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ABSTRACT
Aim: Species abundance data is commonly used to study biodiversity patterns. In this context, comparing α- and β-diversity 
across incomplete samples can lead to biases. Therefore, it is essential to employ methods that enable standardised and accurate 
comparisons of α- and β-diversity across varying sample sizes. In addition, biodiversity studies also often require robust esti-
mates of the total number of species within a community and the number of species shared by two communities.
Innovation: Rarefaction methods are commonly used to calculate α-diversity for standardised sample sizes, and they can also 
serve as the basis for calculating β-diversity. In this application note, we present rarestR, a new R package designed for calcu-
lating abundance-based α- and β-diversity measures for inconsistent samples using rarefaction-based metrics. The package also 
includes parametric extrapolation techniques to estimate the total expected number of species within a community, as well as the 
total number of species shared between two communities. Additionally, rarestR provides visualisation tools for curve-fitting 
associated with these estimators.
Main Conclusions: Overall, the rarestR package is a valuable tool for comparing α- and β-diversity values among incomplete 
samples, such as those involving highly mobile or species-rich taxa. In addition, our species estimators offer a complementary 
approach to non-parametric methods, including the Chao series of estimators.

1   |   Introduction

Measures of biodiversity can be split into two primary dimen-
sions: α-diversity, which typically refers to species richness 
within a single community, and β-diversity, which quantifies 
changes in the species composition between communities. 

However, it is important to acknowledge that alternative defi-
nitions also exist (e.g., α-diversity describing the degree of 
entropy or species abundance patterns and β-diversity de-
scribing the ratio between regional (γ) and local diversity 
[see Whittaker  1960, 1972; Jost  2006; Jurasinski, Retzer, and 
Beierkuhnlein  2009; Tuomisto  2010]). In this study, we adopt 
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the conventional definitions, treating α-diversity as a measure 
of species richness within a sample and β-diversity as pairwise 
measures of (dis)similarity between samples.

Studies on biodiversity typically rely on two types of data: 
abundance-based data, where each individual represents a sam-
pling unit, and incidence-based data, where observational events 
such as the number of traps or quadrats serve as the sampling 
units (Chao and Chiu 2016). A common challenge in biodiversity 
assessments is estimation bias, which arises from undersampling, 
that is, when fewer species are observed in a sample than are pres-
ent in the community's species pool (Walther and Moore 2005; 
Coddington et al. 2009; Schroeder and Jenkins 2018). This bias 
impacts the comparison of both α- and β-diversity among differ-
ent samples. To address this problem, it is critical to employ ro-
bust standardisation methods when comparing α- and β-diversity 
across incomplete samples (Coddington et  al.  2009; Beck, 
Holloway, and Schwanghart  2013). Additionally, biodiversity 
studies also often rely on accurate estimation of the total number 
of species within a community and the total number of shared 
species between two communities, both derived from incomplete 
samples (Magurran 2004; Chao et al. 2005). Different types of data 
require distinct approaches to address estimation bias (Chao and 
Chiu 2016); in this context, we focus specifically on abundance-
based data.

Rarefaction calculates abundance-based probability distribu-
tions for standardised sample sizes, providing the expected 
species (ES) richness for a given standardised sample size 
(Sanders  1968; Hurlbert  1971; Grassle and Smith  1976; Gotelli 
and Colwell  2001). This approach enables comparisons of α-
diversity (as standardised species richness) across samples for a 
common standardised sample size. Expanding on this concept, 
Grassle and Smith (1976) introduced a measure for the Expected 
number of Species Shared (ESS) between two samples, along 
with its normalised form, NESS (Normalised ES Shared). This 
index can be further standardised as the Chord-NESS (CNESS), 
which facilitates the estimation of β-diversity (i.e., compositional 
dissimilarities between samples) for standardised sample sizes 
(Trueblood, Gallagher, and Gould 1994; Zou and Axmacher 2020; 
Zou 2021).

Employing asymptotic approximation to fit rarefaction curves 
for variable sample sizes, Zou, Zhao, and Axmacher (2023) have 
introduced a parametric index to estimate the Total ES (TES) 
richness within a community. Building upon the same math-
ematical principles, fitting the ESS curve also enables the esti-
mation of the Total ESS (TESS) by two communities (Zou and 
Axmacher 2021).

This application note introduces a new R package, rarestR, 
designed to calculate both abundance-based α- and β-diversity 
measures for incomplete and inconsistent samples using rar-
efaction metrics. Additionally, it incorporates parametric ex-
trapolation tools to estimate the total species within a single 
community and the total number of shared species between two 
communities, based on incomplete samples—referred to as TES 
and TESS values mentioned above. The package also supports 
the visualisation of curve-fitting for these estimators.

2   |   Mathematical Description

2.1   |   ES, ESS, NESS and CNESS

Hurlbert  (1971) introduced the concept of an ES richness (ES) 
for randomly drawn subsamples of m individuals from a larger 
sample, based on a hypergeometric distribution, referred to as 
ESa (Equation 1).

where S represents the number of observed species in the sam-
ple, N stands for the total sampled number of individuals, Nk de-
notes the number of individuals for species k and m represents 
the standardised subsample size.

For communities containing an infinite number of individuals, 
Smith and Grassle (1977) proposed that the ES richness follows 
a multinomial distribution, referred to as ESb (Equation 2). 
The results of ESb are linked to Simpson's index at m = 2 (i.e., 
ESb2 = Simpson + 1).

Building upon ESa, Grassle and Smith (1976) proposed a mea-
sure for the ESS between two communities. This concept in-
volves randomly drawing m individuals from each sample, 
assuming a hypergeometric distribution, with parameters that 
vary according to properties of the samples (Equation 3):

where Ni* and Nj* represent the number of individuals in the 
samples representing sites i and j, respectively; and Nik and Njk 
are the number of individuals for species k in site i and j, respec-
tively. Grassle and Smith (1976) also proposed an amended form 
of ESS based on ESb, but this has seldom been used—likely be-
cause it underestimates the probability of shared species from 
two random samples.

Grassle and Smith  (1976) additionally introduced a normali-
sation of the ESS index based on the arithmetic mean, result-
ing in a distance measure with values ranging from 0 to 1, 
known as the NESS (Equation 4). The value of NESS is iden-
tical to the Horn-Morisita index (Morisita  1959) at m = 1 (i.e., 
Horn-Morisita = 1—NESSij|2).

Trueblood, Gallagher, and Gould (1994) further modified this index, 
based on the geometric mean, termed the CNESS (Equation 5):
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Although CNESS values range from 0 and 
√
2, making them 

somewhat incompatible with other dissimilarity measures, Zou 
and Axmacher  (2020) demonstrated that the function can be 
modified by removing the 

√
2 multiplier, resulting in a measure 

named CNESSa (Equation 6):

2.2   |   TES And TESS

Zou, Zhao, and Axmacher  (2023) proposed curve-fitting to 
model the relationship between the rarefaction curve (ES) and 
the standardised sample size (m), using either a four-parameter 
Weibull model (Equation 7) or a three-parameter logistic model 
(Equation 8) (i.e., the Weibull-logistic model):

where a and a′ are the horizontal intercept values of the curve 
asymptotes that represent the Total Estimated Species richness 
(TES). The variance of this value is the estimated standard de-
viation (σ) from the model fit (Zou, Zhao, and Axmacher 2023). 
As ES has two different mathematical expressions, ESa and ESb , 
TES can be estimated separately from these two different mod-
els, resulting in TESa and TESb. The mean value of TESa and 
TESb, named ‘TESab’, provides a third measure, with a variance 
of � =

1

2

√
�
2
a + �

2
b
, where �a and �b are the standard deviations 

of TESa and TESb.

Similarly, the relationship between ESS and the standardised 
sample size m can be fitted using the Weibull-logistic model, as 
proposed by Zou and Axmacher (2021). This allows for the esti-
mation of a Total number of ESS (TESS) between two communi-
ties, with the variance estimated.

3   |   Package Overview

The rarestR package can be downloaded and installed from 
CRAN (https://​cran.​r-​proje​ct.​org/​web/​packa​ges/​rares​tR/​index.​
html). The package contains four main functions, namely, es(), 
ess(), tes()and tess(), and a training dataset, share. 
TES and TESS can be visualised via the plot() function. Here 
are the descriptions of these functions:

1.	 es(x, m, method, MARGIN)calculates the rare-
fied number of species based on ES richness (ES) meas-
ures. The input x is a vector or a matrix representing the 
number of individuals for each species in one (vector) or 
across multiple sites (matrix). Parameter m represents 

the standardised subsample size (number of individuals 
randomly drawn from the sample), which can be varied 
according to users' requirements. For ESa, m cannot be 
larger than the sample size. Argument method is the es-
timation approach of ES used, with two options ‘a’ and 
‘b’ available to calculate ESa and ESb, respectively, with 
the default set as ‘a’, returning identical values to the 
rarefy() function in the ‘vegan’ package (Oksanen 
et  al.  2018), but without providing a standard error. 
Argument MARGIN is a vector giving the subscripts 
which the function will be applied over, inherited from 
the apply()function.

2.	 ess(x, m, index) calculates the similarity between 
two samples based on the ESS measure, using abundance 
data for the species contained in each sample. The input 
x is a community data matrix (sample × species; samples 
representing local communities), of which the sample 
name is the row name of the matrix. Argument m is the 
standardised sample size, by default set to m = 1. Rows 
with a total sample size < m will be excluded automati-
cally from the analysis. Parameter index is the distance 
measure used in the calculation, as one of the four op-
tions ‘CNESSa’ (formula 6), ‘CNESS’ (formula 5), ‘NESS’ 
(formula 4) and ‘ESS’ (formula 3), with the default set 
as ‘CNESSa’. The function returns a pairwise distance 
matrix.

3.	 tes(x)estimates the number of TES based on TESa, 
TESb and their average value TESab. The input x is a data 
vector representing the number of individuals for each spe-
cies. The function returns a list with a self-defined class 
‘rarestr’, which contains a summary dataframe of the 
estimated values and their standard deviations based on 
TESa, TESb and TESab, and the detailed results of the 
models used in the estimation of TES, either ‘logistic’ or 
‘Weibull’.

4.	 tess(x) estimates the number of TESS between two 
samples. The input x is a data matrix for two samples 
representing two communities. The function returns a 
list with the self-defined class ‘rarestr’, which con-
tains a summary dataframe of the estimated values and 
their standard deviations of TESS, and the detailed re-
sults of the model used in the estimation of TES, either 
‘logistic’ or ‘Weibull’.

5.	 We define an S3 method, creating a generic function 
plot()for visualising the fitted curve of the models for 
calculating TES and TESS when the input x is an object 
with the ‘rarestr’ class (i.e., an object returned by the 
tes() or tess()function) as defined by the rarestR 
package.

The package includes a dataset named ‘share’, consisting 
of three samples randomly drawn from three simulated com-
munities. Each community consists of 100 species and approxi-
mately 100,000 individuals, following a log-normal distribution 
(mean = 6.5, SD = 1). The first community serves as the refer-
ence (i.e., fully randomly generated), while the second and third 
communities share 25 and 50 randomly selected species, respec-
tively, with the reference community. A detailed description of 
the reference and scenario communities, along with the data 
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generation procedure, is provided in Zou and Axmacher (2021). 
The ‘share’ dataset represents a random subsample of 100, 150 
and 200 individuals, randomly drawn from these three commu-
nities, containing 58, 57 and 74 species, respectively.

4   |   Performance of Rarefaction-Based α-Diversity 
and β-Diversity

Many biodiversity studies aim to investigate the variation between 
samples and explain this variation using biotic and abiotic vari-
ables. A robust diversity index must accurately capture differences 
in diversity among samples, irrespective of their sample size.

We briefly evaluated the performance of rarefaction-based 
α-diversity and β-diversity measures available in the rar-
estR package using simulated data. Our goal was to assess 
how accurately and precisely these indices capture differences 
between samples of varying sizes. Additionally, we emphasise 
that the choice of indices depends on specific sampling sce-
narios. Comprehensive evaluations of the biodiversity metrics 
is beyond the scope of this application note (but see Beck and 
Schwanghart 2010; Zou and Axmacher 2020). This brief demon-
stration, comparing its performance with other metrics, aims to 
help users recognise that these metrics can be accurate. It also 
offers examples for effectively using the package.

For α-diversity, we tested the performance of ESa (Hurlbert rar-
efaction, Equation (1) and ESb (Smith and Grassle rarefaction), 
Equation (2) for their precision and accuracy in comparison to 
other α-diversity indices for samples with incomplete and in-
consistent sizes, and how the performance changes with sample 
size. Two samples were randomly drawn from the simulated ref-
erence community (i.e., 100 species of 100,000 individuals, fol-
lowing a log-normal distribution). The first sample contained n 
individuals, while the second sample contained twice this orig-
inal sample size (i.e., 2n individuals), with n increasing from 10 
to 150 randomly drawn individuals.

We contrasted the performance of ESa and ESb with the fol-
lowing indices: Shannon diversity, which is the exponential 
back-transformation of Shannon entropy (Jost  2006); Fisher's 
alpha (Fisher, Corbet, and Williams 1943), recognised as robust 
against differences in sample size (Brehm, Süssenbach, and 
Fiedler 2003), and the observed species richness. Additionally, 
we compared with two commonly used species richness estima-
tors, the (bias-corrected) Chao1 lower boundary species richness 
estimator (O'Hara 2005) and the Jackknife estimator (1st order) 
that was considered accurate for low sample coverage (Brose, 
Martinez, and Williams 2003). We focus on the comparison of 
diversity indices as our primary scope, while keeping the species 
richness estimator comparisons in Appendix S1. For each index, 
we calculated the ratio between two samples. Since both sam-
ples were drawn from the same pool (i.e., no difference in the 
true α-diversity), the expected true ratio between two samples 
should be 1. We repeated the process 1000 times to obtain the 
mean and 95% quantile of the ratio for each of the α-diversity 
measures.

Results show that, in comparison, ESa is both accurate and 
precise in capturing the true differences between samples, 

even for sample sizes as low as m = 10 individuals for the 
data-sets used. In contrast, ESb and Shannon diversity tend 
to underestimate these differences, while Fisher's alpha over-
estimates them and demonstrates low precision (Figure  1a). 
Observed species richness shows the lowest accuracy, consis-
tently underestimating the true differences. Jackknife and the 
Chao1 estimator both underestimate this difference with low 
precision (Appendix S1).

For β-diversity, we evaluated the performance of CNESSa 
(Equation 6) and NESS (Equation 4) using two different sample 
sizes: the minimum value (m = 1) and the maximum possible 
value (i.e., m = maximum common sample size across samples). 
Two samples were randomly drawn from the previously de-
scribed communities—the reference community and the second 
community, which shared 25 species with the reference. We ran-
domly selected n individuals from the first community and 2n in-
dividuals from the second one, with n increasing from 10 to 150.

As the value of the ESS series depends on the parameter m, with 
a small m value emphasising similarities in the composition of 
abundant species, while a large m value leading to estimations of 
similarities in the overall community (Zou and Axmacher 2020), 
accuracy cannot be accessed.

Therefore, we focused in this instance on the ‘stability’ analy-
sis for CNESS and NESS and then compared our results with 
two established dissimilarity indices: the widely used Jaccard 
(incidence-based) index, and the Bray–Curtis (abundance-
based) index that is considered to have low sensitivity to sam-
ple size differences (Schroeder and Jenkins 2018). Stability was 
calculated based on the ratio (R) of the pairwise result at sample 
sizes of n individuals (Dn) to the result of a maximum 150 indi-
viduals (i.e., D150), expressed as:

Unbiased results should again return a ratio for any sample size 
(Rn) of 1. We repeated the process 1000 times to obtain the mean 
and 95% quantile values for each index.

The results indicate that CNESS, at large m values, demonstrates 
greater stability and precision compared to both Bray–Curtis 
and Jaccard indices, particularly when the sample size exceeds 
50 individuals. In contrast, CNESS at m = 1 was relatively unsta-
ble and imprecise (Figure 1b). NESS shows low precision across 
small and large m values, although the stability was higher for a 
larger m value (Appendix S2).

5   |   Working Examples

We demonstrate here the use of functions in the rarestR pack-
age, applying both simulated and empirical data. The simulated 
data was sourced from the ‘share’ file, described previously. 
For the empirical data, we used the mite dataset available in the 
vegan package (Oksanen et al. 2018), which is comprised of 35 
species of oribatid mites across 70 sites (communities). As the 
entire dataset (70) is too large to allow for a clear visualisation of 
the results, we analysed only the first 20 sites in the dataset (3447 

Rn =
Dn

D150
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individuals of 33 species) to improve the clarity of the visualisa-
tion in this demonstration.

#instal.packages(“rarestR”)  
library(rarestR) # Version 1.1  
library(vegan) # Version 2.6.2  
data(share) # Load simulated data  
data(mite) # Load empirical data   
mite20 < − mite[1:20,] # Only analysis the 
first 20 sites.

5.1   |   Function es()

We demonstrate the application of function es() for a maximum 
standardised value where no site (sample) is disregarded (m = 90, 

i.e., the minimum sample size across all sites). When m exceeds 
the total sample size for a given sample, ‘NA’ will be returned by 
the software.

#Simulated data  
es(share, m = 100) # By default the method is 
“ESa”  
es(share, method = “b”, m = 100) # Change the 
method to “ESb”  
  
#Empirical data  
row.names(mite20) < − as.character(1:20)  
min_m < − min(apply(mite20, 1, sum))   
es(mite20, m = min_m) # m = 90  
es(mite20, m = 150) # “NA” will be filled for 
these sites < 150 individuals.

FIGURE 1    |    (a) The change of the ratio between sample 1 and sample 2, both randomly collected from communities containing 100 species and 
approximately 100,000 individuals, for ESa, ESb, Shannon diversity, Fisher's alpha and observed species richness against the sample size (sample 2 is 
twice large as sample 1). The uncertainty of Fisher's alpha was too high at a sample size of 10, so it is not displayed; dashed line represents the actual 
ratio. (b) Stability analysis showing the ratio of dissimilarity at sample size n individuals (Dn) to the result of a maximum 150 of individuals (i.e., 
D150) for: CNESS at the smallest m (CNESS_min, m = 1), largest m (CNESS_max, m = n), the Bray–Curtis index, and the Jaccard index. The simula-
tion was based on two samples randomly drawn from two communities (each contains 100 species of approximately 100,000 individuals) that share 
a total of 25 species. Sample 1 drew n individuals from the first community, and sample 2 drew 2n individuals from the second community. In both 
cases, dots and error bars represent the mean and 95% quantiles from 1000 repetitions. Values in brackets of the x-axis refer to the mean percentage 
of sampling completeness, calculated as the proportion species sampled to the total number of species in the pool for a given sample size.

FIGURE 2    |    MDS (multi-dimensional scaling) based on the CNESS (Chord-Normalised Expected Species Shared between two samples) dissimi-
larity measures for m = 1 (a) and m = 90 (b) for mite data in the vegan package; numbers represent the site ID.

 14724642, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ddi.13954 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [03/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 9 Diversity and Distributions, 2025

5.2   |   Function ess()

For ESS measures, we calculated the minimum standardised 
value, m = 1, and the maximum standardised value (m = 90) for 
CNESS and NESS measures. We then visualised the CNESS and 
NESS matrix results using classical multi-dimensional scaling 
(MDS, also known as principal coordinates analysis, PCoA).

MDS plots show diverging results for the two different stan-
dardised sample size values (m = 1 and m = 90) based on the 
CNESS dissimilarity matrices for the mite data. For this ex-
ample, the results indicate a more homogeneous pattern when 
focusing on the overall community (m = 90) composition com-
pared to the dominant species alone (m = 1) (Figure  2). The 
NESS matrices reflect a similar trend, showing that sites are 
more closely clustered when the analysis emphasises the dom-
inant species (Appendix S3).

#Simulated data  
ess(share) # By default the index is “CNESSa”  
ess(share, index = “NESS”) # Change to “NESS”  
  
#Empirical data  
ess_m1 < − ess(mite20, m = 1) # m = 1   
ess_m90 < − ess(mite20, m = min_m) # m = 90  
  
#NESS (Not run)  
#ess_m1 < − ess(mite20, m = 1, index = “NESS”) # 
m = 1  
#ess_m90 < − ess(mite20, m = mim_m, 
index = “NESS”) # m = 90  
  
#MDS for the CNESSa/NESS matrix and plot the 
results  
MDS_m1 < − cmdscale(ess_m1, eig = TRUE)   
df_m1 < − as.data.frame(MDS_m1$points)  
MDS_m90 < − cmdscale(ess_m90, eig = TRUE)   
df_m90 < − as.data.frame(MDS_m90$points)  
op <− par(mfrow = c(1, 2), mgp = c(2.5, 1, 0), 
las = 1, mar = c(4, 4, 2, 1))  
with(df_m1, plot(x = V1, y = V2, type = “n”, 
xlab = “MDS-1”, ylab = “MDS-2”))  

with(df_m1, text(x = V1, y = V2, labels = row.
names(df_m1)))  
with(df_m90, plot(x = V1, y = V2, type = “n”, 
xlab = “MDS-1”, ylab = “MDS-2”))  
with(df_m90, text(x = V1, y = V2, labels = row.
names(df_m90))).

5.3   |   Function tes()

TES results (i.e., based on curve-fitting) for the simulated 
data show TESa = 138.5 and TESb = 92.63 (Figure  3), with a 
TESab = 115.56 for the first sample. For TES measures of the 
empirical data, we calculated the value for pooled data of the 
20 sites, which contains 33 observed species. Results show 
TESa = 24.63, TESb = 34.14 and TESab = 34.39, which is very 
close to the overall species richness of the mite data.

#Simulated data (only for the first site)  
Output_tes < − tes(share[1,])  
Output_tes  
plot(Output_tes).  
#Empirical data  
mite20pool < − apply(mite20,2,sum)  
Output_tes_mite <− tes(mite20pool)  
Output_tes_mite.

5.4   |   Function tess()

The TESS value for the simulated data between the first and the 
second samples is 23.28, and that between the first and third 
sample is 40.16 (Appendix S4a,b), which are relatively close ap-
proximations of the ‘real’ values of 25 and 50 species. For the 
empirical data, to obtain a robust estimation of shared species, 
we calculated the estimated shared species between the two 
pooled groups: sites 1–10 and sites 11–20. The results indicate 
that the two pooled groups are expected to share 32.14 species 
(Appendix S4c).

#Simulated data  
Output_tess12 < − tess(share[c(1,2),])  

FIGURE 3    |    Number of expected species (ES) based on ESa (a) and ESb (b) estimations versus the standardised sample size m for the simulated 
data of ~100,000 individuals split across 100 species. Solid lines refer to the model fit, and dashed lines refer to the total expected species (TES), that 
is, the asymptotic value of the model.
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Output_tess13 < − tess(share[c(1,3),])  
Output_tess12  
Output_tess13  
plot(Output_tess12)  
plot(Output_tess13).  
#Empirical data  
mite_pool <− rbind(apply(mite20[1:10,],2,-
sum),apply(mite20[11:20,],2,sum))  
Output_tess_mite <− tess(mite_pool)  
plot(Output_tess_mite).

6   |   Discussion

The rarestR package integrates calculations of the ES number 
(i.e., rarefaction and extrapolation) for a single sample, as well as 
the ESS between communities represented by two communities, 
based on species abundance data. Both the tes() and tess() 
functions employ asymptotic approximations to extrapolate rar-
efaction curves, allowing for the estimation of the total number 
of species within single communities and the total number of 
species shared between pairs of communities.

As mentioned above, the es()function calculates a rarefaction 
value, where the calculation of ‘ESa’ is based on a hypergeomet-
ric distribution, which is identical to the rarefy() function 
from the vegan package (Oksanen et al. 2018). The calculation 
of ‘ESb’ is based on a multinomial distribution that is not avail-
able in the vegan package. However, when m exceeds the total 
sample size, the es()function returns ‘NA’. This behaviour 
differs slightly from the rarefy() function, which returns 
the number of observed species. This distinction is intentional, 
highlighting the importance of excluding samples larger than 
the standardised sample size from comparisons. This approach 
aligns with the approach used in the β-diversity comparison per-
formed by the ess()function. Our simulation results suggest 
that ‘ESa’ outperforms ‘ESb’ and other diversity indices in both 
precision and accuracy in detecting the true difference of spe-
cies richness from incomplete samples. However, it is important 
to note that the rarefaction approach assumes that each indi-
vidual has an equal probability of being sampled (e.g., random 
spatial distribution and detection probability). Biases may arise 
if individuals or species are distributed non-randomly in space 
(Engel et  al.  2021) or exhibit varying activity patterns or cap-
ture rates for other reasons. In addition, here we tested a single 
species abundance distribution (SAD), while SAD can influence 
the results of rarefaction and other diversity indices (Maurer 
and McGill 2011; McGill 2011; Shimadzu 2018). Although the 
choice of a specific diversity index depends on the study's objec-
tives and data structure, this topic has been widely discussed in 
the literature (Lamb et al. 2009; Beck and Schwanghart 2010; 
Alroy  2020; Qiao, Orr, and Hughes  2024) and is beyond the 
scope of this package's application.

The function ess() calculates the β-diversity based on an 
adjustable standardised sample size. Generally, β-diversity 
measures fall into two classes: direct calculation of the ratio be-
tween regional (γ) and local (α) diversity and multivariate mea-
sures based on pairwise (dis-)similarities (Jurasinski, Retzer, 
and Beierkuhnlein  2009; Anderson et  al.  2011). The ess() 
function is based on the second case. Therefore, our ESS-based 

β-diversity estimate fundamentally differs from the recently 
developed β-diversity rarefaction and extrapolation methods in 
the package iNEXT.beta3D (Chao et al. 2023), as well as from 
the sample coverage-based rarefaction β-diversity proposed by 
Engel et al. (2021). Both approaches estimate β-diversity based 
on the ratio between estimated γ- to α- diversity, providing an av-
erage (regional) measure of β-diversity across all communities.

In contrast, our approach, implemented in the ess() function 
(index ‘CNESSa’, ‘CNESS’ and ‘NESS’), calculates β-diversity 
based on pairwise dissimilarities between communities rep-
resented by (incomplete) samples. The CNESS index, par-
ticularly for large m values, is less sensitive to variations in 
sample size compared to indices such as Bray–Curtis and 
Jaccard. Additionally, the results from NESS/CNESS can vary 
depending on the selected m value—smaller values emphasise 
dissimilarities among dominant species, while larger values 
increasingly reflect overall community similarities (Zou and 
Axmacher 2020). Therefore, we recommend using the ESS se-
ries indices, with both small and large m values, to provide a 
comprehensive interpretation of the results underlying commu-
nity structures.

Our tes()function employs a parametric method to estimate 
the total number of species. This extrapolation approach differs 
from that used in the iNEXT package (Hsieh, Ma, and Chao 2016) 
and its extension, iNEXT.3D (to phylogenetic and functional 
diversity, Chao et  al.  2021). The abundance-based method in 
iNEXT estimates species richness using non-asymptotic mod-
els; however, asymptotic values in iNEXT can be obtained 
based on diversity measures (see Hsieh, Ma, and Chao  2016). 
The tes()function calculates the total ES using an asymptotic 
parametric method that fits the rarefaction curve. Unlike ob-
served species accumulation curves, which are often irregular 
and form the basis for non-parametric estimator development 
(Béguinot 2015), the rarefaction curve used here is smooth. This 
approach provides flexibility and robust applicability across 
various species abundance distributions models (Zou, Zhao, 
and Axmacher 2023), unlike traditional curve-fitting methods 
that rely on specific species abundance distributions (Walther 
and Moore 2005; Béguinot 2015). As a result, TES is comparable 
to non-parametric estimators such as Chao 1 and ACE (e.g., in 
vegan package) (Chao 1984; Chao and Lee 1992). Additionally, 
we provide visualisations of these estimations, offering a com-
plementary approach to these non-parametric methods. For the 
curve-fitting, we set a default value of 40 knots (knots represent 
rarefied estimation points at evenly spaced intervals on a loga-
rithmic scale between 1 and the endpoint, i.e. total number of 
individuals in the sample), recognising that different values may 
yield slightly different results. While a large number of knots 
might improve model fit and reduce standard error (Zou, Zhao, 
and Axmacher 2023), it can also increase estimation variance, 
and thus a trade-off that must be carefully considered.

Our tess()function calculates the estimated number of shared 
species between two communities using asymptotic parametric 
curve-fitting. To our knowledge, the only other shared species 
richness estimators available are Chao1-shared and ACE-shared 
in the SpadeR package (Chao et al. 2016). However, TESS gen-
erally outperforms these estimators in terms of precision and 
accuracy, particularly when dealing with unequal sample sizes 
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(Zou and Axmacher 2021). That said, estimating the number of 
shared species remains challenging and can result in significant 
uncertainties, especially when sample completeness is relatively 
low (Zou and Axmacher 2021). Similar to tes(), visualisations 
are available through the plot() function, allowing research-
ers to graphically interpret their curve-fittings. Integrating 
TESS with other species richness estimators can provide a more 
accurately estimation of true species (dis)similarities, based on 
both shared and unique species numbers, as outlined in Koleff, 
Gaston, and Lennon (2003). However, caution is advised when 
combining estimators, as this inadvertently reduces precision 
(Zou and Axmacher 2021).

Although species estimators are commonly used to account for 
varying sample sizes when comparing biodiversity across sam-
ples, their precision is often low, particularly for small sample 
sizes. As a result, we do not recommend over-relying on these es-
timators for comparing multiple samples. In our view, their pri-
mary utility lies in estimating sampling completeness within a 
specific target community. Only where estimated completeness 
is high should these estimators then be used to ascertain true 
species richness and similarity values. This reasoning informed 
our decision to design the tes() function for single-sample esti-
mations and the tess()function for two-sample comparisons. 
For comparing multiple samples accounting for different sample 
sizes, we recommend using ES for α-diversity and CNESS for 
β-diversity. Therefore, both the es() and ess() functions are 
designed to handle multiple samples (communities) effectively.

In summary, the rarestR package is a valuable tool for ecol-
ogists studying α- and β-diversity. It is especially useful when 
dealing with incomplete and inconsistent sample sizes—a com-
mon issue in ecological community samples, particularly for 
highly mobile and species-rich taxa. The package also provides 
visual estimations of species richness and the number of shared 
species between two communities, based on individual samples. 
This approach complements non-parametric methods, such as 
the Chao series of estimators (Chao 1984; Chao et al. 2000, 2023).
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