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Abstract

Background and Purpose: To develop and test a decision tree for predicting contrast

enhancement quality and shape using precontrast magnetic resonance imaging (MRI)

sequences in a large adult-type diffuse glioma cohort.

Methods: Preoperative MRI scans (development/optimization/test sets: n = 31/38/303,

male = 17/22/189, mean age = 52/59/56.7 years, high-grade glioma = 22/33/249) were

retrospectively evaluated, including pre- and postcontrast T1-weighted, T2-weighted,

fluid-attenuated inversion recovery, anddiffusion-weighted imaging sequences. Enhance-

ment prediction decision tree (EPDT)was developed using development and optimization

sets, incorporating four imaging features: necrosis, diffusion restriction, T2 inhomogene-

ity, and nonenhancing tumor margins. EPDT accuracy was assessed on a test set by three

raters of variable experience. True enhancement features (gold standard) were evalu-

ated using pre- and postcontrast T1-weighted images. Statistical analysis used confusion

matrices, Cohen’s/Fleiss’ kappa, and Kendall’sW. Significance threshold was p< .05.

Results: Raters 1, 2, and 3 achieved overall accuracies of .86 (95% confidence interval

[CI]: .81-.90), .89 (95% CI: .85-.92), and .92 (95% CI: .89-.95), respectively, in predicting

enhancement quality (marked, mild, or no enhancement). Regarding shape, defined as

the thickness of enhancing margin (solid, rim, or no enhancement), accuracies were .84

(95% CI: .79-.88), .88 (95% CI: .84-.92), and .89 (95% CI: .85-.92). Intrarater intergroup

agreement comparing predicted and true enhancement features consistently reached

substantial levels (≥.68 [95% CI: .61-.75]). Interrater comparison showed at least mod-

erate agreement (group: ≥.42 [95% CI: .36-.48], pairwise: ≥.61 [95% CI: .50-.72]). Among

the imaging features in the EPDT, necrosis assessment displayed the highest intra- and

interrater consistency (≥.80 [95%CI: .73-.88]).

Conclusion:The proposedEPDThas high accuracy in predicting enhancement patterns of

gliomas irrespective of rater experience.
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INTRODUCTION

Neuro-oncological imaging is fundamentally linked to the use of

gadolinium-based contrast agent (GBCA)-enhanced images, which are

part of the recommended minimum standard magnetic resonance

imaging (MRI) protocol for the imaging of brain tumors.1 Theutilization

of GBCA is state-of-the-art for the diagnosis, preoperative evaluation,

and response assessment.2 The recently updated Response Assess-

ment inNeuro-oncology criteria recognizeGBCA-enhancedMRI as the

most sensitive and reproducible way for assessing brain tumors while

also highlighting the importance of GBCA-free sequences.3 The pres-

ence of contrast enhancement serves as an indicator of an unfavorable

prognosis4,5 and is used to accurately define the resection margins

of adult-type diffuse gliomas.6 While supramarginal resection beyond

GBCA-enhanced tumor margins using GBCA-free sequences, such

as FLAIRectomy,7,8 is potentially associated with better outcomes,

GBCA-enhanced sequence-based evaluation remains the standard and

is preferred by most neurosurgeons. Hence, the identification of con-

trast enhancement is essential for the effective management of these

patients.

There are multiple reasons why patients with brain tumors in prac-

tice may not receive GBCA during their MRI examination. GBCAs

are associated with several putative health and environmental haz-

ardous effects.9 While nephrogenic systemic fibrosis is one of the

well-recognized rare side effects and is mostly limited to linear GBCA

types, the deposition of any GBCA in different body parts, includ-

ing the brain, with currently unknown medical consequences10 raises

concerns in some patients. Special precautions always need to be

taken when using GBCA in vulnerable patient groups, including chil-

dren, as well as pregnant and breastfeeding women.11,12 On a global

scale, GBCA contributes to the already high healthcare costs in neuro-

oncology, which can burden noninsured individuals and the healthcare

sector, particularly in low- and middle-income countries.13–15 GBCA

availability can be problematic, too, in some areas.16 For these reasons,

radiologists face the burden of evaluating scans of neuro-oncological

patients who did not undergo contrast-enhanced MRI without any

knowledgeofhow far this affects their professional judgment.A consis-

tent and valid methodology to predict contrast enhancement in brain

tumors from nonenhanced sequences could improve decision-making.

While artificial intelligence (AI)-derived synthetic postcontrast imaging

may be a possible future alternative,17 it does not serve the needs of

clinical radiologists today, and its approaches lack a comparison with

human performance.

This study’s purpose is, therefore, to develop a decision tree tool

for radiologists to predict contrast enhancement intensity and shape

using GBCA-free MRI sequences and to test its accuracy in compari-

son with contrast-enhanced T1-weighted images in a large adult-type

diffuse glioma cohort. The results of this study will deliver valuable

insights for science dedicated to the advancement of synthetic con-

trast enhancement, as no head-to-head comparative studies exist with

human raters.

METHODS

Study design

This is a retrospective study approved by the institutional medical

ethics review committee (VUmc_2021-0437). Informed consent was

waived.

Study sample

All eligible patients with preoperative MRI scans extracted from our

in-house glioma database (IMAGO) between January 1, 2010, and Jan-

uary 1, 2021, were included. The inclusion criteria were as follows:

(i) adult patients with grade 2-4 adult-type diffuse gliomas according

to the 2021 World Health Organization CNS tumor classification sys-

tem, (ii) last preoperative brain MRI within 1 month before surgery,

and (iii) MRI scan including precontrast T1-weighted, T2-weighted,

fluid-attenuated inversion recovery (FLAIR), diffusion-weighted imag-

ing, and postcontrast T1-weighted sequences. Exclusion criteria were

as follows: (i) pediatric patients, (ii) patients who had explicitly refused

F IGURE 1 Flow chart describes the details of
the patient enrollment. n= number.
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TABLE 1 Overview ofMRI parameters.

Sequence type

Parameters

TE; ms TR; ms TI; ms FA; ms

GE 1.5T Signa HDxt

2D T1w 9-12 520-600 - 90

T2w 98-104 4376-4840 - 90

2D FLAIR 118-120 9002-9502 2250 90

3D FLAIR 96-122 6000-6500 1925-1987 90

DWI (b-1000) 81-105 8000-8500 - 90

2DCE-T1w 9-12 520-600 - 90

3DCE-T1w 3-5 8-13 0-450 12

GE 3TDiscoveryMR750

2D T1w 7.9-9.7 600-731 - 90-125

3D T1w 2 4.7 650 15

T2w 82-88 4889-6872 - 90-111

3D FLAIR 126-135 8000-8002 2331-2347 90

DWI (b-1000) 62-87 4000-7200 - 90

2DCE-T1w 7.9-8.4 600-650 - 90-125

3DCE-T1w 2-3.2 4.6-8.3 450-650 15

Philips 1.5T Achieva

3D T1w 3.3-4.6 6.5-8.7 - 8-10

T2w 100-110 3404-5251 - 90

2D FLAIR 140 9000-

11,000

2800 90

3D FLAIR 286-306 4800 1660 90

DWI (b-1000) 72-119 2674-6448 - 90

3DCE-T1w 3.3-4.6 6.7-8.7 - 8-10

Philips 3T Ingenuity

2D T1w 10 599 - 70

3D T1w 3 7 - 12

T2w 85 2767-3182 - 90

3D FLAIR 279 4800 1650 90

DWI (b-1000) 74-97 3496-6354 - 90

2DCE-T1w 10 599 - 70

3DCE-T1w 3 7 - 12

Siemens 1.5T Avanto

2D T1w 7.8-17 500-718 - 90

3D T1w 4.5-11 700-2700 0-950 8-120

T2w 93-104 2830-5562 - 150-180

2D FLAIR 88-109 8870-9000 2500 150

3D FLAIR 334 6500 2200 120

DWI (b-1000) 90-122 3400-

10,500

- 90

2DCE-T1w 8.7-17 550-718 - 90

3DCE-T1w 2.9-4.5 1900-2700 950-1100 8

(Continues)

TABLE 1 (Continued)

Sequence type

Parameters

TE; ms TR; ms TI; ms FA;ms

Siemens 3TMAGNETOMVida

3D T1w 2.3 2300 900 8

T2w 74 4100-6280 - 150

3D FLAIR 388-430 5000-7700 1650-2400 120

DWI (b-1000) 68 3200 - 90

3DCE-T1w 2.3 2300 900 8

Toshiba 3T Titan3T

2D T1w 8 550 - 80

T2w 90 5500-5526 - 90

3D FLAIR 451 5600 1900 90

DWI (b-1000) 82 7500 - 90

2DCE-T1w 8 550 - 80

3DCE-T1w 2.4 5.7 900 9

Note: The table describes MRI parameters for each of the seven scanners

used in this study. All values are obtained from the Digital Imaging and

Communications inMedicineheaders. Evaluationsweremade in axial plane.

Abbreviations: 1.5T/3T, 1.5 tesla/3 tesla; 2D/3D, 2-/3-dimensional; CE-T1w,

contrast-enhanced T1-weighted; DWI, diffusion-weighted imaging; FA, flip

angle; FLAIR, fluid-attenuated inversion recovery; TE, time of echo; TI, time

of inversion; TR, time of repetition; w, weighted.

consent for their data to be used for scientific research, (iii) absence

of mandatory MRI sequences, (iv) MRI scans with inadequate qual-

ity such as motion artifacts, (v) lack of a confirmed histopathological

diagnosis, and (vi) tumors localized in suprasellar, midline, and cere-

bellar areas. Fifty-six patients were excluded (for details, refer to

Figure 1).

MRI details

Pretherapy MRI scans had been acquired on seven MRI scanners

according to standardized brain tumor imaging protocol,1 including

three 1.5-Tesla (T)MRI and four 3-TMRImachines (see Table 1).

Datasets

Datasets were prepared and pseudonymized by I.W., a fourth-year

PhD student in neuro-oncology. The included patients (n = 372) were

randomly distributed among three sets. Development (n = 31) and

optimization (n = 38) sets were used to develop and improve the

enhancement prediction decision tree (EPDT), respectively. A test

set (n = 303) was used to assess the accuracy of the EPDT in a

larger cohort. RADIANT software (version: 3.4.1.13367, Medixant,

Poznan, Poland, https://www.radiantviewer.com/) was used to access

the pseudonymized scans.
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676 HUMANPREDICTIONOFGLIOMAENHANCEMENT

F IGURE 2 Flow chart describes the preliminary version of the enhancement prediction decision tree.

Enhancement prediction decision tree

The ratings were carried out independently by two raters (V.K.,

11 years of neuroradiology experience; A.A., 5 years of neuroradiology

experience).

In the initial stage, the raters assessed the GBCA-free sequences

of the development set (n = 31) consisting of precontrast sequences,

blinded to diagnosis and contrast-enhanced T1-weighted scans. Based

on previous clinical experience, the raters were tasked to predict the

enhancement quality (pEQ), which is typically qualitatively assessed

frompre- andpostcontrast T1-weighted images. According to the stan-

dard definition of the Visually AcceSAble Rembrandt Images (VASARI)

feature 4,18 pEQ was categorized into three groups: marked-avid

enhancement, mild-barely discernible enhancement, and no evident

enhancement. The raters were also tasked to provide a justifica-

tion and annotation of arguments for their decision for every case

and answer the following questions: (1) Why does the rater antici-

patemarked/mild/no enhancement? (2)Which imaging feature(s) were

instrumental in the decision-making process? The raters needed to

refer to the VASARI features set,18 a standardized vocabulary for

glioma imaging, to guide them in their decision-making process. The

following VASARI features were rated for each case based on expe-

rience and the possibility of evaluation without postcontrast images:

eloquent brain (feature 3), presence of necrosis (modified feature 7),

multifocality (feature 9), T1/FLAIR ratio (feature 10), nonenhancing

tumor margins (feature 13), substantial edema (modified feature 14),

hemorrhage (feature 16), diffusion (feature 17), ependymal invasion

(feature 19), cortical involvement (feature 20), and deep white matter

invasion (feature21). Furthermore, raters had the liberty to includeany

other non-VASARI features based on their clinical expertise that they

deemed instrumental in their decision-making. One week later, the

true enhancement quality (tEQ) was rated independently by the same

two raters using precontrast and additional postcontrast T1-weighted

images side-by-side. Subtraction images were not used, as movement

between the scans might reduce the quality of subtractions. The

tEQ determined by each rater was considered the individual ground

truth.

Upon completing the rating independently, both raters noted

five VASARI features, including the presence of necrosis, multifo-

cality, nonenhancing tumor margins, substantial edema, and diffu-

sion, as instrumental ones in their decision-making process. Among

non-VASARI imaging features, the T2-FLAIR mismatch sign and T2

inhomogeneity were consistently preferred by each of the raters as

helpful in their decision-making process. Subsequently, they reached

a consensus on the primarily selected VASARI and non-VASARI

imaging features by jointly reevaluating all cases to identify the

most predictive features, assessing both the pre- and postcontrast

images. Ultimately, they identified necrosis, nonenhancing tumor mar-

gins, diffusion, and T2 inhomogeneity as the most influential fea-

tures in predicting enhancement quality (EQ), which correlated well

with postcontrast images. Following this, raters proposed the pre-

liminary version of EPDT (Figure 2) by determining the order of

these identified four imaging features based on their subjective joint

evaluation.

In a second step, an optimization set (n= 38) was assessed to deter-

mine the precision of the EPDT and its potential utility in a larger

test set. The same raters (V.K., A.A.) evaluated the pEQ by exclu-

sively considering the imaging features included in the EPDT using

GBCA-free sequences. Additionally, raters were tasked to predict the

thickness of the enhancing margin (pTEM), given its apparent corre-

lation with the presence of necrosis, based on their observation of

the development set results. pTEM was classified into the categories

“rim enhancement” and “solid enhancement.” Tumors with predicted

necrotic components using precontrast MRI sequences were classi-

fied into the “rim pTEM” group, while others were placed in the “solid

pTEM” group. One week later, raters assessed the tEQ and true thick-

ness of enhancing margin (tTEM), the individual ground truth, using

pre- and postcontrast T1-weighted sequences. Considering tTEM, if

an enhancing area covered a central necrotic region, the enhancing

margin was categorized as a “rim.” Conversely, if there was only solid

enhancement without a rim surrounding the necrotic area, the margin

was classified as “solid.” According to the optimization set outcomes,

minor adaptations of the EPDT were allowed before starting the eval-

uation of the test set using the final version of EPDT (Figure 3). The
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F IGURE 3 Flow chart describes the final version of the enhancement prediction decision tree.

only modification made was the incorporation of the pTEM into the

decision tree.

Figures4 and5 showrepresentative imagesdepictingEPDT imaging

features.

Test set

The performance of human raters predicting EQ and thickness of

enhancing margin (TEM) was evaluated in a large cohort (n= 303). The

evaluation was carried out independently by three raters: the same

raters who developed EPDT (V.K., AA.) plus a third raterM.C., a fourth-

year medical student with no prior radiology experience. The third

rater, M.C., underwent iterative EPDT training using the development

and optimization set cohort until their ratingwas deemed adequate. All

raters were providedwith guidematerial for the rating, which included

detailed definitions of the involved imaging features (Table 2) and the

final EPDT flow chart (Figure 3).

Raters used final EPDT, relying on GBCA-free sequences, to assess

pEQ and pTEM, while tEQ and tTEM, representing the individual gold

standard, were evaluated using pre- and postcontrast T1-weighted

images. EPDT predictions and ground truth assessment of contrast-

enhanced T1-weighted scans were performed in two runs. In each run,

the subject order was randomized, and either GBCA-free or GBCA-

enhanced scans were randomly presented for evaluation. The second

run contained the same patients in a differently randomized order and

their unseen respective GBCA-free or GBCA-enhanced datasets. This

approach was chosen to reduce case recognition and mitigate con-

firmation bias, which would be caused by rating all GBCA-free scans

consecutively.

Figure 6 describes the study pipeline.

Histomolecular diagnosis

The histomolecular diagnosis followed the 2021 World Health Orga-

nization CNS tumor classification. Isocitrate dehydrogenase (IDH) sta-

tus was determined through immunohistochemistry, next-generation

sequencing, and/or methylation profiling, and 1p/19q-codeletion sta-

tus was evaluated using loss of heterozygosity (LOH) analysis or

methylation profiling. Gliomas are classified into low grade if they are

grade 2 and high grade if they are grade 3 or 4. IDH-wildtype diffuse

gliomas are considered high grade regardless of histological grade due

to their typically aggressive clinical behavior.

Statistical analysis

The prediction performance of human raters was assessed using con-

fusion matrices. Accuracy, sensitivity, specificity, and positive and

negative predictive values were calculated accordingly. A subgroup

analysis was conducted to investigate the potential relationship

between histomolecular glioma diagnosis and failed enhancement

predictions.

Interrater agreement was analyzed by comparing all three raters

(group) and pairwise. Binary pEQ analysis was also done for the assess-

ment of EQ by combining the categories “marked enhancement” and

“mild enhancement” in the category “presence of enhancement,” as

often the clinical consequence is linked to the presence, not the extent

of enhancement.

Pairwise interrater agreement in unordered features was assessed

with unweighted Cohen’s kappa, complemented with prevalence-

adjusted and bias-adjusted kappa (PABAK),19,20 to show the poten-

tial impact of imbalance in the dataset. Agreement in the ordered
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678 HUMANPREDICTIONOFGLIOMAENHANCEMENT

F IGURE 4 Demonstrative cases for the evaluation of necrosis, T2 inhomogeneity, and nonenhancing tumormargins. Necrosis (a-c;
glioblastoma, IDH-wildtype): right parietal lesion (white arrows) with central necrosis characterized by irregular and thickmargins, and internal
characteristics of T2 hyperintensity (a) and T1 hypointensity (b). Contrast-enhanced image (c) showsmarked rim enhancement. T2 homogeneity
andwell-definedmargins (d-f; glioblastoma, IDH-wildtype): right frontal lesion (white arrows) with homogeneous T2-hyperintense signal and
well-definedmargins (d). There is no signal difference on the contrast-enhanced image (f) compared to the precontrast T1-weighted image (e)
compatible with nonenhancing glioma. T2 inhomogeneity and ill-definedmargins (g-i; glioblastoma, IDH-wildtype): left temporal lesion (white
arrows) with T2 heterogeneous signal and ill-definedmargins (g). Contrast-enhanced image shows a significant signal increase in the posterior part
of the lesion (i) compared to the precontrast T1-weighted image (h), compatible withmarked solid enhancement.

features (diffusion restriction, EQ)was assessedwith linearlyweighted

Cohen’s kappa. This methodology was also used for the intrarater

intergroup agreement analysis, which compares the predicted and

true enhancement features per rater using GBCA-free and GBCA-

enhanced datasets, respectively.

Group interrater agreement in unordered and ordered featureswas

assessed with Fleiss’ kappa and Kendall’s W (coefficient of concor-

dance), respectively.

Agreement valueswere interpreted as follows: .01-.20 slight, .21-.40

fair, .41-.60moderate, .61-.80 substantial, and .81-.99 almost perfect.21

Hotelling’s T2 test was used according to the study by Vanbelle22 to

compare the agreements between GBCA-free and GBCA-enhanced

assessments. No statistical correction was applied to prevent artificial

improvement of the results as this could obscure the significance of

the difference betweenGBCA-free andGBCA-enhanced datasets. The

threshold for significance was p< .05.

R package 4.3.0 was employed for the analyses. Additionally, the

“multiagree” R22 package was used for bootstrapping (1000 itera-

tions) ofmetrics to estimate confidence intervals and forHotelling’s T2

test. The epiR package 2.0.68 (R Foundation for Statistical Computing,

Vienna, Austria, https://CRAN.R-project.org/package=epiR) was used

for PABAK.
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HUMANPREDICTIONOFGLIOMAENHANCEMENT 679

F IGURE 5 Demonstrative cases for the evaluation of diffusion. Facilitated diffusion (a-c; low-grade oligodendroglioma, IDH-mutant and
1p/19q-codeleted): Left frontal lesion (white arrows) with hyperintense signal on b-1000map of diffusion-weighted imaging (DWI) (a) and higher
apparent diffusion coefficient (ADC) signal (b) than the normal cortex. There is no enhancement on the contrast-enhanced image (c). Dubious
diffusion (d-f; glioblastoma, IDH-wildtype): Left frontal lesion (white arrows) with hyperintense signal on DWI (d) and intermediate ADC signal (e)
comparable to the normal cortex. Contrast-enhanced image showsmarked solid enhancement (f). Restricted diffusion (g-i; glioblastoma,
IDH-wildtype): Right temporal lesion (white arrows) with hyperintense signal on DWI (g) and lower ADC signal (h) than the normal cortex.
Contrast-enhanced image showsmarked solid enhancement in the corresponding area (i).

RESULTS

Development and optimization sets

The application of the preliminary version of EPDT improved pEQ

overall accuracy in the optimization set (n = 38, male = 22, mean

age= 59± 15.9 years, high-grade [grade 3/4]= 33, IDH-wildtype= 32,

1p/19-codeleted = 1) round compared with the development set

(n = 31, male = 17, mean age = 52 ± 14.9 years, high-grade [grade

3/4]=22, IDH-wildtype=15, 1p/19-codeleted=7) round, from .68/.64

to .95/.97, respectively, for raters 1 and 2. The results for binary pEQ

were .84/.74 and .97/.97, respectively.

Test set: Prediction performance of human raters

Table 3 describes the cohort characteristics of the test set.

The overall accuracy of the pEQ (marked, mild, or no enhancement)

was .86 (95% CI: .81-.90), .89 (95% CI: .85-.92), and .92 (95% CI: .89-

.95) for raters 1, 2, and 3, respectively. In particular, mild enhancement

was often falsely classified (Table 4). The results improvedwhen binary

pEQ (“presence and absence of enhancement”) was assessed: .89

(95% CI: .85-.92), .92 (95% CI: .89-.95), and .93 (95% CI: .89-.95). The

overall accuracy of pTEM (solid, rim, or no enhancement) was .84

(95% CI: .79-.88), .88 (95% CI: .84-.92), and .89 (95% CI: .85-.92) for

raters 1, 2, and 3, respectively. Table 4 lists rater-based confusion
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680 HUMANPREDICTIONOFGLIOMAENHANCEMENT

F IGURE 6 Flowchart demonstrates all steps of the study design. GBCA, gadolinium-based contrast agent; n, number; VASARI, Visually
AcceSAble Rembrandt Images.

TABLE 2 Definition of imaging features involved in enhancement prediction decision tree including enhancement quality and thickness of
enhancingmargin.

Imaging features Definitions

Necrosis, modified VASARI feature 7a (yes, no) Region displaying irregular and/or thickmargins, accompanied by imaging features of T1

hypointensity, T2 hyperintensity, and elevated ADC values resembling fluid

Areas of a cyst, a cluster of microcysts, or a dilated perivascular space should be excluded.

Diffusion, VASARI feature 17a (no/facilitated,

dubious, yes/restricted)

No/facilitated: high or low signal intensity on b-1000map of DWIwith relevant high ADC values

compared to the normal brain parenchyma

Dubious: high signal intensity on b-1000map of DWIwith relevant normal brain parenchyma-like

ADC values

Yes/restricted: high signal intensity on b-1000map of DWIwith relevant lowADC values

compared to the normal brain parenchyma

Areas with lowADC signal intensity related to necrotic/hemorrhagic components should be

excluded.

T2 signal inhomogeneity (no/homogeneous,

yes/heterogeneous)

Homogeneous: almost the same signal intensity throughout the tumor except for the lesion rim,

vessels (dark dots or lines), cysts, perivascular spaces, and probably infiltrated but

normal-appearing cortex compared to the other tumor parts

Heterogeneous: mainly different signal intensity, including hypointense, isointense, and/or

hyperintense signal compared to normal brain cortex, throughout the tumor

Nonenhancing tumormargins, VASARI feature

13a (well-defined, ill-defined)

Well defined: tumormargins should be consideredwell-defined if they can easily be traced

throughout almost the entire tumor (>90% of the tumor volume)

Ill-defined: fuzzy, blurredmargins or margins followingwhitematter tracts and difficult to

differentiate from surrounding edema should be considered ill-defined

Enhancement quality, VASARI feature 4a

(marked, mild, no)

Qualitative degree of contrast enhancement is defined as having all or portions of the tumor that

demonstrate a higher signal on the postcontrast T1-weighted images compared to precontrast

T1-weighted images

Marked enhancement: obvious tissue enhancement characterized by the significantly higher signal

on the postcontrast T1-weighted images compared to precontrast T1-weighted images

Mild enhancement: when a barely discernible but unequivocal degree of enhancement is present

relative to precontrast images

No enhancement: no difference between precontrast and postcontrast images

Thickness of enhancingmargin, modified VASARI

feature 11a (rim, solid)

Rim: if there is an enhancing rim around central necrosis, the grade should be rim

Solid: if there is only solid enhancement and no rim, the grade should be solid

Note: The table describes the definition of imaging features involved in enhancement prediction decision tree including enhancement quality and thickness

of enhancingmargin.

Abbreviations: ADC, apparent diffusion coefficient; DWI, diffusion-weighted imaging; VASARI, Visually AcceSAble Rembrandt Images.
ahttps://wiki.cancerimagingarchive.net/display/Public/VASARI±Research±Project18
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matrices and sensitivity, specificity, and positive and negative predic-

tive values.

Subgroup analysis exploring failed predictions

Subgroup analysis revealed that failed predictions of EQandTEMwere

much more frequent in low-grade (grade 2) and IDH-mutant gliomas

than in high-grade (grade 3/4) and IDH-wildtype counterparts. Table 5

provides thedetails for rater 1 as anexample. Therefore,we reassessed

the performance of the prediction accuracy of EPDT after excluding

oligodendrogliomas, as these were most frequently falsely classified.

The overall accuracy of pEQ improved to .89 (95%CI: .85-.93), .91 (95%

CI: .87-.95), and .94 (95% CI: .91-.97) for raters 1, 2, and 3, respec-

tively. Similarly, the results for binary pEQ (.92 [95% CI: .88-.95], .95

[95%CI: .91-.97], and .94 [95%CI: .91-.97]) and pTEM (.87 [95%CI: .82-

.91], .91 [95% CI: .87-.94], and .91 [95% CI: .87-.94]) also increased (for

details, see Table 6).

Inter- and intrarater agreement for EQ and TEM

Group interrater agreement analysis (Figure 7) revealed moder-

ate agreement for both pEQ and tEQ (Kendall’s W .42 [95%

CI: .36-.48] and .55 [95% CI: .48-.62]) and substantial and almost

perfect agreement for the pTEM and tTEM, respectively (Fleiss’

kappa .66 [95% CI: .60-.71] and .83 [95% CI: .79-.88]). The results

were further improved for both pEQ and tEQ (Fleiss’ kappa .65

[95% CI: .57-.73] and .87 [95% CI: .82-.93]) when binary analysis

for EQ (enhancing/nonenhancing) was applied. Pairwise interrater

agreements were substantial (≥.61 [95% CI: .50-.72]) and almost

perfect (≥.82 [95% CI: .75-.89]) for the predicted and true fea-

tures, respectively (see Table 7). Comparison analysis of agreements

showed significant differences between the evaluation agreements

of predicted and true features (compare Figure 7 and Table 7 for

details). Intrarater intergroup agreement analysis comparing pre-

dicted and true enhancement features per rater demonstrated sub-

stantial to almost perfect agreements (≥.68 [95% CI: .61-.75]) for

each rater without significant differences in agreement among all

raters (p-values: EQ .10, binary EQ .22, TEM .07) (see Figure 8 and

Table 8).

Agreement analysis for single imaging features
involved in EPDT

Group interrater agreement analysis revealed almost perfect agree-

ment for necrosis identification in both GBCA-enhanced and GBCA-

free datasets (Fleiss’ kappa .85 [95% CI: .80-.90] and .83 [95% CI: .78-

.88]). The agreement for other imaging features was moderate (≥.43

[95% CI: .28-.57]). Notably, the availability of postcontrast images did

not significantly influence imaging feature agreement (p-values: necro-

sis .49, diffusion restriction .81, T2 inhomogeneity .63, nonenhancing

TABLE 3 Themain characteristics of the test set.

Age, years± SD 56.7± 14.2

Female/male 114 (38%)/189 (62%)

Tumor location Frontal: n= 114; parietal: n= 62; temporal:

n= 87; occipital: n= 16; insula: n= 14;

thalamus: n= 8; corpus callosum: n= 2

Tumor side Right: n= 153; middle: n= 7; left: n= 143

Histological grade LGG: n= 54 HGG: n= 249

IDHmutation status IDHm: n= 82 IDHwt: n= 221

1p/19q co-deletion

status

1p/19q-codeleted:

n= 34

1p/19q-non-

codeleted:

n= 269

(IDHm n= 48,

IDHwt n= 221)

Note: The table describes the primary characteristics of the test set

(n = 303), encompassing patient demographics, descriptive imaging fea-

tures, and histopathological results of the included adult-type diffuse

gliomas.

Abbreviations: HGG, high-grade (grade 3/4) glioma; IDHm/wt, isocitrate

dehydrogenase mutant/wildtype; LGG, low-grade (grade 2) glioma; n, num-

ber; SD, standard deviation.

tumor margins .65) (see Figure 9 and Table 9). A pairwise interrater

agreement was almost perfect for necrosis (≥.80 [95% CI: .73-.88])

and fair to moderate for other features (≥.33 [95% CI: .25-.41]) in

both GBCA-enhanced and GBCA-free datasets. However, the results

for T2 inhomogeneity and nonenhancing tumor margins increased to

substantial-almost perfect (≥.71) level after applying PABAK analy-

sis (Table 10). Intrarater agreement in the assessment of necrosis was

almost perfect (≥.82 [95%CI: .75-.89]) for all three raters. This analysis

in the evaluation of other features showed substantial-almost perfect

agreements (≥.66 [95% CI: .55-.77]) for raters 2 and 3 while being fair

tomoderate (≥.35 [95%CI: .18-.53]) for rater 1. ApplyingPABAKanaly-

sis revealedbetter agreement for T2 inhomogeneity andnonenhancing

tumormargins (≥.78; Figure 10 and Table 11).

Figure 11 shows case examples of successful and failed enhance-

ment predictions based on necrosis assessment.

DISCUSSION

MRI contrast enhancement presence and pattern are commonly used

diagnostic and prognostic pillars in oncological neuroradiology. The

EPDT algorithm presented here demonstrated that predicting EQ

and TEM with GBCA-free MRI sequences is feasible with high accu-

racy regardless of the rater’s experience level. This underscores its

independent applicability in clinical settings, even for less-trained read-

ers. Intrarater intergroup agreement comparing predicted and true

enhancement features was consistently substantial for all raters with-

out improvement when using GBCA-enhanced images. It suggests that

assessments do not significantly rely on GBCA-enhanced images to

evaluate glioma enhancement.
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HUMANPREDICTIONOFGLIOMAENHANCEMENT 687

F IGURE 7 Group interrater agreement analysis in true (red color bars) and predicted (green color bars) enhancement quality and thickness of
enhancingmargin among all three raters. Red stars show significant differences between evaluation agreements of true and predicted datasets.
Predicted enhancement features, representing the index test, are based on assessing enhancement prediction decision tree using
gadolinium-based contrast agent (GBCA)-free dataset (precontrast T1-weighted, T2-weighted, fluid-attenuated inversion recovery,
diffusion-weighted imaging). True enhancement features, representing the individual reference standard, are based on assessing the
GBCA-enhanced dataset (GBCA-free and postcontrast T1-weighted sequences).

F IGURE 8 Intrarater intergroup agreement analysis shows the comparison between true and predicted enhancement features per rater.
Prevalence-adjusted and bias-adjusted kappa (PABAK) values (red triangles) are comparable with unweighted Cohen’s kappa for thickness of
enhancingmargin, indicating a negligible impact of imbalance on the agreementmetrics. However, there are increased PABAK values (red
triangles) compared to Cohen’s kappa for enhancement quality (binary), indicating the imbalance in the dataset. Predicted enhancement features,
representing the index test, are based on assessing enhancement prediction decision tree using gadolinium-based contrast agent (GBCA)-free
dataset (precontrast T1-weighted, T2-weighted, fluid-attenuated inversion recovery, diffusion-weighted imaging). True enhancement features,
representing the individual reference standard, are based on assessing the GBCA-enhanced dataset (GBCA-free and postcontrast T1-weighted
sequences).

There is hardly any literature studying enhancement prediction

using human evaluation methods. Especially for unsupervised AI

approaches, it is, however, relevant to know the comparative perfor-

mance of humans in predicting contrast enhancement and to gain

insight into the potential image features triggering decisions. One

machine-learning radiomics model predicted glioma EQ using T2-

FLAIR images,23 which demonstrated high accuracy levels (area under

the curve: .81 [95% CI: .71-.90]) in an external validation cohort.

Despite its high performance, this method might not outperform

human raters using the EPDT algorithm presented here.

The method presented in this study demonstrates the predic-

tive capabilities of human rating of GBCA-free data in a systematic

way using a proposed EPDT algorithm and documents its perfor-

mance for both enhancement features of pEQ and pTEM in a general

adult-type diffuse glioma population and different subgroups. The

outcomes showed that EPDT works better for high-grade and IDH-

wildtype gliomas compared to low-grade and IDH-mutant gliomas.

Calabrese et al,24 who reported an AI-based approach for synthetic

contrast enhancement in low-grade and high-grade gliomas, also noted

a histology-dependent factor in enhancement prediction, with lower
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688 HUMANPREDICTIONOFGLIOMAENHANCEMENT

TABLE 7 Pairwise interrater agreement results for the assessment of the true/predicted enhancement.

EQ/TEM Raters 1 and 2 Raters 1 and 3 Raters 2 and 3

tEQa .90; 95%CI: .86-.95 .89; 95%CI: .85-.94 .92; 95%CI: .87-.96

pEQa .66; 95%CI: .57-.78 .70; 95%CI: .61-.79 .61; 95%CI: .51-.71

p-valueb <.001 <.001 <.001

tEQ (binary)

-c .87; 95%CI: .79-.94 .87; 95%CI: .80-.94 .88; 95%CI: .82-.95

-d .91 .91 .92

pEQ (binary)

-c .68; 95%CI: .58-.78 .68; 95%CI: .58-.77 .61; 95%CI: .50-.72

-d .78 .76 .74

p-valueb <.001 <.001 <.001

tTEM

-c .84; 95%CI: .78-.91 .82; 95%CI: .75-.89 .84; 95%CI: .78-.89

-d .84 .82 .83

pTEM

-c .69; 95%CI: .62-.76 .64; 95%CI: .57-.71 .64; 95%CI: .57-.72

-d .68 .64 .64

p-valueb <.001 <.001 <.001

Note: The table describes the pairwise interrater agreement results for enhancement features based on assessments of gadolinium-based contrast agent

(GBCA)-enhanced and GBCA-free datasets. Predicted enhancement features, representing the index test, are based on assessing enhancement predic-

tion decision tree using GBCA-free dataset (precontrast T1-weighted, T2-weighted, fluid-attenuated inversion recovery, diffusion-weighted imaging). True

enhancement features, representing the individual reference standard, are based on assessing the GBCA-enhanced dataset (GBCA-free and postcontrast

T1-weighted sequences).

Abbreviations: CI, confidence interval; pEQ/tEQ, predicted/true enhancement quality; pTEM/tTEM, predicted/true thickness of enhancingmargin.
aWeighted Cohen’s kappa.
bComparison of the agreements in true- and predicted EQ/TEM.
cUnweighted Cohen’s kappa.
dPrevalence-adjusted and bias-adjusted kappa.

F IGURE 9 Group interrater agreement analysis in imaging
features involved in enhancement prediction decision tree based on
gadolinium-based contrast agent (GBCA)-enhanced and GBCA-free
datasets among all three raters. There are no significant differences
between evaluation agreements of GBCA-free and GBCA-enhanced
datasets. GBCA-free dataset includes precontrast T1-weighted,
T2-weighted, fluid-attenuated inversion recovery, and
diffusion-weighted imaging sequences. GBCA-enhanced dataset
includes GBCA-free and postcontrast T1-weighted sequences.

Dice scores in low-grade gliomas (.58 [95% CI: .49-.68] vs. .65 [95%

CI: .63-.67]). Generally, studies on synthetic GBCA-enhanced image

generation have shownpromising results.24–26 Kleesiek et al25 demon-

strated a sensitivity and specificity of over 90% in qualitative and

quantitative evaluations of their model, comparing the generated

enhancement maps with standard contrast-enhanced T1-weighted

images. Interestingly, despite a totally different approach than ours,

they also observed a failure of their model with wrongly predicted

mildly enhancing tumors as well as the misshaping of the predicted

enhancingmargin, which we defined as pTEM.

In our proposed human-based EPDT algorithm, the predictive per-

formance did not decrease as the experience level of the raters

decreased, with the trained student rater (rater 3) showing at least

noninferior accuracy and consistency. This may reflect the structured

approach facilitated by EPDT, which mainly utilizes VASARI features, a

standardized glioma vocabulary.18 Furthermore, raters received com-

prehensive guidance on all VASARI and non-VASARI features involved

in the decision tree. The experience of the trained radiologists may

have caused a less pertinent adherence to the decision tree definitions.

Thepertinent applicationof the standardizeddefinitions likely reduced

the impact of experience levels on decision-making. These results align
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HUMANPREDICTIONOFGLIOMAENHANCEMENT 689

TABLE 8 Intrarater intergroup agreement results for assessment of the true/predicted enhancement.

tEQ/tTEM vs.

pEQ/pTEM Rater 1 Rater 2 Rater 3

EQa .70; 95%CI: .61-.79 .72; 95%CI: .63-.81 .81; 95%CI: .74-.88

p-valueb .10

EQ (binary)

-c .69; 95%CI: .60-.79 .75; 95%CI: .66-.85 .80; 95%CI: .71-.88

-d .78 .85 .85

p-valueb .22

TEM

-c .68; 95%CI: .61-.75 .77; 95%CI: .70-.83 .78; 95%CI: .71-.85

-d .68 .76 .78

p-valueb .07

Note: The table describes the intrarater intergroup agreement results comparing predicted and true enhancement features per rater. Predicted enhance-

ment features, representing the index test, are based on assessing enhancement prediction decision tree using gadolinium-based contrast agent (GBCA)-free

dataset (precontrast T1-weighted, T2-weighted, fluid-attenuated inversion recovery, diffusion-weighted imaging). True enhancement features, representing

the individual reference standard, are based on assessing the GBCA-enhanced dataset (GBCA-free and postcontrast T1-weighted sequences).

Abbreviations: CI, confidence interval; pEQ/tEQ, predicted/true enhancement quality; pTEM/tTEM, predicted/true thickness of enhancingmargin.
aWeighted Cohen’s kappa.
bComparison of the agreements among all raters.
cUnweighted Cohen’s kappa.
dPrevalence-adjusted and bias-adjusted kappa.

F IGURE 10 Intrarater agreement analysis in the assessment of
imaging features involved in enhancement prediction decision tree
based on the evaluations of gadolinium-enhanced contrast agent
(GBCA)-enhanced and GBCA-free datasets for each rater.
Prevalence-adjusted and bias-adjusted kappa (PABAK) values (red
triangles) are comparable with Cohen’s kappa for the necrosis,
indicating a negligible impact of imbalance on the agreementmetrics.
However, there are increased PABAK values (red triangles) compared
to Cohen’s kappa for the T2 inhomogeneity and nonenhancing tumor
margins, indicating the imbalance in the dataset. None of the features
shows significant differences in agreement among the raters.
GBCA-free dataset includes precontrast T1-weighted, T2-weighted,
fluid-attenuated inversion recovery, and diffusion-weighted imaging
sequences. GBCA-enhanced dataset includes GBCA-free and
postcontrast T1-weighted sequences.

with the literature,27–29 highlighting the benefits of standardization in

radiological image assessment, diminishing the reliance on experience

level across diverse clinical settings. Furthermore, both group and pair-

wise interrater reliability for predicted enhancement were moderate

TABLE 9 Group interrater agreement results for assessment of
single imaging features.

Features involved in

EPDT

GBCA-enhanced

dataset GBCA-free dataset

Necrosisa .85; 95%CI: .80-.90 .83; 95%CI: .78-.88

p-valueb .49

Diffusion restrictionc .52; 95%CI: .46-.56 .52; 95%CI: .47-.56

p-valueb .81

T2 inhomogeneitya .46; 95%CI: .31-.60 .43; 95%CI: .28-.57

p-valueb .63

Nonenhancing tumor

marginsa
.47; 95%CI: .36-.58 .44; 95%CI: .34-.56

p-valueb .65

Note: The table describes the interrater agreement results for single imag-

ing features based on assessments of gadolinium-based contrast agent

(GBCA)-enhanced and GBCA-free datasets among all raters. GBCA-free

dataset includes precontrast T1-weighted, T2-weighted, fluid-attenuated

inversion recovery, and diffusion-weighted imaging sequences. GBCA-

enhanced dataset includes GBCA-free and postcontrast T1-weighted

sequences.

Abbreviations: CI, confidence interval; EPDT, enhancement prediction

decision tree.
aFleiss’ kappa.
bComparison of the agreements between the assessments of GBCA-

enhanced and GBCA-free datasets.
cKendall’sW.

or better, indicating the potential applicability and generalizability of

the EPDT algorithm. The reproducible application of EPDT also by less

specialized personnel is promising for its use in situationswhereGBCA
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690 HUMANPREDICTIONOFGLIOMAENHANCEMENT

F IGURE 11 Demonstrative cases illustrating successful (green) versus failed (red) prediction of glioma enhancement based on the evaluation
of necrosis using the gadolinium-based contrast-free dataset. Successful prediction of both enhancement quality (pEQ) and thickness of enhancing
margin (pTEM; a-c; glioblastoma, IDH-wildtype): T2-weighted (a) and precontrast T1-weighted (b) images show signal characteristics of central
necrosis (white arrows) within the left frontal lesion. The pEQ and pTEM aremarked and rim, respectively, based on the enhancement prediction
decision tree (EPDT). The contrast-enhanced T1-weighted image (c, white arrow) confirms the prediction results showingmarked rim
enhancement surrounding the necrotic part of the tumor. Failed prediction of enhancement patterns (d-f; high-grade oligodendroglioma,
IDH-mutant and 1p/19q-codeleted): Right temporal lesion (white arrows) with T2 (d) and T1 (e) signal characteristics of small tumor necrosis. The
pEQ and pTEM are “marked” and “rim” enhancement, respectively, based on EPDT. However, contrast-enhanced T1-weighted image (f) showed no
increase in the T1 signal intensity compared to precontrast T1-weighted image (e) compatible with nonenhancing glioma. Failed prediction of
enhancement patterns (g-i; low-grade astrocytoma, IDH-mutant): Left thalamic lesion (white arrows) with T2 (g) and T1 (h) signal characteristics of
small multiple necrotic areas in the tumor. The pEQ and pTEM aremarked and rim, respectively, based on EPDT. However, the lesion shows amild
solid enhancement pattern on the contrast-enhanced T1-weighted image (i, white arrow).

administration is not available, for example, in radiology units of low-

andmiddle-income countries.

When introducing a new diagnostic tool, such as the EPDT, achiev-

ing high interrater agreement is crucial to guarantee consistency

and ensure that decision criteria are easily reproducible. Various

studies30–33 found high interrater agreements when assessing the

EPDT’s most consistent feature, necrosis, with kappa values ranging

from .71 to .96, thus supporting our findings. The remaining three fea-

tures of the EPDT (diffusion restriction, T2 inhomogeneity, and nonen-

hancing tumor margin) yielded fair to moderate interrater agreement

outcomes in regular tests. The PABAK analysis, which compensates

for unbalanced group comparisons, showed that the results were, in

fact, even better, with a level ranging from substantial to almost per-

fect, correcting the potential influence of dataset imbalance. Prior
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HUMANPREDICTIONOFGLIOMAENHANCEMENT 691

TABLE 10 Pairwise interrater agreement results for assessment of single imaging features.

EPDT imaging features Raters 1 and 2 Raters 1 and 3 Raters 2 and 3

Necrosis_GBCA-enhanced

-a .85; 95%CI: .78-.91 .84; 95%CI: .77-.90 .86; 95%CI: .80-.92

-b .87 .86 .87

Necrosis_GBCA-free

-a .87; 95%CI: .81-.93 .80; 95%CI: .73-.88 .82; 95%CI: .75-.88

-b .88 .82 .83

p-valuec .63 .42 .26

Diffusion restriction_GBCA-enhancedd .42; 95%CI: .34-.50 .33; 95%CI: .25-.41 .42; 95%CI: .33-.52

Diffusion restriction_GBCA-freed .42; 95%CI: .34-.49 .39; 95%CI: .31-.47 .37; 95%CI: .28-.47

p-valuec .94 .17 .21

T2 inhomogeneity_GBCA-enhanced

-a .41; 95%CI: .24-.59 .39; 95%CI: .22-.57 .58; 95%CI: .40-.76

-b .82 .81 .88

T2 inhomogeneity_GBCA-free

-a .43; 95%CI: .27-.60 .38; 95%CI: .22-.55 .49; 95%CI: .30-.67

-b .80 .77 .87

p-valuec .84 .90 .36

Nonenhancing tumor

margins_GBCA-enhanced

-a .43; 95%CI: .28-.57 .47; 95%CI: .34-.61 .49; 95%CI: .37-.62

-b .74 .73 .71

Nonenhancing tumormargins_GBCA-free

-a .36; 95%CI: .20-.52 .36; 95%CI: .21-.51 .58; 95%CI: .45-.70

-b .74 .71 .78

p-valuec .46 .15 .24

Note: The table describes the pairwise interrater agreement results for single imaging features based on assessments of gadolinium-based contrast agent

(GBCA)-enhanced and GBCA-free datasets. GBCA-free dataset includes precontrast T1-weighted, T2-weighted, fluid-attenuated inversion recovery, and

diffusion-weighted imaging sequences. GBCA-enhanced dataset includes GBCA-free and postcontrast T1-weighted sequences.

Abbreviations: CI, confidence interval; EPDT, enhancement prediction decision tree.
aUnweighted Cohen’s kappa.
bPrevalence-adjusted and bias-adjusted kappa.
cComparison of the agreements betweenGBCA-enhanced and GBCA-free assessments.
dWeighted Cohen’s kappa.

studies reported agreement values for these imaging features, ranging

from .36 to .85 for diffusion31–34 and .77 to .96 for nonenhancing tumor

margin.32,33,35

The suggested EPDT algorithm could serve as a valuable tool in

clinical settings for directing the pretreatment care of gliomas, par-

ticularly for patients at higher risk who cannot receive GBCAs due

to various factors or who decline intravenous contrast administration.

However, in its current version, it should not be used as a substitute

for GBCA-enhanced imaging for all patients undergoingMRI examina-

tion. The next step is to study its applicability in an external validation

cohort aswell as its performance inmore complexdiagnostic scenarios,

for example, when applied to other types of brain lesions than adult-

type diffuse gliomas or when predicting enhancement characteristics

in posttreatment scenarios, such as distinguishing treatment-related

changes from tumor progression. The posttreatment situation can lead

to confounders, especially, for example, fromtherapy-induceddiffusion

restriction, an imaging feature of the EPDT in its current version.

This study has several limitations. The retrospective study design

involved a single center as the main inherent constraint, poten-

tially impacting the study’s overall generalizability and external valid-

ity, even though multiple scanners with variable imaging protocols

were employed. The datasets were unbalanced between enhancing

and nonenhancing tumors. However, their proportions reflect those

encountered in real-life conditions within the epidemiological context.

Additionally, the inclusion of only treatment-naïve adult-type diffuse

gliomas in this study leaves unanswered questions regarding the per-

formance of the proposed decision tree in posttreatment settings

or for other tumor types, such as grade 1 and pediatric gliomas or
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692 HUMANPREDICTIONOFGLIOMAENHANCEMENT

TABLE 11 Intrarater agreement results for assessment of single imaging features.

EPDT imaging features Rater 1 Rater 2 Rater 3

Necrosis

-a .82; 95%CI: .75-.89 .91; 95%CI: .87-.96 .83; 95%CI: .77-.90

-b .84 .92 .85

p-valuec .10

Diffusion restrictiond .56; 95%CI: .49-.64 .75; 95%CI: .67-.82 .76; 95%CI: .70-.82

p-valuec .10

T2 inhomogeneity

-a .45; 95%CI: .30-.60 .90; 95%CI: .79-.99 .67; 95%CI: .51-.82

-b .78 .97 .91

p-valuec .22

Nonenhancing tumormargin

-a .35; 95%CI: .18-.53 .86; 95%CI: .77-.93 .66; 95%CI: .55-.77

-b .78 .93 .80

p-valuec .07

Note: The table describes the intrarater agreement results for single imaging features between assessments of gadolinium-based contrast agent (GBCA)-

enhanced and GBCA-free datasets per rater. GBCA-free dataset includes precontrast T1-weighted, T2-weighted, fluid-attenuated inversion recovery, and

diffusion-weighted imaging sequences. GBCA-enhanced dataset includes GBCA-free and postcontrast T1-weighted sequences.

Abbreviations: CI, confidence interval; EPDT, enhancement prediction decision tree.
aUnweighted Cohen’s kappa.
bPrevalence-adjusted and bias-adjusted kappa.
cComparison of the agreements among all raters.
dWeighted Cohen’s kappa.

infratentorial/suprasellar tumors. Perfusion-weighted imaging, essen-

tial for glioma evaluation, was not assessed in this study due to

inconsistent availability of arterial spin labeling (ASL), a GBCA-free

alternative to the routinely applied GBCA-based perfusion technique

of dynamic susceptibility contrast (DSC)-MRI. Considering the poten-

tial relation between increased perfusion and enhancement, perfusion

imaging data, particularly ASL, should be evaluated for its contribution

to the accuracy of the EPDT. Although EPDT aims to provide a reason-

ably easy-to-use clinical tool, it might not fully cover all variations in

real-world imaging, leading to some differences between the raters or

in repeated evaluations. Further validation studies encompassingmore

raters, different tumors, various therapy stages, and advanced imag-

ing techniques, both GBCA-free and GBCA-enhanced, such as ASL,

MR spectroscopy, DSC-MRI, or dynamic contrast-enhanced perfusion

MR, are crucial to translating the findings of this study. Moreover,

identifying the exact location of predicted enhancing regions, multifo-

cality, or satellites, as well as assessing the impact of T1-hyperintense

or gradient-echo susceptibility regions on the evaluation, was not

the focus of this study, paving the way for potential new research

directions.

In conclusion, this study proposes an enhancement intensity

and shape prediction decision tree utilizing visual imaging features

assessed through GBCA-free MRI sequences. The outcomes demon-

strate robust and highly accurate predictive performance of enhance-

ment features even in inexperienced raters. Furthermore, this study

provides relevant insights for AI study designs about predicted post-

GBCA imaging andopportunities for direct applicationsby radiologists.
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