1 Title: The management of adult and paediatric uveitis for rheumatologists2	
3 Authors: Sarah LN. Clarke ^{1-3*} , Panagiotis Maghsoudlou ^{4,5*} , Catherine M. Guly ⁴ , An	ndrew D.
4 Dick ⁴⁻⁷ , Athimalaipet V. Ramanan ^{1,5†}	
5	
6 Affiliations:	
7 1. Department of Paediatric Rheumatology, Bristol Royal Hospital for Childre	en, Bristol
8 BS2 8BJ, UK	
9 2. Department of Paediatrics, Royal United Hospital Bath, Bath BA1 3NG, Uk	
10 3. MRC Integrative Epidemiology Unit and School of Population Health Scien	ices, Bristol
11 Medical School, University of Bristol, Bristol BS8 2BN, UK	
4. Regional Ocular Inflammatory Service, Bristol Eye Hospital, Bristol BS1 2LX	<, UK
5. Translational Health Sciences, Bristol Medical School, University of Bristol	, Bristol
14 BS8 1QU, UK	
15 6. Institute of Ophthalmology, University College London, London EC1V 9EL,	UK
7. NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hos	oital,
17 London EC1V 2PD, UK	
18	
19 *Corresponding author: a.ramanan@bristol.ac.uk	
20 *Contributed equally to this manuscript	
21	
22 Word Count: 4,821/5,000	
23 Reference Count: 124/125	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40	
41	

Abstract

Uveitis encompasses multiple different conditions that are all characterised by intra-ocular inflammation. Uveitis occurs in the context of many different rheumatological conditions and carries a significant risk to vision. It can occur early in the course of rheumatic disease and may even precede other clinical features, or it may present much later. Uveitis can also occur both as a direct or indirect complication of therapies used for patients with rheumatic disease. Conversely, patients with uveitis of non-rheumatic aetiology may immunosuppression that is not readily accessible to ophthalmologists. Thus, collaborative working between rheumatologists and ophthalmologists is critical for optimal management of patients with uveitis. This review is written with rheumatologists in mind, to assist in the care of patients with uveitis. We collate and summarise the latest evidence and best practice in the diagnosis, management and prognostication of uveitis, including future trends and research priorities.

Introduction

Uveitis is an umbrella diagnosis for a collection of more than 30 diseases, all of which are characterised by intra-ocular inflammation and, untreated, may lead to visual loss¹. It has an estimated worldwide incidence and prevalence of 17-52/100,000 and 115-204/100,000 respectively². Globally, uveitis accounts for about 5-10% of cases of visual impairment and is responsible for up to a quarter of cases leading to legal blindness in developing countries³. It is a significant clinical manifestation associated with multiple rheumatological conditions and associated treatments, impacting both adults and children. An estimated 30% of cases of uveitis are related to systemic immune-mediated diseases², with the majority of these diagnoses falling under rheumatology. Therefore, the assessment and management of patients with ocular inflammation, including uveitis, are integral to clinical practice for all rheumatologists.

The effective diagnosis and management of patients with uveitis requires close collaboration with ophthalmologists. This interdisciplinary effort is essential not only for detecting uveitis in "at risk" rheumatology patients, but also for determining a unifying systemic condition for patients who present with uveitis and managing immunosuppressive therapy. There has been substantial progress in developing therapies for uveitis guided by clinical trials, which has significantly improved outcomes for this patient population. However, there remains much work to be done to enable a more precise and personalised approach to patient care.

This article provides a comprehensive overview of the classification, natural history and management of uveitis for rheumatologists, with three major focus areas. Firstly, we highlight the relevant symptoms and signs that rheumatologists may encounter, which will aid in the diagnosis of uveitis and underlying aetiology. Secondly, we collate the latest clinical trial data to support patient management for adult and paediatric patients using a mechanistic approach. Finally, we emphasise the importance of working closely with ophthalmologists to create a unified treatment plan, selecting the most effective therapies to tackle both eye conditions and the underlying rheumatic disease for holistic patient care. This crucial collaboration also allows ophthalmologists access to uveitis treatments through rheumatology, which they might not be able to prescribe independently.

Definition and classification

Uveitis is a collective term encompassing many discrete conditions and is classified by the "Standardization of Uveitis Nomenclature (SUN)" classification system, based on anatomical location, onset, duration and clinical course of uveitis^{4,5}. Any, or multiple, areas of the uveal tract can be inflamed in uveitis (Figure 1). Where the inflammation affects a single site, uveitis is classified as anterior (inflammation of the anterior chamber), intermediate (inflammation of the vitreous), or posterior uveitis (inflammation of the retina or choroid). If all three

anatomical structures of the uveal tract (anterior chamber, vitreous and retina or choroid) show evidence of inflammation, this is classified as panuveitis. Patients can have uveitis restricted to two compartments, such as anterior and intermediate uveitis or intermediate and posterior uveitis.

127128129

130

131

132

133

124

125

126

Uveitis is further classified based on onset (sudden or insidious), duration (limited or persistent, where symptoms last less or more than 3 months respectively) and clinical course (acute, chronic and recurrent)⁴. Acute uveitis represents sudden onset inflammation of limited duration, while chronic uveitis is characterized by persistent inflammation lasting less than 3 months without treatment. Recurrent uveitis refers to disease that relapses after a period of inactivity lasting 3 months or more following cessation of treatment.

134135136

137

138139

140

141

142

143

144

145

146

147

148

149

150

It is important for rheumatologists to note that the classification of uveitis can help to narrow the differential diagnosis for the underlying aetiology, and thus guide patient management (Tables 1-2). Uveitis in both children and adults can have similar clinical presentations, such as anterior chamber inflammation in anterior uveitis; however, the particular constellation of ocular symptoms and signs can provide clues to the underlying cause when considering the patient's age. The systemic inflammatory causes of uveitis in children are also different from those in adults. For example, in children Juvenile Idiopathic Arthritis-associated uveitis (JIA-U) is the most common systemic cause accounting for up to 21-25% of cases ⁶. JIA-U most commonly presents with anterior uveitis, which accounts for >95% of all cases ^{7,8}. Intermediate, posterior and panuveitis are rare in JIA (Table 2)8. In contrast, in adults, uveitis associated with HLA-B27, represents up to 50% of anterior uveitis cases, most common in young adults aged 20 to 40 years 9. Other significant causes in adults include sarcoidosis, multiple sclerosis (associated with intermediate uveitis)¹⁰, and region-specific conditions like Behçet's disease¹¹. Meanwhile, panuveitis, though rare in both age groups, is characteristic of Blau syndrome, where a recent study reported its development in 100% of patients with ophthalmology follow-up for more than 10 years¹².

151152153

Aetiology and mechanisms

154155

156

157

158

159

The diagnosis and management of uveitis sits at the intersection of ophthalmology and rheumatology, requiring close collaboration between these two specialties. Ophthalmologists play a crucial role in the identification and classification of uveitis, while rheumatologists are essential in identifying the underlying aetiology and guiding immunosuppressive therapy when needed. Rheumatologists are skilled in multi-disciplinary care and in the case of uveitis, collaborative working between specialties is vital for optimising patient management.

160161162

163164

Uveitis can be broadly categorised based on aetiology. Approximately 50% of cases of uveitis in children and adults have no clear underlying cause^{11,13}. The terminology for cases without a clear underlying cause is debated among experts. In this manuscript, we will use the term

"undifferentiated," but it is important to note that terms such as "idiopathic," "incompletely classifiable," "not otherwise specified," and "primary" are also used interchangeably in the literature to describe these cases. The remaining cases occur due to underlying infection, trauma, ocular syndromes, systemic immune-mediated inflammatory diseases (IMIDs), medication reactions and masquerade syndromes (Table 1). Uveitis varies significantly according to population and individual risk factors, with developing countries generally having higher rates of infectious causes (such as tuberculosis), while developed countries more commonly see IMID causes¹¹. Masquerade syndromes refer to conditions that mimic uveitis but are caused by non-inflammatory processes, such as intraocular lymphoma or retinal detachment. Among these categories, IMIDs and medication reactions are most frequently encountered in rheumatological practice.

More than a third of cases of uveitis are associated with systemic disease. A thorough history combined with systematic clinical evaluation looking for associated systemic features is key to discerning the underlying condition associated with uveitis (Table 1). The most common IMIDs associated with non-infectious uveitis globally are spondyloarthritis, sarcoidosis and Behçet's disease in adults and JIA in children (Table 1), although prevalence varies by ethnicity^{13,14}. Uveitis has also been described for a number of monogenic auto-inflammatory syndromes such as Familial Mediterranean Fever, Blau syndrome and Cryopyrin-associated periodic syndrome¹⁵. Medication reactions resulting in uveitis have also been described for drugs regularly used in rheumatological practice, such as anti-tumour necrosis factor (TNF) agents^{16,17}, and bisphosphonates^{14,18}.

Anti-TNFs are a prominent therapy for patients with IMIDs but ocular complications, including uveitis, are well recognised. Evidence supporting the causative role of anti-TNF medications in uveitis includes cases of new-onset or recurrent uveitis in patients with ankylosing spondylitis who are taking these drugs, particularly etanercept¹⁹. Hypotheses for this include a cytokine imbalance between TNF and interferon levels, a dose-related phenomenon whereby higher doses are needed to control ocular versus rheumatic disease leading to "breakthrough" ocular inflammation and increased rates of infection with non-caseating granuloma-associated organisms²⁰.

Bisphosphonates are established first-line treatments for osteoporosis and other metabolic bone diseases. They also have a growing role in adult and paediatric inflammatory rheumatic diseases, including rheumatoid arthritis, Synovitis-Acne-Pustulosis-Hyperostosis-Osteitis syndrome, chronic recurrent multifocal osteomyelitis and juvenile dermatomyositis, due to their dual immunomodulatory and bone remodelling effects. However, a recent large retrospective study using the WHO international pharmacovigilance database found that bisphosphonates accounted for over a quarter of cases of drug-induced uveitis²¹. The proposed mechanism is the release of the inflammatory cytokines IL-1, IL-6 and TNF, which then target the uveal tract²².

Rheumatologists must maintain a high index of suspicion for various causes of uveitis in their patients, particularly those on immunosuppressive therapies. Uveitis can manifest in several ways in these patients, and understanding these distinctions is crucial for appropriate management. Firstly, uveitis can occur as a primary infectious condition. In this scenario, pathogens such as herpes simplex virus, varicella zoster virus, cytomegalovirus, toxoplasma, tuberculosis, or syphilis directly cause ocular inflammation. Patients on immunosuppressive therapies are also at increased risk of opportunistic infections, which can lead to secondary infectious uveitis. Uveitis can be a manifestation of the underlying systemic IMID itself, such as ankylosing spondylitis, inflammatory bowel disease, and multiple sclerosis. Each of these conditions can have a propensity to develop uveitis in specific anatomical locations, as detailed in Table 2 of the manuscript. Lastly, uveitis can occasionally be a direct consequence of immunosuppressive therapy, namely drug-induced uveitis. Given these multiple potential etiologies, rheumatologists must approach uveitis with a broad differential diagnosis. A comprehensive workup with appropriate imaging and laboratory tests, coupled with close collaboration between rheumatologists and ophthalmologists, is strongly recommended to

accurately diagnose and treat uveitis.

In healthy conditions, the eye is immune privileged, with active immune homeostatic mechanisms to maintain tissue health and function^{23,24}. In the context of uveitis, immune privilege breaks down. Whilst the underlying mechanisms driving the development of uveitis vary by aetiology and are not fully elucidated, the collective end outcome in an aberrant inflammatory response within the eye, involves both innate and adaptive immune pathways (Figure 2). The anatomy of the eye provides a unique opportunity to both visualise and sample the immune response within the eye. This sampling involves collecting ocular fluids, such as aqueous humor from the anterior chamber or vitreous fluid, to analyze for various purposes, including identifying specific pathogens in infectious uveitis, characterizing immune cell populations and cytokine profiles in non-infectious uveitis, monitoring changes in inflammatory markers or drug levels to gauge treatment effectiveness, and furthering research to better understand the pathophysiology of different uveitic conditions. These procedures, while invasive, are feasible in both adult and pediatric patients when clinically indicated, though rarely performed in children who will require a general anaesthetic. This characterisation contributes not only to diagnosis uveitis and the underlying aetiology, but also provides opportunities to develop and target new therapies.

Diagnosis

Diagnosis of rheumatological conditions requires the integration of a thorough clinical evaluation with laboratory testing (haematological, biochemical, immunological and serological) and/or histological assessment(s) and/or imaging finding(s). Internationally agreed classification criteria exist for many of the systemic diseases associated with uveitis.

This includes adult Behçet's disease (International Criteria for Behçet's Disease²⁵), spondyloarthritis (Assessment of Spondyloarthritis International Society classification criteria^{26,27}), adult sarcoidosis (World Association of Sarcoidosis and Other Granulomatous Disorders assessment instrument²⁸) and JIA (international League Against Rheumatism classification²⁹). Given the prevalence of uveitis in these conditions, eye manifestations are listed within the classification or assessment criteria. However, uveitis can precede the onset of other systemic symptoms, with up to 41% of patients diagnosed with axial spondyloarthropathies experiencing uveitis as the first manifestation that leads to diagnostic evaluation³⁰.

In uveitis, the cornerstone of diagnosis is a slit lamp examination of the eye to detect, localize and quantify ocular inflammation, alongside dedicated ocular imaging. The SUN Working Group comprises international experts to standardise clinical research in uveitis have developed detailed criteria for classifying uveitis. Their first consensus statement was the anatomical classification of uveitis⁴ as described earlier. In 2021, the SUN Nomenclature Working Group published their approach to developing classification criteria for the most common uveitides using a machine learning approach in a database of 5,766 retrospectively collected cases of 25 uveitic diseases. The same year the group published disease-specific criteria for those 25 causes of uveitis, predominantly for research use. These included the most common rheumatology associations - Behçet's³¹, JIA³², spondyloarthritis/HLA-B27associated³³, and sarcoid³⁴. Subsequently a study of 522 cases of uveitis from a large uveitis practice showed high concordance (94.3%) between clinical diagnoses and SUN diagnoses, where SUN diseases-specific criteria were available³⁵. Concordance further increased to 97% with the inclusion of cases of undifferentiated uveitis, suggesting clinical utility of these classification criteria. For other systemic diseases, uveitis is a recognised manifestation but doesn't form part of the diagnostic or classification criteria, for example cryopyrin-associated periodic syndrome³⁶, therefore it is important that clinicians maintain a high degree of suspicion with regards uveitis in all patients with systemic rheumatic diseases.

The existence of reciprocal classification criteria for many uveitis-associated rheumatological diseases – as viewed through the lenses of rheumatologists and ophthalmologists – highlights the close interplay between uveitis and systemic diseases. However, the uveitis classification criteria will need to be dynamic; the rheumatology-associated SUN uveitis classification criteria may need updating as classification systems for rheumatological disorders continue to be refined and revised. Furthermore, whilst the majority of uveitis occurring in the context of rheumatology patients is a manifestation of the underlying systemic disease, it is important to rule out infectious causes of uveitis especially for patients who are on systemic immunosuppressive therapies. In some cases, assessment of patients with uveitis will include microbiological and virological investigations such as serological testing and aqueous or vitreous sampling. It is crucial to consider masquerade syndromes, such as intraocular lymphoma, which can mimic immune-mediated uveitis. Misdiagnosis of these conditions and

subsequent immunosuppressive treatment can lead to delayed diagnosis and potentially harmful outcomes. Therefore, a high index of suspicion and appropriate diagnostic workup are essential, especially in cases that are atypical or unresponsive to standard therapy.

290291292

288

289

Treatment

293294

295

296

297

298

299

300

301302

303

304

305

Deciding on the appropriate treatment strategy for a patient with uveitis is a complex process that requires an individualised and multidisciplinary approach. Providing evidence-based decision-making for uveitis is challenging due to its heterogeneous nature, comparatively low prevalence, and limited randomised controlled trial (RCT) data. The most significant factor in determining the appropriate first-line treatment for uveitis is its anatomical location³⁷. For anterior uveitis, the typical first choice is topical corticosteroid drops, except in patients with high-risk disease and poor prognostic features, such as those with JIA-U, where systemic immunosuppression is recommended³⁸. For intermediate, posterior, or pan-uveitis, the typical first choice, after excluding infectious causes, includes temporising oral corticosteroids and systemic immunosuppression. Peri-ocular corticosteroid injections and slow-release intravitreal steroid implants are particularly useful for unilateral disease or as adjuncts in uveitic macular oedema. They may also be used for bilateral disease.

Corticosteroid eyedrops

306307308

309

310

311

312

313

314

315

316

317

318

319

320

321322

323

324

325326

327

In ophthalmology practice, anterior uveitis is the most common type of uveitis seen in both adult and pediatric patients, accounting for up to 90% of cases in primary care and 50 to 60% of cases in tertiary care³⁹. Since the 1950s, the first-line treatment has been topical corticosteroids and mydriatics. Despite the low quality of evidence, which stems from the long-standing acceptance of topical corticosteroids as a standard treatment, frequent initial administration of these agents is generally advised, followed by gradual tapering, with prednisolone acetate 1% being one of the most used formulations. Corticosteroid drops carry an increased risk of cataract formation and glaucoma, which is particularly significant in children due to the added risk of developing amblyopia secondary to cataracts. Uveitis in childhood is further complicated by its typically "silent" nature, with no external signs, and potential issues with medication compliance. In JIA-U, there is growing evidence that instilling topical corticosteroids more frequently than twice a day significantly increases the risk of intraocular pressure elevation, potentially leading to glaucoma and subsequent visual field loss^{40,41}. Moreover, administration exceeding three times daily significantly elevates the risk of cataract formation. While in adults, 1-2 drops of topical steroids per day are well-tolerated and generally accepted in clinical practice to maintain remission, in children with JIA-U, the American College of Rheumatology/Arthritis Foundation guidelines recommend initiating systemic immunosuppression³⁸. The overarching goal in managing JIA-U is to completely discontinue topical steroids, recognizing their associated risks even at lower frequencies. A low frequency of topical steroids may be tolerated in JIA-U if there are no complications, no

difficulties with instillation or compliance, and regular close follow-up with an ophthalmologist is maintained.

329330331

328

Corticosteroid injections/implants

332333

334

335

336

337

338

339340

341

342

343

344

345

346

347

348

349

350

351

352

353

In adult patients, localized corticosteroid injections have shown efficacy for unilateral, nonvision-threatening uveitis. The SITE study in adults demonstrated that periocular corticosteroid injections led to complete response in 72.7% of patients at 6 months, albeit with risks of cataract (13.8%) and glaucoma (2.4%) surgeries⁴². Sustained-release intravitreal implants have been developed to provide extended steroid release, ranging from 6 to 36 months⁴³⁻⁴⁵. The POINT RCT in adults showed that intravitreal dexamethasone implants and triamcinolone were more effective than periocular triamcinolone in resolving uveitic macular oedema, with improved vision outcomes⁴⁶. However, these treatments were associated with a higher risk of elevated intraocular pressure. The surgically implanted fluocinolone acetonide device demonstrated efficacy in controlling uveitis in adults but led to high rates of cataract surgery (93%) in implanted eyes. The MUST trial in adults compared this implant to systemic therapy, finding initial superior control with the implant but better long-term visual outcomes with systemic treatment⁴⁷. Recently, the PEACHTREE trial in adults explored suprachoroidal triamcinolone injections, showing promising efficacy in resolving macular oedema without significantly increased risks of elevated intraocular pressure or cataracts compared to placebo⁴⁸. These various approaches to localized corticosteroid administration offer effective options for managing uveitis in adults, particularly for targeting macular oedema and reducing reliance on systemic corticosteroids, but require careful consideration of their respective risk profiles. However, corticosteroid injections are not routinely used in children and young people. A retrospective study of orbital floor corticosteroids in children found that while 74% had a reduction in inflammation, this led to 21% developing cataracts just 5 months after injection, highlighting the potential risks of this approach in paediatric populations⁴⁹.

354355

Systemic Corticosteroids

356357358

359

360

361

362

363

364

365

366

367

368

A systemic approach to treatment is often required for posterior segment inflammation and chronic or recurrent anterior uveitis in both children and adults. This approach involves the use of oral corticosteroids, conventional synthetic disease-modifying antirheumatic drugs (csDMARDs), and biologic disease-modifying drugs (bDMARDs). Systemic corticosteroids are recommended to control acute inflammation in adults when there is a significant risk of vision loss, in cases of bilateral involvement, and increasingly as a bridge to systemic immunosuppression. Treatment typically begins with 1 mg/kg/day of oral prednisolone, up to a maximum of 60mg daily⁵⁰. A systematic review of RCTs in RA demonstrated fewer side effects at a prednisolone dose of 7.5 mg/day over months to years⁵¹. However, while this dose is considered safer than higher doses, it is still associated with some toxicities. This has influenced consensus guidance in uveitis clinical practice to

recommend tapering oral prednisolone to doses below 7.5 mg or 5 mg once daily, when possible⁵⁰. Systemic corticosteroids are generally avoided in children with uveitis due to significant side effects^{38,52}, and it should be noted that most dosing recommendations are based on studies primarily in adults. In children, weight-based dosing is a more appropriate approach to minimize these risks. Instead, csDMARDs are preferred as initial therapy, with biologics considered if csDMARDs are insufficient to control inflammation. For severe inflammatory conditions, such as Vogt-Koyanagi-Harada syndrome, or Behçet's disease, a regimen of high-dose intravenous methylprednisolone, may be instituted. Rheumatologists are well-aware of the risks of prolonged high-dose corticosteroid therapy, including decreased bone density, peptic ulceration, mood changes and Cushing syndrome, with associated blood sugar and blood pressure deregulation, and weight gain. Many specialist ophthalmologists are comfortable prescribing oral corticosteroids at high doses, but historically they have been slow to adopt steroid-sparing medications⁵³. More recent data suggests an earlier adoption of DMARDs and biologics in line with published guidance⁵⁴.

<u>csDMARDs</u>

369

370

371372

373

374

375

376

377

378

379

380

381

382

383 384

385 386

387

388 389

390

391

392

393394

395

396

397

398

399400

401 402

403

404

405 406

407 408

409

Effective csDMARDs for the treatment of non-infectious uveitis include the antimetabolites azathioprine (AZT), methotrexate (MTX), and mycophenolate mofetil (MMF), as well as the calcineurin inhibitors cyclosporine and tacrolimus⁵⁵. There are few small placebo-controlled RCTs demonstrating the efficacy of DMARDs in the treatment of adult non-infectious uveitis, partly due to the clinical heterogeneity of uveitides and their early adoption in clinical practice^{56,57}. In adults, MMF has been shown to reduce relapses by 40% in non-infectious uveitis⁵⁶, while AZT significantly decreased the frequency of uveitis episodes in Behçet's disease⁵⁷. In a comparative RCT of oral MTX vs. MMF, similar rates of treatment success were observed: 64 (66.7%) patients in the methotrexate group vs. 56 (57.1%) in the mycophenolate group⁵⁸. In a small comparative RCT of cyclosporine and tacrolimus, there were similar rates of treatment success: 13 (68.4%) patients in the tacrolimus group vs. 12 (66.7%) patients in the cyclosporine group⁵⁹. The SITE study is the largest retrospective study conducted to date, reviewing medical records of all eligible patients seen at five tertiary uveitis referral clinics in the United States from 1979 to 2005⁶⁰. One year after initiating therapy, sustained control of inflammation was achieved in 62.2% of patients on AZT, 66.0% on MTX, 73.1% on MMF, and 51.9% on cyclosporine⁶¹⁻⁶⁴. While a significant portion of these patients were able to taper oral prednisolone to ≤5 mg daily, treatment failure was observed once prednisolone was discontinued, regardless of the immunosuppressive agent used. Specifically for patients with ankylosing spondylitis who experience recurrent episodes of anterior uveitis, the use of sulfasalazine has been associated with a reduced frequency of episodes^{65,66}, and international guidelines recommend either sulfasalazine or MTX as first-line csDMARDs⁶⁷. While in adults there is low-quality evidence of comparable efficacy between the csDMARDs discussed⁶⁸, in rheumatological conditions with uveitis (Table 1), MTX is considered a reasonable first-line therapy.

In children with JIA-U, consensus guidelines based on several studies examining safety and safety and efficacy⁶⁹⁻⁷² have recommended that MTX is the first line csDMARD^{38,52}, with a preference of subcutaneous over oral formulations³⁸. Systemic immunosuppression is recommended for active uveitis if poor prognostic factors are present at the first visit, such as male gender, uveitis predating arthritis, poor initial vision, or ocular complications including band keratopathy, glaucoma, hypotony, cataract, intermediate involvement, and macular oedema^{38,52}. Additionally, systemic immunosuppression should be considered if there is a poor response to topical treatment after 3 months of follow-up.

bDMARDs

Biologic DMARDs (bDMARDs) have revolutionised the fields of rheumatology and ophthalmology, with their use being essential for optimal patient outcomes. Close cooperation between these specialties is paramount, as it often enables ophthalmologists to access treatments, they might not be able to prescribe otherwise. Many studies in uveitis have focused on anti-TNFs, with the strongest evidence supporting adalimumab $^{73-75}$. Adalimumab and golimumab are fully human monoclonal anti-TNFs, consisting entirely of human protein sequences. Infliximab is a chimeric monoclonal anti-TNF, combining human constant regions with murine variable regions. Etanercept is a fusion protein composed of the extracellular ligand-binding portion of the human TNF receptor linked to the Fc portion of human IgG1. Certolizumab pegol is a unique pegylated Fab fragment of a humanized anti-TNF- α monoclonal antibody. It lacks the Fc portion found in full antibodies and has a polyethylene glycol chain attached. These structural differences influence each biologic's pharmacokinetics, immunogenicity, and mechanisms of action in treating uveitis.

We will first discuss the evidence of bDMARDs in adults, where, unless otherwise stated, the participants had non-infectious posterior segment uveitis (NIPU), which includes intermediate, posterior, and panuveitis. These studies have encompassed a diverse range of uveitis patients, including those with undifferentiated uveitis, Behçet's disease, and sarcoidosis. The VISUAL studies were international, double-blind, placebo-controlled RCTs that demonstrated the efficacy of adalimumab in treating adults with NIPU⁷⁴⁻⁷⁶. In both the VISUAL-I trial for patients with active uveitis and the VISUAL-II trial for patients with inactive uveitis, the risk of treatment failure was reduced by half, and the time until treatment failure was nearly doubled^{74,75}. While the VISUAL studies included rheumatological populations such as Behçet's disease and sarcoidosis, additional lower-quality studies in specific populations have shown supporting evidence for other conditions, such as ankylosing spondylitis and Blau syndrome^{15,77}. For a more comprehensive review of biologic therapy in uveitis associated with other monogenic autoinflammatory syndromes, our previous work provides a more extensive overview¹⁵. In summary, while treatment options for monogenic autoinflammatory syndromes typically begin with conventional therapies like colchicine, NSAIDs, and

corticosteroids, they often progress to more targeted biologic therapies. Biologic treatments, particularly IL-1 inhibitors (such as anakinra, canakinumab, and rilonacept) and anti-TNFs (like adalimumab and infliximab), have shown efficacy in managing both systemic and ocular manifestations of these disorders, with the choice of agent depending on the specific syndrome and its underlying molecular pathway¹⁵. Biosimilars are being rapidly developed as patent rights for original biologics expire. A comprehensive review of studies comparing adalimumab to its biosimilars in rheumatoid arthritis, psoriasis, and inflammatory bowel disease revealed comparable efficacy, safety, and immunogenicity profiles⁷⁸. Additionally, smaller studies focusing on uveitis patients demonstrated that transitioning from adalimumab to biosimilars was both safe and effective⁷⁹.

Infliximab has similarly shown promising results in reducing inflammation, improving visual acuity and reducing the steroid burden in open-label and retrospective studies of NIPU, anterior and Behçet's uveitis⁸⁰⁻⁸³. There is moderate non-randomised prospective and retrospective evidence to suggest that golimumab, in patients with AS reduced the occurrence of anterior uveitis episodes, leading to remission and improving visual acuity⁸⁴⁻⁸⁶. Similarly, certolizumab pegol has demonstrated a reduced rate of anterior uveitis episodes in patients with axial spondyloarthritis^{87,88}. Importantly for rheumatologists, several studies, including RCT evidence, have shown that while the incidence of uveitis decreases after starting anti-TNFs like infliximab and adalimumab, it actually increases with etanercept^{89,90}. Therefore, expert guidance strongly recommends against using etanercept in patients with ocular inflammatory disease, instead advocating for infliximab or adalimumab as the preferred treatment options^{37,91}.

The development of anti-adalimumab and anti-infliximab antibodies is an additional consideration in the treatment of uveitis. In the VISUAL studies, all patients who developed antibodies against adalimumab experienced treatment failure⁷⁴. While there is no unifying guideline regarding the significance of these antibodies, evidence suggests that in uveitis, anti-adalimumab antibodies are associated with a reduced treatment response 92,93. Concomitant immunomodulatory therapy, commonly with MTX or MMF, reduces the likelihood of antibody development. In patients with Crohn's disease treated with infliximab, concomitant immunomodulatory therapy also decreases the formation of anti-infliximab antibodies and prolongs the effectiveness of infusions⁹⁴, although this effect has been disputed in patients with uveitis^{95,96}. When patients develop anti-drug antibodies and experience reduced treatment efficacy, switching to another anti-TNF agent may be beneficial⁹⁷. This strategy allows continued targeting of TNF while potentially overcoming the limitations imposed by anti-drug antibodies. While the evidence supporting anti-TNFs in uveitis treatment is robust, particularly for adalimumab and infliximab, the data for other classes of biologic agents is generally less extensive, with most studies being smaller in scale or of lower quality.

Another medication in the rheumatology arsenal, secukinumab, a monoclonal antibody targeting interleukin-17A, has not yielded positive results in uveitis trials, despite being licensed for the treatment of psoriatic arthritis and ankylosing spondylitis. Secukinumab did not demonstrate efficacy for Behçet's uveitis and non-Behçet's uveitis in three phase III multicentre, double-blind, placebo-controlled RCTs of subcutaneous administration, leading to premature halting⁹⁸. A smaller RCT similarly showed a low response following subcutaneous secukinumab, although higher responder rates were observed with intravenous administration⁹⁹. The efficacy of secukinumab in these conditions remains inconclusive, with some guidelines advising against its use¹⁰⁰. Bimekizumab, a monoclonal antibody that selectively inhibits both IL-17A and IL-17F, was studied in adult patients with axial spondyloarthritis to assess its effect on uveitis¹⁰¹. These findings suggest that bimekizumab may offer protective benefits against uveitis, lowering incidence of uveitis (0.6%) compared to placebo (4.6%).

504505506

507

508

509

510

511

512

513

514

515

516

517

518

519520

521

522

523

524

525

526

527

492

493

494

495

496

497 498

499

500

501

502

503

Another approach for treating NIPU in adults has been targeting IL-6. Tocilizumab has the largest body of evidence for efficacy, showing significant reductions in uveitis and improvements in visual acuity in a phase 2 trial 102,103. This trial randomised patients to receive either 4mg or 8mg of IV tocilizumab, including adults with undifferentiated uveitis, sarcoidosis, and Behçet's disease. However, the route of administration may impact efficacy. While IV tocilizumab has shown promise, the APTITUDE trial, which used subcutaneous (SC) tocilizumab in children with JIA-U, showed a lower response rate of only 33.3% by month 3¹⁰⁴. Sarilumab, which also inhibits IL-6 receptor signaling, has demonstrated efficacy in a placebocontrolled RCT for adults with NIPU, resulting in reduced inflammation, lower steroid dependence, and enhanced visual acuity¹⁰⁵. Abatacept is a fusion protein that modulates Tcell activation by binding to CD80 and CD86, preventing their interaction with CD28 on T cells. Abatacept has shown some promise in treating adults with NIPU, as a prospective study in birdshot uveitis demonstrated that it was well-tolerated and reduced most of the clinical inflammatory parameters¹⁰⁶. However, this did not translate to an improvement in visual acuity. Rituximab is a monoclonal antibody that targets CD20, leading to the depletion of B cells and has been used as a third-line bDMARD in treating NIPU and appears to be effective and well-tolerated, particularly in patients with Behçet's uveitis 107. JAK inhibitors have been more recently used for the treatment of NIPU that does not respond to other bDMARDs¹⁰⁸. The strongest current evidence supports the use of filgotinib, as demonstrated by a placebocontrolled RCT showing a reduction in adults with NIPU flares with good tolerability¹⁰⁹. Filgotinib has been approved for the treatment of adults with rheumatoid arthritis and inflammatory bowel disease in the European Union, Great Britain, and Japan, but it has not yet been approved in the United States.

528529530

531

532

In children with JIA-U, several RCTs have been conducted on bDMARDs, with the strongest evidence supporting the use of adalimumab^{110,111}. Adalimumab has been shown to prevent treatment failure in patients with JIA-U who were already stable on MTX¹¹⁰, and to improve

uveitis in patients who had shown an inadequate response to topical steroids and MTX¹¹¹ in placebo-controlled RCTs. The timing of discontinuing adalimumab in stable patients is currently under investigation in RCTs¹¹², as previous long-term follow-up data revealed a high rate of relapse and the need to restart adalimumab after stopping the treatment 113. Early non-randomised studies have demonstrated the efficacy and tolerability of infliximab at higher doses (6-10 mg/kg every 4-6 weeks)^{114,115}, with no efficacy observed at lower doses (3-5 mg/kg every 6-8 weeks). Our recent findings suggest that infliximab can be effective in patients who did not respond to adalimumab, indicating that 'in-class switching' among anti-TNFs may have a role in management⁹⁷. The ACR guidelines recommend increasing the dose/frequency of a anti-TNF over switching for children with JIA who do not respond to the standard dose, and switching to another anti-TNF over trying a different biologic if the higher dose also fails³⁸. Non-randomised studies have shown efficacy of tocilizumab in JIA-U with intravenous administration¹¹⁶. However, in a phase 2 non-randomised trial, our examination of subcutaneous administration of tocilizumab did not meet the primary end point¹¹⁷. This study does suggest a role for tocilizumab in a third of those refractory to adalimumab and MTX. It is possible that intravenous administration of tocilizumab and a biomarker driven approach might maximise the success of tocilizumab for JIA-U. We are currently conducting adaptive design clinical trials in JIA-U of secukinumab¹¹⁸ and baricitinib¹¹⁹. The ACR guidelines suggest that for patients who have failed MTX and two anti-TNF at above-standard dose and frequency, abatacept or tocilizumab are recommended as alternatives³⁸. Other biologic agents have fewer data, typically consisting of small retrospective case series, and they have therefore been excluded from the scope of this review. Table 3 summarises the evidence levels for various bDMARDs used in the treatment of uveitis in both adults and children, including specific considerations for dosage and administration, and indicating whether the medications are licensed by NICE or FDA.

Prognosis

533

534

535

536537

538539

540541

542

543

544

545

546547

548

549

550

551

552

553554

555

556

557

558559

560 561

562

563564

565

566

567

568

569

570

571

572

Visual prognosis in uveitis depends on the anatomical location and duration and severity of inflammation¹²⁰. In adults with uveitis, posterior segment inflammation is typically associated with reduced vision at presentation, and a poorer visual outcome compared with anterior uveitis¹²¹. Systemic diseases with poorer prognosis in the longer term include Behçet's disease and Blau syndrome. A retrospective study involving 175 pediatric and adult patients with Behçet's disease reported a mean visual acuity of 0.39 logMAR (approximately 20/50 Snellen) at presentation and 0.34 logMAR (approximately 20/40 Snellen) at 60 months¹²². Blau-associated uveitis also carries a poor visual prognosis with 80% of eyes having a visual acuity of >0.3 (worse than 6/12) at 20 years in one retrospective study¹². Conversely, HLA-B27 associated acute anterior uveitis tends to have a good visual prognosis with a 10-year median visual acuity of 0.1 LogMAR (6/7.5 Snellen), although ocular complications, including posterior synechiae and cataract, are common¹²³. Similarly, patients with sarcoid-associated

uveitis also have good visual outcomes with a median visual acuity at 10 years of 0.0 (6/6), but high rates of cataract and macular oedema¹²⁴.

Maintenance of visual acuity in the medium term has been demonstrated in clinical trials of biologic treatment and intravitreal steroid therapy. The Visual III study, looking at 78 weeks of follow up data of adalimumab in non-infectious adult uveitis, showed an overall improvement in visual acuity in patients entering the study with active disease, and stable visual acuity in those with inactive disease at baseline⁷⁶. Five year follow up of a cohort of participants in the SYCAMORE trial of adalimumab for JIA-U similarly showed stable visual acuity¹¹³. Intravitreal fluocinolone implants are effective at improving visual acuity over 36 months in adults, but the majority of patients require cataract surgery by 3 years¹²⁵.

Due to the high risk of asymptomatic uveitis and potential visual loss in children, targeted screening programs, particularly for JIA-U, are implemented to ensure early detection and effective management of uveitis^{38,126}. Visual outcomes in children with JIA-U have improved over the last 10 years, with a median 5-year visual acuity of -0.1 (6/5) at 5 years and a reduction in cataract and glaucoma surgery¹²⁷. This is likely to be due to earlier use of systemic therapies, biologic treatments and better screening for uveitis¹²⁸. However, sight loss and ocular surgery are still common in adults with JIA-U¹²⁹. A recent retrospective study of 166 pediatric uveitis patients, including JIA-associated cases, showed 72.9% received conventional immunosuppressants and 34.9% biologics¹³⁰. Within this cohort, 7.3% developed cataracts, 8.1% had elevated intraocular pressure, and 0.9% required intraocular surgery. Visual acuity deterioration to worse than 20/200 occurred at 0.01 per eye-year.

Future directions

There remain several key priorities in relation to uveitis care (Table 4) – from early detection, diagnostic accuracy and prognostication, to identifying novel drug targets and precision therapies. With the growing availability of multi-omic datasets and disease registries, combined with the increased awareness of the need for large scale research collaborations, progress is being made in many areas.

Risk stratification, diagnosis and prognostication

Early detection and diagnostic accuracy are paramount, given the poor prognosis and risk to vision posed by uveitis. In the paediatric setting, JIA-U screening aids early detection but poses a significant burden on patients, families and health resources. The UK-based "ChiLdhood arthritis and its associated Uveitis: Stratification Through Endotypes and mechanism to delivER benefit (CLUSTER)" consortium is a unique example of a national alliance between clinicians, academics and industry partners aiming to define disease endotypes, and integrate these with prognostic biomarkers and treatment responses to develop a stratified medicine

approach for children with JIA and JIA-U¹³¹. The consortium and collaborators have recently presented data on the use of genetic biomarkers¹³² for JIA-U risk stratification. Anterior segment OCT is emerging as an imaging modality for diagnosing and monitoring anterior uveitis in adults¹³³ and children¹³⁴, and could be further augmented using artificial intelligence¹³⁵. However, there is a demonstrable need for ethnically diverse normative datasets using this approach¹³⁶.

Monitoring disease activity

Robust disease activity monitoring and biomarkers of treatment response will be critical to informing treatment withdrawal study design. Monitoring disease activity and treatment responses using tear samples in children and adults has had limited success^{137,138}. The recently validated UVEDAI uveitis disease activity index in adults includes key indicators such as anterior chamber cell grade, vitreous haze, central macular edema, inflammatory vessel sheathing, papillitis, and choroidal/retinal lesions^{139,140}. Patient evaluations are also incorporated. However, there is currently no validated tool for children. A recent open-label study in children with idiopathic, JIA or Behçet's associated uveitis assessed the ability to taper and withdraw adalimumab after a period of remission. However, the study reported a high uveitis recurrence rate, with only 4 out of 7 patients with Behçet's maintaining remission six months after stopping adalimumab¹⁴¹, highlighting the need for tools not only to monitor disease activity but also to assess the likelihood of maintaining inactivity and guide therapeutic decisions. The ADJUST RCT, examining withdrawal of adalimumab for patients with JIA-U and 12 months of well controlled ocular inflammation¹¹², will imminently be reporting their findings.

Novel therapies

A proportion of patients remain intolerant of, or resistant to, current agents for treating uveitis. In addition to established treatments, several promising clinical trials are currently in progress. Researchers are investigating systemic therapies such as brepocitinib (TYK2/JAK1 inhibitor)¹⁴², izokibep (IL-17A inhibitor)¹⁴³, and ustekinumab (IL-12/23 inhibitor)¹⁴⁴, as well as the intravitreal vamikibart (IL-6 inhibitor)¹⁴⁵. The recent availability of large-scale genome wide association data for non-infectious uveitis in adults¹⁴⁶, means that genetic epidemiology methods for drug discovery¹⁴⁷ are now on the horizon. Research is also ongoing into advanced drug delivery systems, such as nano-based technologies, to improve drug availability of existing therapies whilst minimising systemic side effects¹⁴⁸. While these have shown promise in animal models of experimental autoimmune uveitis¹⁴⁹, they have yet to be assessed in humans.

Conclusions

Uveitis is a wide-reaching condition affecting many adults and children with rheumatological diagnoses. Relevant to rheumatology, uveitis can occur as a direct result of systemic IMID or

associated therapies, or from ocular infections in the context of systemic immunosuppression. In this review we have underscored the need for effective collaborative working between rheumatologists and ophthalmologists to discern the underlying uveitis aetiology and guide patient care. With a growing number of therapies available to treat uveitis, prognosis for patients with uveitis in improving. Advancing our understanding of disease mechanism is helping to guide new therapies and treatment escalation strategies. However, there remains considerable unmet need for precision medicine approaches and novel therapies for this patient population, particularly those with refractory uveitis. Addressing these unmet needs will require large-scale multi-disciplinary partnerships to address.

Key points

- Uveitis accounts for up to 10% of visual impairment globally, highlighting the need for prompt recognition and management.
- TNF inhibitors have significantly improved outcomes in both adult and paediatric uveitis, with the strongest evidence for adalimumab. An exception is etanercept, which worsens uveitis.
- The second-line biologic option for uveitis are IL-6 inhibitors, with IV tocilizumab having the most substantial supporting evidence.
- Collaborative work between rheumatologists and ophthalmologists is critical for optimal management of uveitis.
- More trials are needed in uveitis, as there is a wide array of novel molecules available for systemic rheumatic diseases that need to be explored for therapeutic use in uveitis.

-

Figure Legends

Figure 1 Clinical Presentation in Uveitis

The figure illustrates the presenting symptoms and signs associated with different types of uveitis. Rheumatological conditions can manifest as various uveitis subtypes, making it crucial to consider these potential presentations during rheumatology clinic evaluations. If there is any evidence of ocular involvement, a referral to ophthalmology is recommended for further assessment and management. An important exception is Juvenile Idiopathic Arthritis-Associated Uveitis, which typically causes symptomatically silent chronic anterior uveitis. The figure will be professionally redrawn by the NRR graphics team.

Figure 2 Pathogenesis of uveitis and therapeutic targets

This figure illustrates the immunopathogenesis of uveitis. Within the thymus and bone marrow, the process of central tolerance eliminates lymphocytes with receptors specific for self-antigens through positive and negative selection. However, some cells with low affinity for self-antigens escape the thymus and, alongside deficient peripheral tolerance, circulate in the bloodstream. APCs present ocular antigens or PAMPs mimicking self-antigens to naive Tcells, leading to their activation and differentiation into TH1 or TH17 phenotypes. These activated T-cells migrate and infiltrate the eye, where they secrete pro-inflammatory cytokines, causing a breakdown of the blood-retina barrier and recruitment of macrophages and neutrophils. This cellular activity can be observed in the anterior chamber as AAU and in the vitreous humour as IU. The pro-inflammatory cytokines can induce thrombotic vasculitis, focal inflammation in the choroid or retina, and leakage of fluid from retinal vessels, leading to optic disc swelling and uveitic macular oedema. The specific cells and predominant antigens involved in each patient with uveitis depend on the underlying disease process, resulting in different ocular phenotypes. Medications targeting the various cytokine and signalling pathways are indicated in green lettering. All cytokines within a green box depend on JAK signalling and are therefore susceptible to treatment with JAK inhibitors. The figure

will be professionally redrawn by the NRR graphics team; AAU: Acute Anterior Uveitis, APCs: Antigen-Presenting Cells, IU: Intermediate Uveitis, PAMPs: Pathogen-Associated Molecular Patterns, TH1: T Helper 1, TH17: T Helper 17. **Competing interests** The authors declare no competing interests. **Acknowledgements** We would like to thank Dr. Sunil Mamtora for the slit-lamp supplementary video.

References

- Jabs, D. A. & Busingye, J. Approach to the diagnosis of the uveitides. Am J Ophthalmol 156, 228-236, doi:10.1016/j.ajo.2013.03.027 (2013).
- Jabs, D. A. Epidemiology of uveitis. Ophthalmic Epidemiol 15, 283-284, doi:10.1080/09286580802478724 (2008).
- Miserocchi, E., Fogliato, G., Modorati, G. & Bandello, F. Review on the worldwide epidemiology of uveitis. Eur J Ophthalmol 23, 705-717, doi:10.5301/ejo.5000278 (2013).
- Jabs, D. A., Nussenblatt, R. B., Rosenbaum, J. T. & Group, S. o. U. N. S. W. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol 140, 509-516 (2005).
- Trusko, B. et al. The Standardization of Uveitis Nomenclature (SUN) Project. Development of a clinical evidence base utilizing informatics tools and techniques. Methods Inf Med 52, 259-265, s251-256, doi:10.3414/me12-01-0063 (2013).
- Chang, M. H., Shantha, J. G., Fondriest, J. J., Lo, M. S. & Angeles-Han, S. T. in Rheumatic Disease Clinics of North America Vol. 47 619-641 (W.B. Saunders, 2021).
- Sabri, K., Saurenmann, R. K., Silverman, E. D. & Levin, A. V. Course, complications, and outcome of juvenile arthritis-related uveitis. Journal of Aapos: American Association for Pediatric Ophthalmology & Strabismus 12, 539-545 (2008).
- Rypdal, V. et al. Uveitis in Juvenile Idiopathic Arthritis: 18-Year Outcome in the Population-based Nordic Cohort Study. Ophthalmology 128, 598-608, doi:10.1016/j.ophtha.2020.08.024 (2021).
- Kopplin, L. J., Mount, G. & Suhler, E. B. Review for Disease of the Year: Epidemiology of HLA-B27 Associated Ocular Disorders. Ocul Immunol Inflamm 24, 470-475, doi:10.1080/09273948.2016.1175642 (2016).
- Abraham, A., Nicholson, L., Dick, A., Rice, C. & Atan, D. in Neurology(R) neuroimmunology & neuroinflammation Vol. 8 (NLM (Medline), 2021).
- Miserocchi, E., Fogliato, G., Modorati, G. & Bandello, F. Review on the worldwide epidemiology of uveitis. European journal of ophthalmology 23, 705-717, doi:10.5301/EJO.5000278 (2013).
- Kreps, E. O. et al. Long-Term Visual Outcome of Patients with Blau Syndrome. Ocul Immunol Inflamm, 1-5, doi:10.1080/09273948.2023.2293922 (2024).
- Bertrand, P. J. et al. Uveitis: Autoimmunity... and beyond. Autoimmun Rev 18, 102351, doi:10.1016/j.autrev.2019.102351 (2019).

823	14	Joltikov, K. A. & Lobo-Chan, A. M. Epidemiology and Risk Factors in Non-infectious
824		Uveitis: A Systematic Review. Front Med (Lausanne) 8, 695904,
825		doi:10.3389/fmed.2021.695904 (2021).

- Maghsoudlou, P. *et al.* Uveitis Associated with Monogenic Autoinflammatory Syndromes in Children. *Ocul Immunol Inflamm* **31**, 1930-1943, doi:10.1080/09273948.2023.2282610 (2023).
- Ramos-Casals, M. et al. Autoimmune diseases induced by TNF-targeted therapies: analysis of 233 cases. *Medicine (Baltimore)* **86**, 242-251, doi:10.1097/MD.0b013e3181441a68 (2007).
- Lim, L. L., Fraunfelder, F. W. & Rosenbaum, J. T. Do tumor necrosis factor inhibitors cause uveitis? A registry-based study. *Arthritis Rheum* **56**, 3248-3252, doi:10.1002/art.22918 (2007).
- Chartrand, N. A. *et al.* Ocular Side Effects of Bisphosphonates: A Review of Literature. *J Ocul Pharmacol Ther* **39**, 3-16, doi:10.1089/jop.2022.0094 (2023).
- Coates, L. C., McGonagle, D. G., Bennett, A. N., Emery, P. & Marzo-Ortega, H. Uveitis and tumour necrosis factor blockade in ankylosing spondylitis. *Ann Rheum Dis* **67**, 729-730, doi:10.1136/ard.2007.077370 (2008).
- Nicolela Susanna, F. & Pavesio, C. A review of ocular adverse events of biological anti-TNF drugs. *J Ophthalmic Inflamm Infect* **10**, 11, doi:10.1186/s12348-020-00202-6 (2020).
- Anquetil, C. *et al.* Evolving spectrum of drug-induced uveitis at the era of immune checkpoint inhibitors results from the WHO's pharmacovigilance database. *J Autoimmun* **111**, 102454, doi:10.1016/j.jaut.2020.102454 (2020).
- Fietta, P., Manganelli, P. & Lodigiani, L. Clodronate induced uveitis. *Ann Rheum Dis* **62**, 378, doi:10.1136/ard.62.4.378 (2003).
- Egwuagu, C. E., Alhakeem, S. A. & Mbanefo, E. C. Uveitis: Molecular Pathogenesis and Emerging Therapies. *Frontiers in immunology* **12**, doi:10.3389/FIMMU.2021.623725 (2021).
- Read, R. W. Uveitis: Advances in understanding of pathogenesis and treatment.

 Current Rheumatology Reports 8, 260-266, doi:10.1007/s11926-006-0006-6 (2006).
- International Team for the Revision of the International Criteria for Behcet's, D. The International Criteria for Behcet's Disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria. *J Eur Acad Dermatol Venereol* **28**, 338-347, doi:10.1111/jdv.12107 (2014).
- Rudwaleit, M. *et al.* The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part I): classification of paper patients by expert opinion including uncertainty appraisal. *Ann Rheum Dis* **68**, 770-776, doi:10.1136/ard.2009.108217 (2009).
- Rudwaleit, M. *et al.* The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. *Ann Rheum Dis* **70**, 25-31, doi:10.1136/ard.2010.133645 (2011).
- Judson, M. A. *et al.* The WASOG Sarcoidosis Organ Assessment Instrument: An update of a previous clinical tool. *Sarcoidosis Vasc Diffuse Lung Dis* **31**, 19-27 (2014).
- Petty, R. E. *et al.* International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. *J Rheumatol* **31**, 390-392 (2004).

869	30	Fernández-Melón, J. et al. Uveitis as the initial clinical manifestation in patients with
870		spondyloarthropathies. J Rheumatol 31 , 524-527 (2004).

- Standardization of Uveitis Nomenclature Working, G. Classification Criteria for Behcet Disease Uveitis. *Am J Ophthalmol* **228**, 80-88, doi:10.1016/j.ajo.2021.03.058 (2021).
- Standardization of Uveitis Nomenclature Working, G. Classification Criteria for
 Juvenile Idiopathic Arthritis-Associated Chronic Anterior Uveitis. *Am J Ophthalmol* **228**, 192-197, doi:10.1016/j.ajo.2021.03.055 (2021).
- Standardization of Uveitis Nomenclature Working, G. Classification Criteria for Spondyloarthritis/HLA-B27-Associated Anterior Uveitis. *Am J Ophthalmol* **228**, 117-125, doi:10.1016/j.ajo.2021.03.049 (2021).
- Standardization of Uveitis Nomenclature Working, G. Classification Criteria for Sarcoidosis-Associated Uveitis. *Am J Ophthalmol* **228**, 220-230, doi:10.1016/j.ajo.2021.03.047 (2021).
- 883 35 Mudie, L. I. *et al.* Evaluation of the SUN Classification Criteria for Uveitides in an Academic Uveitis Practice. *Am J Ophthalmol* **241**, 57-63, doi:10.1016/j.ajo.2022.04.007 (2022).
- Kuemmerle-Deschner, J. B. *et al.* Diagnostic criteria for cryopyrin-associated periodic syndrome (CAPS). *Ann Rheum Dis* **76**, 942-947, doi:10.1136/annrheumdis-2016-209686 (2017).
- Dick, A. D. *et al.* Guidance on Noncorticosteroid Systemic Immunomodulatory
 Therapy in Noninfectious Uveitis: Fundamentals Of Care for UveitiS (FOCUS)
 Initiative. *Ophthalmology* 125, 757-773, doi:10.1016/j.ophtha.2017.11.017 (2018).
- Angeles-Han, S. T. *et al.* 2019 American College of Rheumatology/Arthritis
 Foundation Guideline for the Screening, Monitoring, and Treatment of Juvenile
 Idiopathic Arthritis—Associated Uveitis. *Arthritis & Rheumatology* **71**, 864-877,
 doi:https://doi.org/10.1002/art.40885 (2019).
- Tsirouki, T. *et al.* A Focus on the Epidemiology of Uveitis. *Ocul Immunol Inflamm* 26,
 2-16, doi:10.1080/09273948.2016.1196713 (2018).
- Kothari, S. *et al.* The Risk of Intraocular Pressure Elevation in Pediatric Noninfectious Uveitis. *Ophthalmology* **122**, 1987-2001, doi:10.1016/j.ophtha.2015.06.041 (2015).
- Thorne, J. E., Woreta, F. A., Dunn, J. P. & Jabs, D. A. Risk of cataract development among children with juvenile idiopathic arthritis-related uveitis treated with topical corticosteroids. *Ophthalmology* **117**, 1436-1441, doi:10.1016/j.ophtha.2009.12.003 (2010).
- 904 42 Sen, H. N. *et al.* Periocular corticosteroid injections in uveitis: effects and complications. *Ophthalmology* **121**, 2275-2286, doi:10.1016/J.OPHTHA.2014.05.021 (2014).
- 907 43 Lightman, S. *et al.* Vision-related functioning outcomes of dexamethasone
 908 intravitreal implant in noninfectious intermediate or posterior uveitis. *Investigative* 909 *ophthalmology & visual science* 54, 4864-4870, doi:10.1167/IOVS.12-10981 (2013).
- 910 44 Lowder, C. *et al.* Dexamethasone intravitreal implant for noninfectious intermediate 911 or posterior uveitis. *Archives of ophthalmology (Chicago, Ill. : 1960)* **129**, 545-553, 912 doi:10.1001/ARCHOPHTHALMOL.2010.339 (2011).
- Jaffe, G. J. *et al.* Long-term follow-up results of a pilot trial of a fluocinolone
 acetonide implant to treat posterior uveitis. *Ophthalmology* **112**,
 doi:10.1016/J.OPHTHA.2005.03.013 (2005).

916	46	Thorne, J. E. et al. Periocular Triamcinolone vs. Intravitreal Triamcinolone vs.
917		Intravitreal Dexamethasone Implant for the Treatment of Uveitic Macular Edema:
918		The PeriOcular vs. INTravitreal corticosteroids for uveitic macular edema (POINT)
919		Trial. Ophthalmology 126 , 283-295, doi:10.1016/J.OPHTHA.2018.08.021 (2019).
920	47	Kempen, J. H. et al. Benefits of Systemic Anti-inflammatory Therapy versus
921		Fluocinolone Acetonide Intraocular Implant for Intermediate Uveitis, Posterior
922		Uveitis, and Panuveitis: Fifty-four-Month Results of the Multicenter Uveitis Steroid
923		Treatment (MUST) Trial and Follow-up Study. Ophthalmology 122, 1967-1975,
924		doi:10.1016/j.ophtha.2015.06.042 (2015).
925	48	Yeh, S. et al. Efficacy and Safety of Suprachoroidal CLS-TA for Macular Edema
926		Secondary to Noninfectious Uveitis: Phase 3 Randomized Trial. Ophthalmology 127,
927		948-955, doi:10.1016/J.OPHTHA.2020.01.006 (2020).
928	49	Habot-Wilner, Z. et al. Periocular corticosteroid injection in the management of
929		uveitis in children. Acta Ophthalmol 88, e299-304, doi:10.1111/j.1755-
930		3768.2010.02025.x (2010).
931	50	Jabs, D. A. Immunosuppression for the Uveitides. Ophthalmology 125, 193-202,
932		doi:10.1016/j.ophtha.2017.08.007 (2018).

- 932 doi:10.1016/j.ophtha.2017.08.007 (2018).
 933 51 Da Silva, J. A. *et al.* Safety of low dose glucocorticoid treatment in rheumatoid
- Da Silva, J. A. *et al.* Safety of low dose glucocorticoid treatment in rheumatoid arthritis: published evidence and prospective trial data. *Ann Rheum Dis* **65**, 285-293, doi:10.1136/ard.2005.038638 (2006).
- Constantin, T. *et al.* Consensus-based recommendations for the management of
 uveitis associated with juvenile idiopathic arthritis: the SHARE initiative. *Ann Rheum Dis* 77, 1107-1117, doi:10.1136/annrheumdis-2018-213131 (2018).
- 939 53 Nguyen, Q. D. *et al.* A cross-sectional study of the current treatment patterns in noninfectious uveitis among specialists in the United States. *Ophthalmology* **118**, 941 184-190, doi:10.1016/j.ophtha.2010.03.029 (2011).
- 942 54 Esteban-Ortega, M. *et al.* An Observational Study in the Real Clinical Practice of the Treatment of Noninfectious Uveitis. *J Clin Med* **13**, doi:10.3390/jcm13051402 (2024).
- Jabs, D. A. *et al.* Guidelines for the use of immunosuppressive drugs in patients with ocular inflammatory disorders: recommendations of an expert panel. *Am J Ophthalmol* **130**, 492-513, doi:10.1016/s0002-9394(00)00659-0 (2000).
- 947 56 Deuter, C. M. E. *et al.* Enteric-coated mycophenolate sodium in the treatment of 948 non-infectious intermediate uveitis: results of a prospective, controlled, randomised, 949 open-label, early terminated multicentre trial. *Br J Ophthalmol* **102**, 647-653, 950 doi:10.1136/bjophthalmol-2017-310156 (2018).
- 951 57 Yazici, H. *et al.* A controlled trial of azathioprine in Behçet's syndrome. *N Engl J Med* 952 **322**, 281-285, doi:10.1056/nejm199002013220501 (1990).
- 953 58 Rathinam, S. R. *et al.* Effect of Corticosteroid-Sparing Treatment With
 954 Mycophenolate Mofetil vs Methotrexate on Inflammation in Patients With Uveitis: A
 955 Randomized Clinical Trial. *Jama* **322**, 936-945, doi:10.1001/jama.2019.12618 (2019).
- 956 59 Murphy, C. C. *et al.* Cyclosporine vs tacrolimus therapy for posterior and intermediate uveitis. *Arch Ophthalmol* **123**, 634-641, doi:10.1001/archopht.123.5.634 (2005).
- Kempen, J. H. *et al.* Methods for identifying long-term adverse effects of treatment in patients with eye diseases: the Systemic Immunosuppressive Therapy for Eye Diseases (SITE) Cohort Study. *Ophthalmic Epidemiol* **15**, 47-55, doi:10.1080/09286580701585892 (2008).

- 963 61 Gangaputra, S. *et al.* Methotrexate for ocular inflammatory diseases. *Ophthalmology* 964 **116**, 2188-2198.e2181, doi:10.1016/j.ophtha.2009.04.020 (2009).
- 965 62 Daniel, E. *et al.* Mycophenolate mofetil for ocular inflammation. *Am J Ophthalmol* **149**, 423-432.e421-422, doi:10.1016/j.ajo.2009.09.026 (2010).
- 967 63 Pasadhika, S. *et al.* Azathioprine for ocular inflammatory diseases. *Am J Ophthalmol* **148**, 500-509.e502, doi:10.1016/j.ajo.2009.05.008 (2009).
- 969 64 Kaçmaz, R. O. *et al.* Cyclosporine for ocular inflammatory diseases. *Ophthalmology* 970 **117**, 576-584, doi:10.1016/j.ophtha.2009.08.010 (2010).
- 971 65 Benitez-Del-Castillo, J. M., Garcia-Sanchez, J., Iradier, T. & Bañares, A. Sulfasalazine in 972 the prevention of anterior uveitis associated with ankylosing spondylitis. *Eye (Lond)* 973 **14 (Pt 3A)**, 340-343, doi:10.1038/eye.2000.84 (2000).
- 974 66 Muñoz-Fernández, S. *et al.* Sulfasalazine reduces the number of flares of acute anterior uveitis over a one-year period. *J Rheumatol* **30**, 1277-1279 (2003).
- 976 67 Ramiro, S. *et al.* ASAS-EULAR recommendations for the management of axial 977 spondyloarthritis: 2022 update. *Annals of the Rheumatic Diseases* **82**, 19-34, 978 doi:10.1136/ard-2022-223296 (2023).
- 979 68 Knickelbein, J. E., Kim, M., Argon, E., Nussenblatt, R. B. & Sen, N. H. Comparative 980 efficacy of steroid-sparing therapies for non-infectious uveitis. *Expert Rev* 981 *Ophthalmol* **12**, 313-319, doi:10.1080/17469899.2017.1319762 (2017).
- Foeldvari, I. & Wierk, A. Methotrexate is an effective treatment for chronic uveitis associated with juvenile idiopathic arthritis. *J Rheumatol* **32**, 362-365 (2005).
- Heiligenhaus, A., Mingels, A., Heinz, C. & Ganser, G. Methotrexate for uveitis associated with juvenile idiopathic arthritis: value and requirement for additional anti-inflammatory medication. *Eur J Ophthalmol* **17**, 743-748, doi:10.1177/112067210701700509 (2007).
- Papadopoulou, C. *et al.* Methotrexate therapy may prevent the onset of uveitis in juvenile idiopathic arthritis. *J Pediatr* **163**, 879-884, doi:10.1016/j.jpeds.2013.03.047 (2013).
- 991 72 Shetty, A. K., Zganjar, B. E., Ellis, G. S., Jr., Ludwig, I. H. & Gedalia, A. Low-dose 992 methotrexate in the treatment of severe juvenile rheumatoid arthritis and sarcoid 993 iritis. *J Pediatr Ophthalmol Strabismus* **36**, 125-128, doi:10.3928/0191-3913-994 19990501-09 (1999).
- 995 73 Mackensen, F. *et al.* Randomized Controlled Study to Evaluate the Efficacy of 996 Adalimumab in Patients with Different Forms of Refractory Uveitis. *Ocul Immunol Inflamm* **26**, 1015-1022, doi:10.1080/09273948.2017.1411518 (2018).
- 998 74 Jaffe, G. J. *et al.* Adalimumab in Patients with Active Noninfectious Uveitis. *N Engl J Med* **375**, 932-943, doi:10.1056/NEJMoa1509852 (2016).
- Nguyen, Q. D. *et al.* Adalimumab for prevention of uveitic flare in patients with inactive non-infectious uveitis controlled by corticosteroids (VISUAL II): a multicentre, double-masked, randomised, placebo-controlled phase 3 trial. *Lancet* 388, 1183-1192, doi:10.1016/s0140-6736(16)31339-3 (2016).
- Suhler, E. B. *et al.* Safety and Efficacy of Adalimumab in Patients with Noninfectious Uveitis in an Ongoing Open-Label Study: VISUAL III. *Ophthalmology* **125**, 1075-1087, doi:10.1016/j.ophtha.2017.12.039 (2018).
- Rudwaleit, M. *et al.* Adalimumab effectively reduces the rate of anterior uveitis flares in patients with active ankylosing spondylitis: results of a prospective openlabel study. *Ann Rheum Dis* **68**, 696-701, doi:10.1136/ard.2008.092585 (2009).

1010	78	García-Beloso, N. et al. Switching between reference adalimumab and biosimilars in
1011		chronic immune-mediated inflammatory diseases: A systematic literature review.
1012		British Journal of Clinical Pharmacology 88 , 1529-1550,
1013		doi:https://doi.org/10.1111/bcp.15101 (2022).
1014	79	Song, S. H. & Woo, S. J. Efficacy and Safety of Switching from Adalimumab Originator
1015		to SB5. Adalimumab Biosimilar for Noninfectious Uveitis. <i>Ocular Immunology and</i>

Suhler, E. B. *et al.* A prospective trial of infliximab therapy for refractory uveitis: preliminary safety and efficacy outcomes. *Arch Ophthalmol* **123**, 903-912, doi:10.1001/archopht.123.7.903 (2005).

Inflammation, 1-5, doi:10.1080/09273948.2023.2295544 (2024).

- Kruh, J. N., Yang, P., Suelves, A. M. & Foster, C. S. Infliximab for the treatment of refractory noninfectious Uveitis: a study of 88 patients with long-term follow-up. *Ophthalmology* **121**, 358-364, doi:10.1016/j.ophtha.2013.07.019 (2014).
- Takeuchi, M. *et al.* Ten-year follow-up of infliximab treatment for uveitis in Behçet disease patients: A multicenter retrospective study. *Front Med (Lausanne)* **10**, 1095423, doi:10.3389/fmed.2023.1095423 (2023).
- Giardina, A. *et al.* One year study of efficacy and safety of infliximab in the treatment of patients with ocular and neurological Behçet's disease refractory to standard immunosuppressive drugs. *Rheumatol Int* **31**, 33-37, doi:10.1007/s00296-009-1213-z (2011).
- 1030 84 Calvo-Río, V. *et al.* Golimumab in refractory uveitis related to spondyloarthritis.
 1031 Multicenter study of 15 patients. *Semin Arthritis Rheum* **46**, 95-101,
 1032 doi:10.1016/j.semarthrit.2016.03.002 (2016).
- Okada, K., Zhou, Y., Hashida, N., Takagi, T. & Tian, Y. S. The Efficacy of Golimumab Against Non-Infectious Uveitis: A PRISMA-Compliant Systematic Review and Meta-Analysis. *Ocul Immunol Inflamm* **31**, 1013-1023, doi:10.1080/09273948.2022.2081584 (2023).
- Tungsattayathitthan, U. *et al.* Efficacy of golimumab in patients with refractory non-infectious panuveitis. *Scientific Reports* **14**, 2179, doi:10.1038/s41598-024-52526-1 (2024).
- 1040 87 Rudwaleit, M. *et al.* Observed Incidence of Uveitis Following Certolizumab Pegol 1041 Treatment in Patients With Axial Spondyloarthritis. *Arthritis Care Res (Hoboken)* **68**, 1042 838-844, doi:10.1002/acr.22848 (2016).
- van der Horst-Bruinsma, I. E. *et al.* Reduction of anterior uveitis flares in patients with axial spondyloarthritis on certolizumab pegol treatment: final 2-year results from the multicenter phase IV C-VIEW study. *Ther Adv Musculoskelet Dis* **13**, 1759720x211003803, doi:10.1177/1759720x211003803 (2021).
- Foster, C. S. *et al.* Efficacy of etanercept in preventing relapse of uveitis controlled by methotrexate. *Arch Ophthalmol* **121**, 437-440, doi:10.1001/archopht.121.4.437 (2003).
- 1050 90 Brito-Zerón, P., Perez-Alvarez, R. & Ramos-Casals, M. Etanercept and uveitis: friends
 1051 or foes? *Curr Med Res Opin* 31, 251-252, doi:10.1185/03007995.2014.993024
 1052 (2015).
- 1053 91 Levy-Clarke, G. et al. Expert panel recommendations for the use of anti-tumor
 1054 necrosis factor biologic agents in patients with ocular inflammatory disorders.
 1055 Ophthalmology 121, 785-796.e783, doi:10.1016/j.ophtha.2013.09.048 (2014).

1056	92	McHarg, M. et al. Anti-drug antibodies to monoclonal TNF inhibitors in non-
1057		infectious uveitis. Investigative Ophthalmology & Visual Science 63, 3194 – A0420-
1058		3194 – A0420 (2022).

- Leinonen, S. T., Aalto, K., Kotaniemi, K. M. & Kivelä, T. T. Anti-adalimumab antibodies in juvenile idiopathic arthritis-related uveitis. *Clin Exp Rheumatol* **35**, 1043-1046 (2017).
- Baert, F. et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn's disease. N Engl J Med 348, 601-608, doi:10.1056/NEJMoa020888 (2003).
- Aeschlimann, F. A. *et al.* Prevalence of Anti-infliximab Antibodies and Their
 Associated Co-factors in Children with Refractory Arthritis and/or Uveitis: A
 Retrospective Longitudinal Cohort Study. *The Journal of Rheumatology* **44**, 334-341, doi:10.3899/jrheum.160072 (2017).
- Valdes, L. et al. Anti-infliximab antibodies and clinical response in noninfectious
 uveitis and scleritis patients treated with infliximab: A retrospective review. Am J
 Ophthalmol Case Rep 27, 101634, doi:10.1016/j.ajoc.2022.101634 (2022).
- 1071 97 Kreps, E. O. *et al.* Infliximab in chronic non-infectious paediatric uveitis refractory to previous biologic therapy. *Eye (Lond)* **38**, 871-876, doi:10.1038/s41433-023-02795-3 (2024).
- 1074 98 Dick, A. D. *et al.* Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. *Ophthalmology* **120**, 777-787, doi:10.1016/j.ophtha.2012.09.040 (2013).
- Letko, E. et al. Efficacy and safety of intravenous secukinumab in noninfectious
 uveitis requiring steroid-sparing immunosuppressive therapy. Ophthalmology 122,
 939-948, doi:10.1016/j.ophtha.2014.12.033 (2015).
- 100 Beltrán Catalán, E. *et al.* SER recommendations for the treatment of uveitis.
 1081 *Reumatología Clínica (English Edition)* **19**, 465-477,
 1082 doi:https://doi.org/10.1016/j.reumae.2023.07.003 (2023).
- 1083 101 Brown, M. A. *et al.* Low uveitis rates in patients with axial spondyloarthritis treated with bimekizumab: pooled results from phase 2b/3 trials. *Ann Rheum Dis*, doi:10.1136/ard-2024-225933 (2024).
- Hassan, M. *et al.* Utilisation of composite endpoint outcome to assess efficacy of tocilizumab for non-infectious uveitis in the STOP-Uveitis Study. *Br J Ophthalmol* **107**, 1088 1197-1201, doi:10.1136/bjophthalmol-2021-320604 (2023).
- Sepah, Y. J. *et al.* Primary (Month-6) Outcomes of the STOP-Uveitis Study: Evaluating the Safety, Tolerability, and Efficacy of Tocilizumab in Patients With Noninfectious Uveitis. *Am J Ophthalmol* **183**, 71-80, doi:10.1016/j.ajo.2017.08.019 (2017).
- 1092 104 Ramanan, A. V. *et al.* Tocilizumab in patients with anti-TNF refractory juvenile 1093 idiopathic arthritis-associated uveitis (APTITUDE): a multicentre, single-arm, phase 2 1094 trial. *The Lancet. Rheumatology* **2**, e135-e141, doi:10.1016/S2665-9913(20)30008-4 1095 (2020).
- 105 Heissigerová, J. et al. Efficacy and Safety of Sarilumab for the Treatment of Posterior
 1097 Segment Noninfectious Uveitis (SARIL-NIU):: The Phase 2 SATURN Study.
 1098 Ophthalmology 126, 428-437, doi:10.1016/j.ophtha.2018.09.044 (2019).
- 1099 106 Schauwvlieghe, P. P., Van Calster, J., Herbort, C. P., Jr., Kestelyn, P. A. & de Vlam, K.
 1100 Efficacy and safety of abatacept to treat active birdshot uveitis: a prospective open
 1101 label interventional proof-of-concept trial. *Br J Ophthalmol* **108**, 244-252,
 1102 doi:10.1136/bjo-2022-321585 (2024).

1103	107	Ng, C. C., Sy, A. & Cunningham, E. T., Jr. Rituximab for non-infectious Uveitis and
1104		Scleritis. J Ophthalmic Inflamm Infect 11, 23, doi:10.1186/s12348-021-00252-4
1105		(2021).
1106	108	Wen, J. et al. Role of Janus Kinase (JAK) Inhibitor in Autoimmune Ocular
1107		Inflammation: A Systematic Review. J Immunol Res 2021, 2324400,
1108		doi:10.1155/2021/2324400 (2021).
1109	109	Srivastava, S. K. et al. Filgotinib in Active Noninfectious Uveitis: The HUMBOLDT
1110		Randomized Clinical Trial. JAMA Ophthalmol,
1111		doi:10.1001/jamaophthalmol.2024.2439 (2024).
1112	110	Ramanan, A. V. et al. Adalimumab plus Methotrexate for Uveitis in Juvenile
1113		Idiopathic Arthritis. N Engl J Med 376 , 1637-1646, doi:10.1056/NEJMoa1614160
1114		(2017).
1115	111	Quartier, P. et al. ADJUVITE: a double-blind, randomised, placebo-controlled trial of
1116		adalimumab in early onset, chronic, juvenile idiopathic arthritis-associated anterior
1117		uveitis. Ann Rheum Dis 77, 1003-1011, doi:10.1136/annrheumdis-2017-212089
1118		(2018).
1119	112	Acharya, N. R. et al. Discontinuing adalimumab in patients with controlled juvenile
1120		idiopathic arthritis-associated uveitis (ADJUST-Adalimumab in Juvenile Idiopathic
1121		Arthritis-associated Uveitis Stopping Trial): study protocol for a randomised
1122		controlled trial. <i>Trials</i> 21 , 887, doi:10.1186/s13063-020-04796-z (2020).
1123	113	Horton, S. et al. Adalimumab in Juvenile Idiopathic Arthritis-Associated Uveitis: 5-
1124		Year Follow-up of the Bristol Participants of the SYCAMORE Trial. Am J Ophthalmol
1125		207 , 170-174, doi:10.1016/j.ajo.2019.06.007 (2019).
1126	114	Kahn, P., Weiss, M., Imundo, L. F. & Levy, D. M. Favorable response to high-dose
1127		infliximab for refractory childhood uveitis. Ophthalmology 113, 860-864.e862,
1128		doi:10.1016/j.ophtha.2006.01.005 (2006).
1129	115	Lerman, M. A. et al. Response of pediatric uveitis to tumor necrosis factor- α
1130		inhibitors. <i>J Rheumatol</i> 40 , 1394-1403, doi:10.3899/jrheum.121180 (2013).
1131	116	Tappeiner, C. et al. Evidence for Tocilizumab as a Treatment Option in Refractory
1132		Uveitis Associated with Juvenile Idiopathic Arthritis. <i>J Rheumatol</i> 43 , 2183-2188,
1133		doi:10.3899/jrheum.160231 (2016).
1134	117	Ramanan, A. V. et al. A phase II trial protocol of Tocilizumab in anti-TNF refractory
1135		patients with JIA-associated uveitis (the APTITUDE trial). BMC Rheumatol 2, 4,
1136		doi:10.1186/s41927-018-0010-2 (2018).
1137	118	Isrctn. A study to see whether adalimumab or secukinumab is better for treating
1138		children and young people with juvenile idiopathic arthritis (JIA) associated uveitis or

chronic anterior uveitis.

https://trialsearch.who.int/Trial2.aspx?TrialID=ISRCTN12427150 (2023).

Ramanan, A. V. et al. Clinical effectiveness and safety of baricitinib for the treatment of juvenile idiopathic arthritis-associated uveitis or chronic anterior antinuclear antibody-positive uveitis: study protocol for an open-label, adalimumab active-controlled phase 3 clinical trial (JUVE-BRIGHT). Trials 22, 689, doi:10.1186/s13063-

1145 021-05651-5 (2021).

1146 120 ET, E. C. & Zierhut, M. Vision Loss in Uveitis. *Ocul Immunol Inflamm* **29**, 1037-1039, doi:10.1080/09273948.2021.2017152 (2021).

1148	121	Tomkins-Netzer, O. et al. Long-term clinical outcome and causes of vision loss in
1149		patients with uveitis. Ophthalmology 121, 2387-2392,
1150		doi:10.1016/j.ophtha.2014.07.007 (2014).

- Ostrovsky, M. *et al.* Ocular Behçet Disease—Clinical Manifestations, Treatments and Outcomes According to Age at Disease Onset. *Biomedicines* **11**, 624 (2023).
- 1153 123 Al-Ani, H. H., Sims, J. L. & Niederer, R. L. Long term complications and vision loss in 1154 HLA-B27 uveitis. *Eye* (Lond) **37**, 1673-1677, doi:10.1038/s41433-022-02216-x (2023).
- 124 Niederer, R. L., Sharief, L., Tomkins-Netzer, O. & Lightman, S. L. Uveitis in Sarcoidosis
 1156 Clinical Features and Comparison with Other Non-infectious Uveitis. *Ocul Immunol Inflamm* 31, 367-373, doi:10.1080/09273948.2022.2032189 (2023).
- Jaffe, G. J., Pavesio, C. E. & Study, I. Effect of a Fluocinolone Acetonide Insert on
 Recurrence Rates in Noninfectious Intermediate, Posterior, or Panuveitis: Three-Year
 Results. Ophthalmology 127, 1395-1404, doi:10.1016/j.ophtha.2020.04.001 (2020).
- 126 Royal College of Ophthalmologists & British Society for Paediatric and Adolescent
 127 Rheumatology (BSPAR). Guidelines for screening for uveitis in juvenile idiopathic
 128 arthritis (JIA) produced jointly by BSPAR and the Royal College of Ophth 2006 |
 129 Document Summary Evidence Search Search Engine for Evidence in Health and
 120 Social Care, < https://www.rcophth.ac.uk/resources-listing/guidelines-for-screening-for-uveitis-in-juvenile-idiopathic-arthritis-jia/ (2006).
- 127 Wennink, R. A. W. *et al.* Improved clinical outcomes in patients with juvenile
 1168 idiopathic arthritis associated uveitis in the last decade. *Acta Ophthalmol* 100, 781-787, doi:10.1111/aos.15097 (2022).
- 1170 128 Cann, M. *et al.* Outcomes of non-infectious Paediatric uveitis in the era of biologic therapy. *Pediatr Rheumatol Online J* **16**, 51, doi:10.1186/s12969-018-0266-5 (2018).
- 1172 129 Paroli, M. P. *et al.* Persistence of Juvenile Idiopathic Arthritis-Associated Uveitis in Adulthood: A Retrospective Study. *J Clin Med* **11**, doi:10.3390/jcm11092471 (2022).
- 130 Cann, M. *et al.* Outcomes of non-infectious Paediatric uveitis in the era of biologic 1175 therapy. *Pediatric rheumatology online journal* **16**, doi:10.1186/S12969-018-0266-5 1176 (2018).
- 1177 131 CLUSTER Consortium. *The CLUSTER Consortium*, 1178 https://www.clusterconsortium.org.uk/> (
- 132 Tordoff, M. *et al.* O01 Genetic risk factors associated with increased risk of uveitis 1180 in patients with juvenile idiopathic arthritis. *Rheumatology* **60**, 1181 doi:10.1093/rheumatology/keab246 (2021).
- 133 Invernizzi, A. *et al.* Objective Quantification of Anterior Chamber Inflammation: 1183 Measuring Cells and Flare by Anterior Segment Optical Coherence Tomography. 1184 *Ophthalmology* **124**, 1670-1677, doi:10.1016/j.ophtha.2017.05.013 (2017).
- 134 Tsui, E. *et al.* Quantification of Anterior Chamber Cells in Children With Uveitis Using Anterior Segment Optical Coherence Tomography. *Am J Ophthalmol* **241**, 254-261, doi:10.1016/j.ajo.2022.05.012 (2022).
- Sorkhabi, M. A., Potapenko, I. O., Ilginis, T., Alberti, M. & Cabrerizo, J. Assessment of Anterior Uveitis Through Anterior-Segment Optical Coherence Tomography and Artificial Intelligence-Based Image Analyses. *Transl Vis Sci Technol* 11, 7, doi:10.1167/tvst.11.4.7 (2022).
- 136 Solebo, A. L., Bellchambers, A., Kellett, S., Rahi, J. S. & Dick, A. D. Establishing the
 1193 Normative Data Set Necessary for Imaging-Based Childhood Uveitis Surveillance: A

1194		Cross-Sectional Study. Invest Ophthalmol Vis Sci 65, 9, doi:10.1167/iovs.65.1.9
1195		(2024).
1196	137	Garcia-Onrubia, L. et al. Tear and Plasma Levels of Cytokines in Patients with Uveitis:
1197		Search for Active Disease Biomarkers. J Clin Med 11, doi:10.3390/jcm11237034
1198		(2022).
1199	138	Angeles-Han, S. T. et al. S100 proteins, cytokines, and chemokines as tear biomarkers
1200		in children with juvenile idiopathic arthritis-associated uveitis. Ocul Immunol
1201		Inflamm 29 , 1616-1620, doi:10.1080/09273948.2020.1758731 (2021).
1202	139	Pato, E. et al. Development of an activity disease score in patients with uveitis
1203		(UVEDAI). Rheumatol Int 37 , 647-656, doi:10.1007/s00296-016-3593-1 (2017).
1204	140	Pato-Cour, E. et al. Validation of UVEDAI: An Index for Evaluating the Level of
1205		Inflammatory Activity in Uveitis. Ophthalmol Ther 12, 1045-1055,
1206		doi:10.1007/s40123-023-00654-8 (2023).
1207	141	Yuan, P. D. et al. Adalimumab Dose Reduction and Withdrawal in Stable Non-
1208		Infectious Pediatric Uveitis: An Open-Label, Prospective, Pilot Study. Ocul Immunol
1209		Inflamm, 1-8, doi:10.1080/09273948.2024.2343084 (2024).
1210	142	Priovant. NEPTUNE: Brepocitinib Displays Strong Efficacy in Non-Infectious Uveitis,
1211		https://www.hcplive.com/view/neptune-brepocitinib-displays-strong-efficacy-non-
1212		infectious-uveitis> (2024).
1213	143	Klint, S. et al. Izokibep: Preclinical development and first-in-human study of a novel
1214		IL-17A neutralizing Affibody molecule in patients with plaque psoriasis. MAbs 15,
1215		2209920, doi:10.1080/19420862.2023.2209920 (2023).
1216	144	Bang, C. H. et al. Ustekinumab Demonstrates Lower Uveitis Risk in Moderate to
1217		Severe Psoriasis Patients Compared with Tumor Necrosis Factor-α Inhibitors. <i>Acta</i>
1218		Derm Venereol 104, adv34206, doi:10.2340/actadv.v104.34206 (2024).
1219	145	Roche. Vamikibart in Participants With Uveitic Macular Edema,
1220		< https://forpatients.roche.com/en/trials/eye-disorder/uveitic-macular-
1221		edema/ro7200220-in-participants-with-uveitic-macular-edema-
1222		91001.html#formedicalprofessionals> (2024).
1223	146	Gelfman, S. et al. A large meta-analysis identifies genes associated with anterior
1224		uveitis. <i>Nat Commun</i> 14 , 7300, doi:10.1038/s41467-023-43036-1 (2023).
1225	147	Burgess, S. et al. Using genetic association data to guide drug discovery and
1226		development: Review of methods and applications. Am J Hum Genet 110, 195-214,
1227		doi:10.1016/j.ajhg.2022.12.017 (2023).
1228	148	Wu, K. Y., Tan, K., Akbar, D., Choulakian, M. Y. & Tran, S. D. A New Era in Ocular
1229		Therapeutics: Advanced Drug Delivery Systems for Uveitis and Neuro-
1230		Ophthalmologic Conditions. <i>Pharmaceutics</i> 15 , doi:10.3390/pharmaceutics15071952
1231		(2023).

Rebibo, L. et al. Topical tacrolimus nanocapsules eye drops for therapeutic effect

Release 333, 283-297, doi:10.1016/j.jconrel.2021.03.035 (2021).

enhancement in both anterior and posterior ocular inflammation models. J Control

1232

12331234

1235