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ABSTRACT

Aim: Species abundance data is commonly used to study biodiversity patterns. In this context, comparing a- and (-diversity
across incomplete samples can lead to biases. Therefore, it is essential to employ methods that enable standardised and accurate
comparisons of a- and f-diversity across varying sample sizes. In addition, biodiversity studies also often require robust esti-
mates of the total number of species within a community and the number of species shared by two communities.

Innovation: Rarefaction methods are commonly used to calculate a-diversity for standardised sample sizes, and they can also
serve as the basis for calculating -diversity. In this application note, we present rarestR, a new R package designed for calcu-
lating abundance-based a- and 3-diversity measures for inconsistent samples using rarefaction-based metrics. The package also
includes parametric extrapolation techniques to estimate the total expected number of species within a community, as well as the
total number of species shared between two communities. Additionally, rarestR provides visualisation tools for curve-fitting
associated with these estimators.

Main Conclusions: Overall, the rarestR package is a valuable tool for comparing a- and 3-diversity values among incomplete
samples, such as those involving highly mobile or species-rich taxa. In addition, our species estimators offer a complementary
approach to non-parametric methods, including the Chao series of estimators.

1 | Introduction However, it is important to acknowledge that alternative defi-

nitions also exist (e.g., a-diversity describing the degree of

Measures of biodiversity can be split into two primary dimen-
sions: a-diversity, which typically refers to species richness
within a single community, and $-diversity, which quantifies
changes in the species composition between communities.

entropy or species abundance patterns and @-diversity de-
scribing the ratio between regional (y) and local diversity
[see Whittaker 1960, 1972; Jost 2006; Jurasinski, Retzer, and
Beierkuhnlein 2009; Tuomisto 2010]). In this study, we adopt
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the conventional definitions, treating a-diversity as a measure
of species richness within a sample and §-diversity as pairwise
measures of (dis)similarity between samples.

Studies on biodiversity typically rely on two types of data:
abundance-based data, where each individual represents a sam-
pling unit, and incidence-based data, where observational events
such as the number of traps or quadrats serve as the sampling
units (Chao and Chiu 2016). A common challenge in biodiversity
assessments is estimation bias, which arises from undersampling,
that is, when fewer species are observed in a sample than are pres-
ent in the community's species pool (Walther and Moore 2005;
Coddington et al. 2009; Schroeder and Jenkins 2018). This bias
impacts the comparison of both o- and {3-diversity among differ-
ent samples. To address this problem, it is critical to employ ro-
bust standardisation methods when comparing a- and $-diversity
across incomplete samples (Coddington et al. 2009; Beck,
Holloway, and Schwanghart 2013). Additionally, biodiversity
studies also often rely on accurate estimation of the total number
of species within a community and the total number of shared
species between two communities, both derived from incomplete
samples (Magurran 2004; Chao et al. 2005). Different types of data
require distinct approaches to address estimation bias (Chao and
Chiu 2016); in this context, we focus specifically on abundance-
based data.

Rarefaction calculates abundance-based probability distribu-
tions for standardised sample sizes, providing the expected
species (ES) richness for a given standardised sample size
(Sanders 1968; Hurlbert 1971; Grassle and Smith 1976; Gotelli
and Colwell 2001). This approach enables comparisons of a-
diversity (as standardised species richness) across samples for a
common standardised sample size. Expanding on this concept,
Grassle and Smith (1976) introduced a measure for the Expected
number of Species Shared (ESS) between two samples, along
with its normalised form, NESS (Normalised ES Shared). This
index can be further standardised as the Chord-NESS (CNESS),
which facilitates the estimation of g-diversity (i.e., compositional
dissimilarities between samples) for standardised sample sizes
(Trueblood, Gallagher, and Gould 1994; Zou and Axmacher 2020;
Zou 2021).

Employing asymptotic approximation to fit rarefaction curves
for variable sample sizes, Zou, Zhao, and Axmacher (2023) have
introduced a parametric index to estimate the Total ES (TES)
richness within a community. Building upon the same math-
ematical principles, fitting the ESS curve also enables the esti-
mation of the Total ESS (TESS) by two communities (Zou and
Axmacher 2021).

This application note introduces a new R package, rarestR,
designed to calculate both abundance-based a- and -diversity
measures for incomplete and inconsistent samples using rar-
efaction metrics. Additionally, it incorporates parametric ex-
trapolation tools to estimate the total species within a single
community and the total number of shared species between two
communities, based on incomplete samples—referred to as TES
and TESS values mentioned above. The package also supports
the visualisation of curve-fitting for these estimators.

2 | Mathematical Description
2.1 | ES, ESS, NESS and CNESS

Hurlbert (1971) introduced the concept of an ES richness (ES)
for randomly drawn subsamples of m individuals from a larger
sample, based on a hypergeometric distribution, referred to as
ESa (Equation 1).

@

where S represents the number of observed species in the sam-
ple, N stands for the total sampled number of individuals, N, de-
notes the number of individuals for species k and m represents
the standardised subsample size.

For communities containing an infinite number of individuals,
Smith and Grassle (1977) proposed that the ES richness follows
a multinomial distribution, referred to as ESh (Equation 2).
The results of ESbh are linked to Simpson's index at m=2 (i.e.,
ESb,=Simpson +1).

ESb, =Y _ [1 - (1—%) ] @)

Building upon ESa, Grassle and Smith (1976) proposed a mea-
sure for the ESS between two communities. This concept in-
volves randomly drawing m individuals from each sample,
assuming a hypergeometric distribution, with parameters that
vary according to properties of the samples (Equation 3):

Nix — Ny Np — N,
m m

S
ESSjim = D, |1— —o— | % -7 O

(%) (%)

where N,. and NJ* represent the number of individuals in the
samples representing sites i and j, respectively; and N, and Ny
are the number of individuals for species k in site i and j, respec-
tively. Grassle and Smith (1976) also proposed an amended form
of ESS based on ESb, but this has seldom been used—Ilikely be-
cause it underestimates the probability of shared species from
two random samples.

Grassle and Smith (1976) additionally introduced a normali-
sation of the ESS index based on the arithmetic mean, result-
ing in a distance measure with values ranging from 0 to 1,
known as the NESS (Equation 4). The value of NESS is iden-
tical to the Horn-Morisita index (Morisita 1959) at m=1 (i.e.,
Horn-Morisita= 1—NESSij|2).
2 X ESSy,,
im = Fae L RQe @
ESS;jm + ESSj

L

NESS

Trueblood, Gallagher, and Gould (1994) further modified this index,
based on the geometric mean, termed the CNESS (Equation 5):
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ESSim X ESS;1m
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CNESS;;,, = 12X |1 -

ijlm

Although CNESS values range from 0 and \/E, making them
somewhat incompatible with other dissimilarity measures, Zou
and Axmacher (2020) demonstrated that the function can be
modified by removing the \/5 multiplier, resulting in a measure
named CNESS , (Equation 6):

ESS

CNESS -—
ESS;ijm X ESS;j

©)

a(ijlm) =

2.2 | TES And TESS

Zou, Zhao, and Axmacher (2023) proposed curve-fitting to
model the relationship between the rarefaction curve (ES) and
the standardised sample size (m), using either a four-parameter
Weibull model (Equation 7) or a three-parameter logistic model
(Equation 8) (i.e., the Weibull-logistic model):

ES,=a-b *e‘c*Md,where M = In(m) @)
al
ESm = b -M (8)
l+e7

where a and a’ are the horizontal intercept values of the curve
asymptotes that represent the Total Estimated Species richness
(TES). The variance of this value is the estimated standard de-
viation (¢) from the model fit (Zou, Zhao, and Axmacher 2023).
As ES has two different mathematical expressions, ESa and ESb,
TES can be estimated separately from these two different mod-
els, resulting in TESa and TESbh. The mean value of TESa and

TESb, named ‘TESab’, provides a third measure, with a variance

1 o .
ofoc=34/0%+ alz), where ¢, and o, are the standard deviations

of TESa and TESbh.

Similarly, the relationship between ESS and the standardised
sample size m can be fitted using the Weibull-logistic model, as
proposed by Zou and Axmacher (2021). This allows for the esti-
mation of a Total number of ESS (TESS) between two communi-
ties, with the variance estimated.

3 | Package Overview

The rarestR package can be downloaded and installed from
CRAN (https://cran.r-project.org/web/packages/rarestR/index.
html). The package contains four main functions, namely, es (),
ess (), tes()and tess (), and a training dataset, share.
TES and TESS can be visualised via the plot () function. Here
are the descriptions of these functions:

1. es(x, m, method, MARGIN)calculates the rare-
fied number of species based on ES richness (ES) meas-
ures. The input x is a vector or a matrix representing the
number of individuals for each species in one (vector) or
across multiple sites (matrix). Parameter m represents

the standardised subsample size (number of individuals
randomly drawn from the sample), which can be varied
according to users' requirements. For ESa, m cannot be
larger than the sample size. Argument method is the es-
timation approach of ES used, with two options ‘a’ and
‘b’ available to calculate ESa and ESb, respectively, with
the default set as ‘a’, returning identical values to the
rarefy () function in the ‘vegan’ package (Oksanen
et al. 2018), but without providing a standard error.
Argument MARGIN is a vector giving the subscripts
which the function will be applied over, inherited from
the apply () function.

2. ess(x, m, index) calculates the similarity between
two samples based on the ESS measure, using abundance
data for the species contained in each sample. The input
x is a community data matrix (sample X species; samples
representing local communities), of which the sample
name is the row name of the matrix. Argument m is the
standardised sample size, by default set to m=1. Rows
with a total sample size <m will be excluded automati-
cally from the analysis. Parameter index is the distance
measure used in the calculation, as one of the four op-
tions ‘*CNESS_’ (formula 6), ‘CNESS’ (formula 5), ‘NESS’
(formula 4) and ‘ESS’ (formula 3), with the default set
as ‘CNESS_. The function returns a pairwise distance
matrix.

3. tes (x)estimates the number of TES based on TESa,
TESb and their average value TESab. The input x is a data
vector representing the number of individuals for each spe-
cies. The function returns a list with a self-defined class
‘rarestr’, which contains a summary dataframe of the
estimated values and their standard deviations based on
TESa, TESb and TESab, and the detailed results of the
models used in the estimation of TES, either ‘logistic’ or
“‘Weibull’.

4. tess (x) estimates the number of TESS between two
samples. The input x is a data matrix for two samples
representing two communities. The function returns a
list with the self-defined class ‘rarestr’, which con-
tains a summary dataframe of the estimated values and
their standard deviations of TESS, and the detailed re-
sults of the model used in the estimation of TES, either
‘logistic’ or “Weibull’.

5. We define an S3 method, creating a generic function
plot () for visualising the fitted curve of the models for
calculating TES and TESS when the input x is an object
with the ‘rarestr’ class (i.e., an object returned by the
tes () or tess ()function) as defined by the rarestR
package.

The package includes a dataset named ‘share’, consisting
of three samples randomly drawn from three simulated com-
munities. Each community consists of 100 species and approxi-
mately 100,000 individuals, following a log-normal distribution
(mean=6.5, SD=1). The first community serves as the refer-
ence (i.e., fully randomly generated), while the second and third
communities share 25 and 50 randomly selected species, respec-
tively, with the reference community. A detailed description of
the reference and scenario communities, along with the data
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generation procedure, is provided in Zou and Axmacher (2021).
The ‘share’ dataset represents a random subsample of 100, 150
and 200 individuals, randomly drawn from these three commu-
nities, containing 58, 57 and 74 species, respectively.

4 | Performance of Rarefaction-Based a-Diversity
and B-Diversity

Many biodiversity studies aim to investigate the variation between
samples and explain this variation using biotic and abiotic vari-
ables. A robust diversity index must accurately capture differences
in diversity among samples, irrespective of their sample size.

We briefly evaluated the performance of rarefaction-based
a-diversity and f-diversity measures available in the rar-
estR package using simulated data. Our goal was to assess
how accurately and precisely these indices capture differences
between samples of varying sizes. Additionally, we emphasise
that the choice of indices depends on specific sampling sce-
narios. Comprehensive evaluations of the biodiversity metrics
is beyond the scope of this application note (but see Beck and
Schwanghart 2010; Zou and Axmacher 2020). This brief demon-
stration, comparing its performance with other metrics, aims to
help users recognise that these metrics can be accurate. It also
offers examples for effectively using the package.

For a-diversity, we tested the performance of ESa (Hurlbert rar-
efaction, Equation (1) and ESb (Smith and Grassle rarefaction),
Equation (2) for their precision and accuracy in comparison to
other a-diversity indices for samples with incomplete and in-
consistent sizes, and how the performance changes with sample
size. Two samples were randomly drawn from the simulated ref-
erence community (i.e., 100 species of 100,000 individuals, fol-
lowing a log-normal distribution). The first sample contained n
individuals, while the second sample contained twice this orig-
inal sample size (i.e., 2n individuals), with n increasing from 10
to 150 randomly drawn individuals.

We contrasted the performance of ESa and ESb with the fol-
lowing indices: Shannon diversity, which is the exponential
back-transformation of Shannon entropy (Jost 2006); Fisher's
alpha (Fisher, Corbet, and Williams 1943), recognised as robust
against differences in sample size (Brehm, Siissenbach, and
Fiedler 2003), and the observed species richness. Additionally,
we compared with two commonly used species richness estima-
tors, the (bias-corrected) Chaol lower boundary species richness
estimator (O'Hara 2005) and the Jackknife estimator (1st order)
that was considered accurate for low sample coverage (Brose,
Martinez, and Williams 2003). We focus on the comparison of
diversity indices as our primary scope, while keeping the species
richness estimator comparisons in Appendix S1. For each index,
we calculated the ratio between two samples. Since both sam-
ples were drawn from the same pool (i.e., no difference in the
true a-diversity), the expected true ratio between two samples
should be 1. We repeated the process 1000 times to obtain the
mean and 95% quantile of the ratio for each of the a-diversity
measures.

Results show that, in comparison, ESa is both accurate and
precise in capturing the true differences between samples,

even for sample sizes as low as m =10 individuals for the
data-sets used. In contrast, ESb and Shannon diversity tend
to underestimate these differences, while Fisher's alpha over-
estimates them and demonstrates low precision (Figure 1a).
Observed species richness shows the lowest accuracy, consis-
tently underestimating the true differences. Jackknife and the
Chaol estimator both underestimate this difference with low
precision (Appendix S1).

For (-diversity, we evaluated the performance of CNESS,
(Equation 6) and NESS (Equation 4) using two different sample
sizes: the minimum value (m=1) and the maximum possible
value (i.e., m =maximum common sample size across samples).
Two samples were randomly drawn from the previously de-
scribed communities—the reference community and the second
community, which shared 25 species with the reference. We ran-
domly selected n individuals from the first community and 2n in-
dividuals from the second one, with n increasing from 10 to 150.

As the value of the ESS series depends on the parameter m, with
a small m value emphasising similarities in the composition of
abundant species, while a large m value leading to estimations of
similarities in the overall community (Zou and Axmacher 2020),
accuracy cannot be accessed.

Therefore, we focused in this instance on the ‘stability’ analy-
sis for CNESS and NESS and then compared our results with
two established dissimilarity indices: the widely used Jaccard
(incidence-based) index, and the Bray-Curtis (abundance-
based) index that is considered to have low sensitivity to sam-
ple size differences (Schroeder and Jenkins 2018). Stability was
calculated based on the ratio (R) of the pairwise result at sample
sizes of n individuals (D) to the result of a maximum 150 indi-
viduals (i.e., D, ), expressed as:

D

R, = —
" Dy

Unbiased results should again return a ratio for any sample size
(R,) of 1. We repeated the process 1000 times to obtain the mean
and 95% quantile values for each index.

The results indicate that CNESS, at large m values, demonstrates
greater stability and precision compared to both Bray-Curtis
and Jaccard indices, particularly when the sample size exceeds
50 individuals. In contrast, CNESS at m =1 was relatively unsta-
ble and imprecise (Figure 1b). NESS shows low precision across
small and large m values, although the stability was higher for a
larger m value (Appendix S2).

5 | Working Examples

We demonstrate here the use of functions in the rarestR pack-
age, applying both simulated and empirical data. The simulated
data was sourced from the ‘share’ file, described previously.
For the empirical data, we used the mite dataset available in the
vegan package (Oksanen et al. 2018), which is comprised of 35
species of oribatid mites across 70 sites (communities). As the
entire dataset (70) is too large to allow for a clear visualisation of
the results, we analysed only the first 20 sites in the dataset (3447
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FIGURE1 | (a)The change of the ratio between sample 1 and sample 2, both randomly collected from communities containing 100 species and
approximately 100,000 individuals, for ESa, ESh, Shannon diversity, Fisher's alpha and observed species richness against the sample size (sample 2 is
twice large as sample 1). The uncertainty of Fisher's alpha was too high at a sample size of 10, so it is not displayed; dashed line represents the actual

ratio. (b) Stability analysis showing the ratio of dissimilarity at sample size n individuals (Dn) to the result of a maximum 150 of individuals (i.e.,
D150) for: CNESS at the smallest m (CNESS_min, m=1), largest m (CNESS_max, m = n), the Bray-Curtis index, and the Jaccard index. The simula-
tion was based on two samples randomly drawn from two communities (each contains 100 species of approximately 100,000 individuals) that share

a total of 25 species. Sample 1 drew n individuals from the first community, and sample 2 drew 2n individuals from the second community. In both

cases, dots and error bars represent the mean and 95% quantiles from 1000 repetitions. Values in brackets of the x-axis refer to the mean percentage

of sampling completeness, calculated as the proportion species sampled to the total number of species in the pool for a given sample size.
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FIGURE2 | MDS (multi-dimensional scaling) based on the CNESS (Chord-Normalised Expected Species Shared between two samples) dissimi-
larity measures for m=1 (a) and m =90 (b) for mi te data in the vegan package; numbers represent the site ID.

individuals of 33 species) to improve the clarity of the visualisa-
tion in this demonstration.

#instal.packages (“rarestR”)
library(rarestR) # Version 1.1

library (vegan) # Version 2.6.2

data (share) # Load simulated data

data (mite) # Load empirical data
mite20<— mite[1:20,] # Only analysis the
first 20 sites.

5.1 | Functiones ()

We demonstrate the application of function es() for a maximum
standardised value where no site (sample) is disregarded (m =90,

i.e., the minimum sample size across all sites). When m exceeds
the total sample size for a given sample, ‘NA’ will be returned by
the software.

#Simulated data

es (share, m=100) # By default the method is
“ESa”

es (share, method="“b"”, m=100) # Change the
method to “ESb”

#Empirical data

row.names (mite20) <— as.character (1:20)

min m<- min(apply (mite20, 1, sum))

es (mite20, m=min m) # m=90

es (mite20, m=150) # “NA” will be filled for
these sites<150 individuals.
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5.2 | Function ess ()

For ESS measures, we calculated the minimum standardised
value, m =1, and the maximum standardised value (m =90) for
CNESS and NESS measures. We then visualised the CNESS and
NESS matrix results using classical multi-dimensional scaling
(MDS, also known as principal coordinates analysis, PCoA).

MDS plots show diverging results for the two different stan-
dardised sample size values (m=1 and m=90) based on the
CNESS dissimilarity matrices for the mite data. For this ex-
ample, the results indicate a more homogeneous pattern when
focusing on the overall community (m=90) composition com-
pared to the dominant species alone (m=1) (Figure 2). The
NESS matrices reflect a similar trend, showing that sites are
more closely clustered when the analysis emphasises the dom-
inant species (Appendix S3).

#Simulated data
ess (share) # By default the index is “CNESSa”
ess (share, index=“NESS”) # Change to “NESS”

#Empirical data
ess ml<-— ess(mite20, m=1) # m=1
ess m90<— ess(mite20, m=min m) # m=90

#NESS (Not run)

#ess ml<— ess(mite20, m=1, index="“NESS”) #
m=1

#ess m90<— ess(mite20, m=mim m,
index="NESS”) # m=90

#MDS for the CNESSa/NESS matrix and plot the
results

MDS ml<-— cmdscale(ess ml, eig=TRUE)

df ml<- as.data.frame (MDS ml$points)

MDS m90<— cmdscale(ess m90, eig=TRUE)

df m90<— as.data.frame (MDS m90$points)

op <— par (mfrow=c(l, 2), mgp=c(2.5, 1, 0),
las=1, mar=c(4, 4, 2, 1))

with(df ml, plot(x=Vl, y=V2, type="“n",
xlab="MDS-1", ylab="MDS-2"))

(a)

150 —

100

ES

50

0 5 10 15

In(m)

with (df ml, text(x=V1, y=V2, labels=row.
names (df ml)))

with (df m90, plot(x=V1l, y=V2, type="“n",
xlab="MDS-1"”, ylab="“MDS-2"))

with (df m90, text(x=V1l, y=V2, labels=row.
names (df m90))) .

5.3 | Function tes ()

TES results (i.e., based on curve-fitting) for the simulated
data show TESa=138.5 and TESb=92.63 (Figure 3), with a
TESab=115.56 for the first sample. For TES measures of the
empirical data, we calculated the value for pooled data of the
20 sites, which contains 33 observed species. Results show
TESa=24.63, TESb=34.14 and TESab=34.39, which is very
close to the overall species richness of the mi te data.

#Simulated data (only for the first site)
Output tes<- tes(share[l,])

Output tes

plot (Output tes).

#Empirical data

mite20pool<— apply (mite20,2, sum)
Output tes mite <— tes(mite20pool)
Output tes mite.

5.4 | Function tess ()

The TESS value for the simulated data between the first and the
second samples is 23.28, and that between the first and third
sample is 40.16 (Appendix S4a,b), which are relatively close ap-
proximations of the ‘real’ values of 25 and 50 species. For the
empirical data, to obtain a robust estimation of shared species,
we calculated the estimated shared species between the two
pooled groups: sites 1-10 and sites 11-20. The results indicate
that the two pooled groups are expected to share 32.14 species
(Appendix S4c).

#Simulated data
Output tessl2<- tess(sharelc(1l,2),])

(b)

100
80
o 60
w
40

20

0O 2 4 6 8 10 12 14

In(m)

FIGURE 3 | Number of expected species (ES) based on ESa (a) and ESb (b) estimations versus the standardised sample size m for the simulated
data of ~100,000 individuals split across 100 species. Solid lines refer to the model fit, and dashed lines refer to the total expected species (TES), that

is, the asymptotic value of the model.
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Output tessl3<- tess(sharel[c(1l,3),])
Output tessl2

Output tessl3

plot (Output tessl2)

plot (Output tessl3).

#Empirical data

mite pool <— rbind(apply (mite20[1:10,],2,-
sum) , apply (mite20[11:20,],2,sum))

Output tess mite <— tess(mite pool)

plot (Output tess mite).

6 | Discussion

The rarestR package integrates calculations of the ES number
(i.e., rarefaction and extrapolation) for a single sample, as well as
the ESS between communities represented by two communities,
based on species abundance data. Both the tes () and tess ()
functions employ asymptotic approximations to extrapolate rar-
efaction curves, allowing for the estimation of the total number
of species within single communities and the total number of
species shared between pairs of communities.

As mentioned above, the es () function calculates a rarefaction
value, where the calculation of ‘ESa’ is based on a hypergeomet-
ric distribution, which is identical to the rarefy () function
from the vegan package (Oksanen et al. 2018). The calculation
of ‘ESb’ is based on a multinomial distribution that is not avail-
able in the vegan package. However, when m exceeds the total
sample size, the es () function returns ‘NA’. This behaviour
differs slightly from the rarefy () function, which returns
the number of observed species. This distinction is intentional,
highlighting the importance of excluding samples larger than
the standardised sample size from comparisons. This approach
aligns with the approach used in the 3-diversity comparison per-
formed by the ess () function. Our simulation results suggest
that ‘ESa’ outperforms ‘ESb’ and other diversity indices in both
precision and accuracy in detecting the true difference of spe-
cies richness from incomplete samples. However, it is important
to note that the rarefaction approach assumes that each indi-
vidual has an equal probability of being sampled (e.g., random
spatial distribution and detection probability). Biases may arise
if individuals or species are distributed non-randomly in space
(Engel et al. 2021) or exhibit varying activity patterns or cap-
ture rates for other reasons. In addition, here we tested a single
species abundance distribution (SAD), while SAD can influence
the results of rarefaction and other diversity indices (Maurer
and McGill 2011; McGill 2011; Shimadzu 2018). Although the
choice of a specific diversity index depends on the study’s objec-
tives and data structure, this topic has been widely discussed in
the literature (Lamb et al. 2009; Beck and Schwanghart 2010;
Alroy 2020; Qiao, Orr, and Hughes 2024) and is beyond the
scope of this package's application.

The function ess () calculates the @-diversity based on an
adjustable standardised sample size. Generally, (-diversity
measures fall into two classes: direct calculation of the ratio be-
tween regional (y) and local (o) diversity and multivariate mea-
sures based on pairwise (dis-)similarities (Jurasinski, Retzer,
and Beierkuhnlein 2009; Anderson et al. 2011). The ess ()
function is based on the second case. Therefore, our ESS-based

B-diversity estimate fundamentally differs from the recently
developed p-diversity rarefaction and extrapolation methods in
the package iNEXT.beta3D (Chao et al. 2023), as well as from
the sample coverage-based rarefaction 3-diversity proposed by
Engel et al. (2021). Both approaches estimate 3-diversity based
on the ratio between estimated y- to a- diversity, providing an av-
erage (regional) measure of 3-diversity across all communities.

In contrast, our approach, implemented in the ess () function
(index ‘CNESS, ‘CNESS’ and ‘NESS’), calculates -diversity
based on pairwise dissimilarities between communities rep-
resented by (incomplete) samples. The CNESS index, par-
ticularly for large m values, is less sensitive to variations in
sample size compared to indices such as Bray-Curtis and
Jaccard. Additionally, the results from NESS/CNESS can vary
depending on the selected m value—smaller values emphasise
dissimilarities among dominant species, while larger values
increasingly reflect overall community similarities (Zou and
Axmacher 2020). Therefore, we recommend using the ESS se-
ries indices, with both small and large m values, to provide a
comprehensive interpretation of the results underlying commu-
nity structures.

Our tes () function employs a parametric method to estimate
the total number of species. This extrapolation approach differs
from that used in the 1 NEXT package (Hsieh, Ma, and Chao 2016)
and its extension, iNEXT. 3D (to phylogenetic and functional
diversity, Chao et al. 2021). The abundance-based method in
iNEXT estimates species richness using non-asymptotic mod-
els; however, asymptotic values in iNEXT can be obtained
based on diversity measures (see Hsieh, Ma, and Chao 2016).
The tes () function calculates the total ES using an asymptotic
parametric method that fits the rarefaction curve. Unlike ob-
served species accumulation curves, which are often irregular
and form the basis for non-parametric estimator development
(Béguinot 2015), the rarefaction curve used here is smooth. This
approach provides flexibility and robust applicability across
various species abundance distributions models (Zou, Zhao,
and Axmacher 2023), unlike traditional curve-fitting methods
that rely on specific species abundance distributions (Walther
and Moore 2005; Béguinot 2015). As a result, TES is comparable
to non-parametric estimators such as Chao 1 and ACE (e.g., in
vegan package) (Chao 1984; Chao and Lee 1992). Additionally,
we provide visualisations of these estimations, offering a com-
plementary approach to these non-parametric methods. For the
curve-fitting, we set a default value of 40 knots (knots represent
rarefied estimation points at evenly spaced intervals on a loga-
rithmic scale between 1 and the endpoint, i.e. total number of
individuals in the sample), recognising that different values may
yield slightly different results. While a large number of knots
might improve model fit and reduce standard error (Zou, Zhao,
and Axmacher 2023), it can also increase estimation variance,
and thus a trade-off that must be carefully considered.

Our tess () function calculates the estimated number of shared
species between two communities using asymptotic parametric
curve-fitting. To our knowledge, the only other shared species
richness estimators available are Chaol-shared and ACE-shared
in the SpadeR package (Chao et al. 2016). However, TESS gen-
erally outperforms these estimators in terms of precision and
accuracy, particularly when dealing with unequal sample sizes
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(Zou and Axmacher 2021). That said, estimating the number of
shared species remains challenging and can result in significant
uncertainties, especially when sample completeness is relatively
low (Zou and Axmacher 2021). Similar to tes (), visualisations
are available through the plot () function, allowing research-
ers to graphically interpret their curve-fittings. Integrating
TESS with other species richness estimators can provide a more
accurately estimation of true species (dis)similarities, based on
both shared and unique species numbers, as outlined in Koleff,
Gaston, and Lennon (2003). However, caution is advised when
combining estimators, as this inadvertently reduces precision
(Zou and Axmacher 2021).

Although species estimators are commonly used to account for
varying sample sizes when comparing biodiversity across sam-
ples, their precision is often low, particularly for small sample
sizes. As a result, we do not recommend over-relying on these es-
timators for comparing multiple samples. In our view, their pri-
mary utility lies in estimating sampling completeness within a
specific target community. Only where estimated completeness
is high should these estimators then be used to ascertain true
species richness and similarity values. This reasoning informed
our decision to design the tes () function for single-sample esti-
mations and the tess () function for two-sample comparisons.
For comparing multiple samples accounting for different sample
sizes, we recommend using ES for a-diversity and CNESS for
-diversity. Therefore, both the es () and ess () functions are
designed to handle multiple samples (communities) effectively.

In summary, the rarestR package is a valuable tool for ecol-
ogists studying a- and @-diversity. It is especially useful when
dealing with incomplete and inconsistent sample sizes—a com-
mon issue in ecological community samples, particularly for
highly mobile and species-rich taxa. The package also provides
visual estimations of species richness and the number of shared
species between two communities, based on individual samples.
This approach complements non-parametric methods, such as
the Chao series of estimators (Chao 1984; Chao et al. 2000, 2023).
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