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Abstract

Image Quality Transfer (IQT) aims to enhance the contrast and resolution of low-quality
medical images, e.g. obtained from low-power devices, with rich information learned from
higher quality images. In contrast to existing IQT methods in the literature which adopt
supervised learning frameworks, in this work, we propose two novel formulations of the IQT
problem. The first approach uses an unsupervised learning framework, whereas the second
is a combination of both supervised and unsupervised learning. The unsupervised learning
approach considers a sparse representation (SRep) and dictionary learning model, which
we call IQT-SRep, whereas the combination of supervised and unsupervised learning ap-
proach is based on deep dictionary learning (DDL), which we call IQT-DDL. The IQT-SRep
approach trains two dictionaries using a sparse representation model using pairs of low-
and high-quality volumes. Subsequently, the sparse representation of a low-quality block,
in terms of the low-quality dictionary, can be directly used to recover the corresponding
high-quality block using the high-quality dictionary. On the other hand, the IQT-DDL ap-
proach explicitly learns a high-resolution dictionary to upscale the input volume, while the
entire network, including high dictionary generator, is simultaneously optimised to take full
advantage of deep learning methods. The two models are evaluated using a low-field mag-
netic resonance imaging (MRI) application aiming to recover high-quality images akin to
those obtained from high-field scanners. Experiments comparing the proposed approaches
against state-of-the-art supervised deep learning IQT method (IQT-DL) identify that the
two novel formulations of the IQT problem can avoid bias associated with supervised meth-
ods when tested using out-of-distribution data that differs from the distribution of the data
the model was trained on. This highlights the potential benefit of these novel paradigms
for IQT.
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1. Introduction

Image Quality Transfer (IQT) Alexander et al. (2014, 2017); Lin et al. (2019); Tanno et al.
(2021); Lin et al. (2021, 2022); Kim et al. (2023) is a machine learning technique that is used
to enhance the resolution and contrast of low-quality clinical data using rich information in
high-quality images. For example given an image from a standard hospital scanner or rapid
acquisition protocol, we might estimate the image we would have got from the same subject
using a high-power experimental scanner available only in specialist research centres or a
richer acquisition protocols too lengthy to run on every patient. IQT is a vital component of
efforts to democratise the capabilities of high power rare experimental systems broadening
the accessibility e.g. to lower and middle income countries Anazodo et al. (2022). This
technique learns mappings from low-quality (e.g. clinical) to high-quality (e.g.experimental)
images exploiting the similarity of image structure across subjects, regions, modalities, and
scales. The mapping may then operate directly on low-quality images to estimate the
corresponding high-quality images. Early work Alexander et al. (2017); Blumberg et al.
(2018); Tanno et al. (2021) focused on diffusion MRI and showed remarkable ability to
enhance both contrast and resolution and enabled tractography to recover small pathways
impossible to reconstruct at the acquired resolution. Recent work Lin et al. (2021) extends
the idea to standard structural MRI, particularly targeting application to low-field MRI
systems. IQT technique Alexander et al. (2017) differs from super-resolution in computer
vision Lau et al. (2023); Zhou et al. (2020, 2021); Li et al. (2024) in several key aspects.
In general super-resolution aim to up-sample an image, whereas IQT aims to transfer the
quality of information from an image to the other. This means that IQT is not limited
to increasing the spatial resolution of images. While super-resolution techniques primarily
focus on enhancing the spatial resolution, IQT also aims to improve the image contrast.
This dual enhancement is crucial for medical imaging applications where both resolution
and contrast are necessary for accurate diagnosis and analysis. Moreover, super-resolution
techniques are generally used to upsample images, making them appear sharper and more
detailed. In contrast, IQT is specifically designed to transfer the quality from high-quality
images to low-quality images. This is particularly beneficial in medical imaging, where
high-quality images from advanced scanners are used to enhance the quality of images
obtained from lower-power or less advanced scanners. Lastly, IQT differs from modality
transfer methods, which maps one modality to another to obtain multi-modality information
Iglesias et al. (2021, 2023, 2022), whereas IQT’s primary goal is to enhance the existing
image quality, specifically improving resolution and contrast rather than the developing
new content. By highlighting these differences, we aim to clearly delineate the unique
characteristics and advantages of the IQT task.

Machine learning models are often trained on a specific data distribution, but may
encounter unseen data from different distributions in real-world scenarios. This poses a
critical challenge for the security and reliability of machine learning systems, especially
in some error-sensitive applications, such as medical diagnosis including the application
investigated in this work. One of its powerful capabilities lies in the promising generalisation
ability from training data to unseen in-distribution (InD) data. However, the finite training
data cannot guarantee the completeness of data distribution, so it is inevitable to encounter
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out-of-distribution (OOD) data. Machine learning models can be broadly categorised into
supervised, unsupervised and self-supervised learning models. In supervised learning, the
model is trained by paring inputs with their expected outputs. However, this is far from
being practical, since the full data distribution cannot be represented in the training data
set. To circumvent this difficulty, unsupervised and self-supervised learning methods can
be used.

All IQT models proposed in the literature use supervised learning frameworks to learn
a regression between matched patches in low- and high-quality images. In particular deep
learning frameworks substantially outperform the original random-forest implementation in
terms of global error metrics for enhancement of both diffusion-tensor MRI and low-field
structural MRI Alexander et al. (2014, 2017); Lin et al. (2019); Tanno et al. (2021); Lin et al.
(2021, 2022). However, interpretation of images enhanced via such regression models needs
caution. First, regression models in general can lead to bias that depends on the training
data distribution Obermeyer et al. (2019). In particular, inputs (here patches) that are rare
in the training data are often skewed towards outputs more common in training data; and
degenerate regions of the input-space where the mapping is ambiguous are often mapped to a
consistent mean giving a false impression of consistent and confident output. Moreover, the
performance of deep-learning based methods can degrade even more with OOD data. These
effects have been well documented in other image-related regression applications recently,
such as parameter mapping Gyori et al. (2022). So far, they have not been considered in IQT
and image enhancement although similar effects are likely to arise. Additional problems,
particularly in deep learning, can arise from over-fitting and under-fitting which can further
add to bias in estimates particularly for examples that are over/under-represented in the
training data. Moreover, state-of-the-art IQT models, specifically deep neural networks, are
generally designed for a static and closed world Krizhevsky et al. (2017); He et al. (2015).
The models are trained under the assumption that the input distribution at test time will be
the same as the training distribution. In real world MRI data, however, deep-learning-based
techniques effectiveness diminishes when applied to images that differ significantly from the
training data set Gu et al. (2019). Although various approaches have been developed to
tackle this issue, such as training networks to handle multiple types of degradation Soh
et al. (2020); Xu et al. (2020); Zhang et al. (2018a); Zhou and Susstrunk (2019) and making
models less sensitive to degradation through iterative optimisations Shocher et al. (2018);
Gu et al. (2019), it is also crucial to enhance the robustness of the network structure.

Sparse representation (SRep) using dictionary learning is an unsupervised learning
framework that assumes a given signal is sparse in some domain (Wavelets, Fourier, dis-
crete cosine transform, etc.). SRep has proven robust to noise and redundancy in the data,
where supervised deep learning algorithms encounter problems Elad (2010). In the IQT
context, low and high-quality dictionaries (Dy, and Dy, respectively) can be trained using
a sparse representation model using pairs of low- and high-quality volumes. Subsequently,
the sparse representation of a low-quality block, in terms of the low-quality dictionary Dy,
can be directly used to recover the corresponding high-quality block using the high-quality
dictionary Dj,. As such, low-quality or high-quality volume patches are represented as a
linear combinations of atoms drawn from a dictionary. SRep has been successfully applied
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to many other related inverse problems in image processing, such as denoising Li et al.
(2012); Elad and Aharon (2006), restoration Zhang et al. (2014); Li et al. (2012), image
quality assessment Liu et al. (2017, 2018, 2024, 2019), outlier or anomaly detection Eldaly
(2018); Eldaly et al. (2019), image reconstruction Eldaly and Alexander (2024); Eldaly et al.
(2025), and super resolution Yang et al. (2010). In a convex optimisation framework, train-
ing and testing samples are forced to follow the observation model of the imaging system on
hand. Therefore, any new unseen test samples (either InD or OOD) will follow this model,
which can avoid the “regression to the mean” problems observed with supervised regression
models, often observed in OOD data.

On the other hand, in supervised deep learning, Dong et al. Dong et al. (2014) replaced
the dictionary learning using sparse representation steps described above with a multilay-
ered convolutional neural network to take advantage of the powerful capability of deep
learning. As such, the low and high-quality dictionaries are implicitly acquired through
network training. Various methods have been proposed to improve the performance of this
approach such as in Kim et al. (2016); Lim et al. (2017); Tai et al. (2017); Zhang et al.
(2018b). However, most of these studies, follow the same formality as in Dong et al. (2014)
from a general perspective, where all the processes in the sparse-coding-based methods
are replaced by a multilayered network. Recently, deep dictionary learning Tariyal et al.
(2016) is proposed to take advantage of both transductive and inductive nature of dictionary
learning and deep learning, respectively, and is very well suited where there is a scarcity
of training data. While dictionary learning focuses on learning “basis” and “features” by
matrix factorisation, deep learning focuses on extracting features via learning “weights”
or “filter” in a greedy layer by layer fashion. Deep dictionary learning has been applied
to various problems including recognition Tang et al. (2020); Sharma et al. (2017), image
inpainting Deshpande et al. (2020), super resolution Huang and Dragotti (2018); Zhao et al.
(2017), classification Majumdar and Singhal (2017); Majumdar and Ward (2017); Manjani
et al. (2017), and load monitoring Singh and Majumdar (2017).

In this work, in contrast to existing IQT models in the literature, we propose two novel
1QT algorithms, from which one is an example of unsupervised learning while the other is
an example of blended supervised and unsupervised learning. The first approach is based
on a sparse representation model and dictionary learning, which we call IQT-SRep. In this
approach, low and high-quality dictionaries can be trained using a sparse representation
model using pairs of low- and high-quality volumes. Subsequently, the sparse representation
of a low-quality block, in terms of the low-quality dictionary, can be directly used to recover
the corresponding high-quality block using the high-quality dictionary. The second approach
is based on deep dictionary learning which we call IQT-DDL. This approach explicitly learns
high-quality dictionary through network training. The main network predicts the high-
quality dictionary coefficients, and the weighted sum of the dictionary atoms generates a
high-quality output. This approach differs fundamentally from traditional deep-learning
methods, which typically employ upsampling layers within the network. The upsampling
process in our IQT approach is efficient since pre-generated high-quality dictionary serves
as a magnifier during inference. Additionally, the main network no longer needs to retain
pixel-level information in the high-quality space, enabling it to focus solely on predicting
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the dictionary coefficients. The main advantages of these two novel formulations are that
they are robust to super resolve heavily OOD test data, and they are well suited where there
is a scarcity of training data. We demonstrate the two models using experiments from a
low-field MRI application and compare the results with the recently proposed state-of-the-
art supervised deep learning approach Lin et al. (2022). As such, the main contributions of
this paper can be summarised as follows.

1. We propose two new formulations of the IQT technique, from which one is an un-
supervised learning based (IQT-SRep), and one is based on a combination of both
supervised and unsupervised learning (IQT-DDL). Both of these formulations have
never been previously applied to the IQT problem in literature.

2. The IQT-SRep approach is based on sparse representation and dictionary learning
model and assumes that a given low- or high-quality volume patch can be represented
as a linear combination of atoms drawn from a dictionary that is trained using training
examples of pairs of low- and high-quality volume patches. This requires training of
a pair of coupled dictionaries using a sparse representation model using pairs of low-
and high-quality volumes.

3. The IQT-DDL approach is based on a combination of supervised and unsupervised
learning using deep dictionary learning. This approach assumes that a given low- or
high-quality volume patch can be represented as a non-linear combination of atoms
drawn from a dictionary that is trained using training examples of pairs of low- and
high-quality volume patches.

4. We demonstrate the performance of the model using experiments from a low-field
MRI application, using both InD and OOD data, and compare with the state-of-the-
art supervised deep learning IQT method, for low-field MRI enhancement.

The remaining sections of the paper are organised as follows. Section 2 formulates the
problem of IQT using three learning techniques; the formulations that we propose here for
IQT-SRep and IQT-DDL are described in detail, and finally, the supervised deep learning
approach proposed in Lin et al. (2022) is briefly presented for comparison. Experiments
conducted using a low-field MRI application synthesised using data from the human con-
nectome project (HCP) are presented in Section 3. A general discussion is then presented
in 4. Conclusions and future work are finally reported in Section 5.
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2. Proposed Approaches

2.1 Image quality transfer using sparse representation and dictionary learning
(IQT-SRep)

2.1.1 IMAGING MODEL

The IQT problem can be mathematically formulated as follows: Given an original vectorised
high-quality volume X € RM | its corresponding low-quality version is denoted as Y € RY,
where the relation between the two volumes can be modeled as

Y =LHX 4+ W, (1)

where H is the matrix representing a linear blurring operator, L is the downsampling
operator, and W stands for additive noise, modelling observation noise and model mismatch
and is assumed to be a white Gaussian noise sequence. This equation states that Y is a
blurred and down-sampled version of the original high-quality volume X.

In IQT, the goal is to recover a high-quality volume X given its blurred and down-
sampled version Y, such that X &~ X. The problem of estimating X from Y in Eq. (1)
is an ill-posed linear inverse problem (LIP), i.e., the matrix LH is singular and/or very
ill-conditioned, since for a given low-quality input, infinitely many high-quality volumes
satisfy the above equation. Consequently, this problem requires additional regularisation (or
prior information from Bayesian perspective) in order to reduce uncertainties and improve
estimation performance.

Figure 1 shows a schematic diagram to the IQT problem using a sparse representa-
tion model and dictionary learning. The proposed model consists of two separate stages.
First, the coupled low-quality and high-quality dictionaries, D, and Dy, respectively, are
constructed from training data set. Then, a reconstruction algorithm is applied to upscale
a test low-quality volume to recover its high-quality version. This algorithm considers the
patch-based sparse prior model to recover an estimate to the high-quality volume in a patch-
by-patch basis. The following sections provide more details about the two stages mentioned
above.

2.1.2 JOINT DICTIONARY CONSTRUCTION

Constructing the high-quality and low-quality dictionaries requires a set of matched high-
and low-quality volume patches. The training set is composed by a set of high-quality
and the corresponding low-quality volumes. As proposed by Zeyde et al. (2010), the high-
quality volumes are processed to obtain only the high-frequency information, whereas the
intensity maps are used for the low-quality volumes. Each of the high- and low-quality
volumes are then split into a set of 3D patches which are vectorised and training pairs
are generated. Patches containing > 80% background voxels are excluded from the patch
library. The coupled-dictionary training algorithm proposed by Zeyde et al. (2010) is then
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Figure 1: A schematic diagram of the proposed IQT approach using sparse representation
and dictionary learning (IQT-SRep), where Dj: High-quality dictionary, Dy:
Low-quality dictionary, Y: Low-quality input volume, Xg: Initial high-quality
volume, A\, 8 Regularisation parameters, /m: Patch size, p: Number of pixel
overlap, s: Scale, y: A patch from the low-quality image Y, p: Mean intensity of
the patch y, a: Sparse representation coefficients, a*: Optimised sparse repre-
sentation coefficients, F': Transformation matrix, x: High-quality patch, and X*:
High-quality volume.
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used in order to obtain the low- and high-quality dictionaries D, and Dy, respectively. For
this local model, the two dictionaries Dj and Dy are trained such that they share the
same sparse representations for each high- and low-quality volume patch pair. Finally, the
dimensionality of Dy, may be reduced to speed up the subsequent computations, given the
intrinsic redundancy of the multi-scale edge analysis. For doing so, a Principal Component
Analysis (PCA) is applied to this matrix, searching for a set of projection coefficients that
represents at least 90% of the original variance. All patches are collected together to form
the reduced low-quality dictionary Dy, whereby the number of atoms in the dictionary has
not changed.

2.1.3 PATCH-BASED SPARSITY PRIOR MODEL

The low-quality volume Y can be split into a set of overlapping 3D patches y, each of size
Im x ¥m x ¥m. With the sparse generative model, each patch y can be represented by
a linear combination of a few atoms drawn from a dictionary Dy, which characterises the
low-quality patches. This can be written as

y = Dyay, (2)

where o € R¥ is a sparse vector and ||alg < K. The corresponding high-quality patch x,
with size §/p x ¢/p X /p, can be computed by again applying the following sparse generative
model

X = DhOLh. (3)

From Eq. (2) and (3), it can be assumed that the sparse representation of a low-quality
patch in terms of Dy can be directly used to recover the corresponding high-quality patch
from Dy, namely, that ay = «y. Therefore, the reconstructed high-quality image X can
be built by applying the sparse representation to each patch y in Y and then using the
estimated a with Dy, to obtain each x, which together form the image X.

2.1.4 LOCAL RECONSTRUCTION BY SPARSITY

The aim is to estimate a high-quality version X from a given low-quality volume Y. Given a
test low-quality volume, for each input low-quality patch y, we find a sparse representation
with respect to Dy. The corresponding high-quality patch bases D; will be combined
according to these coefficients to generate the output high-quality patch x. The problem of
finding the sparsest representation of y can be formulated as

1
minimise iHFDga—FyH%-i-/\HOLHl, (4)
«

where A balances sparsity of the solution and fidelity of the approximation to y, and F is a
linear feature extraction operator as in Zeyde et al. (2010). Given the optimal solution a*
of Eq.(4), the high-quality patch x can be reconstructed as x = Dja*. This optimisation
problem can be solved using the Basis Pursuit algorithm Chen and Donoho (1994).
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The complete IQT process is summarised in Algorithm (1). In this algorithm, the input
low-quality volume Y is up-sampled using bicubic interpolation to provide a preliminary
high-resolution volume. For each cubic patch of size /m x /m x /m from the up-sampled
volume, starting from the top left corner with an overlap p, the mean intensity p of the
patch is computed to ensure that the dictionary represents image textures rather than
absolute intensities. The sparse representation a* of the patch is then obtained by solving
an optimisation problem that minimises the difference between the transformed low-quality
patch and its sparse representation in the low-quality dictionary Dy, subject to a sparsity
constraint controlled by the regularisation parameter A. Using the high-quality dictionary
D;, and the sparse coefficients a*, a high-quality patch x is generated. This high-quality
patch, with the mean intensity restored, is placed in the corresponding location in the initial
high-quality volume Xj. After processing all patches, the final high-quality volume X is
obtained.

Algorithm 1 IQT using patch-based sparse representation and dictionary learning (IQT-
SRep)

1: Input: Dy, Dy and Y
2: Initialise X, Choose Regularisation parameters \, 3, Patch-size /m, pixel-overlap p
and scale s
3: Up sample the input low-quality volume using bicubic interpolation.
4: For each &/m x /m x /m patch y from an image Y, from top left corner of the volume,
with an overlap p
e Compute: mean intensity u of the patch y
e Solve: a* = minimise 3[|FDya — Fy||3 + A1
(a2
e Generate the high-quality patch x = Dpa*
e Place the high-quality patch x + p in the high-quality volume Xg

5: End
6: Output High-quality volume X = X

2.2 Image quality transfer using deep dictionary learning (IQT-DDL)

The IQT using a deep dictionary learning model is composed of three main steps: construct-
ing the high-quality dictionary Dy, per-pixel prediction, and finally image reconstruction
from patches. The high-quality dictionary Dy is generated from random noise input. The
per-pixel predictor then estimates the coefficients of Dy for each pixel from a low-quality
input. In the reconstruction phase, the high-quality image can be computed using the
weighted sum of the elements (or atoms) of Dy. In this work, we use L1 loss function
to optimise the network L = ﬁZ%ﬂHI% — @(ng)Hl, where Ll,‘{ and I% are low- and
high-quality patches respectively, M is the number of training pairs, and ©(-) represents a
function of the IQT-DDL network. Figure 2 provides a schematic diagram of the proposed
method. The following sections provide more details about each step.
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Figure 2: A schematic diagram of IQT using deep dictionary learning. Random noise gen-
erates the high-resolution dictionary Dpg. Then a per-pixel predictor takes as
input a concatenation of an encoded code of Dy and an extracted feature. A
final image based on Dy is then constructed using predictor output.

10



278

280

281

282

283

284

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

2.2.1 CONSTRUCTION OF THE HIGH-QUALITY DICTIONARY Dy

The high-quality dictionary Dgxsixsj xsk) is constructed from random noise using a stan-

dard Gaussian distribution, where s;, s; and sj, are up-scaling factors in ¢, j and k directions,
and N is the number of dictionary atoms. The high-quality dictionary Dy is then encoded
by s; X sj X s convolution with groups N, followed by ReLU Nair and Hinton (2010) and
1 x 1 x 1 convolution. Each N element of the resultant code CgXIXIXI represents each
s; X sj X 53, atom as a scalar value. Note that low-quality dictionaries can be naturally
replaced by convolutional operations, and therefore only Dy is constructed. The Dy gen-
erator has a tree-like structure, where the nodes consist of two 1 x 1 x 1 convolutional layers
with ReLU activation. The final layer has a Tanh activation followed by a pixel shuffling
layer. To produce N atoms, depth d of the generator is determined as d = logy(N).

2.2.2 PER-PIXEL PREDICTION

We use the UNet++ Zhou et al. (2018) as a deep feature extractor in Fig. 2, with depth
of three, and a long skip connection is added. For an input image I € R**7**  the deep
feature extractor generates a tensor of size f x ¢ x j X k. The per-pixel predictor then takes
as input a concatenation of the extracted feature and the expanded code of Dy, such that
ngzx]Xk = Rlxixjxk(CgXMle), where R,y pxc(.) denotes the a x b x ¢ repeat operations.
The per-pixel predictor is composed of ten bottleneck residual blocks followed by a softmax
function that computes the NV coefficients of Dy for each input pixel. Both the deep feature
extractor and per-pixel predictor contain batch normalisation layers Loffe and Normaliza-
tion (2014) before the ReLU activation. The resultant prediction map MY *#J** is further
convolved with a 2 x 2 x 2 convolution layer to produce a complementary prediction map
MN*(=1)x(G=1)x(k=1) " that compensates the patch boundaries when reconstructing the fi-
nal output. The detail of the compensation mechanism is described in the next subsection.

2.2.3 RECONSTRUCTION

The prediction map MV *%7*¥ js upscaled to N x s;i x 87 x sgk by nearest-neighbor interpo-

lation, and the element-wise multiplication of that upscaled prediction map Us,s; s, (M Nxixjxky

with the expanded dictionary Rqx;xjxk (Dgxsixsj XSk) produces N X s;i X 5;7 X sk tensor T’

consists of weighted atoms. The Us,, 55,5k (-) denotes s; X s X s, nearest neighbor upsampling.
Finally, the tensor T is summed over the first dimension, producing the output = as

N-1
xlxsiixsjjxskk — Z TNXSiiXSijSkk[n7 o :], (5)
n=0
TNxsiz‘xs]-jxskk — Usi,Sj,sk (Minxjxk) Q RlXiijk(DgXSiXSjXSk)' (6)

11
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The same sequence of operations is applied to the complementary prediction map to
obtain the output z’. The final high-field prediction is obtained by centering x and z’ on
top of each other and concatenating the overlapping parts of the centered x and z’, and
applying a 5 x 5 x 5 convolution. For non-overlapping parts, x is simply used as the final
output.

2.3 Image quality transfer using deep learning (IQT-DL)

A supervised learning IQT algorithm which was implemented using a deep learning frame-
work (IQT-DL) is recently proposed Lin et al. (2022, 2019). This approach was used for
1IQT application in low-field MRI and showed superior performance compared to existing
methods. The model is based on an anistropic U-Net trained on matched pairs of image
patches from real high-field and synthetic low-field volumes generated by a stochastic dec-
imation model which is presented in the Experiments section. This model considered the
anisotropic U-Net architecture, which is an adaptation of the U-Net architecture to map
input and output patches that differ in voxel dimension by the downsampling factor, s, in
the slice direction. The main additions to the classic U-Net architecture are a bottleneck
block, connecting corresponding levels of the contracting and expanding paths, and a resid-
ual core used to include more convolutional layers on each level. All convolution layers are
activated by Rectified Linear Unit (ReLU) with Batch Normalisation (BN). The average
voxel-wise mean square error over all patch pairs was used as a loss function. For more
details and a block diagram of their proposed approach, see Lin et al. (2022).

3. Experiments

The performance of the proposed IQT-SRep and IQT-DDL approaches is demonstrated
using a low-field MRI application, using both in-distribution (InD) and out-of distribution
(OOD) datasets. The aim is to recover contrast enhanced and super-resolved images akin
to those obtained using high field MRI scanners, standard in higher income countries,
from low-field MR images form scanners still widely used in low-and-middle class income
countries (LMICs). The proposed approaches are compared against the state-of-the-art
supervised deep learning framework (IQT-DL) Lin et al. (2022, 2019), described in the
previous section, to reveal both advantages and disadvantages of each of them. The main
data set for training and testing is derived from the T1-weighted MRI images provided
by the Human Connectome Projects (HCP), acquired on a 3 Tesla Siemens Connectome
scanner Sotiropoulos et al. (2013a), with a 0.7-mm isotropic voxel. The repetition time
(TR), echo time (TE), and inversion time (TI) for T1w are set to 2400, 2.14, and 1000 ms,
respectively. We have chosen 65 subjects, from which 60 were used for training and 5
for testing. The training and testing datasets are synthesised using a stochastic low-field
simulator described in Lin et al. (2022), the inputs of which are the signal-to-noise ratio
(SNR) in gray matter (GM) and white matter (WM). The training data set is built using,
for each synthetic volume, a randomly sampled SNR pair from the bivariate Gaussian
distribution estimated from a real low-field MRI data set acquired in Nigeria Lin et al.
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(2022). Three Low-field test datasets, five volumes each, are synthesised. Two test datasets
are synthesised using parameters sampled from the same 2D Gaussian distribution used for
the training set, and are called in-distribution data (InD1 and InD2). In particular, InD1 is
synthesised with parameters using a Mahalanobis distance < 1, and InD2 with Mahalanobis
distance > 3, with the constraint of having the SNR higher in WM than in GM, to keep
the tissue contrast compatible with T1w. The simulation parameters of third data set are
sampled from a distribution estimated from ultra-low field T1w images, and is called out-
of-distribution (OOD) data set. Figure 3 shows a schematic diagram of both training and
testing data structure, with the stochastic low-field image simulator for training and testing
samples described below.
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Figure 3: A schematic diagram of training and testing datasets. The two test in distribution
datasets (InD1 and InD2) are synthesised using parameters sampled from the
same 2D Gaussian distribution used for the training set. In particular, InD1
is synthesised with parameters using a Mahalanobis distance < 1, and InD2
with Mahalanobis distance > 3, with the constraint of having the SNR higher
in WM than in GM, to keep the tissue contrast compatible with T1w. The out-
of-distribution (OOD) data set is simulated using parameters sampled from a
distribution estimated from ultra-low field T1w images.
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3.1 Model training for IQT-SRep, IQT-DDL, and IQT-DL

Once the training set of matched low-and high-field pairs is composed as explained above,
paired patches are obtained by cropping corresponding high-quality and synthetic low-
quality volumes into patches at regularly spaced locations. Patches containing > 80%
background voxels are excluded from the patch library. Training details of the IQT-SRep,
1IQT-DDL and IQT-DL models are presented below.

3.1.1 IQT-SREP

The number of atoms and patch-sizes in dictionaries D, and Dy, has impact on two impor-
tant aspects of the proposed IQT-SRep model; that are the reconstruction accuracy and
reconstruction time. Larger dictionaries include more image patterns, and therefore more
accurate super-resolved volumes. However, the drawbacks are the computational complex-
ity of solving the optimisation problem and the longer time required for patch extraction.
Following this, from an initial set of 100,000 3D-vectorised patches, we learned compact
dictionaries of different atom numbers, including 150, 256, 512, 1024 and patch-sizes of
3x3x3,5xbx5and 7x7x7. We first present those of 1024 atoms using 7 x 7 x 7
patch-size, which provide best construction quality, and the effect of different atom number
is presented afterwards.

3.1.2 IQT-DDL

In this work, we adopt a model using different atoms numbers of 64 and 128 atoms. The
number of filters of the models is adjusted according to the number of atoms. The scaling
factors s;,s;, and sj are set to s; = 1,5; = 1, and s, = 4. The network is trained using
low-quality patch size of 32 x 32 x (32/sy) with a mini-batch size of 32. Random flipping and
rotation augmentation is applied to each training sample. An Adam optimiser Kingma and
Ba (2014) with 81 = 0.9, 32 = 0.999, and € = 10~® is used. The learning rate of the network
except for the Dy generator is initialised as 2e~* and halved at [200k, 300k, 350k, 375k].
The total training iterations is 400k. The learning rate of the Dy generator is initialised
as 5e~3 and halved at [50k, 100k, 200k, 300k, 350k]. In addition, to stabilise training of the
Dy generator, we randomly shuffle the order of output atoms for the first 1k iterations.
The results of the 128 atoms dictionary are first presented, followed by a comparison with
those of 64 atoms dictionary.

3.1.3 IQT-DL

As in Lin et al. (2022), we use a default patch size of 32 x 32 x (32/sy) and 32 x 32 x 32,
respectively for low-field and high-field volumes, and a step size of 8, 16, and 16/s; along
x-, Y-, and z-directions, which provide best construction quality. Training model is then
constructed using the training procedure explained in Section 2.3.
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3.2 Testing

Each test volume is split into overlapping patches of size similar to that used for training
in each model. The trained IQT-SRep, IQT-DDL and IQT-DL models described above are
then applied to each of these patches to estimated the high-field volumes. The magnification
factor sp for all models is set to 4. For the IQT-SRep model, in all experiments, the A
parameter is set to 0.01. Slight variation of this parameter does not change the results
significantly.

3.3 Evaluation

The quantitative measure used to assess the quality of the IQT algorithms presented in the
previous section are the normalised root mean squared error (NRMSE), defined as

25:1("”—)(%)2 ( )
NRMSE = N : 7
Max(x)
where x is the ground truth high-quality image, X is the corresponding estimate from the
low-field counterpart, and Max(x) is the maximum intensity of the ground truth high-field
image x, and structural similarity index measure (SSIM) which can be computed as in
Wang et al. (2004).

3.4 Results

We utilise the proposed unsupervised learning IQT-SRep, the supervised deep learning
IQT-DL and the blended learning IQT-DDL approaches to super resolve the testing datasets
InD1, InD2 and OOD described above. Below, we show the quantitative and the qualitative
performance, as well as the effect of changing different crucial parameters such as atom
number in IQT-SRep and IQT-DDL approaches.

3.4.1 QUANTITATIVE RESULTS

Table 1 provides NRMSE and SSIM results of InD1, InD2 and OOD using the three meth-
ods IQT-SRep, IQT-DDL and IQT-DL. We can observe that the supervised deep learning
approach IQT-DL provides better results (lowest NRMSE and highest SSIM) using the in-
distribution datasets (InD1 and InD2), compared to the unsupervised learning IQT-SRep
algorithm, revealing that supervised learning is more robust for super-resolving images that
follow the same distribution of the training data set compared to unsupervised learning.
However, when testing using out-of distribution data that is different from the distribu-
tion of the training samples, the unsupervised learning approach IQT-SRep provides lower
NRMSE and higher SSIM compared to the supervised deep learning model IQT-DL. This
highlights the importance of unsupervised learning models since the full data distribution
cannot be represented in the training data set. On the other hand, we can observe that
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the supervised deep learning model IQT-DL performs better (lower NRMSE and higher
SSIM) than the blended supervised and unsupervised learning IQT-DDL approach using
InD1, whereas the IQT-DDL provides better results using both InD2 and OOD datasets.
This reveals the robustness of the blended learning IQT-DDL approach in super-resolving
datasets differ from that the model was trained on, in addition to data that slightly deviates
from InD1 but still part of the training samples.

3.4.2 QUALITATIVE RESULTS

Figure 4 shows examples of coronal T1 weighted images from the HCP data set, corre-
sponding to synthesised low-field images using InD1, InD2 and OOD, and results of IQT-
SRep, IQT-DDL and IQT-DL. Figure 5 shows corresponding absolute error maps between
high-quality ground truth images and corresponding low-quality images, and results of IQT-
SRep, IQT-DDL and IQT-DL. Moreover, the binary maps of regions (in red label) where
the IQT-SRep and IQT-DDL models provide closer estimates to ground truth high-quality
images compared to IQT-DL are also presented. The qualitative results in general follow
the same behaviour of the quantitative results described earlier: although IQT-DL provides
better visual results of brain structure compared to IQT-SRep using InD1, and InD2, the
1QT-SRep model shows better visual results using OOD data compared to IQT-DL. This is
clearer in the absolute error maps in Fig. 5, between high-quality ground truth images and
results of both IQT-DL and IQT-SRep, and in the binary maps where there are more image
regions where IQT-SRep and IQT-DDL performs better than IQT-DL. This implies that the
1QT-SRep approach is more robust for image enhancement using out-of-distribution data,
which are created using a different distribution to that of the training samples mimicking
real-world examples. Moreover, the IQT-SRep approach provides smoother outputs com-
pared to that of the IQT-DL approach where artifacts arising from patch construction are
very obvious. On the other hand, the blended learning IQT-DDL approach provides better
visual results than the supervised deep learning approach IQT-DL using InD2 and OOD
datasets. This is also clear in the absolute error maps and in the binary maps where there
are more image regions where IQT-DDL performs better than IQT-DL in Fig. 5. On the
other hand, while in this work we process data volumes by splitting them into overlapping
patches, the proposed approaches ensure that information from the borders of each patch
is preserved and integrated into the subsequent patches, thereby there is no information
loss and the continuity of image features across the entire volume is maintained. Moreover,
we synthesise the low-quality volumes from the high-quality ones, which ensures that there
are no pixel alignment problems, as both low-quality and high-quality volume pairs are
inherently aligned during the synthesis.

To summarise, the blended learning IQT-DDL approach provides best visual results
compared to the supervised deep learning IQT-DL and the unsupervised leaning I1QT-
SRep approaches using both InD2 and OOD datasets, whereas the unsupervised learning
approach IQT-SRep provides better visual results than the supervised deep learning IQT-
DL approach using OOD which is generated using a different distribution to that of the
training samples. There are widespread regions where the errors are lower for IQT-SRep
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Table 1: Normalised root mean squared error (NRMSE), and structural similarity in-
dex measure (SSIM) using in-distribution data (InD1), and (InD2), and out-of-
distribution data (OOD). Best results are highlighted in bold font, and second
best are underlined.

Interpolation | IQT-SRep IQT-DDL IQT-DL
NRMSE | SSIM | NRMSE [ SSIM | NRMSE | SSIM | NRMSE | SSIM
InD1 | 0257 | 0.698 | 0.240 | 0.711 | 0.126 | 0.792 | 0.096 | 0.869
InD2 | 0.328 | 0.612 | 0319 | 0.641 | 0.238 | 0.732 | 0.258 | 0.724
OOD | 0.469 | 0.585 | 0450 | 0.632 | 0.435 | 0.642 | 0.455 | 0.630

Interpolation |QT-DL IQT-DDL IQT-SRep High-Field

InD1

InD2

00D

Figure 4: Results using the HCP data set on coronal direction of the three different data
distributions InD1, InD2 and OOD (rows) using IQT-SRep, IQT-DDL and IQT-
DL. First column shows interpolated low-field image, second to forth columns
show image estimate using IQT-DL, IQT-DDL and IQT-SRep, respectively, and
fifth column shows original high-field image.

and IQT-DDL compared to IQT-DL highlighting bias in the regression model estimates,
which both IQT-SRep and IQT-DDL can avoid.

3.4.3 EFFECT OF ATOM NUMBER AND OUTPUT PATCH SIZE

Now, we evaluate the effect of atom number and patch size on both approaches. From
the sampled 100,000 image patch pairs, and for the IQT-SRep approach, we train four
dictionaries of size 150, 256, 512, 1024, and use each to estimate the high-field image
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|HR-LR| [HR-IQT_DL| [HR-IQT_DDL|  |HR-IQT_SRep| T(IQT_DL-IQT-SRep) T(IQT_DL - IQT_DDL)

Figure 5: Absolute errors for results in Figure 4, between gold-standard high-field image
(Column 5 of Figure 4), and Column 1: corresponding low-quality image, Column
2: 1QT-DL, Column 3: IQT-DDL, and Column 4: IQT-SRep. Columns 5 and
6 show binary maps of regions (in red label) where the IQT-SRep and IQT-
DDL, respectively provide closer estimates to the gold-standard high-field images
compared to IQT-DL.

from the low-field counterpart. Moreover, for the IQT-DDL approach, in order to assess
the performance of the algorithm using different atoms numbers, we construct dictionaries
using atom number of 64, in addition to that of 128 whose results are presented in the
previous section. Table 2 shows NRMSE of the IQT-SRep and IQT-DDL approaches using
different atom number using the three testing datasets InD1, InD2 and OOD. We can
observe that in general, as atom number increases, construction quality improves (NRMSE
decreases and SSIM increases), but saturates for atom number higher than 512 for the
IQT-SRep approach. For the IQT-SRep approach, all tested atom numbers still provide
better construction results using OOD data as compared to the IQT-DL approach. On the
other hand, we tested several patch sizes for both the IQT-SRep and IQT-DDL models.
Specifically, for the IQT-SRep model, we tested patch sizes of P3: 3 x 3 x 3, P5: 5 x5 x 5,
and P7: 7 x 7 x 7 using a dictionary size of 1024 (which provides the best results). For
the IQT-DDL model, we tested patch sizes of P16: 16 x 16 x 16, P32: 32 x 32 x 32, and
P48: 48 x 48 x 48 using a dictionary size of 128 (which provides the best results). Table
3 provides the NRMSE and SSIM for two in-distribution datasets (InD1 and InD2) and
one out-of-distribution (OOD) dataset. We can observe that for the IQT-SRep model, the
reconstruction results improves (NRMSE decreases and SSIM increases) as the patch size
increases. Conversely, for the IQT-DDL model, a patch size of P32: 32 x 32 x 32 outperforms
both P16: 16 x 16 x 16 and P48: 48 x 48 x 48, indicating that it is a good operating point,
balancing structural information content with the ability to learn and generalise from a
finite training set. Fig. 6 shows an example of super resolved images using the OOD
data set using dictionaries of different sizes at patch sizes providing best results (P7 for
IQT-SRep and P32 for IQT-DDL). While there are no substantial visual differences, we can

18



494

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

Table 2: Effect of atom number for the IQT-SRep and IQT-DDL methods: NRMSE and
SSIM using in-distribution data (InD1), and (InD2), and out-of-distribution data

(OOD).
IQT-SRep IQT-DDL
D150 | D256 | D512 | D1024 | D64 | D128
Dy | NRMSE | 0243 | 0.242 | 0240 | 0.240 | 0.128 | 0.126
SSIM | 0.704 | 0.705 | 0.706 | 0.706 | 0.791 | 0.792
[uDz | NRMSE | 0.322 | 0.321 | 0.319 | 0319 |0.240 | 0.238
SSIM | 0.639 | 0.640 | 0.641 | 0.641 | 0.731 | 0.732
00D | NRMSE | 0452 | 0.451 | 0450 | 0.450 | 0.437 | 0.435
SSIM | 0.630 | 0.631 | 0.632 | 0.632 | 0.641 | 0.642

observe in the binary error maps that the number red pixels (improvement over interpolated
low-field image) gradually increase with larger dictionaries until saturation for dictionary
size of 1024. In terms of computation time, the IQT-SRep algorithm is implemented in
MATLAB and the experiments are carried out on a laptop with a 2.8 GHz processor CPU,
with 16 GB of RAM, under Microsoft Windows 10. Dictionary construction times ranges
from ~ 25 min for a 150-size dictionary to ~ 80 min for a 1024-size dictionary. During the
testing, in terms of test image reconstruction time, the computation is approximately linear
to the size of the dictionary, that larger dictionaries will result in heavier computation. For
example, smaller dictionaries, such as those with 150 atoms, yield reconstructions in an
average time of ~ 7 min, while larger dictionaries, such as those with 1024 atoms, yielded
image reconstructions in an average time of 50 min. On the other hand, for the IQT-DDL
algorithm, as shown in Table 2, the NRMSE is slightly lower using dictionary with atom
number of 128 compared to that of 64 atoms for all testing datasets InD1, InD2 and OOD,
as it retains more image patterns. Fig. 6 shows visual results of the IQT-DDL approach
using an OOD example. Similar to the IQT-SRep approach, while there is no substantial
visual difference, we indeed observe the increase in more super-resolved pixels (in red) in
the binary error map images compared to the interpolated low-field image for atom number
of 128 compared to that of 64. In terms of computation time, the IQT-DDL algorithm is
implemented in PyTorch, and the testing construction time ranges from ~ 4 to 7 min for
atom numbers of 64 to 128, respectively.

4. Discussion

This work introduced two novel IQT approaches. To the best of our knowledge, it is the
first time in the literature that an unsupervised learning and a blended supervised and
unsupervised learning frameworks are considered for IQT. These approaches are introduced
to highlight biased estimates that can result from supervised learning approaches, such
as supervised deep learning, especially using out-of-distribution data. The main advan-
tages of these two novel formulations are that they tend to avoid biased estimates using
out-of-distribution test data, and are very well suited where there is a scarcity of training
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Table 3: Effect of output patch size for the IQT-SRep (using D1024) and IQT-DDL (using

Estimates

Error Maps

Binary Error Maps

D128) methods: NRMSE and SSIM using in-distribution data (InD1), and (InD2),
and out-of-distribution data (OOD).

IQT-SRep IQT-DDL

P3 | P5 | P7 | P16 | P32 | P48

tnDy | NRMSE [ 0.250 | 0.244 | 0.240 | 0.133 [ 0.126 | 0.129
SSIM | 0.671 | 0.702 | 0.706 | 0.768 | 0.792 | 0.785

D | NRMSE | 0.325 | 0.322 | 0.319 | 0.244 | 0.238 | 0.237
SSIM | 0.635 | 0.639 | 0.641 | 0.725 | 0.732 | 0.729

00D | NRMSE | 0.459 | 0.455 | 0.450 | 0.440 | 0.435 | 0.437
SSIM | 0.625 | 0.628 | 0.632 | 0.635 | 0.642 | 0.638

IQT-SRep IQT-DDL

Figure 6: Effect of atom number for the IQT-SRep and IQT-DDL approaches using the

OOD example in Fig. 4. Row 1: Image estimates using different atom numbers
(from left to right: 150, 256, 512 and 1024 atoms (for IQT-SRep), and 64 and 128
atoms (for IQT-DDL). Row 2: Absolute difference error maps between the high
quality image and each estimate in Row 1, and Row 3: Binary maps between
interpolated low-field images and estimates in Row 1, where we can observe, as
atom number increases, slightly more image regions (in red) are observed, until
saturation from atom numbers of 512 to 1024 for IQT-SRep.

data. The first approach is based on a sparse representation and dictionary learning model,
which trains two dictionaries using a sparse representation model from pairs of low- and
high-quality volumes, whereas the second is based on a deep dictionary learning approach
which explicitly learns high-resolution dictionary to upscale the input volume as in the

20



526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

sparse-coding-based methods, while the entire network, including high dictionary generator,
is simultaneously optimised to take full advantage of deep learning methods. The perfor-
mance of both approaches is demonstrated using a low-field MRI application, and compared
against state-of-the-art supervised deep learning algorithm using both in-distribution and
out-of-distribution datasets. Although supervised deep learning approach showed a superior
performance using an in-distribution data set, one disadvantage of such class of methods is
that their performance is degraded for images with a different contrast than in the training
data set (OOD data). The results presented in the previous section show that the sparsity
prior for image patches in the IQT-SRep and approach is effective in regularising the ill-
posed IQT problem leading to good performance using out-of-distribution data compared
to the IQT-DL approach. In these results, the dictionary size is fixed be 1024. Obviously,
larger dictionaries retain more expressive patterns to the volumes of the trained data set,
thus, yield more accurate approximation to the sparsity optimisation problem during the
testing phase. However, this comes at the expense of increasing the computation cost. On
the other hand, the blended learning IQT-DDL approach shows that the upsampling pro-
cess is efficient because the main network does not need to maintain the information of
the processed image at the pixel level in high-quality image space. Therefore, the network
can concentrate only on predicting the coefficients of the high-quality dictionary yielding
better performance using the InD2 and OOD datasets compared to IQT-DL and IQT-SRep.
Extensive experiments show that sparse representation using dictionary learning and the
deep dictionary learning approaches are more robust in super-resolving out-of-distribution
test images compared to supervised deep learning. On the other hand, unsupervised learn-
ing is more robust to noise and redundancy in the data compared to supervised learning.
Precisely, in a convex optimisation framework, training and testing samples are forced to
follow the observation model of the imaging system on hand, and therefore, any new un-
seen test samples will follow this model, which can avoid the “regression to the mean”
problems observed with supervised regression models. The biased estimates produced us-
ing the IQT-DL model likely arise because these image regions are under-represented in
the training data, and thus the model is under-fit, which further adds bias in estimates.
Although other unsupervised approaches, in particular deep unsupervised learning, might
produce better results, the proposed approach highlight the problem and provide a baseline
potential solution. It is worth pointing out that the proposed methods performed slightly
better than the supervised approach only for data that were quite significantly different
from the training dataset; this might be a not very relevant scenario for simulation-based
training approaches, as most of the current IQT implementations are, as it would be much
more advantageous to adapt the simulation parameters for the specific application and train
an ad hoc supervised model than to adopt an unsupervised approach. However, there are
several situations in which test images may have features that are difficult to simulate or
predict, e.g. pathological alterations or artifacts. Some applications may also require very
complex models that would be impractical to retrain for every single applications. In both
these cases, it is critical to have a model that is robust enough to OOD data. Further-
more, as already mentioned, this was a proof-of-concept study considering relatively simple
supervised approaches. More advanced methods will be investigated in the future and are
expected to provide a more significant advantage compared to supervised baselines.
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5. Conclusion and Future Work

In this work, we introduced two novel formulations of the IQT problem, which use an
unsupervised learning framework, and a blended supervised and unsupervised learning,
respectively. The unsupervised learning approach considers a sparse representation and
dictionary learning model, whereas the combination of supervised and unsupervised learning
approach is based on deep dictionary learning. The two models are evaluated using a
low-field magnetic resonance imaging application aiming to recover high-quality images
akin to those obtained from high-field scanners. Experiments comparing the proposed
approaches against state-of-the-art deep learning IQT method identified that the two novel
formulations of the IQT problem can avoid bias associated with supervised methods when
tested using out-of-distribution data that differs from the distribution of the data the model
was trained on. This highlights the potential benefit of these novel paradigms for IQT.
Future work involves demonstrating the performance of the approach using real low-field
MRI data and providing uncertainty bounds to the estimates, as well as extension to deep
unsupervised methods that can combine the high fidelity appearance of supervised deep
learning approaches to image enhancement with the reduced bias provided by unsupervised
learning. The reduction of bias is an important step in the deployment of learning based
methods for image enhancement, itself a vital component in the realisation of the potential
of emerging low-field and portable MRI systems particularly for deployment in regions where
accessibility is currently low.
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