP). GAP harnesses the 

power of GPR to approximate potential energy surfaces, offering a balance 

between computational efficiency and accuracy. By training on datasets derived 

from quantum mechanical simulations, GAP can interpolate the potential energy 

and atomic forces for unseen atomic configurations. 

The rise of machine learning in this domain can be attributed to several factors. 

Firstly, ML algorithms can process extensive and complicated datasets more 

efficiently than classical computational techniques. Secondly, ML models, 

especially neural networks, have the ability to learn complicated patterns in the 

data, making them highly versatile and applicable to a diverse range of materials. 

 

2.2.2. Neural Network Interatomic Potentials 

Neural networks are often the driving computational force behind many ML-

IPs. When ML-IPs use neural networks as a core architecture, they are often 

referred to as Neural Network Interatomic Potentials (NN-IPs). Expanding upon 

the core principles of neural networks, Graph Neural Networks (GNNs) 65 offer a 

specialised framework designed to handle graph-based, non-Euclidean data 

structures. GNNs adapt machine learning algorithms to work directly with non-

Euclidean data, preserving the attributes (e.g., node features, edge features, graph 

topology, local and global patterns) that would otherwise be lost in a Euclidean 

transformation. By doing so, GNNs are adept at capturing both local and global 

structural features. 

What distinguishes ML-IPs is their adaptability and precision. Unlike 

traditional methods that are restricted by fixed mathematical forms and parameters, 

ML-IPs use adaptable algorithms like NN that can be customised for various 

materials and conditions. The applications of ML-IPs are vast, ranging from the 
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study of amorphous materials and complex biological systems to multi-elemental 

alloys and reactive chemical environments 66,67. 

While traditional NN are adept at handling Euclidean data, as seen in 

computer vision and natural language processing, they struggle when applied to 

non-Euclidean domains like atomistic or chemical systems. Representing atomic 

data in a 3D Euclidean space can lead to the loss of vital information, such as edge 

qualities (e.g., bond type, bond order), node values (e.g., electronegativity, atomic 

number, potential charge), or edge directionality (e.g., dipole moment, direction 

of electron transfer)68,69. It also overlooks potential higher-dimensional 

correlations between unconnected nodes or long-range interactions 70. 

GNNs address these challenges by adapting machine learning algorithms to 

work directly with non-Euclidean data 71. This ensures the preservation of intricate 

attributes that might be lost in a Euclidean transformation. In the context of atomic 

systems, atoms are considered as nodes, and their interactions form the graph 

edges. 

 

Figure 3. (Left) Ball-and-stick model of (AlF3)4, the second-ranked lowest energy 

local minimum (LM) on the PBEsol energy landscape. (Centre) Graph 

representation (with nodes and edges) of the cluster. (Right) Adjacency matrix of 

the bonds in the cluster. 

Consider a chemical system with various atomic pairs at different distances, 

some of which are connected with bonds. Representing this 3D system as a graph 

offers a convenient abstraction, where nodes symbolise atoms and edges signify 

chemical bonds. For example, Figure 3 includes a ball-and-stick model of the 
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second lowest energy (AlF3)4 local minimum on the PBEsol energy landscape, 

along with its corresponding graph and adjacency matrix representations. The 

adjacency matrix provides a simplified 2D description of this graph, as shown on 

the right-hand side of Figure 3, capturing the bonding patterns within the cluster. 

 

2.2.3. Multi Atomic Cluster Expansion (MACE) 

Firstly, the MACE model processes information from each node or atom to 

build a vector that encapsulates the atom’s local environment, as shown in 

Equation 16. In this equation, 𝜎!
(B)represents the state of atom i at iteration t in the 

message-passing algorithm. Specifically: 

𝜎!
(B) ≡ \𝑟! , 𝜃! , ℎ!

(B)^, Eqn 16 

where, 𝑟!  is the position vector of atom i, 𝜃! represents chemical-specific 

parameters for atom i, such as atomic number or type, ℎ!
(B) is a learnable feature 

vector for atom i at iteration t. 

This state 𝜎!
(B) denotes the features or embeddings of the node at a specific 

step in the iterative process of updating node states based on information received 

from neighbouring nodes. Each iteration t refines the features ℎ!
(B) to capture more 

accurate representations of the atomic environment as the algorithm progresses. 

𝑚!
(B) = (

D
⨁ 𝑀B\𝜎!

(B), 𝜎"
(B)^"∈F(!) , Eqn 17 

Equation 17 describes how information from each node is aggregated with 

information from neighbouring nodes to form the message 𝑚!
(B). Thus, 𝑚!

(B) is the 

aggregated message for atom i at iteration t, 𝜆 is a normalisation constant to scale 

the aggregated message, ⨁ represents an aggregation operation, such as 

summation or averaging over neighbouring atoms, 𝑁(𝑖)  denotes the set of 

neighbouring atoms of atom i, 𝑀B is a message function at iteration t that combines 

the states of atom i and its neighbour j to compute the contribution to the message. 
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This aggregation encapsulates the pairwise interactions, including symmetry 

functions and radial distribution functions, ensuring rotational and translational 

invariance in the model. 

𝜎!
(BG() ≡ -𝑟! , 𝜃! , 𝑈B\𝜎!

(B), 𝑚!
(B)^., Eqn 18 

Equation  18 updates the state 𝜎!
(BG() of atom i at iteration 𝑡 + 1 by incorporating 

the current state 𝜎!
(B)and the aggregated message 𝑚!

(B)from neighbouring atoms: 

Here, 𝑈B is an update function at iteration t that refines the learnable feature 

vector ℎ!
(B)  based on the current state 𝜎!

(B)  and the message 𝑚!
(B) ,𝜎!

(BG()  is the 

updated state of atom i for the next iteration. This iterative update ensures that the 

features or embeddings of each atom are refined with each iteration, capturing 

more detailed and accurate representations of the atomic environment. 

𝐸! = ∑ 𝑅B\𝜎!
(B)^B , Eqn 19 

which calculates the energy 𝐸! of atom i as the sum over a series of terms 𝑅B, each 

being a function of the state 𝜎!
(B) at iteration t. 𝐸! is the energy contribution from 

atom i, 𝑅B is a readout function at iteration t that computes a contribution to the 

energy based on the state 𝜎!
(B), The summation over t indicates that the total energy 

is accumulated over multiple iterations. 

This indicates that the energy depends on multiple state evaluations over time 

or iterations, with the system’s total energy being a sum of local contributions that 

can be learned and predicted. 

The MACE machine learning interatomic potential effectively captures the 

complex interactions within atomic systems by iteratively refining the features of 

each atom based on its local environment and interactions with neighbouring 

atoms. This results in a comprehensive model that can predict the energy and 

properties of atomic systems with high accuracy, ensuring rotational and 

translational invariance. The MACE approach highlights the importance of 
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considering both local and global atomic interactions, making it a powerful tool 

for computational materials science. 

 

2.2.4. Training Machine Learning Interatomic Potentials 

In this section, we outline the procedure used to train the MACE model. This 

training utilises "frames" obtained from DFT single-point calculations related to 

the vibrational modes of stable nanoclusters. Performing global optimisation 

directly on the DFT PES is limited by computational costs. Therefore, we employ 

a two-step method that performs global optimisation using a fitted IP. However, 

fitting an IP for a target system requires experience and time to achieve accuracy. 

The primary objective of this training is to refine the MACE model so that it can 

replace the two-step approach discussed in the previous chapter, streamlining the 

process and improving efficiency. This development aims at nanocluster structure 

prediction that offers near-DFT precision combined with computational efficiency 

akin to IP calculations. Unlike other general ML-IPs, which are crafted and trained 

for MD calculations, our focus is to customise the ML-IP specifically for static 

structure calculations, with a particular emphasis on locally stable nanocluster 

structures. 

To achieve this aim, we decided to focus on the local minima and their nearby 

regions, which we probed using finite displacements along respective vibrational 

modes. Figure 4 shows a model one-dimensional energy landscape with such 

images of vibrational modes. 
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Figure 4. Model one-dimensional energy landscape of a system shown with a 

black solid line, and a part of the energy landscape covered by scanning the 

vibrational modes around local minima highlighted with red dotted lines. 

 

The MACE model employs a unique and unconventional training approach 

compared to traditional IP models. Rather than focusing primarily on specific 

configurations (often referred to as 'images') of the energy landscape and the direct 

transitions between them—a methodology known as direct connectivity—MACE 

emphasises learning from the local atomic environments within the system. In 

atomic systems, the PES can be visualised as a high-dimensional surface where 

each point represents a possible atomic arrangement along with its associated 

energy value. By concentrating on the immediate surroundings of each atom, 

MACE effectively captures the fundamental local interactions and geometries that 

govern the system's overall behaviour. This approach enhances the model's ability 

to generalise across a wide range of configurations, leading to more accurate and 

transferable predictions of material properties. 

By centring its training on atomic environments, MACE comprehensively 

learns the positions, varieties, and interactions of atoms across numerous 

configurations. This enables the model to understand the complex connections 
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among atoms in varied settings, broadening its comprehension of the potential 

energy landscape. Consequently, MACE is equipped to precisely forecast the 

energy of diverse atomic arrangements. Fundamentally, the model’s prioritisation 

of atomic environments over specific images makes MACE exceptionally flexible 

and adept at predicting atomic interactions and dynamics. Thus, by providing 

images within the (near) LM basins as training data, MACE accurately learns 

about these basins. We anticipate that data points near the local minima will enable 

MACE to also capture other features of the PES, such as unstable higher-energy 

surfaces or saddle points, owing to the broad coverage of atomic environments in 

the training data. 
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Figure 5. Workflow of training a MACE model using local minimum images 

obtained by displacement along vibrational modes. 

 

Figure 5 shows the workflow of data preparation which has been developed 

and implemented here for ML-IP training for applications to nanoclusters. The 

automated workflow scripts have been written in Python for easy customisation 

for later use. The LM obtained from top-down (bulk-cut) or bottom-up (global 

optimisation) approaches were used to train the MACE models or potentials. 

Firstly, we perform the vibrational mode calculation for each of the top m lowest 

energy local minima on the DFT energy landscape, for example, using the GGA 

PBEsol72 functional. The calculated normalised vibrational mode eigenvectors, en, 

are multiplied by a scaling factor λ < λmax < 1 and added to the coordinates of the 

Local minimum in DFT 
energy landscape

DFT Vibrational mode 
calculation (FHI-aims)

Obtaining vibrational 
mode eigen vectors

vibrational_mode = []
step_size = 0.1
For λ in np.range(-1, 1, step_size)

Frame = Local minimum’s cartesian coordinate + vibrational mode eigen vector * λ
vibrational_mode.append()

DFT Evaluate (FHI-aims)

Append the DFT evaluated frames of vibrational 
modes as extended XYZ file format 

(which includes structure, atomic forces, total energy

Split Training and Test set in 70:30 ratio
(randomly selected 5% of Training set used as Validation set)

Training with MACE
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respective local minima, which allows us to train directly on the saturated potential 

energy surface near local minima. The obtained images are evaluated using DFT; 

then the evaluated structure geometry, total energy, and the atomic forces are 

stored in an extended xyz file format. In this format, the first line specifies the 

number of atoms in the configuration; the second is the descriptor line, which can 

define the properties (metadata) that are included in the subsequent lines, using 

name = value pairs; the following lines provide atomic data including atomic 

symbols and Cartesian coordinates, and, if necessary, it can include additional 

properties, scalar or vector, like atomic forces. Thus, each local minimum will be 

represented in an extended XYZ format within a file that is used as a 

training/testing dataset. 

 

2.2.4.1. Vibrational Mode 

The determination of vibrational modes using DFT was performed by first 

calculating the electronic ground state of the system, as implemented in the FHI-

aims software. Then, we systematically perturbed the atomic positions within the 

nanocluster by iteratively displacing each atom by ± 0.0025 Å along its respective 

axes. Mathematically, this approach involves expanding the system's energy 

around its equilibrium to the second order, a method known as the harmonic 

approximation. In this context, by scaling by respective atomic masses, the force 

constants are calculated from the second-order partial derivatives of the energy 

with respect to atomic displacements, forming the dynamical matrix. Without 

scaling, the matrix of second derivatives is called the Hessian matrix; both 

matrices are crucial in stability and vibrational analysis. 

In the context of machine learning training, we are not primarily interested in 

the real vibrational spectra of the nanoclusters, but in the energy landscape itself 

and its reproduction (and, of course, reproducibility). Hence, in the following, we 

will assume that the masses of all atoms involved are unity, and therefore the 

dynamical and Hessian matrices are identical. The corresponding vibrational 

frequencies and modes are determined by diagonalising the Hessian matrix, a 

process that involves solving for its eigenvalues and eigenvectors. The 
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eigenvectors en represent the normal modes of vibration, which are the 

characteristic patterns of atomic movement during vibration. The vibrational 

frequencies, essential for understanding the cluster's dynamical behaviour, are 

directly related to the square roots of these eigenvalues. 

Assuming the system is in equilibrium, the energy gradient, or first 

derivatives with respect to displacement, is zero, and the energy E(R) can be 

approximated as: 

𝐸(𝑅) ≈ 𝐸(𝑅H) +
(
)
∑ I$J

IK!IK"!," Δ𝑅!Δ𝑅", Eqn 20 

where, E(R) is the energy at the displaced positions R, E(R0) is the energy at the 

equilibrium positions R0, Δ𝑅! = 𝑅! − 𝑅H,! is the displacement of atom I from its 

equilibrium position, I$J
IK!IK"

 are the elements of the Hessian matrix Fij. 

The Hessian matrix Fij is defined as: 

𝐹!" =
I$J

IK!IK"
, Eqn 21 

which represents the second-order partial derivatives of the energy with respect to 

atomic positions Ri and Rj. 

The vibrational frequencies ωn and normal modes un are then obtained by 

solving the eigenvalue equation: 

F𝐮𝐧 = 𝜔4)𝐮4, Eqn 22 

where, F is the Hessian matrix, 𝜔4)  are the eigenvalues corresponding to the 

squared vibrational frequencies, 𝐮4 are the eigenvectors representing the normal 

modes of vibration. 

The output from DFT calculations, in particular the vibrational mode images 

(structures obtained by displacement along normal modes and corresponding 

frequencies), provides a rich dataset for training ML-IPs. In this study, the 

images—capturing atomic configurations as snapshots of the potential energy 

landscape—along with associated forces, are integrated into machine learning 

algorithms to learn the underlying energy landscape. Including vibrational 
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information enables the ML model to reproduce energy and force fields and 

capture the dynamical behaviour of atoms within the system. 

Incorporating formally linearly independent vibrational modes into training 

ML-IPs offers significant advantages for global optimisation tasks, such as 

identifying stable local minima on the PES. The inclusion of vibrational data 

enhances the ML-IP's understanding of the energy landscape away from 

equilibrium, i.e., the system's response to atomic perturbations. This is particularly 

beneficial for identifying transition states and simulating temperature-dependent 

phenomena like phase transitions or reaction rates. 

This predictive capability is crucial for global optimisation algorithms, such 

as simulated annealing or genetic algorithms, which depend on accurate energy 

landscape evaluations to explore configurational space and identify stable 

structures (LM). The ability to predict energies, forces, and vibrational modes 

enables these algorithms to navigate the PES efficiently, avoiding high-energy 

regions and focusing the search on more promising areas. 

Utilising vibrational mode images from DFT calculations as training data for 

ML-IPs provides a comprehensive approach to modelling the energy landscape. 

This method enhances the accuracy of energy and force predictions and endows 

the ML-IP with predictive capabilities for dynamical properties, facilitating 

effective global optimisation. As research progresses, integrating more complex 

non-harmonic effects and anharmonicities into ML-IP training could further 

improve these models' fidelity, opening new avenues in materials design and 

chemical reaction optimisation. 

 

2.3. Electronic Structure Method 

The Electronic Structure Method is a fundamental approach used in 

computational chemistry and physics to determine the properties of molecules and 

materials. It involves solving the Schrödinger equation 73 to obtain the electronic 

structure of the system, which is key to understanding how electrons behave in 

molecular systems: 
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𝐻mΨ = 𝐸Ψ, Eqn 23 

In this equation, 𝐻m is the Hamiltonian operator representing the total energy 

of the system, Ψ is the wavefunction of the system describing the quantum state 

of electrons, and E is the energy eigenvalue corresponding to that state. This 

equation underpins the theoretical framework for predicting molecular behaviour 

and properties based on quantum mechanics. 

Techniques like DFT make these calculations more tractable by focusing on 

electron density rather than individual electron interactions. This approach enables 

the prediction of chemical properties, reactivity, and stability with greater 

efficiency while still maintaining accuracy. DFT is essential for exploring the 

quantum mechanical behaviour of complex systems in materials science and 

chemistry. 

 

2.3.1. Density Functional Theory (DFT) 

DFT simplifies the complex task of tracking every electron by focusing on 

the electron density 𝜌(𝑟), which is a more manageable representation of where 

electrons are likely to be located within a material. The core principle of DFT is 

captured in the Hohenberg-Kohn theorems, which state that all ground-state 

properties of a system can be determined solely by its electron density. 

The key equation of DFT expresses the total energy 𝐸[𝜌] as a functional of 

the electron density: 

𝐸[𝜌] = 	𝑇[𝜌] +	𝑉!"#[𝜌] +	𝐸$[𝜌] +	𝐸%&[𝜌], Eqn 24 

In this equation, 𝑇[𝜌] represents the kinetic energy of the electrons, and 

𝑉0MB[𝜌] = 	∫ 𝑣0MB(𝑟)𝜌(𝑟)𝑑𝑟 is the energy due to the external potential 𝑣0MB(𝑟), 

such as the potential from the nuclei. The term 𝐸$[𝜌] =
'
(∬

)(+))-+!.
|+0+!|

𝑑𝑟𝑑𝑟1 is 

the Hartree energy, representing the classical electrostatic electron-electron 

repulsion. 
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The exchange-correlation energy functional 𝐸%&[𝜌] is a crucial component of 

DFT, encapsulating the complex quantum mechanical effects arising from 

electron exchange and correlation. Exchange effects arise due to the Pauli 

exclusion principle, which states that electrons with the same spin cannot occupy 

the same quantum state. This leads to an effective repulsion known as the 

exchange interaction, a purely quantum mechanical effect resulting from the 

antisymmetry of the many-electron wavefunction. Correlation occur because 

electrons avoid each other due to their mutual Coulomb repulsion, leading to 

dynamic electron correlation. This accounts for the tendency of electrons to move 

in such a way that reduces their mutual repulsion, which is not fully described by 

the mean-field approximation. 

Since the exact form of 𝐸%&[𝜌] is unknown, practical DFT calculations rely 

on approximations for this functional. Common approximations include the Local 

Density Approximation (LDA), which assumes that the exchange-correlation 

energy at each point in space depends only on the local electron density	𝜌(𝑟). The 

Generalized Gradient Approximation (GGA) extends LDA by including the 

gradient of the electron density ∇𝜌(𝑟), accounting for density variations in space. 

Hybrid functionals incorporate a portion of exact exchange energy from Hartree-

Fock theory with the exchange-correlation energy from GGA, improving the 

accuracy for certain systems. 

In this study, we employed the DFT method using the FHI-aims software74, 

utilizing appropriate exchange-correlation functionals to accurately model the 

electronic properties of the systems under investigation. By carefully selecting the 

exchange-correlation functional, we aim to capture the essential physics of 

electron exchange and correlation effects, which are vital for predicting accurate 

material properties. 

 

2.3.1.1. Functionals 

In DFT, functionals are crucial for calculating material properties. The LDA75 

is one such functional that estimates the exchange-correlation energy based solely 
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on the local electron density, assuming it mimics a uniform electron gas. This 

approximation is foundational but limited in handling variations in electron 

density. More sophisticated functionals like the GGA76 improve upon LDA by 

including gradient corrections to the electron density, enhancing accuracy in 

systems with significant spatial variations. 

PBEsol, a variant of GGA optimised for solids, further refines these 

calculations, especially for predicting equilibrium properties of solid materials and 

surfaces with higher precision. Thus, we used the PBEsol functional for this study 

of nanocluster structure prediction. The PBEsol functional is a particularly good 

choice for predicting the structure of solid materials because it is optimised to 

handle the specific electronic properties of solids, resulting in more accurate 

predictions of equilibrium lattice constants, bulk moduli, and surface energies 76,77. 

These improvements make PBEsol highly effective for studies where precise 

understanding of the solid-state structure is crucial, such as in materials science 

and condensed matter physics. This optimisation ensures that PBEsol can deliver 

more reliable results for the physical properties of solids compared to other 

functionals that might not specifically account for the unique characteristics of 

solid materials. 

By mixing exact exchange with GGA exchange in this proportion, hybrid 

functionals (e.g., PBEsol0) aim to correct for the self-interaction error present in 

pure DFT methods, leading to improved accuracy in calculating electronic 

properties, band gaps, and reaction barriers. The inclusion of 25% exact exchange 

helps to better represent the exchange interactions, particularly in systems where 

electron localisation and exchange effects are significant78,79. 

While hybrid functionals are computationally more demanding than GGA 

functionals due to the inclusion of non-local exact exchange calculations, they 

offer significant benefits in systems where a precise electronic structure 

description is crucial, such as in molecules, low-dimensional materials, and 

systems with strongly correlated electrons. However, for large-scale calculations 

of solids, where computational cost is a significant concern, functionals like 

PBEsol are often preferred due to their balance between accuracy and efficiency. 
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2.3.1.2. Basis Sets 

Basis sets in DFT are crucial tools used to describe the electronic 

wavefunctions in molecular simulations. FHI-aims employs numerical atom-

centred basis sets, which are structured into various precision levels or "tiers" like 

light, intermediate, tight, or very tight. Each tier offers a balance between 

computational efficiency and accuracy of the calculations. The choice of a specific 

tier impacts the level of detail at which electrons' behaviour is modelled and the 

overall accuracy of the simulation results. 

Lighter basis sets facilitate easier convergence but with less precision, while 

tighter sets provide higher accuracy at the cost of more complex calculations. 

Users can adjust these sets by adding or removing functions to tailor the simulation 

to specific requirements, ensuring an optimal balance between detailed 

representation and computational demands. For instance, a light basis set typically 

provides sufficient detail for determining molecular structure and basic properties 

like vibrational frequencies. On the other hand, a tight basis set is better suited for 

more precise calculations, such as reaction energies and electronic distributions, 

due to its more comprehensive inclusion of orbital interactions. Therefore, we 

chose to use a light basis set, which is implemented in the FHI-aims code, because 

it is well-suited for predicting structures and offers a cost-effective solution for 

computational purposes. 

 

2.4. Local Optimisation Algorithms 

The following section delves into the intricate techniques employed to 

navigate the vast expanses of an energy landscape during global optimisations. 

First, we focus on the strategy of identifying a proximate local minimum, starting 

from a specific point on the PES. To reiterate, the PES for a given three-

dimensional nanocluster structure is defined over a high-dimensional space of 3N-

6 dimensions; where N is the number of atoms in the system. The subtraction of 
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six accounts for the three translational and three rotational degrees of freedom that 

do not affect the internal energy of the system. A neighbouring local minimum 

within this hypersurface can be pinpointed through the application of local 

optimisation algorithms. Such local optimisation algorithms are designed to locate 

a local minimum by navigating "downhill" on the PES, starting from an initial 

configuration. These algorithms are categorised based on the highest-order 

derivative they utilise in the optimisation process. For instance, a method that 

exclusively employs first derivatives is categorised as a first-order method. 

Consider an energy function, denoted by f, which depends on a set of 

independent variables, designated as r1, r2, … ,ri. These variables correspond to 

the atomic positions in a nanocluster. At a LM, the first derivatives of the energy 

function with respect to position are expected to be zero, indicating a stationary 

point. Additionally, the Hessian matrix (the matrix of second derivatives) should 

be positive definite, leading to positive eigenvalues and corresponding real 

vibrational frequencies, which indicate a stable configuration. 

 

2.4.1. Zeroth-Order Method: Powell’s method 

Powell's method80 is a well-established zeroth-order optimization algorithm 

widely used in computational chemistry for local optimization tasks where 

derivative information is unavailable or unreliable. It is particularly effective for 

finding LM of functions in multidimensional spaces by performing a series of one-

dimensional minimizations along carefully chosen directions, without the need for 

gradient or Hessian calculations. 

The key idea of Powell's method is to minimize a multivariate function by 

successively performing line minimizations along a set of directions that are 

updated iteratively. Starting from an initial point and a set of initial search 

directions (generally the coordinate axes), the method optimizes the function 

along each direction in turn. After completing a cycle of line minimizations, the 

algorithm updates one of the directions based on the movement made during the 

cycle, allowing the method to adapt to the contours of the function being optimized. 
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Mathematically, for an energy function f(x) dependent on N variables (for 

example, where x represents the atomic positions in a chemical system), Powell's 

method proceeds as follows; Beginning with an initial point x0  and a set of N 

linearly independent direction vectors {d1,d2, … ,dN}, the method performs a 

series of line minimizations along each direction. For each direction di, it finds the 

scalar λi that minimizes the function along that direction: 

𝜆! = 𝑎𝑟𝑔min
D
𝑓(𝐱!'( + 𝜆𝐝-), Eqn 25 

updating the position to: 

𝐱! = 𝐱!'( + 𝜆!𝐝!, Eqn 26 

where xi−1 is the position from the previous step. After completing line 

minimizations along all directions, the total displacement is computed as: 

𝐩 = 𝐱F + 𝐱H, Eqn 27 

where p represents the total displacement made during a complete cycle of line 

minimizations along N directions, and an additional line minimization is 

performed along p to find λp that minimizes the function: 

𝜆! = 𝑎𝑟𝑔min
D
𝑓(𝐱F + 𝜆𝐝-), Eqn 28 

updating the position to: 

𝐱FG( = 𝐱F + 𝜆F𝐩, Eqn 29 

One of the original directions is then replaced with p, usually the direction 

along which the greatest improvement was made during the cycle. This iterative 

process continues, with the method updating directions and performing line 

minimizations, until convergence criteria are met, such as when changes in the 

function value or the variables fall below predefined thresholds. 

Powell's method effectively navigates the energy landscape to identify stable 

configurations by relying solely on function evaluations. Its ability to update 

search directions dynamically allows it to adapt to the contours of the potential 

energy surface, improving convergence towards the minimum. 
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While Powell's method is robust for smooth functions, it may encounter 

difficulties with functions that have discontinuities or are not well approximated 

by quadratic forms. Additionally, in high-dimensional spaces, the number of 

function evaluations can become significant, and the method may become less 

efficient compared to gradient-based approaches if derivative information is 

available. 

In computational chemistry, Powell's method is frequently used for molecular 

geometry optimization, adjusting atomic positions to find the lowest-energy 

conformation of a molecule. It is particularly suitable for optimizing nanocluster 

structures without requiring gradient information, making it valuable when 

analytical gradients are unavailable or computationally expensive to obtain. 

 

2.4.2. First-Order Method: Conjugate Gradient Method 

The Conjugate Gradient method81 is a powerful first-order optimisation 

technique originally developed for solving systems of linear algebraic equations, 

specifically those with a symmetric and positive-definite coefficient matrix A. 

However, its application extends beyond this, proving particularly effective in the 

optimisation of nonlinear functions when adapted appropriately. 

Solving the linear system Ax = b, the conjugate gradient algorithm operates 

as follows: 

1. Initialisation: 

ü Choose an initial guess X0. 

ü Compute the initial residual r0 = b – Ax0. 

ü Set the initial search direction d0 = r0 

2. Iteration: For each iteration k: 

ü Compute the step size: 𝛼< =
%(
)%(

5(
)$5(

, Eqn 30 

ü Update the solution: 𝐱<G( = 𝐱< + 𝛼<𝑑<, Eqn 31 
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ü Compute the new residual: 𝑟<G( = 𝑟< − 𝛼<𝐴𝑑<, Eqn 32 

ü Check for convergence: If ‖𝑟<G(‖  is sufficiently small, stop the 

algorithm. 

ü Update the search direction: 𝛽< =
%(*#
) %(*#
%(
)%(

, 𝐝< = 𝐫< + 𝛽<𝐝<. 

ü Check for convergence: If ‖𝑟<G(‖  is sufficiently small, stop the 

algorithm. 

In optimisation of nonlinear functions, f(x), the Nonlinear Conjugate Gradient 

method is used, where the gradient, ∇f(x), replaces the residual, rk, and line 

searches are performed to find appropriate step sizes αk. 

The conjugate gradient method operates by performing a series of linear 

searches along conjugate directions, where the concept of "conjugacy" is tied to 

the specific function being optimised. These conjugate directions provide a way 

to consider the history of past search directions, thereby ensuring efficient 

progress towards the minimum. 

 

2.4.3. Second-order Method: Newton’s method and 

Quasi-Newton Method 

Newton's method, a second-order optimisation algorithm, has been a 

cornerstone in the field of numerical optimisation due to its robustness and rapid 

convergence properties. This method utilises both the first and second derivatives 

of the objective function to identify points where the gradient is zero, which 

correspond to potential minima or maxima. When generalised to multidimensional 

problems, it is often referred to as the Newton-Raphson method 82. Mathematically, 

the iterative scheme of Newton's method can be expressed as: 

𝑥4G( = 𝑥4 − [𝐻𝑓(𝑥4)]'(∇𝑓(𝑥4), Eqn 33 

where xn is the current estimate, Hf(xn) is the Hessian matrix (the matrix of second 

derivatives) at xn and ∇f(xn) is the gradient of the function at xn. 
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However, Newton's method presents a significant computational challenge 

when applied to high-dimensional problems. The calculation and inversion of the 

Hessian matrix become increasingly demanding as the dimensionality of the 

problem grows. This computational burden often renders Newton's method 

impractical for large-scale problems, such as those frequently encountered in 

computational chemistry.  

To circumvent this obstacle, a class of methods known as Quasi-Newton 

methods has been developed. These methods retain the rapid convergence of 

Newton's method but alleviate the need for explicit second derivative computation. 

Instead, they construct an approximation to the inverse Hessian matrix using 

gradient evaluations at successive iterations. The iterative update in Quasi-Newton 

methods can be generally expressed as: 

𝑥4G( = 𝑥4 − 𝛼4𝛽4∇𝑓(𝑥4), Eqn 34 

where xn is the current estimate, αn is the step size, βn is the approximation to the 

inverse Hessian matrix, and ∇f(xn) is the gradient of the function at xn. 

In essence, Quasi-Newton methods offer an attractive balance between 

computational efficiency and convergence speed. They have proven to be 

particularly effective for optimisation problems where the explicit computation of 

the second derivative is either computationally prohibitive or not feasible. The 

BFGS (Broyden-Fletcher-Goldfarb-Shanno) method83–86 is a well-known Quasi-

Newton method that has found extensive application in computational chemistry. 

 

2.4.3.1. Second-order Method: Rational Function 

Optimisation method 

The Rational Function Optimisation (RFO) method 87 represents a specialised 

adaptation of Newtonian methods, particularly useful for locating transition states 

on potential energy surfaces, a task of paramount importance in the study of 

chemical reactions. 
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The RFO method modifies the standard Newtonian approach by introducing 

a rational function to represent the step direction. This modification is particularly 

beneficial when dealing with potential energy surfaces, as it allows for a more 

accurate representation of the curvature near the transition state, preventing 

overshooting or stepping into regions of incorrect curvature. 

The RFO method involves several key steps: 

1. Approximation of the Hessian (B): Like other Quasi-Newton methods, the 

RFO method constructs an approximation to the Hessian matrix using 

gradient evaluations at successive iterations. This approximation is 

updated at each step based on the difference in gradients and the steps 

taken, using suitable update formulas. 

2. Calculation of the Gradient (g): The gradient of the objective function, 

representing the first derivatives with respect to the variables, is computed 

at the current point. In computational chemistry, this often involves 

calculating the forces on the atoms in the system. 

3. Determination of the Step Direction (p): The RFO method determines the 

step direction by solving a generalised eigenvalue problem. This involves 

constructing a matrix that includes both the approximate Hessian and the 

gradient, and finding the eigenvector corresponding to the desired 

eigenvalue (typically the lowest). This eigenvector provides the direction 

in which to take the next step. 

4. Calculation of the Eigenvalue (λ): The eigenvalue corresponding to the 

step is found, which influences the magnitude and direction of the step. 

This eigenvalue problem is solved using standard numerical linear algebra 

techniques. 

Mathematically, the RFO method can be expressed as solving the following 

generalised eigenvalue problem: 
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−1�, 

Eqn 35 

where B is the approximate inverse Hessian, g is the gradient, p is the step 

direction, and 𝜆 is the smallest eigenvalue. 

The RFO method, though beneficial for its computational efficiency and fast 

convergence, is particularly tailored for locating transition states rather than for 

general optimisation towards minima. This technique enhances the analysis of 

potential energy surfaces, aiding in the prediction of transition states and the study 

of molecular-level chemical reactions. 

 

2.5. Global optimisation method 

The structure prediction of nanoclusters is a complex yet crucial aspect of 

computational chemistry88. The difficulty of this task is amplified by the existence 

of a plethora of potential structural configurations, each of which can lead to 

different chemical and physical properties. As the size and complexity of the 

clusters increase, the energy landscape becomes more convoluted, necessitating 

the use of advanced techniques to efficiently and accurately determine the optimal 

structures. A widely acknowledged approach to tackle this challenge is through 

the application of global optimisation methods. This chapter will provide a review 

and analysis of the primary global optimisation techniques employed in 

nanocluster structure prediction. 

Global optimisation techniques provide a systematic way to explore the 

multidimensional energy landscapes associated with nanoclusters. These methods 

seek to identify the lowest energy configurations—the global minima—by 

efficiently navigating the energy landscape and avoiding entrapment in local 

minima. Several classes of global optimisation techniques have been developed 

and used in the field of computational chemistry, each having its strengths and 

limitations. In this study, we focus on five distinct techniques: data mining, 

stochastic approaches (random quenching or Monte Carlo deterministic 
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quenching), Monte Carlo Basin Hopping, Simulated Annealing, and Genetic 

Algorithms (GA). 

Data mining, an information processing technique, is employed to explore 

large datasets of pre-computed or experimental data, effectively identifying 

promising structural candidates. The stochastic approach, or random quenching, 

relies on random perturbations of atomic positions followed by local relaxation to 

explore the energy landscape. Monte Carlo Basin Hopping⁸⁶ adds a further level 

of sophistication by introducing thermal fluctuations to navigate between different 

energy basins. Simulated Annealing⁸⁷, a method inspired by the annealing process 

in metallurgy, utilises a controlled cooling schedule to decrease the system's 

temperature gradually, allowing it to settle into a state of minimum energy. Finally, 

genetic algorithms draw inspiration from natural evolution, using processes such 

as selection, crossover, and mutation to evolve a population of structures towards 

optimal solutions. These methods, in various combinations or alone, have 

demonstrated considerable success in predicting the structure of nanoclusters. The 

following sections will outline each method's principles, implementation, and 

specific applications in nanocluster structure prediction. 

 

2.5.1. Challenges of Global Optimisations 

When it comes to computationally defining the structure of a nanocluster with 

a prescribed size and composition, it proves beneficial to begin with a minimum 

amount of prior data. This approach helps mitigate biases and enables a thorough 

investigation of the cluster's PES to identify many potential low-energy structures, 

known as LM. This practice minimises the introduction of biases and affords a 

comprehensive probe into the cluster's PES to find probable low-energy structures. 

This procedure unfolds in multiple stages. First, there is a need for an energy 

function to evaluate the energies of different structures; in the present research, 

we utilise IPs and DFT for this purpose. Subsequently, any speculative structure 

is incrementally fine-tuned to a local minimum in its proximity to establish its 

energy using an appropriate local optimisation algorithm. Ultimately, to ensure a 

comprehensive exploration of the conformational space (the PES) and to increase 
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the likelihood of locating all the low-energy local minima, a robust algorithm is 

necessary. Given that a cluster's PES spans a 3N-6-dimensional space for any non-

linear configuration—where N is the number of atoms in the cluster—the full-

scale exploration is not feasible due to the exponential increase in possible 

configurations with increasing N. 

We operate under the assumption that the structure bearing the least energy 

is the most probable to be experimentally detected at 0 K temperature. Such a 

structure can be procured through an adequately exhaustive global search 

algorithm working in tandem with a sufficiently precise energy function. However, 

given the extensive computational demands of global optimisation algorithms to 

locate all pertinent local minima and the considerable time requirements of precise 

energy functions to correctly rank local minima, the present research adopted a 

sequential approach for the examination of aluminium fluoride nanoclusters' 

structures. The initial phase involved the use of an evolutionary algorithm (EA) 

employed along with IPs for global optimisation, and the succeeding phase 

involved the application of DFT to the prominent structures identified for each 

cluster size. 

 

2.5.2. Data Mining  

Data mining employs existing structural data for analogous systems of the 

same stoichiometry as a point of departure in structural prediction. Through the 

careful analysis of these pre-existing structures, it identifies potential candidate 

configurations that may be optimal or near-optimal for the target system. 

The primary principle underpinning the data mining approach is the notion 

that the atomic structures of materials with similar stoichiometry will likely share 

similar geometric configurations. These similar geometric configurations can 

serve as starting points for the optimisation of the target system. 

Upon identifying these potential candidate structures, the data mining method 

proceeds to the atom substitution stage. Here, the atoms in the identified structures 

are systematically replaced with the atoms of the target compound. It is key to note 
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that this atomic substitution is performed while adjusting the original geometric 

configuration to take into account the target system's properties, such as ionic or 

atomic sizes and bond lengths. 

Once the substitution is complete, the new structures are subjected to an 

optimisation process. This process typically employs local optimisation methods 

to refine the atomic positions and achieve a lower energy state. It is during this 

phase that the unique properties of the target atoms and their interactions come to 

the fore, driving the structure towards the optimal geometry for the target system. 

To summarise, the data mining approach leverages existing structural 

information to inform the search for optimal structures in a target system. This 

method, although straightforward, can be remarkably effective, particularly when 

dealing with systems that have a high degree of structural complexity. However, 

it should be borne in mind that the success of this approach hinges upon the 

availability and quality of data for systems with analogous stoichiometry. As we 

proceed further into this chapter, we will explore in more detail the intricacies, 

benefits, and limitations of using data mining in the structure prediction of 

nanoclusters. 

 

2.5.3. Monte Carlo Deterministic Quenching 

The stochastic approach is a widely adopted computational method for 

predicting the structure of nanoclusters, being one of the simplest methods. This 

method is used for the AlF3 nanoclusters in our study. 

Monte Carlo Deterministic Quenching (MCDQ) is a specific technique 

within the broader field of stochastic optimisation methods. The basic idea of this 

method is to generate random configurations of atoms and then to optimise these 

configurations using a certain energy function—such as an IP or DFT—to reach 

lower energy states. In the context of AlF3 nanoclusters, the process starts by 

randomly placing the Al and F atoms in a predefined space; we have used a cubic 

simulation box for this purpose. This initial random placement of atoms introduces 
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the 'Monte Carlo' aspect to the quenching method, ensuring that the process 

explores a wide variety of potential structural configurations. 

Following the random placement of atoms, a process known as energy 

minimisation or 'quenching' is conducted. Quenching involves the use of iterative 

algorithms which seek to adjust the positions of atoms, in a series of steps, to 

minimise the total energy of the system. Optimising the randomly generated 

structure directly on the PES can be challenging. For example, if a random 

quenching algorithm generates a structure with extremely short or long 

interatomic distances, the optimisation may fail or could require exceedingly large 

computational costs to run to completion. 

Thus, the global optimisation code we used for this study, Knowledge Led 

Master Code (KLMC), checks all pairs of interatomic distances, and if the distance 

is too large or too short, it discards the fragmented or collapsed structures. With 

this algorithm, we can save a notable amount of computational cost by accepting 

only the structures that are physically reasonable and relatively near a LM. Each 

iteration of this process results in further characterisation of the PES, as each point 

on the surface represents a possible stable or metastable configuration of the 

nanocluster. The goal is to find the global minimum on this surface, which 

corresponds to the most stable, lowest-energy configuration. 

The MCDQ algorithm initially generates random structures within the finite 

simulation box, which means the algorithm can, in principle, explore a wide region 

of the PES for the target system. The beauty of the MCDQ method lies in its 

simplicity and effectiveness. It offers a relatively straightforward approach for 

exploring a vast array of possible configurations for complex systems, such as 

nanoclusters. In practice, the algorithm can be more efficient for smaller cluster 

systems compared to the more computationally expensive algorithms introduced 

in the following sections. However, it is inefficient for finding the lowest number 

of LM for larger nanoclusters due to the vastness of the configuration space or 

PES. The process may not always lead to the absolute GM, considering the 

enormous number of possible configurations in a multi-atomic system. 
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2.5.4. Genetic Algorithm 

Genetic Algorithms 9,89,90 (GAs) or evolutionary algorithms, also known as 

evolutionary algorithms, are a class of optimisation methods inspired by the 

principles of natural evolution, namely selection, crossover (or recombination), 

and mutation. They have been widely applied in various fields, including 

computational chemistry, where they are used for exploring the PES of complex 

systems such as nanoclusters91 and solid solutions. The fundamental concept 

behind GAs is the evolution of a population of individuals, each representing a 

potential solution to the optimisation problem. In the context of energy landscape 

search, an individual corresponds to a specific configuration of the system, and its 

fitness is determined by the potential energy of this configuration. The goal is to 

evolve the population over successive generations to find the global minimum or 

near-global minimum of the energy landscape, which represents the most stable 

configuration of the system. 

 

 

Figure 6. Schematic of the GA implemented in the KLMC software9,89,91,92. 
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A GA starts with an initial population of nanocluster structures, which can be 

generated randomly—as in the random quenching described in the earlier 

section—or based on some prior knowledge. The GA then proceeds by iteratively 

applying the operations of selection, crossover, and mutation, as shown in the 

scheme of the operations implemented in the KLMC GA algorithm 9,89,90,93 (see 

Figure 6). 

Selection is the process of choosing individuals from the current population 

to produce offspring for the next generation. The selection is typically biased 

towards individuals with lower potential energy, reflecting the principle of 

"survival of the fittest". Various selection methods can be used, such as 

tournament selection or roulette wheel selection. 

Crossover is the operation that generates new individuals by combining parts 

of two parent individuals. In the context of nanoclusters, this is done in KLMC by 

crop the structures in the parent clusters and merge the atomic cropped parents 

structures, effectively swapping parts of the clusters. The resulting offspring 

inherit characteristics from both parents, which allows the GA to explore new 

regions of the PES. 

Mutation is the operation that introduces random changes in the individuals. 

This is typically done by randomly altering the position of one or more atoms in 

the configuration. Mutation introduces diversity into the population and helps 

prevent the GA from getting stuck in local minima of the PES. 

The new generation of individuals produced by selection, crossover, and 

mutation then replaces the old generation, and the process is repeated until a 

stopping criterion is met. This could be a maximum number of generations, a 

target potential energy, or a measure of convergence of the population (the 

convergence of the GA calculation will be discussed in the 3. Aluminium Fluoride 

chapter, figure 12). 

For this study, we employed the GA as implemented in the KLMC software. 

KLMC employs a hash-key method89,94, which generates encrypted string based 
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on the atomic connections, so based on the encrypted string the KLMC distinguish 

whether the structure has already found before or not. Using a tool like hash-key 

helps the GA calculation to be more efficient, as it maintains a range of diverse 

nanocluster structures by avoiding duplicate configurations. 

Once KLMC achieves a sufficient population size in the initial generation, 

the clusters undergo crossover and mutation operations, and then the modified 

clusters are relaxed using local optimisation methods. Note that during crossover, 

care is taken to ensure that the system size (stoichiometry, number of atoms in the 

cluster) does not change, preserving the chemical composition of the clusters. 

From the comparison of all structures—including the optimised structures 

that were randomly generated and the GA-generated structures—a certain number 

of top-performing structures are selected and passed to the next generation to 

produce offspring. In our implementation, this set number of structures is 

determined by the tournament size, which refers to the number of individuals 

participating in the selection process for reproduction. This selection is typically 

biased towards individuals with lower potential energy, again reflecting the 

principle of "survival of the fittest". 

GA is a powerful tool for global optimisation in computational chemistry. By 

mimicking the process of natural evolution, GAs can effectively navigate the 

complex PES of nanoclusters and other systems, finding the global minimum that 

represents the most stable configuration. However, the performance of a GA 

depends critically on the choice of parameters and operations, such as population 

size, mutation rate, crossover rate, and selection method, which need to be 

carefully tuned for the specific system and problem at hand. 

 

2.5.5. Method for Constructing Clusters Cut from the 

Bulk phase of AlF3. 

There are clearly a number of different approaches to constructing 

stoichiometric clusters cut from a bulk phase including [a] making random cuts 
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under the constraint that the cluster is not fragmented; [b] make a spherical cut 

from a chosen centre; [c] make a cut based on the Wulff’s construction (relative 

surface energies); and [d] make  a cut based on the primary or secondary building 

units of the bulk phase. Each have the constraint that the cut should have the 

correct composition, and here we consider approach [d] for generating clusters of 

AlF3. 

 

Figure 7. Cubic constructions of corner sharing AlF3 octahedra shown as: (a) a 

plan view of a 2×2×2 cluster of 8 octahedra with red, yellow, and blue circles 

representing F atoms, black circles representing Al atoms, and the blue square the 

area of one face of the cube defined by the Al atoms. (b) A ball and stick model 

of a 4×4×4 cluster of 64 octahedra with grey balls representing shared F atoms, 

red, yellow, and blue circles representing singly coordinated F atoms to just one 

Al at a vertex, edge and face of the cube formed by the Al atoms, and black circles 

representing Al atoms. Taken from reference95. 

 

The bulk phases of AlF3 have AlF6 secondary building units (SBU) that are 

octahedra which, in the stable phase, are corner sharing. It thus seems natural to 

construct clusters composed of a cubic arrangement of N3 octahedra. Given we are 

using SBU, to achieve the correct stoichiometry several F atoms will need to be 

removed from the surface (assuming this costs less than removing a F atom from 

within the cluster) of the initial cubic construction. For the simplest case of N = 1, 

three of the six F atoms should be removed. There are two inequivalent ways to 

achieving this; assuming each F atom pair that has the central Al atom directly 

between them (on the same axis) is coloured, for example, red, blue, and yellow, 
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then either take one F atom from each colour or take two from one colour and one 

from another. The former creates a tetrahedron whereas the latter creates a planar 

cluster, but of course both could relax to the same LM. 

To calculate the formula for the initial cubic construction, it is prudent to first 

consider the N = 2 example in figure 7(a). Each Al atom, or centre of an 

octahedron, is marked by a small black circle and the F atoms are coloured in three 

equal sized, symmetry equivalent sets. Each set is formed of the same number of 

Al atoms in each direction except for one where an additional F atom is required, 

i.e. for each colour there is a set of N by N by N+1 F atoms. Thus, for cuts of N3 

corner-sharing AlF6 octahedra we have AlF6, Al8F36, Al27F108, Al64F240, … that 

require removing 3, 12, 27, 48, … F atoms for N = 1, 2, 3, 4, … respectively. 

Although it might seem obvious that one F atom from each vertex should be 

removed, this only accounts for 8 of the 12, 27, 48, … F atoms that need to be 

removed. The selection of which F atoms to next remove is less obvious although 

ensuring an even spread may also avoid the desirable creation of a dipole across 

the cluster. Clearly, several candidate structures for a chosen size should be 

created and after relaxing these, their formation energies compared to determine 

the loosest energy bulk cut cluster of that size. 

Considering the N = 4 example, there are 80 singly coordinated F atoms: three 

outer F atoms attached to each of the Al atoms sited on one of the eight vertices 

of the cubic Al lattice; two outer F atoms attached to each of the two Al atoms 

sited on each of the twelve edges of the cubic Al lattice; and 1 outer F atom 

attached to each of the 4 Al atoms sited on one of the 6 faces of the cubic 

aluminium lattice; in figure 7(b) these F atoms are coloured blue, red, and yellow, 

respectively. Different systematic removal of 48 F atoms can be tried based on 

trying to keep maximum symmetry, for example, remove (a) one F atom from 

each of the 48 Al edge atoms; (b) all F atoms from all vertices and faces; (c) all F 

atoms from all vertices and one F atom from half of the edges; (d) two F from all 

vertices and one F atom from 32 of the 48 edges. The numbers for the first two of 

these examples seem to work, but this is not always the case for other sized clusters, 

and we end up with mismatched like that of the last two examples, where it is not 

obvious which F atoms to remove from the edges. The choice of these, or indeed 
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all F atoms that need to be removed, can be randomly chosen to generate the 

different candidate structures for each cluster size. 
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3. Aluminium Fluoride 

3.1. Introduction 

In this chapter, the computational prediction of the structures and properties 

of aluminium fluoride (AlF3) nanoclusters will be presented. AlF3 is widely used 

in different industrial and scientific areas, attracting considerable attention 

because of its distinct structural, chemical, and physical characteristics96,97. 

Despite its importance, our understanding of the potential complexity and 

diversity of AlF3 nanocluster structures, including their atomic structure, remains 

limited. This research gap prompted the initiation of this study, aiming to utilise 

computational techniques to predict the structural configurations and properties of 

AlF3 nanoclusters. 

The science of nanoclusters stands at the intersection of atomic and bulk 

phase characteristics, thus offering a distinctive platform for understanding 

material behaviour and properties on the nanoscale5,88,98. The complexity of 

nanocluster structures has historically posed considerable challenges to predictive 

modelling, as their properties are influenced by size, shape, composition, and the 

interactions between individual atoms or molecules. Addressing these 

complexities required the integration of sophisticated computational algorithms 

capable of accurately predicting the likely structures of AlF3 nanoclusters. 

Our study incorporates computational methodologies, utilising both classical 

IP and quantum mechanical DFT models, to provide novel insights into AlF3 

nanocluster structure prediction. The aim is to generate a comprehensive catalogue 

of potential AlF3 nanocluster configurations that, when synthesised, would exhibit 

specific properties optimal for applications—for example, as Lewis acid catalysts. 

This research not only enhances our understanding of AlF3 nanocluster structures 

but also serves as a framework for predicting the structures of other complex 

nanomaterials, and surfaces of materials for nanoclusters of compounds with a 1:3 

stoichiometry. 

Unlike systems with 1:1 and 1:2 stoichiometry, systems with 1:3 

stoichiometry, like that of AlF3, are a relatively new field of study for nanoclusters. 
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There are more atoms per formula unit for 1:3 compared to the 1:1 stoichiometric 

systems. Thus, compared to 1:1 stoichiometric systems like ZnO, MgO, and CuO, 

the PES for 1:3 stoichiometric systems has double the number of dimensions, 

which requires significantly more computational resources to search⁹. Fortunately, 

there is a possibility to exploit previous work, as one of the first studies on 1:3 

nanoclusters—that of lanthanide fluoride (LaF3)—has been completed by our 

research group, and the structural data are available in the WASP@N database99–

101. 

There are many factors to be considered to understand the Lewis acidity of 

materials 96,97. AlF3 is theoretically proven to have the highest Lewis acidity if we 

consider only the chemical factors, excluding structural factors. However, 

structural features on the surface of AlF₃, where F atoms hinder the potential Lewis 

acid active sites (Al atoms), limit its acidity96. One of the most significant 

characteristics of nanoclusters is their exceptionally high surface-to-volume ratio 

compared to higher-dimensional materials (rods, slabs, and bulk phases). 

Practically, nanoclusters are the ideal system for most catalytic activities, as most 

of the atoms are accessible to the outer environment, and the quantity of material 

per active site is minimised. 

For optimal catalytic performance, it is crucial to understand the interactions 

between clusters and surfaces. As a preliminary step, we aim to identify the 

structures and characteristics of an isolated cluster within a vacuum environment 

and try to understand the relationships between the structures and properties. 

These established structures can then serve as the fundamental basis for 

developing models that effectively illustrate cluster–surface interactions. Thus, 

here a complete search of the PES of (AlF3)ₙ nanoclusters in vacuo has been 

conducted for sizes n from 1 to 11. A straightforward global optimisation method, 

MCDQ was employed for the smaller clusters (n = 1 to 6), and a GA was employed 

for the larger clusters (n = 7 to 11). The global optimisation algorithms are 

implemented in the in-house software, the Knowledge Led Master Code (KLMC). 

The results presented in this chapter provide a detailed account of our findings. 

The computational challenges encountered during the prediction process are 

discussed, and the solutions implemented to overcome these obstacles. Then, a 
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discussion of the various potential structures identified is presented alongside a 

comparison of them based on their stability and electronic properties. By 

presenting a thorough analysis of the results, we hope to deepen the understanding 

of AlF3 nanoclusters. 

3.2. The Interatomic Potentials for Aluminium Fluoride 

3.2.1. Interatomic Potential for Short-Range Al-F Interactions 

In our choice of IP, we have considered several options, namely the two-body 

Buckingham potential and the polarisable ion model (PIM) as proposed by 

Jackson102 and Madden100, respectively. For ease of reference, the IP that includes 

the Buckingham potential with the potential parameters refined by Jackson et al. 

will henceforth be referred to as the Jackson potential. The Jackson potential was 

fitted to structural parameters of aluminium fluoro-/hydroxy-silicate (topaz, 

Al₂SiO₄(OH, F)₂) for the study of doped and defect topaz. The parameters for the 

PIM were adjusted to characterise structures larger than nanoclusters, including 

nanoparticles and bulk α-AlF₃. While the PIM may yield physically accurate 

results for systems larger than nanoclusters, to our knowledge the PIM has not yet 

been applied to modelling nanoclusters. The PIM has complex many-body 

features and so requires more computational resources for structure optimisation 

than the two-body Jackson potential. Moreover, the PIM is not implemented in the 

General Utility Lattice Program (GULP) code103–105, nor is it currently linked to 

our choice of global optimisation code, KLMC. With greater availability of 

computer resources than when the Jackson potential was originally refined, here 

we investigate if this IP can be improved with respect to predicting energy 

rankings that better match those obtained using DFT energies. 

To facilitate an automated search over the potential parameter space of an IP, 

we utilized a custom-built automation tool called "What-IP". One module of 

What-IP operates in conjunction with the GULP software to compute, or map out, 

the sum-of-squares (SOS) as a function of the IP parameters. The SOS is a 

quantitative measure of the difference between the observed (experimental or 
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reference) and calculated values of various properties, serving as an objective 

function to be minimized during the potential fitting process. 

Mathematically, the SOS is calculated using the following equation: 

𝑆𝑂𝑆 = ∑ 𝑤!(𝑃!71O7 − 𝑃!PQ8))! , Eqn 36 

In this equation, 𝑃!71O7 represents the calculated value of property i using the 

current set of IP parameters, and 𝑃!PQ8 is the observed or reference value of the 

same property. The term 𝑤! is a weighting factor assigned to property i, reflecting 

its relative importance in the fitting process. The summation runs over all the 

properties i that are considered in the fitting procedure. 

The properties Pi can include various structural and energetic quantities, such 

as lattice parameters, bond lengths, bond angles, elastic constants, and atomic 

forces. Depending on whether the reference (or target) structure is relaxed or not, 

the SOS calculation focuses on different sets of properties. In the case of a relax 

fit, where the reference structure is allowed to find its lowest energy configuration, 

the SOS includes differences in structural parameters between the calculated and 

observed structures. This involves comparing quantities like optimized lattice 

constants and internal coordinates. For a standard fit, where the reference structure 

is not relaxed, the SOS is based on the sum of atomic forces acting on the atoms, 

ensuring that the calculated forces closely match the reference forces derived from 

experiments or higher-level calculations. 

In our study, the reference system is the observed bulk phase of aluminum 

fluoride, specifically α-AlF3. By systematically varying the IP parameters and 

calculating the SOS for each parameter set, GULP, in conjunction with What-IP, 

generates a landscape of SOS values over the parameter space. This process 

involves several steps: 

First, a range of values for each IP parameter is selected to thoroughly explore 

the parameter space. For each set of parameters, GULP computes the properties 

𝑃!71O7  of interest based on the IP being tested. Using Eqn 36, the SOS is then 

calculated by comparing these calculated properties with the reference values 𝑃!PQ8, 

applying the appropriate weighting factors 𝑤!  to each property. The calculated 
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SOS values, along with the corresponding IP parameters, are recorded and stored 

in a spreadsheet file for further analysis. 

Once computed, the SOS data serve as a valuable resource for analyzing the 

sensitivity of the IP parameters and identifying optimal parameter sets that 

minimize the SOS, indicating the best agreement between calculated and observed 

properties. By plotting the SOS values against the IP parameters, we can create 

contour map, such as the one shown in Figure 8. These visualizations illustrate 

how the SOS varies across the parameter space, highlighting regions where the IP 

parameters yield the most accurate results. Such visual aids are instrumental in 

understanding the fitting landscape and guiding the selection of IP parameters that 

produce reliable and precise simulations of the material. 

We used WHAT-IP to map out the SOS as a function of the two parameters 

of the Born-Mayer potential for Al-F short-range interactions. As mentioned 

above, α-AlF3106 is the chosen reference system. An exhaustive exploration of the 

SOS landscape was carried out across a grid with a spacing of 10 eV and 0.01 Å 

for the A and ρ parameters, up to a maximum of 4000 eV and 0.4 Å, respectively. 

As mentioned above, α-AlF3106 is the chosen reference system. An exhaustive 

exploration of the SOS landscape was carried out across a grid with a spacing of 

10 eV and 0.01 Å for the A and ρ parameters, up to a maximum of 4000 eV and 

0.4 Å, respectively. 

Our investigation employed two distinct fitting strategies: a relax fit and a 

standard fit. The global minimum found for the SOS when implementing a relax 

and standard fit, with the reference data including the structural parameters or 

atomic forces in α-AlF3, was obtained at A = 100.0 eV and ρ = 0.48 Å, and A = 

3860.0 and ρ = 0.222, respectively.  

Our investigation employed two distinct fitting strategies: a relax fit and a 

standard fit. The global minimum found for the SOS when implementing a relax 

fit (with the reference data including the structural parameters in α-AlF₃) was 

obtained at A = 100.0 eV and ρ = 0.48 Å. When implementing a standard fit (with 

the reference data including atomic forces in α-AlF₃), the global minimum was 

obtained at A = 3860.0 and ρ = 0.222. 
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Figure 8. The SOS landscape from a standard fit as a function of A and ρ Born-

Mayer Al-F potential parameters, where α-AlF3 is the reference structure106. 

Values of SOS above 6000 are not shown. 

Upon a thorough examination of the outcomes, we selected the standard-

fitted potential. This choice was predominantly driven by the less satisfactory 

performance of the relax-fitted potential in depicting α-AlF3. Moreover, the relax 

fit yielded A and ρ parameters of around 500 eV and 0.45 Å. The relax-fitted 

parameters are at an unusual scale for the potential, and physically the parameters 

do not accurately describe the atomic size and physical properties. Maps were also 

produced when the reference process was repeated with the reference data 

including the DFT-calculated Birch-Murnaghan bulk modulus¹⁰⁵ or atomic forces 

for three AlF3 phases; results are given in Table 1. 

Table 1. Al-F Born-Mayer interatomic potential parameters corresponding to the 

global minima of the SOS based on a standard fit of the reference data. 

 Reference Data A / eV ρ / Å 

(A) atomic forces in α-AlF3 3760.0 0.2220 

(B) 
atomic forces and bulk 

modulus in α-AlF3 
10860.0 0.1920 

(C) 
atomic forces in α-, β-, 

and θ-AlF3 
2381.0473 0.2461 
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As our interest is in nanocluster structure predictions, we want an IP 

that generates and ranks energy minima for nanoclusters that best matches 

results from DFT energies. With a suitable IP, computational costs can be 

dramatically reduced, as we can then choose to focus on only the top N 

lowest-energy IP structures, instead of optimising all ranks of IP LM. 

 To identify the most suitable IP for predicting candidate LM that can 

be readily refined to DFT LM for nanoclusters,  a scoring system has been 

developed, a so-called performance score that is composed of three 

components: 

To identify the most suitable IP for predicting candidate LMs that can 

be readily refined to DFT LMs for nanoclusters, a scoring system has been 

developed—a so-called performance score that is composed of three 

components: 

Performance	Score = Ranking	Score + RMS	Score + Scaling	Score, Eqn 37 

Ranking	Score = ∑ |rankPBEsol'rankIP|23
Number	of	unique	IP	LM

, Eqn 38 

where rankIP represents the energy rank of LM structures found on the IP 

energy landscape, and rankPBEsol is the LM ranking post-PBEsol refinement. 

The ranking score encapsulates the total number of unique configurations 

identified in the IP energy landscape.  

RMS	Score = �∑ drPBEsol,!'rIP,!d
$

56789
e	

, Eqn 39 

where rIP,i are the atomic coordinates of each IP LM structure found, and rPBEsol,i 

are the atomic coordinates of the PBEsol LM found from relaxing the IP LM 

cluster structure, and W is the sum of all IP LMs’ atomic position RMS.  

Scaling	Score = |1 − Scaling	factor|, Eqn 40 

where ‘the scaling factor’ is a measure of structural expansion/contraction 

relative to the PBEsol-refined structure.  
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The RMS and the scaling factor are computed using the in-house 

`CF_clusterpy` code developed by Professor Woodley's research group. 

This code conceptually works by comparing two cluster structures—

typically an IP optimized structure and a PBEsol-refined structure—by 

aligning them through translation to a common centre of mass and rotating 

them to align their principal axes. It then calculates the RMS deviation 

between corresponding atomic positions to quantify structural differences 

and computes a scaling factor to account for any isotropic size variations 

between the clusters. If the IP structure perfectly matches the PBEsol-

refined structure, both the RMS deviation and the scaling factor will be zero, 

indicating that the two structures are identical in both shape and size. 

Global optimisations using 5,000 MCDQ steps with the box size 

parameter of 4.0 were carried out for each set of IPs—A, B, and C—for 

cluster sizes n = 1 to 5. The resulting IP LMs were subsequently refined on 

the PBEsol energy landscape before the suitability of the IPs was assessed 

using the performance score; results are shown in Table 2. 

Table 2. The suitability of IPs, listed in Table 1, using measures described in 

equations 31 to 34. 

 Ranking RMS Scaling 
Performance 

(overall) 
Top 10 

(A) 21.3896 6.8448 3.3362 31.5706 3.1674 

(B) 71.9247 15.7868 6.5462 94.2577 5.8280 

(C) 21.0448 6.6675 7.0621 34.7743 4.3711 

 

Table 2 displays the individual components and the total performance score 

for each IP. These performance scores are based on all unique structures 

discovered during the MCDQ runs with each respective IP. Additionally, a 'Top 

10' score was calculated, which considers only the scores associated with the 

predicted top 10 lowest-energy LMs from each IP. 
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Generally, IPs fitted with more observables are better at replicating bulk 

phases106. Thus, we hypothesised that IP B and IP C would outperform IP A since 

they are fitted to a greater number of observables. However, our results show that 

when it comes to locating lower-energy LMs, IP A is more effective than both IP 

B and IP C, possibly because the reference structures were bulk phases as opposed 

to clusters. Consequently, in our results that follow—that is, the structure 

prediction of (AlF₃)ₙ for n = 1–11 and 20—we employed IP A. 

 

3.2.2. F-F Four region Buckingham Potential 

For the F – F interatomic potential we have employed the four-region 

Buckingham potential which already have been developed by Jackson et al. 

9,102,107–109 and used for many systems. The parameters for this  four-region 

Buckingham potential was fitted to reproduce the bulk structural parameters of 

three lanthanide earth metal (La3+, Nd3+, and Y3+) fluorides and their elastic 

properties. 

 

Figure 9. The F-F four-region Buckingham potential: in region I, F – F distances 

less than 2.0 Å, a Born-Mayer potential; in region II, greater than 2.0 Å and less 

than 2.726 Å, a fifth order polynomial; in region III, greater than 2.726 Å and less 

than 3.031 Å, a third order polynomial; and in region IV, greater than 3.031 Å, a 

C6 term102. The total potential (green dashed line) is the sum of the four-region 

Buckingham potential and Coulombic potential (cyan dashed line) across all 

regions. The numeric and circle markers on the total potential curve indicate the 
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average F-F interatomic distances for GM nanoclusters of size n and the bulk 

phases, respectively. 

 

The F–F potential is shown as a continuous multicoloured solid line in Figure 

9, with each colour representing one of the four regions of the Buckingham 

potential. Each of the coloured regions is defined by one of the following 

analytical expressions: 

𝑉"𝑟!"$ = 1127.8 exp \− %!"
H.)ghi

^, (𝑟!" < 2.0	Å) Eqn 41 

𝑉"𝑟!"	$ = 371.2706	𝑟!"h − 741.1170 𝑟!"j +

597.2668 𝑟!"i − 241.8573 𝑟!") + 49.0486 𝑟!" − 3.9760, 

(0.2	Å < 𝑟!" < 2.726	Å) 

Eqn 42 

𝑉"𝑟"#	$ = 9.4816	𝑟"#% − 9.6271 𝑟"#& + 3.2362 𝑟"# − 0.361, 

(2.726	Å < 𝑟"# < 2.031	Å) 
Eqn 43 

𝑉"𝑟!"$ = − (h.ki
%!"%

,  (3.031	Å < 𝑟!"), Eqn 44 

where rij is the F – F interatomic distance.  

The green dashed line shown in Figure 9 is the sum of the four-region 

potential (Eqn 41 to 44) and the Coulombic potential (Eqn 3). The numeric and 

circle markers are placed on the total potential curve; the numeric markers indicate 

the GM of cluster sizes n, and the circle markers represent various bulk phases of 

AlF3. The location of each marker corresponds to the average F – F interatomic 

distance of the system. 

The Al–F and F–F interatomic potentials are combined with the shell model 

to enable a polarisable model for the AlF₃ nanoclusters. In the shell model, each 

ion is represented by a core and a shell connected by a harmonic spring, allowing 

the simulation of polarisability. The spring constant k (from Eqn 8) for the F – F 

potential is taken from Valerio et al., with a value of 20.77 kg s-2. The core and 

shell charges are set to 0.59 e and –1.59 e, respectively, where e is the elementary 

charge. 
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3.2.3. Two-stage approach to predicting DFT LM 

structures 

A direct global optimisation, or search on the DFT energy landscape can be 

significantly inefficient. For a more computationally cheaper and potentially a 

more efficient global optimisation, we employed the two-stage method that has 

been employed previously in many structure prediction studies of 

nanoclusters9,89,93,110. The two-stage method starts with a global optimisation on 

the IP PES, then lower energy IP LM candidates are subsequently optimised on 

DFT energy landscape (figure 10). Here we hypothesised the IP PES describes the 

DFT PES with sufficient accuracy that each of the DFT LM can be found in this 

two-stage approach. Thus, the use of IP potentially reduces the computational cost 

required to find the DFT LM. 

A direct global optimisation, or search on the DFT energy landscape, can be 

significantly inefficient due to the high computational cost of DFT calculations 

for numerous configurations. For a more computationally efficient global 

optimisation, we employed a two-stage method that has been used previously in 

many structure prediction studies of nanoclusters 9,89,93,110. The two-stage method 

starts with a global optimisation on the IP PES, then lower-energy IP LM 

candidates are subsequently optimised on the DFT energy landscape (see Figure 

10). Here, we hypothesise that the IP PES describes the DFT PES with sufficient 

accuracy so that each of the DFT LMs can be found using this two-stage approach. 

Thus, the use of IPs potentially reduces the computational cost required to find the 

DFT LMs. 
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Figure 10. Pictorial description of how the two PES could match in the two-step 

method, where orange (black) solid-line represent the IP (DFT) PES, the orange 

(black) dashed line connect initial and relaxed points, black-dots represent 

randomly generated structures, whereas blue-dots represent IP-LM. 

For the smaller nanocluster sizes (n = 1 – 6), the MCDQ global optimisation 

method is employed, as implemented in the KLMC software, because the PES is 

relatively simple as the number of atoms within the system is relatively less, thus 

employing more sophisticated approaches would be more costly for smaller 

clusters. For larger cluster sizes (n > 6), we employed the GA in the KLMC 

software. The KLMC software (a) calls the GULP code to optimise the structures 

generated from the MCQ method or the GA method, and (b) executes a geometric 

screening algorithm based on graph theory. The algorithm in (b) acts as a filter, 

screening out previously identified structures and retaining only unique LM 

configurations by employing a comparative evaluation of an encrypted code, 

based on atom connectivity, known as a hash-key. Generated results are, therefore, 

free of any duplicated LM structures. 

Each time the GULP program is called to relax a candidate structure, the 

conjugate gradient method is employed until the magnitude of the energy gradient 

(gnorm) falls below 0.4 eV Å-1, after which the RFO method is employed until the 

LM is found. This hybrid local optimisation approach to relaxing atomic structures 

is beneficial, as the conjugate gradient method is more efficient during the early 
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phases of optimisation when the gnorm is high, while the RFO method effectively 

ensures that the optimisation stays within an energy basin and can direct the search 

along the eigenvector associated with an imaginary phonon frequency if necessary. 

The tolerance settings for this structure optimisation are shown in Table 3. Once 

the IP LMs are identified, the IP LM configurations are subsequently optimised to 

DFT LMs using the PBEsol-GGA functional as implemented in the FHI-aims 

code. 

 

Table 3. GULP local optimization tolerances for atomic coordinates (10-xtol), 

energy (10-ftol) and forces (10-gtol) as well as the maximum number of line searches 

per GULP call (maxcyc). 

xtol / Å 6.0 

gtol / Å 6.0 

ftol / eV 6.0 

maxcyc 10000 

 

For cluster sizes n = 1 to 6, we have used 2,000, 100,000, 200,000, 400,000, 

900,000, and 3.5 million MCDQ steps, respectively—that is, we generated and 

relaxed this many random candidates for each size. The GA has two key 

parameters, namely population size and the number of generations, which were 

gradually increased from 65 to 88 and from 3,024 to 5,419, respectively, for sizes 

n = 7 to 11. For cluster size n = 20, 120 populations per generation and 5,000 

generations were used, resulting in over 500,000 configurations generated. Other 

key parameters include the tournament size used to determine selection of 

candidates who survive or are chosen from the parent generation, which is fixed 

at 10; and the initial maximum distance between any two random atomic 

coordinates—randomly placed atoms are constrained to be within a cubic volume 

with lengths from 6.5 Å to 10.8 Å for cluster sizes n = 1 to 11, and 15 Å for n = 

20. 
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3.2.4. Convergence of the GA global optimisations 

As already mentioned, there are two key GA parameters—the population size 

per generation and the number of generations—as their product determines the 

sampling density for GA calculations in KLMC. These GA parameters were 

initially based on a previous study of predicting clusters of ZnO, which also 

employed KLMC. Given that AlF3 contains four atoms per formula unit, 

compared to two atoms for ZnO, we modified the population size accordingly. 

The population and generation parameters used for the ZnO study were increased 

by a factor of 1.5. This adjustment was made in line with the ratio of the number 

of atoms per formula unit, as the increase in the number of atoms increases the 

dimensionality of the PES to be explored by three per atom. The size of the 

simulation box was also based on how these were chosen in the ZnO study89. We 

multiplied the ratio of the lengths that if ions of the smallest formula unit cluster 

aligned in a line of ZnO and AlF3, which are 2.79 Å and 1.63 Å, respectively. 

As shown in Figure 11, for each GA run, a fixed population size—between 

30 and 80 configurations—was implemented, with the number of generations 

ranging from 150 to 4,940, corresponding to the cluster size. The parameters of 

the simulation box sizes used range from 6.5 Å to 14.6 Å, respecting the cluster 

size. 
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Figure 11. The benchmarked GA parameters (population size, number of 

generations, simulation box size) from the previous ZnO study89 (black) and the 

adopted GA parameters for the current (AlF3)n study (blue), and the total number 

of sample points used for the GA from the population and generation parameters. 

 

Other GA parameters, which are designed to maintain the diversity of 

configurations within a population and ensure the chance to obtain sensible 

structures (as the success of crossover is dependent on diversity), include: 

• The percentage of the structures in a current generation that are mutated 

during the crossover process, set to 80%. 

• The probability of applying the self-crossover, atom exchange, expansion, 

and contraction algorithms when generating new configurations, all set to 

10%. 
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• The scaling factors for the expansion and contraction are set to 1.2 and 0.8, 

respectively. 

 

Figure 12. The 20 lowest energy IP-LM clusters for (AlF3)20 as a function of GA 

generation (or iteration); black points appear as black lines across generations. The 

initial point of each black line signifies the generation in which the cluster was 

first identified. The red line illustrates the average total energy of these top 20 

most stable configurations. 

 

The GA is assumed to have converged if there is no further change in the 

lowest 20 LM energies after 200 to 250 generations89,91,111. Figure 12 illustrates, 

for the largest system investigated, how the IP energy of the 20 lowest-energy LM 

clusters evolves as a function of generation. The commencement of each black 

line in the figure indicates the generation at which a particular cluster was first 

discovered, while the red line represents the average total energy of these top 20 

most stable configurations. In the example shown, the GM is found at around the 

1,000th generation, the second lowest-energy LM was found after 1,260 

generations, and of the lowest 20 candidates found, it is one of the higher-energy 

LMs that was found last—not the tentative GM. 
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3.3. Results and Discussions 

3.3.1. Global Optimisation 

As a result of the global optimisation on the IP PES using the MCDQ method 

implemented in the KLMC, we found 1, 1, 6, 35, 233, and 2,316 unique LM for 

cluster sizes n = 1 to 6, respectively. The MCDQ method does not require tailored 

parameters for the global optimisation which only 

After obtaining the IP-LM candidates from the global optimisation, they are 

subsequently optimised on the PBEsol-GGA functional PES using the two-step 

method. Following the optimisation on the PBEsol-PES, the total number of 

unique LM is reduced to 1, 1, 5, 24, 149, and 1,308 for n = 1 to 6, respectively. 

To ensure that no lower-energy LM are missed, we used a large number of 

sample points per cluster size for the global optimisation on the IP-PES. The 

PBEsol-LMs are then re-optimised on the IP-PES and again re-optimised on the 

PBEsol-PES iteratively until no new PBEsol-LM are found from this iterative 

process. 

For convenience, we will refer to the PBEsol GM and LM simply as GM and 

LM from now on. The reduced number of LM after refining the IP-LM on the 

PBEsol-PES suggests that many of the IP-LM are unstable on the PBEsol-PES. 

The unstable IP-LM collapse to LM that have different atomic configurations or 

connectivity compared to the original IP-LM when optimised on the PBEsol-PES. 

The collapsed configurations are already found from the global optimisation. 

This also implies that many of the IP-LM fall into the same LM basin, resulting in 

duplicated clusters being collected in the data. To filter out the duplicated LM after 

the PBEsol refinement, two methods are employed: filtering duplicates based on 

the total energy of the LM and based on the atomic connectivity of the nanocluster. 

The filtration of duplicated structures based on the structure energy is based 

on the hypothesis that LM must be in the same LM basin if the difference in 
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PBEsol energy between LM is less than 1.0 × 10−5 eV. This tolerance is set 

conservatively to avoid losing any unique LM during the process. Here, we also 

hypothesise that there will be no LM with the same energy but different 

configurations. Perhaps this hypothesis is rather aggressive (with a risk of 

eliminating chiral configurations), but for smaller nanocluster sizes (n = 1 – 6), 

the number of LM on the PES is relatively small and can be easily verified visually. 

For filtration based on the atomic connectivity of the nanoclusters, we used 

the hash-key algorithm89,94, which is the same algorithm implemented in the 

KLMC code that generates/filter unique encrypted strings based on the atomic 

connectivity of a system. We employed the hash-key to identify duplicated 

configurations among the PBEsol-optimised structures. The filtration process 

using these two methods is automated using custom Python scripts. 

 

 

Figure 13. The PBEsol binding energy of (AlF3)n (n = 1 – 6) nanoclusters as a 

function of IP rank defined as PBEsol (lines and cross markers) energies, Ei – nE1, 

for PBEsol optimised structures. From n = 1 to 6, the data are shown in black, 

orange, red, yellow, blue, green colours, respectively. Markers indicate all PBEsol 

optimised IP structures including unstable on the PBEsol landscape which has not 

removed the duplicated PBEsol LMs. Solid line shows the unique LM and the 

breaks in lines indicate the removed unstable IP LM on the PBEsol landscape 
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(relaxed to a PBEsol LM already included in the figure). Insert panel: the energy 

difference between the GM and the LM of n = 5 from the two different IP (solid: 

newly fitted Al-F Born-Mayer IP, dashed: Jackson potential) optimised n = 5 

PBEsol structures against the PBEsol energy ranking before the IP refinement. 

The binding energy 𝐸Q!45 of an n-size cluster LM is defined as: 

𝐸Q!45 	= 𝐸lm4 − 𝑛𝐸(	, Eqn 45 

where 𝐸lm4  is the energy of the LM for the cluster of size n, and E1 is the energy 

of the GM of the smallest cluster size (n = 1). 

The figure shows the binding energy, as defined in Equation 46, of the 

PBEsol-optimised structures as a function of the IP LM ranking before the PBEsol 

optimisation. The different coloured data points indicate the different cluster sizes: 

from n = 1 – 6, the data correspond to black, orange, red, yellow, blue, and green 

colours, respectively. 

The cross markers represent the full set of data points without removing 

duplicates after the IP LM are optimised on the PBEsol PES, including unstable 

configurations. The solid lines represent the unique LM after removing duplicates 

and unstable configurations. The unstable IP LM configurations on the PBEsol 

PES are removed, and because of this removal, the solid lines appear broken in 

the figure. 

An unstable IP LM on the PBEsol PES means that the connectivity of the 

atoms in the cluster changes significantly upon optimisation. The unstable 

structure collapses to a structure that has different atomic connectivity compared 

to the structure before refinement. The broken lines may indicate the limitation of 

the two-body potential to describe the PBEsol PES. However, the profile of the 

solid lines, or the distribution of the unique LM on the PES, shows accumulated 

Gaussian distribution curves, which can be seen in the green solid line (n = 6) on 

the plot. 

 



  72 

3.3.1.1. Efficiency of Global Optimisation Methods 

The existing number of LM in each cluster size shows a trend of exponential 

increase in the number of LM on each cluster size's PES as the cluster size 

increases. A fitted fourth-order polynomial function, which interpolates the 

highest energy (the least stable) LM, predicts that n = 7 would have more than 

4,200 (8,400) LM on the PBEsol (IP) PES. The expected number of LM for n = 7 

is four (three) times more than for n = 6 on the PBEsol (IP) PES. 

Using the MCDQ method for global optimisation with 3.5 million sample 

points for n = 6 took over four months, which means one sample point took 

approximately 3 seconds to optimise. Thus, if we use the MCDQ method for n = 

7, it would take approximately 11 months, which is inefficient as we are interested 

in the top NNN most stable LM. 

The MCDQ method is advantageous if our aim is to saturate all the LM or 

obtain a statistical distribution of LM to understand the PES. However, we are 

mainly interested in the lower-energy LMs. We will revisit this later in this chapter 

to explain why we are mainly interested in the lower-energy LMs. 

Thus, an efficient global optimisation method focused on lower-energy 

structures is required for larger cluster sizes. Here, we employed the GA method 

implemented in KLMC for larger cluster sizes, from n = 7 upwards. We globally 

optimised n = 7 – 11 IP LM using the GA in KLMC. Again, we employed the two-

step method, where the IP-LM obtained from the global optimisation are further 

refined on the PBEsol PES. 

 

3.3.1.2. Finding Effective Simulation Box Size 

As previously discussed, a crucial parameter in many global optimisation 

methods applied to atomistic systems is the simulation box size. Commonly, 

global optimisation methods first generate a random atomic configuration subject 

to subsequent structure optimisation. However, to construct the random atomic 

configuration, we need a boundary condition for more effective local optimisation. 
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Generating a random configuration without a boundary condition implies that 

the atoms can be placed extremely far away from each other, with computational 

costs increasing with the separation distance. In general, the simulation box size, 

or boundary conditions, can also be utilised to generate specific atomic structures, 

focusing on a certain area of the PES of interest—for example, where we find rod- 

or nanotube-shaped configurations. 

It can also be used to make the global optimisation method more effective, 

e.g., to find the top N energetically most stable configurations, as energetically 

stable configurations can be expected to have higher atomic coordination numbers 

or densely packed atomic configurations. In this work, we have tested a range of 

simulation box parameter values for the MCDQ global optimisation method in 

KLMC, as shown in Figure 14. 

 

 

Figure 14. An average number of sample point used for MCDQ calculations to 

find an LM on the (AlF3)n (n = 3 – 6) IP PES for a range of the simulation box 
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parameter values (coloured using the rainbow scheme – see the legends) as a 

function of the configuration ranking. 

 

The results from different box sizes are distinguished by colouring using the 

rainbow scheme. In general, we tend to use small box sizes to focus on the 

energetically more stable cluster structures because in general the more stable tend 

to have more highly compact/confined atomic configurations. Interestingly, when 

we change to even smaller box sizes for initial random structures, the frequency 

or chance of finding certain LM often changes dramatically. 

As seen in Figure 14, the top two most stable configurations of n = 3 clusters 

require the same average number of MCDQ steps per structure found (2.13 steps), 

as the n = 3 system has a relatively small PES with most of the LM configurations 

contained within the simulation box size. Thus, simulation box size does not 

appreciably influence the statistics for the two top LMs of the n = 3 cluster. 

The IP-LM3c requires many more sample points to be found, as the structure 

is located in a narrow funnel of the PES. The same analysis can be applied to IP-

LM3f. The cluster structural stability will be discussed in the following section. 

The IP-LM3d and IP-LM3e required different average numbers of steps to be 

found depending on the simulation box sizes; as the box size increases, the IP-

LM3d and IP-LM3e need more steps to be found, which means the configurations 

for the 4th and 5th LM are more compact rather than rod-like or elongated. 

The same analysis can be applied for the rest of n = 4, 5, and 6 clusters: if a 

structure requires more steps to be found for the first time using a smaller (larger) 

simulation box size, then the structure is expected to be elongated or rod-like 

(densely packed). For the case of n = 5, the 4 Å simulation box size is optimal as 

it permits us to find most of the LM5(x) with the least number of steps compared 

to the other smaller or larger box sizes. 

The 2 Å and 3 Å box sizes require the most and second most number of steps 

overall, while the 4 Å box size requires the least number of steps. This indicates 
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that most of the IP-LM5(x) structures are densely packed and extend to 4 Å, and 

2 Å – 3 Å boxes are too small to contain the structures. 

For IP-LM5J, using the 2 Å and the 3 Å boxes allows us to find the structure 

with the least number of steps, as the structure is densely packed, with Cs point 

group symmetry, which is the same as that of the IP-GM5. The IP-GM5 has a 

pentagonal ring configuration, but IP-LM5J is packed with no hole in the structure, 

so the end-to-end distance in the IP-GM5 is longer, thus requiring larger 

simulation box sizes. 

Understanding the nanocluster structures allows us to calibrate the simulation 

box size to save computational costs. The AlF₃ clusters show that a gradual 

increase in the simulation box size—from 2 Å for n = 3 – 4 Å for n = 6 — would 

allow us to capture the energetically more stable configurations on the PES. 

 

3.3.2. Comparison with The Two-Body Potentials 

The inset in Figure 13 illustrates the energy difference between the GM and 

LM for n = 5 as a function of the PBEsol ranking prior to IP refinement. This was 

determined by optimising the n = 5 PBEsol LMs using two distinct IP sets: 

Jackson's102 and a newly fitted IP. 

The IP energy differences for the LMs are shown as a function of their PBEsol 

energy ranking prior to IP refinement. The Jackson IP, published in 2004 for 

investigating aluminium fluoro-/hydroxy-silicate (Al2SiO4(OH, F)), commonly 

known as topaz, is noteworthy. In this context, the Al – F interaction in Jackson's 

IP utilises the Buckingham or Born-Mayer potential (see Eqn 5), and the F – F 

interaction is modelled using the Buckingham potential, rather than the four-

region approach used in the current study of nanocluster structure predictions. 
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Table 4. The Jackson’s AlF3 Buckingham potential 

Interaction Potential A / eV 𝜌 / Å 
𝐶 / 

eV Å6 

Al-F Buckingham 1773.415 0.2753 0.0 

F-F Buckingham 4350.0 0.2753 15.83 

On-site potential parameters 

F 
Shell charge 

Spring constant 

Y = -1.378|e| 

k = 24.36 eV Å-2 
 

 

In the inset panel of Figure 13, the Jackson IP energy of the LMs remains 

constant, despite an increase in the energy ranking prior to IP refinement. In 

contrast, the energy of the LMs optimised with the newly fitted IP rises in tandem 

with their energy ranking. This indicates that the Jackson IP is less effective in 

mimicking the PBEsol PES of the nanocluster. 

The data comparing PES description performance using different IPs 

underscores the necessity for IP fitting in predicting nanocluster structures, 

thereby justifying the development of the new IP. Additionally, for n=1n = 1n=1 

to 6, the top 5 (and top 10) most stable PBEsol LMs were identified within the top 

10 (and top 50) IP LM rankings. Furthermore, for n = 1 to 10, the GM 

configurations according to the IP remained the same as the PBEsol GM following 

optimisation. 

This consistency further confirms the accuracy of the fitted IP in representing 

the PBEsol PES. Notably, for n = 11 and n = 20, the LM configurations ranked 

11th and 6th in IP energy emerged as the most stable PBEsol GMs, respectively. 

 

3.3.3. Density Of States 

Figure 15 illustrates the density of states (DOS) for the total energy of 

PBEsol-optimised (AlF3)ₙ clusters, with nnn varying from 3 to 6, at both IP LMs 
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and LMs following PBEsol optimisation. An extensive search for all possible LMs 

within these cluster sizes was conducted using the MCDQ method, leading us to 

believe that our exploration was thorough. 

Clusters with n = 1 and 2 are excluded from this figure, as they feature only 

a single structure on their PBEsol PES, which results in the DOS showing a single 

sharp peak at 0 eV. Ideally, the DOS should present a bell curve or Gaussian 

distribution, indicative of a random search that covers a wide range of LMs, as 

demonstrated in Figure 15, especially in the panel for n = 6. 

The DOS representing the distribution of LM total energies is expected to 

conform to a Gaussian distribution, a trend explainable by combinatorial 

reasoning. When an atom in a cluster is moved within its boundary, causing 

minimal changes to atomic connectivity, the system is restricted to a relatively 

limited set of configurations, which is the tail of the DOS. Conversely, increasing 

the number of atom relocations broadens the range of possible configurations, 

forming the body or peak of the DOS. 

The likelihood of encountering LMs within a cluster's PES typically follows 

a Gaussian distribution. This distribution can be rationalised by considering 

atomic rearrangements. Generally, the more energetically stable LMs are 

associated with atomic configurations that exhibit higher symmetry and densely 

packed or highly coordinated atomic arrangements compared to those with higher 

energy. 

Furthermore, configurations that are more elongated and of lower 

dimensionality tend to emerge beyond the mean energy of all LMs within a given 

cluster size on the PES, at the point where the DOS is maximal. Relocation of an 

atom within these stretched configurations can result in a collapse to more 

confined, lower-energy configurations, thereby reducing the prevalence of high-

energy LMs. This dynamic ultimately contributes to the Gaussian distribution of 

configurations across the potential energy spectrum. 
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Figure 15. The DOS of the total energy of the PBEsol optimised (AlF3)n (n = 3 – 

6) IP LM in solid line and the IP LM prior to PBEsol refinement in dashed line 

(The variance value and the bin size for the Gaussian distribution are 0.001 eV2 

and 0.01 eV were used to prepare the plot). 

 

For smaller atomic clusters, the DOS exhibits a limited number of peaks, 

reflecting the comparatively small number of atoms present. Consequently, this 

also leads to a reduced number of possible atomic configurations due to 

fundamentally fewer combinatorial possibilities. 

There is a noticeable disparity in the number of peaks between the PBEsol 

and IP DOS. For instance, the final two peaks in the IP DOS merge into the last 

peak of the PBEsol DOS, as these represent unstable configurations. Likewise, the 

other DOS graphs display a greater number of peaks across wider potential energy 

ranges in the IP PES, due to a higher count of LMs compared to PBEsol LMs. 

Once these unstable configurations are consolidated, they are restricted to a 

PBEsol
IP

n = 3 n = 4

n = 5 n = 6
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narrower potential energy range, resulting in a more defined, sharper overall DOS 

profile. 

In the DOS, there are three distinct peaks, with the initial two positioned 

closely together. The bases of these peaks show smearing and overlap. The 

estimated energy gap between the full-width at half-maximum (FWHM) of the 

first two peaks of n = 3 is around 0.01 eV. This indicates that the second peak of 

the LMs is reachable at room temperature, since 0.01 eV corresponds to 

approximately 116 K (using the relation E = kBT, where kB is the Boltzmann 

constant). 

Conversely, for n = 4, the energy separation between the first two peaks 

exceeds 0.3 eV (approximately 3,481 K), rendering the second peak inaccessible 

at room temperature. Therefore, under natural or ambient conditions, the GM is 

predominantly expected for n = 4. 

As the size of a cluster expands, the likelihood of discovering LMs with 

higher energy under normal conditions also increases. This stems from the 

heightened count of atoms in the cluster, enriching the spectrum of potential 

configurations. An augmented tally of LMs nudges the average energy profile to 

more elevated states, causing the DOS for larger clusters to approach a denser 

Gaussian distribution. 

With sufficient computational power or a more refined algorithm to 

thoroughly explore the LMs on the PES, canonical ensemble techniques can be 

utilised to analyse the statistical presence of various LM configurations at a 

specified temperature, especially after lower-energy LMs have been identified. 

This would allow for a better understanding of which configurations are 

thermodynamically accessible under given conditions. 
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3.3.4. AlF3 Nanocluster Structures 

 

Figure 16. Five different AlF3 bulk phases are presented in Ball-and-stick model 

which superimposed with polyhedral model to show SBUs. The blue large sphere 

and grey small sphere are Al, and F atom, respectively. 

 

In our comprehensive global optimization efforts for (AlF3)n nanoclusters, we 

are particularly focused on determining the smallest nanocluster size that 

replicates the structural motif characteristic of bulk AlF3. Our objective is to find 

a cluster size whose structural properties mirror those found in the bulk form. 

When examining the various AlF3 bulk structures (figure 16), as illustrated in the 

polyhedral models superimposed on the ball-and-stick diagrams, we note that the 

structural motif, or the secondary binding unit (SBU), of AlF3 is uniquely 

octahedral, with all such octahedral SBUs interconnected via corner-sharing links. 

The minimum cluster size GM where this corner-sharing octahedral SBU pattern 

emerges is when n = 6. At this juncture, the structure's central vertical axis consists 

of a series of octahedra joined at their corners. This central octahedral spine is 

further adjoined by two square-based pyramidal SBUs on one flank and two 

tetrahedral SBUs on the opposite flank, together forming a protective arrangement 

around the corner-sharing octahedral SBU. While the square-based pyramidal 

SBUs are interconnected through corner-sharing, the tetrahedral SBUs remain 

unconnected, leaving the central F atom exposed. This central F atom plays a 

κ

β α η

θ
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pivotal role as it acts as a bridging link between the two octahedral SBUs, thereby 

completing the intricate lattice that echoes the structural complexity of the bulk 

AlF3. 

 

Figure 17. The Ball and stick models of the tentative lowest PBEsol energy (AlF3)n 

PBEsol LM for sizes n = 8 to 11. Blue (grey) spheres represent Al (F) atoms, and 

transparent blue polyhedral are AlFm SBUs, with m = 4 to 6. Each configuration 

is labelled “nX-Y-Z S v,e,f // g,h,i,j P (Q)”, where X is its size, Y is its IP rank, Z 

is its PBEsol rank, S is a character string describing the SBUs that the cluster is 

composed of, v (e, f) is the number of vertices (edges, faces) shared between the 

SBUs, g (h, i, j) is the number of F atoms with a coordination of 1 (2, 3, 4), and P 

(Q) is the PBEsol (IP) energy difference between the cluster shown and the ground 

state cluster of the same size. The character string S is a concatenation of character 

strings with the format mU that indicate that are m SBUs of type U, where U is 

the first letter of the name of SBU shape (tetragonal, square-base-pyramidal, 

bipyramidal, octahedral), and when in bold lowercase, lowercase, uppercase or 

bold uppercase the SBU contains at least three, two, one and zero singly 

coordinated F atoms, respectively. Coordination numbers (and SBUs) are 

calculated using an interatomic Al-F cutoff distance of 2.2 Å. 

Figure 17 presents a detailed visual compilation of (AlF3)n nanoclusters 

where n varies from 1 to 5, encompassing both the GM and the 2nd to 4th LM for 

each respective cluster size. This comprehensive illustration serves to delineate 

the energetic hierarchy and structural variations within the clusters. Commencing 

with the upper label, each cluster is annotated with a series of identifiers that 
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convey critical information about its characteristics. The size of the cluster is the 

initial datum, followed by the cluster's ranking in terms of IP energy before any 

refinement through PBEsol has taken place, and its subsequent ranking after such 

refinement. The ranking system provides insight into the relative stability and 

energy levels of the clusters in different states of computational analysis. 

Furthermore, the upper label elucidates the composition of the clusters in 

terms of their SBUs. A specific example given is 'n3-4-3', which translates to the 

(AlF3)n nanocluster being the 4th ranked in terms of IP energy before PBEsol 

refinement and ascending to the 3rd rank following the refinement process. The 

notation '2B1t' is decoded to represent a cluster arrangement composed of two 

trigonal bipyramidal SBUs alongside a single tetrahedral SBU, with the possibility 

of alternative notations such as 'S' for square pyramidal and 'O' for octahedral 

configurations. In these labels, a lowercase letter, particularly when emboldened, 

signifies the absence of singly coordinated fluoride atoms within the SBU, for 

example for O: all the vertex fluorine atoms are bridged to other aluminium atoms, 

thus no singly coordinated fluorine atoms in the octahedral SBU. 

The mid-label catalogues the connectivity patterns prevalent among the SBUs. 

On the left side of this divider, the count of corner-sharing, edge-sharing, and face-

sharing linkages between SBUs is tallied, which is instrumental in understanding 

the three-dimensional geometry and potential reactivity of the cluster. The right 

side of the mid-label accounts for the number of fluoride atoms exhibiting specific 

coordination numbers with aluminium atoms, cataloguing them as singly, triply, 

and quadruple coordinated. 

Finally, the bottom label shows the energy differentials between the LMs and 

the GM within the same cluster size. These differences are quantified in potential 

energy, eV, labelled as E(LMn – GMn), and provide a valuable comparative gauge 

of the energetic favourability and potential stability of the different cluster 

formations. This image with energy labels gives a detailed look at the clusters. It 

helps us understand how the clusters might change shape and what shapes are most 

common when they are stable, for different sizes of the (AlF3)n series. 
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There is only one configuration in n = 1 in trigonal planar with D3h 

symmetricity. The two F atoms in the centre of the structure are staggered with 

the outer F atoms on both sides to minimise the steric hindrance from between of 

the nearest and the second nearest anions. n = 2, also has only one LM exists in 

the PES. It is common to predict only one answer for n = 1, but in general n = 2 

cluster to have only one LM (D2h) is rare9,110,112. Only one LM in the n = 2 can be 

explained by the ionic radii size differences between the Al and F; Al and F have 

the smallest ionic size among the cations and anions which eliminates the possible 

configurations that could have highly coordinated configurations. For instance, in 

the previous study of (LaF3)n report three LM. Shannon ionic radius113 difference 

in ratio between La3+ and Al3+ shows that La ion is 2.0 times bigger than Al ion 

(La3+ has 1.356 Å ionic radius and La atom in a LaF3 crystal has 9 coordination 

number, but Al3+ has 0.675 Å ionic radius with 6 coordination number for Al atom 

in an AlF3 crystal)9,96,97,113. Despite Al3+ has the smallest cation radius which gives 

less space to coordinate it prefers to have two edge-sharing (two bridged F atoms 

between Al atoms) SBU rather than corner-sharing (single bridged F atoms) SBU 

to increase the coordination number instead of avoiding the steric hinderance. 

However, even higher coordination number configuration, face sharing (more than 

three bridged F atoms) configuration, is energetically unfavoured for (AlF3)2. The 

GM configuration of (LaF3)2 is remained as (AlF3)2 after the datamining and the 

other two (LaF3)2 LMs which are composed of two tetrahedral SBUs which 

connected through edge-sharing, triangle face sharing, and square face sharing 

which all collapsed to the (AlF3)2 as shown in the 14. 

From this point forward, we will use the following notation for convenience: 

GMn represents the GM for a cluster of size n, and LM n{rank} represents the LM 

for a cluster of size n with the specified rank. We have found the total of five LM 

for n = 3. The GM3 has C2v symmetry which consists of one square pyramidal 

SBU and two tetragonal SBU. The two tetragonal SBU are edge-shared with a 

square-base pyramidal SBU centre. As a result, there are two and one singly 

coordinated F atom terminations per tetragonal and square-base pyramidal SBU. 

The LM3b only consist of three tetragonal with corner-sharing connectivity to 

each other, thus it has less average Al coordination number than the GM, which is 

less energetically preferred with less steric hinderance as the shortest Al-Al 
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distance is 3.23 Å compared to 2.82 Å in GM. On the other hand, despite the 

LM3c having a higher average coordination number for Al atom, 4.67, the LM is 

energetically unfavourable because of the relatively densely confined structures 

which penalise the energy more from the steric hindrance. The shortest Al-Al 

interatomic distance of the LM3c is 2.72 Å which is only ~ 0.1 Å shorter than the 

shortest Al-Al distance in the GM. The LM3d has Cs symmetry which looks like 

the LM3b configuration that brought two F atoms in the middle of the two Al 

atoms which are connected through triangular face-sharing. The face sharing put 

the two Al atoms too close (2.50 Å) which is unfavourable due to the repulsive 

forces. The short distance between the atoms penalises significantly more than 

having the higher coordination number with less singly coordinated F atom 

termination. The energy difference between the LM3b and the LM3c is 0.406 eV 

and 0.013 eV between the LM3c and LM3d. The relatively big energy gap 

between the LM3b and LM3c is considerable, but we are confident as we used the 

total of ~200,000 sample points for thorough PES search using the MCDQ global 

optimisation on KLMC with the numerous cubic simulation boxes. 

For n = 4, in the LM4b cluster, D3, we can observe the octahedral SBU, in 

which the octahedral connects the rest of the square base pyramidal and tetragonal 

SBU through edge-sharing and all the F atoms in the centre octahedral are bridged 

F atoms, doubly coordinated. The octahedral SBU is different to the octahedral 

SBU that can be found in the AlF3 bulk phases which is corner sharing SBU, not 

edge-sharing SBU. The GM4 is in D2d point-group and is composed of four 

square-base pyramidal SBUs which forms the edge sharing ‘ring’ configuration 

with a higher average coordination number for Al atom, 5, with a smaller number 

of undercoordinated F atom termination than other high energy LMs and less steric 

hindered with 2.83 Å with Al-Al distances; 0.03 Å longer interatomic distance 

than 2nd LM. The LM4c has an average coordination number of 4.75 for Al atom 

which is the value in between the GM and the 2nd LM and a smaller number of 

undercoordinated F atom terminations than the LM4b. However, the shortest Al-

Al distance in the LM4d is ~ 0.02 Å shorter than the shortest Al-Al distance in the 

GM 4which the steric hindrance penalises more than having a higher coordination 

number, thus it is less stable than the LM4b. 
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The GM5 is in Cs point-group and is also in ring shape with edge-sharing 

square-base pyramidal SBUs. The shortest Al-Al distance is 0.03 Å longer than 

the GM4. The LM5b has the GM4 configuration feature with an additional edge-

sharing tetrahedral SBU on the side which forms an octahedral SBU with no singly 

coordinated F atoms. The LM5b has the same average coordination number of Al 

atom as the GM5, 5, but as we mentioned for smaller sized clusters with the shorter 

Al-Al distance is unfavourable and the configuration has two undercoordinated F 

atom terminations in the tetrahedral SBU arm. The configuration of the LM5c is 

similar to the LM5b, but instead of the tetrahedral SBU connects through edge 

sharing with a square-base pyramidal SBU of the GM4 the tetrahedral SBU 

connects with the two square-base pyramidal SBU through the corner sharing. The 

LM5c has a longer Al-Al distance than the LM5b and the same number of the 

singly coordinated F atom terminations but has a smaller Al coordination number 

which is less energetically preferred compared to the LM5b. From the qualitative 

analysis of the structural stability of the (AlF3)n (n = 1 – 5) LM we found the trend 

in AlF3 cluster structural stability: if a cluster has fewer undercoordinated F atom 

terminations, a densely packed configuration with a higher coordination number 

with the longer interatomic distances between the same atom species is 

energetically more stable. We expect this trend which requires to be the stable 

cluster will continue in bigger cluster size, n > 5, but with shorter average 

interatomic distance between the same atomic species than the smaller cluster size. 

As there are a greater number of atoms in cluster as the cluster size increases the 

electrostatic field will be stronger. The stronger electrostatic field will tightly 

bound the atoms, thus the densely located atoms will have higher average 

coordination number.  

In atomic and molecular systems, the strength of the electrostatic field 

generated by ions or atoms significantly influences the structural and bonding 

properties of the material. A stronger electrostatic field arises when atoms or ions 

possess higher charges or are in closer proximity to each other. This intensified 

field enhances the attractive forces between oppositely charged particles, leading 

to tighter binding of the atoms. As a result, the atoms are drawn closer together, 

creating a denser arrangement within the material's structure. In such densely 

packed configurations, each atom is surrounded by more neighboring atoms than 
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it would be in a less dense structure. This increase in neighboring atoms elevates 

the average coordination number, which is the number of nearest neighbors 

directly bonded to a central atom. A higher coordination number indicates that 

each atom shares bonds with more adjacent atoms, reflecting a more 

interconnected and stable network. Thus, the stronger electrostatic field not only 

binds the atoms more tightly but also promotes a structural environment where 

atoms have a higher average coordination number due to the dense packing 

facilitated by enhanced electrostatic attractions. Thus, numerous octahedral SBU 

will be found more often in bigger cluster sizes. 

 

Figure 18. The PBEsol optimized LM for (AlF3)n nanoclusters where n ranges 

from 6 to 7. In the visual representation, darker spheres denote Al atoms, while 

lighter spheres represent F atoms. The upper label provides a sequence of 

information from left to right: the atomic size, the ranking in IP energy, followed 

by the ranking in PBEsol energy. It further describes the SBU components that 

make up the configuration. The mid-label, divided into two sections by a vertical 

line, catalogues on the left the count of corner-sharing, edge-sharing, and face-

sharing interactions between SBUs, respectively. On the right, it quantifies the F 

atoms coordinated to single, triple, and quadruple aluminium atoms, respectively. 

The bottom label specifies the energy difference for each LM compared to the GM 

of the corresponding cluster size, n, in both PBEsol and IP notations. This detailed 

annotation provides an insightful comparative analysis of the structural and 
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energetic characteristics of the (AlF3)n nanoclusters within the stipulated size 

range. 

 

The GM6 is the smallest cluster size that has the corner-sharing octahedral 

SBU with an average coordination number of Al atom of 5 with C2v point-group. 

The only SBU which can be found in AlF3 bulk structures (figure 18). The GM6 

has two octahedral SBUs which are corner-sharing and two tetrahedral SBUs and 

two square pyramidal SBUs corner-share with both centre pillar octahedral SBUs. 

The angle of the two octahedral SBU (Al-F-Al) is 167.12° towards the window 

where no SBU surrounds the centre. The angle minimises the steric hindrance 

from the surrounding four smaller SBUs, tetrahedral and square base pyramidal 

SBU. Each SBU has singly coordinated F atom termination. From the view shown 

in figure 18 two square-base pyramidal are in the back of the octahedral SBU. The 

square-base pyramidal are not only corner shared with both octahedral SBU but 

also to each other. The LM7b has also two octahedral SBU, but they are edge-

shared to each other. On the opposite side of the octahedral SBU the two square-

based pyramidal SBUs are edge-sharing. The rest of the tetrahedral SBUs are 

corner sharing with octahedral SBUs and one square base pyramidal SBU. The 

LM7b has the same number of Al coordination numbers, but the edge sharing 

which caused the shorter Al-Al distance (0.85 Å shorter) is energetically less 

favourable. The 4th LM has four square base pyramidal SBUs like an arch which 

the ends of arch are connected to one trigonal bipyramidal and tetrahedral through 

corner sharing. The trigonal bipyramidal has two undercoordinated F atom 

terminations and one undercoordinated F atom is pointing towards the centre of 

the arch where the Al atoms of the arch are facing. The Al atom of the nearest 

square base pyramidal SBU that the corner shares with the smaller SBU have 

147.8° of F – Al – F angle with the shortest Al to centred F atom distance is ~ 

2.3 Å. On the other hand, the further out Al atoms in the square base pyramidal 

SBU have a bigger F – Al – F angle (~ 149.17°) with a longer distance of Al to 

the centre F atom of ~ 3.1 Å. By locating the undercoordinated F atom in the 

square pyramidal SBU in the middle of the configuration which electrostatically 

stabilises the configuration with a large cavity that has 0.26 eV larger in total 

energy than the LM7c. The LM7c has a similar configuration to the LM7d, but the 
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square based pyramidal SBU is more like a curved shape with the cross-sectional 

shape of the parabola which is still facing towards the singly coordinated F atom 

termination which stabilises the configuration with a smaller cavity in the middle. 

Thus, again the more densely packed structure is energetically more stable. 

There are three octahedral SBUs in GM7 (symmetry Cs), which are edge-

sharing with each other; one F atom is coordinated with three nearest Al atoms. 

The two tetrahedral SBUs have single undercoordinated F atom terminations, and 

the other two F atoms are corner-shared with two octahedral SBUs. Another F 

atom in the two tetrahedral SBUs is corner-shared with a square pyramidal SBU. 

The square pyramidal SBU is edge-sharing with another square pyramidal SBU, 

which is corner-sharing with the two octahedral SBUs. Thus, the two pyramidal 

SBUs each have a single undercoordinated F atom termination. 

The LM7b has C2v symmetry and features a single F atom in the middle of 

the configuration that is surrounded horizontally by four square pyramidal SBUs 

at equal distances from the central F atom. The angle from an Al atom in a square 

pyramidal SBU, through the central F atom, to the opposite Al atom is 173.02°, 

indicating that the F atom is slightly lower than the plane formed by the Al atoms 

of the square pyramidal SBUs. This lowered position of the F atom is due to two 

Al atoms in a tetrahedral SBU, which are corner-shared with each other and share 

two corners with the square pyramidal SBUs. 

On the opposite side of the tetrahedral SBU, there is only one square 

pyramidal SBU in which the Al atom is at a distance of 2.41 Å from the central F 

atom. As the central F atom is equally shared by the nearest surrounding four 

square pyramidal SBUs, we can assume that the Al atoms in the square pyramidal 

SBUs bond to the central F atom, effectively forming four octahedral SBUs. Under 

this assumption, the F atom is at the center of four octahedral SBUs whose edges 

share with each other, and the Al atoms are separated by 3.19 Å. 

The second LM (LM7b) has higher symmetry, and the Al–Al distance 

between the Al atoms in the octahedral SBUs is 0.06 Å longer than that in the 

octahedral SBUs of GM7. However, the central F atom in LM7b is shared by four 

Al atoms where the electron density is insufficiently localized. 
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Figure 19. (AlF3)n (n = 8, 9) PBEsol optimised LM: dark (light) sphere represents 

Al (F) atoms; the dashed line connects the same atom in different angles of view 

of the same configuration. upper label: from the left, atomic size, ranking in IP 

energy, and ranking in PBEsol energy. SBU component that consists of the 

configuration; mid-label: on the left-hand side from the divider number of corner-

sharing, number of edge-sharing, face sharing, respectively. The right-hand side 

represents the number of F atoms that bonded with single Al atoms, three Al atoms, 

and four Al atoms, respectively. bottom label: PBEsol (IP) energy difference 

between the LM and the GM of the cluster size, n. 

 

The structural analysis of the GM8 nanocluster reveals an intriguing 

arrangement that mirrors the number eight, attributable to the presence of two ring 

motifs. These motifs derive from the GM5 configuration, wherein each extremity 

of the SBU in the GM3 has edge-sharing relations with the two proximate GM5 

SBU. This connectivity through edge-sharing engenders the formation of two 

octahedra, in which all the fluorine atoms within the octahedral SBUs maintain 

two-fold coordination. Notably, corner-sharing octahedral SBU are absent in the 

GM8.  

The GM8 structure is particularly noteworthy, given its divergence from the 

ring structure observed in smaller cluster sizes. Post the GM5, there is a noticeable 
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transition from the two-dimensional ring-shaped configuration to a more 

coordinated and relatively three-dimensional architecture. This evolution suggests 

a structural progression in which the nanoclusters tend to abandon the lower 

dimensional ring arrangements in favour of more intricate three-dimensional 

formations as the cluster size increases. However, for GM8 the ‘8’ shape structure 

has more coordination number than other LM8x. In terms of structural density, if 

we compare the GM8 with the LM8b and LM8c they have higher density 

configurations, but with significantly less in average coordination number of Al 

atom; GM: 6.75, LM8b: 5, LM8c: 4.5. Interestingly, the IP prefers the structure 

which have higher density (LM8c) with higher symmetricity than the highly 

coordinated atoms in the structure. This is because highly localised electron 

density can sufficiently provide electrons to atoms evenly.  

This preference arises because, in structures with higher density and greater 

symmetry, the electron density becomes highly localized around the atoms. Highly 

localized electron density means that electrons are concentrated in specific regions 

close to the nuclei, enhancing the strength of the bonding interactions. This 

localization allows the electrons to be more effectively shared or exchanged 

between atoms, even if each atom has fewer immediate neighbours (i.e., a lower 

coordination number). As a result, the electrons can sufficiently provide bonding 

interactions to the surrounding atoms evenly satisfying the bonding requirements 

of the structure. 

 

In the case of GM8 compared to LM8b and LM8c, although GM8 has a higher 

average coordination number for aluminium atoms, the electron density in LM8c 

is more localized due to its higher structural density and symmetry. This 

localization leads to a more uniform distribution of electrons among the atoms, 

promoting stronger and more stable bonds within the structure. The IP tends to 

favour such configurations because they result in lower total energy for the system, 

making the structure more energetically favourable. 

Conversely, in structures with higher coordination numbers but lower density, 

the electron density may be more delocalized – spread out over larger regions of 
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space. This delocalization can lead to uneven electron distribution and weaker 

bonding interactions since the electrons are less concentrated around individual 

atoms. Consequently, despite having more neighbours, the atoms in these less 

dense structures might not achieve as effective bonding as those in denser, highly 

symmetric configurations. 

Therefore, the IP prefers structures where the highly localized electron 

density can evenly distribute electrons to the atoms, resulting in a stable and 

energetically favourable configuration. This explains why LM8c, with its higher 

density and symmetry but lower coordination number, is preferred over GM8 by 

the IP. The even provision of electrons through localized electron density 

enhances the overall stability of the structure, highlighting the importance of 

electron localization in determining the energetics and preferred geometries of 

nanoclusters. 

From LM8b, we observe an equivalent number of octahedral SBUs engaging 

in edge sharing. The square faces of two square-based pyramidal SBU are oriented 

toward the atom located near the structure's centre within the edge-sharing 

octahedral SBU. A tetrahedral located on the right side of the LM8b structure, 

evident in figure 19, terminates in two singularly coordinated F atoms. The 2nd 

LM is marked by a relative density, yet the tetrahedral SBU branch hosting two 

undercoordinated fluorine atoms contributes to a higher energy profile. The LM8c, 

with a denser formation and greater Cs symmetry compared to the C1 point group 

of the LM8b, features three edge-sharing octahedral SBU and two edge-sharing 

trigonal bipyramidal SBU. The close proximity of these atoms induces stronger 

electronic repulsion, leading to higher energy levels than in the GM and LM8b 

structures.  

Considering clusters up to the n = 8 size, we find that the structural stability 

of LMs is easily deduced and contrasted through the visual inspection of atomic 

configurations using the SBU, as it readily reveals symmetry. However, when we 

approach n = 9, understanding the structural stability among LMs of equivalent 

cluster size becomes a more complex task, given the increasing randomness in the 

structure compared to those from n = 6 to 8. The GM of n = 9 comprises five 

octahedral SBU, with two F atoms within the octahedral SBU being shared by 
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three Al atoms, revealing a C2 point group. The presence of a 3-fold coordinated 

F atom at n = 9 is a novel occurrence, yet the interatomic distance between Al 

atoms in the edge-sharing octahedral SBU (3.05 Å) surpasses the equivalent 

distance in the LM9b (2.96 Å). The LM9b presents fewer octahedral SBU, while 

offering a greater number of square base pyramidal and trigonal bipyramidal SBU, 

implying a lower average coordination number and a reduced symmetry: C1 point 

group. Thus, due to its lower atomic coordination number and decreased 

symmetry, the 2nd LM is less stable than the GM. The LM9c, which has C1 

symmetry, despite having an equivalent number of octahedral SBU and fewer 5-

fold coordinated SBU alongside a greater quantity of tetrahedral SBU, maintains 

a similar average coordination number for the Al atom. However, clusters tend to 

favour consistency in atomic coordination numbers, even if the average 

coordination number of aluminium atoms remains constant. 

As shown in Figure 19, the GM9 structure has an octahedral layer as the 

middle layer of the configuration. A total of five octahedral SBUs are layered in 

the middle of the structure, and they are connected to each other through edge-

sharing, with one corner-sharing connection. From the corner-sharing octahedral, 

the third octahedral's F atoms are fully coordinated without any undercoordinated 

F atom terminations. Extending from the octahedral SBU layer, each of the top 

and bottom layers has corner-sharing tetrahedral and trigonal bipyramidal SBUs. 

These SBUs are arranged in a slightly off-staggered manner between the top and 

bottom layers. Compared to LM9b and LM9c, the GM9 has a higher average 

coordination number of aluminium atoms in the cluster (5.33) with higher 

symmetry (C2 point group), while LM9b and LM9c have the same coordination 

number of 5.11 and belong to the C1 point group. 
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Figure 20. (AlF3)n (n = 10, 11) PBEsol optimised LM: dark (light) sphere 

represents aluminium (fluorine) atoms; the dashed line connects the same atom in 

different angles of view of the same configuration. upper label: from the left, 

atomic size, ranking in IP energy, and ranking in PBEsol energy. SBU component 

that consists of the configuration; mid-label: on the left-hand side from the divider 

number of corner-sharing, number of edge-sharing, face sharing, respectively. The 

right-hand side represents the number of F atoms that bonded with single Al atoms, 

three Al atoms, and four Al atoms, respectively. bottom label: PBEsol (IP) energy 

difference between the LM and the GM of the cluster size, n. 

 

The LM9b and LM9c has the same number of the undercoordinated F 

terminations. The LM9b has a smaller number of octahedral SBU and tetrahedral 

SBU, but compensate that with more five coordinated SBU, such as square base 

pyramidal and trigonal bipyramidal SBU. The LM9c has a greater number of 

corner sharing which is relatively more favourable than edge sharing connectivity 

between the SBUs, but the LM9c has less densely packed structure as it has longer 

end-to-end interatomic distance (10.28 Å) compared to the LM9b (9.44 Å). Hence, 

as the structure is more stable the dipole moment is lower than the higher energy 

ranking (higher in energy); 2.3233, 3.6302, and 4.8295 Debye in PBEsol rank. 

The LM9b originally from the 37th ranked IP LM after PBEsol refinement.  

A point of interest lies with n = 10, where the lower-energy structures 

demonstrate greater dipole moments. Specifically, the dipole moments for GM10 
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and the local minima LM10 and LM10c are 4.910 , 3.8502 , and 0.2814 Debye, 

respectively. 

The analysis of the (AlF3)10 clusters for n = 10 reveals that the most stable 

structure, GM10, possesses the highest dipole moment of 4.910 Debye. This 

suggests that the internal charge separation within the cluster contributes 

significantly to its stability. The elevated dipole moment indicates a pronounced 

separation of positive and negative charges, leading to stronger internal 

electrostatic attractions. These interactions lower the total energy of the system, 

enhancing stability. Conversely, LM10c, with a much lower dipole moment of 

0.2814 Debye, lacks this level of internal charge separation and is consequently 

less stable. This trend underscores the importance of electron distribution and 

electrostatic interactions in determining the stability of (AlF3)10 clusters. 

The inverse trend of the dipole moments with respect to the stability of the 

structures is intriguing because, generally, a highly stable structure has higher 

symmetry and, consequently, a lower dipole moment. However, the GM10 

structure is formed with the most corner-sharing connectivity between the SBUs 

compared to the less stable configurations, which indicates less steric hindrance 

or repulsion between the atoms. Thus, GM10 compensates for the loss of energy 

associated with its high dipole moment and lower symmetry by having less 

sterically hindered atomic positions, resulting in greater overall stability. 

Each of the presented LM maintains C1 symmetricity. The GM10, exclusively 

consisting of corner-sharing SBUs, is the second smallest GM with corner-sharing 

octahedral SBU since GM6. It represents the smallest cluster size where all corner 

fluorine atoms in an octahedral SBUs are doubly coordinated, signifying the 

absence of undercoordinated fluorine atom terminations. 

In addition to the fully coordinated octahedral SBU, there are two other 

octahedral SBUs, a trigonal bipyramidal SBU, two square-based pyramidal SBUs, 

and two tetrahedral SBUs present in the GM. The LM10b, by comparison, 

possesses one fewer octahedral SBU and lacks any tetrahedral SBUs. It 

compensates for these absences with four additional 5-fold coordinated 

aluminium-centred SBUs. Intriguingly, the LM10b presents a shorter end-to-end 



  95 

interatomic distance (10.03 Å) than the GM (10.17 Å). Despite the LM10b 

exhibiting a lower dipole moment and a denser structure, it remains energetically 

less preferable than the GM10. This reduced favourability results from the steric 

hindrance induced by edge-sharing SBUs and the decreased interatomic distances 

between neighbouring atoms. 

From a structural motif standpoint, the LM10c contains one (and two) more 

octahedral SBU(s) than the GM10 (and LM10b), which are edge-sharing. 

Furthermore, one of the fluorine atoms in the LM10c is over coordinated with 

three nearest aluminium atoms. In essence, the LM10b, relative to the GM, forfeits 

any tetrahedral SBUs to accommodate more 5-fold coordinated aluminium-

centred SBUs. In contrast, the LM10c hosts fewer 5-fold coordinated aluminium-

centred SBUs than the LM10b, but maintains the presence of tetrahedral SBUs 

and exhibits an increased number of octahedral SBUs. 

The IP-LM11k, which sits 0.33 eV above the IP-GM, becomes the GM within 

the PBEsol PES. This cluster size is the only the cluster size within the range of n 

= 1 to 11 where the IP’s GM did not conserve as the DFT’s GM after the 

refinement. After optimization, the IP-GM is demoted to the LM11b, while the 

IP-LM11k ascends to the position of the PBEsol GM1. 

The proposed GM11 and LM11b both adopt configurations consistent with 

the C1 point group. The GM11 is composed of five octahedral SBUs, where all 

fluorine atoms in three of the octahedral display double coordination. Two of the 

octahedral SBUs have edge sharing interactions with either a square based 

pyramidal or a trigonal bipyramidal structure. The remaining three octahedral 

SBUs are positioned in the middle layer of the structure from the view (figure 20) 

and they are connected through edge-sharing. 

Contrastingly, the LM11b consists of four octahedral SBUs, with only a 

single instance of edge sharing, where two of the octahedra are linked. We 

calculated the principal moments of inertia (PMI) of these structures and from the 

result show that the LM11b appearing more spherical, additional metrics suggest 

the GM is more stable. 
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By examining end-to-end interatomic distances and the PMI, it's evident that 

the GM11 structure is more densely packed compared to the LM11b. The PMI 

findings highlight that the GM is more elongated, with its extension along the 

interatomic distance shorter than that in the LM11b. Therefore, despite the 

seeming sphericity of the LM11b, it's the GM11 that presents a greater degree of 

stability. 

 

 
Figure 21. The ring configurations for each of the cluster sizes from n = 4 to 9. 

The label above the figure indicates the energy ranking in PBEsol PES. 

 

Throughout the range of cluster sizes, we observed ring configurations 

exclusively comprising edge-shared square-based pyramidal SBUs in clusters of 

n = 4, 5, and 6. To extend this observation to other cluster sizes, we generated 

hypothetical ring configurations, shown in figure 21, using a Python script and 

then optimised them using PBEsol. The resulting ring configurations remained 

stable during optimisation, though they ranked high or were less stable. For n = 4 

and 5, the small cluster sizes ensure that electron densities are evenly distributed, 

making them potential GM. Also, the small ring structures would provide the 
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enough steric hindrance to sustain the ring configurations stably.  However, as the 

ring size increases, the middle hole becomes larger, making these configurations 

more prone to collapse into other LM due to reduced strain resistance against small 

perturbations, which would locate in the relatively more narrow LM basin. 

 

3.3.5. Top-Down Approach - Bulk Cut Clusters 

In our study, it is noteworthy that the GM6 structures exhibit partial structural 

features reminiscent of bulk AlF3 phases: corner shared octahedral. However, the 

GM6 cluster is not classified as nanocrystals5,114. In order to further explore this, 

we employed a top-down methodology, wherein α-AlF3 was sectioned. To ensure 

the stoichiometry of the system was maintained at a 1:3 ratio, surface atoms were 

selectively removed which was used in previous study instead of the method that 

we proposed in the methodology chapter 3.3.5. and the bulk cut structure is shown 

in figure 22 (A, B)115. 

 

Figure 22. Ball-and-stick representations of pseudo-cubic (AlF3)n nanocrystals cut 

from the bulk phase before (first) and after relaxation to the PBEsol LM (middle) 

and IP LM (last column) for n = 27 and 64 and where large blue and small grey 

spheres represent Al and F atoms, respectively. 

(A)

(B)

(A’)

(B’) (B’’)

(A’)
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Figure 22 presents the structural evolution of bulk-cut configurations for n = 

27 and n = 64. Panels A' and B' display the structures optimized using DFT, while 

panels A'' and B'' showcase the structures relaxed through IP. Upon relaxation, 

both DFT and IP methods result in disordered surface morphologies. However, 

the IP-optimized structures exhibit more significant dislocations in atomic 

positions compared to their DFT counterparts. In the relaxed states, fluorine atoms 

on the surface transition to bridging positions, establishing connections between 

adjacent aluminium atoms. Furthermore, the DFT-optimized structures exhibit 

smoothing at the corners and edges, which is indicative of their lower energetic 

favourability. The IP-optimized structures also show similar smoothing effects but 

to a more pronounced extent. Thus, The (A’’) IP optimised n = 27 bulk cut become 

rather more spherical structure than the cubic structure. The (B’’) IP optimised n 

= 64 does not keep the edges and corners as much as the (B’) DFT optimised 

structure, but core keeps the octahedral corner sharing with more pronounced 

tilting in octahedral. 

For n = 27 only one octahedral SBU is remained as the core, and the angle 

between the octahedral SBU vicinity (Al-F-Al) in (A’’) IP optimised structures 

are 142.5°, 138.2°, and 141.2° which retain close to the angle in the α-AlF3 148.6°. 

For the (A’) PBEsol optimised structure show rather bigger angle than the α-AlF3, 

160.0°, 152.7°, and 149.0°. On the other hand, for the (B’’) IP optimised n = 64 

has smaller angle, 129.1°, while the (B’) PBEsol optimised structure show 151.3° 

which is close to the α-AlF3. As n = 27 and n = 64 retain the bulk structure motif 

which are nanocrystal, thus we presume the cluster size between n. 
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Figure 23. A comparison of the structures between the IP and DFT calculated bulk 

cut n = 27, and 64 nanoclusters, and the observed α-AlF3. (σ = 0.1). 

 

The radial distribution function (RDF) for the experimentally observed α-

AlF3 is compared with the IP (orange) and DFT (blue) optimized structures for n 

= 27 (dashed lines) and n = 64 (solid lines) nanoclusters. The black solid line 

delineates the α-AlF3 RDF, where the first to third peaks correspond to Al-F and 

F-F interatomic spacings. Specifically, the second and third peaks of the black line 

indicate the F-F distances within the central horizontal plane and between the two 

F vertices along the vertical axis of the octahedral SBU, respectively. Notably, the 

n = 27 nanocluster optimized via both IP and DFT exhibits a higher degree of 

resemblance to each other than the larger n = 64 cluster optimized in the same 

manner. This close congruence in RDFs between the smaller IP and DFT 

optimized clusters suggests that IP is well-suited for describing these nanoclusters. 

The reduced likelihood of encountering an Al-F distance around 1.9 Å can be 

attributed to surface termination effects, leading to SBUs with fewer coordination 

numbers compared to their octahedral counterparts. Conversely, the IP-optimized 

n = 64 cluster shows a similar probability of Al-F distances as in α-AlF3. The 

second F-F peak for IP-optimized n = 64 also closely mirrors that of α-AlF3. It's 
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worth noting that the second peaks for both n = 24 and 64 clusters coincide with 

the Al-Al peaks originating from relaxed surface layers. 

As anticipated, the surface layers of the SBUs undergo relaxation, altering 

the edges and corners to minimize unfavourable energies, while preserving the 

octahedral SBU core. Although IP strongly suggests that the n = 64 cluster retains 

its octahedral SBUs, akin to a nanocrystal, both the DFT-optimized n = 64 and the 

IP/DFT-optimized n = 27 clusters also maintain the structural motifs found in the 

bulk material. Therefore, we expect the first true nanocrystal to be smaller than n 

= 27. 

 

3.3.6. First and Second Order Energy, and Dipole 

Moment 

Several approaches exist to investigate the structural stability across varying 

nanocluster sizes. We already have analysed the structure stability in the context 

of the structural motifs or secondary binding unit in the previous chapter. In this 

study, we employ the concepts of first and second order energy to evaluate and 

contrast the GM associated with each cluster size. The principles of these energy 

orders are as follows: 

∆𝐸(8B	 = 𝐸(𝑛) − 𝐸(𝑛 − 1) − 𝐸(𝑛 = 1), Eqn 46 

∆𝐸)45 = 𝐸(𝑛) − 1/2	 × "𝐸(𝑛 + 1) + 𝐸(𝑛 − 1)$, Eqn 47 

The first-order energy, as described by Eqn 48, denotes the energetic 

differentiation between a given cluster and its one-formula-unit smaller precursor. 

This is derived by subtracting the total energy of a single formula unit and the GM 

of the smallest cluster size from the total energy of the cluster of interest. This 

energy differential symbolizes the energy change accompanying the 

transformation from a cluster of size (n – 1) to size n, when the (n – 1) cluster is 

encapsulated within the energy basin of the GM1. 
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In this context, numerous factors could potentially influence the true 

trajectory of the cluster's growth. However, the first-order energy primarily 

focuses on the cluster's potential energy. As such, a larger magnitude in the first-

order energy signifies the easier formation of the cluster from its immediate 

smaller counterpart, with higher potential energy indicating greater stability. 

The concept of second-order energy (Eqn 48) mirrors that of the first-order 

energy, denoting the difference in energy between a cluster and its immediate 

neighbouring sizes, both larger and smaller. A more negative second-order energy 

implies greater stability of the structure in comparison to its neighbouring cluster 

sizes. From the previous studies, there have been noticeable correlations between 

peaks in second-order energy and mass spectra88. These peaks indicate points of 

stability within the structural progression of the nanocluster, underscoring the 

importance of both first and second-order energies in the evaluation of nanocluster 

stability. 

 

Figure 24. Upper panel: first (left side y-axis, blue solid line) and second (right 

side y-axis orange solid line) order energy of (AlF3)n (n = 1 - 11) GM. Bottom 

panel: log scaled dipole moment of the GM for each cluster size. 
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𝐸Q
	(4) = 𝑉(𝑛) − 𝑛𝑉(1),	 Eqn 48 

Figure 24 is constructed using the first and second order energies of the GM 

across a range of cluster sizes (n = 1 – 11). Each cluster is depicted as a space 

group and polyhedral model alongside a complementary ball-and-stick 

representation. Notably, n = 2 demonstrates a relative higher stability in 

comparison to n = 3, as evidenced by its larger first and second order energy 

magnitudes, and negative values, respectively. 

The SBUs of both clusters are connected through edge-sharing interactions, 

with the only structural difference lying in the placement of a formula unit between 

the tetrahedral SBUs of GM2 which is GM3. This placement gives rise to an 

additional square-based pyramidal structure. The GM2 cluster exhibits higher 

symmetry, belonging to the D2h space group, compared to the GM3 cluster, which 

is part of the C2v space group. In general, structures with higher symmetry are 

considered more stable, thus explaining the superior stability of GM2. Consistent 

with this, the dipole moment graph in the lower panel of Figure 24 reveals that the 

more symmetrical structure (n = 2) displays a lower dipole moment. 

The investigation of structural stability unveils that the nanocluster with a size 

of GM4 exhibits a comparatively higher level of stability when compared to 

nanoclusters with sizes GM3 and GM5. This enhanced stability in the GM4 

nanocluster arises from its inherent property of possessing a more symmetric 

structure (D2d) in contrast to the neighbouring cluster sizes, which adopt C2V and 

Cs symmetries, respectively. The greater symmetry in the GM4 nanocluster 

contributes to its increased stability, thereby rendering it more favourable 

energetically. 

Furthermore, this trend of relative stability is further substantiated by the 

observation of a lower dipole moment in the GM4 cluster in comparison to the 

dipole moments of the adjacent sizes. The coherent dipole moment supports the 

notion that the GM4 nanocluster possesses a more energetically stable 

configuration, thereby bolstering its significance in the context of the study. 
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The analysis of these plots reveals that the GM4 cluster exhibits a higher 

magnitude of first order energy compared to the GM2 cluster. However, in terms 

of second order energy, the GM4 cluster displays a relatively lower magnitude 

compared to the GM2 cluster. The observed discrepancy in the trends of first and 

second order energy for the GM2 and GM4 nanoclusters carries important 

implications for their likelihood of occurrence in nanocluster production processes, 

such as supersonic expansion. The results suggest that the GM4 clusters are more 

likely to be present in instances of nanocluster production, while the GM2 clusters 

may persist for longer periods in the GM1 basin before eventually growing to 

GM3 and subsequently to the GM4 size. 

In contrast, the nanoclusters with a size of GM5 display a distinct structural 

feature, featuring more distorted SBUs with edge sharing in order to reduce steric 

hindrance. Thus, the GM5 clusters exhibit reduced symmetry (Cs) and a larger 

dipole moment, rendering them relatively less energetically favourable compared 

to the GM4 clusters in both energy schematics. 

Furthermore, when compared to the GM6 clusters, which adopt the Cs space 

group and feature corner sharing octahedral motifs akin to those present in AlF3 

bulk phases, the GM5 clusters remain less stable energetically. The GM6 cluster, 

in particular, stands out as a remarkable nanocluster size due to its substantial 

structural stability when compared to other cluster sizes, thus underscoring its 

potential for diverse applications.  

Although the geometry of the GM6 nanocluster demonstrates higher 

symmetry with a C2v space group in comparison to the GM5 nanocluster with a Cs 

space group, the former surprisingly exhibits a significantly higher dipole moment.  

Observations from the nanoclusters with GM6 reveal a gradual decrease in 

structural regularity, transitioning towards a more amorphous or random-like 

arrangement that resists easy explanation using SBUs. As the structure becomes 

increasingly amorphous, its symmetry diminishes, leading to higher dipole 

moments, as anticipated. Notably, the GM6 nanocluster features a bulk-like 

structural motif with greater symmetry (C2v) compared to GM7, rendering the 

latter less stable. This is evident from the significantly lower magnitude of first 
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order energy and positive second order energy observed in the GM7 cluster, 

implying that GM6 is more likely to remain stable in the GM1 basin, rather than 

transforming into GM7. Moreover, the GM6 nanocluster demonstrates enhanced 

formability compared to any cluster between GM1 and GM11. 

The case of GM8 presents an interesting scenario where the first and second 

order energy trends exhibit an opposite pattern as we move from GM7 to GM8. 

The GM8 structure adopts a relatively two-dimensional configuration, resembling 

the number '8' or two merged rings, each formed by five SBUs. The structural 

transition from three-dimensional (GM7) to two-dimensional (GM8) and back to 

three-dimensional (GM9) illustrates the complexity of symmetry changes within 

this range. Despite having higher symmetry (C2h) compared to GM9, n = 8 is 

relatively less stable due to its less densely packed structure. Consequently, GM8 

is not readily formed. Similarly, while GM7 exhibits higher symmetry than GM8, 

the latter features a lower dipole moment and higher symmetry, suggesting that 

the transformation from GM7 to GM8 may occur at a relatively slow rate 

compared to other clusters. 

Moving towards larger clusters, those from GM9 and beyond adopt denser 

packing and higher symmetry compared to GM10. Consequently, GM9 

demonstrates greater stability and is expected to be more frequently observed. The 

lower symmetry in GM10 renders it less stable than GM9. 

In summary, the structural symmetry plays a crucial role in determining the 

relative stability of nanoclusters, with denser atomic packing also influencing their 

stability. The GM structures with GM 2, 4, 6, and 9 are relatively more readily 

formed and likely to be observed in mass spectrometry experiments, both during 

regular observations and in cases where the structure persists in the GM1 basin 

over a period of time. 

 

3.3.7. Coordination Number 

In the study of nanocluster structures, especially those resembling amorphous 

systems, we often encounter random-like configurations where the connectivity of 
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SBUs lacks an apparent pattern to the naked eye. This complexity makes it 

challenging to determine meaningful coordination numbers for the atoms within 

these clusters. However, establishing accurate coordination numbers is crucial for 

understanding the stability and properties of nanocluster structures. Typically, 

nanoclusters energetically favor higher coordination numbers, but overestimating 

these values can lead to an exaggerated sense of structural stability. Conversely, 

underestimating coordination numbers can yield inaccurate insights into the 

system's behavior. 

To address this issue, we focus on determining the appropriate range of cutoff 

distances that capture precise coordination numbers, thereby providing a more 

sensible representation of the structural stabilities. The findings from this analysis 

are then applied to describe the polyhedral model with ball-and-stick 

representations or SBUs, offering valuable insights into the stability of nanocluster 

structures. 

We employ a Boltzmann-weighted approach to calculate the average 

coordination number, which accounts for the relative probabilities of each cluster 

configuration based on their energies. The average Boltzmann-weighted 

coordination number <Ncoord> is calculated using the following equation: 

< 𝑁7PP%5 >=
∑ F:77;<,!0

=∆?!
(@)!

∑ 0
=∆?!
(@)!

, 
Eqn 49 

where, Ncoord,i is the coordination number of the iii-th cluster. ΔEi = Ei − Emin is the 

energy difference between the energy of the i-th cluster (Ei) and the lowest energy 

cluster (Emin), kB is the Boltzmann constant, T is the absolute temperature in Kelvin. 

This equation effectively weights each cluster's coordination number by its 

Boltzmann factor, 𝑒
=∆?!
(@) , representing the relative probability of the cluster's 

occurrence at temperature T. The denominator ensures normalization by summing 

over all Boltzmann factors, resulting in an average coordination number that 

accurately reflects the thermodynamic ensemble of cluster configurations. 
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Figure 25. Average of the Boltzmann weighted coordination number of Al atom 

of (AlF3)n (n = 2 – 6) nanoclusters which the coordination number is calculated 

using the cutoff distance: (1.7 Å, 2.2 Å, and 3.0 Å) as a function of the range of 

temperature in between 200 K and 4,200 K; the Boltzmann weighted coordination 

number of Al atom in the clusters calculated with 3.0 Å is in dashed lines with 

circle markers; with 2.2 Å is in solid lines with cross markers; with 1.7 Å is in 

dotted lines with triangle markers; the red to violet colours are correspond to the 

nanoclusters size. 

 

Figure 25 illustrates the average Boltzmann-weighted Al atom coordination 

number calculated using the three different cutoff distances (1.7 Å, 2.2 Å, and 3.0 

Å) as a function of temperature ranging from 200 K to 4200 K for (AlF3)ₙ (n = 2–

6) nanoclusters. The data reveal that the average coordination number calculated 

with a 1.7 Å cutoff distance exhibits an increasing trend with temperature, which 

is the reverse of the trends observed with the 2.2 Å and 3.0 Å cutoff distances. 

The 1.7 Å cutoff distance effectively captures undercoordinated F atoms 

relative to the Al atom center but fails to account for doubly coordinated F atoms 

that are at longer distances from the Al atoms. In higher-energy structures, which 

tend to adopt elongated or ellipsoidal shapes, the 1.7 Å cutoff is better suited to 

capturing these undercoordinated F atoms. As temperature increases, higher-
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energy configurations become more populated due to thermal excitation, leading 

to an increase in the average coordination number when using the 1.7 Å cutoff. 

Conversely, the average coordination numbers calculated using the 2.2 Å and 

3.0 Å cutoff distances exhibit a decreasing trend with increasing temperature. This 

behavior can be attributed to the elongated shapes of the higher-energy structures. 

Longer cutoff distances like 3.0 Å are more sensitive to changes in the structural 

geometry because they encompass a larger volume around each Al atom. As the 

structures elongate, the probability of finding neighboring F atoms within this 

cutoff decreases along the elongated axis, resulting in a reduced coordination 

number. The 2.2 Å cutoff distance, capturing primarily the nearest neighbor atoms, 

shows a gentler decrease because it is less affected by the elongated geometry and 

more accurately reflects the immediate coordination environment of the Al atoms. 

These observations highlight the importance of selecting an appropriate 

cutoff distance for calculating coordination numbers in nanoclusters. The choice 

of cutoff distance significantly impacts the calculated coordination numbers, 

particularly in structures with varying shapes. Based on our analysis, we believe 

that cutoff distances around 2.2 Å can capture accurate coordination numbers, 

providing a reliable measure for understanding structural stability through the 

investigation of SBUs, as discussed in Section 3.3.4. 

In summary, the Boltzmann-weighted average coordination number provides 

valuable insights into the behaviour of nanoclusters at different temperatures. By 

carefully selecting the cutoff distance, we obtain a more accurate representation 

of the structural stabilities and better understand how temperature influences the 

coordination environment within nanoclusters. This approach allows us to further 

refine the determination of accurate coordination numbers, enhancing our 

comprehension of the structural properties and stability of these systems. 
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Figure 26. (upper panel) Variation in the average coordination number of an Al 

atom in (AlF3)n (n = 1 ~ 11) clusters as a function of cluster size and two bulk 

phases (alpha, beta), considering a range of cutoff distances (d = 1.9 ~ 3.0 Å) from 

the Al atom. The configurations with the ball-and-stick model and the polyhedral 

model are prepared with the cutoff 3.0 Å (upper) and 2.2 Å (lower). The left-side 

upper polyhedral is Al centred and the right-side polyhedral model is F-centred. 

(lower panel) Shortest Al-Al distance (yellow) and F-F distance (green) in (GM)n 

(n = 1 ~ 13). The blue coloured region represents the cutoff distance that can 

capture an accurate Al atom centred coordination number. 

We have calculated average coordination of Al atom for the GM of each 

cluster sizes (n = 1 ~ 11) and alpha and beta phases of AlF3 using 𝑟76B = 1.9 ~ 3 Å 

as the cutoff distances. The range of rnop are chosen that the extremely shortest 

and the longest rnop  shows the misleading information (cannot take enough 

number of atoms which are in the nearest neighbours or take second-nearest 

neighbour atoms). 

In the upper section of figure 26, the mean coordination number of Al atoms 

within the GM of cluster sizes ranging from n = 1 to 11, including the two most 
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prominent AlF3 bulk phases, is delineated for cutoff distances spanning 1.8 Å to 

3.0 Å, incrementing at intervals of 0.1 Å. Within the range leading up to n = 5 

designated by a blue transparent region, periodic patterns in the SBUs are 

perceptible, corresponding to the structure elucidated previously. Conversely, 

commencing at n = 6 and extending to larger sizes (identified by a red transparent 

region), the GMs exhibit a reduction in symmetry and an absence of clear patterns 

in the structural motifs. Coloured solid lines represent the averages of Al atom 

coordination numbers over the specified range of cutoff distances. The range of 

2.2 Å to 2.4 Å encapsulates similar coordination numbers for Al atoms within the 

cluster sizes, with deviations from this range capturing accurate coordination 

numbers. The obtained coordination number can be used to construct SBUs of the 

structure that assist to understand the structural stability. In contrast to 

nanoclusters, the bulk phases maintain a periodic pattern characterized exclusively 

by corner sharing octahedral SBUs with 6-fold coordination number of Al atom.  

Lower panel of figure 26 shows the shortest interatomic distance of 

homoatomic species (cation-cation, anion-anion) in the (GM)n (n = 1 – 11) with 

yellow and green solid-lines, respectively. The blue region is the range of cutoff 

distances which used to calculate the coordination number of Al atom and able to 

construct SBUs in the cluster to explain the relative structural stability within the 

cluster size. The figure support that 2.2 Å – 2.4 Å range of cutoff distances can be 

used for the cluster sizes that we predicted (n = 1 – 11). It is posited that a cutoff 

distance encompassing 2.2 Å to 2.4 Å is judicious for representing the Al atom 

coordination number within nanoclusters. A convergence to a 6-fold coordination 

number with respect to Al atoms would be observed as the cluster size augments, 

in line with the range of cutoff distances. 

In this study, the complex nature of nanocluster structures, particularly 

(AlF3)n clusters, was explored with a focus on determining accurate coordination 

numbers for Al atoms. By analysing different cutoff distances ranging from 1.7 Å 

to 3.0 Å, the research identified the significant impact of these distances on the 

calculated coordination numbers, especially in elongated structures. The findings 

revealed that a cutoff distance of 2.2 Å to 2.4 Å provides an accurate 

representation of the Al atom coordination number within nanoclusters, capturing 
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the nearest neighbour atoms without including second-nearest neighbours. This 

range offers valuable insights into the structural stability of nanoclusters, allowing 

for the construction of SBUs that explain relative stability within various cluster 

sizes. The study emphasizes the importance of selecting an appropriate cutoff 

distance to understand the behaviour of nanoclusters at different temperatures and 

provides a foundation for further investigation into the structural properties of 

these complex systems. 

 

3.3.8. Lewis Acidity 

AlF3 is often noted in theoretical studies for possessing a high degree of Lewis 

acidity96,97. This characteristic, however, is notably absent in the α-AlF3 structure. 

The lack of observable Lewis acidity in α-AlF3 can be attributed to the full 

coverage of Al atom sites by F atoms, which negates the potential for the Al to act 

as a Lewis acid. 

Nanoclusters represent a unique system that offers unparalleled advantages, 

particularly in catalytic applications. The prominent feature of having the highest 

surface-to-volume ratio, where all constituent atoms are exposed to the external 

environment, allows nanoclusters to serve as highly effective catalysts. In the 

context of AlF3 nanoclusters, the ability to manipulate these structural 

characteristics offers new possibilities for uncovering the underlying mechanisms 

that govern Lewis acidity and how they can be harnessed. 

Here, the investigation will specifically focus on the Lewis acidity of (AlF3)ₙ 

nanoclusters, where n ranges from 1 to 11. This analysis aims to provide insights 

into the GM clusters of AlF3, considering various influencing factors. By 

accounting for both structural and chemical attributes, the study seeks to unravel 

the intricate connections that lead to the unique Lewis acidity properties of these 

clusters. In doing so, the work not only enhances our understanding of AlF3 

nanoclusters but also offers potential applications in the development of novel 

catalytic systems. 
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3.3.8.1. Structural Factor 

The Lewis acid catalytic reaction's focal point lies at the Al atom, which 

actively accepts electron pairs from Lewis bases. Emphasizing the introductory 

remarks, the structure of the nanoclusters plays a pivotal role in influencing the 

catalytic performance. To further examine these structural factors, analyses were 

carried out on both the electrostatic Hartree potential and the Solvent Accessible 

Surface Area (SASA) within the GM of the system, offering a comprehensive 

insight into the accessible sites for Lewis acid catalytic reactions. 

The calculated Hartree potential of (AlF3)n, where n ranges from 1 to 11, 

presents an intricate landscape. Utilizing the HSE06 hybrid function with 0.11 

bohr-1 for omega, the resulting visualization, Figure 27, displays the net positive 

and negative Hartree potential isosurface regions in yellow and cyan, respectively. 

A key observation is that the net positive Hartree potential surrounds 

undercoordinated F atom terminations, an aspect that prevents interactions with 

Lewis acidic sites due to repulsive electron interaction. 

The Hartree potential is a fundamental concept in electronic structure 

calculations, particularly within the framework of Density Functional Theory 

(DFT). It represents the classical electrostatic interaction experienced by each 

electron due to the presence of all other electrons in the system. Mathematically, 

the Hartree potential VH(r)V_H(r)VH(r) is derived from the electron density ρ(r) 

and is given by the integral: 

𝑉q(𝑟) = ∫ +2%A3
∣%'%A∣

 𝑑𝑟s, Eqn 50 

This potential accounts for the average repulsive force between electrons, 

effectively capturing the electron-electron Coulomb interactions without 

considering the quantum mechanical exchange and correlation effects, which are 

addressed separately by the exchange-correlation functional in DFT. In the context 

of our study on (AlF3)n clusters, the calculated Hartree potential provides a spatial 

map of regions with net positive and negative electrostatic potential, visualized as 

yellow and cyan isosurfaces in Figure 27. The visualization reveals that areas 

surrounding undercoordinated fluorine atom terminations exhibit net positive 
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Hartree potential. This indicates regions where electron density is lower, resulting 

in a repulsive electrostatic environment that inhibits these F atoms from 

interacting favorably with Lewis acidic sites. Such repulsive interactions are 

crucial for understanding the stability and reactivity of the clusters, as they 

influence how electron-rich and electron-deficient sites within the material 

interact. By analyzing the Hartree potential, we gain valuable insights into the 

distribution of electron density and the resulting electrostatic landscape, which are 

essential for predicting the chemical behavior and stability of the (AlF3)n 

nanoclusters. 

Contrarily, regions containing Al atoms or higher-coordinated (> 2-fold 

coordination number) F atoms exhibit a net negative Hartree potential, indicating 

readiness to react with Lewis bases. However, the presence of undercoordinated 

fluorine atom terminations nearby may counterbalance these negative potentials, 

creating a unique dynamic. Moreover, the isosurface model of the Hartree 

potential exhibits irregular patterns in clusters n = 6, 7, and 9 to 11, where 

uncapped negative potentials by undercoordinated F atoms seem more 

pronounced compared to the n ≤ 5 GM clusters. These anomalies align with the 

clusters' random-like structural properties, leading to distinct net dipole moments 

(figure 26). 
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Figure 27. (Upper Panel) Illustration of the Hartree potential for (AlF3)n GM (n = 

1 – 11) alongside the ball-and-stick model of the GM; areas marked with 

isosurfaces model in yellow represent positive Hartree potential, while cyan 

regions signify negative Hartree potential. (Lower Panel) Display of the SASA for 

both Al and F atoms within the global minima, plotted in accordance with the 

cluster size. 
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The evaluation of Solvent Accessible Surface Area116,117 (SASA) introduces 

another layer of complexity. The SASA was calculated using PyMOL118 which 

employs the Shrake-Rupley algorithm119 with a probe radius of 1.4 Å, the SASA 

within the (GM)n reveals convergence as the cluster size expands. Nonetheless, 

specific transitions, such as from n = 3 to 4, present a marked noise. This shift, 

characterized by a transformation from a rod-like to a ring-like shape, reduces the 

exposure of Al atoms, illustrating how subtle structural variations can significantly 

impact reactivity. 

On the other hand, the n = 8 cluster displays an "8" shape, leading to a 

considerable increase in the exposure of Al atoms relative to more densely packed 

configurations. This unique structural feature underscores the multifaceted 

relationship between form and function in AlF3 nanoclusters.  

In summary, the present analysis, focusing on both the Hartree potential and 

SASA within the geometric model, reveals a complex interplay between structural 

properties and Lewis acidity. Understanding these structural factors that influence 

the catalytic activity not only enhances our comprehension of catalytic behaviour 

but also aids in the development and optimization of novel catalytic systems. This 

has specific applications across various industrial and scientific domains. 

 

3.3.8.2. Chemical factor 

For each nanocluster size n = 1 to 11, the GM structures were assessed using 

the PBEsol0 hybrid functional within FHI-aims to determine the electron affinity, 

as well as the energies of the HOMO-LUMO gap and LUMO levels (as depicted 

in Figure 28). A greater positive value of electron affinity signifies that the cluster 

is more predisposed to accepting additional electrons, as defined in eqn 52: 

Electron	affinity	 = 	𝑉(𝑛)/t'( − 𝑉(𝑛)/tH, Eqn 51 

The GM1 cluster has a slightly negative electron affinity of -0.0224 eV, 

indicating a slight reluctance to accept an additional electron. The GM2 cluster 

has an electron affinity of 0.0000 eV, suggesting neutrality in electron acceptance. 
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As the cluster size increases from n = 3 to n = 5, there is a sequential increase in 

electron affinity, reaching a maximum of 1.0124 eV at n = 5. This indicates that 

larger clusters are generally more predisposed to accepting additional electrons, 

reflecting an enhanced Lewis acid character. 

 

 

Figure 28. Electron affinity (grey), LUMO energy level (blue), and HOMO-

LUMO gap (orange) as a function of (AlF3)n n = (1 - 11). 

The LUMO energy level also serves as an indicator of the readiness to accept 

an electron. A lower LUMO energy level signifies a greater readiness to occupy 

an electron from the environment, reflecting a more potent Lewis acid behavior. 

From the table, we see that the LUMO energies become more negative with 

increasing cluster size, particularly from n = 7 onward, correlating with the higher 

electron affinities observed in larger clusters. 

Our computational investigations into the electronic structure of (AlF3)n 

nanoclusters have yielded noteworthy findings, particularly concerning the 

HOMO-LUMO gap. Across the range of cluster sizes studied, from n = 1 to n = 

11, the HOMO-LUMO gaps were observed to fall within a relatively narrow range 

of 9 to 11 eV. This suggests a remarkable consistency in the electronic properties 

of these nanoclusters as they increase in size. 
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From figure 28, we observe that the HOMO-LUMO gap starts at 

approximately 10.09 eV for n = 1 and shows minor fluctuations with cluster size. 

Notably, the gap decreases to a minimum of about 9.02 eV at n = 11, with a 

significant drop at n = 7 and a spike at n = 8. 

These fluctuations in the HOMO-LUMO gap across different cluster sizes 

can be attributed to the evolving orbital compositions and interactions within the 

clusters. In the smallest cluster, (AlF3)1, the HOMO is primarily composed of non-

bonding fluorine 2p lone pair orbitals, which are relatively high in energy due to 

the high electronegativity of fluorine atoms. The LUMO is mainly derived from 

the empty aluminum 3s and 3p orbitals. The significant energy difference between 

the filled fluorine 2p orbitals and the empty aluminum orbitals results in a large 

HOMO-LUMO gap. 

As the cluster size increases to n = 2 and n = 3, the HOMO-LUMO gap 

slightly increases to approximately 10.56 eV and 10.40 eV, respectively. This 

slight increase can be attributed to the stabilization of the HOMO levels due to the 

formation of Al – F bonds in the dimer and trimer structures, which lowers the 

energy of the HOMO orbitals to around -12.06 eV. The LUMO levels for these 

clusters are at -1.51 eV and -1.66 eV, respectively. The HOMOs remain largely 

dominated by fluorine 2p non-bonding orbitals, but the increased bonding 

interactions slightly adjust their energies. 

For clusters with n = 4 to n = 7, there is a noticeable trend of decreasing 

HOMO-LUMO gaps, from 10.40 eV at n = 4 to 9.29 eV at n = 7. This decrease 

corresponds with the HOMO energy becoming less negative (from -12.06 eV at n 

= 4 to -11.55 eV at n = 7), while the LUMO energy becomes more negative (from 

-1.67 eV to -2.25 eV). The reduction in the HOMO-LUMO gap is due to increased 

orbital overlap and delocalization as the clusters become larger and more three-

dimensional configurations. 

In these clusters, the aluminum atoms exhibit higher coordination numbers, 

and the HOMO starts to include contributions from bridging fluorine atoms that 

link multiple aluminum centers. This results in increased delocalization of the 

HOMO over the cluster framework. Simultaneously, the LUMO incorporates 
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more antibonding character involving Al – F interactions, which lowers its energy. 

The enhanced overlap between the occupied and unoccupied orbitals reduces the 

energy difference, leading to a smaller HOMO-LUMO gap. 

At n = 8, an increase in the HOMO-LUMO gap to approximately 10.31 eV is 

calculated. This anomaly can be attributed to a structural change where the cluster 

adopts a more symmetrical and possibly more compact geometry, such as an 8-

shaped, double ring, configuration. This configuration causes a significantly lower 

structural density relative to the GM in adjacent cluster sizes. The reduced overlap 

between the HOMO and LUMO orbitals leads to less effective delocalization, 

consequently increasing the energy gap. 

For larger clusters with n = 9 to n = 11, the HOMO-LUMO gap decreases 

steadily from 9.51 eV to 9.02 eV. The HOMO energies continue to become less 

negative (e.g., -11.64 eV at n = 9 to -11.47 eV at n = 11), while the LUMO energies 

become more negative (from -2.13 eV to -2.45 eV). In these larger clusters, the 

increased size allows for more extensive delocalization of both the HOMO and 

LUMO orbitals across the cluster. 

The electron affinity trends can be correlated with changes in the clusters' 

electronic structures and geometries. As the clusters grow larger, the increased 

number of atoms and the more complex bonding environments allow for greater 

delocalization of electrons. This delocalization stabilizes the addition of an extra 

electron, thus increasing the electron affinity. In the smallest clusters (n = 1 and n 

= 2), the reluctance or neutrality towards accepting an electron can be attributed 

to the limited capacity to delocalize and stabilize an extra electron due to their 

simple geometries. 

At n = 5, the electron affinity reaches a maximum, indicating the most 

favorable conditions for electron acceptance among the studied clusters. This 

could be due to an optimal balance between cluster size and structural 

configuration that maximizes electron delocalization and stabilization. Beyond n 

= 5, the electron affinity slightly decreases for n = 6 and n = 7, though it remains 

relatively high compared to smaller clusters. This decrease may be due to 

structural factors that limit further delocalization or introduce strain in the clusters. 
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At n = 11, there is a notable increase in electron affinity to 1.5773 eV, the 

highest among all clusters studied. This suggests that very large clusters may again 

favor electron acceptance, possibly due to the presence of additional sites for 

electron localization or enhanced overall polarizability of the cluster. 

The relatively high values of the HOMO-LUMO gap across most sizes 

indicate that these nanoclusters are generally more stable and less reactive. A 

larger gap generally corresponds to reduced chemical reactivity, making these 

clusters suitable for applications requiring chemical stability. Additionally, the 

high HOMO-LUMO gap suggests that a substantial amount of energy would be 

needed to excite an electron from the HOMO to the LUMO, an important factor 

for optical and electronic applications. 

Understanding the nature of these orbitals and their interactions provides 

valuable insights into the electronic properties of (AlF3)n clusters. The enhanced 

orbital overlap and delocalization in larger clusters lower the energy difference 

between the HOMO and LUMO, resulting in smaller band gaps. These insights 

are crucial for potential applications where the electronic properties of aluminum 

fluoride clusters play a significant role, such as in catalysis or materials science. 

By examining both the numerical data and the orbital compositions, we 

conclude that the observed trends in electron affinity and HOMO-LUMO gaps are 

a direct consequence of changes in orbital overlap and bonding interactions within 

the clusters as they increase in size. This detailed understanding enhances the 

discussion about the trends in the band gap with orbital overlap, making it more 

meaningful and informative. 
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4. Aluminium Hydride 

4.1. Introduction 

In this chapter, we explore AlH3 nanoclusters. AlH3 is known for its potential 

in hydrogen storage and as a reducing agent in various chemical reactions¹¹⁸. Our 

research focuses on predicting the structures of AlH₃ nanoclusters using 

computational methods, similar to our study of AlF3. AlH3 has unique properties 

but is not well understood at the atomic level. 

Like AlF3, AlH3 has a 1:3 ratio of Al atoms to H atoms (Al 

 = 1:3) and possesses a complex PES that is challenging to model relative to 

well-known 1:1 stoichiometric systems (such as ZnO or NaCl). This complexity 

increases at the nanocluster scale, requiring intensive computational efforts to map 

the PES accurately. While the properties of bulk AlH3 are known, the study of 

AlH3 nanoclusters is relatively new, with surface phenomena significantly 

influencing their behaviour. 

To tackle these challenges, we use the two-step method, which combines 

classical and quantum mechanical computational techniques, as we applied in the 

AlF3 study. Our goal is to identify potential configurations of AlH3 nanoclusters 

that might exhibit optimal properties for potential applications once synthesised. 

Again, the stoichiometry of AlH3 adds complexity, similar to AlF3 discussed 

earlier. This increases the dimensionality of the PES, requiring more 

computational resources. However, our previous work on AlF3, which shares the 

same stoichiometry with AlH3, allows us to data mine these data and so 

significantly reduce computational efforts. In our study, we used the PES of AlF3 

and adjusted it to take into account the differences in the ionic polarizability and 

radii with AlH3. 

In our study, we developed interatomic potentials tailored for AlH3, taking 

into account the differences in bonding nature and atomic properties compared to 
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AlF3. This approach ensures that the computational models accurately reflect the 

physical and chemical behaviour of AlH3 nanoclusters. 

The findings are provided below in a comprehensive overview of the 

predicted structures of AlH3 nanoclusters, discussing their stability, electronic 

properties, and computational challenges. 

 

4.2. Interatomic Potential for Al-H Interactions 

4.2.1. Al-H Buckingham Potential 

The Al – H Buckingham potential is derived by modifying the Al – F potential 

parameters. The A parameter for the Al – H interaction is calculated using the ionic 

radii of the hydrogen and fluorine ions and ρ is the exponential decay length 

parameter from the Al – F interaction in the Buckingham potential. Given that the 

Pauling ionic radius113, Rx (x = atom species), of hydrogen ion is 1.4 Å and that of 

fluoride ion is 1.36 Å, the A parameter for the Al – H interaction can be expressed 

as120: 

𝐴$O'q = 𝐴$O'u × 𝑒𝑥 𝑝 \
KB'KC
+DE=C

^, Eqn 52 

This equation leverages the ratio of the ionic radii of hydrogen ion and 

fluoride ion to adjust the A parameter from the Al – F potential to suit the Al – H 

interaction. The C parameter for the Al – H interaction, however, is kept the same 

as that of the Al – F interaction, i.e. zero due to the very low polarisability of Al3+ 

ion, ensuring consistency in the repulsive component of the potential. 

 

4.2.2. H-H Buckingham Potential 

For the H – H interaction, the A parameter is similarly derived from the F – F 

A parameter, using the ratio of the ionic radii of hydrogen ion and fluoride ion. 

The equation for the A parameter of the H – H interaction is: 
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𝐴q'q = 𝐴u'u × 𝑒𝑥 𝑝  2 \
KB'KC
+C=C

^¡, 
Eqn 53 

The ρ parameter for the H-H interaction is fixed to that of the F-F interaction. 

This approach maintains the balance between the attractive and repulsive forces 

in the H-H interaction, as modelled in the F-F interaction. 

 

4.2.3. Calculation of C Parameter for H-H Interaction 

The determination of the C parameter for the H-H interaction in our model is 

a crucial step. This parameter is derived from the C6 terms 121 of both H-H and F-

F interactions. The C6 term for each interaction is computed using the static ionic 

polarizability, denoted as 𝛼8v07!08 , and the effective number of electrons 

contributing to the polarizability, represented by 𝑃8v07!08. Specifically, for the H 

ion, these values are 𝛼q:1.305 and 𝑃q:1.430, and for the F ion, the corresponding 

values are 1.192 and 4.455, respectively122. The C6 coefficient are formulated 

according to the Slater-Kirkwood approximation123 using the participation 

numbers reported by Pyper et al122: 

For the F-F and H-H interaction: 

𝐶*u'u =
i
j
"𝛼u

i/) × 𝑃u
(/)$, Eqn 54 

𝐶*q'q =
i
j
"𝛼q

i/) × 𝑃q
(/)$, Eqn 55 

Subsequently, the C parameter for the H-H interaction is calculated using the 

ratio of the C6 terms for F-F and H-H interactions, as shown in the equation: 

𝐶q'q =
,%B=B

,%C=C
× 𝐶u'u, Eqn 56 

The calculated C6 and C parameters for F-F and H-H interactions are shown 

below: 
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Table 5. The modified C6 coefficient and C parameter of H-H  

Interaction C6 / eV Å6 C / eV Å6 

H-H 0.5959 6.67 

F-F 1.4147 15.83 

 

4.2.4. Refinement of Cutoff Distances in the Four-Region 

Buckingham 

In the four-region Buckingham potential, which includes four distinct 

potential forms, three specific cut-off distances are needed to transition between 

these forms. For H – H interactions in our AlH3 nanocluster system, we 

recalibrated these cut-off distances using the ratio of the Pauling ionic radii of the 

H ion and the F ion. 

𝑑cut-offq'q = 𝑑cut-offu'u × KB
KC

, Eqn 57 

where 𝑑cut-offu'u  is the original cut-off distance for F – F interactions and RH  and RF 

represent the Pauling ionic radii of the hydrogen ion and fluoride ion, respectively. 

This ensures that the H – H cutoff distances are accurately scaled, reflecting the 

differences in ionic sizes. The table below compares the original F – F cutoff 

distances with the newly calculated H – H cutoff distances: 

Table 6. The modified cutoff for the H – H four-region Buckingham potential 

based on the F-F potential. 

Interaction Cut1 (Å) R_minimum (Å) Cut2 (Å) Cutoff (Å) 

H-H 2.06 2.87 3.12 12.0 

F-F 2.00 2.79 3.03 12.0 
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4.2.5. Spring Constant for H-H Interaction 

In our model, the spring constant for H is recalibrated based on that of F, 

considering their ionic polarizabilities. The recalculation formula is: 

𝐾y =
:B
:C
𝐾z, Eqn 58 

using the ionic polarizabilities of fluoride and hydrogen, respectively, and 𝐾u is 

the spring constant of F. This ensures that the H spring constant accurately reflects 

the polarizability differences between H and F ions. By adjusting parameters based 

on ionic radii, polarizability, and electron number, we fine-tune the interatomic 

potentials to reflect the distinct characteristics of Al-H and H-H interactions.  

Table 7. Modified spring constant of H based on F. 

Ion Spring Constant, k  (eV/Å2) 

H 18.97 

F 20.77 

 

4.3. Results and Discussions 

4.3.1. Global Optimisation – Data Mining 

To understand AlH3 nanoclusters, we used a global optimisation strategy 

based on data mining, focusing on structural data from AlF3 and LaF3 clusters in 

previous chapters. This approach helped us predict structural patterns in AlH3 

nanoclusters, considering known trends in AlF3 and the unique characteristics of 

AlH3. 

Using this data-centric method, we predict that the smallest AlH3 nanocluster 

will have only one configuration. Similar to the octahedral SBUs in AlF3, AlH3 

clusters might show a similar structural pattern. AlH3 bulk phases also only have 

octahedral corner sharing SBUs124. However, due to differences in ionic radii 

between fluoride (F-: 1.547 Å) and hydrogen (H-: 1.399 Å)125, AlH3 could 

resemble AlF3 clusters rather than LaF3, given the ionic radius difference of -0.148 
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Å for H ion compared to F ion. The smaller ionic size allows the cation to interact 

in limited spaces, providing a steric hindrance. 

Data mining as a global optimisation method helps predict probable 

configurations of AlH3 nanoclusters and reduces computational resource usage. 

However, relying solely on data mined from AlF3 clusters could affect accuracy 

despite the extensive AlF3 database. To verify the sufficiency of data mining, we 

conducted GA global optimisation using the adapted AlH3 potential from AlF3 

potentials for n = 3 and n = 6. 

 

4.3.2. AlH3 nanocluster structures 

 

Figure 29. Ball-and-stick models of the tentative lowest PBEsol energy (AlH3)n 

PBEsol LM for sizes n = 8 to 11. Blue (grey) spheres represent aluminium (hydride) 

atoms, and transparent blue polyhedral are AlHm SBUs, with m = 4 to 6. Each 

configuration is labelled “nX-Y-Z S v,e,f // g,h,i,j P (Q)”, where X is its size, Y is 

its IP rank, Z is its PBEsol rank, S is a character string describing the SBUs that 

the cluster is composed of, v (e, f) is the number of vertices (edges, faces) shared 

between the SBUs, g (h, i, j) is the number of F atoms with a coordination of 1 (2, 

3, 4), and P (Q) is the PBEsol (IP) energy difference between the cluster shown 

and the ground state cluster of the same size. The character string S is a 

concatenation of character strings with the format mU that indicate that are m 

n = 1 D3h

n2-1-1 2t D2h
0,1,0 // 4,0,0 n3-3-1 2t C2

0,1,0 // 4,0,0
0.000

n3-6-1 2t C2
0,1,0 // 4,0,0

0.069

n4-2-1 3t1O D3
0,3,0 // 6,0,0

0.000

n4-4-2 2t2S C2
0,3,0 // 6,0,0

0.231

n4-7-3 2t2S Ci
0,3,0 // 6,0,0

0.240

n4-11-4 2T1O1B Cs
2,2,0 // 4,0,0

0.252
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SBUs of type U, where U is the first letter of the name of SBU shape (tetragonal, 

square-base-pyramidal, bipyramidal, octahedral), and when in bold lowercase, 

lowercase, uppercase or bold uppercase the SBU contains at least three, two, one 

and zero singly coordinated F atoms, respectively. Coordination numbers (and 

SBUs) are calculated using an interatomic Al-H cutoff distance of 2.2 Å. 

 

In our global optimisation efforts for AlH3 nanoclusters, again, we 

concentrate on pinpointing the minimal nanocluster dimension that similar to the 

structural motif found in bulk AlH3. Our aim is to identify a cluster size at which 

the structural characteristics resemble those observed in the larger bulk material, 

nanocrystal. The AlH3 bulk phases are composed only with the octahedral SBUs 

interlinked through corner-sharing connections.  

The figure 29 shows the clusters for n = 1 and 2 have identical configuration 

as the AlH3 and which the size has only the configuration within the PES. The 

structures are trigonal planar, D3h for n = 1. The n = 2 AlH3 composed of the two 

tetrahedral connected with edge sharing, D2h. It was expected n = 2 to have only 

one configuration as the AlF3 which have bigger anion also has one configuration, 

which have more room for Al to allocate. Beginning at this point, clusters of 

(AlH3)n exhibiting GM or LM will be designated as GMn or LMn(rank), 

respectively, with the alphabet indicating their ranking order for LM. The atomic 

connectivity of the GM3 is identical to the GM3. The ionic polarizability of H-1 

(1.305) is bigger than the F-1 (1.192)126 which allows the GM3 to distort the central 

square-base pyramidal more than AlF3 to reduce the steric hindrances compare to 

the GM3. The distortion eliminates the mirror plane which the plane goes through 

the left/right end of F atoms and the central Al atom, thus (AlH3)3 GM has C2 

space group. 

The atomic connectivity of the LM3b is also identical to the AlH3: Composed 

of three tetragonal with corner-sharing to each other of SBU. LM3b has less 

average Al coordination number than the GM. As the LM3b has longer Al-Al 

distances (GM: 2.82 Å , and 2nd LM: 3.38 Å) with lower coordination number 

compared to the GM3 the size prefers to have higher coordination number rather 

than less steric hinderance.  
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The GM4 has the 2nd LM (AlF3)4 atomic connectivity with the square base 

pyramidal ring shape. The GM4 has D3 symmetry and three-pointed star shape 

composed of the no F termination octahedral in the centre and tetrahedral 

connected on the octahedral SBU through edges, the vertices are not shared with 

each tetrahedral. The (AlH3)4 GM has lower coordination number with 4.5 than 

the (AlF3)4 GM which has 5 coordination number from having three-pointed 

configuration. The GM4 compensate the lower coordination number than (AlF3)4 

by locating the H atom in the end of the configurations. The H atom has higher 

polarizability than F atom thus it can be pushed away further to form the 

octahedral SBU. This analogy can be applied for the LM4b and the LM4c. The 

atomic connectivity of the LM4b and LM4c are same, but only the difference is 

the direction of the tip of the square base pyramidal SBU. As H atom has the 

degree of polarizability which can distort the SBUs to allocate the tip of the 

pyramidal on the same directions. The distortion gives the unique bended structure. 

On the contrary, the LM4c has overall linear configurations which the pyramidal 

tips are pointing opposite directions including the tip of the tetrahedral.  

 

Figure 30. Ball-and-stick models of the tentative lowest PBEsol energy (AlH3)n 

PBEsol LM for sizes n = 8 to 11. Blue (grey) spheres represent aluminium (hydride) 

atoms, and transparent blue polyhedral are AlHm SBUs, with m = 4 to 6. Each 

configuration is labelled “nX-Y-Z S v,e,f // g,h,i,j P (Q)”, where X is its size, Y is 

its IP rank, Z is its PBEsol rank, S is a character string describing the SBUs that 

the cluster is composed of, v (e, f) is the number of vertices (edges, faces) shared 

between the SBUs, g (h, i, j) is the number of F atoms with a coordination of 1 (2, 

n5-17-1 2O3t Cs
4,2,0 // 7,0,0

0.000

n5-34-2 1O1S2t C1
0,4,0 // 7,0,0

0.015

n5-24-3 1O1B3T C1
6,1,0 // 7,0,0

0.062

n6-1-1 2O2S2T C1
6,0,0 // 11,0,0

0.00

n6-39-2 2O4T C2h
4,3,0 // 8,0,0

0.261

n6-2-3 2O2S4T C1
7,2,0 // 6,0,0

0.311
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3, 4), and P (Q) is the PBEsol (IP) energy difference between the cluster shown 

and the ground state cluster of the same size. The character string S is a 

concatenation of character strings with the format mU that indicate that are m 

SBUs of type U, where U is the first letter of the name of SBU shape (tetragonal, 

square-base-pyramidal, bipyramidal, octahedral), and when in bold lowercase, 

lowercase, uppercase or bold uppercase the SBU contains at least three, two, one 

and zero singly coordinated F atoms, respectively. Coordination numbers (and 

SBUs) are calculated using an interatomic Al-H cutoff distance of 2.2 Å. 

 

In our comprehensive examination of the (AlH3)5 cluster, we encountered 

significant deviations from the configurations typically observed in analogous 

AlF3, or other nanoclusters which are shown in figure 30. This unexpected 

divergence prompted a thorough re-evaluation of the stability and structural 

integrity of the (AlF3)5 derived data for the GM5 and the LM5b. Our initial 

analysis raised concerns regarding the potential instability of the GM5, attributed 

to the presence of tetrahedral SBUs with two undercoordinated F atoms in each 

tetrahedral SBU. In general, such configurations indicated the less densely packed 

configuration which gives the tendency towards potentially less stable structures. 

To rigorously test and validate our structural hypotheses, we resorted to employing 

the GA approach for the global optimisation of the (AlH3)5 PES. This involved 

adapting the IP from the (AlF3)5 model to suit the specificities of the (AlH3)5 

cluster. The GA was meticulously executed 3 times with a set population of 50 

individuals, spanning over 100 generations, in an effort to comprehensively map 

the structural landscape of the (AlH3)5 cluster. The outcomes of this extensive 

computational endeavour were illuminating, revealing a total of 106 unique 

(AlH3)5 structures. This was in clear contrast to the 233 structural variations 

previously identified within the (AlF3)5 dataset. The observed reduction in 

structural diversity can be primarily attributed to the intrinsic differences in the 

ionic radii of H and F ions, with the larger H ion imposing constraints on the 

possible spatial configurations, thereby limiting the structural variability in 

clusters incorporating H atom. 
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Further insights were gained through the subsequent refinement of these 

structures using the PBEsol functional. This phase of the analysis demonstrated 

that the configurations identified through the IP-GA process bore a striking 

resemblance to those predicted from the (AlF3)5 dataset. This remarkable 

correlation not only affirmed the accuracy and reliability of our predictive model 

but also reinforced the observed trends in structural stability and integrity across 

different nanoclusters. Intriguingly, both the configurations derived from the GA 

global optimisation and those originally datamined from the (AlF3)5 dataset 

underwent significant transformations during the optimisation process on the 

PBEsol (AlH3)5 PES, underscoring the unique and complex nature of clusters that 

incorporate H atom. 

A common occurrence in the domain of stable nanoclusters is the emergence 

of SBUs with a high coordination number as the cluster size grows, approaching 

the coordination number observed in bulk phases. This phenomenon is crucial for 

optimizing coordination numbers and reducing steric hindrance resulting from 

electrostatic repulsion. For example, this principle dictates that configurations 

dominated by square base pyramidal or octahedral SBUs are more commonly 

encountered for bigger size of AlF3 nanoclusters, as opposed to those featuring a 

tetrahedral SBUs as the main. Interestingly, the GM5 configuration notably lacks 

any 5-coordinated Al centre SBUs, only displaying tetrahedral and octahedral 

coordination exclusively. This configuration reflects the constraints imposed by 

the smaller ionic radius of the Al atom, which struggles to accommodate the 

relatively larger H atom as efficiently as it does the F atom, necessitating a shift 

towards more open and expansive structural configurations. This specific structure 

is also marked by the unusual inclusion of an 'arm' tetrahedral SBU to one side, an 

attribute rarely seen in GM structures. Despite the more open nature of this 

configuration compared to its (AlF3)5 counterpart, the enhanced polarizability of 

the H atom facilitates a more optimal distribution of electron density, thereby 

contributing to the overall stability of the configuration. 

The robustness of the LM5b also came under examination, notably for its 

extensive structure defined by the 'arm' SBUs it features. This structure unfolds 

into two distinct branches, each terminating in 'long arm' SBUs, and culminates in 
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three tetrahedral SBUs at the tips, each characterised by two undercoordinated F 

atoms. In contrast, the LM5c unveils a more intricate and multidimensional 

structural configuration, distinguished by a diminished count of tetrahedral SBUs, 

each hosting fewer undercoordinated fluorine atoms. Both the LM5b and LM5c 

configurations have lack of the high degree of symmetry, C1. From analysing the 

energy levels and arrangements of the LM5b and LM5c, it becomes evident that 

AlH3 experiences considerable spatial strain when situated in compact structures. 

Therefore, it favours more open or elongated configurations, akin to the LM5b, as 

opposed to the more contracted form of the LM5c. 

The GM6 has the same atomic connectivity of (AlF3)6 GM and is also, the 

smallest cluster size that has the corner-sharing octahedral SBUs with an average 

coordination number of Al atom of 5 with C2v point-group. Likewise, corner 

sharing octahedral SBU is the only type of SBU that can be found in the (AlH3)6 

bulk phase124. The GM6 composed of two octahedral SBUs which are corner 

shared with two tetrahedral SBUs and two square pyramidal SBUs which is same 

as the (AlF3)6. 

The angle of the two octahedral SBU (Al-F-Al) is 163.49°, which is 3.63° 

smaller than the (AlF3)6 GM, towards the window where no SBU surrounds the 

centre. The angle minimises the steric hindrance from the SBU surrounding belts; 

tetrahedral and square base pyramidal SBU. Each SBU has singly coordinated F 

atom termination. From the view shown in figure 30 two square-base pyramidal 

are in the behind of the octahedral SBUs. The square-base pyramidal are not only 

corner shared with both octahedral SBU and to each other. The LM6b has also 

two octahedral SBU, but they are edge-shared to each other. On the opposite side 

of the octahedral SBU the two square pyramidal SBUs are edge-sharing. The rest 

of the tetrahedral SBU are corner sharing with octahedral SBUs and one square 

base pyramidal SBU.  

The LM6b configuration is composed of the several octahedral SBUs and the 

configuration is similar to the GM5. The n = 6 only has an additional tetrahedral 

SBU ‘arm’ on the symmetric position of n = 5 ‘arm’. The octahedral SBUs are 

linked through shared edges and even with the tetrahedral SBUs on each, which 

coalesce into a continuous network. It is further augmented by the inclusion of an 
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adjacent tetrahedral SBU that resides within the same geometric plane, thus 

contributing to the multi-dimensional complexity of the structure. A noteworthy 

feature of this assembly is the absence of F atom terminations on these octahedral 

units. The two tetrahedral SBUs are corner shared with the octahedral SBUs with 

a F atom each. Each of these is connected through corner-sharing connectivity 

with the octahedral units, creating a lattice of interconnections that enhances the 

structural integrity of the cluster. The disposition of the two terminal F atoms in 

each of tetrahedral SBU is particularly striking, as they project in antipodal 

directions. This deliberate spatial configuration is likely a strategic adaptation 

evolved to minimise the electrostatic repulsion that would be more pronounced if 

the negatively charged F atoms were in closer proximity. 

The intrigue surrounding this configuration is deepened by the fact that the 

initial IP-LM5b placed this structure at the 39th position in terms of IP energy 

ranking after the AlF3 clusters are datamined using the modified IP. This 

placement suggests a tendency of the IP towards favouring configurations that are 

more tightly bound and exhibit a dense network of atomic coordination. Despite 

such a predictive preference, it is notable that the average coordination number of 

the Al atoms within this LM5b structure is actually lower than that of the GM, 

registering at a value of 4.83. 

The symmetry level within this LM5b structure is appreciably high, 

manifesting through the presence of a dihedral rotational axis (C2) along with a 

horizontal reflective plane (h), both of which are indicative of a harmonious and 

balanced structural composition. The structure's spatial arrangement is not as 

compact as that of the GM, which becomes evident upon observing the F atoms 

that maintain only single connections to their neighbouring atoms, hinting at a 

more dispersed atomic distribution. This less dense packing, while suggestive of 

fewer steric hindrances, also implies a different interplay of forces governing the 

cluster's stability compared to the tightly knit configuration of the GM. 

The LM5c structure exhibits multifaceted structure. This configuration is 

characterised by the presence of two octahedral SBUs that are conjoined by shared 

edges, with each octahedral SBU hosting an undercoordinated F atom. 

Complementing this octahedral framework are two tetrahedral SBUs that are 
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strategically positioned in opposition to each other, providing a balanced 

geometric form. These tetrahedral units are integrally connected to the octahedral 

SBUs, joining at the vertices to add to the cohesiveness of the structure. 

The complexity of the structure is further escalated by the inclusion of square-

base pyramidal SBUs. These units not only establish side-to-side connectivity 

with each other but also form vertex-to-vertex connections with the octahedral and 

tetrahedral units, weaving a tapestry of intricate bonds that contribute to the overall 

robustness of the structure. This elaborate network of connections ensures that, on 

average, each aluminium atom achieves a coordination number of five. This 

degree of connectivity parallels that observed in the GM structures for clusters of 

the same size and surpasses that witnessed in structures that are less stable. 

Despite the LM5c's constituents being more compactly arranged than those 

of the LM5b—as evidenced by the increased number of shared edges and 

interconnections—this tight packing paradoxically leads to augmented 

electrostatic repulsion which is the same case as the (AlF3)5 3rd LM. The atoms, 

being in closer quarters, repel each other with greater force due to their like 

charges. These repulsive forces act counter to the structural integrity, thereby 

reducing the thermodynamic stability of the cluster. While one might presume that 

closer atomic interactions would inherently confer greater stability due to the 

enhanced potential for bonding, in this scenario, the opposite is true. The close 

proximity of the atoms, although potentially beneficial for increasing coordination 

number, actually detracts from the cluster's stability by amplifying the repulsive 

electrostatic forces to a level that outweighs the benefits of increased interactions. 

Thus, while the structure may appear tightly knit and orderly, the resultant increase 

in repulsive forces means that the LM6c is less stable thermodynamically when 

compared to the GM6 and the LM6b, where the atoms have more space to mitigate 

such repulsions. 
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Figure 31. Ball and stick models of the tentative lowest PBEsol energy (AlH3)n 

PBEsol LM for sizes n = 5 and 6. Blue (grey) spheres represent aluminium 

(fluoride) atoms, and transparent blue polyhedral are AlHm SBUs, with m = 7 and 

8. Each configuration is labelled “nX-Y-Z S v,e,f // g,h,i,j P (Q)”, where X is its 

size, Y is its IP rank, Z is its PBEsol rank, S is a character string describing the 

SBUs that the cluster is composed of, v (e, f) is the number of vertices (edges, 

faces) shared between the SBUs, g (h, i, j) is the number of F atoms with a 

coordination of 1 (2, 3, 4), and P (Q) is the PBEsol (IP) energy difference between 

the cluster shown and the ground state cluster of the same size. The character string 

S is a concatenation of character strings with the format mU that indicate that are 

m SBUs of type U, where U is the first letter of the name of SBU shape (tetragonal, 

square-base-pyramidal, bipyramidal, octahedral), and when in bold lowercase, 

lowercase, uppercase or bold uppercase the SBU contains at least three, two, one 

and zero singly coordinated F atoms, respectively. Coordination numbers (and 

SBUs) are calculated using an interatomic Al-H cutoff distance of 2.2 Å. 

The GM configuration previously determined for (AlF3)7 underwent a 

structural transformation when reassessed, resulting in a different arrangement. 

This reconfigured (AlF3)7 GM shares structural similarities with that of the n = 5 

n7-11-1 2O2S1B1T1t Cs
12,1,0 // 7,0,0

0.000

n7-2-2 1O4S2T C2v
12,0,0 // 7,0,0
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n7-14-3 3O1S2T1t Cs
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n8-3-2 4O4T D2d
12,2,0 // 8,0,0

0.024
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cluster size, indicating a recurring motif. The GM7 exhibits the same underlying 

structure as the GM6 but with an additional feature: an 'arm' tetrahedral SBU 

extending from the central belt of tetrahedral SBUs. In both the n = 5 and n = 7 

clusters, there seems to be a consistent structural inclination towards retaining the 

octahedral SBUs, despite the necessity to integrate tetrahedral 'arm' SBUs 

accompanied by two undercoordinated F atoms. The n = 6 cluster retains the GM6 

structure, where the framework is defined by the cornerstone of the octahedral 

SBUs engaging in corner-sharing linkages. Observing the structural tendencies 

across the n = 5 – 7 cluster sizes, we can formulate a hypothesis that (AlH3)n 

clusters exhibit a strong preference for incorporating octahedral SBUs into their 

ground state configurations, even if it results in tetrahedral SBUs with 

terminations of two undercoordinated F atoms. Given this observed pattern, it is 

reasonable to assume that as we examine larger (AlH3)n clusters, we will probably 

encounter a higher frequency of GM configurations that include tetrahedral 'arm' 

SBUs. This structural preference suggests an inherent stability or favourable 

energy associated with reducing the relatively larger steric hindrance that caused 

from the larger ionic radius of H compared to F, which could be a driving factor 

in the formation of these 'arm' extensions as the cluster size increases. 

The GM7 features a single plane of symmetry extending from the peak of the 

square-base pyramidal structure through the bridging F atom, connecting two 

octahedral SBUs to the lower tetrahedral 'arm' SBU. The Al-H-Al bridging angle 

within the octahedral SBU is 2.46° wider compared to the GM6, measuring 

165.95°, as the tetrahedral 'arm' SBU enhances electrostatic repulsion at the 

second nearest neighbour position, contributing to the widening of the angle. 

Furthermore, the bridge angle in the (AlF3)6 octahedral formation exceeds that of 

the (AlH3)7 by 1.17°, signifying a distinct structural characteristic. 

In the LM7b cluster, the distance from the central F atom to the nearest Al 

atoms is notably shorter compared to the same in (AlF3)7. Specifically, the four 

surrounding Al atoms are positioned at a distance of 2.27 Å, which is 0.14 Å closer 

than in (AlF3)7. Moreover, the distance to the Al atom directly above the central F 

atom stands at 2.07 Å, making it 0.37 Å shorter than in the (AlF3)7 cluster. The 

angle between Al-H-Al around the central F atom, at 120.51 °, is slightly tighter 
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by 1.78 ° compared to that in (AlF3)7. This reduction in angle can be attributed to 

the interplay of electrostatic forces, where the repulsion between H atoms and the 

attraction within Al-H bonds play pivotal roles. Despite hydrogen having a larger 

ionic radius than fluorine, the electrostatic repulsion between F atoms in the 

(AlF3)7 cluster is stronger than between H atoms in (AlH3)7. This results in the F 

atoms being positioned further from the central F atom than the H atoms are from 

the central H atom in their respective clusters. This is because the strength of 

electrostatic repulsion is not determined solely by ionic size, but also by the 

electron density and electronegativity of the atoms involved. F atoms, being highly 

electronegative, attract more electron density towards themselves. Consequently, 

when two F atoms are in proximity, the electron clouds around them repel each 

other more vigorously than the less dense clouds around H atoms. This greater 

electron density around F leads to stronger repulsive forces, despite its smaller 

ionic size compared to hydrogen. 

The LM7b configuration arises from the GM6 structure, augmented with a 

tetrahedral 'arm' SBU. In this instance, the tetrahedral 'arm' SBU adjoins a square-

base pyramidal unit, which itself is connected via edge-sharing bonds on the side 

opposite to the open segment of the SBU ring. This ring envelops the corner-

sharing octahedral SBUs, thereby integrating the tetrahedral 'arm' SBU into the 

broader structural framework. 

The LM7c, which is an intricate part of the overall structure, is derived from 

the GM6 configuration, and it is further complexed by the addition of a tetrahedral 

'arm' SBU. This particular 'arm' SBU is integrally linked to a square-base 

pyramidal structure, establishing its connection through an edge-sharing 

mechanism that is positioned diametrically opposite to the void in the SBU ring. 

This ring of SBUs effectively encompasses the corner-sharing octahedral 'sticks', 

with the Al-H-Al bond angles within the octahedral corner sharing being notably 

less, specifically by 2.99° and 4.16° when juxtaposed with the GM7 and the 

(AlF3)6 GMs respectively. The deviation in the octahedral corner sharing 'stick' 

angle is a direct consequence of the augmented electrostatic repulsion emanating 

from the tetrahedral 'arm' SBU, which is located in a direction antithetical to the 

open side of the SBU ring. 
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The LM7c has the same symmetricity as the GM, Cs. Compared to the GM7 

and LM6b of (AlH3)6 is caused from the inefficient electron density distribution. 

The GM’s ‘arm’ is edge shared with tetrahedral SBU which the F atoms can more 

effectively share the Al’s electrons as they have one less F atom around from the 

nearest Al atoms where edge shared with the ‘arm’ compared to the LM7c. The 

SBU where the ‘arm’ edge shared with is corner sharing with the two octahedral 

SBUs. However, the SBU on LM7c where the ‘arm’ edge shared is not only corner 

shared with the octahedral SBUs but also one tetrahedral and square base 

pyramidal SBU. Thus, the less stableness of LM7c compared to the G7M is from 

the ‘arm’ F atoms insufficiently attract the electrons from Al atoms as they have 

to compete more F atoms which are in vicinity to attract electrons from Al atoms. 

The same analysis also can be applied when it compared with the LM7b, but also 

the LM7b symmetricity is higher than the LM7c which expands the analysis that 

the insufficient electron distribution on the LM7c penalise more having the high 

electrostatic repulsion from the short interatomic distance in LM7b. 

Within the GM8 configuration, there exists an 'arm' tetrahedral SBU that is 

also a part of the LM7b structure. This 'arm' SBU forms a corner-sharing bond 

with both the bottom square-based pyramidal structure and an octahedral SBU, 

the latter of which transitions into another octahedral SBU. Intriguingly, so far, 

the GM configurations of n = 5, n = 7, and n = 8  all include a tetrahedral 'arm' 

SBU, leading to the anticipation that such 'arm' SBUs may be a recurring feature 

in larger (AlH3)n clusters. This pattern is observed in the LM8b of (AlF3)7. The 

inclusion of the 'arm' SBU disrupts the symmetry previously seen in the LM7b, 

resulting in Al-H-Al bond angles within the central layer of the octahedral SBU 

altering to 116.53°, 107.99°, 118.55°, and 129.54° respectively, as measured in a 

counter clockwise direction starting from the RHS. 

The spatial arrangement dictates that the central F atom is at varying distances 

from the Al atoms of the four octahedral SBUs, specifically at 1.82 Å, 2.04 Å, 

2.17 Å, and 2.34 Å, again measured counter clockwise from the octahedral SBU 

that shares a corner with the 'arm' SBU. The proximity of the central F atom is 

closest to the octahedral SBU that it shares a corner with, due to this particular F 

atom being the second nearest neighbour to the Al atom within the 'arm' SBU, 
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allowing for a more efficient sharing of electrons over this shorter distance. 

Consequently, this central F atom is preferentially positioned to attract electrons 

from the 'arm' SBU. 

Furthermore, the Al-H-Al bond angle on the RHS is enlarged when compared 

to that behind the middle layer of octahedral SBUs, owing to the proximity of the 

corner-shared F atom on the lower SBU, which at a distance of 2.22 Å induces 

electrostatic repulsion that influences the H atom to move towards the centre. The 

angle on the rear side of the middle SBU layer is more acute as the F atom leans 

closer to one SBU, causing the adjacent Al atom of the octahedral SBUs to draw 

nearer, in an attempt to attract more electrons from the central F atom. Conversely, 

the LHS and the front side of the Al-H-Al bond exhibit a wider angle to 

compensate for the closer proximity between the central F atom and the Al atom 

at the rear. This compensatory widening results in the LHS and front Al atom 

being 0.07 Å and 0.3 Å further from the central F atom, respectively. 

LM8b has D2d symmetricity which the structure is has two group of layers of 

SBU and they are staggered. Each layer is consisting of two octahedral and two 

tetrahedral SBUs. The layer is identical to the GM5 without the ‘arm’ SBU on the 

LHS. The two layers are connected through corner sharing in between the 

octahedral and tetrahedral SBUs to each other. Thus, tetrahedral SBUs are bent 

towards the opponent layer’s octahedral. The two octahedral SBUs are edge 

shared to each other, but they are distorted which the corner shared F atoms are 

angled in towards the opponent layers’ tetrahedral with 79.95 ° (angle of corner 

shared F atom – Al atom – edge shared F atom). The LM8b has higher 

symmetricity than the GM, but as it has two more tetrahedral SBUs and one more 

of edge sharing connectivity between the octahedral SBUs which increase the 

electrostatic repulsion. Thus, the high symmetricity compensates less than the 

electrostatic repulsion which provides less thermodynamical stability compared to 

the GM8. 

Until now the top 3 LM for (AlH3)n n = 1 – 7 was found in less than 39th rank 

of (AlF3)n in IP. However, the LM8c was found from the 261st rank of (AlF3)8 

rank. The configuration has wide open feature which all the SBUs can be projected 

on a plane without overlapping the centre of the atomic positions. The 
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configuration has the two octahedral SBUs which has the edge sharing 

connectivity to each other and there is no undercoordinated F atoms. From the axis 

of the direction of the alignment of the octahedral SBU the configuration has the 

improper rotational symmetry. On each side there is a square base pyramidal 

which is corner shared the F atoms in the square base with the two octahedral 

SBUs and other two F atoms in the square base are corner shared with the two 

tetrahedral SBUs. The two tetrahedral SBUs which located on the side of the 

square base pyramidal SBU is also corner shared with the tip and the side of the 

octahedral SBUs. 

 

Figure 32. Ball and stick models of the tentative lowest PBEsol energy (AlH3)n 

PBEsol LM for sizes n = 5 and 6. Blue (grey) spheres represent aluminium 

(fluoride) atoms, and transparent blue polyhedral are AlHm SBUs, with m = 7 and 

8. Each configuration is labelled “nX-Y-Z S v,e,f // g,h,i,j P (Q)”, where X is its 

size, Y is its IP rank, Z is its PBEsol rank, S is a character string describing the 

SBUs that the cluster is composed of, v (e, f) is the number of vertices (edges, 

faces) shared between the SBUs, g (h, i, j) is the number of F atoms with a 

coordination of 1 (2, 3, 4), and P (Q) is the PBEsol (IP) energy difference between 
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the cluster shown and the ground state cluster of the same size. The character string 

S is a concatenation of character strings with the format mU that indicate that are 

m SBUs of type U, where U is the first letter of the name of SBU shape (tetragonal, 

square-base-pyramidal, bipyramidal, octahedral), and when in bold lowercase, 

lowercase, uppercase or bold uppercase the SBU contains at least three, two, one 

and zero singly coordinated F atoms, respectively. Coordination numbers (and 

SBUs) are calculated using an interatomic Al-H cutoff distance of 2.2 Å. 

 

The GM9 for AlH3 and AlF3 has the same atomic connectivity with C2 space 

group which the two-fold rotational axis is going through the F atom in the centre 

of the figure 32; the axis pierce through the image. The configuration forms the 

five octahedral SBU along the middle plane which one of the centre octahedral 

SBU’s F atoms are fully coordinated through edge sharing with the other 

octahedrals and corner sharing with the upper/bottom of the trigonal bipyramidal 

SBUs. The lateral two octahedral SBUs and the trigonal bipyramidal corner shared 

with the tetrahedral SBU. The octahedral SBUs are closely packed as the two F 

atoms located in the inwards of the octahedral SBUs has 3-fold coordination 

number. The 3-fold coordinated F atom is closer to the fully coordinated centre 

octahedral SBU with 1.78 Å than other two octahedral SBUs; 1.88 Å, 1.90 Å in 

(counter)clockwise. The centre octahedral SBU forms a triangle which the 

vertexes are the F atoms. The two corners of the 3-fold coordinated F atoms has 

3.19° larger angle as the double coordinate F atom is pushed out from the 

electrostatic repulsion from the 3-fold coordinated F atoms. 

The LM9b configuration emerges as an extension of the GM structures for n 

= 7 or n = 8 AlH3, where an additional tetrahedral SBU is edge-shared with the 

base of the n = 8 AlH3 GM's trigonal bipyramidal SBU. This particular 

arrangement doesn't fully replicate the n = 8 AlH3 GM structure but rather 

resembles its mirror-imaged counterpart. In the GM8 configuration, the central F 

atom's proximity to its nearest Al atom neighbour is noteworthy, especially in the 

context of the octahedrally coordinated 'arm' tetrahedral SBU, which is located at 

the shortest distance. This configuration indicates a competitive interaction where 

the F atoms vie to attract electrons from the adjacent Al atoms. A similar 
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phenomenon is observed in another octahedral coordination, where an 'arm' 

tetrahedral SBU is also edge shared. Notably, the distances between the central Al 

atom and the F atoms, which are in turn shared with the 'arm', are shorter compared 

to other interatomic distances. This suggests that the F atoms, having fewer 

sources of electron supply from neighbouring Al atoms, exhibit stronger electron-

drawing interactions. 

The LM9c is composed of four octahedral SBUs which the side view of the 

configuration shows that the octahedral SBUs are on a same plane, and they are 

edge shared to each other. The two octahedral SBUs in the middle shared three 

edges with others which forms the two of the 3-fold coordinated F atoms. The 3-

fold coordinated F atoms has sufficient electrons, thus the distance between the F 

atom to the nearest Al atoms, thus they have significantly longer F-Al interatomic 

distances: 1.82 Å to the Al atoms in the middle layer of octahedral SBUs and 2.03 

Å to the Al atom in the corner octahedral SBUs. The 0.21 Å longer distance to the 

Al atom in the corner octahedral SBU as the influence of the electrostatic repulsion 

from the four Al atoms in the octahedral and trigonal bipyramidal SBUs which 

pushes out the Al atom. The tetragonal SBU breaks the mirror plane symmetry 

which the plane goes through the middle from top to bottom. One of the tetragonal 

can swivel to have the mirror plane configuration, but which the configuration is 

in a higher energy as it suffers from the electrostatic repulsive forces.  

The GM10 has the mirror plane of the GM9 as the main configuration, but 

with a tetrahedral SBU ‘arm’ on the trigonal bipyramidal SBU of the GM9 which 

forms the octahedral SBU. The LM9b and LM9c as the higher the energy 

configuration structure tend to be less densely packed even with the edge sharing 

octahedral SBUs between each other. However, more than half of the SBU which 

compose the configuration is octahedral SBUs. Until the n = 10, the cluster does 

not have enough electrostatic field within the system, but we could observe that 

the structure started to form highly coordinated SBUs. Thus, with this trend in 

structural property we expect to find nanocrystal structures within a few bigger 

cluster sizes. 
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Figure 33. The HOMO-LUMO gap of (AlH3)n (n = 1 – 10) GM. 

 

Figure 33 illustrates the HOMO-LUMO gap of (AlH3)n (n = 1 – 10) GM 

clusters, calculated using PBEsol0 on clusters optimized with PBEsol. The 

HOMO-LUMO gap is a critical parameter in determining the electronic properties 

and stability of molecular clusters, with larger gaps typically indicating greater 

stability and lower reactivity. 

The data indicates that the HOMO-LUMO gap gradually increases from GM1 

to GM4, a trend that can be attributed to the high symmetry inherent in these 

smaller clusters. High symmetry in molecular clusters often leads to enhanced 

stability and larger HOMO-LUMO gaps. This is primarily due to the 

delocalization of molecular orbitals, which allows electrons to be spread more 

evenly across the entire structure, thereby minimizing regions of high electronic 

density that contribute to electronic repulsion. In highly symmetrical 

configurations, the uniform distribution of electron density reduces the likelihood 

of localized electron-electron interactions, resulting in a more stable electronic 

structure with a wider energy gap between HOMO and the LUMO. 

However, a notable deviation occurs at GM5, where the HOMO-LUMO gap 

experiences a sharp decrease of more than 1 eV. This significant reduction is likely 

due to a structural transition from highly symmetrical configurations to more 
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irregular, random-like arrangements as the cluster size increases. Such a transition 

disrupts the effective overlap of molecular orbitals, leading to increased electronic 

repulsion. In less symmetrical configurations, the delocalization of orbitals 

becomes less efficient, causing electrons to become more localized in specific 

regions. This localization enhances electron-electron interactions, which in turn 

lowers the energy required to excite an electron from the HOMO to the LUMO, 

thereby reducing the HOMO-LUMO gap. 

This transition at GM5 signifies a fundamental change in both the electronic 

structure and the stability of the clusters. The reduction in symmetry and the 

resulting increase in electronic repulsion suggest that the clusters are moving 

towards configurations where electronic interactions become more complex and 

less favorable for maintaining a large energy gap. Consequently, these larger 

clusters may exhibit different chemical reactivity and stability characteristics 

compared to their smaller, more symmetrical counterparts. The observed decrease 

in the HOMO-LUMO gap at GM5 highlights the delicate balance between 

structural symmetry and electronic properties, underscoring the importance of 

geometric arrangement in determining the electronic behavior of nanoclusters. 

Furthermore, this structural evolution reflects the inherent complexity that 

arises as clusters grow in size. While smaller clusters benefit from high symmetry 

and orbital delocalization, larger clusters may encounter geometric constraints that 

prevent the maintenance of such symmetry, leading to increased electronic 

repulsion and reduced stability. Understanding these trends is crucial for 

predicting the properties of nanoclusters and designing materials with desired 

electronic characteristics. Future studies could explore the precise geometric 

changes and their direct impact on orbital interactions to gain deeper insights into 

the relationship between cluster size, symmetry, and electronic structure. 

The HOMO-LUMO gap continues to decrease until GM7, after which it 

appears to level off at around 6 eV between GM8 and GM10. This leveling off 

suggests that the clusters have reached a new structural regime where the size and 

configuration variations have a reduced impact on the electronic properties. The 

stabilization at around 6 eV indicates that the larger clusters, despite their 
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increased size and potential for more complex configurations, achieve a balance 

that maintains a relatively consistent HOMO-LUMO gap. 

This pattern of variation in the HOMO-LUMO gap reflects the complex 

interplay between cluster size, symmetry, and electronic structure. The initial 

increase in the gap with cluster size, followed by a sharp decrease and eventual 

stabilization, highlights the importance of symmetry and structural configuration 

in determining the electronic properties of molecular clusters. Understanding these 

relationships is crucial for the design and application of nanomaterials with 

specific electronic properties. 
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5. Thiolated gold cluster, (Au)25(Cys)18 

5.1. Introduction 

The area involving thiol-capped gold nanoparticles, which includes both 

nanocrystals and nanoclusters, has seen growing interest within the nanoscience 

community in recent years127–133. Their significant importance in basic scientific 

research and various technological fields is undeniable. They are used in many 

areas such as catalysis, enhancing optical properties, medicinal chemistry, and 

developing advanced chemical sensors. When the size of these gold nanoparticles 

approaches the de Broglie wavelength134 of their conduction electrons, which is 

approximately 1 nm in diameter, a significant change occurs135–138. At this stage, 

there is a transition from the nearly continuous electronic bands observed in bulk 

gold or larger nanoparticles, typically exceeding 5 nm, to a spectrum of discrete 

energy levels133,138–140. As the size of these gold particles decreases below 3 nm, 

they begin to deviate from their bulk metallic electronic properties. This is evident 

from their loss of the ability to sustain plasmon resonance—a characteristic feature 

of larger gold nanocrystals ranging from 3 to 100 nm in size133. Moreover, the way 

atoms are arranged within these minuscule metallic nanoparticles, also referred to 

as clusters (similar to AlF3 and AlH3 systems considered in the previous chapters 

3 and 4), critically affects the relationship between their structural form and their 

resultant properties, which also exhibit dependence on the particle size141,142.  

Despite the significant strides achieved in the past ten years regarding the 

synthesis of thiol-protected gold clusters, the research community still faces 

challenges. These include the definitive identification of cluster size—that is, the 

precise number of gold atoms constituting a cluster—and elucidating the specific 

arrangements of atoms within these clusters143. X-ray crystallography stands as 

the gold standard for determining the exact size and atomic arrangement of 

clusters; however, growing single crystals suitable for such analysis has been 

exceptionally challenging. To date, the crystal structure of only one such gold-

thiolate cluster, specifically Au102(p-mercaptobenzoic acid)44, has been 

successfully elucidated. This cluster is characterised by a 49-atom decahedral core, 

which can also be considered as a pentagonal twinning of either a face-centred 
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cubic or a hexagonal close-packed core structure. Delving into the exploration of 

the distinctive structural, physical attributes of Au25 clusters, particularly those 

comprising several dozen atoms, remains a promising yet underexplored frontier 

in the field. 

 

5.2. Au25 cluster 

This chapter describes the computational strategies employed to predict the 

structure of the Au25 cluster, using the second nearest neighbour modified 

embedded atom method (2NN-MEAM46,48,57) interatomic potentials and the 

MCDQ method for global optimization, followed by refinement using the 

PBEsol72. 

To investigate the complex landscape of the Au25 cluster's potential energy 

surface, a robust and efficient global optimization method is indispensable. The 

MCDQ method does this by combining the random searching abilities of the 

Monte Carlo technique with the quick settling down of deterministic quenching. 

The Monte Carlo component of MCDQ allows for a stochastic search of the 

configuration space, providing the means to overcome LM barriers and explore a 

wider range of structural motifs. This is coupled with a MCDQ process, where the 

system is systematically cooled to attain a local minimum, ensuring the thorough 

investigation of the PES and increasing the likelihood of identifying the global 

minimum. 

Applying the 2NN-MEAM potential within the MCDQ framework allowed 

us to generate a vast array of potential Au25 cluster configurations. This 

comprehensive dataset not only provided an insight into the possible structural 

diversity of the cluster but also laid the groundwork for subsequent refinement 

stages. From this extensive pool, the top 1000 configurations, ranked according to 

their energies computed using the 2NN-MEAM potential, were selected for 

further analysis. This selection process ensured that the subsequent refinement 

stage focused on the most promising candidates, optimizing computational 

resources. 
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Intriguingly, the PBEsol-GGA refinement process revealed that the structure 

initially ranked 6th in energy according to the 2NN-MEAM potential emerged as 

the GM on the PBEsol PES. This finding highlights the critical importance of 

employing a multi-tiered optimization and refinement strategy. While the 2NN-

MEAM potential effectively narrows the search space by identifying a subset of 

promising configurations, the subsequent refinement with the PBEsol-GGA 

functional is essential for accurately determining the global minimum. 

Figure 34 shows a detailed bipartite plot that thoroughly traces the energy 

ranking evolution of Au25 LM on transition from the globally optimized 2NN-

MEAM dataset to the refined PBEsol dataset. This graphical representation 

presents the relationships between each LM across the two distinct energy 

landscapes, illustrating a one-to-one correspondence from the left to the right of 

the diagram. The spectrum of colours adopted, resembling a rainbow's progression, 

is deliberately chosen to convey the origin of each refined PBEsol LM's rank 

within the 2nn-MEAM framework. In this complex mapping, only the most stable, 

i.e., the lowest energy 2NN-MEAM LMs are linked to their PBEsol counterparts, 

with superfluous connections from higher-energy 2nn-MEAM LMs to the same 

PBEsol LM being systematically excluded. This selection ensures clarity in 

visualizing the ranking transitions, particularly emphasizing the energy refinement 

process's impact on the most stable LM, thereby characterising the stability 

hierarchy within the dataset. 

As the plot only shows the 1:1 matching of the PBEsol optimised structure 

from the lowest 2nn-MEAM LM possible, removed duplicates we anticipated to 

observe the clear rainbow gradation from the lower ranking to the higher ranking. 

However, the bipartite plot shows the tilted rainbow gradations which the blue-

tone colours are in left top triangle and the red-tone colours are in right bottom 

triangle. The colour trend indicates that the less stable PBEsol LM are found in 

the lower ranking of 2nn-MEAM LM. 
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Figure 34. Ranking transition of the 1000 most stable Au25 LM from the 2nn-

MEAM PES (left) to the PBEsol Functional PES (right): The bipartite plot 

illustrates the shift in energy rankings between the two surfaces. Each line 

connects the initial rank of a LM within the 2nn-MEAM PES to its subsequent 

rank in the PBEsol PES, employing a gradated rainbow colour scheme to visually 

trace the ranking transition for each motif. 

 

Figure 35 presents a more detailed scatter plot compared to 34 that elucidates 

the dynamic shifts in energy rankings for LM as they are refined from the initial 

2nn-MEAM PES to the PBEsol PES. This graph highlights only unique data 

points, curated to exclude overlapping instances, which is achieved in the same 

manner as in the last figure by associating each PBEsol LM exclusively with its 

lowest-ranked 2nn-MEAM counterpart, thereby eliminating redundancy and 

higher-energy parallels from the analysis. Such a careful selection process 

emphasizes the most stable configurations, with a lower ranking directly 

correlating to a LM possessing lower potential energy. The rank of '1' is designated 

for the GM, representing the peak of stability within this energy landscape. 
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Figure 35. The progression of energy rankings for Au25 LM as they transition from 

the 2nn-MEAM optimization to the refined PBEsol potential. Displayed in the 

inset, the plot covers the entire spectrum from the GM up to the 1000th rank, 

mapping each LM's relative stability shift. A point located at (1, y) shows the LM 

which is the 2nn-MEAM ground state to PBEsol, while a point at (x, 1) 

corresponds to a 2nn-MEAM LM that emerges as the new PBEsol LM. 

 

The zoomed-out plot of the main panel is in the smaller inset panel, which 

shows the LMs spanning from the 1st to the 1000th energy rankings. This wider 

perspective reveals the intrinsic variability of the dataset which means that the 

2nn-MEAM PES cannot describe the PBEsol PES accurately. Luckily, within the 

crucible of these top 1000 LMs, the LM that was originally at the 6th position in 

the 2nn-MEAM PES hierarchy ascends to become the GM in the PBEsol 

framework. However, the atomic connectivity is not retained after the refinement 

on PBEsol PES as shown in figure 36. Only the 5.2% of the 2nn-MEAM 

configurations retain their configuration after the PBEsol refinement which is seen 

by their NAUTY hash keys 89,94; as was introduced for AlF3 in the previous chapter 

to filter out the duplicated configurations. 

Ra
nk

 in
 P

BE
so

l

Rank in 2nn-MEAM



  148 

 

Figure 36. Atomic arrangement of the 6th ranked 2nn-MEAM local minimum (left) 

alongside the PBEsol global minimum (right). 

 

The challenges presented by the use of PBEsol PES for accurately describing 

the PES of the 2nn-MEAM have raised significant doubts concerning the 

reliability of the data in question from the global optimisation results. To address 

these uncertainties, a rigorous approach involving data mining was employed to 

extract the Au25 configuration directly from the well-documented structure of 

(SR)18(Au)25128. The LJ cluster144, comprising 25 atoms, was scrutinised for 

comparison purposes. The LJ clusters are scaled with the 1.0 degree to 3.0 degree 

in every 0.1 degree before the PBEsol refinement. 

At the outset, it was our belief that even if the ligands did not alter the 

connections between atoms in the Au25 cluster, they would at least contribute to a 

more expand structure. Nonetheless, when striving for a precise characterisation, 

and due to our inability to predict with certainty how the ligands affect the Au25 

cluster, we chose not to apply any scaling adjustments to the extracted Au25 from 

the (SR)18(Au)25. This meant that the cluster was neither expanded nor shrunk 

before we commenced the optimisation process using the PBEsol PES. 

Following the completion of the optimisation using the 2NN-MEAM 

approach with PBEsol PES, we took the resulting form of the Au25 cluster and 

conducted a thorough comparison with an extensive set of 1000 IP optimised low-

energy configurations. Despite the significant difference in energy rankings across 

the different PES, the atomic arrangements remained unchanged between the 2nn-

2nn-MEAM 6th rank PBEsol GM

Refinement
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MEAM and PBEsol optimised versions of the (SR)18(Au)25’s Au25. Interestingly, 

within this refined set of structures, the position of the optimised Au25 cluster was 

markedly different when comparing the 2nn-MEAM to the PBEsol PES, securing 

the 2nd and 908th places respectively. 

However, the Au25 from the (SR)18(Au)25 was not found from the MCDQ 

global optimisations even though with the extremely large dataset. There is a 

possibility that the Au25 LM within the (SR)18(Au)25 may reside in a double funnel 

or an extremely narrow PES, and perhaps locating the Au25 using the MCDQ 

method for global optimisation inherently presents challenges. The nature of pure 

metal clusters, such as Au25, is such that they can form a considerably larger 

number of LMs compared to clusters of ionic compounds containing the same 

number of atoms. Unlike ionic clusters, which require a specific atom to be 

consistently positioned between others (like a fluorine atom nestled between 

aluminium atoms), pure metal clusters are not bound by such repeating bonding 

patterns, and thus possess a higher degree of freedom. 

Therefore, global optimisation for pure metal clusters like Au25 necessitate a 

substantially larger number of sample points to scan the PES sufficiently, ensuring 

that the landscape is thoroughly probed for potential low-energy structures. 

Technically, the MCDQ method seems to be not suitable for the purpose for the 

size of cluster, but at the moment when the global optimisation was performed on 

KLMC using the 2NN-MEAM potential. However, the version of KLMC used for 

the study had a bug when the GA runs with 2NN-MEAM. Thus, the calculation 

let it run with MCDQ while I was focus on other projects. 

Despite both potential energy surfaces, 2NN-MEAM and PBEsol, 

maintaining the atomic connections of the Au25 extracted from (SR)18(Au)25, the 

outcome was unexpected with the optimised structures shown in figure 37. Our 

initial assumption was that the Au25 cluster would achieve a higher energy ranking 

in PBEsol, similar to its second place in the 2nn-MEAM rankings, owing to its 

high degree of symmetry. Yet, the GM found within the PBEsol framework was 

of the C1 point group, which exhibits no symmetry. Nonetheless, upon discovering 

even lower energy configurations through global optimisation, our concerns about 

the accuracy of the PES description by the 2nn-MEAM were alleviated.  
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Figure 37. The change in  the (SR)18(Au)25 structure on the removal of the (SR)18 

ligands highlighted by overlapping images of the cluster before (shown in solid 

gold colour) and after PBEsol optimisation (transparent green).  

 

Furthermore, we proceeded with the optimisation of a generic LJ25144,145 

cluster transformed by replacing its atoms with gold. Given that the original LJ25 

cluster was very compact, we embarked on optimising three versions of the cluster, 

each one expanded to different degrees. Indeed, the interatomic distances in the 

initial LJ25 cluster are around 1.1~1.2 Å, we expanded the clusters  1.5, 2.0, 2.5 

times from the centre of the geometry. The “1.5” and “2.0” structures have 

collapsed to different configurations from the starting LJ25 cluster structures 

which the configurations collapsed to have more expanded configurations as on 

expansion the atom-atom separations were still below those that would be defined 

from the vdW radius of gold atoms. The PBEsol optimised configurations of the 

“1.5, 2.0 2.5” expanded LJ25 clusters by are ranked 74th, 104th, 115th within the 

1000 global optimisation LM dataset, respectively. Except the 104th ranked LM, 

the rest of the expanded LJ25 were not found from the global optimisation. Figure 

38 shows that using the degree of expansion of around 2.5 retains the atomic 

configuration of the original LJ25 cluster on PBEsol optimisation. 
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Figure 38. Left: the original LJ25 cluster which the atoms are replaced to Au atoms; 

right: the optimised 2.5 times expanded LJ25 cluster (left) from the centre of the 

geometry. 

 

5.3. L-cysteine protected Au25 

5.3.1. Structural Properties 

The initial exploration of (SR)18(Au)25 involved attaching (SR)18 ligands onto 

the highly symmetrical Au25 cluster128. We tried to attach 18 L-cysteine (Cys, 

HSCH2CH(NH2)CO2H) ligands onto the PBEsol GM and 2nd LM. In the earlier 

research128, 18 of phenylethanethiol ligands (C6H5CH2CH2SH) were 

systematically added to the Au25 cluster because of its symmetry, even though 

these ligands have much larger branches. However, using the same method to 

attach ligands onto the PBEsol GM or 2nd LM was not possible because these 

clusters do not have symmetry as shown in figure 39. 
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Figure 39. Au25 GM comparison using a ball-and-stick representation. On the left 

is shown the PBEsol refined structure; on the right the same PBEsol Au25 GM 

structure is reoptimized after adding 8 L-cysteine ligands (the Cys ligands are not 

shown). 

 

We chose to attach Cys as protective ligands to the Au25 cluster in this study 

as our research is part of a collaborative effort with experimentalists, aimed at 

comparing our theoretical predictions with their experimental observations. These 

experimental observations, utilizing Cys as protective ligands, will be detailed in 

an upcoming publication, which will include high-resolution transmission electron 

microscopy (HR-TEM) images of the cluster, among other findings.  

The integration of Cys ligands onto the PBEsol GM Au25 cluster through 

structure optimizations induces a significant restructuring of the original 

configuration as seen from figure 39, which shows the configurations of Au25 

before and after ligands are added. The grafting of Cys on Au was purely random.  

The radical changes of the Au25 cluster structure should be expected from the 

change in the chemistry of the system upon the adoption of the Cys18 ligands. 

Initially, the cluster appears without a core, showing its distorted planar state, 

where every atom forms the cluster surface. However, following the introduction 

of 18 Cys ligands, a significant reconfiguration occurs, with an Au6 atom now 

occupying the core position. This transition highlights a significant change in the 

cluster's structural composition, moving from a state without a core to one with an 

evident core, which suggests a decrease in surface area and a compaction of the 
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structure. Moreover, the introduction of the Cys18 ligands leads to a withdrawal of 

electrons from the gold cluster to ligands creating a Madelung field across the 

cluster, potentially contributing to a more confined configuration. Such 

observations illuminate the intricate interplay between ligand interactions and 

cluster morphology, providing insights into the factors governing nanocluster 

behaviour and stability. 

 

Figure 40. RDF of the Au25(Cys)18 cluster, excluding the (Cys)18. 

 

Figures 39 and 40 illustrate the structural features of the Au25(Cys)18 cluster 

without the cysteine ligands, focusing on the Radial Distribution Function (RDF) 

and the principal moments of inertia of the Au₂₅ core structure. 

In the RDF plot shown in Figure 40, the first peak at approximately 2.9 Å 

corresponds to the interatomic distances between the nearest-neighbour Au atoms 

in the cluster. This peak has a weak shoulder at slightly longer distances, indicating 

slight variations in the nearest-neighbour distances among the gold atoms. The 

second peak at around 3.7 Å represents the distances to the second nearest 

neighbours within the cluster. 
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Figure 41. The principal moment of inertia of  the Au25(Cys)18 cluster stripped of 

Cys ligands shown in ternary plot. 

 

Figure 41 presents a ternary plot of the principal moments of inertia of the 

Au₂₅ cluster. The principal moments of inertia are measures of the cluster's 

resistance to rotational motion about its principal axes, which are orthogonal to 

each other—analogous to the x, y, and z axes in a Cartesian coordinate system. 

Each vertex of the ternary plot corresponds to one of these principal axes. 

The principal moments of inertia are fundamental quantities in rotational 

dynamics that describe how a body's mass is distributed relative to its rotational 

axes. For a rigid body, the inertia tensor I encapsulates the mass distribution. By 

diagonalising the inertia tensor, one obtains the principal moments of inertia I1, I2 

and I3, corresponding to the body's resistance to rotation about its three principal 

axes. 

Mathematically, the principal moments of inertia are calculated using: 

𝐼! = ∑ 𝑚4"	𝑟4) −	𝑥4,!) $4 , Eqn 59 
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where, Ii is the principal moment of inertia about axis i, mn  is the mass of atom n, 

rn is the distance of atom n from the centre of mass, xn,i is the component of the 

position vector of atom n along axis i. 

In the context of nanoclusters: Equal Principal Moments (I1 = I2 = I3): The 

cluster is perfectly spherical, with mass evenly distributed in all directions; 

Unequal Principal Moments: Differences among the principal moments indicate 

elongation or flattening along specific axes. A smaller Ii suggests that the cluster 

extends less along axis iii, meaning the mass is closer to this axis. 

The plot reveals that the Au25 cluster has an ellipsoidal shape rather than a 

spherical one. The two larger principal moments of inertia are relatively balanced, 

as indicated by their positions near the bottom two vertices of the ternary plot. 

This suggests that the mass distribution along two of the axes is similar. The third 

principal moment of inertia is smaller than the other two, corresponding to the axis 

along which the cluster is elongated. This indicates that the Au₂₅ structure is 

stretched in one direction. 

 

Figure 42. The structure of ligand Cys-Au interface in Au25(Cys)18. Left: depiction 

of the Au25(Cys)18 cluster using a ball-and-stick model, showing the model with 

omitted ligand branches except for the sulphur atom which directly attaches to the 
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Au25 core. Right: this representation provides a comprehensive view of the full 

structure of the (Au)25(Cys)18 cluster. 

 

The figure 42 presents two distinct images delineating the Au25(Cys)18 cluster. 

In the left image, the cluster is depicted with the (Cys)18 ligands, deliberately 

excluding the remainder of the R branch except S atom to elucidate the manner in 

which the ligands interface with the Au25 core. Conversely, the right image offers 

a comprehensive view of the entire structure of the Au25(Cys)18 cluster, 

showcasing all ligands and atoms.  

The process of ligand grafting was initially conducted manually using the 

Material Studio code146, a meticulous procedure undertaken to ensure precision 

and accuracy in ligand placement. Following this manual attachment of each 

ligand onto the PBEsol Au25 GM, the Clean tool was subsequently employed to 

optimize the spatial arrangement of the ligands. This optimization process was 

crucial in minimizing steric hindrance by providing each ligand with adequate 

space, thereby enhancing the overall stability of the cluster structure.  

Building upon insights from prior studies, which indicated that each S atom 

in the ligands typically bonds with two Au atoms, we endeavoured to replicate this 

bonding pattern during the grafting process. However, following the structural 

optimization utilizing the PBEsol method, notable deviations in the Au-S atom 

connectivity were observed. Specifically, several Au-S atom connections 

manifested three distinct connectivity patterns, highlighting the dynamic nature of 

the bonding interactions within the Au25(Cys)18 cluster – see figure 43. 



  157 

 

Figure 43. Ligation patterns in the PBEsol-optimized Au25(Cys)18 cluster. Three 

distinct sulphur atom configurations are observed regarding their connectivity 

with Au atoms. The figure displays partial views of Au25 along with the 

immediate ligands attached. (a): Two Cys ligands are connected through a sulphur 

atom, with one of the sulphur atoms also linked to a Au atom; (b): a sulphur atom 

of the L-cysteine ligand is directly connected to a Au atom; (c): a sulphur atom is 

bonded to two Au atoms simultaneously. 

It became evident that a prominent trend emerged in the connectivity patterns 

between S atoms and Au atoms within the cluster structure. Specifically, the 

configuration where S atoms are doubly connected to Au atoms (referred to as 

connectivity "c" in figure 43) with the average bond distance of 2.37 Å emerged 

as the predominant motif, manifesting in the majority of instances. This particular 

connectivity scheme, wherein 13 ligands form bonds with two Au atoms each. 

This -Au-S-Au- connectivity is the only connectivity that found in the earlier 

report128,147 on the crystal structure of (SR)18Au25. In contrast, we noted a less 

frequent occurrence of Cys ligands bonding to one Au atom, either individually or 

in tandem with other ligands. These occurrences were comparatively infrequent, 

with only 1 instance of joint ligand attachment and 4 instances of individual ligand 

attachment to a single Au atom with the 2.46 Å and 2.23 Å bond distances, 

respectively. The four of the individual ligand bond to a single Au atom are 

generally on the Au atom which has fewer nearest neighbours as the cutoff 

distance from a Au atom increases the Au with the single footed L-cysteine 

captures fewer nearest neighbours. 
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5.3.2. Electronic Properties 

Using the PBEsol refined configuration of the Au25(Cys)18 nanocluster we 

next considered its electronic structure. Analysis of its Density of States (DOS) 

shown in figure 43 provides a detailed picture of the electronic structure 

influenced by both the Au and the surrounding Cys ligands. The DOS of the 

PBEsol optimised cluster was evaluated using the PBEsol0 hybrid functional148,149 

with light basis set as implemented in FHI-aims150. In this cluster, Au exhibits 

significant spin polarization, with a pronounced peak in the up-spin DOS observed 

at approximately -4 eV, which extends over a broad range from -3 eV to 7 eV. 

This suggests a robust magnetic behaviour predominantly driven by the Au atoms, 

potentially affecting the cluster’s magnetic susceptibility and spin-dependent 

electronic transport properties. 

 

Figure 44. The Density Of State (DOS) of PBEsol0 evaluated PBEsol optimised 

Au25(Cys)18. Each colour represents each element contribution, and the positive 

value is the contribution from the up spin and the negative value is from the down 

spin. 

 

In contrast, atoms from the ligand molecules such as H, C, N, O, and S show 

more balanced spin contributions. Their DOS profiles, featuring peaks for both up 

and down spins across various energy ranges, suggest a more neutral electronic 
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environment. Notably, S displays distinct peaks for both spins, emphasizing its 

role in mediating electronic interactions within the cluster. This balance in the 

electronic states of the ligands contributes to the overall stability of the cluster's 

electronic structure. Research supports this, highlighting that ligands can polarise 

electron density, enhancing cluster stability and reactivity. Studies on TMC-

supported clusters demonstrate that balanced electronic states in ligands prevent 

charge accumulation, maintain structural integrity, and improve catalytic 

efficiency. Ligands like sulphur in gold clusters mediate significant electronic 

interactions, crucial for stability by facilitating electron delocalisation and 

preventing uneven charge distribution151. The DOS plot also delineates the energy 

distribution between negative and positive regions, indicating filled and unfilled 

electronic states, respectively. A noteworthy feature in the DOS plot is the low 

density of states around the Fermi level, which reveals a band gap of 

approximately 1.01 eV. This band gap agrees with the current collaborate 

experimental observation which shows a very close value. 

From the figure 45, the calculated optical absorption spectra for both spin-up (red 

line) and spin-down (blue line) electrons closely match the experimental data 

(black dashed line) at lower energy values, up to around 2.5 eV. The summed 

spectrum (green line) also closely follows the experimental trend within this range, 

especially with the peak showing  the first excited states to occur at around 1.8 eV, 

which is mostly contributed to by the down-spin transitions. Multiple molecular 

transitions are, in fact, found, to determine the optical absorption spectrum; 

forming at least four well-defined bands at 1.8, 2.4, 2.8, and 3.4 eV. 
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Figure 45. Optical absorption spectra of Au25(Cys)18, including  calculated spin-

up (red solid line) transitions, spin-down (blue solid line) transitions, and their 

combined effect (green solid line), against experimentally obtained UV-vis data 

(black dashed line) [GB Hwang, et. al., Private communication 2024]. The spectra 

are plotted as a function of the energy difference 𝐸{ − 𝐸!  between respective 

occupied and unoccupied Kohn-Sham eigenstates, indicating transitions from 16 

selected states ranging from HOMO-7 to LUMO+7., A Lorentzian function with 

a dispersion of 0.15 eV was applied to broaden the lines. N.B. No selection rules 

have been applied for the prediction, i.e., any transitions from one of the lower 8 

states to one of the higher 8 states were considered. 

 

The calculated absorption spectra closely match the experimental UV-vis 

data within the lower energy range, demonstrating that the computational 

approach effectively captures the essential electronic transitions of the system in 

this domain. However, beyond approximately 3 eV, discrepancies emerge where 

the experimental absorption values continue to rise while the calculated data 
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plateau. This divergence suggests that while the theoretical method is reliable for 

lower energy transitions, it may not fully account for all mechanisms active at 

higher energies. Specifically, high-energy electron relaxation effects—such as 

many-body interactions, electron-electron correlations, and the subsequent 

relaxation of electrons after excitation—are not captured by the adopted simple 

one-electron approximation. 

In a one-electron approximation, each electron is considered to move 

independently in an average potential created by all other electrons, neglecting 

dynamic interactions and correlations between electrons. At higher energies, these 

many-body effects become more pronounced, leading to more complex relaxation 

dynamics that influence the absorption spectra. For instance, after an electron is 

excited to a higher energy state, it can interact with other electrons, leading to 

processes such as exciton formation, plasmon resonances, or multi-electron 

excitations. These interactions can significantly alter the energy distribution and 

intensity of absorption peaks, contributing to the rising absorption values observed 

experimentally beyond 3 eV. 

The inability of the one-electron model to incorporate these interactions 

results in the underestimation of absorption intensities at higher energies, as seen 

in the experimental data. To accurately model these high-energy phenomena, more 

sophisticated approaches that include electron correlation effects are necessary. 

Methods such as time-dependent Density Functional Theory (TD-DFT) with 

advanced exchange-correlation functionals can account for the interactions 

between excited electrons and the resulting relaxation processes.  

As this thesis focuses on computational studies and is currently being 

prepared for publication, it is not possible to disclose many details, particularly 

those related to experimental observations. However, the two distinct studies, 

employing different methodologies—computational and experimental 

approaches—have yielded highly consistent results, which will be ready for 

publication within this year. 

The matching results suggesting that the calculations effectively capture the 

dynamics of the system in this energy domain. However, beyond this point, 
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particularly past 3 eV, there are discrepancies where the experimental values 

continue to rise while the calculated data plateau. This indicates that while the 

theoretical approach is reliable for lower energy transitions, it may not fully 

capture all mechanisms active at higher energies, in particular high energy electron 

relaxation effects which would not be accounted for by the adopted simple one-

electron approximation. 

As this thesis focuses on computational studies and is currently being 

prepared for publication, it is not possible to disclose many details, particularly 

those related to experimental observations. However, the two distinct studies, 

employing different methodologies: computational and experimental approaches, 

have yielded highly consistent results, which will be ready for publication within 

this year. 
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6. Machine Learning Interatomic Potential 

This chapter looks into Machine Learning Interatomic Potentials (ML-IPs), 

focusing on training ML-IP for nanocluster structure predictions and evaluating 

the ML-IPs which are trained on selected nanoclusters and the recently developed 

universal potential using MACE51,152. The universal potential is trained with 1.6M 

bulk crystals in MPTrj datasets153 which can cover 89 elements. MACE is known 

as current state-of-art of ML-IP and it is known as reliable and flexible, making it 

promising for accurately predicting how atoms arrange themselves and their 

energy levels152,154. 

We compared AlF3 structures that have been optimised using MACE with 

those PBEsol optimised structures in the previous study. By doing this, we 

anticipate observing that MACE can figure out with high accuracy of the energy 

ranking and geometry of AlF3 structures or at least the atomic connectivity. This 

comparison is important because it can show us how well the ML-IPs can work 

for understanding the structure of inorganic nanoclusters. 

The background of the initiating this project was we started looking into ML-

IPs as it is tough to find a way to describe how atoms interact with IP because of 

the complexity of parameterizations and limitation of IP. Most of IPs has lack of 

transferability, thus parameters need to be fitted for different systems and purposes. 

In fact, during my master project4 we performed global optimisation on Ti3N4 

nanocluster’s PES using the fitted IP, but the IP could not describe the Ti3N4 

PBEsol energy landscape with enough accuracy: could not predict accurate energy 

rankings or configurations. Thus, we evaluated how the ML-IPs using the AlF3 

nanocluster dataset from the previous study.  
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6.1. Pairwise Interaction 

 

Figure 46. Pairwise interaction of the Al-F (green), F-F (red), and Al-Al (blue) as 

a function of interatomic distances. The dotted line is the predicted pairwise 

interactions using AlF3 potentials. The 'cutoff' is a parameter used to train the 

potential. The red bar and arrow at cutoff = 6 Å indicate where the ML-IP was 

not trained with interatomic distance data. The smaller panels display the same 

plot as the main plot but with a reduced x/y-axis range 

 

Before we jump into the ML-IP to perform global optimisation on complex 

material like Ti3N4, we have evaluated the ML-IP using the IP data, the first step 

of the two step global optimisation method, to see how the ML-IP behaves with 

cheaper computational cost than using DFT. The figure 46 shows the pairwise 

interaction of Al-F (green), F-F (red), and Al-Al (blue) which are predicted using 

trained ML-IPs, and the dotted line is our target to achieve using the ML-IP which 

is the fitted IP in the earlier AlF3 chapter. The ML-IP used to prepare each panel 

in the figure was trained with the identical training data, but with the different 

cutoff parameter was used during the training process which are 3.0 Å, 4.0 Å, 5.0 

Å, and 6.0 Å. The training data is the IP evaluated Al-F dimer images which has 

the interatomic distance between 0.01 – 3.00 Å in every 0.01 Å. As part of training 

set the atomic energy of Al and F atom are not provided explicitly, instead it 
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guessed from the individual training structures which deduced from the total 

energy of the structures.  

Ideally the ML-IP’s pairwise interaction (solid lines) should show the trend 

that overlapped with the original IP (dotted lines) as we trained the IP data. 

However, the panel shows the discrepancies in different region of interatomic 

distances. N.B. The y-axis has rather large range in potential energy to see the full 

and overall behaviour of the ML-IP to compared with the reference IP. If 

necessary, we attached small panel for more detailed or focused view. The ML-IP 

trained with 3Å cutoff parameter shows the least accuracy in the most range of the 

interatomic distances compared to the others. The Al-F pairwise interaction has 

the smoother profile than other two interactions. The Al-F interaction has 

relatively less RMSE at extremely short distances, but at longer interatomic 

distances the ML-IP predicts the interactions with less accuracy. Similarly, the 

ML-IP predicted better at the short distance for the F-F interaction but less 

accurate at longer distances with relatively less RMSE compared with the Al-F 

interactions. Initially, we expected the ML-IP can describe the pairwise interaction 

accurately as we provided the highly concentrated data, each image has different 

interatomic distance with 0.01 Å. Moreover, the longest interatomic distance in 

the image of the training data matches with the cutoff parameter for the training. 

Even though the training data is matches with the cutoff parameter it struggles to 

predict accurate pairwise interactions in the range. We thought the ML-IP would 

perform better than the result as we provide the full interactions in the range of the 

cutoff parameter. Interestingly, the training data did not have F-F and Al-Al 

interactions, and there were no IP for Al-Al interactions during the preparation of 

the training data except the Coulomb interactions, but ML-IP seems like to picked 

up the F-F/Al-Al interactions within the data and try to describe the interactions. 

This behaviour is unseen in the Gaussian Approximation Potential (GAP). The 

contents were not included in the thesis, but from the experience of other type of 

ML-IP, such as GAP, try to compensate between the component of the total energy 

of the system, all possible interactions. For example, if a pair show abnormal 

interactions, then the other two interactions include the opposite of the wrongly 

described interaction energy within their interactions to offset the anomality and 

to predict the accurate total energy of the system. MACE is different to the GAP 
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as it uses message passing neural network as part of the core architecture, thus 

because of it the behaviour of the potential has to be learnt mostly from black box 

approach.  

Ironically, among the three possible pairwise interactions the F-F data which 

was not included in the training data was described with less RMSE than the Al-

F interactions which is the only the included training data. Even though they could 

not show with high accuracy in describing the pairwise interactions in overall, the 

extremely shorter distances show the relatively better agreement than the longer 

distances. At longer distances they converged to much higher energy than the 0 

eV, the reference.  

The ML-IP trained with 4 Å cutoff parameter shows the better agreement than 

the 3 Å in all range. Especially at short distances they agreed well with the 

reference, but still it struggled at over 1 Å. Interestingly, the ML-IP trained with 

the same training data and 5 Å cutoff distances showed the best agreement within 

the 0 – 3 Å the covered area by the training data. However, it could not predict 

from 3 Å to longer distances which started to deviate from the reference data 

gradually up to near 4 Å. The deviation was not expected because the ML-IP 

would pick up the information about longer distances as it was training from the 

energy and the atomic forces, but it failed beyond the coverage of the training data. 

The small panel is magnified on potential energy with the same interatomic 

distances as the bigger panel which showed that the potential does not agree well 

in detail with overestimations. The longer cutoff 6 Å does not agree well compared 

to the 5 Å cutoff ML-IP, but at the region we are interested in near the AlF3 

equilibrium distances (1 – 3 Å) the predicted Al-F interactions agreed better, but 

soon after the beyond the coverage of the training data it spike up the energy for 

all possible pairwise interactions.  

From the experimental training and prediction, it shows that the ML-IP could 

not predict well at relatively longer distance if the training data includes a lot of 

extremely short distance data. Also, the ML-IP needs all possible interactions as a 

training data as the last ML-IP trial shows that the ML-IP tried to predict all 

interactions while it only trained with Al-F interactions. We presume that the 

poorly describing in F-F and Al-Al interactions or lack of training on other 
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interactions causes the less accurate Al-F prediction. For example, if we want to 

train Al-F pairwise interactions still we have to include the F-F and Al-Al 

interactions within the training data. The cutoff distance has to be shorter or match 

with the longest interatomic distance among the training data, but we wanted to 

confirm the hypothesis, thus we tried to refit the potential with additional data 

between 3 – 5 Å with 5 Å as the cutoff.  

 

Figure 47. The predicted Al-F pairwise interactions at interatomic distances using 

the ML-IP that trained with 0.01 Å – 5.00 Å (0.01 Å – 3 Å) interatomic distances 

with cutoff parameter of 5 Å. 

Figure 47 shows the predicted pairwise interactions between 0 – 5 Å and the 

ML-IP was trained with 5 Å cutoff parameter, only the difference is the coverage 

of the training data. As we hypothesized earlier from the last experiment the figure 

proves that the cutoff parameter for the ML-IP training should be within the range 

of the coverage of the training data. The matching cutoff parameter with the 

training data (left panel) shows the smooth profile, but the right panel which the 

cutoff parameter is longer than the coverage of the training data has a gradual 

increasement in energy from 3 Å until 4 Å. 

In the next attempt, we trained ML-IPs with the same manner as the last 

experiment, but without the extremely short unphysical interatomic distances. The 

left column of the figure 47 shows that the ML-IP predicted Al-F (solid green) 

shows the sensible behaviour in longer than 1 Å interatomic distances across the 

ML-IP trained with 3 – 6 Å of cutoff parameter. However, F-F and Al-Al 

interactions shows fluctuations as there were not training data. Thus, we have 

added the IP F-F dimer data that matches with the Al-F training data coverages. 

The ML-IP trained with Al-F and F-F was used to predict the pairwise interactions 

Al-F: 0.01 – 5 Å

Cutoff = 5 Å

Al-F: 0.01 – 3 Å
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are shown in RHS column of the figure. Still there are significant fluctuations in 

potential energy for the ML-IP trained with 3 Å and 4 Å cutoff parameters at 

extremely short interatomic distance where the ML-IP are not trained on. As we 

anticipated after the shortest interatomic distance (1 Å) in training data shows the 

accurate trend or forces with notable overestimation in potential energies, ~ 5 eV 

at 5 Å, for all ML-IPs trained with 3 – 6 Å cutoff.  

The only the difference in the left and right column of plots which are 

predicted data using the ML-IP that trained only with Al-F interactions, or Al-F 

and F-F interactions, respectively. Between the two set of ML-IP trained with 

different number of type of interactions do not show notable difference in accuracy 

in predicting Al-F interactions. Of course, the F-F performed better when it trained 

with compared to the one only trained with Al-F interactions and no F-F 

interactions. Interestingly, the ML-IP trained with Al-F and F-F interactions 

changed the Al-Al interactions which the trend looks like the other interactions. 

In this experiment we have changed in the training data: the coverage of the 

Al-F interactions to 1 – 3 Å by removing the extremely short interatomic distance 

(< 1 Å) images in the training data, and adding the F-F interaction images with the 

1 – 3 Å range in the training data. Different to the ML-IP trained on the only 0.01 

Å – 3 Å Al-F interactions is as we include the additional pairwise interactions it 

performs better in predicting the interactions where we are interested in, near the 

equilibrium distances. The changes in energy as a function of interatomic 

distances (e.g., force) are consistent. Moreover, there are no sudden energy jump 

after the coverage of the training data while the cutoff distance is longer. We 

presume as we include more of the possible combination of atomic interactions 

corrects the contribution of the interactions within the total system by removing 

the random prediction on pairwise interactions where no data, likewise if we 

include the Al-Al interactions which is 0 in all range it will provide accurate 

profile of the dimer curve compared to the reference dotted data. 
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Figure 48. The predicted Al-F (green), F-F (red), and Al-Al (blue) pairwise 

interactions which are predicted by the trained ML-IP using the same training data; 

the left column is trained with the IP evaluated Al-F dimer with 1 – 3 Å interatomic 

distances in every 0.01 Å; the right column is trained with the same training data 

as the left column with additional F-F dimer with 1 – 3 Å in every 0.01 Å. Each 

row of the ML-IP was trained with different cutoff parameter 3 Å, 4 Å, 5 Å, and 

6 Å. 

 

From our previous trial, we observed that the improvement in describing 

pairwise interactions at longer interatomic distances diminished when the training 

set coverage for Al-F interactions was reduced from 0.01 Å–3 Å to 1 Å–3 Å. To 

address this, we trained the machine learning interatomic potentials (ML-IPs) for 

Figure 48 in the same manner as Figure 47, but extended the training set coverage 

to 1 Å–5 Å. We hypothesized that ML-IPs trained with a broader range of 
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interatomic distances would predict pairwise interactions more accurately. 

Consistent with our expectations, the ML-IP trained exclusively on Al-F dimers 

with distances between 1 Å and 5 Å accurately predicted Al-F interactions, 

converging closely to 0 eV or nearly 0 eV. We believe that the ML-IP with a 5 Å 

cutoff parameter achieved a more accurate Al-F dimer curve compared to other 

models. This extended hypothesis builds upon our previous experiments. Since we 

provided only one type of interaction, Al-F, the other two interactions (F-F and 

Al-Al) were randomly placed within the boundaries defined by the training data, 

which included properties such as total energy and forces. Consequently, the ML-

IP made random predictions for the untrained F-F and Al-Al interactions, 

influenced by the Al-F contributions. Based on our experience with GAP ML-IPs, 

we observed that while the dimer curves for Al-F interactions showed different 

trends, the overall results in Figure 48 demonstrated that providing longer 

interaction coverage in the training data led to more accurate predictions of 

pairwise interactions, regardless of the cutoff parameters. We presume that 

supplying a sufficient number of data points with broad coverage enables the ML-

IP to learn the trends of pairwise interactions effectively during training, thus 

achieving high prediction accuracy. 

In the right-hand side (RHS) column of Figure 48, the ML-IP was trained 

with the same Al-F coverage as the left-hand side (LHS) column but included 

additional F-F pairwise interactions with the same coverage as the Al-F 

interactions. The RHS not only showed smaller root mean square errors (RMSE) 

at longer interatomic distances but also exhibited significantly lower RMSE at 

shorter distances compared to the reference data. The F-F pairwise interactions at 

unphysically short distances became more accurate with the ML-IP trained using 

a longer cutoff parameter of 5 Å to 8 Å. The ML-IP trained with an 8 Å cutoff 

parameter predicted interactions with the least RMSE compared to other ML-IPs 

in the figure. Overall, the 8 Å cutoff parameter plot indicates that only areas with 

very short interatomic distances (less than 0.9 Å) present challenges in accurately 

describing pairwise interactions. However, the ML-IP with an 8 Å cutoff does not 

exhibit extreme behavior, such as the Coulomb or Buckingham catastrophe, where 

pairwise interactions show extreme attraction forces at short distances. 

Furthermore, since our study does not involve molecular dynamics simulations 
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under high pressure or temperature conditions, the accuracy of short pairwise 

interactions is not critical. Therefore, the ML-IP trained with an 8 Å cutoff in 

Figure 48 remains suitable for global optimizations and structure relaxations. For 

example, when using the ML-IP for global optimization, the random structure 

generator should incorporate acceptance or rejection criteria for randomly 

generated structures to prevent atoms from being placed too closely, thus avoiding 

incorrect interpretations of pairwise interactions at distances below 0.6 Å. In 

summary, ensuring that atoms are not placed too closely during the random 

structure generation steps is necessary before performing structure optimizations 

using the ML-IP. 

The summary of the gained information from the experiments: (1) if the ML-

IP trained with all possible pairwise interactions within a system, (2) training with 

longer coverage of interatomic distances between a pair of atoms, and (3) if 

coverage of training data is broad enough then longer the cutoff parameter than 

the longest coverage of the pairwise interaction in training data would generate 

more accurate ML-IP. Still there is one more thing that we could try which is 

providing the explicit value of the atomic energies which consists of the system 

that ML-IP learn. 

 



  172 

 

Figure 49. The predicted Al-F (green), F-F (red), and Al-Al (blue) pairwise 

interactions which are predicted by the trained ML-IP using the training data; the 

ML-IP used to prepare the plot in the left column are trained with the IP evaluated 

Al-F dimer with 1 – 5 Å interatomic distances in every 0.01 Å; the right column 

plots are prepared with the ML-IP that trained with the same training data as the 

left column with additional F-F dimer with 1 – 5 Å in every 0.01 Å. Each row of 

the ML-IP was trained with different cutoff parameter 6 Å, 7 Å, and 8 Å. 
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Figure 50. The predicted Al-F (green), F-F (red), and Al-Al (blue) pairwise 

interactions which are predicted by the trained ML-IP using the training data; the 

ML-IP used to prepare the plot in the left column are trained with the IP evaluated 

Al-F dimer with 1 – 5 Å interatomic distances in every 0.01 Å and Al and F atomic 

energies; the right column plots are prepared with the ML-IP that trained with the 

same training data as the left column with additional F-F dimer with 1 – 5 Å in 

every 0.01 Å. Each row of the ML-IP was trained with different cutoff parameter 

7 Å, and 8 Å. 

 

Figure 50 shows the performance of the ML-IP which the training data is 

identical to the last experiment: (LHS column) trained with the images of Al-F 

dimer with interatomic distance of 1 – 5 Å in every 0.01 Å; (RHS column) same 

as the LHS with including the Al – F dimers the F – F dimers in the same range of 

interatomic distances, but this time we provided the IP evaluated atomic energy, 

0 eV for both. Because the IP only looks at how atoms interact one-on-one and 

doesn't consider how electrons exchange and correlate like the DFT method does, 

it gives an atomic energy of 0 eV. As LHS column of figure 50 shows the only 

Al-F interactions and the atomic energies does not show significant improvement 

in reducing the noise at the short distance interactions. For the training process the 

atomic energies (Al and F) are provided instead of using the images to estimate 

the atomic energies in the training data. Thus, providing the explicit atomic 

energies will help to converge the dimer curve at longer distance to 0 eV as the 
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atoms in a pair is in long distance they cannot interact noticeably with each other. 

The predicted dimer curve using the ML-IP trained with the atomic energies and 

the Al – F and F – F pairwise interactions data is shown in the right column. The 

plots show that the ML-IP for both has the less RMSE at shorter interatomic 

distances and the dimer curve converges to 0 eV at longer interatomic distances. 

The ML-IP trained with the 8 Å cutoff parameter has the least RMSE in all range 

of interatomic distances without the abnormal description of the short-range 

interactions in below 1 Å. 

The ML-IP, trained with Al-F pairwise interaction experiments, suggests that 

including a broader range of pairwise interactions and combinations, particularly 

those with longer distances, along with explicit atomic energies, improves the ML-

IP's accuracy in describing pairwise interactions. Based on insights from prior 

black box experiments on the ML-IP, we conducted experiments to train the ML-

IP using the PBEsol-optimized smallest (AlF3)n cluster, with n = 1, before moving 

on to train larger clusters. The training set is the images of the full vibrational 

modes and each vibrational mode data consisted of 10 images. In the same way as 

the previous experiment with ML-IP that trained with the IP data, we predicted 

the pairwise interactions of Al – F and F – F using the images of the (AlF3)1 

vibrational modes trained ML-IP which the result is shown in the figure 51. Note 

that the images of vibrational mode of (AlF3)1 did not include the Coulomb 

interactions, thus the dimer curve has the LJ-like trends. 
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Figure 51. Pairwise interactions of Al-F (top) and F-F (bottom) predicted using 

the ML-IP. The ML-IP was trained on PBEsol-optimized images of all vibrational 

modes from (AlF3)n (n = 1) structures, excluding rotations and translations. The 

hover plot above the predicted interactions displays the number of interatomic 

distances observed in the training data. 
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The small hover plot above the pairwise interaction plot presents the number 

of specific interatomic distances from images of the vibrational mode in the 

training data. Analysing the count of interatomic distances within the training data 

allows us to assess which ranges of distances are covered in the training and 

evaluate whether this affects the ability of the ML-IP to describe accurate 

interactions by comparison with dimer curves. By comparing the trained 

interatomic distance data with the dimer curve predictions, we can assess the 

quality of the predictions made by the ML-IP. 

The F-F pairwise interactions are poorly described between distances of 0.5 

Å and 2 Å, showing two points where the forces between the two fluorine atoms 

are zero or at inflection points. The interatomic distances for the F (Al-F) atom 

pair are mostly concentrated around 3.87 Å (1.72 Å), displaying a normal 

distribution pattern. The most common F-F distance in the optimised (AlF3)1 

structure is 2.87 Å. It remains uncertain whether regions with more data points are 

better trained than less sampled areas, or if this results in overfitting. However, the 

F-F pairwise interaction plot generally shows inaccurate predictions. The ML-IP 

incorrectly predicts 0.7 Å as the equilibrium interatomic distance for F-F, 

significantly less than the PBEsol-predicted distance, used as a reference. The 

poorly predicted equilibrium distance is caused from the lack of the training data 

at near the equilibrium distance which is shown in the hover plot. 

The predicted equilibrium energy is also 6.5 eV lower than the PBEsol value. 

Notably, there is a saddle point at a distance of 1.6 Å, after which the forces 

become repulsive, converging towards an energy of -5414.8578 eV. We presume 

that the up to the saddle point from longer distances is the region that ML-IP could 

learn directly based on the training data and less than the saddle point the ML-IP 

extrapolated based on the learnt features. The energy convergence at longer 

distance represents the doubled atomic energy of F atoms, indicating the accuracy 

of the ML-IP in certain aspects. The training approach for the ML-IP was 

specifically set to prioritize accurate energy prediction over correct force 

estimation by us using the stochastic weight averaging (swa) options, enhancing 

the model's performance in energy accuracy more than in force accuracy. SWA is 

a training technique that improves model generalization by averaging the weights 
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of a NN over multiple training epochs. This approach helps the model converge 

to flatter minima in the loss landscape, enhancing its stability and performance on 

unseen data. In the context of fitting the ML-IP with the MACE potential, SWA 

was utilized to prioritize accurate energy predictions by stabilizing the model's 

energy estimations over force calculations. 

 

Thus, it could also explain the saddle point that might predicted because of 

the heavier weight on energy setting than the forces. In contrast, the Al-F 

interatomic interactions are predicted with higher accuracy than the F-F 

interactions, including the region at near the equilibrium distance. Additionally, 

the long-distance convergence energy of Al-F is also accurately predicted at -

9304.3432 eV. 

Using vibrational modes from smaller nanocluster sizes often does not 

provide sufficiently short interatomic distances, especially between anions. 

Therefore, it is necessary to include vibrational modes from larger cluster sizes to 

accurately describe interactions near equilibrium distances. The inclusion of larger 

cluster sizes will help resolve the lack of near-equilibrium interatomic distances 

for F-F pairwise interactions, as these larger clusters will exhibit more complex 

combinations of vibrational movements. This complexity arises from the clusters' 

random-like configurations, as discussed in the AlF3 chapter, which also involve 

a greater number of atoms, ensuring the vibrational mode images capture the 

necessary interatomic distances close to the equilibrium for the anion-anion 

interactions, F-F. 

For the (AlF3)n series, where n = 1 and 2, only one configuration exists in the 

PES, leading us to explore larger clusters such as n = 6 for training the ML-IP. In 

the n = 6 PES, there are over a thousand LM, as mentioned in the AlF3 chapter 

most of which display random-like configurations whose vibrational modes cover 

the equilibrium interatomic distances. Training all these LM is computationally 

expensive, prompting the decision to select 10 local minima for training the ML-

IP. We trained two different sets of ML-IP: one using the vibrational mode images 
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from the top 10 local minima and another trained with vibrational modes from 10 

randomly chosen local minima. 

Additionally, a recently developed universal potential trained on the 

Materials Project database152,153 has been evaluated by comparing its results with 

reference PBEsol data. The results, including total energy and atomic forces of 

LM as functions of PBEsol data, are illustrated in the referenced figure. This 

comparison helps validate the effectiveness of the trained ML-IPs against 

established benchmarks. N.B. the universal potential is trained with Materials 

Project database which the scale of energy and forces are based on the VASP 

software. 

Since (AlF3)n clusters with n = 1 and n = 2 each have only one configuration 

in the PES, and clusters with n = 3 to n =  5 have relatively fewer LM, we 

proceeded to n = 6 to train the machine learning interatomic potential (ML-IP). In 

the PES for n = 6, there are over a thousand LMs, most of which have random-

like configurations whose vibrational modes cover the equilibrium interatomic 

distances. Training all LMs is computationally expensive; therefore, we decided 

to select 10 LMs to train the ML-IP. We trained two different sets of ML-IPs: one 

using (a) the top 10 LMs' vibrational mode images as the training set, and the other 

using (b) randomly chosen 10 LMs' vibrational modes. Each of the ML-IPs was 

evaluated by comparing it with the reference PBEsol data. Figure 52 shows the 

ML-IP-evaluated total energies of the LMs and atomic forces compared to the 

PBEsol data. 
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Figure 52. The total energy and atomic forces of 10 randomly selected LMs from 

(AlF3)n where n = 6, optimized using the two specifically trained ML-IPs (a and 

b) and the universal MACE ML-IP (c). The top ML-IP is trained using vibrational 

mode images from the top 10 local minima, while the middle ML-IP is trained 

with images from 10 randomly chosen local minima. The evaluated total energy 

and atomic forces of these LM are compared with the reference PBEsol data. N.B. 

universal potential was trained on Materials Project database which the total 

energy and forces are obtained from the VASP software. 
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As this is a testing process the 10 different ML-IPs were trained for each of 

LM. After training, this collection of ML-IPs—referred to as an ensemble—can 

be utilized simultaneously through the "mace" library package in Python. The 

Atomic Simulation Environment155 (ASE)'s optimizer was then used to optimize 

the PBEsol LMs. The last plots obtained by using the recently developed and 

published universal potential. These randomly chosen 10 LMs of n = 6 for the 

evaluation are optimized using the corresponding ML-IP.  

Interestingly, all three ML-IPs predicted the atomic forces of LMs with high 

accuracy of 0.0004 eV/Å. Note that the range of the x-axis for the force plot is 

significantly small which makes the points are spread in spherical shape, but it is 

notably close to the reference line. However, the predicted total energies of the 

LMs exhibited a RMSE greater than 1.9 eV. It is important to note that the 

universal potential was trained using data evaluated by VASP, resulting in a 

different energy scale of total energy and making the RMSE less reliable for 

accuracy assessment. Moreover, here we are going to focus on how the ML-IPs 

accurately predict the LM energy ranking and/or atomic configurations. 

In terms of RMSE, the (a) ML-IP exhibited a slightly lower value than (b) by 

0.24 eV per atom. However, the (b) ML-IP predicted the energy ranking of n = 6 

LMs more accurately, displaying a relatively clearer linear trend in the total energy 

of the system compared to the (a) ML-IP, which showed a columnar trend similar 

to that predicted by the (c) universal potential. Remarkably, the universal potential 

ranked the top three PBEsol LMs as the 7th, 6th, and 1st (ground state) LM, 

respectively. Conversely, the second ML-IP (b) correctly predicted the top three 

PBEsol LMs within the top three ML-IP LMs. This result was anticipated as the 

universal was not trained on nanoclusters only crystal structures in Materials 

Project datbase. 

To further verify whether the training data from the randomly chosen 10 LMs 

led to better performance in predicting accurate energy rankings of clusters, the 

same evaluation was conducted for n = 7, as depicted in Figure 52. 
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Figure 53. The total energy and atomic forces of 10 randomly selected LMs from 

(AlF3)n where n = 7, optimized using the two specifically trained ML-IPs (a and 

b) and the universal MACE ML-IP (c). The top ML-IP is trained using vibrational 

mode images from the top 10 local minima, while the middle ML-IP is trained 

with images from 10 randomly chosen local minima. The evaluated total energy 

and atomic forces of these LM are compared with the reference PBEsol data. N.B. 
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universal potential was trained on Materials Project database which the total 

energy and forces are obtained from the VASP software. 

 

 The n = 7 ML-IP shows the same performance as the n = 6’s ML-IP in 

predicting atomic forces with 0.0004 eV/Å RMSE. Again, the ML-IP trained with 

the randomly chosen 10 LM data shows the better performance in predicting the 

accurate cluster energy ranking compared with other two. The (a) ML-IP failed to 

identify GM as the GM, whereas the other ML-IPs, (b) and the universal, 

successfully did. The universal predicted the 2nd LM correctly, but the 3rd LM as 

7th LM. On the other hand, (b) could not predict the exact energy ranking, but it 

predicted with the least energy ranking changes after the ML-IP optimisation 

compared to (a) and (c). If (b) could predicts the energy ranking with the small 

energy ranking changes compared to the universal using the (b) for global 

optimisation would have more advantage as it has more versatile trend in 

predicting accurate energy ranking. In other words, after the global optimization 

using a ML-IP we only need to refine the set of top n many LMs, but for the global 

optimisations using the universal potential has to refine the many set of lower LM.   

Interestingly, the n = 6 and n = 7 trained with the (b) predicted the cluster 

energy not far from to each other’s cluster energy, short distance between the 

predicted data point which represents that (b) able to predict accurately. Moreover, 

as we anticipated the ML-IP trained with the (b) randomly chosen 10 LM data 

covers the broader range of PES shows the slightly better performance in 

predicting accurate energy ranking of clusters than the universal potential and the 

ML-IP trained with the top 10 LMs. 
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Figure 54. The total energy and atomic forces of 10 randomly selected LM from 

(AlF3)n for n = 8, 9, and 10, evaluated using the ML-IPs trained with vibrational 

mode images from the randomly chosen 10 LMs within the matching size cluster’s 

PES. The ML-IPs' predictions for total energy and atomic forces of these LMs are 

compared with reference PBEsol data. A smaller panel within the atomic force 

plot for n = 10 provides a zoomed view with the same x-axis range as those for n 

= 8 and 9’s atomic force plot, although not all data points are visible in this smaller 

panel. 
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Similarly to the training conducted for n = 7, we trained the ML-IPs for n = 

8, n = 9, and n = 10 as depicted in panel (b). The optimized energies and atomic 

forces predicted by the ML-IP were then compared against the reference data 

obtained from PBEsol calculations. However, as the cluster size increases, the 

ML-IP struggles to accurately rank the energies and predict the atomic forces of 

the clusters. This decline in accuracy is attributed to the exponential expansion of 

the PES with larger cluster sizes, making it challenging for the ML-IP trained on 

only 10 randomly selected LMs vibrational modes to capture sufficient 

information about the PES during the training process. 

Despite this limitation, the ML-IP remains effective for structure prediction 

in smaller clusters, as demonstrated by the results for n = 6 and n = 7, as well as 

for simpler 1:1 stoichiometric systems, which possess less complex PES compared 

to 1:3 stoichiometric systems. To address the challenges posed by larger cluster 

sizes, we plan to implement an active learning approach. Active learning is a ML 

technique where the model selectively incorporates additional data from regions 

where it is less confident or has made inaccurate predictions. In this context, as 

structure prediction progresses to larger cluster sizes, the ML-IP will be iteratively 

trained with additional data from bigger clusters or from structures where initial 

predictions were inaccurate. This targeted data acquisition enhances the model's 

performance by focusing on the most informative parts of the PES, thereby 

improving its accuracy. 

Consequently, the actively learned ML-IP is expected to achieve higher 

accuracy compared to an ML-IP trained solely on a limited set of cluster sizes. 

This iterative learning process allows the ML-IP to better generalize across the 

expanded PES of larger clusters, enhancing its reliability and predictive capability. 

Figure 52 illustrates the ML-IP-evaluated total energies of the LMs and atomic 

forces compared to the PBEsol reference data, highlighting the effectiveness of 

the active learning strategy in improving the model's performance for larger and 

more complex cluster sizes. 
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Figure 55. The 10 randomly generated structures of n = 10 were optimized using 

the ML-IPs, trained on 10 randomly selected LM from each cluster size’s PES 

ranging from n = 1 to 10 (top row), along with the universal potential (bottom 

row). The total energy and atomic forces of these optimized structures are 

compared with reference data from PBEsol optimizations. 

 

This time we performed global optimisation with 10 sample points for n = 10. 

The randomly generated geometries undergo optimization using the ML-IP, which 

was trained on randomly selected 10 LM of n = 1 – 10 for each cluster size and 

the universal potential. The total energy and atomic forces of the optimized 

structures are then compared with the reference another 10 randomly selected 

PBEsol LMs.  

From the figure 55, it looks like the universal potential significantly 

performed better in predicting correct energy rankings as it shows the linear trend 

in the data points. Even the predicted atomic forces for the universal potential 

calculated values have less RMSE compared to the cluster trained ML-IP. 

However, the universal potential optimised structures are not the true n = 10 which 
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the structures are shown in the figure 56. The universal potential optimised 

randomly generated structures are fragmented as it showed in the figure: 

 

Figure 56. (LHS) The universal potential and (RHS) the ML-IP trained with 10 

randomly chosen clusters for each of n = 1 – 10 optimised n = 10’s randomly 

generated structures. 

 

From the visualised structures in figure 56 which obviously shows that the 

universal potential cannot perform well for the MCDQ global optimisations as the 

universal potential optimised structures are fragmented. On the other hand, the 

ML-IP trained with 10 randomly chosen clusters per cluster sizes (n = 1 – 10) 

could provide n = 10 clusters. More importantly the clusters have the same 

Universal Potential n = 1 – 10 cluster
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configurations as the PBEsol optimised structures. Note that both the universal 

potential and the cluster trained ML-IP which used for the figure 56 was trained 

with 6 Å radial cutoff. The radial cutoff cannot explain the fragmented structures 

in the universal potential optimised structures because the cluster trained ML-IP 

did not predict the fragmented features. 

More research is needed, but the initial comparison suggests that using 

images of vibrational modes as training data could be a promising approach for 

developing ML-IP for nanoclusters. This is based on the comparison between the 

universal potential trained on 1.6 million crystal structures and the vibrational 

modes from the cluster images trained ML-IP. Like other ML-IP training methods 

active learning is inevitable to increase the accuracy, transferability, robustness. 

We found that using the randomly chosen 10 LM vibration images shows 

better accuracy compared to the lowest 10 LM vibration images as training data 

as the randomly chosen 10 LM can provide the different region of PES for training. 

The universal potential was compared with the ML-IP trained on the randomly 

chosen 10 LM. As we anticipated the universal potential shows the poorer 

performance in predicting energy ranking of clusters as the universal potential was 

trained with any clusters, only crystals. At last we performed MCDQ global 

optimisations with 10 sample points which was enough to realise that cluster 

trained ML-IP performs better than the universal potential by visualising the 

optimised clusters: the universal potential predicted fragmented structure 

compared to the cluster trained ML-IP predicted the geometry which is same as 

the PBEsol. Consequently, ML-IP can be trained for complex systems like Ti3N4 

to predict the cluster structures which could relatively effectively trained or fitted 

compared to the IP. 
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7. Conclusion 

In this thesis, we have explored the nanocluster structure prediction through 

a combination of global optimization techniques, interatomic potentials, and ML 

approaches. The primary focus has been on understanding the behaviour and 

properties of AlF3, AlH3, and Au25(Cys)18. This study has aimed to bridge the gap 

between theoretical predictions and experimental observations, offering new 

insights into the structural and chemical characteristics of these nanoclusters. 

Our investigation into AlF3 nanoclusters, ranging from (AlF3)1 to (AlF3)11, 

utilized MCDQ and GA approaches to locate LM on the PES defined by 

interatomic potentials. The Born-Mayer potential parameters for Al and F ions 

were fine-tuned to reproduce the alpha bulk phase of AlF3. The results revealed 

that the (AlF3)6 nanocluster is likely to be the most stable and prevalent in nature, 

highlighting the presence of octahedral corner-sharing SBUs within the cluster. 

These findings are consistent with bulk AlF3 phases, indicating that even at the 

nanoscale, certain structural motifs are preserved. 

AlH3 nanoclusters were analysed using a data mining approach, leveraging 

the predicted configurations of AlF3 clusters. The study found that AlH3 clusters 

exhibit analogous configurations and comparable stability to their AlF3 

counterparts. This suggests that the primary and secondary building units play a 

significant role in defining the structural stability of these nanoclusters. The 

development of a method to determine coordination numbers within the predicted 

nanoclusters was a key aspect of this analysis, although it presented challenges in 

some cases. 

The structural properties of thiolated gold clusters, Au25(Cys)18, were 

examined through global optimization techniques. The study involved modelling 

the atomic structure of naked Au25 and subsequently adding L-cysteine ligands. 

The electronic structure obtained is compared with experimental observation. The 

resulting models provided insights into the structural evolution and stability of 

these clusters, contributing to a deeper understanding of their potential 

applications in catalysis and other fields. 
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One of the major chapter of this thesis was dedicated to the development and 

application of ML-IP, particularly the MACE model. This model was trained 

using images of stable nanoclusters perturbed along vibrational modes to achieve 

near DFT precision with the computational efficiency of IP calculations. The 

MACE model effectively captured the complex interactions within atomic 

systems, ensuring rotational and translational equivariance while accurately 

predicting the energy and properties of various nanoclusters. 

The key findings from this research include the identification of stable 

nanocluster configurations, highlighting the importance of building units in 

determining structural stability, and the successful application of ML models to 

enhance computational efficiency. The effort in finding accurate coordination 

numbers to understand the structural stability in a quantitative approach will help 

to understand the relationship between nanocluster structure, stability, and its 

properties.  

Future work could explore the integration of more advanced ML techniques 

and the inclusion of non-harmonic, mode-coupling effects to further enhance the 

accuracy of ML-IPs. Additionally, experimental validation of the predicted 

nanocluster structures and properties will be crucial for translating these 

theoretical insights into practical applications.  

In conclusion, this thesis has provided a comprehensive framework for the 

prediction and analysis of nanocluster structures, leveraging a blend of traditional 

computational methods and cutting-edge machine learning techniques. The 

insights gained from this research contribute to the broader understanding of 

nanoscale materials and pave the way for future advances in the field. 
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