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Abstract

Conventional longitudinal behavioral genetic models estimate the relative contribution of 

genetic and environmental factors to stability and change of traits and behaviors. Longitudinal 

models rarely explain the processes that generate observed differences between genetically 

and socially related individuals. We propose that exchanges between individuals and their 

environments (i.e., phenotype–environment effects) can explain the emergence of observed 

differences over time. Phenotype–environment models, however, would require violation of the 

independence assumption of standard behavioral genetic models; that is, uncorrelated genetic and 

environmental factors. We review how specification of phenotype–environment effects contributes 

to understanding observed changes in genetic variability over time and longitudinal correlations 

among nonshared environmental factors. We then provide an example using 30 days of positive 

and negative affect scores from an all-female sample of twins. Results demonstrate that the 

phenotype–environment effects explain how heritability estimates fluctuate as well as how 

nonshared environmental factors persist over time. We discuss possible mechanisms underlying 

change in gene–environment correlation over time, the advantages and challenges of including 

gene–environment correlation in longitudinal twin models, and recommendations for future 

research.
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In psychopathology research, developmental behavioral genetic studies quantify relative 

contributions of heritable and environmental factors to phenotypic variation but tend to 

remain agnostic to underlying causal processes. The great majority of longitudinal twin 

studies show that heritable factors account for stability of phenotypes, such as traits, 

behaviors, and emotions, whereas environmental factors account for change (Bartels 

et al., 2004; Bartels, Rietveld, Van Baal, & Boomsma, 2002; Briley et al., 2019; 

Bronfenbrenner & Ceci, 1994; Eaves, Long & Health, 1986). These studies are largely 

descriptive, and do not address causal processes that explain accrual of differences in 

phenotypic outcomes over time (for exceptions, see Dolan, De Kort, Van Beijsterveldt, 

Bartels, & Boomsma, 2014; Neale & McArdle, 2000; van den Berg, Beem, & Boomsma, 

2006). One limitation of the often-used additive genetic models is that they rely on the 

assumption that genetic and environmental factors are uncorrelated (Polderman et al., 

2015). As, in reality, genes and environments do correlate and interact with one another, 

developmental behavioral genetic models should incorporate this interdependence. While 

gene–environment interplay is accounted for in models that assume independence of 

unmeasured genetic and environmental components (e.g., Johnson, 2007; Neale & Cardon, 

1992; Scarr & McCartney, 1983), the covariance between latent genetic and environmental 

factors is seldom incorporated into developmental behavioral genetic models. Doing so 

would improve our ability to investigate the processes that contribute to variability in human 

complex traits.

The present study is not the first call to address this limitation. In 1958, Anastasi 

commented, “as we proceed along the continuum of indirectness, the range of variation 

of possible outcomes of hereditary factors expands rapidly. At each step in the causal 

chain, there is fresh opportunity for interaction with other hereditary factors as well 

as with environmental factors” (Anastasi, 1958, p. 199). The conventional assumption 

that genetic and environmental factors are uncorrelated breaks an important link in the 

causal chain of Anastasi’s continuum of indirectness: how people interface with their 

environments. Individuals receive, select, and evoke responses from their environments in 

systematic ways. Known as gene–environment correlation (rGE), nonrandom exposure to 

environments based on genetically influenced characteristics is part of what it means to be 

a person embedded within continuously changing social environments (Eaves, Krystyna, 

Martin, & Jinks, 1977; Plomin, DeFries, & Loehlin, 1977; Scarr & McCartney, 1983). This 

phenomenon arises from various processes (Plomin et al., 1977). Passive rGE occurs when 

both genes and environments are provided to individuals (e.g., parents pass along genes for 

affective dysregulation and provide chaotic home environments). Active (or selective) rGE 

occurs when individuals nonrandomly select environments syntonic with their genetically 

influenced characteristics (e.g., persons with high risk of affective dysregulation select 

affectively dysregulated peers). Evocative rGE occurs when environments nonrandomly 

reinforce genetically influenced characteristics (e.g., persons with high risk of affective 
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dysregulation elicit greater interpersonal conflict from their environments). Nonetheless, 

rGE is conventionally unaccounted for in developmental and, more generally, longitudinal 

twin studies. We note that longitudinal co-twin control studies, however, do adjust for rGE 

while examining how nonshared environmental factors contribute to development (McGue, 

Osler, & Christensen, 2010; Røysamb & Tambs, 2016). The current aim is to modify 

longitudinal twin models to incorporate rGE processes that represent real-time processes 

(Briley et al., 2019). By doing so, we improve our understanding of the role of rGE in 

accounting for various phenotypic processes over time.

Longitudinal twin models miss an important feature of the causal chain between genotype 

and environments: namely, persons. As argued by Scarr and McCartney, “some genotypes 

are more likely to receive and select certain environments than others” (1983, p. 

426). Yet genotypes do not receive and select environments; people do (Turkheimer 

& Waldron, 2000). Numerous intermediate and bidirectional processes connect genetic 

and environmental predispositions with complex traits (Cole, 2009; Gottlieb, 2003). 

Intermediary pathways that connect genetic factors to environments include, among others, 

cognition, personality, and affect (Cole, 2009; Gottlieb, 2003). In particular, genetic 

influences underlying affective dysregulation are mediated by processes “external” to 

individuals, such as changes in social environments, as well as by processes “internal” 

to individuals, such as hormones (e.g., cortisol) and other molecular processes (e.g., 

methylation activity affecting RNA transcription). Consequently, individuals are a critical 

node in the processes underlying rGE.

Reciprocal Effects Models

Among the processes that best exemplify Phenotype-Environment (P→E) associations is 

within-family diversification, or “sibling drift”. Several efforts have been made to study this 

phenomenon by incorporating rGE in longitudinal twin models (e.g., Beam & Turkheimer, 

2013; de Kort, Dolan, & Boomsma, 2012; Dolan et al., 2014; Neale & Cardon, 1992). 

In particular, reciprocal effects models (REMs) have guided our thinking about change 

processes (Bell, 1968; Scarr, 1992; Winship & Korenman, 1999; Beam & Turkheimer, 

2017). REMs summarize how small phenotypic advantages (e.g., calm demeanor) translate 

into superior abilities (e.g., affective stability). Individuals are initially provided with 

supportive environments (e.g., quiet vs. chaotic household), which in turn predispose them 

to seek out novel correlated environments (e.g., organized vs. disorganized peers). Further 

reinforcement of phenotypic advantages in these novel environments may then lead to the 

provision of additional support for affective stability (e.g., adults are more likely to mentor 

and model coping strategies). Over time, phenotypes become increasingly correlated with 

environments via iterative person–environment matching. To the extent that phenotypes are 

genetically influenced, genetic influences will themselves become increasingly correlated 

with environments with time.

In previous work, Dickens and Flynn’s (2001) version of REMs has been invoked to 

explain how fleeting exogenous environmental experiences could explain time-limited rank 

order differences in cognitive ability between genetically related individuals (Dickens, 

Turkheimer, & Beam, 2011). REMs subsequently were adapted to explain how P→E 
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matching processes might cause genetically related individuals to drift apart over time 

(Beam & Turkheimer, 2013; Beam et al., 2015, 2016). Importantly, we showed that the 

degree of genetic relatedness between individuals influences the degree of similarity and 

difference between their environments, which then underlies how different individuals 

eventually become. In other words, the smaller the genetic relatedness between individuals, 

the greater they will drift apart over time.

Figure 1 shows a multilevel REM, referred to here as the P→E model, in which total genetic 

effects are divided into genetic and environmental effects shared by twins in the same family 

(Ab and Eb, respectively) and genetic and environmental effects unshared by twins in the 

same family (Aw and Ew, respectively). At the within-level only, there is an autoregressive 

parameter (bPE) projecting from individuals’ phenotypic scores at time t (Pt) to individuals’ 

unshared (nonshared) environments at time t+1 (Et + 1
w ). Although similar to a modified 

genetic simplex model, where genetic and environmental factors unidirectionally influence 

phenotypes across repeated measurements (Boomsma & Molenaar, 1987; Eaves et al., 

1986), this autoregressive parameter represents the influence individuals have on their future 

environments. The autoregressive parameter generates within-family rGE, that is, person–

specific correlations between genotype and environments. Adding this parameter produces 

different model expectations for monozygotic (MZ) twins and dizygotic (DZ) twins. 

Moreover, it more accurately models how nongenetically identical siblings differentiate over 

time compared to MZ twins. According to path tracing rules (Boker & McArdle, 2014), the 

autoregressive parameter necessarily induces accumulation of rGE across time as well as 

correlations among nonshared environmental components (de Kort et al., 2012; Eaves et al., 

1977).

Traditional longitudinal twin models adhere to the assumption of independence between 

genetic and environmental factors. As a result, they generate upwardly biased genetic 

variance estimates (Beam & Turkheimer, 2013). In other words, such models might 

erroneously conclude that heritability increases when it does not (Purcell, 2002). At the 

same time, accumulation of unmodeled rGE in genetic variance components might lead to 

downwardly biased longitudinal correlations among nonshared environmental components. 

Traditional longitudinal twin studies tend to report uncorrelated structures of nonshared 

environmental factors over time, that is, age-specific influences on phenotypic outcomes (for 

examples, see Bartels et al., 2004 [developmental psychopathology]; Klump, Burt, Mcgue, 

& Iacono, 2007 [eating disorders]; Nivard et al., 2015 [depressive symptomatology]; Petrill 

et al., 2004 [cognitive ability]). This is justified with the notion that, within families, there is 

no rank-order stability between twins over time, so that twins are re-sorted randomly as time 

passes. However, since individuals are nonrandomly exposed to environments due to genetic 

and environmental reasons (Plomin et al., 1977; Scarr & McCartney, 1983), this notion 

appears unrealistic. It is unlikely, for instance, that the more temperamental of two siblings 

would suddenly become the steadier sibling, without ongoing selection and reinforcement 

of environments that stabilize affect. As life plods along, environmental influences stabilize, 

suggesting that twins’ environments actually become canalized (Dickens et al., 2011). Given 

that genes and environments do correlate, P→E models might provide a more accurate 

representation of longitudinal processes. Accordingly, the P→E model depicted in Figure 
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1 accommodates violations of the independence assumption, thereby permitting rGE to 

accumulate over time.

As an example, affect is genetically and environmentally influenced (Montag et al., 2016), 

and this has implications for how individuals engage with their social environments. Two 

siblings – one more affectively labile than the other – are likely to select and evoke 

different environmental milieus. Compared to the less affectively labile sibling, the more 

labile sibling may be drawn to individuals who are more emotionally expressive and 

engage in more argumentative and baiting behaviors. As a result, this more affectively 

labile sibling may experience and contribute to a social environment characterized by 

more conflict, leading to still greater labile affect over time. However, while we have 

already demonstrated that small within-family phenotypic differences put genetically related 

siblings onto different cognitive (Beam et al., 2015) and personality (Beam & Sharp, 2020) 

trajectories, no previous study has applied P→E models to affect.

One consequence of model estimated rGE is that the interpretation of nonshared 

environmental components changes (Beam, Turkheimer, Dickens, & Davis, 2015; de Kort 

et al., 2012). In P→E models, each nonshared environmental component consists of two 

components: a part that correlates with genotype (i.e., it differs due to genotypic differences) 

and a part that is uncorrelated with genotype (i.e., occasion-specific residuals). In the former, 

genetic factors indirectly influence nonshared environmental factors, by definition, and are 

therefore confounded with genotype. Comparisons of the longitudinal structure of nonshared 

environmental components between models that accommodate rGE and models that 

assume independence between genetic and environmental factors provide a straightforward 

empirical approach to determining whether accommodating rGE alters the meaning of the 

nonshared environment. In one previous report, we have shown that differences in nonshared 

environmental structures between models that accommodate rGE and models that do not 

are greater in DZ groups than MZ groups, suggesting that accommodation of rGE helps to 

explain why environmental factors might be more correlated over time (Beam et al., 2015).

Quality of Environments and Measurement Density

Two conditions affect estimation of within-family rGE but have not yet been considered: 

the assumption that individuals have a wide range of environments available to them 

and the intervals of time between measurements (e.g., days vs. weeks vs. years). First, 

as posited by Fuller and Thompson (1960), enriched environments allow individuals to 

utilize environments freely, which support genetic expression of traits and allow individuals 

to adapt differently from one another (Bronfenbrenner & Ceci, 1994; Fischbein, 1978). 

In contrast, restricted environments minimize behavioral options, leading individuals to 

behave more similarly, irrespective of genotypic differences. Therefore, siblings who are 

less genetically related (e.g., fraternal twins, full siblings, half-siblings, and so forth), and 

who have the resources to select from a range of environments, are expected to become less 

similar to each other over time. Instead, genetically identical individuals are more likely to 

select similar environments and, in turn, to become more similar over time. Statistically, 

this would imply that heritability increases over time, owing to the fact that within-pair MZ 

correlations are predicted to remain stable over time while non-MZ correlations are expected 
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to decline. One implication of these expectations is that within-family rGE ought to increase 

over time, as genetically dissimilar sibling pairs develop. As within-family rGE can be tested 

statistically, these competing hypotheses can be evaluated directly.

Second, intervals of time between measurements can affect estimates of within-family rGE. 

As intervals of time between measurements increase, estimated autocorrelation between 

measurement occasions will decrease, as long as the process is stationary and noncyclic. 

Because longitudinal twin studies are laborious and expensive, dense measurement 

schedules of phenotypes are rare, and the temporal dynamics of rGE remain poorly 

understood. Shorter intervals between measurements, such as daily measurement schedules, 

could lead to greater estimates of the magnitude of the within-family rGE compared 

to longer intervals between measurements, such as annual measurement schedules. 

Developmentally, however, shorter divisions of time might not allow enough time for 

persons to receive, select, and evoke environments critical enough to make a difference 

for certain phenotypes, especially in view of evidence that effects of twins’ unique 

measured environments on behavior are small (Turkheimer & Waldron, 2000). Thus, to 

best understand how environments guide change in genetically influenced characteristics, 

intervals of measurement should be suitably matched to expected change in phenotypes of 

interest.

The Current Study

In the present study, we explored the temporal dynamics of rGE using daily measurements 

of affect in a young all-female sample of twin pairs aged 16–25. Specifically, we 

investigated how nonrandom matching between these participants and their environments 

accounted for within-family differences in affect over 30 days. While some traits change 

slowly over a long period of time (e.g., personality, see Roberts & Mroczek, 2008), affect 

has been shown to fluctuate daily (Röcke, Li, & Smith, 2009). As a result, genetic and 

environmental influences may, too, fluctuate. Therefore, the 30-day study window is a 

circumscribed period of time in which we can explore whether genetic and environmental 

influences underlying affect fluctuate. Using a P→E model, we tested two hypotheses: 

(a) heritability tends to be over-estimated for daily affect when rGE is unmodeled; and 
(b) within-family rGE will generate greater correlations among nonshared environmental 

factors over time. With respect to the latter hypothesis, we further expected environmental 

factors more proximally situated in time to be more correlated than environmental factors 

less proximally situated in time. Both hypotheses would suggest that the extent to which 

individuals engage with their environments on a daily basis, based on genotypically 

influenced characteristics, affects their nonrandom selection of environments, causing them 

to gravitate toward more like environments from day-to-day.

Of note, as the sample consists only of young women, changes across the menstrual 

cycle in the levels of two ovarian steroid hormones in the female body, estrogen and 

progesterone, may also account for differences in daily affect. Whereas estrogen is the 

predominant hormone produced in the first, proliferative half of the cycle (follicular phase), 

progesterone predominates in the secretory half of the cycle following ovulation (luteal 

phase), albeit estrogen also remains somewhat elevated (Poromaa & Gingnell, 2014). This 
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cyclical fluctuation in neuroendocrine levels has consequences including variation in affect 

(Farage, Neill, & MacLean, 2009; Romans, Clarkson, Einstein, Petrovic, & Stewart, 2012). 

The luteal phase, for example, may engender a high-risk phase for increased negative and 

depressed affect as a result of higher progesterone levels (Bäckström et al., 2011; Halbreich 

et al., 2012). Although changes in affect across the menstrual cycle are not the primary 

focus of the current study, data collected over the menstrual cycle raise two pertinent issues. 

First, the cyclic nature of estrogen and progesterone implies that the correlation between 

individuals and environments is non-stationary and may vary in an oscillatory manner. 

Second, estrogen and progesterone direct genomic actions (e.g., gene transcription) and 

have been found to moderate genetic influences underlying behavioral phenotypes, such 

as binge eating, independent of genetic influences underlying ovarian hormones (Klump et 

al., 2015). Estrogen and progesterone, thus, may interact with genotype causing heritability 

to fluctuate, possibly in addition to effects of rGE via hypothesized person–environment 

matching. Therefore, to the extent that ovarian hormones act upon genetic components that 

differ within twins, they constitute an additional “environmental” source of variance in the 

P→E system (Purcell, 2002), as our model cannot distinguish between endogenous and 

exogenous environmental factors that vary within twins.

Method

Participants

Participants were 441 individual same-sex female twins (age range 16–25 years) who 

participated in the Twin Study of Hormones and Behavior across the Menstrual Cycle 

(HBMC) project (Klump et al., 2013, 2014) within the Michigan State University Twin 

Registiy (MSUTR; Bull & Klump, 2013; Klump & Burt, 2006). There are 265 families in 

the current study, of which there were 176 (66.42%) complete pairs (MZ = 105, DZ = 71) 

and 89 (33.58%) incomplete pairs (MZ = 40, DZ = 49). Study inclusion/exclusion criteria 

were: (a) menarche before the age of 15; (b) regular menstrual cycles every 22–32 days 

for the past 6 months; (c) no hormonal contraceptive use within the past 3 months; (d) no 

psychotropic or steroid medications within the past 4 weeks; (e) no pregnancy or lactation 

within the past 6 months; and (f) no history of genetic or medical conditions known to 

influence hormone functioning or appetite/weight. Although twins could have provided up 

to 45 days of affect data, data coverage beyond 30 days was low. All twins thus provided 

at least 17 consecutive days of data and a maximum of 30 consecutive days. The mean 

number of days of data contributed was 27.31 (SD = 2.76). Approximately three-quarters of 

the sample (75.28%) had one complete cycle within the 30 days. MZ twins contributed 0.72 

days more than DZ twins (t = 2.64, df = 439, p = .009). Sample demographics are provided 

in Supplementary Table S1. Twins, on average, were in late adolescence (M = 17.62, SD = 

1.75) and born to college-educated parents (modal category was bachelor’s degree for both 

twins’ mother and father) who combined make greater than $60,000 per year (59.80%). The 

ethnic composition of the sample was White (84.09%), African American (10.69%), Asian 

(0.24%), American Indian/Alaskan Native (0.48%), and mixed ethnicity (4.51%).
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Procedures

All study measures and procedures were approved by the Michigan State University 

Institutional Review Board (IRB) and the University of Southern California IRB 

(UP-19-00623). Questionnaires were completed each evening (after 5:00 p.m.) using an 

online data system or pre-printed Scantron cards. Twins were instructed to submit their daily 

questionnaire responses online and to use Scantrons only in the event that they had issues 

with their computer or Internet connectivity. If twins used Scantrons, they were asked to 

bring them to the lab at their next in-person assessment so study staff could account for the 

daily data. There were 315 twins who completed their daily assessments on a Scantron card 

at least once during the study and 126 who completed all of their assessments online. Thus, 

71.43% of the sample provided Positive and Negative Affect Schedule (PANAS) scores 

via Scantron at least once during the study. On days in which Scantrons were completed, 

negative affect scores were 0.81 units greater than on days in which ratings were submitted 

electronically (SE = 0.14, t = 5.62, p < .001). For positive affect, scores were 1.02 units 

greater on days in which Scantrons were used instead of electronic submission (SE = 0.19, t 
= 5.29, p < .001).

Measures

Positive and Negative Affect Schedule—The PANAS (Watson, Clark, & Tellegen, 

1988) was used to assess daily levels of positive and negative affect. The positive affect scale 

includes 10 items that assess a range of positive emotions (e.g., interested, excited, alert, 

inspired), while the negative affect scale consists of 10 items that assess a range of negative 

emotions (e.g., distress, nervousness, irritability, fear). The degree to which each emotion 

was experienced on each day of data collection was rated on a 5-point scale, ranging from 

1 = very slightly/not at all to 5 = extremely. The positive and negative affect scales have 

exhibited excellent internal consistency. McDonald’s omega ranged from .85 to .90 for the 

10 positive affect items over the 30 days (M = .89) and .80 to .85 (M = .83) for the 10 

negative affect items. For each day, the sums of the 10 positive and 10 negative affect items 

were used.

Time scale—Selecting a time metric common to all twins was restricted to aligning twins 

by a common day in the menstrual cycle. Twins’ PANAS scores were sorted so that all 

twins’ scores on Day 1 were the first day of the follicular phase (the day following the final 

day of bleeding in twins’ previous menstrual cycle). Menstrual cycle phase was coded using 

daily reports and daily hormone values from saliva samples. The first day of bleeding served 

as the graph anchor, and subsequent days were coded based on this anchor, as well as the 

overall length of each cycle (Klump et al., 2015).

Data analysis—We first estimated univariate MZ and DZ twin correlations of positive 

and negative affect and plotted heritability and environmental estimates based on these 

twin correlations across the 30 days. Conventional univariate twin modeling assumptions 

were made in estimating heritability and environmental estimates (Neale & Cardon, 1992). 

Additive genetic (A) components are the cumulative additive effect of genotype and are 

estimated by virtue of the fact that MZ twins share 100% of their genes and DZ twins 

share 50% of their genes, on average. Shared environmental (C) components are the 
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cumulative effect of any environment that makes twins reared in the same family more 

similar to one another and estimated under the assumption that shared environmental 

influences affect twins similarly regardless of genetic relatedness. Nonshared environmental 

(E) components are any environmental factor that makes twins different from one another, 

including measurement error. Conventional twin models make further assumptions that A, 

C, and E components are uncorrelated with one another, that they do not interact with one 

another, and that genetic relatedness is the product of parents’ random mating strategies. 

To illustrate how the heritability of positive and negative affect fluctuates across days, we 

estimated the proportion of variability attributable to heritability (h2), shared environments 

(c2), and nonshared environments (e2) for each of the 30 days.

Longitudinal structural models were then fit to the data using a multilevel structural 

equation modeling approach, which is equivalent to traditional structural equation modeling 

approaches (ML-SEM; McArdle & Prescott, 2005). We structured the data so that days were 

wide formatted while twin pairs remained in long format and nested within each family. We 

estimated a genetic simplex model (baseline model) and compared this model to a P→E 

model (research model). In the genetic simplex model, twins’ affect scores on each day were 

decomposed into random variance components (subscript 1 for Twin 1 and subscript 2 for 

Twin 2):

Pft, 1 = b0t + wabAft
b + Eft

b + wawAft, 1
w + Eft, 1

w , and Pft, 2 = b0t + wabAft
b + Eft

b + wawAft, 2
w + Eft, 2

w .

The phenotypic scores, P, of Twin 1 and Twin 2 in family, f, at day, t, are decomposed into 

between-family and within-family genetic and environmental factors. All biometric variables 

(A and E), have a mean of zero so that the expectation of the phenotypic mean E[P]ft,i 

equals the intercept, b0t. At the between-family level, phenotypic scores are decomposed 

into a genetic factor (Ab) and an environmental factor (Eb) shared by both twins. At 

the within-family level, twins’ scores are decomposed into a genetic factor (Aw) and an 

environmental factor (Ew) unique to twins raised in the same family. The total genetic effect, 

A, for each twin is equal to:

Aft, 1 = wabAft
b + wawAft, 1

w , and Aft, 2 = wabAft
b + wawAft, 2

w .

The variances of the Ab and Aw factors are constrained to be equal. The weights, w, are 

fixed values that indicate the proportion of genetic information shared by each twin pair. In 

MZ pairs, wab equals 1 and waw equals 0 to satisfy the assumption that identical twins share 

all of their genes. In DZ pairs, wab equals 0.5 and waw, equals 0.5 to satisfy the assumption 

that fraternal pairs of twins share only half of their segregating genes, on average; the other 

half varies between them. The weights of the genetic factors between- and within-families 

were scaled so that wab
2 + waw2 = 1, with the expectation that Ab and Aw are uncorrelated, 

E Aft
b , Aft, i

w = 0.
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In order to present the P→E model, we begin by presenting the conventional genetic 

simplex model (Eaves et al., 1986). Between- and within-family genetic and environmental 

factors are correlated via first-order autoregressions (t > 1) as follows:

Aft
b = aARt, t − 1Aft − 1

b + uAft
b , and Eft

b = cARt, t − 1Eft − 1
b + uEft

b , and Aft, i
w = aARt, t − 1Aft − 1, i

w

+ uAft, i
w , and Eft, i

w = eARt, t − 1Eft − 1, i
w + uEft, i

w .

The autoregressive coefficients (aARt,t−1, cARt,t−1 and eARt,t−1) of the genetic and 

environmental variables and their corresponding disturbances (uAft
b , uEft

b , uAft, i
w  and uEft, i

w ) 

were freely estimated. The first-order autoregressive processes between the genetic and 

environmental factors meet the independence assumption in conventional twin models. 

Graphically, this model is identical to Figure 1 without the bolded red pathways projecting 

from the phenotypic scores to the nonshared environmental variables. Pre-analysis 

demonstrated that the longitudinal genetic and shared environmental structures could each 

be reduced to a single common factor; in all of our models the aARt,t−1 and cARt,t−1 were not 

estimated. Reduced models that included single common genetic and shared environmental 

latent variables fit the data better than the full genetic simplex model (positive affect: ΔLL = 

85.10, df = 117, p = .988; negative affect: ΔLL = 85.10, df = 117, p > .999).

In the P→E model, the autoregressive correlations of the Ew components are re-specified as 

regressions of Eft, i
w  at Day t > 1 on the phenotype at Day t—1:

Eft, i
w = bPEt, t − 1Pt − 1

w + uEft, i
w .

The nonshared environmental variables, Eft, i
w , at Day t>1, are regressed on the phenotype at 

Day t—1. The autoregressive coefficients (bPEt,t−1) and disturbances uEft, i
w  were freely 

estimated. By path tracing rules, in the DZ group the bPEt,t−1 parameters necessarily 

transmit effects of the within-family genetic factor Aft − 1, i
w ∗ bPEt, t − 1  and the nonshared 

environmental factor Eft − 1, i
w ∗ bPEt, t − 1  at Day t—1 via the phenotype at Day t—1. As 

there is no within-family genetic variation, Aw variables are fixed to zero in the MZ group, 

thus making bPEt,t−1 effects equal to the autoregressive effects of the nonshared environment, 

eARt,t−1 in the MZ group. The baseline model, therefore, assumes that bPEt,t−1 effects are 

different in the MZ group than the DZ group, as the source variables for bPEt,t−1 effects 

include within-family genetic differences in the DZ twins but not the MZ twins. In the 

DZ group, significant bPEt,t−1 effects support the hypothesis that pair differences in affect 

on previous days systematically expose twins to unique environments on subsequent days, 

which causes unique environments to become correlated with genetic factors and unique 

environments on previous days. In the MZ group, significant bPEt,t−1 effects suggest that 

unique environments at Day t correlate with unique environments at t—1.

The baseline model was compared to a restricted model that constrains all bPEt,t−1 

parameters to be equal between MZ and DZ twins. If the more restricted model fits 

equally as well as the baseline model, this means that bPEt,t−1 parameters cannot be 
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distinguished from the eARt,t−1. Under this more parsimonious model, the null hypothesis is 

that environmental effects over time are equivalent to person–environment effects over time.

The P→E parameter, bPEt,t−1, has three consequences in the DZ group. First, it necessarily 

induces accumulating within-family rGE over days. Second, bPEt,t−1 parameters change the 

meaning of the nonshared environmental effects when t > 1 because the parameters give 

rise to the correlations between Eft, i
w  and Aft − 1, i

w  (Dolan et al., 2014). Third, bPEt,t−1 

parameters increase the stability of nonshared environment over days as twins are matched 

to temporally similar environments.

Since bPE parameters necessarily change the meaning of the nonshared environment at 

all days but the first day via indirect correlations between genetic and environmental 

components (Beam et al., 2015), we empirically test the longitudinal structure of the 

nonshared environment by statistically comparing model implied nonshared environmental 

variances and covariances in the DZ group against the MZ group.

Models were fit in Mplus 8.2 (Muthén & Muthén, 1998–2017) using full information 

maximum likelihood (FIML) estimation with robust standard errors to handle missing 

data, violations of multivariate normality, and modest sample sizes. Missing data analysis 

consisted of comparing participants who did not provide affect scores for all 30 days 

to participants who did on the following measures: first day of affect scores provided, 

Day 15 of affect scores, final day of affect scores provided, age, body mass index, 

highest education achieved, parental income, and ethnicity. No significant group differences 

were observed, which lends support for retaining the assumption that the missing data 

mechanism was missing completely at random (Enders, 2010). Model comparisons were 

made with the Satorra-Bentler scaled chi-square difference test of nested models (S-Bχ2), 

which corrects the chi-square distributed test statistic in cases of multivariate normality 

assumption violations (Satorra & Bentler, 2001). Model fit also was evaluated using the 

Akaike information criterion (AIC) and the Bayesian information criterion (BIC) (Burnham 

& Anderson, 2004). We also employed the sample size adjusted Bayesian information 

criterion (SSABIC), which adjusts the sample size penalty of the BIC to provide better 

model fit performance than the BIC when sample sizes are small or there are a large number 

of parameters (Enders & Tofighi, 2007; Sclove, 1987). Models with lower AIC, BIC, and 

SSABIC values indicate better model fit, because these indices take into account the tradeoff 

between model parsimony and model complexity.

Results

The means and standard deviations of positive and negative affect across the 30 days were 

stable, with greater variance in positive affect (range: 21.95–24.75) than negative affect 

(range: 14.55–15.56).

Figure 2 presents the twin correlations for positive affect and negative affect on each day 

with locally estimated scatterplot smoothing (LOESS) lines overlaid to illustrate trends in 

twin similarity over days. Beginning at Day 1, MZ and DZ twin correlations for positive 

affect (top panel) gradually diverge until about Day 10, remain constant from Day 11 
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through Day 18, diverge again from Day 18 through about Day 28, and then converge 

the final two days. For negative affect (bottom panel), twin correlations generally converge 

from Day 1 through Day 11, then diverge until about Day 28, after which the correlations 

tend to converge with DZ twins more similar than MZ twins in the final days. Within-pair 

differences in person–environment match, the basis for generating within-family rGE, are 

expected to account for divergence of MZ and DZ twin correlations.

The above twin correlations were used to estimate the daily heritability and environment 

estimates (Figure 3). Both MZ and DZ correlations demonstrated variability in twin 

similarity in positive affect scores over the 30 days. Heritability estimates (red lines) 

tended to increase slightly until about Day 14, were variable from Day 15 through Day 

19, increased dramatically from Day 19 through Day 25, and then declined. Shared 

environmental estimates were generally around zero (or negative), although on days where 

heritability declined, shared environmental estimates tended to increase above zero (e.g., 

Days 6, 14, 29, and 30). Nonshared environmental estimates over days were stable.

Twin correlations for negative affect also tended to vary across days, suggesting variability 

in genetic and environmental estimates. Heritability estimates generally declined from Day 1 

through Day 12, increased through Day 25, and then slightly declined. Shared environmental 

estimates tended to increase across days where heritability declined and decreased on days 

when heritability increased. Nonshared environmental estimates slightly increased for the 

first 15 days and slightly declined for the last 15 days. As increases in heritability suggest 

that DZ twin similarity diverges from MZ twin similarity, we next tested whether rGE 

accounts for daily fluctuations in heritability, particularly across days where heritability of 

positive and negative affect increases.

Person→environment model results

Model fitting results (Table 1) indicate that the P→E model provided better fit to the data 

than a model that equates P→E and nonshared environmental parameters for both positive 

affect (likelihood ratio test (LRT) = 86.61, df = 29, p < .001) and negative affect (LRT = 

53.49, df = 29, p < .005). Further, AIC and SSABIC values were lower for models that 

distinguish P→E parameters than models that do not, further indicating better fit to the data. 

Person–environment matching parameters (bPE), thus, significantly improved model fit for 

both positive affect and negative affect. Results did not change when ethnicity and age were 

included in the models.

Figure 4 presents the line plots of model estimated within-family rGE for positive affect and 

negative affect from the P→E models. Within-family rGE was small and tended to fluctuate 

from Day 1 through Day 15. From Day 15 through Day 25, rGE increased but began to 

decline again from Day 26 through Day 30.

In order to evaluate whether rGE fluctuated systematically as a function of daily effects of 

affect scores on subsequent environmental exposure, we randomly ordered days within each 

twin and fit the P→E model. This analysis, known as surrogate data generation or “time 

scrambling” (Moulder, Boker, Ramseyer, & Tschacher, 2018), tests dependency between 

time series and is important for showing that the model-generated rGE depends on the 
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temporal ordering of P→E effects. Thus, the expectation is that rGE would be essentially 

zero across the 30 days when days were randomly ordered within twin. Within-family rGE 

did not vary significantly from zero when days were randomly ordered within twins (lines 

labeled “PA Random Days” and “NA Random Days”, respectively).

The P→E parameters affected heritability of daily affect scores attributed to genetic effects 

alone, that is, estimates excluding rGE generated via bPE paths (Figure 5). Heritability 

estimates under the independence assumption (blue lines) for positive affect and for negative 

affect are compared to heritability estimates under accommodation of rGE (red lines). 

For both positive and negative affect, estimating P→E effects in the DZ group reduced 

heritability estimates by approximately 3% across days, on average, with reductions as great 

as 7–8%. Heritability estimates, thus, were attenuated when rGE was included in the model.

Finally, P→E effects that accommodate rGE also affected the longitudinal correlations 

between nonshared environmental components across the 30 days. Figure 6 presents the 

nonshared environmental correlations in the MZ group (left column) and the DZ group 

(right column) for positive affect (top row) and negative affect (bottom row). As a reminder, 

longitudinal correlations between nonshared environmental components in the MZ group 

do not include rGE (because there are no within-family genetic effects) whereas in the 

DZ group rGE is accommodated. In the MZ group, longitudinal nonshared environmental 

correlations persist up to 5 days, declining from a moderate correlation of .40–.50 between 

adjacent days (e.g., Day 1 and Day 2) to essentially zero 5 days later (e.g., between 

Day 1 and Day 6). Nonshared environmental correlations decayed more rapidly when 

accommodating rGE by about 1–1.5 days earlier, but are systematically correlated across 

days, although the correlations are small. Differences in longitudinal correlations estimated 

with and without accommodation of rGE are similar, suggesting that the interpretation 

of nonshared environmental components may have been affected minimally by allowing 

genetic and environmental components to correlate. Differences in lag-1 correlations were 

the largest (r range: .00−.20) while correlations among components with greater lags never 

exceeded .10.

Post-hoc power analysis

Given the small total sample size (NFamilies = 265), we estimated power to detect significant 

P→E parameters, bPEt,t–1, across the 30 days. Power was estimated using the Markov Chain 

Monte Carlo feature in in Mplus 8.2 (Muthén & Muthén, 1998–2017) using the final values 

from the P→E models for positive and negative affect. Two thousand replications were 

specified for each analysis. For positive affect, power to detect significant bPEt,t–1 parameters 

ranged from .39–1.00 (M = .86, SD = .16; Mdn = .94). For negative affect, power to detect 

significant bPEt,t–1 parameters ranged from .26–1.00 (M = .70, SD = .30, Mdn = .90).

Discussion

Plomin et al. (1977) recognized that “environmental and genetic threads in the fabric of 

behavior are so tightly interwoven that they are indistinguishable” (p. 309). The twin data 

presented here and elsewhere (Beam et al., 2015; Dolan et al., 2014) suggest that genetic and 

environmental influences covary across time (i.e., days and years) to support differentiation 
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in psychological traits and abilities over time. As matching between individuals and their 

environments ebbs and flows, so does rGE. These results, thus, address one process through 

which environments might come to be correlated with outcomes and genotype (Plomin, 

1986).

Modeling approaches for accommodating and testing rGE (Beam & Turkheimer, 2013; de 

Kort et al., 2012; Dolan, Huijskens, Minică, Neale, & Boomsma, 2019; Moscati, Verhulst, 

McKee, Silberg, & Eaves, 2018) are finally catching up to discussions over how genetic and 

environmental influences reciprocally influence one another (Anastasi, 1958; Briley et al., 

2019; Eaves et al., 1977; Wachs, 1983). The REM approach taken in the current study places 

the individual at the center of change processes that drive observed phenotypic differences 

in positive and negative affect. Individuals are not passive recipients of their genotype 

and environments, as is implied in conventional twin models through specification of 

unidirectional pathways from genetic and environmental variance components to phenotypic 

outcomes. In this way, phenotypic stability not only depends on the degree of genetic 

and environmental relatedness but also on the consistency of similarity and differences 

of individuals’ environmental systems (Lickliter & Harshaw, 2010; West & King, 1987). 

Siblings, for example, could increasingly differ if they are exposed to different learning 

activities and environments (e.g., one child is read to daily while the other is not) yet 

converge if their environments are highly similar (e.g., whatever one child gets, so does 

the other). By including person–environment effects in the current model that quantify 

the strength of the relation between twins’ affective outcomes and unique environments, 

we have shown real time selection and evocation of environments that contribute to daily 

differences in twins’ affect.

Person–environment effects that induce within-family rGE have implications for heritability 

estimates and longitudinal correlations of nonshared environments. In the present study, 

we found lower heritability estimates when allowing indirect relations between twins’ 

unique genotype and their unique environments, compared to models in which independence 

between genotype and environment was assumed. Adaptation to one’s unique environmental 

context, thus, might account for why affect scores appeared to be highly heritable at first 

glance. Lower heritability estimates when rGE is modeled are a well-known statistical 

consequence due to rGE inflating genetic variance (Briley et al., 2019; Purcell, 2002) and 

possibly heritability, at least under the assumption of constant genetic variance across a 

range of environments.

We found support for the hypothesis that genetic influences on affect come to be 

correlated with environments because of the correlation between phenotypes and subsequent 

environmental influences contributing to their phenotypes (Gottlieb, 2003). Female twins 

in the sample may not have been selecting and reacting to environments randomly; rather, 

the data are consistent with our supposition that individuals select some environments and 

react to others based on the suitability of those environments. Further, given twins’ relatively 

stable affect scores across the 30 days, one possibility is that person–environment matching 

processes rise and fall over time with the ultimate purpose of stabilizing positive and 

negative affect responses over time.
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Nonshared environments are expected to correlate across days, as environmental systems are 

not randomly distributed over time, although they tend to decay quickly over time (Burt, 

Khlar, & Klump, 2015). The content of environmental systems is worthy of comment. As 

nonshared environmental components in twin models comprise any nongenetic feature that 

contributes to within pair differences, including measurement error, identification of specific 

environmental factors that correlate with twins’ affect scores is beyond the scope of this 

study. Environmental systems probably comprise twins’ different interpretations of their 

shared relationships (e.g., parents) or neighborhoods, their unique peer networks, hormone 

levels (both stress and sex hormones), and molecular environments such as differences in 

DNA methylation and RNA transcription (Gottlieb, 2003). Twins who prefer quiet solitude 

compared to their co-twins, for example, probably avoid loud and crowded venues no 

matter the situation, but especially if they are perceived as engendering stress that might 

increase negative affect or lower positive affect. As Scarr (1992) put it, environments are 

“largely the construction of individual family members in the ways they evoke responses 

from others, actively select or ignore opportunities, and construct their own experiences” 

(p.14). Construction of and reaction to experiences, broadly construed, should correlate with 

genotype, as genotype is responsive to environmental experiences (Kendler & Baker, 2007). 

Modeled rGE, thus, showed that twins’ total unique environments are temporally linked for 

longer than expected under models that assume genetic and environmental covariation.

Of note, rGE estimates fluctuated systematically over time, particularly between Days 15 

and 30 – the latter “half” of the menstrual cycle. As the current study is observational, 

we cannot rule out these and other third variable confounds that account for P→E effects 

(e.g., coping skills, distress, physical illness/disability). Although we could not identify 

specific biological or environmental factors in twins’ lives that determine increases in rGE 

underlying positive and negative affect, we can only speculate about the reasons why. Stress 

vulnerability to daily hassles, possibly because of hormonal factors, social environmental 

factors, or both, might be greater in latter days of the cycle. Previous findings suggest 

that the luteal phase – and particularly the late luteal period – may represent a period of 

intensified daily hassles compared to the follicular phase (Kiesner, Mendle, Eisenlohr-Moul, 

& Pastore, 2016). Women may be more prone to select environments for stress management, 

as environmental factors such as perceived stress and social support might exacerbate cycle-

related changes in affect (Romans et al., 2012). Accordingly, environmental context has been 

identified as an important contributor to daily mood ratings (Stone, Marco, Cruise, Cox, 

& Neale, 1996). A successful match between persons and environments, thus, might be 

especially relevant during high-stress vulnerability phases relative to low-stress vulnerability 

phases.

Environmental components in the within-family rGE estimates likely consist of the 

correlation between genotype and hormones. Estrogen and progesterone trigger changes 

in gene expression (Cole, 2009; Östlund, Keller, & Hurd, 2003), and genetic factors account 

for individual physiological and behavioral responses to estrogen and progesterone levels 

(Klump et al., 2007; Wall et al., 2014). Under this explanation, any influence ovarian 

hormones have on genotype would not make much of a difference for hypothesized P→E 

matching. Hormones, rather, are a source variance that accounts for genetic variability 

that ultimately correlates with nonshared environmental factors downstream. Within-pair 
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differences in estrogen and progesterone levels during the luteal phase, however, might 

moderate (or mediate) within-pair genetic effects on differences in affect, as was found for 

binge eating in the same sample (Klump, Fowler, Mayhall, Sisk, Culbert, & Burt, 2018). 

Significant P→E effects, thus, may reflect Gene×Environment interaction (GxE) rather than 

rGE. P→E models cannot rule out GxE processes as the P→E generating mechanism or 

whether the GxE processes are exogenous or endogenous to individuals. In reality, we 

expect rGE and GxE processes to contribute to observed P→E effects. In general, indirect 

and bidirectional associations among molecular factors, like ovarian and stress hormones, 

genotype, and environment are more likely than direct genetic effects on affect, similar to 

most, if not all, human complex traits (Anastasi, 1958; Gottlieb, 2003).

Future research implementing P→E parameters, thus, would benefit from specifying 

measured biological (e.g., mRNA and hormones) and environmental (e.g., peer 

relationships) factors, in addition to nonspecific environmental factors (Wachs, 1983). Future 

longitudinal twin modeling would also benefit from incorporating GxE in the presence of 

rGE (Johnson, 2007). P→E models that include intermediate variables in the causal chain 

and GxE processes need to be developed.

Although accommodating rGE in longitudinal behavioral genetic models has the advantage 

of explicating how environments come to be correlated with psychological traits and 

heredity, P→E parameters change the meaning of nonshared environmental components 

(Dolan et al., 2014). Our empirical test compared nonshared environmental components 

with and without rGE and suggested that including P→E may do so only minimally. 

While the theoretical meaning of the nonshared environment does change by virtue of 

genetic components indirectly predicting environmental components, the model-estimated 

non-shared environment correlations did not differ appreciably, suggesting overall similarity 

in the interpretation of the nonshared environment. While twin studies do not clarify specific 

environmental factors that contribute to any phenotype (Wachs, 1983), the implication that 

differences in environmental exposure matter for maintaining stability of affect seem to be 

preserved when genetic and environmental components are allowed to correlate.

Accommodating rGE in longitudinal twin models explicitly demonstrates how the mutual 

exchange between people and their environments might cause highly heritable traits to 

increase over time, as originally proposed by Dickens and Flynn (2001). Meta-analyses of 

longitudinal findings have drawn on Dickens and Flynn’s version of the REM to understand 

age trends in genetic and environmental variance components, but only indirectly (Briley 

& Tucker-Drob, 2013, 2014; Tucker-Drob & Briley, 2014). These studies must assume the 

same independence assumption and so postulate that twin correlations decrease with age in 

DZ twins compared to MZ twins (see also McCartney, Harris, & Bernieri, 1990), but never 

address the developmental systems that explain how DZ twins diverge in similarity over 

time.

The temporal dynamics of phenotype–environment matching might differ across traits 

and abilities. For traits that tend to be highly stable and evolve slowly over time, like 

personality (Roberts & Mroczek, 2008), within-family rGE is expected to rise precipitously 

and to level off when persons are more or less canalized into their adult environments. 
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Research designs probably can include long intervals of time between measurements for 

such phenotypes and still detect within-family rGE, as environments that support these traits 

are unlikely to change over short intervals of time and are expected to be highly correlated 

and decline slowly (e.g., jobs tend to consist of similar environmental demands over long 

periods). For phenotypes that fluctuate daily, such as affect, perceived stress, and psychiatric 

symptoms (e.g., depressive symptomatology), within-family rGE is expected to increase 

and decrease over relatively short intervals of time because of state dependence. Further, 

nonshared environmental correlations would be expected to persist, but decline quickly with 

the passage of time. Individuals prone to depression, for example, are not continuously 

depressed nor do individuals prone to seeing their world as stressful always feel stressed. 

Minor arguments with a friend that influence depression and stress symptoms one day may 

have short-term effects on environments the next day or the following day (e.g., distancing 

oneself to calm down), but generally do not persist over many days (e.g., interpersonal 

differences are mended after a few days).

Consistent with the above expectations, etiological influences on positive and negative 

affect, including rGE, fluctuated across days rather than increased linearly. Detection of 

within-family rGE for state-dependent phenotypes, thus, requires shorter divisions of time 

that can capture day-to-day variability in rGE. This is the first study to test rGE of a 

phenotype over days, and demonstrates that the rGE underlying state-dependent phenotypes 

are observed when lags between measurements are short. In one previous study with 

depressive symptom measurements separated by years, person–environment effects that 

generate within-family rGE were not found (Beam et al., 2016), possibly because the 

intervals of time between measurements (approximately three years) were too long to 

capture meaningful person–environment correlations underlying the temporal dynamics of 

depressive symptoms. By comparison, in studies of phenotypes that are relatively stable over 

years, like cognitive ability (Beam et al., 2015; de Kort et al., 2014) and personality (Beam 

& Sharp, 2020), within-family rGE was observed and tended to increase monotonically and 

stabilize over time.

Limitations & future directions

The most notable limitation in the current study is that processes other than rGE (e.g., 

GxE interaction) might account for stability of pair differences in affect over the 30 days 

of the menstrual cycle studied here. Along this same theme, a second limitation is that 

other biological processes that factor into pair differences remain unaccounted for in the 

current study. Molecular environments, like polygenic scores (Dolan et al., 2019), RNA 

transcription and protein transcription, responsible for genetic expression have a great deal 

to do with phenotypic expression (Cole, 2009; Gottlieb, 2003). Intermediary pathways that 

lie between genotype, behavior, and environments may help to clarify how heritability 

changes over time.

A third limitation of the current study is the assumption that all twins experienced 

functionally equivalent environments across the 30 days, such that the roles of specific 

environments cannot be made (Wachs, 1983). In other words, it remains unclear whether 

one twin experienced a more extreme environment (e.g., trauma exposure) compared to 
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her co-twin. Likewise, nonshared environmental variance and measurement error were 

not differentiated, so we cannot conclude definitively that genetic variance correlates with 

nonshared environmental sources of variance alone.

A fourth limitation is that we did not account for the possibility that genetic variance 

underlying affect at Day t might also correlate with shared environmental variance 

underlying affect at Day t+1. While it is possible to model between-family rGE using a 

similar approach as the one taken in the current study, such modeling is useful for testing 

how between-family rGE causes both twins in a family to diverge from both twins in another 

family. As our focus was on whether within-family rGE partially explains how individuals 

diverge, modeling between-family rGE fell outside our study goals.

A fifth limitation is that the P→E model assumes that the autocorrelation structure between 

measurement occasions are stationary and that the process under scrutiny is noncyclic. 

The time metric used in the current study, the menstrual cycle, however, is nonstationary 

and cyclic. The P→E parameterization, thus, may oversimplify the person–environment 

matching process hypothesized to occur over time in these data. As there are no other daily 

twin studies with as many repeated measurements as in the MSUTR, this study offers a 

rare glimpse into person–environment processes that account for differences in daily affect 

scores.

A final limitation concerns the study design. First, the sample size was relatively small with 

only 265 families. Yet, the repeated measurement design increases measurement precision, 

which in turn reduces the necessary sample size to achieve a given level of power (Allison 

et al., 1998; Evans, 2002). This was reflected in the adequate power to detect P→E effects, 

on average, observed in our post-hoc power analysis. Second, we observed significant 

within-person differences in positive and negative affect scores between days in which affect 

scores were supplied online versus supplied on Scantron cards, with slightly higher scores 

reported on days using Scantron cards. This limitation, however, is offset by the advantage 

of recording twins’ scores rather than not on days when twins did not have online access.

There are a number of directions for future research that would benefit the field of 

developmental behavioral genetics, both of which are oriented toward understanding how 
heritability changes with time and become correlated with nonshared environments. First, 

daily twin studies with time scales that are both stationary and noncyclic should be a 

priority, as this study design would satisfy the P→E model assumptions. Second, the 

inclusion of measured genotypic differences, like polygenic scores, would permit tests of 

whether nonshared environmental differences correlate with differences in measured causal 

variants. Work in this area is underway (Dolan et al., 2019). A third direction involves cohort 

sequential designs in longitudinal twin studies. This approach would help clarify when P→E 

effects are greatest across different developmental periods. Certain periods of development 

might be more critical for person–environment matching than others (e.g., looking for a 

first job vs. a lateral career move in midlife). The fourth direction we hope to see in 

future studies is the integration of experimental designs with behavioral genetic approaches, 

like the one recently taken by Burt, Plaisance, and Hambrick (2019). Randomly assigning 

twins within pairs to different environmental exposures may offer insight into the ways in 
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which twins’ construction and reaction to initial random environmental exposure influences 

developmental trajectories and rGE. Random assignment to different environments may 

induce twins to differentiate within brief windows of time because of within-family rGE 

processes, provided that the trait, like affect, can be manipulated over short periods of time. 

Although P→E effect sizes might be small (see also Dolan et al., 2014), they can have 

meaningful consequences for developmental outcomes when repeated consistently over time 

(Funder & Ozer, 2019).
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Figure 1. 
Phenotype–environment (P→E) model. Biometric components of phenotypic scores for 

Twin i at Time t, Pit, are estimated between- and within-families; At
b = between-family 

genetic effect at time t; Et
b = between-family (common) environmental effect at time t; At

w = 

within-family genetic effect at time t; Et
w = within-family (nonshared) environmental effect 

at time t; uAb
t  = unique between-family genetic effect at time t; uEb

t  = unique between-family 

environmental effect at time t; uAt
w = unique within-family genetic effect at time t; uEt

w

= unique within-family environmental effect at time t; aar, car, and ear = autoregressive 

coefficient between adjacent components. The between-family and within-family genetic 

loadings for the monozygotic (MZ) twins are 1 and 0, respectively, to meet the assumption 

that MZ twins share 100% of their genes. The between-family and within-family genetic 
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loadings for the dizygotic (DZ) twins are both ⎷.5 to meet the assumption that and DZ 

twins share 50%, on average, of their segregating genes. The red line represents the P→E 

parameter, bPE, which was only estimated at the within-family level in the DZ group.

Beam et al. Page 25

Dev Psychopathol. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Daily twin correlations of positive and negative affect scores. LOESS lines (in blue) are 

overlaid to illustrate general trends in twin similarity for each phenotype. On average, 

differences between monozygotic (MZ) and dizygotic (DZ) twin correlations are statistically 

significant across the 30 days (positive affect: t = 6.10, df = 58, p < .001; negative affect: t = 

4.04, df = 58, p < .001).
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Figure 3. 
Heritability and environment estimates of positive affect (top panel) and negative affect 

(bottom panel) by day. h2 = heritability, which is the proportion of total variance in 

daily affect scores attributed to genetic variance; c2 = shared environment, which is 

the proportion of total variance in daily affect scores attributed to shared environmental 

variance; e2 = nonshared environment, which is the proportion of total variance in daily 

affect scores attributed to nonshared (unique) environmental variance. All estimates are 

based on classical univariate ACE models (genetic [A], shared environmental [C], and 

nonshared environmental [E]).
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Figure 4. 
Model estimated within-family rGE over 30 days for positive affect (PA) and negative affect 

(NA). rGE was re-estimated in P→E models where days were randomly ordered within 

twins to illustrate that rGE systematically changes across the 30 days.
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Figure 5. 
Heritability estimates of positive affect (top) and negative affect (bottom) from phenotype–

environment (P→E) model (red) and genetic simplex model (blue) across the 30 days.
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Figure 6. 
Longitudinal correlations among nonshared environmental correlations across 30 days for 

positive affect (PA) and negative affect (NA). Model estimated MZ and DZ correlations are 

taken from phenotype–environment (P→E) models.
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