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Abstract

Image Quality Transfer (IQT) aims to enhance the contrast and resolution of low-quality1

medical images, e.g. obtained from low-power devices, with rich information learned from2

higher quality images. In contrast to existing IQT methods in the literature which adopt3

supervised learning frameworks, in this work, we propose two novel formulations of the IQT4

problem. The first approach uses an unsupervised learning framework, whereas the second5

is a combination of both supervised and unsupervised learning. The unsupervised learning6

approach considers a sparse representation (SRep) and dictionary learning model, which7

we call IQT-SRep, whereas the combination of supervised and unsupervised learning ap-8

proach is based on deep dictionary learning (DDL), which we call IQT-DDL. The IQT-SRep9

approach trains two dictionaries using a sparse representation model using pairs of low-10

and high-quality volumes. Subsequently, the sparse representation of a low-quality block,11

in terms of the low-quality dictionary, can be directly used to recover the corresponding12

high-quality block using the high-quality dictionary. On the other hand, the IQT-DDL ap-13

proach explicitly learns a high-resolution dictionary to upscale the input volume, while the14

entire network, including high dictionary generator, is simultaneously optimised to take full15

advantage of deep learning methods. The two models are evaluated using a low-field mag-16

netic resonance imaging (MRI) application aiming to recover high-quality images akin to17

those obtained from high-field scanners. Experiments comparing the proposed approaches18

against state-of-the-art supervised deep learning IQT method (IQT-DL) identify that the19

two novel formulations of the IQT problem can avoid bias associated with supervised meth-20

ods when tested using out-of-distribution data that differs from the distribution of the data21

the model was trained on. This highlights the potential benefit of these novel paradigms22

for IQT.23
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1. Introduction27

Image Quality Transfer (IQT) Alexander et al. (2014, 2017); Lin et al. (2019); Tanno et al.28

(2021); Lin et al. (2021, 2022); Kim et al. (2023) is a machine learning technique that is used29

to enhance the resolution and contrast of low-quality clinical data using rich information in30

high-quality images. For example given an image from a standard hospital scanner or rapid31

acquisition protocol, we might estimate the image we would have got from the same subject32

using a high-power experimental scanner available only in specialist research centres or a33

richer acquisition protocols too lengthy to run on every patient. IQT is a vital component of34

efforts to democratise the capabilities of high power rare experimental systems broadening35

the accessibility e.g. to lower and middle income countries Anazodo et al. (2022). This36

technique learns mappings from low-quality (e.g. clinical) to high-quality (e.g.experimental)37

images exploiting the similarity of image structure across subjects, regions, modalities, and38

scales. The mapping may then operate directly on low-quality images to estimate the39

corresponding high-quality images. Early work Alexander et al. (2017); Blumberg et al.40

(2018); Tanno et al. (2021) focused on diffusion MRI and showed remarkable ability to41

enhance both contrast and resolution and enabled tractography to recover small pathways42

impossible to reconstruct at the acquired resolution. Recent work Lin et al. (2021) extends43

the idea to standard structural MRI, particularly targeting application to low-field MRI44

systems. IQT technique Alexander et al. (2017) differs from super-resolution in computer45

vision Lau et al. (2023); Zhou et al. (2020, 2021); Li et al. (2024) in several key aspects.46

In general super-resolution aim to up-sample an image, whereas IQT aims to transfer the47

quality of information from an image to the other. This means that IQT is not limited48

to increasing the spatial resolution of images. While super-resolution techniques primarily49

focus on enhancing the spatial resolution, IQT also aims to improve the image contrast.50

This dual enhancement is crucial for medical imaging applications where both resolution51

and contrast are necessary for accurate diagnosis and analysis. Moreover, super-resolution52

techniques are generally used to upsample images, making them appear sharper and more53

detailed. In contrast, IQT is specifically designed to transfer the quality from high-quality54

images to low-quality images. This is particularly beneficial in medical imaging, where55

high-quality images from advanced scanners are used to enhance the quality of images56

obtained from lower-power or less advanced scanners. Lastly, IQT differs from modality57

transfer methods, which maps one modality to another to obtain multi-modality information58

Iglesias et al. (2021, 2023, 2022), whereas IQT’s primary goal is to enhance the existing59

image quality, specifically improving resolution and contrast rather than the developing60

new content. By highlighting these differences, we aim to clearly delineate the unique61

characteristics and advantages of the IQT task.62

Machine learning models are often trained on a specific data distribution, but may63

encounter unseen data from different distributions in real-world scenarios. This poses a64

critical challenge for the security and reliability of machine learning systems, especially65

in some error-sensitive applications, such as medical diagnosis including the application66

investigated in this work. One of its powerful capabilities lies in the promising generalisation67

ability from training data to unseen in-distribution (InD) data. However, the finite training68

data cannot guarantee the completeness of data distribution, so it is inevitable to encounter69
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out-of-distribution (OOD) data. Machine learning models can be broadly categorised into70

supervised, unsupervised and self-supervised learning models. In supervised learning, the71

model is trained by paring inputs with their expected outputs. However, this is far from72

being practical, since the full data distribution cannot be represented in the training data73

set. To circumvent this difficulty, unsupervised and self-supervised learning methods can74

be used.75

All IQT models proposed in the literature use supervised learning frameworks to learn76

a regression between matched patches in low- and high-quality images. In particular deep77

learning frameworks substantially outperform the original random-forest implementation in78

terms of global error metrics for enhancement of both diffusion-tensor MRI and low-field79

structural MRI Alexander et al. (2014, 2017); Lin et al. (2019); Tanno et al. (2021); Lin et al.80

(2021, 2022). However, interpretation of images enhanced via such regression models needs81

caution. First, regression models in general can lead to bias that depends on the training82

data distribution Obermeyer et al. (2019). In particular, inputs (here patches) that are rare83

in the training data are often skewed towards outputs more common in training data; and84

degenerate regions of the input-space where the mapping is ambiguous are often mapped to a85

consistent mean giving a false impression of consistent and confident output. Moreover, the86

performance of deep-learning based methods can degrade even more with OOD data. These87

effects have been well documented in other image-related regression applications recently,88

such as parameter mapping Gyori et al. (2022). So far, they have not been considered in IQT89

and image enhancement although similar effects are likely to arise. Additional problems,90

particularly in deep learning, can arise from over-fitting and under-fitting which can further91

add to bias in estimates particularly for examples that are over/under-represented in the92

training data. Moreover, state-of-the-art IQT models, specifically deep neural networks, are93

generally designed for a static and closed world Krizhevsky et al. (2017); He et al. (2015).94

The models are trained under the assumption that the input distribution at test time will be95

the same as the training distribution. In real world MRI data, however, deep-learning-based96

techniques effectiveness diminishes when applied to images that differ significantly from the97

training data set Gu et al. (2019). Although various approaches have been developed to98

tackle this issue, such as training networks to handle multiple types of degradation Soh99

et al. (2020); Xu et al. (2020); Zhang et al. (2018a); Zhou and Susstrunk (2019) and making100

models less sensitive to degradation through iterative optimisations Shocher et al. (2018);101

Gu et al. (2019), it is also crucial to enhance the robustness of the network structure.102

Sparse representation (SRep) using dictionary learning is an unsupervised learning103

framework that assumes a given signal is sparse in some domain (Wavelets, Fourier, dis-104

crete cosine transform, etc.). SRep has proven robust to noise and redundancy in the data,105

where supervised deep learning algorithms encounter problems Elad (2010). In the IQT106

context, low and high-quality dictionaries (Dℓ, and Dh respectively) can be trained using107

a sparse representation model using pairs of low- and high-quality volumes. Subsequently,108

the sparse representation of a low-quality block, in terms of the low-quality dictionary Dℓ,109

can be directly used to recover the corresponding high-quality block using the high-quality110

dictionary Dh. As such, low-quality or high-quality volume patches are represented as a111

linear combinations of atoms drawn from a dictionary. SRep has been successfully applied112
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to many other related inverse problems in image processing, such as denoising Li et al.113

(2012); Elad and Aharon (2006), restoration Zhang et al. (2014); Li et al. (2012), image114

quality assessment Liu et al. (2017, 2018, 2024, 2019), outlier or anomaly detection Eldaly115

(2018); Eldaly et al. (2019), image reconstruction Eldaly and Alexander (2024); Eldaly et al.116

(2025), and super resolution Yang et al. (2010). In a convex optimisation framework, train-117

ing and testing samples are forced to follow the observation model of the imaging system on118

hand. Therefore, any new unseen test samples (either InD or OOD) will follow this model,119

which can avoid the “regression to the mean” problems observed with supervised regression120

models, often observed in OOD data.121

On the other hand, in supervised deep learning, Dong et al. Dong et al. (2014) replaced122

the dictionary learning using sparse representation steps described above with a multilay-123

ered convolutional neural network to take advantage of the powerful capability of deep124

learning. As such, the low and high-quality dictionaries are implicitly acquired through125

network training. Various methods have been proposed to improve the performance of this126

approach such as in Kim et al. (2016); Lim et al. (2017); Tai et al. (2017); Zhang et al.127

(2018b). However, most of these studies, follow the same formality as in Dong et al. (2014)128

from a general perspective, where all the processes in the sparse-coding-based methods129

are replaced by a multilayered network. Recently, deep dictionary learning Tariyal et al.130

(2016) is proposed to take advantage of both transductive and inductive nature of dictionary131

learning and deep learning, respectively, and is very well suited where there is a scarcity132

of training data. While dictionary learning focuses on learning “basis” and “features” by133

matrix factorisation, deep learning focuses on extracting features via learning “weights”134

or “filter” in a greedy layer by layer fashion. Deep dictionary learning has been applied135

to various problems including recognition Tang et al. (2020); Sharma et al. (2017), image136

inpainting Deshpande et al. (2020), super resolution Huang and Dragotti (2018); Zhao et al.137

(2017), classification Majumdar and Singhal (2017); Majumdar and Ward (2017); Manjani138

et al. (2017), and load monitoring Singh and Majumdar (2017).139

In this work, in contrast to existing IQT models in the literature, we propose two novel140

IQT algorithms, from which one is an example of unsupervised learning while the other is141

an example of blended supervised and unsupervised learning. The first approach is based142

on a sparse representation model and dictionary learning, which we call IQT-SRep. In this143

approach, low and high-quality dictionaries can be trained using a sparse representation144

model using pairs of low- and high-quality volumes. Subsequently, the sparse representation145

of a low-quality block, in terms of the low-quality dictionary, can be directly used to recover146

the corresponding high-quality block using the high-quality dictionary. The second approach147

is based on deep dictionary learning which we call IQT-DDL. This approach explicitly learns148

high-quality dictionary through network training. The main network predicts the high-149

quality dictionary coefficients, and the weighted sum of the dictionary atoms generates a150

high-quality output. This approach differs fundamentally from traditional deep-learning151

methods, which typically employ upsampling layers within the network. The upsampling152

process in our IQT approach is efficient since pre-generated high-quality dictionary serves153

as a magnifier during inference. Additionally, the main network no longer needs to retain154

pixel-level information in the high-quality space, enabling it to focus solely on predicting155
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the dictionary coefficients. The main advantages of these two novel formulations are that156

they are robust to super resolve heavily OOD test data, and they are well suited where there157

is a scarcity of training data. We demonstrate the two models using experiments from a158

low-field MRI application and compare the results with the recently proposed state-of-the-159

art supervised deep learning approach Lin et al. (2022). As such, the main contributions of160

this paper can be summarised as follows.161

1. We propose two new formulations of the IQT technique, from which one is an un-162

supervised learning based (IQT-SRep), and one is based on a combination of both163

supervised and unsupervised learning (IQT-DDL). Both of these formulations have164

never been previously applied to the IQT problem in literature.165

2. The IQT-SRep approach is based on sparse representation and dictionary learning166

model and assumes that a given low- or high-quality volume patch can be represented167

as a linear combination of atoms drawn from a dictionary that is trained using training168

examples of pairs of low- and high-quality volume patches. This requires training of169

a pair of coupled dictionaries using a sparse representation model using pairs of low-170

and high-quality volumes.171

3. The IQT-DDL approach is based on a combination of supervised and unsupervised172

learning using deep dictionary learning. This approach assumes that a given low- or173

high-quality volume patch can be represented as a non-linear combination of atoms174

drawn from a dictionary that is trained using training examples of pairs of low- and175

high-quality volume patches.176

4. We demonstrate the performance of the model using experiments from a low-field177

MRI application, using both InD and OOD data, and compare with the state-of-the-178

art supervised deep learning IQT method, for low-field MRI enhancement.179

The remaining sections of the paper are organised as follows. Section 2 formulates the180

problem of IQT using three learning techniques; the formulations that we propose here for181

IQT-SRep and IQT-DDL are described in detail, and finally, the supervised deep learning182

approach proposed in Lin et al. (2022) is briefly presented for comparison. Experiments183

conducted using a low-field MRI application synthesised using data from the human con-184

nectome project (HCP) are presented in Section 3. A general discussion is then presented185

in 4. Conclusions and future work are finally reported in Section 5.186
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2. Proposed Approaches187

2.1 Image quality transfer using sparse representation and dictionary learning188

(IQT-SRep)189

2.1.1 Imaging model190

The IQT problem can be mathematically formulated as follows: Given an original vectorised191

high-quality volume X ∈ RM , its corresponding low-quality version is denoted as Y ∈ RP ,192

where the relation between the two volumes can be modeled as193

Y = LHX+W, (1)

where H is the matrix representing a linear blurring operator, L is the downsampling194

operator, andW stands for additive noise, modelling observation noise and model mismatch195

and is assumed to be a white Gaussian noise sequence. This equation states that Y is a196

blurred and down-sampled version of the original high-quality volume X.197

In IQT, the goal is to recover a high-quality volume X̂ given its blurred and down-198

sampled version Y, such that X̂ ≈ X. The problem of estimating X from Y in Eq. (1)199

is an ill-posed linear inverse problem (LIP), i.e., the matrix LH is singular and/or very200

ill-conditioned, since for a given low-quality input, infinitely many high-quality volumes201

satisfy the above equation. Consequently, this problem requires additional regularisation (or202

prior information from Bayesian perspective) in order to reduce uncertainties and improve203

estimation performance.204

Figure 1 shows a schematic diagram to the IQT problem using a sparse representa-205

tion model and dictionary learning. The proposed model consists of two separate stages.206

First, the coupled low-quality and high-quality dictionaries, Dℓ and Dh respectively, are207

constructed from training data set. Then, a reconstruction algorithm is applied to upscale208

a test low-quality volume to recover its high-quality version. This algorithm considers the209

patch-based sparse prior model to recover an estimate to the high-quality volume in a patch-210

by-patch basis. The following sections provide more details about the two stages mentioned211

above.212

2.1.2 Joint dictionary construction213

Constructing the high-quality and low-quality dictionaries requires a set of matched high-214

and low-quality volume patches. The training set is composed by a set of high-quality215

and the corresponding low-quality volumes. As proposed by Zeyde et al. (2010), the high-216

quality volumes are processed to obtain only the high-frequency information, whereas the217

intensity maps are used for the low-quality volumes. Each of the high- and low-quality218

volumes are then split into a set of 3D patches which are vectorised and training pairs219

are generated. Patches containing > 80% background voxels are excluded from the patch220

library. The coupled-dictionary training algorithm proposed by Zeyde et al. (2010) is then221
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Figure 1: A schematic diagram of the proposed IQT approach using sparse representation
and dictionary learning (IQT-SRep), where Dh: High-quality dictionary, Dℓ:
Low-quality dictionary, Y: Low-quality input volume, X0: Initial high-quality
volume, λ, β Regularisation parameters, 3

√
m: Patch size, p: Number of pixel

overlap, s: Scale, y: A patch from the low-quality image Y, µ: Mean intensity of
the patch y, α: Sparse representation coefficients, α∗: Optimised sparse repre-
sentation coefficients, F: Transformation matrix, x: High-quality patch, and X∗:
High-quality volume.
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used in order to obtain the low- and high-quality dictionaries Dℓ and Dh respectively. For222

this local model, the two dictionaries Dh and Dℓ are trained such that they share the223

same sparse representations for each high- and low-quality volume patch pair. Finally, the224

dimensionality of Dℓ may be reduced to speed up the subsequent computations, given the225

intrinsic redundancy of the multi-scale edge analysis. For doing so, a Principal Component226

Analysis (PCA) is applied to this matrix, searching for a set of projection coefficients that227

represents at least 90% of the original variance. All patches are collected together to form228

the reduced low-quality dictionary Dℓ, whereby the number of atoms in the dictionary has229

not changed.230

2.1.3 Patch-based sparsity prior model231

The low-quality volume Y can be split into a set of overlapping 3D patches y, each of size232

3
√
m× 3

√
m× 3

√
m. With the sparse generative model, each patch y can be represented by233

a linear combination of a few atoms drawn from a dictionary Dℓ, which characterises the234

low-quality patches. This can be written as235

y = Dℓαℓ, (2)

where α ∈ RK is a sparse vector and ∥α∥0 ≪ K. The corresponding high-quality patch x,236

with size 3
√
p× 3

√
p× 3

√
p, can be computed by again applying the following sparse generative237

model238

x = Dhαh. (3)

From Eq. (2) and (3), it can be assumed that the sparse representation of a low-quality239

patch in terms of Dℓ can be directly used to recover the corresponding high-quality patch240

from Dh, namely, that αℓ = αh. Therefore, the reconstructed high-quality image X̂ can241

be built by applying the sparse representation to each patch y in Y and then using the242

estimated α with Dh to obtain each x, which together form the image X̂.243

2.1.4 Local reconstruction by sparsity244

The aim is to estimate a high-quality version X̃ from a given low-quality volume Y. Given a245

test low-quality volume, for each input low-quality patch y, we find a sparse representation246

with respect to Dℓ. The corresponding high-quality patch bases Dh will be combined247

according to these coefficients to generate the output high-quality patch x. The problem of248

finding the sparsest representation of y can be formulated as249

minimise
α

1

2
∥FDℓα− Fy∥22 + λ∥α∥1, (4)

where λ balances sparsity of the solution and fidelity of the approximation to y, and F is a250

linear feature extraction operator as in Zeyde et al. (2010). Given the optimal solution α∗
251

of Eq.(4), the high-quality patch x can be reconstructed as x = Dhα
∗. This optimisation252

problem can be solved using the Basis Pursuit algorithm Chen and Donoho (1994).253
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The complete IQT process is summarised in Algorithm (1). In this algorithm, the input254

low-quality volume Y is up-sampled using bicubic interpolation to provide a preliminary255

high-resolution volume. For each cubic patch of size 3
√
m× 3

√
m× 3

√
m from the up-sampled256

volume, starting from the top left corner with an overlap p, the mean intensity µ of the257

patch is computed to ensure that the dictionary represents image textures rather than258

absolute intensities. The sparse representation α∗ of the patch is then obtained by solving259

an optimisation problem that minimises the difference between the transformed low-quality260

patch and its sparse representation in the low-quality dictionary Dℓ, subject to a sparsity261

constraint controlled by the regularisation parameter λ. Using the high-quality dictionary262

Dh and the sparse coefficients α∗, a high-quality patch x is generated. This high-quality263

patch, with the mean intensity restored, is placed in the corresponding location in the initial264

high-quality volume X0. After processing all patches, the final high-quality volume X is265

obtained.266

Algorithm 1 IQT using patch-based sparse representation and dictionary learning (IQT-
SRep)

1: Input: Dh,Dℓ and Y
2: Initialise X0, Choose Regularisation parameters λ, β, Patch-size 3

√
m, pixel-overlap p

and scale s
3: Up sample the input low-quality volume using bicubic interpolation.
4: For each 3

√
m× 3

√
m× 3

√
m patch y from an image Y, from top left corner of the volume,

with an overlap p

• Compute: mean intensity µ of the patch y

• Solve: α∗ = minimise
α

1
2∥FDℓα− Fy∥22 + λ∥α∥1

• Generate the high-quality patch x = Dhα
∗

• Place the high-quality patch x+ µ in the high-quality volume X0

5: End
6: Output High-quality volume X = X0

2.2 Image quality transfer using deep dictionary learning (IQT-DDL)267

The IQT using a deep dictionary learning model is composed of three main steps: construct-268

ing the high-quality dictionary DH , per-pixel prediction, and finally image reconstruction269

from patches. The high-quality dictionary DH is generated from random noise input. The270

per-pixel predictor then estimates the coefficients of DH for each pixel from a low-quality271

input. In the reconstruction phase, the high-quality image can be computed using the272

weighted sum of the elements (or atoms) of DH . In this work, we use L1 loss function273

to optimise the network L = 1
M

∑M
m=1∥I

gt
m − Θ(I lqm)∥1, where I lqm and Igtm are low- and274

high-quality patches respectively, M is the number of training pairs, and Θ(·) represents a275

function of the IQT-DDL network. Figure 2 provides a schematic diagram of the proposed276

method. The following sections provide more details about each step.277
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Figure 2: A schematic diagram of IQT using deep dictionary learning. Random noise gen-
erates the high-resolution dictionary DH . Then a per-pixel predictor takes as
input a concatenation of an encoded code of DH and an extracted feature. A
final image based on DH is then constructed using predictor output.
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2.2.1 Construction of the high-quality dictionary DH278

The high-quality dictionary D
(N×si×sj×sk)
H is constructed from random noise using a stan-279

dard Gaussian distribution, where si, sj and sk are up-scaling factors in i, j and k directions,280

and N is the number of dictionary atoms. The high-quality dictionary DH is then encoded281

by si × sj × sk convolution with groups N , followed by ReLU Nair and Hinton (2010) and282

1 × 1 × 1 convolution. Each N element of the resultant code CN×1×1×1
H represents each283

si × sj × sk atom as a scalar value. Note that low-quality dictionaries can be naturally284

replaced by convolutional operations, and therefore only DH is constructed. The DH gen-285

erator has a tree-like structure, where the nodes consist of two 1×1×1 convolutional layers286

with ReLU activation. The final layer has a Tanh activation followed by a pixel shuffling287

layer. To produce N atoms, depth d of the generator is determined as d = log2(N).288

2.2.2 Per-pixel Prediction289

We use the UNet++ Zhou et al. (2018) as a deep feature extractor in Fig. 2, with depth290

of three, and a long skip connection is added. For an input image I ∈ Ri×j×k, the deep291

feature extractor generates a tensor of size f × i× j× k. The per-pixel predictor then takes292

as input a concatenation of the extracted feature and the expanded code of DH , such that293

CN×i×j×k
H = R1×i×j×k(C

N×1×1×1
H ), where Ra×b×c(·) denotes the a× b× c repeat operations.294

The per-pixel predictor is composed of ten bottleneck residual blocks followed by a softmax295

function that computes the N coefficients of DH for each input pixel. Both the deep feature296

extractor and per-pixel predictor contain batch normalisation layers Loffe and Normaliza-297

tion (2014) before the ReLU activation. The resultant prediction map MN×i×j×k is further298

convolved with a 2 × 2 × 2 convolution layer to produce a complementary prediction map299

M ′N×(i−1)×(j−1)×(k−1), that compensates the patch boundaries when reconstructing the fi-300

nal output. The detail of the compensation mechanism is described in the next subsection.301

2.2.3 Reconstruction302

The prediction mapMN×i×j×k is upscaled to N×sii×sjj×skk by nearest-neighbor interpo-303

lation, and the element-wise multiplication of that upscaled prediction map Usisjsk(M
N×i×j×k)304

with the expanded dictionary R1×i×j×k (D
N×si×sj×sk
H ) produces N×sii×sjj×skk tensor T305

consists of weighted atoms. The Usi,sj ,sk(·) denotes si×sj×sk nearest neighbor upsampling.306

Finally, the tensor T is summed over the first dimension, producing the output x as307

x1×sii×sjj×skk =
N−1∑
n=0

TN×sii×sjj×skk[n, :, :, :], (5)

TN×sii×sjj×skk = Usi,sj ,sk(M
N×i×j×k)⊗R1×i×j×k(D

N×si×sj×sk
H ). (6)
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The same sequence of operations is applied to the complementary prediction map to308

obtain the output x′. The final high-field prediction is obtained by centering x and x′ on309

top of each other and concatenating the overlapping parts of the centered x and x′, and310

applying a 5 × 5 × 5 convolution. For non-overlapping parts, x is simply used as the final311

output.312

2.3 Image quality transfer using deep learning (IQT-DL)313

A supervised learning IQT algorithm which was implemented using a deep learning frame-314

work (IQT-DL) is recently proposed Lin et al. (2022, 2019). This approach was used for315

IQT application in low-field MRI and showed superior performance compared to existing316

methods. The model is based on an anistropic U-Net trained on matched pairs of image317

patches from real high-field and synthetic low-field volumes generated by a stochastic dec-318

imation model which is presented in the Experiments section. This model considered the319

anisotropic U-Net architecture, which is an adaptation of the U-Net architecture to map320

input and output patches that differ in voxel dimension by the downsampling factor, s, in321

the slice direction. The main additions to the classic U-Net architecture are a bottleneck322

block, connecting corresponding levels of the contracting and expanding paths, and a resid-323

ual core used to include more convolutional layers on each level. All convolution layers are324

activated by Rectified Linear Unit (ReLU) with Batch Normalisation (BN). The average325

voxel-wise mean square error over all patch pairs was used as a loss function. For more326

details and a block diagram of their proposed approach, see Lin et al. (2022).327

3. Experiments328

The performance of the proposed IQT-SRep and IQT-DDL approaches is demonstrated329

using a low-field MRI application, using both in-distribution (InD) and out-of distribution330

(OOD) datasets. The aim is to recover contrast enhanced and super-resolved images akin331

to those obtained using high field MRI scanners, standard in higher income countries,332

from low-field MR images form scanners still widely used in low-and-middle class income333

countries (LMICs). The proposed approaches are compared against the state-of-the-art334

supervised deep learning framework (IQT-DL) Lin et al. (2022, 2019), described in the335

previous section, to reveal both advantages and disadvantages of each of them. The main336

data set for training and testing is derived from the T1-weighted MRI images provided337

by the Human Connectome Projects (HCP), acquired on a 3 Tesla Siemens Connectome338

scanner Sotiropoulos et al. (2013a), with a 0.7-mm isotropic voxel. The repetition time339

(TR), echo time (TE), and inversion time (TI) for T1w are set to 2400, 2.14, and 1000 ms,340

respectively. We have chosen 65 subjects, from which 60 were used for training and 5341

for testing. The training and testing datasets are synthesised using a stochastic low-field342

simulator described in Lin et al. (2022), the inputs of which are the signal-to-noise ratio343

(SNR) in gray matter (GM) and white matter (WM). The training data set is built using,344

for each synthetic volume, a randomly sampled SNR pair from the bivariate Gaussian345

distribution estimated from a real low-field MRI data set acquired in Nigeria Lin et al.346
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(2022). Three Low-field test datasets, five volumes each, are synthesised. Two test datasets347

are synthesised using parameters sampled from the same 2D Gaussian distribution used for348

the training set, and are called in-distribution data (InD1 and InD2). In particular, InD1 is349

synthesised with parameters using a Mahalanobis distance < 1, and InD2 with Mahalanobis350

distance > 3, with the constraint of having the SNR higher in WM than in GM, to keep351

the tissue contrast compatible with T1w. The simulation parameters of third data set are352

sampled from a distribution estimated from ultra-low field T1w images, and is called out-353

of-distribution (OOD) data set. Figure 3 shows a schematic diagram of both training and354

testing data structure, with the stochastic low-field image simulator for training and testing355

samples described below.

Figure 3: A schematic diagram of training and testing datasets. The two test in distribution
datasets (InD1 and InD2) are synthesised using parameters sampled from the
same 2D Gaussian distribution used for the training set. In particular, InD1
is synthesised with parameters using a Mahalanobis distance < 1, and InD2
with Mahalanobis distance > 3, with the constraint of having the SNR higher
in WM than in GM, to keep the tissue contrast compatible with T1w. The out-
of-distribution (OOD) data set is simulated using parameters sampled from a
distribution estimated from ultra-low field T1w images.

356
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3.1 Model training for IQT-SRep, IQT-DDL, and IQT-DL357

Once the training set of matched low-and high-field pairs is composed as explained above,358

paired patches are obtained by cropping corresponding high-quality and synthetic low-359

quality volumes into patches at regularly spaced locations. Patches containing > 80%360

background voxels are excluded from the patch library. Training details of the IQT-SRep,361

IQT-DDL and IQT-DL models are presented below.362

3.1.1 IQT-SRep363

The number of atoms and patch-sizes in dictionaries Dℓ and Dh has impact on two impor-364

tant aspects of the proposed IQT-SRep model; that are the reconstruction accuracy and365

reconstruction time. Larger dictionaries include more image patterns, and therefore more366

accurate super-resolved volumes. However, the drawbacks are the computational complex-367

ity of solving the optimisation problem and the longer time required for patch extraction.368

Following this, from an initial set of 100, 000 3D-vectorised patches, we learned compact369

dictionaries of different atom numbers, including 150, 256, 512, 1024 and patch-sizes of370

3 × 3 × 3, 5 × 5 × 5 and 7 × 7 × 7. We first present those of 1024 atoms using 7 × 7 × 7371

patch-size, which provide best construction quality, and the effect of different atom number372

is presented afterwards.373

3.1.2 IQT-DDL374

In this work, we adopt a model using different atoms numbers of 64 and 128 atoms. The375

number of filters of the models is adjusted according to the number of atoms. The scaling376

factors si, sj , and sk are set to si = 1, sj = 1, and sk = 4. The network is trained using377

low-quality patch size of 32×32×(32/sk) with a mini-batch size of 32. Random flipping and378

rotation augmentation is applied to each training sample. An Adam optimiser Kingma and379

Ba (2014) with β1 = 0.9, β2 = 0.999, and ϵ = 10−8 is used. The learning rate of the network380

except for the DH generator is initialised as 2e−4 and halved at [200k, 300k, 350k, 375k].381

The total training iterations is 400k. The learning rate of the DH generator is initialised382

as 5e−3 and halved at [50k, 100k, 200k, 300k, 350k]. In addition, to stabilise training of the383

DH generator, we randomly shuffle the order of output atoms for the first 1k iterations.384

The results of the 128 atoms dictionary are first presented, followed by a comparison with385

those of 64 atoms dictionary.386

3.1.3 IQT-DL387

As in Lin et al. (2022), we use a default patch size of 32 × 32 × (32/sk) and 32 × 32 × 32,388

respectively for low-field and high-field volumes, and a step size of 8, 16, and 16/sk along389

x-, y-, and z-directions, which provide best construction quality. Training model is then390

constructed using the training procedure explained in Section 2.3.391
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3.2 Testing392

Each test volume is split into overlapping patches of size similar to that used for training393

in each model. The trained IQT-SRep, IQT-DDL and IQT-DL models described above are394

then applied to each of these patches to estimated the high-field volumes. The magnification395

factor sk for all models is set to 4. For the IQT-SRep model, in all experiments, the λ396

parameter is set to 0.01. Slight variation of this parameter does not change the results397

significantly.398

3.3 Evaluation399

The quantitative measure used to assess the quality of the IQT algorithms presented in the400

previous section are the normalised root mean squared error (NRMSE), defined as401

NRMSE =

√∑N
n=1(xn−x̂n)2

N

Max(x)
, (7)

where x is the ground truth high-quality image, x̂ is the corresponding estimate from the402

low-field counterpart, and Max(x) is the maximum intensity of the ground truth high-field403

image x, and structural similarity index measure (SSIM) which can be computed as in404

Wang et al. (2004).405

3.4 Results406

We utilise the proposed unsupervised learning IQT-SRep, the supervised deep learning407

IQT-DL and the blended learning IQT-DDL approaches to super resolve the testing datasets408

InD1, InD2 and OOD described above. Below, we show the quantitative and the qualitative409

performance, as well as the effect of changing different crucial parameters such as atom410

number in IQT-SRep and IQT-DDL approaches.411

3.4.1 Quantitative results412

Table 1 provides NRMSE and SSIM results of InD1, InD2 and OOD using the three meth-413

ods IQT-SRep, IQT-DDL and IQT-DL. We can observe that the supervised deep learning414

approach IQT-DL provides better results (lowest NRMSE and highest SSIM) using the in-415

distribution datasets (InD1 and InD2), compared to the unsupervised learning IQT-SRep416

algorithm, revealing that supervised learning is more robust for super-resolving images that417

follow the same distribution of the training data set compared to unsupervised learning.418

However, when testing using out-of distribution data that is different from the distribu-419

tion of the training samples, the unsupervised learning approach IQT-SRep provides lower420

NRMSE and higher SSIM compared to the supervised deep learning model IQT-DL. This421

highlights the importance of unsupervised learning models since the full data distribution422

cannot be represented in the training data set. On the other hand, we can observe that423
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the supervised deep learning model IQT-DL performs better (lower NRMSE and higher424

SSIM) than the blended supervised and unsupervised learning IQT-DDL approach using425

InD1, whereas the IQT-DDL provides better results using both InD2 and OOD datasets.426

This reveals the robustness of the blended learning IQT-DDL approach in super-resolving427

datasets differ from that the model was trained on, in addition to data that slightly deviates428

from InD1 but still part of the training samples.429

3.4.2 Qualitative results430

Figure 4 shows examples of coronal T1 weighted images from the HCP data set, corre-431

sponding to synthesised low-field images using InD1, InD2 and OOD, and results of IQT-432

SRep, IQT-DDL and IQT-DL. Figure 5 shows corresponding absolute error maps between433

high-quality ground truth images and corresponding low-quality images, and results of IQT-434

SRep, IQT-DDL and IQT-DL. Moreover, the binary maps of regions (in red label) where435

the IQT-SRep and IQT-DDL models provide closer estimates to ground truth high-quality436

images compared to IQT-DL are also presented. The qualitative results in general follow437

the same behaviour of the quantitative results described earlier: although IQT-DL provides438

better visual results of brain structure compared to IQT-SRep using InD1, and InD2, the439

IQT-SRep model shows better visual results using OOD data compared to IQT-DL. This is440

clearer in the absolute error maps in Fig. 5, between high-quality ground truth images and441

results of both IQT-DL and IQT-SRep, and in the binary maps where there are more image442

regions where IQT-SRep and IQT-DDL performs better than IQT-DL. This implies that the443

IQT-SRep approach is more robust for image enhancement using out-of-distribution data,444

which are created using a different distribution to that of the training samples mimicking445

real-world examples. Moreover, the IQT-SRep approach provides smoother outputs com-446

pared to that of the IQT-DL approach where artifacts arising from patch construction are447

very obvious. On the other hand, the blended learning IQT-DDL approach provides better448

visual results than the supervised deep learning approach IQT-DL using InD2 and OOD449

datasets. This is also clear in the absolute error maps and in the binary maps where there450

are more image regions where IQT-DDL performs better than IQT-DL in Fig. 5. On the451

other hand, while in this work we process data volumes by splitting them into overlapping452

patches, the proposed approaches ensure that information from the borders of each patch453

is preserved and integrated into the subsequent patches, thereby there is no information454

loss and the continuity of image features across the entire volume is maintained. Moreover,455

we synthesise the low-quality volumes from the high-quality ones, which ensures that there456

are no pixel alignment problems, as both low-quality and high-quality volume pairs are457

inherently aligned during the synthesis.458

To summarise, the blended learning IQT-DDL approach provides best visual results459

compared to the supervised deep learning IQT-DL and the unsupervised leaning IQT-460

SRep approaches using both InD2 and OOD datasets, whereas the unsupervised learning461

approach IQT-SRep provides better visual results than the supervised deep learning IQT-462

DL approach using OOD which is generated using a different distribution to that of the463

training samples. There are widespread regions where the errors are lower for IQT-SRep464
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Table 1: Normalised root mean squared error (NRMSE), and structural similarity in-
dex measure (SSIM) using in-distribution data (InD1), and (InD2), and out-of-
distribution data (OOD). Best results are highlighted in bold font, and second
best are underlined.

Interpolation IQT-SRep IQT-DDL IQT-DL
NRMSE SSIM NRMSE SSIM NRMSE SSIM NRMSE SSIM

InD1 0.257 0.698 0.240 0.711 0.126 0.792 0.096 0.869

InD2 0.328 0.612 0.319 0.641 0.238 0.732 0.258 0.724

OOD 0.469 0.585 0.450 0.632 0.435 0.642 0.455 0.630

Figure 4: Results using the HCP data set on coronal direction of the three different data
distributions InD1, InD2 and OOD (rows) using IQT-SRep, IQT-DDL and IQT-
DL. First column shows interpolated low-field image, second to forth columns
show image estimate using IQT-DL, IQT-DDL and IQT-SRep, respectively, and
fifth column shows original high-field image.

and IQT-DDL compared to IQT-DL highlighting bias in the regression model estimates,465

which both IQT-SRep and IQT-DDL can avoid.466

3.4.3 Effect of atom number and output patch size467

Now, we evaluate the effect of atom number and patch size on both approaches. From468

the sampled 100,000 image patch pairs, and for the IQT-SRep approach, we train four469

dictionaries of size 150, 256, 512, 1024, and use each to estimate the high-field image470
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Figure 5: Absolute errors for results in Figure 4, between gold-standard high-field image
(Column 5 of Figure 4), and Column 1: corresponding low-quality image, Column
2: IQT-DL, Column 3: IQT-DDL, and Column 4: IQT-SRep. Columns 5 and
6 show binary maps of regions (in red label) where the IQT-SRep and IQT-
DDL, respectively provide closer estimates to the gold-standard high-field images
compared to IQT-DL.

from the low-field counterpart. Moreover, for the IQT-DDL approach, in order to assess471

the performance of the algorithm using different atoms numbers, we construct dictionaries472

using atom number of 64, in addition to that of 128 whose results are presented in the473

previous section. Table 2 shows NRMSE of the IQT-SRep and IQT-DDL approaches using474

different atom number using the three testing datasets InD1, InD2 and OOD. We can475

observe that in general, as atom number increases, construction quality improves (NRMSE476

decreases and SSIM increases), but saturates for atom number higher than 512 for the477

IQT-SRep approach. For the IQT-SRep approach, all tested atom numbers still provide478

better construction results using OOD data as compared to the IQT-DL approach. On the479

other hand, we tested several patch sizes for both the IQT-SRep and IQT-DDL models.480

Specifically, for the IQT-SRep model, we tested patch sizes of P3: 3× 3× 3, P5: 5× 5× 5,481

and P7: 7 × 7 × 7 using a dictionary size of 1024 (which provides the best results). For482

the IQT-DDL model, we tested patch sizes of P16: 16 × 16 × 16, P32: 32 × 32 × 32, and483

P48: 48 × 48 × 48 using a dictionary size of 128 (which provides the best results). Table484

3 provides the NRMSE and SSIM for two in-distribution datasets (InD1 and InD2) and485

one out-of-distribution (OOD) dataset. We can observe that for the IQT-SRep model, the486

reconstruction results improves (NRMSE decreases and SSIM increases) as the patch size487

increases. Conversely, for the IQT-DDL model, a patch size of P32: 32×32×32 outperforms488

both P16: 16× 16× 16 and P48: 48× 48× 48, indicating that it is a good operating point,489

balancing structural information content with the ability to learn and generalise from a490

finite training set. Fig. 6 shows an example of super resolved images using the OOD491

data set using dictionaries of different sizes at patch sizes providing best results (P7 for492

IQT-SRep and P32 for IQT-DDL). While there are no substantial visual differences, we can493
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Table 2: Effect of atom number for the IQT-SRep and IQT-DDL methods: NRMSE and
SSIM using in-distribution data (InD1), and (InD2), and out-of-distribution data
(OOD).

IQT-SRep IQT-DDL
D150 D256 D512 D1024 D64 D128

InD1
NRMSE 0.243 0.242 0.240 0.240 0.128 0.126
SSIM 0.704 0.705 0.706 0.706 0.791 0.792

InD2
NRMSE 0.322 0.321 0.319 0.319 0.240 0.238
SSIM 0.639 0.640 0.641 0.641 0.731 0.732

OOD
NRMSE 0.452 0.451 0.450 0.450 0.437 0.435
SSIM 0.630 0.631 0.632 0.632 0.641 0.642

observe in the binary error maps that the number red pixels (improvement over interpolated494

low-field image) gradually increase with larger dictionaries until saturation for dictionary495

size of 1024. In terms of computation time, the IQT-SRep algorithm is implemented in496

MATLAB and the experiments are carried out on a laptop with a 2.8 GHz processor CPU,497

with 16 GB of RAM, under Microsoft Windows 10. Dictionary construction times ranges498

from ∼ 25 min for a 150-size dictionary to ∼ 80 min for a 1024-size dictionary. During the499

testing, in terms of test image reconstruction time, the computation is approximately linear500

to the size of the dictionary, that larger dictionaries will result in heavier computation. For501

example, smaller dictionaries, such as those with 150 atoms, yield reconstructions in an502

average time of ∼ 7 min, while larger dictionaries, such as those with 1024 atoms, yielded503

image reconstructions in an average time of 50 min. On the other hand, for the IQT-DDL504

algorithm, as shown in Table 2, the NRMSE is slightly lower using dictionary with atom505

number of 128 compared to that of 64 atoms for all testing datasets InD1, InD2 and OOD,506

as it retains more image patterns. Fig. 6 shows visual results of the IQT-DDL approach507

using an OOD example. Similar to the IQT-SRep approach, while there is no substantial508

visual difference, we indeed observe the increase in more super-resolved pixels (in red) in509

the binary error map images compared to the interpolated low-field image for atom number510

of 128 compared to that of 64. In terms of computation time, the IQT-DDL algorithm is511

implemented in PyTorch, and the testing construction time ranges from ∼ 4 to 7 min for512

atom numbers of 64 to 128, respectively.513

4. Discussion514

This work introduced two novel IQT approaches. To the best of our knowledge, it is the515

first time in the literature that an unsupervised learning and a blended supervised and516

unsupervised learning frameworks are considered for IQT. These approaches are introduced517

to highlight biased estimates that can result from supervised learning approaches, such518

as supervised deep learning, especially using out-of-distribution data. The main advan-519

tages of these two novel formulations are that they tend to avoid biased estimates using520

out-of-distribution test data, and are very well suited where there is a scarcity of training521
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Table 3: Effect of output patch size for the IQT-SRep (using D1024) and IQT-DDL (using
D128) methods: NRMSE and SSIM using in-distribution data (InD1), and (InD2),
and out-of-distribution data (OOD).

IQT-SRep IQT-DDL
P3 P5 P7 P16 P32 P48

InD1
NRMSE 0.250 0.244 0.240 0.133 0.126 0.129
SSIM 0.671 0.702 0.706 0.768 0.792 0.785

InD2
NRMSE 0.325 0.322 0.319 0.244 0.238 0.237
SSIM 0.635 0.639 0.641 0.725 0.732 0.729

OOD
NRMSE 0.459 0.455 0.450 0.440 0.435 0.437
SSIM 0.625 0.628 0.632 0.635 0.642 0.638

Figure 6: Effect of atom number for the IQT-SRep and IQT-DDL approaches using the
OOD example in Fig. 4. Row 1: Image estimates using different atom numbers
(from left to right: 150, 256, 512 and 1024 atoms (for IQT-SRep), and 64 and 128
atoms (for IQT-DDL). Row 2: Absolute difference error maps between the high
quality image and each estimate in Row 1, and Row 3: Binary maps between
interpolated low-field images and estimates in Row 1, where we can observe, as
atom number increases, slightly more image regions (in red) are observed, until
saturation from atom numbers of 512 to 1024 for IQT-SRep.

data. The first approach is based on a sparse representation and dictionary learning model,522

which trains two dictionaries using a sparse representation model from pairs of low- and523

high-quality volumes, whereas the second is based on a deep dictionary learning approach524

which explicitly learns high-resolution dictionary to upscale the input volume as in the525
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sparse-coding-based methods, while the entire network, including high dictionary generator,526

is simultaneously optimised to take full advantage of deep learning methods. The perfor-527

mance of both approaches is demonstrated using a low-field MRI application, and compared528

against state-of-the-art supervised deep learning algorithm using both in-distribution and529

out-of-distribution datasets. Although supervised deep learning approach showed a superior530

performance using an in-distribution data set, one disadvantage of such class of methods is531

that their performance is degraded for images with a different contrast than in the training532

data set (OOD data). The results presented in the previous section show that the sparsity533

prior for image patches in the IQT-SRep and approach is effective in regularising the ill-534

posed IQT problem leading to good performance using out-of-distribution data compared535

to the IQT-DL approach. In these results, the dictionary size is fixed be 1024. Obviously,536

larger dictionaries retain more expressive patterns to the volumes of the trained data set,537

thus, yield more accurate approximation to the sparsity optimisation problem during the538

testing phase. However, this comes at the expense of increasing the computation cost. On539

the other hand, the blended learning IQT-DDL approach shows that the upsampling pro-540

cess is efficient because the main network does not need to maintain the information of541

the processed image at the pixel level in high-quality image space. Therefore, the network542

can concentrate only on predicting the coefficients of the high-quality dictionary yielding543

better performance using the InD2 and OOD datasets compared to IQT-DL and IQT-SRep.544

Extensive experiments show that sparse representation using dictionary learning and the545

deep dictionary learning approaches are more robust in super-resolving out-of-distribution546

test images compared to supervised deep learning. On the other hand, unsupervised learn-547

ing is more robust to noise and redundancy in the data compared to supervised learning.548

Precisely, in a convex optimisation framework, training and testing samples are forced to549

follow the observation model of the imaging system on hand, and therefore, any new un-550

seen test samples will follow this model, which can avoid the “regression to the mean”551

problems observed with supervised regression models. The biased estimates produced us-552

ing the IQT-DL model likely arise because these image regions are under-represented in553

the training data, and thus the model is under-fit, which further adds bias in estimates.554

Although other unsupervised approaches, in particular deep unsupervised learning, might555

produce better results, the proposed approach highlight the problem and provide a baseline556

potential solution. It is worth pointing out that the proposed methods performed slightly557

better than the supervised approach only for data that were quite significantly different558

from the training dataset; this might be a not very relevant scenario for simulation-based559

training approaches, as most of the current IQT implementations are, as it would be much560

more advantageous to adapt the simulation parameters for the specific application and train561

an ad hoc supervised model than to adopt an unsupervised approach. However, there are562

several situations in which test images may have features that are difficult to simulate or563

predict, e.g. pathological alterations or artifacts. Some applications may also require very564

complex models that would be impractical to retrain for every single applications. In both565

these cases, it is critical to have a model that is robust enough to OOD data. Further-566

more, as already mentioned, this was a proof-of-concept study considering relatively simple567

supervised approaches. More advanced methods will be investigated in the future and are568

expected to provide a more significant advantage compared to supervised baselines.569
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5. Conclusion and Future Work570

In this work, we introduced two novel formulations of the IQT problem, which use an571

unsupervised learning framework, and a blended supervised and unsupervised learning,572

respectively. The unsupervised learning approach considers a sparse representation and573

dictionary learning model, whereas the combination of supervised and unsupervised learning574

approach is based on deep dictionary learning. The two models are evaluated using a575

low-field magnetic resonance imaging application aiming to recover high-quality images576

akin to those obtained from high-field scanners. Experiments comparing the proposed577

approaches against state-of-the-art deep learning IQT method identified that the two novel578

formulations of the IQT problem can avoid bias associated with supervised methods when579

tested using out-of-distribution data that differs from the distribution of the data the model580

was trained on. This highlights the potential benefit of these novel paradigms for IQT.581

Future work involves demonstrating the performance of the approach using real low-field582

MRI data and providing uncertainty bounds to the estimates, as well as extension to deep583

unsupervised methods that can combine the high fidelity appearance of supervised deep584

learning approaches to image enhancement with the reduced bias provided by unsupervised585

learning. The reduction of bias is an important step in the deployment of learning based586

methods for image enhancement, itself a vital component in the realisation of the potential587

of emerging low-field and portable MRI systems particularly for deployment in regions where588

accessibility is currently low.589
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