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A B S T R A C T

Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer in drug delivery and nanoparticle 
(NP) formulation due to its controlled drug release properties and safety profiles. Among the methods available 
for NP production, nanoprecipitation is distinguished by its simplicity and scalability. However, it requires 
careful optimisation to achieve the desired NP characteristics, making the process potentially lengthy and costly. 
This study aimed to assess and compare the predictive performance of Design of Experiments (DOE) and Machine 
Learning (ML) models for the optimisation of PLGA nanoparticle size and zeta potential produced by nano
precipitation. Various ML methods were employed to predict particle size, with Extreme Gradient Boosting 
(XGBoost) identified as the best performing. The key finding is that integrating ML with DOE provides deeper 
insights into the dataset than either method alone. While ML outperformed DOE in predictive performance, as 
evidenced by lower root mean squared error values and higher coefficients of determination, both methods 
struggled to accurately predict zeta potential, generating models with high errors. However, ML proved more 
effective in identifying the parameters that most significantly influence NP size, even with a smaller DOE dataset. 
Combining DOE datasets with ML for parameter importance was particularly advantageous in situations where 
data is limited, offering superior predictive power and the potential to streamline experimental design and 
optimisation. These results suggest that the synergistic use of ML and DOE can lead to more robust feature 
analysis and improved optimisation outcomes, particularly for NP size. This integrated approach can enhance the 
accuracy of predictions and supports more efficient experimental design, streamlining nanoparticle production 
processes, especially under resource-constrained conditions.

1. Introduction

Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable and 
biocompatible polymer that has gained significant attention in the field 
of drug delivery and nanoparticle (NP) formulation (McCoubrey et al., 
2024). Its excellent properties, such as controlled drug release, minimal 
toxicity, and approval by regulatory agencies (United States Food and 
Drug Administration and European Medicines Agency), make PLGA an 
ideal candidate for developing NPs (Operti et al., 2021; Lee et al., 2016). 
These NPs can be used to deliver a variety of therapeutic agents via a 
range of administration methods such as oral, ocular, transdermal, 
intranasal or parenteral routes (Bashir et al., 2021; Ansari and Alshah
rani, 2019; Gupta et al., 2010; Baek et al., 2024; Alghareeb et al., 2024; 
Shah et al., 2020; Seegobin et al., 2024). Polymer-based NPs such as 
PLGA NPs can be produced via a variety of techniques such as emulsion 

diffusion, emulsion evaporation or salting out methods, with nano
precipitation (NPR) standing out for its simplicity and efficiency (Lee 
et al., 2016; Paliwal et al., 2014; Zielińska et al., 2020; Astete and 
Sabliov, 2006).

NPR works by dissolving a polymer in a water-miscible organic 
solvent, followed by the dropwise addition of this solution into an 
aqueous surfactant solution, resulting in the formation of a colloidal 
suspension. Upon evaporation of the organic solvent, a stable suspension 
of nanoparticles is obtained (Lee et al., 2016; Zielińska et al., 2020; 
Martínez Rivas et al., 2017). NPR offers several advantages, such as 
simplicity and scalability, making it suitable for large-scale production; 
mild processing conditions that preserve the integrity of sensitive drugs; 
and the ability to control particle size and distribution by adjusting 
process parameters. Despite these advantages, NPR requires careful 
optimisation of parameters to achieve the desired particle 
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characteristics. The optimisation of NPR parameters, such as solvent 
type, polymer concentration, stirring rate, and temperature, is crucial 
for obtaining NPs with optimal properties (Bashir et al., 2021; Ansari 
and Alshahrani, 2019; Martínez Rivas et al., 2017; Shi et al., 2013). 
However, this process can be lengthy and costly, particularly because 
PLGA is an expensive material and extensive experimental studies are 
often required to identify the optimal conditions, leading to increased 
time and resource consumption (Danhier et al., 2012). Different statis
tical and modelling methods, such as Design of Experiments (DOE) and 
Machine Learning (ML), can be used to understand the relationship 
between different processing parameters and PLGA NP properties which 
can be used to streamline their production and reduce wastage.

DOE is a systematic and structured approach, primarily used to 
optimise and control pharmaceutical manufacturing processes. This 
methodology enables a comprehensive understanding of the relation
ships between process parameters and product quality attributes, mak
ing it invaluable in the development of high-quality pharmaceutical 
products (Tavares Luiz and Viegas, 2021). DOE’s efficiency lies in 
determining causal relationships between variables in an experimental 
design. Among the various DOE strategies, screening designs, such as 
fractional or full factorial designs, identify the most influential factors 
early in the process. Response surface methodologies such as Central 
Composite Design (CCD) are then conducted to explore optimal factor 
levels. This method allows modelling of linear relationships, in
teractions, and quadratic effects, providing a detailed understanding of 
the process landscape (Tavares Luiz and Viegas, 2021). DOE has been 
extensively applied in the optimisation of nanoparticle production, 
including PLGA-based formulations, due to its ability to identify critical 
process parameters and their interactions − such as drug amount, 
polymer amount, and aqueous phase to organic phase ratios − and their 
effects on particle size and zeta potential (Tavares Luiz and Viegas, 
2021; Camacho Vieira et al., 2024; Saka et al., 2020). This identification 
is crucial for the development of robust and reproducible manufacturing 
processes, which are essential for scaling up production while main
taining product quality. In nanoparticle synthesis, factors such as poly
mer concentration or solvent type can significantly influence the particle 
size and encapsulation efficiency. By systematically varying these pa
rameters within a DOE framework, researchers can optimise these at
tributes to meet specific therapeutic goals, thus enhancing the efficacy 
and safety of the final pharmaceutical product. However, it is important 
to note that DOE has certain limitations, such as difficulties in managing 
complex data analysis, the constraints imposed by rigid experimental 
designs, and limitations on scalability (Grangeia et al., 2020).

ML offers an alternative to DOE to analyse data and identify patterns 
to make predictions, it has drawn a lot of attention as it offers a powerful 
set of tools which can significantly aid in the development of nano
particles (Silveira et al., 2024; Zaslavsky et al., 2023). ML algorithms can 
analyse large datasets to identify relationships that may not be evident 
through traditional statistical methods. Therefore, ML can be used to 
model more complex, non-linear relationships, not possible through 
DOE (Walsh et al., 2022). However, it requires, high-quality labelled 
datasets to determine these patterns and make accurate predictions 
(Silveira et al., 2024), additionally, unlike DOEs, ML algorithms do not 
identify causal relationships, as they are applied on top of existing data 
and attempt to infer relationships (Silveira et al., 2024). For formulation 
development, supervised ML algorithms use labelled past experimental 
data to establish relationships between experimental conditions, such as 
material composition and processing parameters, and desired proper
ties, such as stability, compatibility, size and yield (Xu et al., 2023; 
Abdalla et al., 2024). By leveraging these ML models, researchers can 
potentially optimise NP synthesis by manipulating input features to 
reach desired outcomes. This has been particularly beneficial for opti
mising the size of NPs using microfluidic production techniques (Ortiz- 
Perez et al., 2024; Nathanael et al., 2023; Chen and Lv, 2022), where ML 
models help adjust flow rates and reagent concentrations to achieve the 
desired NP size. Similarly, leveraging ML capabilities in NPR can allow 

researchers to predict and optimise PLGA NP properties based on input 
parameters, thereby reducing the number of necessary experimental 
trials and saving both time and resources (Silveira et al., 2024).

This study aims to explore the production of PLGA NPs using both 
DOE and ML methodologies. By comparing these approaches, this study 
seeks to determine which method is most suitable for achieving efficient 
and cost-effective nanoparticle production. The goal is to identify crit
ical process parameters and develop robust predictive models that can 
streamline the optimisation process and reduce material costs.

2. Materials and methods

2.1. Materials

Resomer® Condensate RG 50:50 MN 2300 (PLGA, acid terminated, 
50:50, Mw 2000–2500 g/mol) and Resomer® R 504H, (PLGA, acid 
terminated Mw 49,000–54,000 g/mol) were purchased from Evonik 
Industries (Essen, Germany). Acetone, Poloxamer 407 (Kolliphor® P 
407) and Tween 80 were purchased from Merck Life Science (Gilling
ham, UK). Where used, water was of HPLC-grade and obtained via an 
ELGA HPLC water purification system (ELGA LabWater, High Wycombe, 
UK).

2.2. Production of nanoparticles by nanoprecipitation

PLGA NPs were prepared in triplicate using the NPR method. PLGA 
was dissolved in acetone using a range of concentration combinations 
based on a study DOE JMP® (SAS institute, United Kingdom). An AL- 
1000 syringe driver (Precision Instruments, Hitchin, UK) was then 
used to precipitate the polymer-drug organic solutions dropwise at 200 
µL/min via a 30 G x 0.5″ needle (Microlance™ 3, Becton Dickinson, New 
Jersey, USA) in an anti-solvent solution containing either 1 % (w/v) 
poloxamer 407 or 1.2 % (w/v) Tween 80 in water. The anti-solvent 
solution was stirred throughout with a magnetic bar rotating at 700 
rpm. The final ratio of polymer to anti-solvent solution was 1:2 v/v. 
Acetone was then allowed to evaporate from the uncovered mixture 
overnight by stirring at 700 rpm at room temperature (25 ◦C). The 
resultant nanosuspension was centrifuged (3-16KL Centrifuge, Sigma 
Laborzentrifugen, Osterode am Harz, Germany) at 10,500g, for 30 min 
at 4 ◦C. After centrifugation the supernatant was discarded, and the NPs 
were resuspended in 1.5 mL cool (2–8 ◦C) deionised water, in order to 
maintain the polymer-based particle in a rigid state, below its glass 
transition temperature (Sprengholz, 2014).

2.3. Physical characterisation of PLGA nanoparticles

The size and ζ potential of the particles was measured using Dynamic 
Light Scattering (DLS) with a Malvern ZetaSizer (Malvern Panalytical 
Ltd., Malvern, UK). Measurements (n = 3) were conducted at 25 ◦C with 
an equilibration time of 120 s. The measurement settings were 173◦

backscatter (NIBS default), with an automatic measurement duration.

2.4. Predictive modelling using DOE

JMP Pro software® (version 17.0, SAS institute, United Kingdom) 
was used to perform a DOE study. The design was based on a RSM using 
extreme test values for optimal parameter designs. The selection of the 
experimental points for each factor was performed by the software and 
resulted in a table of training experiments, see Tables S1-S4. The 
investigated process parameters for the nanoprecipitation were assigned 
as factors with two categorical factors (nature of the PLGA and nature of 
the anti-solvent) and two continuous factors (PLGA concentration and 
anti-solvent concentration) were evaluated. The investigated ranges are 
summarized in Table 1. The selection of experimental points leads to the 
construction of initial four-factor/two-level factorial dataset consisting 
of 48 experiments including triplicate experiments. The investigated 
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responses were particle size and zeta (ζ) potential. The objective was to 
produce particles controllable in size, expected to be between 100 and 
150 nm, and stable with ζ potential ≤ − 30 mV for NP uptake and sta
bility (Lu and Gao, 2010; Gupta and Trivedi, 2018). The maximum 
polymer concentration was fixed at 60 mg/mL based on preliminary 
experimental data. ANOVA was performed to reveal the effect of 
parameter estimates on total variance.

2.5. Predictive modelling using machine learning

2.5.1. Machine learning model
To determine which ML model is best able to make predictions based 

on the datasets, five different supervised ML models were employed. A 
variety of models were employed, including tree-based ensembles like 
extreme gradient boosting (XGBoost) and random forest (RF), a 
memory-based model (k-nearest neighbors, kNN), a kernel-based model 
(support vector machine regressor, SVM), and a neural network model 
known as a multilayer perceptron (MLP). Model hyperparameters were 
optimised using 100 different randomly chosen hyperparameter com
binations (random search), evaluated using 5-fold cross validation. The 
ML models were used for predictions of particle size and ζ potential. All 
ML models were run on Python (Version 3.10.4) on a Windows desktop 
(Operating System: Windows 11; Processor: AMD Ryzen Threadripper 
7960X 24-core 4.2 GHz; RAM Memory: 128 GB, GPU: RTX 4090 24 GB) 
using the Scikit-learn (Version 1.1.3) Python package, except for 
XGBoost (XGBoost Version 1.6.2).

2.5.2. Feature processing
Before being input into the ML models, the type of PLGA and anti

solvent used were one-hot encoded. All other data was normalised to a 
range of 0–1.

2.5.3. Evaluating model performance
Model performance was evaluated using leave-one-out cross vali

dation (LOOCV) and 5-fold cross-validation (CV). For LOOCV, the data 
set is split into one observation as the test set and the rest (N-1) obser
vations are considered as the training set. For 5-fold CV data sets are split 
into 5 equal subsets, or folds, which are approximately the same size. For 
each fold, the fold is taken as the test data set and the remaining folds as 
the training data. The models are fitted to the training data and evalu
ated on the test data, and subsequently, the evaluation score is retained 
(Abdalla et al., 2023). The overall performance of the model is deter
mined as the average of all the iterations.

2.5.4. Feature importance
XGBoost feature importance was determined by measuring the 

weights of different parameters used in the trained model. This is 
determined by identifying the number of times a parameter is used to 
split a tree, across all trees in the ensemble (Abdalla et al., 2023).

2.6. Data analysis

DOE and ML results included regression analyses, their performance 
was measured using the coefficient of determination (R2) and the root 
mean squared error (RMSE) of predictions. R2 is a measure of the 

goodness of fit of the model and is defined as the proportion of the total 
variance of the experimental points explained by the model. The R2 was 
used to measure the reliability and robustness of the model as shown in 
Eq. (1). We note however, that a high R2 does not necessarily indicate a 
good model, only that the model explains the variance in the collected 
data to a high level. 

R2 = 1 −

∑n
i=1(yi− ŷi)

2

∑n
i=1(yi− yi)

2 (1) 

With yi as the observed values, ŷi as the predicted values, yi the mean of 
the observed values and n as the number of observations.

The RMSE measures the average magnitude of the prediction errors 
in a model, providing a direct indication of the model’s predictive per
formance by quantifying the square root of the average squared differ
ences between predicted and observed values. The RMSE was used to 
measure the average magnitude of the prediction errors and assess the 
predictive performance of the model, as shown in Eq. (2). 

RMSE =

̅̅̅
1
n

√
∑n

i=1
(yi− ŷi)

2 (2) 

With yi as the observed values, ŷi as the predicted values and n as the 
number of observations.

3. Results and discussion

3.1. PLGA nanoparticles

In this study, PLGA NPs were generated in a systematic manner to 
create DOE models and train ML models based on the experimental 
training datasets outlined in the Tables S1-S4. Initially, NPs were 
formulated to assess parameter importance using a four-factor/two-level 
design dataset (extremes) (see Table S1), followed by those prepared 
using the two-factor/two level design and centre points data set (CDD) 
(see Table S2), those generated through a full factorial design (see 
Table S3), and final an ML training set generated through the random 
removal of 20 % of the data for external validation (see Table S4) − the 
factorial and training data sets differ by the addition of 21 data points for 
the ML training set. As shown in Fig. 1, the data points are well- 
distributed across different particle sizes and ZP values, providing a 
comprehensive representation of the variations present in the training 
data. The particle size obtained from these preparations ranged from 
86.9 to 381.4 nm with ζ Potential (ZPs) ranges of –11.0 to − 52.2 mV; 
desirable particles were those under 150 nm in size and with a ZP ≤− 30 
mV, representing around 10 % of the training datapoints for each 
dataset. These findings align with the objectives of producing NPs within 
the target size range for optimal delivery through the enhanced 
permeation and retention (EPR) effects, leaky gut and permeation 
through tight junctions to facilitate drug delivery to diseased tissue 
(Dolai et al., 2021; Lamprecht et al., 2001; Clayburgh et al., 2004; 
Hartwig et al., 2022). The inclusion of ZP as a critical stability parameter 
also ensured that the particles exhibited adequate colloidal stability, 
with values of ±30 mV or greater indicating sufficient stability to pre
vent particle aggregation (Lu and Gao, 2010; Gupta and Trivedi, 2018). 
Furthermore, the PDI values for the majority of samples were below 0.3, 
indicating acceptable monodispersity for pharmaceutical applications 
(Wu et al., 2011; Musielak et al., 2022; Danaei et al., 2018). Only 6 out of 
192 samples (3 %) had PDI values above 0.3, but all were still below 0.4, 
confirming that they remained within an acceptable range for use. Given 
these results, further optimisation of PDI was deemed unnecessary, as 
monodispersity was sufficiently achieved across nearly all samples.

3.2. Optimisation of ML for size prediction

To select the optimal ML model for particle characteristic prediction, 

Table 1 
The investigated ranges of parameters used in the data sets.

Factor Investigated range

Categorical PLGA Resomer condensate or Resomer 504
​ Anti-solvent Aqueous solution of Poloxamer 407 or 

of Tween 80
Continuous PLGA concentration 1–60 mg/mL
​ Anti-solvent solution 

concentration
10–50 % (w/v)
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the performance of various ML models was evaluated using both 5-fold 
CV and LOOCV. LOOCV was trialled as it can reduce the risk of over
fitting when used for small datasets and maximise the prediction po
tential (Abdalla et al., 2023). Five different models were tested: RF, 
XGBoost, KNN, MLP and SVM. LOOCV, while more computationally 
demanding, yielded results consistent with those from 5-fold CV. Given 
the increased computational load without additional performance 

benefits, further evaluation was carried out using 5-fold cross- 
validation. MLP yielded consistently negative predictive performance. 
This was anticipated as neural networks are likely to be overfit with 
small sample sizes and therefore usually not appropriate for use (Meyer 
et al., 2002). Therefore, this study focused on training the 4 other 
models to predict particle size. A random search was carried out to 
identify the optimal hyperparameters for these models. The 

Fig. 1. Scatter plot depicting the size and ζ potential distribution of the training data obtained following the (A) extremes (n = 48), (B) CCD (n = 60), (C) factorial (n 
= 144) and (D) training data sets (n = 165).

Fig. 2. Box plots illustrating the predictive accuracies of the ML models’ cross validation R2 (A) and RMSE (B) on the training datasets using 5-fold CV.
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performance of the tuned models, using 5-fold CV can be seen in Fig. 2, 
where the R2 indicates how well the model’s predictions match the 
actual data. An R2 value of 1 means the model perfectly predicts the 
data, while a value of 0 means the model does no better than guessing 
the mean. Meanwhile, RMSE measures the average magnitude of errors 
between predicted and actual values, providing an indication of the 
model’s prediction performance. It was observed that RF and XGBoost 
were found to be the top performing models, with the highest R2 and 
lowest RSME values, this is anticipated as tree-based models tend to 
perform the best for small-to-medium sized tabular datasets (Grinsztajn 
et al., 2022) and is consistent with the literature for NP optimisation 
(Ortiz-Perez et al., 2024; Nathanael et al., 2023). XGBoost slightly out
performed RF, therefore, it was selected for further evaluation. These 
results are in line with the study by Ortiz-Perez et al. (Ortiz-Perez et al., 
2024) where XGBoost was used for particle size predictions. To further 
explore XGBoost’s capabilities and determine the optimal number of 
data points for model training, we iteratively sampled randomised data 
points in increasing training set sizes and used them to train the XGBoost 
model, testing each dataset using 5-fold CV (Fig. 3). It was observed that 
the model started to explain variance in the data when approximately 30 
triplicates (R2 was greater than 0) were taken and plateaued at 
approximately 40 triplicates.

3.3. The predictions for DOE and ML

3.3.1. Feature and parameter importance for particle size
Utilising the parameters listed in Table 1 and the highest and lowest 

(extremes) data points shown in Table S1, DOE and ML predictions were 
conducted to evaluate parameter estimates and feature weights, 
respectively. The DOE approach not only ranks the importance of test 
parameters but also employs ANOVA to assess their statistical signifi
cance, thereby facilitating the use of RSM predictions focused exclu
sively on significant parameters. In contrast, XGBoost feature weights 
provide a ranking of parameter importance, determined by the number 
of times an individual feature is used to split a tree across all trees in the 
model, without indicating statistical significance (Chen, 2016). As 
illustrated in Fig. 4, DOE analysis demonstrated that the concentrations 
of both the anti-solvent solution (p < 0.001) and PLGA concentration (p 
< 0.0001) were significantly influential in determining particle size, 
whilst the type of anti-solvent solution and the type of PLGA did not 
exhibit a significant impact. Conversely, ML feature weight analysis 
identified the type of PLGA and the concentration of PLGA as the most 
critical features for all datasets, with these factors exhibiting more than 
twice the importance compared to the type and concentration of the 
anti-solvent solution. The DOE findings align with previous studies by 
Hernández-Giottonini et al. (Hernández-Giottonini et al., 2020) and 
Huang et al. (Huang and Zhang, 2018) which demonstrated that PLGA 

concentration and the anti-solvent solution concentration significantly 
influence the size of PLGA nanoparticles produced via nano
precipitation, highlighting that both models are able to extract mean
ingful insights from the data. These papers suggest that an increase in 
the viscosity of the organic phase within the aqueous solvent affects 
solvent diffusion and evaporation, thereby impacting nanoparticle size. 
Interestingly, Huang et al. (Huang and Zhang, 2018) also highlighted the 
importance of the type of organic solvent, temperature, and ionic 
strength of the aqueous phase in determining particle size. This study 
suggests that these parameters influence the diffusion coefficient of the 
solvent in the aqueous media in the presence of PLGA, identifying this 
coefficient as a key predictor of particle size (Huang and Zhang, 2018). 
They further suggest that these parameters also affect the diffusion co
efficient of the solvent in the aqueous media in the presence of PLGA, 
and that this coefficient is the main predictor of particle size (Huang and 
Zhang, 2018).

Herein, interesting discrepancies were found between the DOE and 
ML models regarding the importance of the parameters. DOE analysis of 
the parameter estimates (see Fig. 4A) indicated that the type of PLGA 
was not significantly important for further analysis. Conversely, the ML 
model identified the type of PLGA as the most important feature, 
assigning it the highest feature weight. When the DOE model was run 
using the larger DOE factorial dataset, the parameter estimates changed 
notably, showing statistical significance for the type of PLGA, the con
centration of PLGA, and the concentration of the anti-solvent solution 
(see Fig. 5). These results suggest that the ML model, with the much 
smaller ‘extremes’ DOE dataset of 48 data points, could determine the 
importance of nanoprecipitation parameters more effectively than DOE 
models. This required a larger dataset of 144 data points for DOE models 
to do alone.

3.3.2. CCD dataset predictions for particle size
This parameter estimates results were used to design a CCD model, as 

shown in Table S2. The DOE and ML models developed using the 
different experimental datasets were evaluated against an external 
validation set of 11 (n = 3) unseen datapoints, as illustrated in Fig. 6. 
Notably, the RMSE was lower for DOE than for ML using the CCD and 
factorial datasets, indicating better predictive performance for DOE with 
a smaller dataset. However, both ML and DOE exhibited negative R2 

values. This negative R2 indicates that the models performed worse than 
a simple mean prediction, thus reflecting significant inaccuracies in 
their models. The negative R2 values highlight a potential overfitting or 
underfitting issue within the models, or they may suggest that the 
dataset is not sufficiently representative to explain any variance in the 
data. Overall, while the DOE model showed a lower RMSE and thus 
better performance on this metric, the negative R2 values for both 
modelling approaches underscore the need for further refinement and 

Fig. 3. Evaluation of XGBoost performance A) R2 and B) RMSE, evaluated using the average of the 5 runs using 5-fold CV as the number of triplicate sam
ples increases.
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potentially larger, more representative datasets to improve predictive 
performance.

3.3.3. Full factorial and training datasets predictions for particle size
To enhance predictive capabilities, further data points were included 

based on a full factorial analysis (see Table S3) for DOE and a ran
domized training set for ML (see Table S4) which included the DOE data 
and 21 extra datapoints. For comparison, each dataset was analysed 
using both DOE and ML. With these expanded datasets, the RMSE 
decreased in both the DOE’s full factorial design and the ML’s training 

Fig. 4. Bar charts comparing (A) a Pareto chart of the standardised effects obtained from parameter estimates in the DOE analysis, with a significance threshold 
indicated by the reference line at p = 0.05, and (B) feature importance derived from the ML analysis focused on predicting particle size. The significance threshold in 
(A) helps identify which parameters have a statistically significant effect, while (B) highlights the relative importance of different features in the machine 
learning model.

Fig. 5. Pareto chart showing parameter significance for particle size predictions from DOE analysis, comparing a small dataset (48 points) to a larger one (144 
points), with a significance threshold indicated by the reference line at p = 0.05.

Fig. 6. Bar charts comparing the predictive performance of ML and DOE models for particle size based on RMSE (A) and R2 (B) values.
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set, demonstrating improved model performance. The larger datasets 
yielded positive R2 values for both methods, with the optimum ML 
model achieving an R2 of 0.441 and an RMSE of 0.035. In contrast, the 
best DOE model achieved an R2 of 0.027 and an RMSE of 0.048, indi
cating performance comparable to a model that consistently predicts the 
mean of the data. Surprisingly, despite the relatively small size of the 
dataset, often considered insufficient for robust ML modelling, ML out
performed DOE. This suggests its potential in guiding optimisation ap
proaches and experimental design. Despite the typical requirement for 
large datasets to achieve predictive accuracy, our study demonstrated 
that ML could extract meaningful insights from a smaller dataset. This 
suggests that ML can be a valuable tool for guiding optimisation ap
proaches, particularly when large datasets are not available. However, 
the significant decline in R2 values from the earlier 5-fold CV to the 
performance test indicates potential overfitting of the ML model, sug
gesting that the model’s predictions are highly specific to this dataset 
and may not be applicable to different polymer systems. Therefore, to 
improve the generalisability and robustness of the ML model, additional 
data is required. These findings indicate that ML can be effectively used 
to obtain better fitting of feature importance or patterns and trends in 
data generated using DOE, that may not be immediately apparent. This 
is likely due to non-linearity in the relationships between factors and 
output measurements, which can be captured by ML but not DOE.

3.3.4. Zeta potential
Interestingly, both ML and DOE were unable to explain variance for ζ 

potential as both obtained negative R2 values (see Figure S1). These 
negative R2 values indicate that the models perform worse than a 
baseline model that predicts the mean of the observed data. This poor 
performance is likely attributed to the small sample size, or the incorrect 
selection of features used to train the ML model. Indeed, whilst the 
literature highlights that the ζ potential of NPs was found to be influ
enced not only by the PLGA concentration but also by the type of 
polymer terminated chain and the ionic strength of the solutions 
(Hernández-Giottonini et al., 2020; Berg et al., 2009). Further studies 
could investigate incorporating additional data points from external 
sources or additional features, such as polymer chain termination and 
ionic strength, to enhance model robustness and improve the predictive 
accuracy of ζ potential.

4. Conclusion

This study highlights the comparative strengths of DOE ML in 
parameter analysis and predictive modelling for optimising PLGA NP 
production using NPR. Initially, DOE and ML provided distinct insights 
into the factors influencing particle size. DOE analysis identified the 
concentrations of the anti-solvent solution and PLGA as statistically 
significant factors, while the ML model highlighted the type and con
centration of PLGA as the most important features. As the analysis 
progressed with a larger dataset, it became evident that ML not only 
maintained consistent parameter importance but also offered a more 
stable and insightful analysis than DOE alone, whose findings evolved to 
align more closely with the ML predictions. When evaluating predictive 
performance using an external validation dataset, ML outperformed 
DOE, achieving lower RMSE values and higher R2 values. However, both 
methods were inadequate in predicting zeta potential, indicating the 
need for further refinement in these areas. This study suggests that 
fitting ML models to DOE-designed factorial datasets can provide deeper 
insights into the relationships within the data than DOE alone. Rather 
than viewing these methods as competitors, this combined approach 
leverages the strengths of both, suggesting that ML could play an 
increasingly valuable role in experimental design and optimisation, 
especially in resource-constrained scenarios.
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