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ABSTRACT
Vector autoregression (VAR) is a popular model for analyzing multivariate economic time series. However,
VARs can be over-parameterized if the numbers of variables and lags are moderately large. Tensor VAR, a
recent solution to over-parameterization, treats the coefficient matrix as a third-order tensor and estimates
the corresponding tensor decomposition to achieve parsimony. In this article, we employ the Tensor
VAR structure with a CANDECOMP/PARAFAC (CP) decomposition and use Bayesian inference to estimate
parameters. First, we determine the rank by imposing the Multiplicative Gamma Prior to the tensor margins,
that is elements in the decomposition, and accelerate the computation with an adaptive inferential scheme.
Second, to obtain interpretable margins, we propose an interweaving algorithm to improve the mixing
of margins and identify the margins using a post-processing procedure. In an application to the U.S.
macroeconomic data, our models outperform standard VARs in point and density forecasting and yield a
summary of the dynamic of the U.S. economy.
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1. Introduction

Vector autoregression (VAR) is a multivariate time series model
that describes the linear interrelationship of data. Since the
advocacy of Sims (1980), VAR is a widely used tool for mod-
eling macroeconomic variables, which are known to be tem-
porally dependent on each other. As suggested in Korobilis
and Pettenuzzo (2019), Carriero, Clark, and Marcellino (2019),
Bańbura, Giannone, and Reichlin (2010), and Giannone, Lenza,
and Primiceri (2015), to name a few, applying VARs to a large
set of variables is advantageous for forecasting and structural
analysis. However, to succeed in modeling with large VARs, one
must solve over-parameterization, that is the number of param-
eters is high relative to the sample size. Over-parameterization
is especially an issue for macroeconomic data due to the low
frequency of data collection.

Methodologies to solve over-parameterization in VARs can
be divided into sparse- and dense-modeling streams, accord-
ing to Ng (2013). The sparse stream assumes that only small
sets of predictors are important to model the time series of
each variable. For example, Hsu, Hung, and Chang (2008) pro-
posed using the Lasso penalty (Tibshirani 1996) for VARs. The
dense stream relies on an opposite assumption to its sparse-
modeling counterpart: all predictors could be important, but
their corresponding parameters may have small magnitudes.
Shrinkage priors, including the Minnesota-type priors (Doan,
Litterman, and Sims 1984; Litterman 1986) and global-local
shrinkage priors (Huber and Feldkircher 2019; Huber, Kastner,
and Feldkircher 2019; Gruber and Kastner 2022) dominate the
dense-modeling stream in a VAR framework. An alternative
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methodology in this stream, called reduced-rank VAR (Car-
riero, Kapetanios, and Marcellino 2011), assumes that the VAR
coefficient matrix has a low rank, and one can decompose this
matrix to achieve parsimony. A more recent and related tech-
nique, referred to as Tensor VAR, treats the coefficient matrix
as a third-order tensor and infers this tensor by its low-rank
decomposition. Wang et al. (2021) was the first to introduce
Tensor VAR, and this technique has been developed in Zhang
et al. (2021) and Fan et al. (2022).

In this article, we contribute to the dense-modeling stream
by employing the Tensor VAR structure with a CANDE-
COMP/PARAFAC (CP) decomposition (Kiers 2000) and
conducting Bayesian inference to estimate parameters. The
motivation for choosing this methodology to alleviate over-
parameterization is 4-fold. First, recent work has questioned
whether sparse modeling is appropriate for macroeconomic
data, for example see Giannone, Lenza, and Primiceri (2021)
for the “illusion of sparsity.” Second, a Tensor VAR with an
appropriate choice of rank is parsimonious without imposing
any penalty term or shrinkage prior (although incorporating
these techniques results in further parsimony). Third, Tensor
VAR is a useful model for explaining macroeconomic data
since its reconstruction provides insights into the economy, and
elements in its tensor decomposition (usually called margins)
are interpretable as shown in Wang et al. (2021) and Chen,
Yang, and Zhang (2022). Lastly, tensor structures with Bayesian
inference have been successfully applied in time series models
apart from VARs. Related work includes time-varying networks
(Billio, Casarin, and Iacopini 2024) and Autoregressive Tensor
Processes (ART) (Billio et al. 2023), among others.
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Two challenges arise when making Bayesian inference in a
Tensor VAR with a CP decomposition. The first challenge is
about the inference of the rank, which is an important parameter
in the CP decomposition because it controls the model flexibil-
ity. Unlike finding the rank in a matrix, there is no straightfor-
ward algorithm to determine the rank of a third-order tensor.
Although existing literature gives rank values of some specified
tensors, see Kolda and Bader (2009) and references therein,
tensors for large VARs have relatively high dimensions, so they
normally do not nest in these specified ones. To overcome this
challenge, past literature proposed the multiway Dirichlet gen-
eralized double Pareto (M-DGDP) prior (Guhaniyogi, Qamar,
and Dunson 2017) and the multiway stick breaking shrink-
age prior (Guhaniyogi and Spencer 2021), based on overfitted
mixture models (Rousseau and Mengersen 2011), to induce a
low-rank structure in the CP decomposition and inferred the
rank a posteriori. Despite being a prominent method to resolve
the challenge, it is computationally expensive due to the large
initialization of the rank. The second challenge is to retain the
interpretability of a Tensor VAR. From a Bayesian perspective,
a fundamental prerequisite for a Tensor VAR to be interpretable
is the convergence of margin Markov chains, but this prereq-
uisite cannot be achieved using the traditional MCMC scheme
because the indeterminacy of the CP decomposition can lead to
poorly mixing MCMC algorithm, which in turn produces poste-
rior distributions that are difficult to interpret. One solution is to
impose restrictions on margins so that they are identified (Zhou,
Li, and Zhu 2013), whereas solutions in unrestricted parameter
space have not been explored yet.

We tackle the above challenges with two contributions. Our
first contribution is to infer the rank using an increasing shrink-
age prior. We impose the Multiplicative Gamma prior (MGP)
(Bhattacharya and Dunson 2011) to the margins and use an
adaptive inferential scheme to infer these margins, and subse-
quently the rank. This idea is closely related to the recent work
in Fan et al. (2022), but our prior and the criterion in the adaptive
inference are different from theirs. In our second contribution,
we improve the mixing of the MCMC algorithm by introducing
a Gibbs sampler including a variant of the Ancillarity-Sufficiency
Interweaving Strategy (ASIS) (Yu and Meng 2011) with three
interweaving steps, inspired by the ASIS algorithm for factor
models (Kastner, Frühwirth-Schnatter, and Lopes 2017). Unlike
previous methods for tensors, dividing the margins into three
blocks during inference reduces the dependence between the
margins in the MCMC output. Even if the mixing of margins
is not essential in some instances, for example one does not
interpret margins and only regards the mixing of entries in
tensor itself as important, this contribution is still beneficial
because achieving good mixing of margins provides a solid
foundation for entries in the VAR coefficient matrix to mix well.
Additionally, we introduce a post-processing procedure aimed
at identifying the margins.

We examine the utility of Tensor VARs through two US
macroeconomic datasets with medium and large sizes. We con-
sider two specifications of Tensor VARs that treat the coefficient
matrix in two ways: (a) the matricization of a third-order ten-
sor and (b) a sum of the matricization of a third-order tensor
and a matrix with only nonzero entries for own lags. The first
one corresponds to the original Tensor VAR idea (Wang et al.

2021), and the second one accommodates the main feature of
Minnesota-type priors, that is the own lags of a variable are
more informative than lags of other dependent variables. In
point and density forecasting, these two Tensor VARs obtain the
best results for joint forecasts and are competitive to standard
VARs with a range of standard prior choices. We demonstrate
how to interpret margins by applying our model to the large-
scale data and constructing factors as linear combinations of
lagged data. The Tensor VAR can effectively reduce the number
of parameters, and the factors constructed can summarize the
dynamics of the dataset. The additional own-lag matrix in the
second Tensor VAR structure introduces more parameters but
allows the tensor to focus on exploring the cross-variable and
cross-lag effects.

The article is organized as follows. Section 2 explains the Ten-
sor VAR and its interpretation. Section 3 provides the MCMC
schemes. Section 4 introduces the post-processing procedure.
Section 5 shows results from simulation experiments. Section 6
presents the forecasting performance and interpretation of Ten-
sor VARs. Section 7 concludes the article.

2. Tensor VAR

2.1. Model Specification

Let yt ∈ R
N be the tth observation in a multivariate time series.

A P-order VAR model, VAR(P), describes the linear relation
between yt and its lags with coefficient matrices A1, . . . , AP ∈
R

N×N by

yt = A1yt−1 + · · · + APyt−P + εt = Axt + εt , (2.1)

where t = 1 ... T, A = (A1, . . . , AP) is an N-by-NP
coefficient matrix linearly connecting yt and its lags, xt =
(y′

t−1, . . ., y′
t−P)′ ∈ R

NP. The error term εt follows a multivariate
normal distribution with zero mean and a time-varying
covariance matrix �t . In this article, we factorize �t according
to Cogley and Sargent (2005), that is �t = H−1St(H−1)′, where
H−1 is a lower triangular matrix with ones as diagonal entries,
and St is a time-varying diagonal matrix with diagonal terms
(st,1, . . ., st,N).

To fit the VAR model, we must estimate the N2P parameters
in A and parameters for the covariance matrix �t . The number
of coefficients grows quadratically as the number of time series
increases, thus, VARs can become easily overparameterized. We
address this problem by achieving parsimony of A through
tensor decomposition, in the spirit of Wang et al. (2021). Specif-
ically, rather than modeling A directly, we model a third-order
tensor A ∈ R

N×N×P, where Ai1,i2,p corresponds to the (i1, i2)
entry in Ap. The model in (2.1) can be written in term of the
tensor A to give

yt = A(1)xt + εt , (2.2)

where A(1) = A is the mode-1 matricization of A, with the i1th
row as the vectorization of A(i1,·,·).

So far, the number of entries in A is the same as that in A, but
we can decompose A via a rank-R CP decomposition,

A =
R∑

r=1
A(r) =

R∑
r=1

β
(r)
1 ◦ β

(r)
3 ◦ β

(r)
3 , (2.3)
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where A(r) is a third-order tensor with the same dimension as
A, for r = 1, . . . , R; β

(r)
1 , β

(r)
2 ∈ R

N and β
(r)
3 ∈ R

P are called
margins of A; A(r) = β

(r)
1 ◦ β

(r)
3 ◦ β

(r)
3 is an outer product

of three vectors such that the (i1, i2, i3) entry in A(r) equals
to β

(r)
1,i1β

(r)
2,i2β

(r)
3,i3 for i1, i2 = 1, . . . , N and i3 = 1, . . . , P (the

definition of outer product can be found in Appendix A). We
define the notation Bj = (β

(1)
j , . . . , β(R)

j ) ∈ R
Ij×R, for j = 1, 2, 3,

I1 = I2 = N and I3 = P, then the tensor A decomposed
by B1, B2, B3 is written as A = �B1, B2, B3�CP, for the sake of
brevity. Another useful representation of the margins is B =
(B′

1, B′
2, B′

3)
′ ∈ R

(2N+P)×R to which we refer as a tensor matrix,
thenA(r) is constructed by margins in the rth column of B. With
an upper bound N2P/(2N+P) of R, the number of parameters
reduces from N2P in the coefficient matrix to (2N+P)R in B, so
a low-rank structure in the CP decomposition alleviates over-
parameterization.

The CP decomposition is only identified up to scaling and
permutation because A = �B1, B2, B3�CP = �B̃1, B̃2, B̃3�CP, if
B̃j comes from the following transformations for j = 1, 2, 3:

1. Scaling: B̃j = BjRj, and Rj is an R-by-R diagonal matrix
satisfying

∏J
j=1 Rj,(r,r) = 1 for r = 1, . . . , R, where Rj,(r,r)

is the rth diagonal term in Rj.
2. Permutation: B̃j = Bj� for an arbitrary R-by-R column-wise

permutation matrix �.

This indeterminacy will play an important role in our algorithm
in Section 3.2.2. To interpret the margins, we will identify them
using a post-processing procedure described in Section 4.

The model in (2.2) represents the original Tensor VAR (Wang
et al. 2021), which does not distinguish between the own-lag
and cross-lag effects. In Section 6.4, we empirically find that
introducing this distinction allows us to achieve better forecast-
ing performance and interpretability, so we build an extension
of (2.2), called Own-lag Tensor VAR, following the assumption
of the Minnesota-type priors - the own-lag effects are more
powerful than the cross-lag effects. In particular, we add a matrix
D, the concatenation of P N-by-N diagonal matrices, to give

yt = A(1)xt + Dxt + εt , (2.4)

so D can only affect entries corresponding to own lags.

2.2. Model Interpretation

The Tensor VAR connects y∗
t = yt −Dxt1 with past information

through B1, B2, B3 in the following reconstruction:

y∗
t = B1I(1)vec(B′

2XtB3) + εt

=
R∑

r=1
B1,(·,r)

N∑
i2=1

P∑
i3=1

β
(r)
2,i2β

(r)
3,i3 yt−i3,i2 + εt , (2.5)

where I(1) ∈ R
R×R2 is the mode-1 matricization of a

third-order superdiagonal tensor I with ones on nonzero
entries (see Appendix A for a detailed description), Xt =
(yt−1, . . . , yt−P), vec(·) is the vectorization operation which
transforms B′

2XtB3 ∈ R
R×R to an R2-dimensional vector,

1We include D for completion. D is a zero matrix if we apply (2.2).

B1,(·,r) is the rth column of B1, β
(r)
2,i2 , β

(r)
3,i3 are the (i2, r) and

(i3, r) entries of B2 and B3, respectively, yt−i3,i2 is the i2th entry
in yt−i3 .

Following Wang et al. (2021), we can relate (2.5) to a factor
model (Stock and Watson 2005), where B1 is the factor loading
and I(1)vec(B′

2XtB3) contains R observable factors. Since the
i1th row in B1 describes the linear relationship between yt,i1 and
factors, for i1 = 1, . . . , N, we refer to B1 as “response loading”.
The formation of factors describes how past information is
combined. We look at

∑N
i2=1

∑P
i3=1 β

(r)
2,i2β

(r)
3,i3 yt−i3,i2 in (2.5) to

understand this formation. If β
(r)
2,i2 = 0, the rth factor will not

contain information from any lagged values of yt,i2 . Similarly,
β

(r)
3,i3 = 0 results in no information about the i3th lag of yt in

the rth factor. Therefore, the i2th row of B2 contains the effect
from the i2th variable to yt , and the i3th row of B3 is related to
the effect from the i3th lag to yt . This interpretation was also
discussed in Wang et al. (2021), who called B2 and B3 “predictor
loading” and “temporal loading,” respectively.

Another way to explain the CP decomposition in the Tensor
VAR is that it separates the lag effect from the variable-wise effect
because it decomposes Ap as Ap = ∑R

r=1(β
(r)
1 ◦β

(r)
2 )β

(r)
3,p, where

β
(r)
1 ◦ β

(r)
2 ∈ R

N×N is the outer product of the two vectors such
that the (i1, i2) entry of this resulting matrix equals to β

(r)
1,i1β

(r)
2,i2 .

The first two vectors β
(r)
1 and β

(r)
2 (for r = 1, . . . , R) do not

depend on the index of Ap, suggesting that all lagged coefficients
matrices share these vectors. The only difference among these
matrices reflects on the different entries in β

(r)
3 .

3. Bayesian Inference

3.1. Prior Specification

As mentioned in Section 2.1, we aim to impose a prior on the
tensor matrix B, which favors a low-rank structure. A particular
prior choice that meets our requirement is the MGP (Bhat-
tacharya and Dunson 2011) because it possesses the increasing
shrinkage property, enabling margins with higher column index
to have higher degrees of shrinkage. As a result, the rank can be
lowered if some columns in B have magnitudes negligibly small.
To be specific, a margin β

(r)
j,ij (the (ij, r) entry of Bj) follows the

prior below for j = 1, 2, 3, r = 1, . . . , R, i1, i2 = 1, . . . , N and
i3 = 1, . . . , P:

β
(r)
j,ij ∼ N

(
0,

(
σ

(r)
j,ij

)2
)

,
(
σ

(r)
j,ij

)2 = φ−1
(r,j,ij)τ

−1
r ,

φ(r,j,ij) ∼ Gamma (ν/2, ν/2) , τr =
r∏

l=1
δl,

δ1 ∼ Gamma (a1, 1) , δl ∼ Gamma (a2, 1) , 1 < l < R,

where φ(r,j,ij) is a local parameter for the margin with the same
index. We store all these local parameters in a matrix � in which
each entry corresponds to an entry in the tensor matrix B with
the same indices. The increasing shrinkage property is induced
by τr since E(τr) = ∏r

l=1 E(δl) = a1ar−1
2 increases with r,

when a2 > 1. Hyperparameter ν is set to be known, and a1 and
a2 will be inferred with Gamma priors. Durante (2017) showed
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that both E(τr) and E(τ−1
r ) increase with r when 1 < a2 < 2.

This result means that the MGP has the increasing shrinkage
property only when a2 > 2. Thus, we set priors for a1 and a2
as Gamma(5,1) to have the increasing shrinkage property with
a high probability. Apart from the shrinkage prior for B, we
follow priors in Huber and Feldkircher (2019) for H and St , see
Appendix B.1 for details.

In the case of (2.4), we impose a normal-gamma prior defined
in Huber and Feldkircher (2019) to each nonzero entry in D.
Let di,p denote the own-lag coefficient for the pth lag of the ith
response, then its prior is written as

di,p ∼ N
(

0,
(
2/λ2

d
)
ψ

(i,p)

d

)
,

ψ
(i,p)

d ∼ Gamma(ad, ad), for i = 1, . . . , N and p = 1, . . . , P.
Priors of hyperparameters are the same as those for lower trian-
gular matrix H. All the full conditionals and their derivation can
be found in Appendix B.

3.2. MCMC Scheme

3.2.1. An Overview of Inferential Scheme
To illustrate the strengths of our inferential scheme, we contrast
it with the widely-used inferential scheme for tensor-structured
models. In the traditional scheme (Guhaniyogi, Qamar, and
Dunson 2017; Zhang et al. 2021; Fan et al. 2022; Billio et al.

2023), β(r)
j is sampled from p

(
β

(r)
j | β

(r)
−j , B(·,−r), y1:T ,

(
σ

(r)
j

)2
)

,

for r = 1, . . . , R and j = 1, . . . , J (J is 3 in our case), where
β

(r)
−j contains all β

(r)
j′ with j′ �= j, B(·,−r) is B discarding its

rth column,
(
σ

(r)
j

)2
has all prior variance corresponding to

β
(r)
j . These full conditionals are then incorporated into a usual

Gibbs sampler, so each β
(r)
j sampled depends on other margins,

and in turn, other margins are sampled given β
(r)
j and other

parameters. The rank R is fixed to a large value during the
inference and can be determined to a smaller value a posteriori.
This inferential scheme neglects the convergence of margin
Markov chains because authors are more interested in the tensor
itself, so they pay more attention to the convergence of the tensor
elements rather than the margins. The convergence issue arises
from the indeterminacy of margins, mentioned in Section 2.1,
which leads to poor mixing of the Markov chains, consequently
hindering convergence. We consider the convergence of margins
to be an important aspect for two reasons. First, margins
in Tensor VARs are potentially interpretable, as shown in
Wang et al. (2021) and Chen, Yang, and Zhang (2022), and
discussed in Section 2.2. Second, as the literature on Tensor
VARs grows, one cannot guarantee that the Markov chains in
a more complex model, for example including time-varying
margins, still converge. Apart from the convergence issue, it is
computationally expensive to infer the rank using the traditional
MCMC scheme since it assumes R to be fixed during the
inference. To address the issues aforementioned, we propose
three modifications to our inferential framework. Two of these
modifications aim to alleviate the poor mixing contributing
to the convergence issue. The third modification enhances
computational efficiency.

First, we reduce the dependence between columns within
Bj, for j = 1, 2, 3, by introducing a block sampler, which
divides margins into three blocks according to the three loadings
mentioned in Section 2.2. This block sampler is feasible because
a Tensor VAR can be written as

y∗
t =

(
x′

t (B3 ⊗ B2)I ′
(1) ⊗ IN

)
vec(B1) + εt (3.1)

= B1I(1)

(
(B′

3X′
t) ⊗ IR

)
vec(B′

2) + εt (3.2)
= B1I(1)

(
IR ⊗ (B′

2Xt)
)

vec(B3) + εt , (3.3)

where I ∈ R
R×R×R, IR ∈ R

R×R is an identity matrix, ⊗ is the
Kronecker product. Therefore, margins in one loading can be
sampled jointly to reduce their dependence on each other.

Second, we do not use a usual Gibbs sampler to sample load-
ings. Instead, we introduce a variant of the ASIS, containing four
different parameterizations, to reduce the parameter autocorre-
lation during the sampling. Given a rank value in each sample
iteration, the interweaving Gibbs sampler interweaves between
full conditional distributions under a base parameterization and
the other three (one for each loading).

Lastly, the rank R in our case is adaptively inferred similarly
to Bhattacharya and Dunson (2011) to speed up computation.
In the following three sections, we introduce the interweaving
Gibbs sampler for a fixed rank in Section 3.2.2 and the adaptive
inferential scheme of the rank in Section 3.2.3.

3.2.2. Interweaving Gibbs Sampler
In principle, we could run a standard Gibbs sampler to infer
margins and other parameters, but in practice, Markov chains of
margins suffer from poor mixing since these chains are highly
autocorrelated. We circumvent margins with poor mixing by
introducing a variant of the ASIS, which unfolds its strategy
from its name: sampling the same block of parameters by
interweaving two sampling schemes corresponding to two data
augmentations—ancillary statistic and sufficient statistic. The
benefit of the ASIS is that the sampling will be at least as
good as the sampling from only one data augmentation, and
a low correlation between these two augmentations leads to
faster convergence and better mixing compared to using either
augmentation alone. Because of these benefits, the ASIS has been
applied to many models, including stochastic volatility (Kastner
and Frühwirth-Schnatter 2014) and factor models (Kastner,
Frühwirth-Schnatter, and Lopes 2017).

Our ASIS parameterizations are more related to those in
Kastner, Frühwirth-Schnatter, and Lopes (2017) for sampling
factor loadings and factors due to the tensor structure. The
tensor structure in the Tensor VAR leads to four parameteriza-
tions instead of two in Kastner, Frühwirth-Schnatter, and Lopes
(2017). The first parameterization, which we call the base one,
is B1, B2, and B3 described in Section 2.1. The remaining three
parameterizations come from specifications of scaling indeter-
minacy. In particular, A = �B1, B2, B3�CP = �B∗

1, B∗
2, B3�CP

when B∗
1, B∗

2 are transformed from

B∗
1 = B1D−1

1 , B∗
2 = B2D1, (3.4)

where D1 is a diagonal matrix with nonzero, non-infinite diag-
onal entries.

There are infinite choices of D1 to get this equivalence,
but since our objective is boosting the mixing of margins,
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we restrict D1 to be related to B1 and B2. We choose D1 =
diag

(
β

(1)
1,1, . . . , β(R)

1,1

)
for further demonstration. This choice

constrains the first row of B∗
1 to be ones. Other choices of D1

will be investigated in future work. After the transformation, we
are able to write the model in terms of B∗

1, B∗
2, and D1 for the

second parameterization. For i1, i2 = 1, . . . , N, we have

β
∗(r)
1,1 = 1, β

∗(r)
1,i1 ∼ N

⎛
⎝0,

(
σ

(r)
1,i1

β
(r)
1,1

)2⎞⎠ ,

β
∗(r)
2,i2 ∼ N

(
0,

(
σ

(r)
2,i2β

(r)
1,1

)2
)

. (3.5)

The above parameterization only improves the mixing of mar-
gins in B1 and B2, so we also need a parameterization to improve
the mixing of margins in B3. An obvious choice is to pair B2
and B3. At this point, each Bj has been paired at least once, but
we conjecture that an additional pair of B1 and B3 would pro-
vide better mixing than just considering three parameterizations
because the mixing would be improved across margins in each
pair of Bj’s. Transformations of these two pairs are similar to the
one for B1 and B2,

B∗∗
2 = B2D−1

2 , B∗∗
3 = B3D2;

B∗∗∗
3 = B3D−1

3 , B∗∗∗
1 = B1D3, (3.6)

where D2 and D3 are diagonal matrices with nonzero, non-
infinite diagonal entries.

Similarly, we choose the diagonal entries in D2 to be the first
row of B2, and likewise for those in D3 (as the first row of B3).
These lead to the last two parameterizations which are presented
in terms of B∗∗

2 , B∗∗
3 , D2 and B∗∗∗

3 , B∗∗∗
1 , D3, respectively. For

i1, i2 = 1, . . . , N, i3 = 1, . . . , P, we have

β
∗∗(r)
2,1 = 1, β

∗∗(r)
2,i2 ∼ N

⎛
⎝0,

(
σ

(r)
2,i2

β
(r)
2,1

)2⎞⎠ ,

β
∗∗(r)
3,i3 ∼ N

(
0,

(
σ

(r)
3,i3β

(r)
2,1

)2
)

, (3.7)

β
∗∗∗(r)
3,1 = 1, β

∗∗∗(r)
3,i3 ∼ N

⎛
⎝0,

(
σ

(r)
3,i3

β
(r)
3,1

)2⎞⎠ ,

β
∗∗∗(r)
1,i1 ∼ N

(
0,

(
σ

(r)
1,i1β

(r)
3,1

)2
)

. (3.8)

We need to sample margins under the four parameterizations
described in each iteration. The sampling using the base param-
eterization is stated in Appendix B.2, so we focus on sampling
margins under the other three parameterizations introduced in
this subsection. For β

(r)
1,1, its normal prior implies that

(
β

(r)
1,1

)2

has a gamma prior, Gamma

(
1
2 , 1

2
(
σ

(r)
1,1

)2

)
. The full conditional

of
(
β

(r)
1,1

)2
under (3.5) is a Generalized Inverse Gaussian (GIG)2,

2A variable x ∼ GIG(λ, χ , ψ) has probability density function p(x) ∝
xλ−1 exp (− (χ/x + ψx) /2).

(
β

(r)
1,1

)2 | B∗
1,(·,r), B∗

2,(·,r)

∼ GIG

⎛
⎝0,

M∑
i2=1

(
β

∗(r)
2,i2

σ
(r)
2,i2

)2

,
M∑

i1=2

(
β

∗(r)
1,i1

σ
(r)
1,i1

)2

+
(

1
σ

(r)
1,1

)2
⎞
⎠ .

(3.9)

Similarly, we can get full conditionals of
(
β

(r)
2,1

)2
under (3.7)

and
(
β

(r)
3,1

)2
under (3.8):

(
β

(r)
2,1

)2 | B∗∗
2,(·,r), B∗∗

3,(·,r)

∼ GIG

⎛
⎝M − P

2
,

P∑
i3=1

(
β

∗∗(r)
3,i3

σ
(r)
3,i3

)2

,

M∑
i2=2

(
β

∗∗(r)
2,i2

σ
(r)
2,i2

)2

+
(

1
σ

(r)
2,1

)2
⎞
⎠ , (3.10)

(
β

(r)
3,1

)2 | B∗∗∗
3,(·,r), B∗∗∗

1,(·,r)

∼ GIG

⎛
⎝P − M

2
,

M∑
i1=1

(
β

∗∗∗(r)
1,i1

σ
(r)
1,i1

)2

,

P∑
i3=2

(
β

∗∗∗(r)
3,i3

σ
(r)
3,i3

)2

+
(

1
σ

(r)
3,1

)2
⎞
⎠ . (3.11)

Algorithm 1 outlines how to interweave sampling under the
base parameterization to the second one described in (3.5).
Similar algorithms can be applied to the third and fourth param-
eterizations, incorporating full conditionals in (3.10) and (3.11).
Combining these three algorithms leads to a Gibbs sampler, of
which the full algorithm can be found in Appendix C. If we only
sample margins using Step (a), the algorithm is just a standard
Gibbs sampler with the base parameterization. Every interweav-
ing step starts at the base parameterization, then switches to an
alternative parameterization and swaps back to the base one.
Note that B2 in Step (d) has superscript ˜new. This is because B2 is
included in two interweaving steps, but we only store one sample
for B2 in each iteration. It will be easier to distinguish between
the one stored (with superscript “new”) and the one left (with
superscript ˜new). One can find the same superscripts in the full
algorithm.

Algorithm 1 Interweave between the base parameterization and
the one in (3.5).
Step (a): Update Bold

1 under the base parameterization.
Step (b): Store the first row of Bold

1 into D1 and determine B∗
1

and B∗
2.

Step (c): Sample
(
β

new(r)
1,1

)2
for r = 1, . . . , R using the corre-

sponding full conditional in (3.9) and store sampled
values into D1.

Step (d): Update Bnew
1 and B ˜new

2 with transformation Bnew
1 =

B∗
1D1, B ˜new

2 = B∗
2D−1

1 .
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It is worth stressing that the interweaving strategy improves
the mixing of entries in B up to column permutations and sign-
switching issues. Thus, we propose a post-processing procedure
to identify the margins a posteriori in Section 4.

3.2.3. Adaptive Inference of Rank
We aim to infer the rank by finding inactive columns in B,
that is those columns which do not contribute much to the
tensor A. An adaptive algorithm, inspired by Bhattacharya and
Dunson (2011) and Legramanti, Durante, and Dunson (2020),
is displayed in Algorithm C.1.

In this algorithm, we initialize the rank as R∗ = 
5 log N�,
which is the same as for the number of factors in Bhattacharya
and Dunson (2011). Empirically, this initialization is large
enough to estimate the coefficient matrix. In order to meet
diminishing adaptation condition (Roberts and Rosenthal 2007)
for the weak law of large number in adaptive MCMC, we
discard inactive columns in the mth iteration with probability
p(m) = exp(α0 + α1m), where α0 ≤ 0, α1 < 0. Since p(m)

gets smaller as m increases, R is less likely to change during the
inference. Lastly, we need to set a criterion to decide whether a
column in B is active. In this paper, this criterion is related to
the proportion of small magnitudes in A(r), for r = 1, . . . , R.
For ease of explanation, we omit m here. We regard an entry in
A(r) to have a small magnitude if its absolute value is smaller
than a threshold γ1, for example γ1 = 10−3. If the proportion of
small magnitudes in A(r) is larger than another threshold γ2 set
a-priori, for example γ2 = 0.9, then we regard the rth column in
B as inactive. We use the simulation study to determine γ1 and
γ2 so as to minimize the rank inferred while simultaneously
ensuring accurate inference of the coefficient matrix. More
discussion and details about choosing γ1 and γ2 are available
in Appendix D.1.

Adaptive inference begins after the m̃th iteration to stabilize
Markov chains and stops at the last iteration during the burn-in
period to allow easy interpretation of margins. If the number of
inactive columns is greater than 0, we remove these columns in
B and remove corresponding parameters in �, δ = (δ1, . . . , δR),
τ = (τ1, . . . , τR). The rank will then be shrunk to a smaller
number of active columns. If the algorithm does not detect any
inactive column, we first sample a new column in �, a new
entry in δ and subsequently compute the new entry in τ . A new
column in B will also be sampled using these newly-sampled
hyperparameters.

4. Post-Processing Procedure

The interweaving algorithm allows Markov chains to improve
mixing, but it does not completely solve the indeterminacy
of tensor decomposition, which is the origin of the non-
convergence of Markov chains. Therefore, we propose a post-
processing procedure to identify margins a posteriori. Note that
there exist methods to identify margins a priori. For example,
Zhou, Li, and Zhu (2013) restricted B1,(1,·) and B2,(1,·) as ones
and sorted elements in B3,(1,·) in descending order. We opt
to maintain an unrestricted tensor decomposition because it
can incorporate the increasing shrinkage property of the MGP,
enabling us to infer the rank.

The procedure proposed is inspired by the Match-Sign-
Factor (MSF) algorithm in the R package infinitefactor
(Poworoznek, Ferrari, and Dunson 2021). The MSF performs
a greedy search to rotate factor loadings and factors in
factor models, and we apply a variant of this algorithm to
Tensor VARs. Our algorithm is presented in 2, along with a
detailed explanation divided into two parts: (a) solve column
permutations by the label-matching method (up to line 11); (b)
solve sign-switching issues by the sign-matching method.

Column permutations in B are equivalent to those in B3, so
if we solve the equivalent issue in B3, we will automatically solve
column permutations in B. There are analogous equivalences
related to B1 and B2, but the empirical finding in Figure D.2
shows that the label matching related to B3 gives the best mixing
results in the simulation study. The label matching needs a pivot
matrix B(pivot)

3 as a template to align B3 sampled in each iteration,
that is columns in B3 after label being matched will have the
same order as that of columns in B(pivot)

3 . Following Poworoznek,
Ferrari, and Dunson (2021), B(pivot)

3 is the one with the median
of the condition number κ = σmax(B3), where σmax(B3) is the
maximal singular value of B3.

After choosing the pivot, we compute the Euclidean distance
between columns in B3 in each iteration and

(
B(pivot)

3 , −B(pivot)
3

)
,

and store the distances into an R-by-2R distance matrix 
 with
row and column indices corresponding to columns in B3 and(

B(pivot)
3 , −B(pivot)

3

)
, respectively. As shown in Algorithm 2, a

greedy algorithm then starts from the lowest Euclidean distance
to align the corresponding column in B3 to that in B(pivot)

3 or -
B(pivot)

3 , and these columns will not be matched again. The label
matching is finished after repeating the procedure for R times.

Next, we explain the sign-matching method. For j = 1, 2,
r = 1, . . . , R, we determine whether to flip the sign of Bj,(·,r)
by comparing its distances to both B(pivot)

j,(·,r) and -B(pivot)
j,(·,r) . The

general guideline for flipping signs in B3,(·,r) is to do so only if
this procedure identifies the tensor, that is the tensors before
and after sign-matching are the same. If not, we leave the sign
unflipped.

5. Simulation Results

5.1. Data and Implementation

We assess the merits of inferring ranks using the MGP and
the adaptive inferential scheme in Section 5.2, compared to
the M-DGDP (Guhaniyogi, Qamar, and Dunson 2017) prior
commonly used in tensor-structured models. Section 5.3 shows
that the interweaving strategy can improve the mixing of mar-
gins, and the post-processing procedure identifies the margins.
We will leave the comparison of predictive performance to the
real data example. The following two subsections use the same
simulated data, which includes three scenarios with different
combinations of the number of time series and rank (N, R):
(10, 3), (20, 5), and (50, 10). The lag order is P = 3. We assume
that the true rank increases with the number of time series.
Kolda and Bader (2009) and the reference therein summarize
ranks of some specific third-order tensors, but the rank of a
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Algorithm 2 Match Labels and Signs

1: Find a pivot matrix B(pivot)
3 and its corresponding tensor matrix B(pivot)

2: for each iteration do
3: Compute the R-by-2R distance matrix 


4: for r = 1, . . . , R do
5: Find

(
r∗

1 , r∗
2
) = argmin

r1, r2

r1, r2

6: if r∗
2 ≤ R then

7: Match the r∗
1 th column in B3 to the r∗

2 th column in B(pivot)
3 .

8: Change the r1th row, r2th and (R + r2)th columns in 
 to infinity.
9: else

10: Match the r∗
1 th column in B to the

(
r∗

2 − R
)
th column in B(pivot)

3 .
11: Change the r1th row, (r2 − R)th and r2th columns in 
 to infinity.
12: for j = 1, 2 do
13: Compute distance d1 = d

(
Bj,(·,r), B(pivot)

j,(·,r)
)

and d2 = d
(

Bj,(·,r), −B(pivot)
j,(·,r)

)
14: if d1 ≤ d2 then
15: Keep signs in Bj,(·,r). Record indj,r = 1
16: else
17: Flip signs in Bj,(·,r). Record indj,r = -1
18: if ind1,rind2,r = 1 then
19: Keep the signs in B3,(·,r)
20: else
21: Flip the signs in B3,(·,r)

Table 1. Uniform distributions of margins in different locations indicated by rows
and different combinations of N and R indicated by columns.

(10,3) (20,5) (50,10)

B1 U(−1,1) U(−1,1) U(−1,1)
B2 U(−1,1) U(−1,1) U(−0.6,0.6)
B3,(1,·) U(−1,1) U(−1,1) U(−0.6,0.6)
B3,(2,·) U(−0.5,0.5) U(−0.2,0.2) U(−0.2,0.2)
B3,(3,·) U(−0.1,0.1) U(−0.1,0.1) U(−0.1,0.1)

tensor applied in a VAR with lag order exceeding 2 is not
specified. Only an upper bound of the rank is available, which
is min(N2, NP).

In each scenario, we generate 25 datasets following VAR(3)
models with independently generated parameters. The coeffi-
cient matrix of each model is the 1-mode matricization of a
tensor from a CP decomposition, and the covariance matrix
is an identity matrix. Margins of the CP decomposition follow
uniform distributions with different parameters, see Table 1 for
more details. All time series are checked for stationarity via the
Dickey-Fuller test and the Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) tests with significance level set as 5%. All datasets are
consistent with stationarity.

We apply the MGP to both simulation experiments by setting
ν = 3 as shown in Bhattacharya and Dunson (2011), γ1 =
10−3, and γ2 = 0.9. A table illustrating the sensitivity to the
choice of γ1 and γ2 is available in Appendix D.1. Our chosen
combination of γ1 and γ2 gives the most parsimonious model
and the narrowest 90% credible interval of inferred rank. Apart
from the MGP, we briefly introduce the M-DGDP prior, which is
a global-local shrinkage prior proposed for tensor margins with
the following expression:

β
(r)
j ∼ N

(
0, (φrτ)W jr

)
, wjr,k ∼ Exp

(
λjr/2

)
,

λjr ∼ Gamma (aλ, bλ) ,
� = (φ1, . . . , φR)′ ∼ Dirichlet (α, . . . , α) ,
τ ∼ Gamma (aτ , bτ ) ,

where W jr = diag
(

wjr,1, . . . , wjr,Ij

)
, Ij = N when j = 1, 2 and

Ij = P when j = 3 in our case. α is uniformly distributed on
a grid with values equally placed on

[
R−3, R−0.01], and R is the

rank set in advance. We follow the same setting of hyperparame-
ters as in Guhaniyogi, Qamar, and Dunson (2017), that is aλ = 3
and bλ = 6√aλ, aτ = Rα, bτ = α

3√R.
For both priors, the initialization of rank is 
5 log(N)�, but

the adaptive inferential scheme is only applied when using the
MGP after iteration reaches 200 in the burn-in period. For
the M-DGDP, the rank is determined a posteriori by removing
negligible margins as in Algorithm C.1. We implement all simu-
lations with Intel(R) Xeon(R) Gold 6140 CPU 2.30GHzr and R
4.2.0.

5.2. Rank Selection

The first simulation assesses our approach to infer the rank R.
Both samplers with MGP and M-DGDP were run for 10,000
iterations after 10,000 burn-in and incorporated the interweav-
ing strategy. We record the performance of MGP and M-DGDP
in Table 2 including four metrics: (a) mean squared error (MSE)
of the coefficient matrix for coefficient accuracy; (b) averaged
effective sample size (ESS) of coefficients for sampling efficiency;
(c) averaged rank inferred (R) for rank accuracy; and (d) approx-
imate running time for computational efficiency.



8 Y. LUO AND J. E. GRIFFIN

According to Table 2, both models estimate coefficient matri-
ces with similar accuracy under the MSE. The MGP is able to
infer ranks equal to or lower than the true ones. In contrast,
M-DGDP can infer the true ranks after deleting redundant
columns of which the corresponding averaged proportions of
small magnitudes (γ1 = 10−3) are greater than γ2 = 0.9.
The MGP also explores coefficient posteriors more efficiently, as
ESS results from the first two scenarios suggested. The adaptive
shrinkage algorithm accelerates computation since the running
time of the MGP grows more slowly with N and R compared to
the growth rate of the M-DGDP. This leads to a large difference
if N = 50 and R = 10, where the inference with the MGP runs
more than 5 times faster than the M-DGDP.

5.3. Quality of Markov Chains

The second simulation investigates the quality of Markov
chains, that is whether the interweaving strategy and the post-
processing procedure contribute to the mixing and convergence
of Markov chains. We choose three prior settings (standard
normal, MGP, M-DGDP) to infer margins with/without
interweaving. The burn-in period still has 10,000 iterations,
but we change the number of iterations after burn-in to 100,000
to demonstrate results with longer chains.

We first focus on the interweaving strategy by conducting
the post-processing procedure to both samples with/without
interweaving. To give an insight into the effect of interweaving,
Figure 1 shows trace plots of the margin β

(1)
1,1 when N = 10

and R = 3 based on different prior settings with/without
interweaving. Even though we used the label- and sign-matching
methods, trace plots without interweaving still suffer from the
mixing problem, while the interweaving strategy substantially

Table 2. Performance of MGP and M-DGDP in 25 simulations for different dimen-
sionality combinations.

(N, R) method MSE R ESS Running time (hr)

(10, 3) MGP 0.006 4 3977.539 0.45
M-DGDP 0.006 3 3938.573 1.16

(20, 5) MGP 0.008 4 2657.043 0.59
M-DGDP 0.008 5 2644.262 2.60

(50, 10) MGP 0.006 7 2125.425 2.52
M-DGDP 0.006 10 2315.662 13.34

improves mixing. The autocorrelations (acfs) of all draws of β
(1)
1,1

after the burn-in period, see Figure D.1, also support the merit
of the interweaving strategy.

We follow the procedure in Kastner, Frühwirth-Schnatter,
and Lopes (2017) to compute the inefficiency factor (IF) of
each margin in different scenarios and prior settings. A smaller
IF means that the sampling of a parameter is more efficient.
Figure 2 displays boxplots of IFs where each panel corresponds
to a scenario with a combination of (N, R) and Bj. Each boxplot
contains 25 data points from the 25 simulation datasets. Each
data point in a boxplot is the IF of the 1–1 entry of Bj, for j =
1, 2, 3, inferred from one dataset. We exclude outliers because
there are only a handful of them, and this exclusion allows us
to focus on the medians and quantiles of IFs. Overall, most IFs
with interweaving have lower median values and less variation
than their counterparts without interweaving.

We then use the Stable Gelman-Rubin method (Vats and
Knudson 2021) to diagnose the convergence of the margin
Markov chains. The reason why we apply the Stable Gelman-
Rubin instead of the Gelman-Rubin (Gelman and Rubin 1992)
is 2-fold: (a) the Gelman-Rubin is suitable when the simula-
tion has multiple Markov chains for each parameter, while our
simulation only has one Markov chain for each parameter. The
Stable Gelman-Rubin can be applied to both multiple and single
Markov chains; (b) The conventional Gelman-Rubin threshold
of 1.1 implies an approximation of ESS of 5 according to Vats and
Knudson (2021), and the authors propose a threshold depend-
ing on the parameter dimension and a significance level. The
results are presented in Table 3, where each cell is the averaged
proportion of margins of which the Markov chains are deter-
mined as convergent. Overall, the algorithm with interweaving
achieves over 90% convergent Markov chains in all scenarios
and with all prior choices. All proportions are higher based on
the results from the interweaving algorithm compared to the
non-interwoven ones. We also include the Geweke diagnostic
(Geweke 1991) in Appendix D.1, with most interweaving results
having a better convergence performance.

Lastly, we demonstrate the necessity of the post-processing
procedure. Figure 3 displays trace plots of the whole draws
(with thinning of 10) of two selected margins inferred with
interweaving strategy, and we exclude the post-processing pro-
cedure at this time. All three panels in Figure 3(a) and the

Figure 1. Trace plots of the first 10,000 draws of β
(1)
1,1 in N = 10, R = 3 scenario after burn-in period. The inferential scheme adopts standard normal (top), MGP (middle),

and M-DGDP (bottom) as priors and applies with (left panel) and without (right panel) interweaving strategy.
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Figure 2. Boxplots of inefficiency factor of the 1–1 entry of B1 (left), B2 (middle), and B3 (right) from different scenarios: (N, R) = (10, 3) (top), (N, R) = (20, 5) (middle),
and (N, R) = (50, 10) (bottom). Inferential schemes with and without interweaving are represented as “I-” and “N-”, respectively, followed by a prior setting.

Table 3. Averaged proportions of margins which are convergent according to stable Gelman Rubin Statistics.

N=10, R=3 Interweaving Non-interwoven N=20, R=5 Interweaving Non-interwoven N=50, R=10 Interweaving Non-interwoven

Normal 1.000 0.847 Normal 0.996 0.916 Normal 0.996 0.978
MGP 0.998 0.866 MGP 0.986 0.740 MGP 0.940 0.770
MDGDP 0.996 0.871 MDGDP 0.998 0.819 MDGDP 0.989 0.858

Figure 3. Trace plots of β
(1)
1,1 in N = 10, R = 3 scenario (left) and β

(1)
1,2 in N = 20, R = 5 scenario (right) after burn-in period. The inferential scheme adopts standard

normal (top), MGP (middle), and M-DGDP (bottom) as priors and applies with the interweaving strategy.

middle panel in Figure 3(b) have sign-switching issues. If we
do not match signs, the interpretation of margins will be infea-
sible because the posterior mode or mean of some margins
would be zero, but they should be nonzero. The top panel in
Figure 3(b) provides evidence of column permutations, with
the sample mean moving from 0 to 0.5. The bottom panel in
Figure 3(b) has neither sign switching nor column permuta-
tions, but the M-DGDP does not guarantee convergence only
with the interweaving strategy due to the evidence provided in
Figure 3(a).

6. Real Data Application

6.1. Data and Implementation

We use the U.S. macroeconomic data extracted from Federal
Reserve Economic Data (FRED)3 (McCracken and Ng 2020) to
assess the utility of Tensor VARs. The data spans from 1959Q1
to 2019Q4, and are transformed to stationarity and standardized
to have mean zero and variance one to avoid scaling issues. We
construct medium-scale and large-scale datasets by selecting 20
and 40 variables, respectively, as referred to in Korobilis and

3The data is available at https://research.stlouisfed.org/econ/mccracken/fred-
databases/ .

https://research.stlouisfed.org/econ/mccracken/fred-databases/
https://research.stlouisfed.org/econ/mccracken/fred-databases/
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Pettenuzzo (2019). The selected 40 variables can be divided
into eight categories: (i) output and income, (ii) consumption,
orders and inventories, (iii) labor market, (iv) prices, (v) inter-
est rate, (vi) money and credit, (vii) stock market and (viii)
exchange rate. Since no variables in the categories of money
and credit and the stock market are selected into the medium-
scale dataset, we also construct an alternative 20-variable dataset
that contains variables from all night categories. We use this
alternative dataset to examine the robustness of forecasting per-
formance with results available in Appendix D.2. A full descrip-
tion of the variables selected and their transformations can be
found in Appendix E. Since the decomposition of the covari-
ance matrix �t has a lower triangular matrix H in the model,
the order of time series matters. We follow Bernanke, Boivin,
and Eliasz (2005) by splitting time series into slow, fast groups
and Federal Funds Rate (FEDFUNDS). The slow group con-
tains variables that respond to a shock of FEDFUNDS with a
lag, and variables in the fast group respond to it contempo-
raneously. The order is slow variables, FEDFUNDS, and fast
variables.

For each dataset, we estimate various VAR models with five
lags. Tensor VARs with and without the additional own-lag
matrix D are denoted as Tensor MGP Own-lag and Tensor
MGP, respectively. For these two Tensor VARs, we use the same
choice of γ1 and γ2 as in the simulation study. Implementation
of the MGP is the same as in Section 5, and the prior of D is
described in Section 3.1. For competitors, we include standard
VARs with the hierarchical Minnesota (Giannone, Lenza, and
Primiceri 2015), Horseshoe (Carvalho, Polson, and Scott 2009)
and a specification of normal-gamma (NG) prior introduced
to VARs by Huber and Feldkircher (2019). All of these three
priors can be written as Ap,(i,j) ∼ N

(
0, Vp,(i,j)

)
for (i, j) entry

in Ap, where i, j = 1, . . . , N and p = 1, . . . , 5. For the

hierarchical Minnesota, Vp,(i,j) =
⎧⎨
⎩

λ2
1

p2 , if i = j
λ2

1λ2
p2

σ̂i
σ̂j

, if i �= j
, where σ̂ 2

i

is the variance estimate of yt,i sequence modeled by an AR(5)
process. λ1 and λ2 have prior Gamma(0.01,0.01) and are inferred
using a random walk Metropolis-Hastings step. For Horseshoe
prior, Vp,(i,j) = λ2

p,(i,j)τ
2, where λ2

p,(i,j) and τ are local and global
parameters, respectively, following a half Cauchy prior. We apply
the NG described in Section 3.1 to the coefficient matrix. Priors
of H and stochastic volatility St , for t = 1, . . . , T, are the same
for all models. The MCMC sampler runs 10,000 iterations after
the 10,000 burn-in period.

Note that the decomposition of �t employs a triangular
system due to the lower triangular matrix H, which might lead
to the ordering issue when estimating the parameters. This issue
has been discussed in Carriero, Clark, and Marcellino (2019),
Chan, Koop, and Yu (2024), Arias, Rubio-Ramirez, and Shin
(2023), among others. Thus, we also provide the forecasting
performance of which we apply a nonrestrictive matrix H, as
defined in Chan, Koop, and Yu (2024). The results and further
discussion about this order-invariant model are available in
Appendix D.2.

Table 4. Averaged number of parameters and running time of Tensor MGP, Tensor
MGP Own-lag and standard VARs with the NG prior.

Number of parameters Runnning time (hr)

Medium Large Medium Large

Tensor MGP 187.18 257.361 0.95 3.14
Tensor MGP Own-lag 272.19 456.18 1.07 3.28
Standard VAR 2000 8000 1.30 10.39

6.2. Forecasting Results

Before delving into the evaluation of forecasting performance,
we compare Tensor VARs and standard VARs with the NG prior
in computational time and number of parameters (margins or
coefficients) inferred. As shown in Table 4, fewer parameters
were inferred within the Tensor VAR framework, leading to
the reduced computing time of this framework compared to
standard VARs. For the medium-scale dataset, Tensor VARs
require at least six times fewer parameters than standard VARs.
Similarly, for the large-scale dataset, Tensor VARs only need
to infer fewer than 10% of the parameters compared to those
inferred from standard VARs. In term of running time, Tensor
and standard VARs take a similar amount of time to infer the
medium-scale dataset, but the former requires approximately
one-third of the time taken by the latter when we switch to the
large-scale dataset. The inference using Tensor MGP is faster
than Tensor MGP Own-lag because the latter necessitates addi-
tional time to infer the own-lag matrix. Note that the code
for both VAR frameworks has been accelerated by the Rcpp
package.

We follow the expanding window procedure to assess the
forecasting performance of our models. Specifically, we first
fit each VAR model with the historical data from 1959Q1 to
1984Q4, then get 1-, 2-, and 4-step-ahead forecasts for 1985Q1,
1985Q2, and 1985Q4, respectively. Next, we expand the histor-
ical data with the endpoint at 1985Q1 and conduct the multi-
step-ahead forecasting again. This procedure is repeated iter-
atively and stops after conducting the 1-step-ahead forecast of
2019Q4.

We evaluate the forecasting performance of Tensor VARs and
standard VARs with both joint and marginal results. For the
marginal ones, we select seven variables which are salient to the
U.S. economy, as shown in Tables 5 and 6. The metrics for the
forecasting evaluation are mean squared forecast error (MSFE),
mean absolute error (MAE) and averaged log predictive likeli-
hood (ALPL), see Appendix D.2 for mathematical expressions.
All marginal metrics are relative to a standard VAR with a flat
prior, taking the 7 time series selected as responses.

Results about point forecasts evaluated by MSFE and MAE
can be found in Appendix D.2. Overall, Tensor VARs achieve
better joint and marginal performance than standard VARs.
Tables 5 and 6 present density forecasting performance from
the medium and large datasets. Tensor VARs have competitive
performance when making joint density forecasts. They also
outperform standard VARs in marginal forecasts since they are
the best models in 12 and 13 out of 21 cases for medium and



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 11

Table 5. ALPL of joint and marginal variables using the medium-scale dataset.

Model Horizon ALPL

Joint PAYEMS CPIAUCSL FEDFUNDS GDP UNRATE GDPDEFL GS10

Tensor MGP 1 −16.378 0.170 0.151 0.637 0.177 0.150 0.124 0.160
2 −17.820 0.416 0.227 0.634 0.240 0.284 0.141 0.128
4 −19.460 0.671 0.179 0.498 0.196 0.306 0.110 0.077

Tensor MPG Own-lag 1 −16.184 0.190 0.147 0.682 0.191 0.172 0.133 0.163
2 −17.852 0.424 0.229 0.656 0.249 0.289 0.144 0.127
4 −19.567 0.702 0.171 0.526 0.207 0.310 0.113 0.081

Minnesota 1 −15.921 0.129 0.183 0.519 0.141 0.164 0.181 0.187
2 −18.126 0.443 0.210 0.507 0.202 0.301 0.134 0.141
4 −19.897 0.754 0.142 0.379 0.152 0.291 0.086 0.082

NG 1 −16.463 0.126 0.126 0.640 0.131 0.153 0.149 0.162
2 −18.277 0.402 0.193 0.588 0.183 0.272 0.130 0.126
4 −19.995 0.724 0.140 0.448 0.170 0.281 0.096 0.081

Horseshoe 1 −17.333 −0.164 0.090 0.633 0.112 0.048 0.168 0.152
2 −18.394 0.214 0.199 0.626 0.162 0.223 0.146 0.130
4 −19.464 0.632 0.141 0.495 0.156 0.257 0.104 0.108

NOTE: The best forecasts are in bold.

Table 6. ALPL of joint and marginal variables using the large-scale dataset.

Model Horizon ALPL

Joint PAYEMS CPIAUCSL FEDFUNDS GDP UNRATE GDPDEFL GS10

Tensor MGP 1 −24.520 0.078 0.126 0.670 0.151 0.135 0.103 0.178
2 −29.790 0.401 0.231 0.686 0.213 0.286 0.133 0.151
4 −33.847 0.703 0.171 0.532 0.172 0.353 0.108 0.099

Tensor MPG Own-lag 1 −23.809 0.101 0.143 0.688 0.159 0.172 0.116 0.175
2 −30.338 0.389 0.240 0.673 0.217 0.298 0.138 0.151
4 −35.631 0.686 0.176 0.533 0.171 0.334 0.113 0.101

Minnesota 1 −26.576 −0.073 0.147 0.534 0.103 0.035 0.133 0.174
2 −29.600 0.330 0.252 0.570 0.173 0.212 0.148 0.162
4 −32.545 0.736 0.175 0.445 0.157 0.243 0.105 0.095

NG 1 −28.455 0.081 0.133 0.518 0.107 0.167 0.130 0.172
2 −32.823 0.421 0.218 0.518 0.163 0.316 0.136 0.145
4 −36.715 0.793 0.154 0.386 0.159 0.312 0.104 0.085

Horseshoe 1 −27.915 0.064 0.129 0.584 0.114 0.138 0.124 0.178
2 −31.462 0.408 0.238 0.580 0.178 0.295 0.144 0.158
4 −34.874 0.784 0.165 0.431 0.165 0.299 0.104 0.097

NOTE: The best forecasts are in bold.

large datasets, respectively. Forecasts of FEDFUNDS, GDP, and
UNRATE are more favorable when using Tensor VARs, while
standard VARs have better performance in forecasting PAYEMS
and GDPDEFL. In comparing the performance of the two mod-
els within Tensor VARs, Tensor MGP Own-Lag demonstrates
superior results to Tensor MGP. If we focus on individual models
in standard VARs, the hierarchical Minnesota prior is the best
among these three priors. The superior performance of Tensor
MGP Own-lag and the hierarchical Minnesota highlights the
importance of own-lag effect in economic data. When compar-
ing each marginal evaluation in these two tables, most ALPLs
in Table 6 are larger than those in Figure 5, indicating that the
large amount of information is advantageous for the marginal
forecasting.

6.3. Interpretation

Since Tensor MGP Own-lag performs better than Tensor MGP,
we demonstrate how to interpret a Tensor VAR by fitting it with
the whole large-scale dataset (N=40). The Tensor VAR infers a
rank of 3, reducing the number of parameters in the coefficient
matrix from 8000 (standard VAR(5)) to 455.

According to (2.5), a Tensor VAR can be interpreted as a fac-
tor model with observable factors. Figure 4 shows these factors
are consistent with recession periods reported by the National
Bureau of Economic Research (NBER) (available on https://fred.
stlouisfed.org/series/USRECQ). The first factor has wider credi-
ble intervals during or after the NBER recession periods. The
second factor peaks during these recession periods and has rela-
tively high values during the recession of 1960–1961 and the dot-
com bubble in the early 2000s. The third factor peaks after reces-
sion periods, and the reason will be explained later according
to Figure 5. Furthermore, we present the variables that exhibit
the five highest magnitudes of correlation with these three fac-
tors in Table 7. The first factor shows a high correlation with
variables from the money and credit category, while the second
factor is highly correlated to the variables from the labor mar-
ket and industrial production. The correlations associated with
PAYEMS and UNRATE are reversed, indicating that the second
factor is positively linked to unemployment. Proceeding to the
third factor, M2REAL and BUSLOANx are both found in the
first and third columns in Table 7, but we consider the third fac-
tor to bear a connection with the financial market due to its high
correlation with the S&P price earning ratio. It may seem sur-

https://fred.stlouisfed.org/series/USRECQ
https://fred.stlouisfed.org/series/USRECQ
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Figure 4. Time series plots of factors with median (solid line) and 80% credible interval (blue shade). The vertical gray shades correspond to the U.S. recession periods. The
factors are derived from the inferential results of Tensor MGP Own-lag.

prising that none of the factors shows a strong connection with
interest rates, but all three factors have a non-negligible correla-
tion to interest rates according to the full correlation displayed in
Appendix D.3.

Next, we use Figure 5 to answer two questions: (a) which
lagged time series contribute to the factors; (b) what is the effect
from factors to responses. Figure 5 depicts the posterior mean
of response, predictor and temporal loadings. Larger margin
magnitudes are associated with more deeply saturated hues.

The first question is answered by the predictor and temporal
loading. The columns with the same index in these two loadings
reveal how the corresponding factor is constructed. For the
first factor representing money and credit, we inspect the top
five margin magnitudes (M2REAL, CPIAUCSL, RPI, M2SL, and
OILPRICEx) in the first column of the predictor loading, and
show that price is the main category contributing to this factor.
The negative margins of CPIAUCSL and OILPRICEx indicate
that prices have a negative effect on the first factor. This conclu-
sion is further strengthened by the opposite signs of M2REAL
and M2SL margins since M2SL drops while M2REAL rises with
decreasing prices. Additionally, the positive RPI margin, which
is adjusted by inflation, supports this conclusion. In the first
column of temporal loading, the first lag is suggested to be the
most important one because its magnitude is the largest within
the corresponding column. Combined with the findings from
predictor and temporal loading, the first factor is formed by the
prices one quarter ago. We follow a similar method to investigate
the formation of the second factor and get the following finding:

First, A decline in real M2 money supply (M2REAL) and per-
sonal consumption expenditures (PCECC96) contributes to an
increase in this factor about unemployment. Second, the factor
grows with the increase of credit risk because of the opposite
signs of BAA and GS10, representing the spread between the
corresponding two yields. Akin to the formation of the first
factor, the first lag exhibits the most significant contribution
to the formation of the second factor. Lastly, we focus on the
columns corresponding to the third factor and find two differ-
ences compared to other columns: (a) margins with relatively
high magnitudes are related to the financial market, for example,
oil price (OILPRICEx) in the commodity market, exchange rates
(EXSZUsx and EXCAUSx) in the FX market; (b) the column in
the temporal loading spans in all five lags, which explains why
the third factor peaks after the recession periods.

The second question is answered by the response loading,
which has the same definition as the factor loading in a factor
model if one considers the factors from the Tensor MGP Own-
lag as factor scores. Each column of the response loading shows
how each factor impacts the responses. In the first column, mar-
gins corresponding to variables in the money and credit category
have high magnitudes, which follows expectation because the
first factor represents this category. Assume that the first factor
to be positively associated with money supply given the evidence
in Table 7, we can explain the negative margins of interest rates:
during economic downturns, both rate cuts and quantitative
easing are applied as part of the monetary policy toolkit to
boost economic activity. Similarly, the positive margins in the
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Figure 5. Posterior mean of response, predictor and temporal loadings inferred
from Tensor MGP Own-lag.

Table 7. Variables with the top five correlations with the factors.

Factor 1 Factor 2 Factor 3

M2REAL (0.44) PAYEMS (−0.84) S&P PE ratio (0.62)
NONREVSLx (0.41) UNRATE (0.76) M2REAL (0.41)
CONSPIx (0.40) INDPRO (−0.72) BUSLOANSx (−0.31)
BUSLOANSx (0.32) HWIURATIOx (−0.69) INVEST (0.30)
PCECC96 (0.26) HWIx (−0.62) M2SL (0.28)

exchange rate category suggest the depreciation of U.S. dollars
when the money supply increases in the United States. Moving
to the second column, the negative margins in the income and
output category have high magnitudes, suggesting an increase
in this unemployment factor (the second factor) results in the
slowdown of economic activities. Negative margins of interest
rates show the expectation of interest rate reduction, given that
the second factor rises. If we look at the loading corresponding
to the third factor, it is unsurprising that the largest margin
corresponds to S&P PE ratio because the third factor is highly
correlated to this variable.

6.4. Effect of D

This section compares the Tensor VARs with and without the
own-lag matrix D. First, we do not find a strong own-lag effect in
the last subsection because the variables with high margin mag-
nitudes in the response loading do not coincide with those coun-
terparts in the predictor loading. Second, we use Tensor MGP
(without D) to conduct the same experiment as in Section 6.3.

After the inference, we apply Welch’s t-test to check whether
margins inferred from these two Tensor VAR models are sig-
nificantly different. Only 4 out of 255 margins cannot reject
the null hypothesis that no significant difference between the
two posterior samples with a 0.1% significance level. Figure D.6
depicts the posterior mean of the loadings without D. As shown
in this figure, the same variable (PAYEMS) is associated with
the largest margin magnitudes in the first columns of response
and predictor loadings. This pattern holds for the second and
third columns as well, with the corresponding variables being
M2REAL and BUSLOANS. This finding indicates the additional
own-lag matrix D allows the tensor to explore more cross-lag
effects. In addition, these large margins in PAYEMS, M2REAL,
and BUSLOANS have the potential to distort the coefficients
in such a manner that the rows and columns corresponding to
these three variables in the coefficient matrix exhibit a higher
proportion of large magnitudes compared to their counterparts
associated with other variables. Table D.16 gives a detailed anal-
ysis in Appendix D.3.

7. Conclusion and Discussion

In this article, we apply the Multiplicative Gamma Prior
(MGP) to margins and use an adaptive inferential scheme
to infer the rank. To overcome the convergence issue, we
introduce an interweaving Gibbs sampler to allow better
mixing of Markov chains and match labels and signs after the
inference.

The Tensor VAR is closely related to the reduced-rank
VAR (Geweke 1996; Carriero, Kapetanios, and Marcellino
2011). A detailed discussion of these two structures is available
in the introduction section of Wang et al. (2021). In short,
reduced-rank VAR only applies the low-rank assumption to
the mode-1 matricization of the tensor, but Tensor VAR makes
the same assumption to all three matricizations (model-1, -
2, and -3). Following this connection, we find that reduced-
rank VAR is a special case of Tensor VAR with the following
expression:

A =
R∑

r=1
A(r) =

R∑
r=1

β
(r)
1 ◦ C(r),

where C(r) is an N-by-P matrix, and ◦ is the outer product of a
vector and a matrix such that β

(r)
1,i1 C(r) equals to A(r)

i1,·,·, the i1th
matrix on the first dimension of A(r), for i1 = 1, . . . , N. If we
decompose C(r) to β

(r)
2 ◦ β

(r)
3 , then we retain (2.3). We leave

the comparison between Tensor VAR and reduced-rank VAR to
future work.

Several extensions can also be investigated. First, it will be
interesting to adopt time-varying margins and rank to the
Tensor VAR. Related work is studied by Zhang et al. (2021),
who kept margins time-invariant and switched each column
of the tensor matrix B on or off with a prior. Second, we can
modify the MGP to include a local parameter corresponding
to each row of the loadings to provide more interpretability.
Lastly, a similar MCMC scheme can be applied to Tucker
decomposition (Tucker 1966), another popular tensor decom-
position with a more flexible structure compared to the CP
decomposition.
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Supplementary Materials

The online supplement contains basic notations, detailed descriptions of the
Bayesian inference, supplementary algorithms, and additional results from
both simulation study and real data application.
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