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Abstract

The biopharmaceutical industry is navigating a dynamic landscape marked by
heightened competition, cost pressures, and the pursuit of innovative
manufacturing solutions. As a result, the sector is exploring new manufacturing
avenues in continuous mode, with renewed interest in the potential of column-
free capture alternatives for monoclonal antibody (mAb) production. This stems
from a desire to reduce manufacturing costs and to align with global
commitments to achieve net zero carbon emissions. In addition, concerted
efforts are being directed to automate the control of continuous bioprocesses
to enhance quality control and process performance levels. This thesis aims to
create a decisional tool that facilitates an integrated evaluation of the economic
and environmental aspects of end-to-end continuous antibody manufacturing
routes, with a focus on column-free routes and automated control.

A comprehensive framework for modelling the economic, environmental, and
technological dimensions of end-to-end continuous manufacture was
developed. The trade-offs of integrating the column-free options of precipitation
or aqueous two-phase extraction in mAb capture on end-to-end continuous
flowsheets were quantified with a process economics model. The assessment
incorporated deterministic analysis, Monte Carlo simulations and multi-criteria
decision making techniques and showed that continuous manufacturing was
preferable over batch and that column-free based flowsheets could offer
economic advantages for processes with intensified cell culture productivities
and optimised yields.

On the environmental front, a life cycle assessment of different manufacturing
alternatives demonstrated that the key drivers of product carbon footprint were
related to energy use and material supply. For batch processes, emissions
were mostly related to a high energy consumption related to larger facilities,
while for continuous processes the carbon footprint from reagents and
consumables fabrication was a key driver. Carbon reduction strategies were
identified and the flowsheet with product precipitation showed the most
accentuated decrease in carbon emissions after process optimisation.

Finally, the current state-of-the-art and vision for the implementation of process

analytical technologies (PAT) in bioprocessing were investigated by conducting



a survey and a series of interviews with global industrial and academic experts.
The simulation tool also demonstrated the potential impact of PAT to decrease
manufacturing costs, with a payback time of less than one year on the PAT
investment.

The work in this thesis showcased the added value of a simulation framework
that provides an in-depth evaluation of different technologies, flowsheets and
scenarios and streamlines the route to industrialisation for end-to-end

continuous manufacture.



Impact statement

Decisional tools have been empowering the biopharmaceutical sector in
identifying cost-saving opportunities and efficient manufacturing approaches.
By leveraging computational models, these tools allow for the integration and
evaluation of multiple scenarios that can be adjusted to each company’s
manufacturing schemes and products, enabling more informed decision-
making and, ultimately, accelerating the development or improvement of life-
saving therapeutics. The research outlined in this thesis offered a novel
framework that integrated not only the cost assessment of end-to-end
continuous strategies, but also a comprehensive environmental analysis of said
schemes. As companies have been clearly stating their net zero ambitions and
working towards more economic and environmentally sustainable processes,
the tools developed in this work provide tangible benchmarks that are highly
useful for the sector. The proposed framework can also identify early on the
combination of technical parameters, both from upstream or downstream
processing, that can be used to minimise cost of goods or carbon footprint.
Additionally, this work united the economic and environmental assessment of
continuous manufacture with the prospect of mAb continuous facilities of the
future, with enhanced control and more automated systems, which aligns well
with the Industry 4.0 vision. With these tools, companies can explore which
process analytical technologies are the most attractive for their processes and
gain insights into the level of investment they would have to commit to benefit

from enhanced control in their facilities.

Industrial experts who were interviewed for specific topics of this study
underscored the practical significance of the present research, as it provides
decision-makers with the tools and insights needed to navigate complex
process development ideas. Also, partners from academia endorsed this
thesis’s potential impact as it delivers relevant knowledge for future academic

research endeavours.



Acknowledgments

First and foremost, | would like to acknowledge the crucial role of Prof. Suzy
Farid as my supervisor. | am very grateful for having started this project under
her guidance, not only due to the insightful discussions, diligent revisions or
openness towards new ideas but especially due to her patience and support

during difficult periods in these last years.

My special thanks is also extended to Dr. Chris Stamatis for his assistance in
the modelling component of my work and for all the valuable tips and tricks to
generate, analyse and share my results. Likewise, | owe Dr. Stephen Goldrick
my utmost appreciation for providing me with the tools needed to integrate
efficient data analysis into my project, which led to major breakthroughs for this

thesis.

The financial support provided by European Union’s Horizon 2020 research and
innovation programme under the Marie Sktodowska-Curie grant CODOBIO is
also gratefully acknowledged, as is the important contribution of all academics
and industrialists involved in CODOBIO project.

On a personal note, | would like to share my gratitude to all my friends, whether
nearby or far away, who contributed to maintaining my motivation up in times
spirits were down. To Jose Quirino, thanks for the endless patience and for

making me believe that this thesis was possible.

Lastly, my warmest words of appreciation are addressed to my mother, Helena

Neves, whose love and care held me together in face of all adversities.



Table of contents

ADSTIACT ...t e e e e aaane 3
IMPACT STATEMENT ... e ea e 5
ACKNOWIEAGMENTS ...eniiii e e e e e 6
Table Of CONTENTS ..ouee e 7
List Of @bDreviatioNs ........veeiiiii e eeaees 11
LISt Of fIQUIES e e e e e e e e eaenees 13
LiSt OFf tADIES oo 17
Chapter 1: Scope and Background..........ccccvvvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 19
0 A 01 1o Yo [ o £ o o T URPPRI 19
1.2 The rise and evolution of biopharmaceuticals .................ccooooeeeieens 20
1.3 Applications and Market Landscape of Biopharmaceuticals............. 21
1.4 Challenges in the biopharmaceutical iNdUStry ..........cccccvvvvviiiiieinnnn. 24
1.5 BiologiCsS MANUFACIUIE .........ccevviiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeee e 25
1.5.1 Production of monoclonal antibodies................eeveiieiiiiiiiiiiiiiiiiiiiiennn. 25
1.5.2 Column-free purification StrategiesS.............uuuvvrrriiiiriiiiiiiiiiiiiiiiininnnnns 34
1.5.3 Environmental analysis of biomanufacturing .............ccccccuvvvvvieennnnns 39
1.5.4 Process Analytical Technologies in biomanufacturing...................... 48
1.6 Decision-support tools in biomanufacturing...........c..c..coviiiiiiinnnnnnn. 51

1.6.1 Bioprocess software tools and mathematical programming used in

Process eCONOMIC MOUEIS..........uuuuiiiiiiiiiiiiiiiiiiii e 52
1.6.2 Scope of DeciSioN-SUpPOrt TOOIS .......uvvuiiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieaes 54

1.6.3 Decision-support tools in continuous production of

biopharmMaceULICalS .........ccoovuiiii 61



1.7  AIm and organiSation .............uuuuiiiieeeiiiiiiiiiiie e 64

Chapter 2: Materials and methodS.............uuuiiiiiiiiiiiiiiiiiiies 66
2.1 INErOAUCTION ... e e 66
2.2 Scope Of the tO0] ......ccoovieee e 66
2.2.7 SOftware SeIECHION..........uuuuiiiiiiiiiiiiiii 68
2.3 Tool Implementation...............uuuuuimiiiiiiiiiiiii 70
2.3.7 MOelliNg SIIUCKUIE ........uuuuiiiiiiiiiiiiiiiiiiiiiiiib e aneneenes 71
2.3.2 Modelling of Unit OPErations ...............ueeeuerrmmmmmmmiiiiiiiieie. 74
2.4  Cost and environmental MOdelS.............uuuuiiiiiiiiiiiiiiiiiiiis 79
2.4.1 Fixed capital INVESIMENT...........uuuuiiiiiiiiiiiiiiiiiiiieeeees 79
2.4.2 COSt Of QOOUS ....uuiiii i e 80
2.4.3 Environmental MEtrCS........ocuuiiiiiiiiieeee e 83
2.4.4 Multi-criteria decision making (MCDM) methodology ....................... 86

Chapter 3: Evaluating end-to-end continuous antibody manufacture with

column-free capture alternatives from economic, environmental and

rODUSTNESS PEISPECLIVES ... e 88
3.1 INTTOAUCTION ... 88
3.2 MELNOMS ... 89
3.2.1 Flowsheets & key aSSUMPLIONS ..........uuuuuummmmiriiiiiiiiiiiiiiiiieiieinnnennneenns 90
3.3 Results and diSCUSSION .........cooiuuiiiiiiiiieee e 96
3.3.1 Deterministic COSt ANAIYSIS.........uuuuuiiiiiiiiiiiiiiiiiiiiiiieieeeaes 96
3.3.2 Environmental ANAlYSIS...........uuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeees 103
3.3.3 SenSItiVItY ANAIYSIS......coouiiiiiiiieee e 105
3.3.4 Uncertainty analysis with Monte Carlo simulations .............c.......... 108
3.3.5 Multi-criteria deciSion MakiNg ............uueueuuuuiiiiiiiiiiiiiii. 110
3.3.6 Target ANAIYSIS ......uuuuiiiiiiiiiiiiiiiiiiiiiiib bbb 111



34 CONCIUSION . e e 116

Chapter 4: Carbon footprint of different batch and end-to-end

continuous antibody manufacture flowsheets .......cccccccceeeiiiiiiiiiiiinnn. 117
4.1 INFOUCTION. ..ccii ittt e e 117
4.2 MethOAS. ... 118
4.2.7 KEY aSSUMPLIONS .....uuiiiiiiiiiiiiiiiiiiiiiiiiisiibibiesssseeeeebneeesbneeebseeesnnennenne 120
4.3  Results and diSCUSSION...........ooiuuiiiiiiiiee e 129
4.3.17 Product carbon fOOtPriNt ............uuueeuiemiiiiiiiiiiiiiiiiiiiiieiiee. 129
4.3.2 Carbon footprint of the supply-phase materials.............ccccccuvvvnnnnee 131
4.3.3 Carbon footprint of the use-phase: Energy requirements............... 134
4.3.4 Carbon footprint of end-of-life phase ...........cccccvvvviiiiiiiiiiiiiiiiiiiinnn, 137

4.3.5 Optimisation of batch and end-to-end continuous mAb production 138
4.3.6 Benchmarks of mAb product carbon footprint ...............cccccevveeennnne 144
O o [od (1151 o] 1S 146

Chapter 5: Economic impact of implementing process analytical

technologies (PAT) in end-to-end continuous antibody manufacture.. 147

5.1 INTrOTUCTION. ...ttt 147
5.2 IMEENOMUS. ... 148
5.2.7 INAUSLIAl SUIVEY ....coovviiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeee e 148
5.2.2 Process ECOnomics With PAT ..o 149
5.3  ResSUlts and diSCUSSION........uuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieieeeeeeeeeeaaes 158
5.3.7 INAUSLNAl SUIVEY ....ccooviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 158

5.3.2 Cost-benefit and environmental analysis of PAT implementation in

CONLINUOUS PIrOCESSES. ... ciiiiiiieeiitieeee ettt e e e et e e e e et e e e e et e e e e erar e e e e eaaa s 166
oI A O 0] o [od [ U] o] o £ PSS 179
Chapter 6: Conclusions & future Work .........cccccvvveeeiiiiiiiiiiiiiiiiiiiiiiiieeee, 181



6.1  OVerall CONCIUSIONS ....ceeeeee e 181

6.2 FULUIE WOTK ...ttt 185
Chapter 7: Bibliography ... 189
N ] o =T o Lo [ P 214
Papers by the author..........o 232

UCL Research Paper Declaration Form referencing the doctoral

candidate’s own published WOrk(s)................ccooovimiiiii e, 233

10



List of abbreviations

AEX
ATF
ATPE
BCF
BHK
CAC
CAPEX
CAR-T
CEX
CHO
CIP
CM
CMO
COG
CPP
CQA
DBC
DSP
EPO
FCI
FDA
G-CSF
GHG
GMP
HCCF
HEK
HVAC
ICB
IEX
109G
ILC

Anion-exchange chromatography
Alternating tangential filtration
Aqueous two-phase extraction
Blood clotting factor

Baby hamster kidney

Continuous annular chromatography
Capital Expenditure

Chimeric antigen receptor T
Cation-exchange chromatography
Chinese hamster ovary
Clean-in-place

Contract manufacturing

Contract manufacturing organisation
Cost of goods

Critical process parameters

Critical quality attributes

Dynamic binding capacity
Downstream processing
Erythropoietin

Fixed Capital Investment

Food and Drug Administration
Granulocyte-colony stimulating factor
Greenhouse gas emissions

Good manufacturing practices
Harvested cell culture fluid

Human embryonic kidney

Heat, ventilation and air conditioning
Integrated continuous bioprocessing
lon-exchange chromatography
Immunoglobulin G

Inline concentration

11



ILD
IND
ItLC
LC
LCA
mADb
MCDM
MCSGP
MILP
MINLP
MVDA
NPV
OPEX
PAT

QCQA

Inline dilution

Investigational new drug

Iterative learning controller

Ligquid chromatography

Life cycle assessment

Monoclonal antibody

Multi-criteria decision-making
Multi-column solvent gradient chromatography
Mixed-integer linear programming
Mixed-integer non-linear programming
Multi-variate data analysis

Net present value

Operating expenses

Process analytical technologies

Quality Control & Quality Assurance

12



List of figures

Figure 1.1 - Forecast sales ($) distribution of biologics versus small molecules
by 2027. Sourced from (GlobalData Healthcare, 2022).........ccccooeeevvveeiinnnnnnn. 21
Figure 1.2 - Biopharmaceuticals approval profile up to 2022. The data labels
indicate the number of total biologics approvals in that period and the
percentage of mAb approvals from the total number............ccccooooiiiiiiiiiinnnnnn. 22
Figure 1.3 - Generic production scheme of biologics when cells are the product
(e.g., probiotic products, live attenuated vaccines) or the products are located
intra and extracellularly.. ... 25
Figure 1.4 - Typical monoclonal antibodies production scheme. Cation and
anion-exchange steps may be in switched order..........ccccvvveiiiiieeevveeeiinnnnnnn. 27
Figure 1.5 - Continuous chromatography configurations in pharmaceuticals
O] £ T2 [ T RSP 32

Figure 1.6 — Schematic of a glass continuous ATPE extractor (Rosa et al.,

Figure 1.7 - Fully continuous non-Protein A flowsheets for antibodies
production with integrated purification by precipitation.. ................cccccevvvvnnnnn. 38
Figure 1.8 - LCA workflow from goal definition to interpretation of results. ... 42
Figure 1.9 - System boundaries in an LCA study.........ccccccvvviviiiiiiiiiiiiienennn. 43
Figure 1.10 - Process economics model decomposition with key input and
output parameters. Adapted from Lim et al. (2005). ...........cceeeeieieeiriiriiiinnnnnn. 55
Figure 1.11 - Stages of alternatives analysis with the application of decision-
SUPPOIT TOOIS. ..ttt 56
Figure 1.12 - Generic structure of multi-criteria decision-making tools. Adapted
from (Pavan and Todeschini, 2009).............iiiiiiiieiiiiee e 58
Figure 2.1 - Hierarchical decomposition of manufacturing tasks in a bioprocess.
Adapted from Lim et al. (2004). 70

Figure 2.2 - Tool structure with breakdown of classes and respective attributes.

Figure 2.3 - Generic ATPE phase diagram.........cccccccevviiiiiiiiiiiiiiiiiiiiiiieeeeeee, 77

Figure 3.1 - Process flowsheets studied in batch and continuous production of

MONOCIONAl ANTIDOAIES . . .. e 91



Figure 3.2 - Breakdown of (a) COG/g on a cost category basis and (b) materials
(reagents and consumables) cost for four mAb production flowsheets at 100,

500 and 1000 kg/year commercial scales.. ...... Error! Bookmark not defined.

Figure 3.3 - Breakdown of COG/g per processing stage of four mAb production
flOWSheets. ......oovvveiiiii Error! Bookmark not defined.

Figure 3.4 - Breakdown of impact of each cost category in the different
manufacturing stages of four mAb production flowsheets for the 500kg/year

SCAIR. . e Error! Bookmark not defined.

Figure 3.5 - a) Water and b) consumables process mass intensity (PMI)
breakdown for four mAb production flowsheets at 100, 500 and 1000 kg/year

COMMIEICIAl SCAIS. ..o e 103

Figure 3.6 - Sensitivity analysis of COG/g showing the effect of process
parameters variation on a) Batch-ProA, b) Conti-ProA, c¢) Conti-ATPE or d)
Conti-PP mAb production flowsheets, at 500 kg/year scale. .Error! Bookmark

not defined.

Figure 3.7 - COG/g probability distribution plots under manufacturing
uncertainty at a) 100 kg/year, b) 5000 kg/year and c) 1000 kg/year production
scales. d) Statistical data on COG/g for the competing technologies under

process variability across demands...............ouuviiiiiiieeeiiiiii e 109

Figure 3.8 - Rating values of Conti-ProA, Conti-ATPE and Conti-PP flowsheets
for each economic (Cost of Good — COG,; Fixed Capital Investment — FCI),
environmental (Consumables PMI; Water PMI) and operational (robustness,
ease of operation, scale up, installation and validation) criteria. b and c) Effect
of the economic, operational and environmental criteria combination ratios on
the overall aggregate scores when the operational attribute ratio is constant at
10% (b) and when the environmental attribute ratio is constant at 10% (c). All

graphs are generated for a mAb demand of 500 kg/year. ... 113

Figure 3.9 - Heat maps showing the COG difference for Conti-ATPE and Conti-
PP relative to Conti-ProA as a function of the perfusion volumetric productivity
versus either the HCCF% fraction for Conti-ATPE or the wash yield for Conti-
PP e 114

14



Figure 4.1 - Product carbon footprint and PMI for an annual demand of 500
kg/year using Batch-ProA, Conti-ProA or Conti-PP flowsheets. 130

Figure 4.2 - Breakdown of a) carbon emissions related to the entire supply-
phase and fabrication of b) reagents per type, c) reagents per production stage,
d) consumables per type and e) consumables production stage for an annual
demand of 500 kg/year using Batch-ProA, Conti-ProA or Conti-PP flowsheets.

......................................................................... Error! Bookmark not defined.

Figure 4.3 - Breakdown of energy requirements for an annual demand of 500
kg/year using Batch-ProA, Conti-ProA or Conti-PP flowsheets. .............. Error!
Bookmark not defined.

Figure 4.4 - Comparison of product carbon footprint obtained for the base-case
and optimised Batch-ProA, Conti-ProA or Conti-PP flowsheets for an annual

demand of 500 KG/YEAr USING. .....uuuuuurumuiiiiiiiiiiiiiiiiiiiiiiiiiiiieininieeiebieeeeneeneaeees 139

Figure 4.5 - One-way sensitivity analysis from implementing different process
improvements in Conti-PP. All percentage differences refer to the parameters’
values found for Conti-PP base-case. “Others” refer to all supply-phase related
emissions besides PEG and consumables (e.g., salts) and the end-of-life phase
2T 0] 1S3 o 3 3 142

Figure 4.6 - a) Energy and PEG consumptions and b) product carbon footprint
reduction after implementation of sequential process optimisations in Conti-PP.
c) Comparison of product carbon footprint obtained for the base-case and all
optimised Batch-ProA, Conti-ProA or Conti-PP flowsheets.. .........cccccouueeen. 143

Figure 5.1 - Process flowsheet used in the simulation of PAT integration in mAb

manufacture and respective PAT considered.............cccoooviiiiiiiiiinn.n. 151
Figure 5.3 — Importance of different benefits when considering PAT
implementation in MAb manufacture.. .........ccccccoviviiiiiiiii 159

Figure 5.4 — Distribution of PAT implementation per production step across the

INterviewed COMPANIES. .....coovuii e e e aa s 162

Figure 5.5 — Expected timeline for widespread PAT implementation across the
biopharmaceutical SECION . ...........ouviviiiiiiiiiiiiiiiiiee e 165

Figure 5.5 — Desired payback times (years) for PAT investment................. 166

15



Figure 5.6 - Breakdown of COG/g on a cost category basis for traditional
continuous mADb production and 6 other flowsheets with different PAT
technologies (Raman vs. iterative learning controller) at 100, 500 and 1000

kg/year commercial SCalES.. .........uuuuiiiiiieiieeeece e e 169

Figure 5.7 - Breakdown of COG/g on a cost category basis for traditional
continuous mAb production and three flowsheets with PAT integrated at
different stages (USP vs. DSP) at 100, 500 and 1000 kg/year commercial

S A e 170

Figure 5.8 - Rating values of Traditional Conti-ProA, PAT in USP, PAT in DSP
and Integrated for cost category at a) 100 kg/year, b) 500 kg/year, and c) 1000

Figure 5.9 - a) Water and b) consumables process mass intensity (PMI)
breakdown for Traditional Conti-ProA, PAT in USP, PAT in DSP and Integrated
flowsheets at 100, 500 and 1000 kg/year commercial scales.. ................... 174

Figure 5.10 - Heat maps showing the COG difference for a) PAT in USP, b)
PAT in DSP and c) Integrated flowsheets relative to Traditional Conti-ProA as
a function of the level of process benefit and level of investment............ Error!

Bookmark not defined.

Figure 5.11 - Heat maps showing the payback batches (the number of batches
required to payback the investment in PAT) for a) PAT in USP, b) PAT in DSP
and c) Integrated flowsheets relative to Traditional Conti-ProA as a function of

the level of process benefit and level of investment.. ...........ccceeeviiiiinenenn. 179

16



List of tables

Table 1.1 - Top 20 best-selling biopharmaceuticals in 2021 worldwide. Source:
(Walsh and Walsh, 2022) ........coooeiiiiiiiiiee e 23
Table 1.2 - Recombinant monoclonal antibodies produced via perfusion cell
culture. Source: (Pollock, Ho, and Farid 2013; Chu and Robinson 2001;
[T T0 K] NCoTo 24 0 ) R ) TSRS 30
Table 1.3 - List of continuous chromatography equipment, specifications, and
S 0] 01T £ 33
Table 1.4 - PMI values found in literature for batch and continuous mAb
flowsheets. SS: stainless steel; SU: single use. ..., 41
Table 1.5 - System boundary of the different LCA studies found in literature in
the biopharmaceutical SPACE. .......ccooeeeiiiiiicce e 47
Table 1.6 - Key improvements from implementing process analytical
technologies in biomanufacturing. ... 49
Table 1.7 - Literature overview on decision support tools applied in continuous
biomanufacturing models. DES: discrete-event simulation..................c......... 63

Table 2.1 - Overview of bioprocess software and mathematical programming

languages capabilities. ... ..o 68
Table 2.2 - Breakdown of cost of goods for a biomanufacturing facility. ....... 82
Table 2.3 - Weights of consumables used for the PMI calculation. ............... 83

Table 3.1 - Process-specific input assumptions in the COG model for Batch-
ProA, Conti-ProA, Conti-ATPE and Conti-PP flowsheets. 92

Table 3.2 - Triangular distributions used in Monte Carlo simulations for the

UNCEMAINTY @NAIYSIS ...cevviiiiei i e e e e e e e 95

Table 3.3 - Contribution of each equipment, reagents and consumables item

for the total cost category in the capture step. ........cccoeeeveii, 102

Table 3.4 - Multi-criteria decision making summary of weights, ratings and

overall aggregate weighted SCOMeS.........cooeiviiiiiiiiiiiiii e 112
Table 4.1 - Life Cycle Assessment main attributes................................. 118

Table 4.2 - Energy input for the different unit operations and supporting
activities used in mAb production process. Watt-units were multiplied by the

17



time of operation. For media and buffer preparation, 1h of agitation was
assumed. For lighting, the energy requirement was multiplied by the total site
(o] 01T =11 0o [0 F= 1TSS 120

Table 4.3 - HVAC energy requirements per room classification (Sinclair et al.,
7200 ) 121

Table 4.4 - Electricity consumption mix in the United Kingdom from Ecoinvent
AAtabaSEe (2014). cooeeeieiie e 122

Table 4.5 - Equipment footprint based on size range. This information was

taken from the brochures of specific equipment. ..., 123

Table 4.6 - Cleanroom classification and facility footprint calculating ratios for
stainless-steel (SS) and single-use (SU) based flowsheets (Pereira Chilima et
al., 2016). In the manufacturing area, 16 m?are added to each room to account
(10 G == 1 1 (0T 0] < T 124

Table 4.7 - Carbon footprint of different consumables based on size
(RamMasamy, 2018).......uuuiiiieeeiiieeiiiiiii e e e e e e e e e e e e e e e e e e 126

Table 4.8 - Process parameters changed in Batch-ProA, Conti-ProA and Conti-

PP OPtMISALION. ... e e e e e e e e e e e e e ee e e e e e e eeeeeeenes 127
Table 4.9 - Conversion rates for the emissions of 1 ton CO2-eq................. 128

Table 4.10 - Key environmental outputs and respective reduction for Conti-PP

before and after process optimisation. ............cccceoeeeeeiiiiiiiiii e, 140

Table 4.11 - Conversion of Product Carbon Footprint into day-to-day activities
and annual carbon emission taxes in the UK.. ...........cccccoiiiiiiiiiiiiiiiiiiiiins 145

Table 5.1 - List of organisations and the position held by the respondents who

completed the survey. 150

Table 5.2 — Process changes simulated in Conti-ProA for the integration of PAT

[SIST g o] (0o [0 [eyi (o] ¢ IR=1 == N 154

Table 5.3 — Equipment costs assumed in the integration of PAT in Conti-ProA

Table 5.4 - Process changes simulated in Conti-ProA to reflect different levels
Of IMPIEMENTATION.. ...t 157



Chapter 1: Scope and Background

1.1 Introduction

The biopharmaceutical sector has demonstrated sustained progress in
addressing the gaps that would enable a shift from batch to integrated
continuous bioprocesses, driven by the desire to increase productivity and
flexibility while reducing costs (e.g., Konstantinov and Cooney, 2015;
Schofield, 2018; Mahal, Branton and Farid, 2021; Rathore, Thakur and Kateja,
2023). Moreover, with the increasing focus on achieving net zero emissions,
there is a growing emphasis on adopting sustainable and eco-friendly practices
(BioPhorum, 2023), and continuous manufacturing has the potential to act as
an enabler for smaller facility footprints that may facilitate achieving these
targets. Notable investments in continuous processing plants by both
biopharma companies (e.g., Sanofi, Framingham, MA) and contract
development and manufacturing organisations (e.g., Fujiflm Diosynth
Biotechnologies, Billingham, UK) (Stanton, 2019a & 2019b) have been
underscoring the industry's commitment to this transition. Additionally, given
that purification steps constitute a significant portion of bioprocess costs, there
is a trend towards exploring alternative configurations and unit operations to
enable more cost-effective separations. One such area of interest is the
exploration of column-free alternatives to protein A (ProA) chromatography for
monoclonal antibody (mAb) capture. Despite this renewed interest, there
remains a lack of a definitive business case for implementing such techniques

at large scale.

The aim of this thesis is to develop and apply a decisional tool that enables a
comprehensive evaluation of column-based and column-free capture steps in
mAb manufacture and to shed light on the economic and environmental
feasibility of such production schemes in conjunction with enhanced process
control. The investigation of end-to-end continuous manufacturing will be based

on seamless and uninterrupted schemes from cell culture to drug substance.

This introductory chapter aims to provide insight into the potential of
biopharmaceuticals in the medicines market (Section 1.2 and Section 1.3) and
the inherent complexities of biomanufacturing that are driving the efforts for
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innovation at clinical and commercial scales of biologics production (Section
1.4). Section 1.5 provides background on several technologies used in
biologics manufacture and explores the rising trend in running in continuous
mode. A range of decision-support tools, including simulation software, is also

reviewed in Section 1.6.

The aims and structure of the present thesis are described in Section 1.7.

1.2 Therise and evolution of biopharmaceuticals

Genetic engineering enabled the cloning of human insulin genes in Escherichia
coli and the commercialisation of insulin by Genentech and Eli Lilly; this
development made insulin the first biomolecule with pharmaceutical properties
that was approved by the FDA in 1982. Three years later, two other products,
human growth hormone and tissue-plasminogen activator, were also approved
and introduced by Genentech to treat children with growth hormone deficiency
and resolve blood clots in patients with acute myocardial infarction, respectively
(Nielsen, 2013).

The term "biopharmaceuticals" was coined during the 1980s to describe
pharmaceutical molecules produced through biotechnological processes and
molecular biology techniques. Today, biopharmaceuticals stand as a
remarkable accomplishment of modern science, addressing the limitations of
synthetic drugs and un-met medical needs and offering heightened activity,
specificity, and a reduced likelihood of causing side effects during treatment
(Wilson and Neumann, 2012; Kesik-Brodacka, 2018). The soaring demand for
biopharmaceuticals has driven substantial profits, prompting major
pharmaceutical corporations to shift their research and production focus toward

large-molecule products.

Figure 1.1 exhibits the sale forecast increase of biologics for 2027 and confirms
that biologics have cemented their position, slightly surpassing small molecules
and emerging as the primary drivers of value generation for major
pharmaceutical companies. The production scale for the different modalities

presented in the distribution shown in Figure 1.1 was not available. However,
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it can be assumed that small molecules are produced in larger quantities, while

biologics typically command higher prices.

2022

2027

||

mSmall molecules OmAb and conjugates OFusion proteins
@ Subunit vaccines B Recombinant proteins O Synthetic peptides
@ Gene-modified cell therapies BGene therapies OOther biologics

Figure 1.1 - Forecast sales ($) distribution of biologics versus small molecules
by 2027. Sourced from (GlobalData Healthcare, 2022).

The remainder of this chapter provides insights into the processes involved in
biopharmaceutical drug development, the applications of biopharmaceuticals,

and the challenges the industry faces as market competition intensifies.

1.3 Applications and Market Landscape  of

Biopharmaceuticals

The escalating elderly population afflicted by chronic conditions like diabetes,
cancer, and autoimmune disorders is a pivotal driver behind the continuous
growth of the biopharmaceutical market (Kesik-Brodacka, 2018).
Simultaneously, this is enabled by the breakthroughs in the fields of antibody-
drug conjugates or cell and gene therapy, along with the better understanding

of process scale-up of recombinant protein production.

The average annual approvals of biopharmaceutical drugs in the US and EU
doubled since the beginning of the century (Figure 1.2). Monoclonal antibodies,
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recombinant hormones (e.g. insulin) and blood clotting factors (e.g. factor VIII)
dominated the new biotech-based products entering the market between 2014
and 2019. Since 2020, although COVID-19 vaccines shot to the top of the list
of highest-grossing individual products, monoclonal antibodies continue to lead
biopharmaceuticals in numbers of approvals and sales (Walsh and Walsh,
2022).

200
177

52%

—_
(S
(=]

122
54%

100

58 56
24% 20%

Number of approvals

[$)]
o o

Up to 1989
1990-1994
1995-1999
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Figure 1.2 - Biopharmaceuticals approval profile up to 2022. The data labels
indicate the number of total biologics approvals in that period and the
percentage of mAb approvals from the total number. Sourced from (Walsh and
Walsh, 2022).

Table 1.1 highlights the top 20 best-selling biologics globally in 2021,
showcasing their respective product types, revenues, approval dates, and
patent expiries (Walsh and Walsh, 2022).

The total sales of monoclonal antibodies in 2021 reached $217 billion, which
represented more than 80% of total biopharmaceuticals sales that year. COVID
vaccines ranked third on reported sales values, with $54 billion revenues
(Walsh and Walsh, 2022).

As monoclonal antibodies are subjects of this thesis, further details on their

characteristics and production will be presented in Section 1.5.
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Table 1.1 -

Top 20 Dbest-selling biologics

produced in a batch platform.

in 2021 worldwide.
Sourced from (Walsh and Walsh, 2022). All products from this table are

#  Product  Type Re\(/$egilljl(iaosn§;)21 Applrova Company Eitpel:\;
1 Comimaty® TIIA 36.8 2020 Bﬁ’;ﬁ%‘z‘h N/A

2 Humira® mAb 21.2 2002 AbbVie, Eisai 22%11% ((lélSJ))'
3 spikevax® NUA 17.7 2020  Moderna N/A

4 Keytruda®  mAb 17.2 2014 Merck 220 ((‘éﬁ))
5 Stelara®  mAb 9.5 2009 Janssen 22%22?:1((23)),
o owe e wn ger mgiy

Bristol—_Myers
7  Opdivo®  mAb 8.5 2014 S%u,:k;b' | 22%222 ((LélSJ)),
Pharmalmeutlca

8 Flfe%r:aan?g\% MAD 76 2020 R;Oecnheerbn N/A

9  Truliciy®  GLP 6.7 2014 Eiily 5% ((LélSJ))'
10 Darzalex®  mAb 6.0 2015 Janssen 22%222 ((léi)),
11 Dupixent®  mAb 5.9 2017 SaF?ggéﬁ‘e’fggs’ N/A

12 Prolia/Xgeva® mAb 5.7 2010 Amgen 22%222 ((léi)),
13 Gardasi 99 S0 5.7 2014 verck 2020 (J5)
e S8 s e Am e el
o omew w5y on g, oY
16 Consentyx® _mAb 4.7 2015 Novartis 2026 (US)
17 Entyvio®  mAb 4.4 2014 Takeda 2026 (US)
o rewes w43 ma o, SGY
19  Soliris®  mAb 42 2007 Pha?rlrfisz::(()arlljtica 22%22}) ((Léfj))'
20 Lantus® insulin 3.9 2000 Sanofi 22%111 ((Léi)).
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1.4 Challenges in the biopharmaceutical industry

The inherent complexity of biologics and biological processes, coupled with
stringent regulatory requirements within pharmaceutical companies, poses
challenges across the biopharmaceutical industry. Apart from the substantial
construction costs and validation demands associated with GMP facilities,
expenses linked to complex analytical technologies and costly cell culture
media significantly impact manufacturing costs. Synthetic drugs, synthesised
through conventional chemical methods, can be produced at around $5 per
gram, while biologics' production costs can range between hundreds and
hundreds of thousands of dollars per gram (Sommerfeld and Strube, 2005;
Farid, 2007 & 2017).

Also, the increase in product pipeline diversity associated with the growing
market demand for biopharmaceutical creates the need for production
flexibility, which is delicate due to the capacity adjustments associated.
Likewise, scaling speed must be swift, prompting the industry to focus more on
standardised production platforms (Konstantinov and Cooney, 2015).
Furthermore, ensuring standardisation in biomanufacturing is particularly
challenging, demanding rigorous control systems and robust manufacturing
processes. Because of traditionally higher holding times of products during
batch production, their quality attributes may vary, which is not desirable at a
regulatory level. More recently, attention has also been given to the
environmental impact of the biotech industry, with focus on the water and
energy consumption and waste generated on biopharmaceuticals production
(BioPhorum, 2023).

Owing to the pressing markets, the rise of biosimilars and, thus, the mission of
creating more cost-effective products, biopharmaceutical companies have
been working on overcoming these challenges. This includes the adoption of
new production schemes, such as continuous processes, and leveraging
process economic models to make informed decisions about production

strategies (Yang, Qadan and lerapetritou, 2020).

24



1.5 Biologics manufacture

In biologics production, the technological advances at a manufacturing level
demonstrate significant potential to reduce costs, increase productivity, allow
production flexibility and reduce facility footprints (Fisher et al, 2019). Workflows
for the processing of biotech-based products have been established and
optimised over the years. A generic process scheme for these products is

presented in Figure 1.3.

Cell removal » Primary isolation — Purification
Filtration Solvent extraction Adsorption
Centrifugation Adsorption Crystallisation
‘ + ATPE
Cells Tor'dwspos.a\ PreCiPitati,on
Extracellular or recycling Ultrafiltration
product T
Cell culture |- "reai — Cell removal Cell disruption I nomogenate — Cell debris removal Concentration
Broductis Filtration Homogenisation Filtration Ultrafiltration
the cells Centrifugation Bead milling Centrifugation
l Chemical lysis
Liquid for disposal
or recycling
Cell removal Product « Drying
Filtration Freeze drying
Centrifugation Spray drying

Liquid for disposal
or recycling

Figure 1.3 - Generic production scheme of biologics when cells are the product
(e.g., probiotic products, live attenuated vaccines) or the products are located
intra and extracellularly. Insulin, growth factors, monoclonal antibodies and
other products can be produced both intra and extracellularly. Adapted from
(Doran, 2013) with some unit operations (e.g., ATPE, precipitation) added to

the original scheme.

Production characteristics and technical advances in the field of monoclonal
antibodies manufacture are in the scope of this thesis and will be further

reviewed in the next sections.

1.5.1 Production of monoclonal antibodies

The field of engineered mAbs derives from Kohler et al. who discovered in 1975

that single fusion cell lines (hybridomas) could be generated by fusing murine
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B cells with murine myeloma cells to produce antibodies with a unique
specificity, i.e. monoclonal antibodies (Koéhler and Milstein, 1975). As the
hybridoma technology started to lead to human anti-mouse antibodies
development by the patients, a new generation of recombinant mAbs based on
the production of antibodies in cellular systems arose (Kunert and Reinhart,
2016).

Reports using CHO cells for mAb expression show production yields ranging
from 1 to 10 g/L using fed-batch cultures (Luan Y, 2006; Reinhart et al., 2015;
Zboray et al., 2015) and titres higher than 10 g/L in perfusion modes (Liang,
Luo and Li, 2023). For PER.C6, impressive results were achieved by Kuczewski
et al. (2011) using a high cell density bioreactor, where 27 g/L of mAb were
obtained (Kuczewski et al., 2011). CHO cells are still commonly favoured for
mADb production due to their well-established track record, robustness, stability
and safety (Zhang, 2014).

The most commonly used scheme for the production and purification of

monoclonal antibodies is presented in Figure 1.4.

As mADbs are typically expressed extracellularly in mammalian systems, the first
processing step after harvesting the cell culture is centrifugation followed by
depth filtration to remove the biomass/large debris and clarify the resulting liquid
(in batch/fed-batch based cell culture). The primary capture of the antibodies is
then achieved with Protein A chromatography, which has a high selectivity for
mADbs. The dynamic binding capacity of such resins vary from 15 to 100 g/L of
resin and the purity achieved is typically higher than 95% (Tarrant et al., 2012;
Dransart et al., 2018). In this step, impurities such as host cell proteins or DNA
are removed typically in the flow through and the elution step is performed at
low pH, which eliminates the need for buffer exchange or pH adjustment before
the virus inactivation. Protein A resin can be re-used for several cycles (up to
200, depending on the product); nevertheless, it has some disadvantages,
mainly related with the high cost of the resin, which ranges from 8000 to 15000
£/L resin (Karst et al., 2017; Yamada et al., 2017; Ramos-de-la-Pefia,
Gonzalez-Valdez and Aguilar, 2019). After the virus inactivation, ion exchange
chromatography takes place to remove residual impurities, including leached

Protein A. Cation and anion exchange (CEX and AEX) are often in the process
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in interchangeable order, depending on process requirements and constraints.
Hydrophobic interaction chromatography may be also integrated to assist with
aggregates removal (Shukla et al., 2017). Finally, a virus reduction filtration
assures the viral safety of the product before the concentration of the product
at the final UF/DF step.

Cell bank Protein A chrt)matography
i i
Seed train Virus Inactivation
) l
Production culture Cation-exchange chromatography
i i
Centrifugation Anion-exchange chromatography
l l
Depth Filtration Virus Filtration
)
Ultra/diafiltration

Figure 1.4 - Typical monoclonal antibodies production scheme. Cation and

anion-exchange steps may be in switched order.

1.5.1.1 Continuous manufacturing of biopharmaceuticals

While continuous processing is considered a standard approach for wastewater
treatment, composting and certain bioenergy processes such as bioethanol and
biogas production, the production of biopharmaceuticals relies predominantly
on batch processes. However, the interest in reducing the cost of
biopharmaceuticals coupled with the challenges outlined in Section 1.4 has led
to a growing awareness of the advantages of continuous biomanufacturing.
Examples of benefits commonly reported in the literature are: enhanced
efficiency and productivity, reduced operational costs, reduced waste or more
consistent product quality (Gerstweiler, Bi and Middelberg, 2021; Rathore,
Thakur and Kateja, 2023). Also, regulatory authorities have been increasingly
supporting this new production paradigm for biopharmaceuticals (Hernandez,
2015).
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Continuous upstream technologies, such as perfusion and chemostat cell
cultures, are the most common examples of continuous bioprocesses applied
to biologics manufacture. Also, the emergence of continuous chromatography
has paved the way for the integration of continuous upstream and downstream

processing.

Examples of biopharma investment in the research and implementation of

continuous technologies have been reported:

e In 2014, Amgen completed a $200 million plant in Singapore for the

use of continuous purification of monoclonal antibodies (Palmer, 2014);

e In 2019, Sanofi Genzyme opened a $320 million manufacturing facility
in Framingham (MA, USA) for continuous mAb production;

e In 2022, Just-Evotec inaugurated its first modular continuous
manufacturing “facility of the future” in Washington, named J.POD
biologics. The company is also in process of building a similar $180
million facility in Toulouse, with a projected operational date set for
2024 (Kansteiner, 2021);

Single-use (SU) technology combined with continuous processing is also a
pathway that has been studied to decrease overall production costs in
biopharmaceuticals production (Hummel et al.,, 2019; Mahal, Branton and
Farid, 2021). While in a batch process the increment in cost - due to the high
consumables expenditure at large scales - can be discouraging (Shukla and
Gottschalk, 2013), the synergy between SU and continuous technology allows
for the reduction of equipment sizes (and disposables), thus, turning the
application of single-use attractive. Single-use facilities may lead to cost
savings related to avoidable cleaning procedures, ease of validation and
consequent higher throughputs. A leading example of continuous single-use
technology applied in biomanufacturing is Amgen’s facility in Singapore for the

production of monoclonal antibodies (Shukla et al., 2017).
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1.5.1.11 Continuous Upstream Processing

Batch commercial manufacture often requires reactors over 2000L, more
commonly between 10,000 and 20,000L, which involves significant capital
investments, large footprints and large energetic inputs for heating and cooling.
With bioreactors operating in continuous mode, not only is the equipment
required smaller (around 500 - 2000L for equivalent demands), but the
operation can also be steadier and the productivity higher, as cells remain in
their optimal growth and production phases for longer periods and the
production downtime is minimised (Langer and Rader, 2014; Bielser et al.,
2018).

Efforts have been made to improve perfusion architecture and further augment
the advantages of continuous technology. Improvement efforts include the
increase in host cell line stability and robustness to deliver high productivities
for periods of 2 to 3 months, media optimisation that can support cell densities
higher than 50E6 cells/mL at perfusion rates between 1 and 2 reactor vol/day,
automatic cell density control and foam control (Konstantinov and Cooney,
2015).

A list of commercialised monoclonal antibodies produced through continuous
cell culture is presented in Table 1.2. There is limited data on the annual
demand or bioreactor volumes for these products; however, personal
communications with Janssen representatives indicate that these monoclonal
antibodies are typically produced at lower volumes compared to those
commonly seen in batch production. Interestingly, none of the examples
presented in Table 1.2 are included in the top 20 best-selling products listed in
Table 1.1, which could reflect the cautious adoption of continuous

biomanufacturing by large BioPharma companies.
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Table 1.2 - Recombinant monoclonal antibodies produced via perfusion cell
culture. Source: Pollock, Ho, and Farid, 2013; Chu and Robinson, 2001;
Lindskog, 2018.

Retention

Product Name Type Approval Company _
Device

ReoPro® mADb 1994 Janssen Spin filter
Remicade® mAb 1998 Janssen Spin filter
Simulect® mAb 1998 Novartis Rotational sieve
Simponi® mAb 2009 Janssen ATF
Stelara® mAb 2009 Janssen ATF

1.5.1.1.2 Continuous Downstream Processing

While continuous upstream is reasonably well established and thoroughly
reported in literature (Henry, Kwok and Piret, 2008; Langer and Rader, 2014,
Desai, 2015; Dorceus et al., 2017; Bielser et al., 2018; Kim et al., 2019),
adoption of continuous downstream processes has been slow due to the
ongoing maturation of the technologies and the need for proof of cost-

effectiveness.

One of the main advantages of continuous DSP in bioprocesses is the decrease
in hold steps and residence times (which can go up to 72h), which not only
contributes to the production overall throughput, but also decreases the
likelihood of degradation of unstable products (Warikoo et al., 2012; Godawat
et al., 2015).

In conventional processes, DSP costs can range from 50 to 90% of the total
cost of goods. Moreover, around two thirds of total DSP equipment costs can
be attributed to chromatography units (Strube et al., 2011; Subramanian, 2012).
In continuous separation processes, costs can be reduced due to the decrease

in equipment size and buffer consumption (Cramer and Holstein, 2011).
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Most common continuous DSP operations in mAb production include
continuous chromatography steps for capture and polishing (e.g. periodic-
counter current chromatography - PCC, simulated moving bed - SMB, multi-
column counter-current solvent gradient continuous purification - MCSGP,
continuous annular chromatography - CAC) and continuous filtration applied to
virus removal, concentration and buffer exchange (e.g. single-pass tangential
flow filtration - SPTFF, alternating tangential flow filtration - ATF). Continuous
virus inactivation can be also achieved by having alternating tanks incubation
(semi-continuous) and, most recently, Martins et al. (2019) presented a packed-
bed reactor coupled with an in-line mixer which proved to be as efficient as the
operation in batch (Martins et al., 2019). Also, in mAb production, Protein A
elution step is commonly done at low pH, thus, continuous capture

enables/facilitates the virus inactivation.

151121 Continuous Chromatography

In chromatography, as the mass of protein to purify increases with scale, the
required resin, buffer and elution volumes also escalate. Moreover, in
conventional batch chromatography, the resin is not loaded to its maximum
capacity to avoid losses and it is typically cycled multiple times per batch. In
continuous chromatography, instead of the average 80% capacity used,
columns can achieve complete saturation, as the flow-through is loaded to a
second column connected (Hernandez, 2015). This process maximises
productivity and reports cite improvements in resin utilisation of up to 30%
(Hernandez, 2015), with associated 20 to 40% savings in resin volume and 20%
in buffer (Shanley, 2017).

Periodic counter-current chromatography (PCC) was developed by GE
Healthcare and uses multiple packed columns in a continuous bind-and-elute
purification process. The most important focus of a PCC design is to ensure
that the number of columns is so that the loading time is greater or equal to the
time needed for elution, recovery and regeneration (Zydney, 2016). Simulated
moving bed technology is also based on a counter-current operation, however,

it is typically run with four columns assigned to four zones and provides high-
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resolution separation of compounds due to molecules with different interaction
strengths being eluted in different streams (Subramanian, 2018). Although PCC
and SMB are the most common chromatography setups adopted in continuous
processing, there are other configurations studied to provide higher
productivity, smaller resin and buffer requirements and smaller footprints
compared to conventional batch purification steps (Vogel et al., 2002; Aumann
and Morbidelli, 2007; Muller-Spath et al., 2010). A scheme of different systems

is presented in Figure 1.5.

As continuous chromatography is undoubtedly the most well-characterised
process within continuous downstream processing, several suppliers have
been making available continuous chromatography systems for the purification
of biopharmaceuticals. A list of pilot and large-scale continuous

chromatography equipment is shared in Table 1.3.
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Figure 1.5 - Continuous chromatography configurations in pharmaceuticals
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processing. a) Periodic counter-current chromatography - PCC, b) simulated
moving bed - SMB, c) multi-column solvent gradient purification —- MCSGP and
d) continuous annular chromatography. Source: (Jungbauer, 2013; Rathore et
al., 2015)
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Table 1.3 - List of continuous chromatography equipment, specifications, and
suppliers.

Columns Flow
Equipment Chromatography mstal!ed Rates Supplier
Name type (basic (L/h)
setup)
0.03 GE Healthcare (New
AKTA PCC PCC 4 — 2000 Jersey, USA)
: 0.06
BioSC PCC 6 ~90 Novasep (Pompey, France)
Contichrom 0.01 ChromaCon (Zurique,
CUBE SMB/MCSGP 2 -6 Switzerland)
Cadence SMB 8 0.06 Ex-Pall Life Sciences (New
BioSMB - 350 York, USA)
0.06 : .
SembaPro SMB 8 _120 Semba (Wiscousin, USA)
151122 Continuous Filtration

Single-pass tangential flow filtration (SPTFF) was designed to answer the
needs of converting conventional tangential flow filtration, which involves the
recirculation of liquid across a recirculation tank, into a continuous unit
operation. In SPTFF, which can be used for product concentration and
diafiltration, as soon as the feed reaches the filtration module, it is distributed
over multiple cassettes and, in a single-pass, it must reach the desired
concentration. More recently, Pall has also developed an in-line configuration
of SPTFF which allows for in-line concentration (ILC) and in-line diafiltration
(ILD) of the product (Dizon-Maspat et al., 2011). SPTFF can also be used in
the virus filtration step, where typical instalments rely on an in-line SPTFF built
with a filter for virus clearance in between the chromatography and

concentration units (Clutterbuck et al., 2017).

In continuous biopharmaceuticals production, alternating tangential flow
filtration (ATF) is frequently used to separate cells from the product and
retain/return them in/to the perfusion. The low shear pump built in these
systems prevents cells from damage, while the alternating flow maintains the

flux by unblocking any clogged fibres (Zydney, 2016).
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1.5.2 Column-free purification strategies

As mentioned in Section 0, despite its good performance in mAb capture,
protein A affinity chromatography constitutes a very expensive step in the
overall process, which has led to a longstanding interest in purification
alternatives from both academia and industry. As the goal of this thesis is to
investigate how competitive such alternatives can be compared with protein A
chromatography, the following sections provide insights into the technical

parameters and results obtained for several options.

Different choices include aqueous two-phase systems and protein precipitation,
which have showed to enable higher volume feeds, thus, lowering processing
times (Gronemeyer, Ditz and Strube, 2014).

1.5.2.1 Membrane Chromatography

Membrane chromatography employs membranes with immobilised ligands that
facilitate selective binding of target molecules. Unlike conventional
chromatographic techniques, membrane chromatography integrates the
separation and purification processes into a single step, thereby streamlining
production workflows. The technology is highly compatible with continuous
processing, allowing for effective operation in integrated and scalable systems
(Muthukumar et al., 2017; Trnovec et al., 2020; Chen et al., 2023)

In the context of monoclonal antibody (mAb) purification, membrane
chromatography has also been demonstrated (Osuofa and Husson, 2023;
Schmitz, Minceva and Kampmann, 2024). For instance, Osuofa et al. (2023)
have shown that membrane chromatography can achieve high purification
levels with good product recovery compared to traditional methods.
Specifically, membrane chromatography setups have demonstrated dynamic
binding capacities of approximately 40 mg/mL, comparable to traditional resins,
with faster binding times. Another example of the successful application of
membrane chromatography is shared by Schmitz et al. (2024), presented a
membrane chromatography system designed for mAb purification with a
dynamic binding capacity up to 150 mg/mL and 95% removal of impurities.
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Challenges related to membrane chromatography include membrane fouling
and limited selectivity for certain feedstocks, which can impact the overall
efficiency of the process. Moreover, membrane chromatography generally
exhibits lower selectivity compared to Protein A affinity chromatography. This
lower specificity can result in less efficient separation of antibodies from other

proteins and impurities, affecting overall product purity (Ghosh, 2002).

1.5.2.2 Aqueous Two-Phase Extraction (ATPE)

The interest in aqueous two-phase extraction for biopharmaceutical processes
is linked to its high biocompatibility with biomolecules (phases are 80 to 90%
water), high capacity and ease of scaling-up (Rosa et al., 2010; Igbal et al.,
2016). Also, in contrast to other chromatographic or non-chromatography
techniques, ATPE enables the purification of proteins from crude feedstocks,
showing both clarification and purification/concentration functionalities. Figure

1.6 represents a continuous ATPE scheme developed by Rosa et al. (2012).

The application of ATPE in mAb purification has been widely reported (e.g.,
Bras et al., 2017; Azevedo, Rosa, and Ferreira, 2008; Oelmeier, Ladd-Effio,
and Hubbuch, 2013; Azevedo et al., 2007). In 2013, Rosa et al. presented a
continuous ATPE setup for the purification of human IgG using a multi-stage
extractor, where recovery yields between 80 and 100% and purities between
97 and 100% were obtained. The economic and environmental evaluation of
ATPE in continuous mode was also performed by the researchers, who
estimate 39% cost-savings comparing to conventional protein A
chromatography (batch-based) (Rosa et al, 2011). More recent studies by
Anupa et al. demonstrated the use of ATPE for the purification of mAbs with a
PEG-sulfate sytem, achieving yields higher than 80% and purities of 97%
(Anupa et al., 2024). Similarly, Lohmann et al. explored a novel approach
combining ATPE and precipitation for mAb capture. The integrated process
resulted in a mAb recovery yield of 85% with significant impurity removal
(Lohmann and Strube, 2020).

Challenges of ATPE typically relate to the purity levels reached compared with

affinity chromatography and the sensitivity to feed stream variability;
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nevertheless, process optimisation is ongoing and new ATPE strategies are
being developed to be technical and financially competitive with current protein
A capture (Low, Leary and Pujar, 2007; Gronemeyer, Ditz and Strube, 2014).
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Figure 1.6 — Schematic of a glass continuous ATPE extractor (Rosa et al.,
2012). The column is operated at room temperature in a continuous operation
mode, with the top (TP) PEG-rich phase being continuously dispersed at the
bottom (BP) of the column through a capillar and the bottom phosphate-rich
phase being continuously fed at the top of the column. CS stands for cells
supernatant (or HCCF - harvest cell culture fluid - , as further referenced in this

thesis).

1.5.2.3 Precipitation

Precipitation has been used both for purifying target products or reducing
impurities in biopharmaceutical production. Common systems comprise co-
precipitation of antibodies or impurities with negatively or positively charged
agents, respectively (e.g., Peram et al., 2010; Ma et al., 2010; McDonald et al.,
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2009). Precipitation with caprylic acid or PEG has been also broadly applied in
fractionation of antibodies and blood factors from plasma (Buchacher and
Curling, 2019). PEG precipitation can also be combined with isoelectric

precipitation to improve separation efficiency (Lain et al., 2010).

Literature shows that precipitation is mostly suitable when feedstocks have a
high titre and fairly high purity, as the selectivity of the technique is poor
compared to other alternatives (Jungbauer, 2013; Li et al., 2019); nevertheless,
precipitation in continuous mode is an interesting option in non-protein A
platforms for mAb production. In 2014, Hammerschmidt et al. modelled a series
of precipitation steps in a fully continuous recombinant mAb production scheme
without protein A affinity chromatography and performed an economic analysis
that showed that the operation was cost-competitive with a conventional mAb
batch process at titres higher than 6 g/L (Figure 1.7a). Kateja et al. presented
continuous precipitation in a coiled flow inverter reactor (Figure 1.7b) and
obtained 7 times higher productivities and 5 times lower cycle times and
equipment utilisation comparing to batch processes, with a recovery yield
higher than 95% for the step (Kateja et al., 2016 & 2018). Following the work of
Burgstaller and Satzer (2019), Li et al. (2019) used zinc chloride coupled with
PEG to precipitate mAbs in a tubular reactor directly from harvested cell culture,
showing a fully integrated continuous process for precipitation, dewatering,
washing, and mAb resolubilisation with an overall product recovery of 80%
(Figure 1.7c).
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Figure 1.7 - Fully continuous non-Protein A flowsheets for antibodies
production with integrated purification by precipitation. a) Series of four
precipitation steps presented by (Hammerschmidt et al., 2014), where caprylic
and CacClz precipitate contaminants and PEG and ethanol precipitate the
product. b) Coiled flow inversion reactor presented by (Kateja et al., 2016) with
the same precipitation steps than previous scheme, but with several pumping
strategies to deliver the reagents inside the coiled reactor. ¢) Continuous
precipitation system coupled with counter current tangential flow filtration for
mAD separation, dewatering and washing (Li et al., 2019).

1.5.2.4 Crystallisation

Crystallisation is a technique that can be for purifying and concentrating
monoclonal antibodies and involves inducing the formation of a solid crystalline
phase from a protein solution. This method leverages the unique

physicochemical properties of molecules to achieve high purity and
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concentration, making it particularly suitable for final product polishing and
formulation (Chougale et al., 2023).

While both precipitation and crystallisation techniques aim to separate the
target molecule from a solution by changing its conformation, crystallisation
typically results in higher purity and concentration due to the selective nature of
crystal formation (Pu and Hadinoto, 2020). In contrast, precipitation often
involves less selective aggregation of proteins and impurities, which might
require additional purification steps, but generally results in higher yields.

Several studies have demonstrated the application of crystallisation in mAb
production. For example, Rajoub et al. demonstrated that conventional protein
A chromatography could be replaced with a single crystallisation step. The
process achieved a final purity of 98% and a recovery yield of 85% (Rajoub et
al., 2023).

Nevertheless, the main challenge regarding crystallisation lies on the
optimisation of conditions for effective crystallisation, which can be complex and
time-consuming, as it requires careful adjustment of numerous factors (e.g.,
temperature, pH, concentration) to achieve high-quality crystals (Chen et al.,
2021).

1.5.3 Environmental analysis of biomanufacturing

Recent attention has also been directed toward the environmental impact of the
biopharmaceutical industry, with emphasis on water and energy consumption

as well as waste generation during production.

This emphasis on sustainability has driven the integration of environmental
analysis into biomanufacturing processes. Two key metrics, Process Mass
Intensity (PMI) and Life Cycle Assessment (LCA) outputs, have been playing a
pivotal role in assessing and optimising the environmental performance of

biomanufacturing processes.
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1.5.3.1 Process Mass Intensity (PMI)

PMI is a straightforward metric that gauges the utilisation of raw materials
during a manufacturing process relative to the resulting product output. This
metric offers valuable insights into resource efficiency and waste generation of
a production scheme. Madabhushi et al. (2018) and Cataldo et al. (2020) have
also used the PMI to identify the main sources of waste generation and most
environmentally friendly process alternatives. Another metric, E-factor, is also
often used when evaluating the environmental impact of biochemical
processes. However, while the PMI relates to the total mass of all materials
used in the process, including the part corresponding to the product stream, the
E-factor is defined as the ratio of mass of waste generated to the mass of the

desired produc,t and excludes the components of the product stream.

Typical PMis for batch and continuous antibody manufacturing flowsheets have
been reported and present a wide range of values. Table 1.4 presents the PMI

values found across the literature.

However, due to their simplicity, both PMI and E-factor do have their limitations,
namely the inability to provide insights on the environmental impact coming
from the facility energy usage or the footprint associated to single-use plastics
consumption. Also, with novel policies regarding companies’ sustainability,
especially on carbon emissions, they lack the broader analysis needed from the

biopharmaceutical sector to answer to these concerns.
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Table 1.4 - PMI values found in literature for batch and continuous mAb

flowsheets. SS: stainless steel; SU: single use.

Batch Continuous
Reference Scale Assumptions PMis PMis
(kglyear) Water Consum. Water Consum.
(kg/kg) (kg/kg) kg/kg) (kg/kg)
Hoetal . ° (B:‘I"‘tCh.SS wrof 3000-  4000-
(2011) * “leaning water of = gn50 6000
tanks not included
e Batch & Conti SS
Iztjrzgglig)t 28 e Cleaning water of all 40000 25 54000 46
' tanks included
e Batch SS
Conti SU
Pollock et 100- ° ) 3900 — 2300 —
al. (2017) 1000 °* Cleaningwaterof 2555 6-73 gppy 825
preparation tanks
not included
e Batch SS
. e Conti SS with AEX
';"ta;a?zh(;‘lsg)' N/A su 2600 140 1900 100
' e Cleaning water of
tanks not included
e Batch SS
e Conti SU for smaller
scales and SS for
Cataldoet 266 — 3000 -
al. (2020) 1000 larger scales 7000 N/A 2000 N/A

No information
about cleaning of
tanks

1.5.3.2 Life Cycle Assessment (LCA)

LCA is a more comprehensive methodology that analyses the environmental

impact of a product or process across its entire life cycle, encompassing stages

from raw material extraction to end-of-life disposal. It can be used to assess not

only water or consumables usage, but other factors, such as resource

depletion, energy consumption and greenhouse gas emissions.

Figure 1.8 shows the main stages followed in a typical LCA study.
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1. Goal definition

Defining the boundaries of the

assessment, including the life
cycle stages to be considered
and the environmental impact
categories to be evaluated.

I

2. Inventory Analysis

Collecting data on inputs and

outputs associated with each
life cycle stage, such as raw
materials, energy, emissions,

and waste.
I

3. Impact assessment

Evaluating the potential

environmental impacts of the
assessed system, which
includes quantifying impacts
in terms of environmental
indicators (e.g., climate
change, water usage).

I

4. Interpretation

Analysing and interpreting the

results to identify significant
environmental impacts and
potential areas for
improvement.

Figure 1.8 - LCA workflow from goal definition to interpretation of results.

1.5.3.2.1

In the context of the life cycle assessment, defining the goal refers to
establishing the specific objectives and purposes of conducting the assessment
for a particular process. By clearly defining the goal upfront, one can ensure
that the assessment is tailored to meet specific objectives and address the
needs of the stakeholders (BioPhorum, 2023). For instance, different LCA goals
may involve optimising the environmental performance of a process, or

comparing the environmental outputs of different alternatives, or simply

Goal and scope in LCA

analysing the environmental markers of a specific process.
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The scope of an LCA defines the boundaries and parameters of the
assessment, including what processes and inputs are included and excluded.
This encompasses defining the functional unit (e.g., number of batches, kg of
mADb), in which the performance of the process is based, and establishing the
system boundaries, which delineate the stages of the life cycle to be
considered. The system boundary is a fundamental concept, as its choice
significantly impacts the accuracy of the LCA results. The most typical system

boundaries are described in Figure 1.9.

Cradle-to-Gate

Supply Chain In this approach, the system boundary extends from raw material
extraction and manufacturing through to the point of sale at "the
gate”. Cradle-to-gate assessments are often used to evaluate the

Transport of environmental performance of a product or process up to the point of

materials delivery to the customer or user.

Main process Gate-to-Gate

within the Facility

This boundary begins at a specific point in the product's life cycle,
such as the start of manufacturing, and ends at another, typically the

completion of that process or manufacturing step. Gate-to-gate

Transport of assessments are useful when the focus is on a specific process or
product operation rather than the entire life cycle
Use and disposal Cradle-to-Grave
of product This approach encompasses the entire life cycle of a product,

service, or process, from the extraction of raw materials through

, production, transportation, use, and eventually disposal or recycling.
D|sppsa| of It provides a comprehensive view of all the environmental impacts
Equipment associated with the system throughout its entire life.

Figure 1.9 - System boundaries in an LCA study.

Additionally, the scope outlines the allocation procedures, data sources, and
assumptions used in the assessment to ensure consistency and accuracy. The
impact categories of interest are also identified based on the goals. A list
covering the most common impact categories is showed below (ISO, 2006a &
2006b):

¢ Global Warming Potential (GWP): Measures the contribution to climate

change in terms of equivalent carbon dioxide emissions.

e Ozone Depletion Potential (ODP): Assesses the potential for chemicals

to deplete the ozone layer in the atmosphere.
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Acidification Potential (AP): Evaluates the contribution to acid rain and

acidification of ecosystems.

Eutrophication Potential (EP): Measures the potential for nutrient
enrichment leading to excessive growth of algae and aquatic plant

species, which can harm ecosystems.

Human Toxicity Potential (HTP): Assesses the potential for exposure to

toxic substances and their impacts on human health.

Freshwater Ecotoxicity Potential (FEP): Measures the potential for

chemicals to harm freshwater ecosystems and aquatic life.

Terrestrial Ecotoxicity Potential (TEP): Evaluates the potential for

chemicals to harm terrestrial ecosystems and organisms.

Marine Ecotoxicity Potential (MEP): Assesses the potential for chemicals

to harm marine ecosystems and organisms.

Photochemical Ozone Formation Potential (POFP): Measures the
potential for chemicals to contribute to the formation of ground-level

ozone and smog.

Depletion of Abiotic Resources: Evaluates the depletion of non-

renewable resources, such as minerals and fossil fuels.

Depletion of Fossil Energy Resources: Assesses the consumption of
fossil fuels and their contribution to resource depletion.

Water Consumption: Measures the amount of water withdrawn or

consumed during a life cycle.

Land Use: Evaluates the amount of land area required for a particular

activity, including agriculture, forestry, and infrastructure.

Occupational Health and Safety: Assesses the risks to workers' health

and safety associated with a product or process.

Noise Pollution: Measures the contribution to noise pollution from

various activities or processes.
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e Visual Impact: Assesses the aesthetic impact of a product or process on

landscapes and views.

In this thesis, only the climate change impact category was assessed, as it
represents a critical and widely recognised environmental concern. The
decision not to disclose the values for other impact categories was based
on the reliability and robustness of the underlying data. The carbon emission
inputs were thoroughly reviewed in collaboration with project partners to
ensure their relevance. However, the available data for other impact
categories did not meet the same level of scrutiny, raising concerns about

their consistency and potential to produce misleading conclusions.

15322 Scopes of greenhouse gas emissions

The Greenhouse Gas Protocol, developed by the World Resources Institute
and the World Business Council for Sustainable Development, outlines three
scopes of emissions to categorise greenhouse gas emissions associated with
the activities within an organisation. By categorising emissions into these
scopes, companies can better understand the full extent of their greenhouse
gas footprint and identify opportunities for emissions reduction and mitigation
throughout their operations and value chain (WBCSD and WRI, 2012).

Each scope encompasses different stages and types of environmental impacts.
e Scope 1 - Direct Emissions

Scope 1 focuses on direct emissions from sources that are owned or controlled
by the biopharmaceutical company itself. In the biopharma context, Scope 1
emissions might include energy consumption associated with the operation of
facilities, including manufacturing, heating, cooling, lighting and waste

generated on-site, including hazardous waste and non-hazardous waste.
e Scope 2 - Indirect Emissions

Scope 2 focuses on indirect emissions that result from the generation of
purchased electricity, heat, or steam used by the biopharmaceutical company.
These emissions occur outside the company's control but are associated with

its energy consumption.
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e Scope 3 - Indirect Value Chain Emissions

Scope 3 involves a broader perspective, looking at indirect emissions occurring
outside of the company's operations. These emissions are often more
challenging to quantify and manage because they involve various suppliers,
customers, and other stakeholders. In the context of biopharma, Scope 3
emissions might include emissions during raw materials production, distribution
and emissions from the disposal, recycling, or treatment of products at the end
of their life cycle. Scope 3 emissions often have a significant impact on a
product's overall environmental footprint but can be complex to assess due to

the multitude of external factors involved.

1.56.3.23 LCA in the Biopharmaceutical Sector

The health sector contributes with around 4-5% for the total global emissions,
primarily due to supply chain operations and the global shipping of equipment
and medicines (Nelson, 2023). Thus, large pharmaceutical companies like
GSK, AstraZeneca, and Roche, and academia are launching sustainability
programmes, indicating their serious commitment to addressing sustainability
challenges (Nelson, 2023). Also, CO2 emissions taxes currently in-place are

providing a financial incentive for businesses to reduce their carbon emissions.

From the several impact categories provided by LCA (ISO, 2006a, 2006b), the
Global Warming Potential (GWP) has been the one more commonly assessed
and shared by industry to convey its sustainability efforts. GWP measures the
potential for global warming caused by greenhouse gas emissions, reported in
CO2-equivalents, and helps in understanding the relative environmental burden
of various greenhouse gases. Also, carbon footprint, and more specifically
Product Carbon Footprint (PCF), as the quantitative measure of actual
emissions linked to specific activity, is typically used when referring to the
environmental impact of a product. Armed with this information, industry can
implement strategies to minimise their footprint and contribute to overall
environmental sustainability, while complying with governmental regulation and

protecting their reputation (BioPhorum, 2023).
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LCA has been already used and reported in different biomanufacturing contexts
(Table 1.5). The impact of single-use systems versus conventional stainless-
steel facilities has been evaluated and it has been shown that SU flowsheets
can contribute to reducing the environmental impact of biopharmaceutical
products (e.g., Sinclair et al., 2008; Pietrzykowski et al., 2013; Budzinski et al.,
2022). Also, Bunnak et al. (2016) conducted an LCA and cost assessment of
fed-batch and perfusion (stainless-steel based) manufacturing processes for
monoclonal antibodies, highlighting the trade-offs between environmental

impact and manufacturing costs associated with different process strategies.

The studies presented in Table 1.5 used the raw materials (e.g., media,

buffers), energy consumption, water consumption and waste generation taken

from modelling different flowsheets as input to their lifecycle assessment.

Table 1.5 - System boundary of the different LCA studies found in literature in

the biopharmaceutical space.

Case study (Reference) System boundary

Batch SS & SU

_ _ Cradle-to-grave
(Sinclair et al., 2008)

Batch SS & SU

. _ Cradle-to-grave
(Pietrzykowski et al., 2013)

FB SS & perfusion SS (batch DSP)

Cradle-to-gate
(Bunnak et al., 2016)

Perfusion SS & perfusion SU (batch DSP)

) . Cradle-to-gate
(Renteria Gamis et al., 2019)

FB SS, FB SU, perfusion SS & perfusion SU

Gate-to-gate
(Amasawa et al., 2021)

Batch SU

o Cradle-to-gate
(Budzinski et al., 2022)

Nevertheless, the biopharmaceutical sector is lacking reports on a full and

comprehensive environmental assessment of different batch and end-to-end
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continuous manufacturing processes. A Product Carbon Footprint evaluation
from raw material production to waste disposal, encompassing all three
analysis scopes (Scopes 1, 2 and 3) and integrating industry-based
assumptions for facility requirements (e.g., energy) and state-of-the-art
flowsheets (e.g., end-to-end SU continuous strategies) would provide important

insights for a more informed and environmentally friendly decision-making.

1.5.4 Process Analytical Technologies in

biomanufacturing

Process Analytical Technologies (PAT) have emerged as vital tools in
biomanufacturing, aiming to provide real-time insights and control over critical
parameters and allowing for the promptly adjustment of process conditions. As
these technologies have a strong foundation in the Quality by Design (QbD)
initiative introduced by the U.S. Food and Drug Administration (FDA) in 2004,
they are used to improve pharmaceutical manufacture by integrating analytical
tools, sensor technologies, and data analysis methods into the manufacturing
process (Rathore et al., 2008; Gillespie et al., 2022; Rathore, Jesubalan and
Thakur, 2022). Also, with the emergence of Industry 4.0 that emphasises the
integration of digital technologies, data-driven processes and smart
manufacture, PAT contributes with advanced analytics and interconnectedness
of machines, systems, and processes (Chen et al., 2020; Narayanan et al.,
2020; Wasalathanthri, Rehmann, et al., 2020).

As the biopharmaceutical industry undergoes technology advances with the
integration of end-to-end continuous manufacture strategies, it must also
ensure product quality, safety and production efficiency targets are met. PAT’s
ability to provide real-time data supports regulatory compliance and aligns with
integrated continuous bioprocessing (ICB) demands on control and
consistency, while enabling possible cost savings. Table 1.6 summarises the
main economic benefits that can be provided by integrating PAT in integrated

continuous bioprocessing.
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Table 1.6

Key improvements from implementing process analytical

technologies in biomanufacturing.

Benefit Impact to ICB References
PAT provides immediate insights into the
, , ] Patel et al., 2017,
process behaviour, enabling rapid
, N Czeterko et al., 2018;
adjustments to process conditions and _
o , _ Feidl et al., 2019;
Reduce minimising the risk of producing off-

batch failure

specification products. Rapid aggregation,
glycosylation and glucose measurements
have proved to be crucial to anticipate out-

of-spec batches.

M. Y. Lietal., 2019;
Goldrick et al., 2020;
Rafferty et al., 2020;
Schwarz et al., 2022

The integration of PAT further enhances
process performance by providing a

continuous stream of data for monitoring

Ozturk et al., 1997

Virtanen et al., 2017
Brunner et al., 2019
Goldrick et al., 2019

Improve
and control. Augmented cell culture Moore, Sanford and
process o . o
productivities, increases in resin utilisation Zhang, 2019
performance _ )
or decrease in buffer consumption are Lofgren et al., 2021
some examples of PAT economic benefits Esmonde-White, Cuellar
on the process performance front. and Lewis, 2022
Tiwari et al., 2023
Bro, Kwiatkowski and
_ o Tolstrup, 2018
The real-time monitoring and control _
Reduce _ Wasalathanthri, Feroz, et
offered by PAT contribute to further
QCQA and al., 2020

labour costs

reducing in-process (and release) testing

and, thus, materials and labour costs.

Gomis-Fons et al., 2020
Schmidt et al., 2021
Schwarz et al., 2022

Apart from reducing batch failure, improving process performance or reducing

QCOQA costs at commercial scale, PAT can also enhance the understanding of

critical parameters and their impact on product quality attributes in ICB.

Examples of PAT utilisation in process development to gain process

understanding and build robust manufacturing strategies have also been
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shared in literature (e.g., Metze, 2020; Wasalathanthri et al., 2020; Santos et
al., 2019; Sokolov et al., 2021).

Several PAT techniques have been integrated in continuous biomanufacturing.
These techniques include spectroscopic techniques, chromatography and

other sensors with multivariate data analysis (MVDA).

Spectroscopic techniques, including Infrared (IR), Raman, and Near-Infrared
(NIR) spectroscopy, have gained prominence due to their non-invasive and
real-time monitoring capabilities. In continuous cell culture processes, IR and
Raman spectroscopy are used for monitoring cellular metabolic activity, nutrient
consumption, and the production of metabolites (Rathore et al., 2015; Goldrick
et al., 2020). NIR spectroscopy is employed for rapid analysis of critical
parameters such as nutrient concentration, cell density, and product quality

attributes during fermentation (Vogelsang et al., 2019).

Chromatographic  techniques, such as High-Performance Liquid
Chromatography (HPLC) and Liquid Chromatography-Mass Spectrometry (LC-
MS), are essentially used for analysing product purity and post-translational
modifications in continuous biomanufacturing processes (Patel et al., 2017;
Chemmalil et al., 2021).

Mass spectrometry (MS) techniques are known for their ability to provide
comprehensive information on protein composition, modifications, and
impurities. Matrix-Assisted Laser Desorption/lonisation Time-of-Flight (MALDI-
TOF) and LC-MS are extensively used for peptide mapping, protein
identification, and characterisation of post-translational modifications (Goh et
al., 2020; Bose et al., 2022).

On the sensors front, biomass and viability probes are commonly used in real-
time monitoring in continuous biomanufacturing. Capacitance, dielectric, and
impedance-based sensors enable the assessment of cell viability, growth
kinetics, and biomass concentration, facilitating timely adjustments to culture
conditions (Konakovsky et al., 2015; Metze et al., 2020).

In continuous biomanufacturing, the integration of PAT techniques is also
accompanied by advanced multivariate data analysis methods. MVDA is

employed to extract meaningful information, interpret complex data, detect
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patterns, and enable real-time process monitoring, fault detection, and
deviation prediction (Mercier et al., 2013; Goldrick et al., 2017; Wasalathanthri,
Rehmann, et al., 2020). Also, with the advances in sensor technologies and
MVDA models, the inception of digital twins in continuous manufacturing of
biopharmaceuticals marked a transformative phase in the industry, introducing
innovative approaches to enhance process efficiency and adaptability (Park et
al., 2021; Rathore et al., 2021; Gerzon, Sheng and Kirkitadze, 2022; Schmidt
et al., 2022). Digital twins are data-driven, virtual and dynamic representations
of bioprocesses and mirror their real action, enabling real-time monitoring,
analysis, and optimisation. Ultimately, these digital replicas aim to enable
model-based process control, and recent studies have showed their integration
in small-scale end-to-end continuous manufacturing of mAbs with remarkable
impacts on attaining consistent product quality (e.g., low HCP levels and low
aggregate levels) with reduced labour (Gomis-Fons et al., 2020; Tiwari et al.,
2023).

1.6 Decision-support tools in biomanufacturing

The inception of decision-support tools as a mesh of human judgement and
powerful computer algorithms dates from the mid-70’s (Keen, 1987). Since
then, these tools have been used across agriculture (e.g., Kure, Thysen and
Kristense, 1997; Rose et al., 2016), chemical (e.g., Grunow and Gunther,
2008), food (e.g., Arason et al., 2010), health care (e.g., Bryan and Boren,
2008) and construction (e.g., Shen and Chung, 2002) industries, supporting the

design, optimisation, evaluation and planning of procedures.

Over the last 40 years, computer-aided simulation tools have been developed
to capture both business and technical features of biomanufacturing, mainly
focusing on biopharmaceutical production, as the fastest growing biotech-
based market. Insights into the impact of process modifications on the capacity,
cost of goods and environmental footprint of existing manufacturing facilities
have been demonstrated (e.g., George, Titchener-Hooker and Farid, 2007; Liu
etal., 2013; Bunnak et al., 2016; Pollock et al., 2017; Mahal, Branton and Farid,

2021) and the awareness for sources of uncertainties (e.g., batch titre, step
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yields) in biomanufacturing has already been raised and integrated in these
tools (e.g., Farid, Washbrook and Titchener-Hooker, 2005; Rajapakse,
Titchener-Hooker and Farid, 2005; Pollock, Ho and Farid, 2013; Lyle et al.,
2023; Neves, Coffman and Farid, 2024).

This chapter will cover software and methodologies used in the design of
decision-support tools in biomanufacturing, as well as relevant industrial case
studies to which these tools were applied. As the goal of the present research
is to assess continuous bioprocesses from economic, environmental and
robustness perspectives, this review aims to highlight the benefits from
integrating technical and business computer simulation to expedite the

evaluation of alternatives.

1.6.1 Bioprocess software tools and mathematical

programming used in process economic models

As the design and performance of key unit operations can be described
mathematically, the characterisation of bioprocesses can typically be done in
silico. The choice of the most suitable software or programming languages to
build bioprocess models is done according to the most important characteristics
required by the user, such as flexibility, easy-to-use interface, in-built databases
or the capability of performing uncertainty analysis. In the need of modelling
novel production schemes, assessing the robustness of different alternatives
and implementing user-defined equations and methodologies, tools which
provide a higher level of flexibility will be prioritised. This section reviews several
off-the-shelf process economics tools and mathematical languages and

discusses the main differences, advantages and drawbacks of each option.

Different software tools for process design, economic analysis and scheduling
commercially available include SuperPro Designer (SPD) (Intelligen, Scotch
Plains, NJ, USA), aspenONE (Aspen Technology Inc., Cambridge, MA, USA)
and BioSolve Process (Biopharm Services Ltd, Birmingham, UK). SPD and
aspenONE are flowsheet-driven simulators that facilitate mass and energy

balances, equipment sizing, cost analysis, debottlenecking, scheduling and
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environmental impact assessment of modelled processes (Rouf et al., 2001;
Petrides and Siletti, 2005). One of the main advantages of these tools is to
integrate built-in process economic models and databases for raw materials,
consumables and equipment costs. However, these software lack flexibility
when considering the creation of user-defined models or the use of probability
distributions to represent the uncertainty in process parameters (Mustafa et al.,
2004). The coupling of SuperPro and Matlab was reported to enable uncertainty
analysis and optimisation of bioprocesses (Taras and Alexandria Woinaroschy,
2011; Brunet et al.,, 2012), yet, restrictions related with the availability of
variables to be selected were encountered revealing the lack of flexibility of this
methodology. BioSolve is an Excel-based process and cost modelling software
and shows a higher level of flexibility compared to SPD and aspenONE, since
it can perform multiple process comparisons (e.g., Torres-Acosta et al., 2016;
Sinclair and Monge, 2002 & 2010; Whitford, 2018). The application of BioSolve
has been regular in the most recent years when evaluating and comparing
continuous bioprocessing with batch (e.g., Pollard et al. 2016; Walther et al.
2015; Hummel et al. 2019). However, this software is unable to capture
dynamic modelling, such as the impact of delays, and lacks built-in features for
uncertainty analysis (Torres-Acosta et al., 2015 & 2016).

Process economic models developed in programming languages as C-
Sharp/C# (e.g., Simaria et al., 2014; Hassan et al., 2015) and Python (e.g.,
Cortes-Pena, 2019; Mahal, Branton and Farid, 2021; Lyle et al., 2023) have
been reported and illustrate the versatility and extended capabilities of these
tools with regard to process modelling, uncertainty analysis and application of
optimisation algorithms. Although targeted bioprocess simulation tools, such as
SPD, aspenONE or BioSolve can be beneficial due to the support given in
integrating specific and pre-characterised unit operations in a process queue,
the usage of generic mathematical packages can offer the additional flexibility
and statistical power needed when simulating modifications and analysing their
impact in a given process. Also, in fit-to-purpose models, where all operations,
resources, allocation and methods are user-defined, the biomanufacturing
facility can be customised and designed based on project priorities (e.g., sizing

or rating mode).
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1.6.2 Scope of Decision-Support Tools

The research into decision-support tools for bioprocesses generally focuses on
supporting the decision-making on i) process synthesis and facility design
and/or ii) portfolio management and capacity planning levels (Farid, 2012). In
the first realm, the performance of different facility and process designs involves
analysing economic metrics, throughput, and risk. Typically, various process
sequences or unit operations are modelled in prototypes of single or multi-
product facilities, and a range of sizing strategies can be chosen based on the
decision-makers' priorities or preferences. As for portfolio management and
capacity planning, the scope includes optimising the planning of development,
manufacturing, and commercial activities for various modalities, as well as
making decisions about building versus buying capacity for in-house and

contract manufacturing facilities (Farid, 2012).

The different methodologies and stages used in the support to decision-making
at both process design and portfolio/capacity management levels are explored
in the subsequent sections and inspire the workflow followed throughout the

research project.

1.6.2.1 Process Economics

The foundation of decision-support tools is process economics models. These
models are designed to execute detailed mass balances and equipment sizing
for every unit within the bioprocess and compute the economic (and
environmental) indicators for the overall process. Figure 1.10 summarises the

framework of these models.

54



Yields Mass
Concentration MASS BALANCE e STREAM . Volume
Factors DATA COMPOSITION .~

Dynamic Binding
Capacity Concentration

Liquid Waste
Solid Waste

Annual Qutput

Number of
batches

Waste
Disposable

Media
Preparation

Task Sequences

Resource
Requirements

PLANT
SPECIFICATIONS, PLANT OUTPUT

Resource

utilisation

Variable
Operating Costs

Operating
Costs

Media Costs

Labour Costs

Maintenance
Costs

Capital
Investment

Cost of Goods

Net Present
Value

Fixed
Operating Costs
[ Investment Costs H Capital Costs

COST DATA COST REPORT

Fermentation
Titer

DSP Yield

Expected Value

Standard

Deviation

Probabilities

RISK FACTORS

Figure 1.10 - Process economics model decomposition with key input and

output parameters. Adapted from Lim et al. (2005).

While the first step of a decision-making process deals with computing the
process economics based on deterministic modelling (i.e., single defined
conditions), the understanding of robustness includes the application of further
methods. The confidence during decision-making is supported by accounting
for uncertainties in the process (Monte Carlo simulation) or reconciling different
criteria and priorities (multi-criteria decision making). The analysis workflow is
shown in Figure 1.11 and some of the tools are described in the following

chapters.
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Figure 1.11 - Stages of alternatives analysis with the application of decision-

support tools.

1.6.2.1.1 Monte Carlo Simulation

In every large-scale bioprocess manufacturing there are inherent uncertainties,
thus, it is important to identify the key sources for technical deviations and
account for them in the cost model to generate representative results. The
application of stochastic modelling with Monte Carlo simulation allows to
capture the effect of these uncertainties. Random values following Gaussian,
triangular or Poisson distributions can be generated for certain parameters
(e.g.: titres after fermentation, yields, duration of the manufacturing tasks,
annual demands) and the impact on the decision-making is assessed by the
likelihood of outputs exceeding certain threshold values (e.g.: cost of goods

per gram of product) (Farid, Washbrook and Titchener-Hooker, 2005b).

At the process design level, Monte Carlo simulation has been used to capture
the robustness of different upstream (e.g., Lim et al., 2005; Pollock, Ho and
Farid, 2011; Li and

Venkatasubramanian, 2016; Torres-Acosta et al., 2016) strategies upon

2013) and downstream (e.g., Rosa et al,
technical fluctuations or to evaluate stainless steel based, single-use based or
hybrid facilities according to their likelihood of meeting desired cost of goods or
2005b).

Examples of Monte Carlo simulation application in predicting facility fit issues

project throughputs (Farid, Washbrook and Titchener-Hooker,

are also given by Stonier et al. (2013) and Yang et al. (2014). Stonier et al.
(2013) evaluated the facility fit for scale-up considering uncertainties in product
titre, eluate volumes and step yields (triangular distributions applied). The
likelihood of having product loss and of meeting facility demand was studied

and the impact on cost of goods was estimated, proving that Monte Carlo
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enables to identify risks and plan ahead on strategies to avoid facility
constraints (Stonier et al., 2013). At the portfolio level, examples are shared by
Rajapakse et al. (2005) and George and Farid (2008), who studied the impact
of, not only technical, but also market uncertainties (e.g.: annual demand, drug

price, market share) on the net present value using Monte Carlo simulations.

1.6.2.1.2 Multi-Criteria Decision Making

The evaluation of bioprocess viability can be extended through the application
of multi-criteria decision making (MCDM) methods, where a set of alternatives
is ranked in an order of preference according to pre-established attributes
(Konstantinidis et al., 2012). The general structure of an MCDM process is
depicted in Figure 1.12 and there are three tasks which should be highlighted:
the establishment of alternatives to consider, the evaluation criteria, and the
relative importance of the different criteria (weights) (Pavan and Todeschini,
2009). In the biopharmaceutical industry, MCDM methods have been used to
rank different manufacturing and portfolio approaches, aiding decision-makers
in implementing sustainable processes. Additionally, as the industry is
increasingly paying more attention to the environmental impact of
bioprocesses, environmental metrics should also be incorporated as criteria.
The ranking of different chromatography resins (e.g., Nfor et al., 2011; Stamatis
et al., 2019), different upstream (e.g., Pollock, Ho and Farid, 2013) and
downstream (e.g., Yang et al., 2017) technigues or conditions, or different
process flowsheets (e.g., Farid and Jenkins, 2018) are some of the examples
of MCDM application at the level of process design and facility fit. In capacity
planning, build versus buy capacity sourcing strategies were also ranked
according to certain business criteria, such as flexibility, location or

manufacturing knowledge by George et al. (2007).

Table 1.7 and Table 1.8 present a summary of research studies that used
Monte Carlo simulations and multi-criteria decision making methodologies,

highlighting the respective parameters in scope.
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Figure 1.12 - Generic structure of multi-criteria decision-making tools. Adapted
from (Pavan and Todeschini, 2009).
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Table 1.7 - Literature overview on decision-support tools used on process synthesis and facility design models.

Case Study (Reference)

Monte Carlo Simulation

Multi-criteria decision making

Sources of Uncertainty Metrics Alternatives Criteria
e Capital investment e Online control
SS versus SU facilities : 28 t?:ssgéj e Annual COG ¢ Validation effort
(Farid, Washbrook and Titchener-Hooker, 2005a)  Hvbrid e Construction time e Ease of scale-up
Y o Project throughput e Suppliers reliance
o Fermentation titre :
SS versus SU facilities  DSP Yield . \'\,AV?:thgIS?OSt . I(\:/Ingket Success
(Farid, Washbrook and Titchener-Hooker, 2005b) : Eg?se | demand « Turnaround time « Project Throughput
e Fermentation titer ;
Pooling strategies in perfusion e DSP Yield : \l\//IV?:cljl(a:ggtst e Project throughput
(Lim et al., 2005) . 'Il_'urnafround time « Operator Wage e COG
e Lang factor
Perfusion versus batch processes * Fermentation titre o CIP reagents cost o Annual output
(Lim et al., 2006) * DSPyield » Reagents cost * COG
- o Lang factor Media cost g o NPV
: e Purit e Productivity
&%?Z‘ta;?g%g?{ Design « Different chromatography resins | e éiel on . Ehroughput
N e Concentration factor e Cost
Continuous ATPS as capture step « Protein A DBC o WFI cost e Operating cost
(Rosa et al, 2011) ¢ Protein A lifespan o Waste/disposable cost| e Capital investment
: * COG . « Ease of control
Feb-batch vs perfusion (ATF vs spin-filter) e Scale of production e Water consumption * Project Throughput ° Fed—f)_atch culture * Initial CaP'tal expenditure o Operational flexibility
(Pollock, Ho and Farid, 2013) « Fermentation titer e Consumables * COG * Spinfilter perfusion * Water E-factor « Ease of development
' ' o Batch failures o ATF perfusion e Consumable E-factor o Ease of vaIidanF(J)n
e Batch-to-batch variability

Prediction of suboptimal facility fit
(Stonier et al., 20135)

Product Titer
Eluate Volumes

Step Yields

Product Mass Loss
COG

Batch duration
Processing time
Batch Cost

Prediction of suboptimal facility fit

Product titre Eluate volumes

Product mass loss

(Yang, Farid and Thornhill, 2014) e Step yields o Filter flux rates e Processing time

Process Intensification through continuous e Technical transfer delays

mode (Walther et al., 2015) « Product failure * Product demand * NPV

mAbs process development e Protein A yield o IEX /Il yield . COG

(Li and Venkatasubramanian, 2016) e Protein A loading o IEX /Il loading

&'ZEQFéoarl‘dg'(?l'}s) in mAbs manufacturing « Different formulation designs e Viscosity Fed-batch culture o Thermostability
ATPS and TFF as extraction strategies e Extract titer  Material Cost . COG

(Torres-Acosta et al., 2018)

Recovery Yield

Bioprocess design of CAR-T cell therapies
(Jenkins and Farid, 2018)

Capital investment
COG per dose
Process control
Process containment

Ease of scale-up
Ease of validation
Validation effort

Overall performance

aggregated score

o Different flowsheets

HTPS in chromatography design
(Stamatis et al., 2019)

Elution pH
Load Challenge
Elution linear velocity

Load pH o
Load conductivity
Load linear velocity

L]
L]
L]
.

DBC
Purit
Yiel
Elution Pool Volume

« Different chromatography resins

: 8%’%;“a|e'?‘é%§£nem « Ease of scale-up
 Process control * Ease of validation
« Process containment * Validation effort

¢ HMW species removal e Yield

e Purity change e Productivity

Process Economics of AAVs
(Lyle et al., 2023)

Cell productivity
Cell density

Centrifu?ation yield
AEX yield

COG

59




Table 1.8 - Literature overview on decision-support tools used on portfolio management and capacity models.

Case Study (Reference)

Monte Carlo Simulation

Multi-criteria decision making

Marketing Cost

market

Sources of Uncertainty Metrics Alternatives Criteria
e Market Share ¢ CMO Negotiation Time
e Drug price e Presence of a competitor
Portfolio management e Development Time e Mass per batch o NPV
(Rajapakse, Titchener-Hooker and Farid, 2005) | e Clinical Trial Time e Manufacturing Cost
e Personnel ¢ Product Demand
¢ Building Delay e CM Time
o NPV
o Profits to sales o Qualitative productivity score
. Profits to assets e Location
* Built plant . Profits to equi ibili
- quity o Flexibility
Capacity planning : Egmga'vr'rﬁgr?fj?gtﬁzwp?g{ﬂo) e Sales to fixed assets * Manufacturing knowledge
(George, Titchener-Hooker and Farid, 2007) « Hybrid Partner/Build 9 o Profit to current assets e Current assets to current
: Hgbrid oMorBuid « Sales to equity liabilities
* Average inverted COGS o Equity to liabilities
e Profit to manufacturing o Assets to equity
personnel
e Annual demand e Clinical trial costs
e Compound annual growth e Manufacturing Costs
rate e Process Yields
Portfolio management « Target identification cost e Fermentation titer o NPV
(George and Farid, 2008) e Scale-up cost e Batch success
e Commercial preparation cost e Ramp time to peak
L]
L]

FDA Review Cost

Decay time after market
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1.6.3 Decision-support tools in continuous

production of biopharmaceuticals

As biopharmaceutical companies have started the research and
implementation of continuous manufacturing in their processes, the application
of decision-support tools has been crucial on the overview and understanding
of the best alternatives comparing to batch schemes. This chapter highlights
some examples (Table 1.8) and conclusions obtained from applying process
economics and other decision-support methodologies to relevant industrial

case studies of continuous manufacturing.

As the primary focus of the biopharmaceutical industry on implementing
continuous manufacturing has typically been on upstream processing, the
comparison between perfusion technologies and fed-batch culture emerged as
one of the early scenarios for applying computer-based tools in the simulation
and assessment of continuous processes. Lim et al. (2006) described the
importance of Monte Carlo simulation in bioprocess design and showed that,
although the perfusion option had a higher NPV and required less capital
investment under deterministic evaluation, the fed-batch option was found to
be more robust when accounting for risks and uncertainties. Pollock et al.
(2013) used sensitivity analysis and multi-criteria decision making to compare
fed-batch with two perfusion strategies and concluded that the alternating
tangential filtration (ATF) perfusion operation could offer economic advantages
in cell culture; however, if environmental or operational feasibility were
preferable over economic savings, fed-batch was the preferred strategy.
Several options and conditions within perfusion cultivation, such as, different
pooling strategies or media optimisation were also evaluated (e.g., Lim et al.,
2005; Xu et al., 2017), showing relevant effects in production productivity. The
impact on capacity planning compared to fed-batch has also been studied,
indicating that perfusion processes could offer higher productivity and flexibility
compared to fed-batch processes, but they also required more complex
planning and management due to the continuous nature of the operation (e.qg.,

Siganporia et al., 2014).
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Regarding downstream processing, purification strategies have been a core
focus when simulating continuous processes. The impact of (semi) continuous
chromatography has been assessed by Pollock et al. (2013), who highlights the
reduced costs offered by PCC in the early phase — “proof of concept” material
generation. Xenopoulos (2015) also showed cost reductions higher than 20%
and 30-60% at commercial and clinical scales, respectively, using several
continuous DSP units integrated, with potential improvements as titre and scale
increase. The integration of continuous upstream and downstream processing
has also been simulated and the goal has been to understand the benefits that
companies can have by integrating either hybrid (batch and continuous unit
operations) or end-to-end continuous processes. Pollock et al. (2017) found
that an integrated continuous strategy can be preferred for early phase
production in small and medium-sized companies and that a hybrid strategy
can be preferred in commercial production and in companies with large
portfolios. Walther et al. (2015) used decision-support tools and Monte Carlo
simulation to compare the net present value of integrated continuous schemes
of mAb and non-mAb production and suggested savings of 55% on average
using continuous manufacturing instead of conventional batch platforms. More
recently, Mahal et al. (2021) demonstrated that single-use continuous facilities
offered more substantial cost savings over stainless-steel batch at lower and
medium scales (100-500 kg/year) compared to larger demands (>1000
kgl/year), as the latter required parallel production trains and, thus, higher

capital investments.

Although Table 1.9 depicts the broad application of decision-support tools in
continuous manufacture, it also reveals the limited research on crucial topics:
the combination of cost and environmental outputs of batch and end-to-end
continuous manufacturing processes, the analysis of end-to-end continuous
manufacturing through different production flowsheets (e.g., column-free
techniques comparing to standard column-based processes) and the
application of Monte Carlo simulations to evaluate the robustness of different
process under uncertainty were not found in literature altogether and are
essential to create a comprehensive overview of end-to-end continuous

manufacturing capabilities and trade-offs.
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Table 1.9 - Literature overview on decision support tools applied in continuous

biomanufacturing models. DES: discrete-event simulation; rec P: recombinant

protein.

Case Study/Reference Focus Simulation Demsegggpport Metrics
Pooling strategies in perfusion USP rec P Extend e Process Economics e Project throughput
(Lim et al., 2005) (DES) e Monte Carlo Simulation e COG
Perfusion versus batch : ¢ COG
processes USP rec P %tég;j : 'I\D/lrgr(]:t%s(s: aErfg g?rzwnijﬁztion ¢ Capital investment
(Lim et al., 2006) e NPV

e Project Throughput
Feb-batch vs perfusion (ATF vs Extend e Process Economics e COG
spin-filter) USP mAb (DES) e Monte Carlo Simulation e Batch failures
(Pollock, Ho and Farid, 2013) e MCDM e E-factor
e Operational benefits
Media cost and productivity in .
perfusion vs fed-batch USP mAb BioSolve : gﬁgl‘e::niict?\ﬂton;ﬁ;l sis) e COG
(Xu et al., 2017) y analy
¢ Facility utilisation
¢ Inventory Cost
¢ Inventory penalty
cost
¢ Variable cost
Capacity planning USP rec P General Algebraic e Process Economics e Fixed cost
(Siganporia et al., 2014) Modelling System e Optimisation ¢ Transportation cost
e Waste cost
e Backlog penalty cost
¢ Facility investment
o Retrofitting cost
e License cost
g:t%r;tmuous ATPS as capture DSP mAb Excel & e Process Economics e Operating cost
(Rosa et al., 2011) SuperPro Designer ¢ Monte Carlo Simulation e Capital investment
¢ Project Throughput
Semi-continuous affinity Extend e Process Economics ¢ COG
chromatography DSP mAb (DES) e Monte Carlo Simulation e Batch failures
(Pollock et al., 2013) e MCDM e E-factor
e Operational benefits
Continuous precipitation . e Process Economics
(Hammerschmidt et al., 2014) DSP mAb BioSolve e Monte Carlo Simulation * COG
Continuous integrated DSP . e Process Economics
(Xenopoulos, 2015) DSP mAb BioSolve e Monte Carlo Simulation * COG
Integrated continuous
production of recombinant USP & DSP : e Process Economics
proteins rec P BioSolve e Monte Carlo Simulation * NPV
(Walther et al., 2015)
. ; e Capital investment
B;aégrl]g/tisoti‘ontlnuous antibody USP & DSP BioSolve e Process Economics e COG
p mAb e Monte Carlo Simulation o Facility utilisation
(Pollard et al., 2016) « Net present cost
Batch vs continuous antibody
production USPrﬁADbSP Not disclosed e Process Economics ¢ COG
(Klutz et al., 2016)
Batch vs semi-continuous e Process Economics
antibody production USPn%A%SP %Stég;j e Monte Carlo Simulation : (E:-(f)a(?:tor
(Pollock et al., 2017) e MCDM
Batch vs continuous antibody
production Uspri‘A%SP BioSolve e Process Economics ¢ COG
(Arnold et al., 2019)
Batch vs continuous antibody . COG
production with different USP & DSP . :
capture alternatives mAb BioSolve e Process Economics . Ertgﬁiistfl mass
(Cataldo et al., 2020)
Batch vs continuous antibody
production USPn‘i‘A[i)SP Python e Process Economics e COG

(Mahal, Branton and Farid, 2021)
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1.7 Aim and organisation

Existing research on biopharmaceutical manufacture and decision-support
tools was reviewed in the previous sections. A special focus was placed on
publications targeting mAbs, as the biological molecule of this thesis. Moreover,
biomanufacturing in continuous mode was addressed and alternatives within

upstream and downstream processing were discussed.

Through Chapter 1, one could infer that the effort of both academia and
industry in tackling the challenges of biomanufacturing is clear. Whilst new
technologies have been enabling the conversion of batch processes into faster,
more flexible and productive continuous operations, decisional tools have been
keeping up the pace of innovation by presenting economic evaluations of latest

alternatives and their impact on facility capacities and cost of goods.

While protein A chromatography stands as a highly specific but expensive step
in mAb manufacturing, the economic evaluation of end-to-end continuous
processes with column-free options and the environmental impact of such
changes in biopharmaceutical production have been scarcely approached by
literature. Also, the benefits of enhanced control through advanced analytical
technologies are rarely translated into tangible economic outputs. With the push
for coupling continuous technologies with smaller, single-use based facilities,
and with real-time control, there is a need for studying the consequent changes

in costs and environmental footprint of new flowsheets.

The aim of this thesis is to develop a decisional tool that supports the evaluation
of batch and continuous flowsheets with different processing alternatives and
control systems. The simulation and optimisation of mAb manufacture will
facilitate a more informed decision-making, which reconcile technical,

economic and environmental feasibilities.

In Chapter 2, the decision-support tool structure and the manufacturing domain
is described. The scope of the tool and requirements specifications are crossed
with the capabilities of different software. The interface to build the process
economics will also be selected. The modelling approach and key process
models for batch and continuous unit operations are further addressed and the

economic and environmental metrics are introduced.
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The first chapter of results, Chapter 3, focus on the evaluation of mAb capture
alternatives. Aqueous two-phase extraction (ATPE) and precipitation were
selected as the most mature technologies from the column-free alternatives
pool and with the highest technical potential to compete with protein A
chromatography. Economic and environmental scores are derived from
integrating ATPE and precipitation in the process economic model and the

performance of these options is evaluated against protein A.

Chapter 4 presents the application of a life cycle assessment tool to estimate
the product carbon footprint of different mAb flowsheets. The key contributors
for the carbon emissions are identified to determine the best optimisation routes
for carbon footprint reduction. The resulting emissions from each flowsheet
before and after optimisation is then converted into common daily metrics to
provide an easier view of the environmental impact associated with mAb

manufacture.

In Chapter 5, the view of the biopharmaceutical sector on process analytical
technologies (PAT) and enhanced control is assessed through a survey and
interviews. The economic impact of state-of-the-art analytical technologies
integrated in current and future mAb facilities is also evaluated via the
decisional tool framework. Different degrees of process improvement and
technology investment are addressed to simulate the cost savings and financial

return of implementing PAT.

Chapter 6 presents the main conclusions of this thesis and suggests future

research directions to expand the insights delivered by this work.
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Chapter 2: Materials and methods

2.1 Introduction

The previous chapter highlighted the challenges faced by biopharmaceutical
companies and their endeavours to develop more cost-effective products,
which has prompted the exploration of continuous manufacturing. However,
guestions regarding the competitiveness of these innovative platforms from
economic, environmental, and robustness perspectives persist. The
importance of using predictive software to assess and optimise the technical
and business performance of bioprocesses has also been highlighted, proving

crucial for decision-makers when selecting strategies.

In this chapter, a decision-support tool designed to simulate and assess
different production platforms will be described alongside with the
manufacturing domain in scope. Section 2.2 presents the required
specifications for the tool and analyses the eligibility of different software to use.
Section 2.3 elaborates on the tool implementation and structure, including key
features, parameters, and equations, while economic and environmental

metrics are outlined in Section 2.4.

2.2 Scope of the tool

As described in Section 1.5, monoclonal antibodies are produced through
mammalian cell culture fermentation and then recovered and purified via a
series of downstream processing steps. Within each production platform
several options can be taken, as the fermentation can be operated in batch,
fed-batch or continuous perfusion mode and the DSP, even after deciding on
the operation mode (batch, semi-continuous, continuous), can be designed by
numerous different technologies with different configurations. Alongside with
the selected unit operations, there are other ancillary activities, such as the
cleaning of equipment or preparation of intermediate solutions that should also
be considered. Moreover, the biopharmaceutical facility itself must be scaled
according to the production demands for clinical trials or larger scale
commercialisation and the scheduling of different operations must be optimised

to minimise USP or DSP bottlenecks. As a result, it is vital to define the software
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requirements to address this range of operations and needs and ultimately
enable the calculation of operational, economic and environmental scores for
different alternatives. The scope of the tool was built upon previous work from
the Decisional Tools group at UCL (Farid, 2007; Pollock, Ho and Farid, 2013)

and it is defined as follows:

e To enable the simulation of a biopharmaceutical facility to produce
different products, process configurations, process performances and
product demands in a campaign basis (e.g. 14 days fed-batch, 28 days
perfusion) according to user-defined mass balance, sizing and costing

equations;

e To enable the customisation/update of prices, equipment/ materials

characteristics, and process parameters databases;

e To enable a production design in sizing mode, where the
facility/equipment size is defined by a pre-set product demand, or in
rating mode, where the facility/equipment size is fixed, and the

production output is calculated;

e To track, record and distinguish input and output parameters/results
from each step during the train of unit operations, including labor and

equipment resources, raw materials consumption, and processing times;

e To evaluate and directly compare different manufacturing alternatives
across designs (e.g., batch vs continuous) and technologies (e.g.
chromatography vs precipitation) in terms of cost, environmental impact
and robustness for different product demands;

e To capture different resource requirements between batch and

continuous production modes in a dynamic environment;

e To enable different value distributions of input parameters and
statistically evaluate the performance of different alternatives under
uncertainty (e.g., impact of batch-to-batch titre variability, yield

variability);

e To enable direct and rapid plotting of selected outputs across scenarios.
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2.2.1 Software selection

Once the framework's scope and requirements were established, an analysis
was conducted to determine the suitability of different bioprocess software or
mathematical languages for modelling the decision-support tool. Based on the
review presented in Section 1.6 it was possible to ascertain which available
interfaces could meet the project's needs. Table 2.1 provides an overview of
the tool prerequisites and assists in selecting the simulation package that

encompasses most of the required capabilities.

Table 2.1 - Overview of bioprocess software and mathematical programming
languages capabilities

Schjan)?grE:e(r) aspenONE BioSolve P[%?];ag;négg

Mass Balances 4 v v v
:C)na-Fa[r?lceeths/results recording d Y Y v
Sizing/rating mode v v v v
Cost analysis v v v v
Environmental analysis v 4 v v
Direct results_ visualisation v v v v
across scenarios

Uncertainty analysis x x x v
Dynamic modelling x x x v
Fully customisable database x x x v
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While commercially available software like SuperPro Designer, aspenONE, or
BioSolve offer many of the needed capabilities for constructing the tool, they
seem to lack the capacity to incorporate dynamic and stochastic dimensions of

modelling simultaneously, failing to meet the tool's design requirements.

The distinction between static and dynamic modelling determines whether
systems can be represented over time. This distinction is particularly relevant
when simulating continuous manufacturing. Static modelling (spreadsheet-
derived) only captures bioprocesses at a specific moment, while dynamic
modelling allows for the evolution and design of processes over time. In the
current project, simulating tasks sequentially or in parallel and allocating
resources must be done in a dynamic, time-dependent environment. Regarding
deterministic versus stochastic simulations, although deterministic modelling is
essential during the initial design of a biopharmaceutical facility, stochastic
simulations provide valuable insights into the range of possible outcomes if
input values (i.e., process parameters across unit operations) change,

representing the inherent variability of large-scale production.

Due to their flexibility and user-defined structure, programming languages
(such as C-Sharp, Python, etc.) can be employed to design discrete-event tools
incorporating the envisioned dynamic and stochastic capabilities. Other
available discrete-event simulators, such as ExtendSim® (Imagine That,
California, USA) or ProModel® (ProModel Corporation, Utah, USA), also allow
dynamic and stochastic modelling. However, they are not as customisable in

terms of coding or database and often require linkage to external sources.

Among mathematical languages, Python has emerged as a prominent choice
for scientific programming due to its speed, performance, and strong support
as an open-source community-based language (Langtangen and Cai, 2008).
Consequently, Python was selected to develop the dynamic stochastic
decision-support tool, encompassing all the requirements mentioned earlier.

The tool's architecture and implementation are detailed in the following section.
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2.3 Tool implementation

In a manufacturing facility, key tasks and resources can be described in a
hierarchical representation, where each higher-level activity is broken down into
sub-tasks (Lim et al., 2004; Mustafa et al., 2004; Rajapakse, Titchener-Hooker
and Farid, 2005). As illustrated in Figure 2.1, the levels in the hierarchy are
modelled separately and built onto each other, increasing the complexity and

consequent accuracy of the complete system.

Manufacturing
Campaign

Product Manufacture Intermediate Media Lquipment Preparation Quality & Regulatory
i Preparation Recipes Recipes Recipes LEVEL I‘I
T
Validation/Documentation
Chromartography LEVEL III

Figure 2.1 - Hierarchical decomposition of manufacturing tasks in a bioprocess.
Sourced from Lim et al. (2004).

The model was developed through the object-oriented features of Python that
allow the progressively design of a facility activity-based that pulls specific
information from different classes. The translation of the hierarchical approach
is achieved by having tasks which are described once and further used to
create specific steps in the process as well as having functions which are
written and then invoked as needed. Also, just as complex functions can be
built from simple functions, large programs are built up from smaller
subsystems that are documented and tested individually. These subsystems
have well-defined input and output interfaces and can be used as libraries that
enable to generate new programs using simple coding vocabulary. The
decomposition of a complex bioprocess models in this manner decreases the
extension of the model and improves the transparency and accuracy of the

simulating tools.
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2.3.1 Modelling structure

In the hierarchal approach adopted to model the required tool, different classes
were implemented into the framework and are represented in Figure 2.2.

—] Interface I

Simulation ID
Process train definition
Scenario selection

Database | ‘
1

Process Assumptions || Facility Assumptions Materials prices Equipment prices

* Flow rates « Operators per shift * Membrane filters + Centrifuges
Demand selection + Concentrations + Shifts duration « Single-use bags « Chromatography columns
Facility attributes selection + Yields « Batch success rate * Resins - Bioreactors

« Binding capacities - Salary « Shake-flasks - Vessels

+ Operation times « Facility set-up time « Cell media - Bag containers
+ CIP procedures + Facility turn around time || « Salts + Skids
+ Buffer recipes « Pipeline * Enzymes « Extractors

| Classes

Methodologies

Functions:

+ Mass balance

+ Scheduling

+ Process Economics
+ Uncertainty

- -
$ Unit Operations ‘

Hold-vessels

Wet-cell volume out/in
Flow-rate out/in

: N ' Attributes:
Bioreactor Chromatography Filtration . Solution volumes
Attributes Attributes: Attributes: + Product volumes
*+  Mass produced +  ResinID +  Target concentration

Titre DBC Diafiltration cycles
Media recipe Bed height Flux
Bioreactar technology Yield +  Membrane lifespan
Number of batches Linear velocity +  Yield
Materials price Material price Materials price
Equipment price +  Equipment Price Equipment price
‘—1
W —  » Process Synthesis
Attributes: Attributes: Output lists:
« Annual Demand + Flowsheets « Consumed
+ Flowsheets + In-process results: reagents
« Type of facility Mass out/in « Consumed
+ Product specs Volume out/in materials

+ Labour costs
* Waste generation

Impurities out/in

Track Record

Attributes:
« Simulation ID
« Listof results

Figure 2.2 - Tool structure with breakdown of classes and respective attributes.
The tool portrays the database, assumptions and classes needed to the

different case studies (i.e., batch, continuous, column-based, column-free).

In an object-oriented manner, each class, with its own functions and attributes,
can be affiliated with others, generating outputs that correspond to input
parameters of the linked object. In the present framework, there are two types

of classes:

1. The ones corresponding to unit operations in the bioprocess train (e.g.,
centrifugation, chromatography), which include specific process and

sizing equation for that technology, and
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2. The ones comprising support functions and tasks that allow the
connection between all the elements in the model and computation and
recording of intermediate/final results (e.g., facility, process synthesis,

track record).

Before modelling the desired scenarios for the project, discussions with
academic and industrial partners and vendors (e.g., IST-Lisbon, AstraZeneca,
CPI, Sartorius, PALL, ThermoFisher, and others) were held to gain
understanding and gather process/facility assumptions and equipment/material
specifications/prices, so a database of values to input into the process
economics model could be created. Throughout time, this database was
updated and extended, so the model output would represent realistic production

schemes as much as possible.

Regarding the modelling task, the definition of a certain modelling scenario
started by creating a list of unit operations in sequence in the interface upon
which the model would run. The different flowsheets considered for each case-
study are presented in Chapter 3. Then, the Facility class, which recognises
the user-defined process train (flowsheet) and annual product demand for
which the process must be designed (if in sizing mode), is associated with the
Process Synthesis class, where the model runs through each unit operation in
the list, triggering the calculation of outputs associated to each step. The
procedure begins by calculating the mass of product needed after fermentation
based on the annual product demand and on the intermediate step yields taken
from the database or interface. In the Bioreactor class, for instance, the size
and number of bioreactors to achieve the desired product throughput are
calculated through mass balances (from Methodologies class) and sizing
equations, according to specific parameters from the database (e.g., product
titre after fermentation). In each unit operation class (e.g. Bioreactor,
Chromatography, Filtration, etc.), most of the process assumptions are taken
from the database and the calculation of process outputs is done through the
application of functions defined in the Methodologies class. The process
economic equations integrated in Methodologies make also use of the facility
assumptions and prices gathered in the database and are described in Section

2.4 and in the Appendix Al. Due to the existence of numerous secondary
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tanks for solution preparation and product hold, the set-up of these vessels and
calculation of the respective CIP buffer volumes required for cleaning, water for
injection and process water is done in the Hold-vessels class. For each step in
the process train, the outputs are recorded in lists through the Process
Synthesis class, where also the in-process parameters, such as mass, volume
or flowrate out of one unit are loaded as attributes of the next one. The lists
from the Process Synthesis are finally read in the Facility class, which computes
the overall economic and environmental metrics of the process. All the
intermediate and final results are exported to a file through the Track Record
class.

In the present simulation tool designed in Python, one can run several
flowsheets and compute results for several product demands at once,
increasing the speed of analysis and comparison of different scenarios. Also,
in the running interface assembled, it is possible to automatically plot of the

obtained results.

Figure 2.3 provides a comprehensive overview of the connections between

inputs, tools, and outputs.

Inputs

Product data:
e.g. demand
e.g. titre
Process data:
e.g. process flowsheet

e.g. process parameters (e.g.

yields)
Facility data:

e.g. Lang factors
e.g. operators per line

Economic data:
e.g. reagent unit costs
e.g. consumable unit costs
e.g. equipment unit costs

Energy data:

e.g. energy requirements per
cleanroom classification

e.g. energy requirements per
process step (e.g. agitation)

e.g. energy for lightning

Tools

Process Economics Model

" Cost of goods (COG) model:

e.g. mass balance equations
e.g. equipment sizing equations
e.g. material cost equations
e.g. indirect cost equations

Fixed capital investment (FCI):
e.g. equipment cost equations
Process mass intensity:

e.g. water/reagents mass
balance

e.g. consumables mass balance

U

OpenLCA

{ Impact assessment method:
i e.g. calculation of emissions from

raw materials production
e.g. calculation of emissions from
electricity usage

e.g. calculation of emissions from

waste disposal

Outputs

Key metrics:
-COG
- FCl
- Water and consumables PMI
- Product carbon footprint (PCF)

Batch reports:
- mass outputs
- equipment sizes
- facility footprint

Cost reports:
- COG breakdown per category
- COG breakdown per stage
- Total equipment purchase cost

Carbon footprint reports:
- Supply-phase emissions
- Use-phase emissions
- End-of-life emissions

Figure 2.3 — Decisional tool framework, with examples of inputs, tool

calculations and outputs.
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2.3.2 Modelling of unit operations

In this section, the process models corresponding to the different unit
operations in a desired process train are generally described. For each
operation, designs in batch and continuous are modelled within the class. The
fundamental assumption adopted between continuous units is considering that
the flowrate into a step is equal to the flowrate out of the previous one. In cases
in which this set-up is not possible (due to capacity or time — scheduling —
constraints), an accumulation of product in hold-tanks is recognised and the

ancillary vessels are created in the Hold-vessels class.

While mass stoichiometry models or detailed mass transfer equations can be
used to design bioprocesses and calculate the output streams composition,
these often lead to an extra level of complexity whose advantage is poorly
represented in the overall facility design due to the inherent variability of
process economics models. Therefore, short-cut models based on empirical
correlations or parameters found in the literature are herein used to determine
the size, number and other equipment characteristics, determine processing
times and compute other outputs from each unit operation. As aqueous two-
phase extraction and precipitation are the main unit operations in which this
thesis is focused on, the mass balance equations are showed in the next
chapter. All the equations involving the other used upstream and downstream

processing techniques can be found in the Appendix Al.

2.3.2.1 Aqueous two-phase extraction

Aqueous two-phase extraction (ATPE) makes use of liquids with different
physicochemical properties (special attention given to density) to extract the
desired product into a phase, while most of impurities (DNA, HCP, and cell

debris) migrate to another phase or stay in the interface of liquids.
Most of ATPE systems involve the mixture of the following components:

¢ Polyethylene-glycol (PEG), that will be the main compound of the phase

to which mAbs will migrate (top phase).
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e A salt, such as phosphate or citrate, or another polymer with different
density from PEG, such as dextran, which will represent most of the

impurities-rich phase (bottom phase).

e NaCl, which partitions evenly between both phases. On the one hand, it
is used to increase the ionic strength of the bottom phase, reducing
protein solubility. On the other, negatively charged chloride ions provide
an increased electrostatic attraction of positively charged monoclonal

antibodies to the top phase.

e Crude feedstock from fermentation, or harvest cell culture fluid (HCCF)
(including cells and other solid particles in the batch scenario), whose

components will be segregated into the different phases.

ATPE optimisation is achieved by finding the relative percentages of these four
constituents (and “make-up” water) which lead to the best mAb recovery yield.
In the short-cut model adopted, the percentages of PEG, salt and NaCl are
based on literature and will be fixed, while the ratio of crude feedstock, as the
driving force of the ATPE system sizing, may be optimised. The present project
makes use of ATPE as an alternative capture step of protein A chromatography;
thus, the unit operation is placed directly after cell culture.

In continuous ATPE, the aqueous two-phase extraction takes place in a glass
column and the operation occurs countercurrently, where the top PEG-rich
phase is continuously fed at the bottom of the column, while the bottom salt-
rich phase is fed at the top of the column (Rosa et al., 2012). The product is

recovered from the top PEG-rich phase.

The design of the glass column (or extractor), i.e. height and diameter, is, at a
first stage, fixed. The flowrate out of the perfusion bioreactor will then allow the
calculation of the total flowrate into the extractor (equation 2.1) and the
consequent linear flowrate and residence time (equation 2.2 and 2.3). After, if
the residence time achieved is lower or higher than the limits established, the
diameter of the extractor is redefined according to the minimum or maximum
residence times allowed (equation 2.4), otherwise, the initial extractor design is

kept.
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FR ;
FRi total = — 0 b @1

FR; X 4000
LFRin totar = miotal > (2.2)

X Dextractor

Hextractor

RT = ———
LFRin total

(2.3)

FRin total X 4000 X RTmax/min
mXH

Dextractor corrected — \/ (24)

Where FR;, totai: Flow-rate of PEG, salt, NaCl and crude feedstock loaded to
the extractor (L/h)

LFR;y, totar- Linear total flow rate (cm/h)

Dextractor - INitial assumed extractor diameter (cm)
RT: Residence time (h)

Hextractor: EXtractor height (cm)

Dextractor correctea. Calculated extractor diameter based on assumed

residence time (cm)

RTmax/min: Assumed maximum or minimum residence time (h)

The total ATPE volume will be calculated through equation 2.5.

_ Vin
WVares = erp (2.5)

Where V,,: Perfusion volume (BWV) from cell culture (L)
WV,yrpg - ATPE volume (L)
HCCF : Ratio of harvested cell culture fluid in the ATPE system

The quantities of PEG, salt and NaCl are computed based on the percentages
of each component defined in the literature, which are multiplied by the total
extraction volume. Compensation water may be introduced to make up for the

total volume.

The product stream that will be sent to the next unit operation corresponds to

the top PEG-rich phase, whose volume is determined through the ratio between

76



the top and bottom phases (equation 2.6). This ratio is taken from literature and
it is specific for each PEG/salt initial composition in the system (assuming a
similar density and product concentration of the feedstock used in the
literature). Figure 2.4 shows a generic binodal curve and tie lines which
represent the ATPE phases’ diagram. PEG and salt mixtures below the bimodal
curve form monophasic systems, while mixtures above will lead to two-phase
regions. Any ATPE system prepared with the PEG/salt compositions along the
dotted tie line will result in the same top and bottom phase conditions; however,
for each starting PEG/salt concentrations, different volume ratios between the
two phases will be obtained.

WVATPE

ratio ctop
bottom

(2.6)

out

Where ratiotop pottom: VOlume ratio between top and bottom phases

As the extraction led to a dilution of the stream, a concentration step (single-
pass filtration) was included afterwards to concentrate the product phase. A
subsequent diafiltration step was added for buffer exchange and removal of the

PEG from the system before the viral inactivation.

T Tie line

Tpec ¢
Binodal curve
PEG
% (w/w)
Single phase
Bpeg |« —
B
h 4 L 2
TSALT Salt BS:\LT

% (w/w)

Figure 2.4 - Generic ATPE phase diagram. Trec: PEG composition in top
phase, Brec: PEG composition in bottom phase, TsaLt: Salt (or other polymer)
composition in top phase, BsaLt: Salt (or other polymer) composition in bottom

phase. Sourced from Igbal et al. (2016).
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2.3.2.2 Precipitation

The principle behind precipitation (PP) lies in reducing the solubility of target
molecules so they come out of solution in form of insoluble precipitates and can
be separated. This technique can be used either to precipitate the product or
impurities and efforts have been made to increase the selectivity of the process
and increase recovery yields.

The PP system will then comprise:

e PEG, which increases the viscosity of the system and acts as a volume
exclusion agent to enhance mAb precipitation;

e Zinc chloride, or other bridging salt, that cross-links to protein molecules
in a flocculent-like manner and helps neutralising surface charges and
precipitating the antibodies;

e Cell culture broth after cell removal, which contains the target product
precipitate.

The harvested cell culture fluid (HCCF) and zinc are continuously fed to a static
mixer, where product precipitation occurs inline. A second static mixer was
placed in series, to which PEG is added to promote the growth of precipitates
(Li et al., 2019).

In continuous precipitation, after discussion with experts, the static mixers
described by Li et al. (2019) were designed as plastic tubes placed between
the single-pass tangential flow filtration pump and the filtration membranes,
which do not require any additional operating system. The sizing of the tubing
is performed by fixing the length and residence time described in the publication
and by computing the desired diameter based on the new flowrate (equation
2.7).

FRin total X4000X RT
XL

Dtubuiar reactor = \/ (2-7)

Where  FR;y, totai: Flow-rate of PEG, zinc chloride and HCCF loaded to the
tubular reactor (L/h)

Diubuiar reactor - INItial assumed extractor diameter (cm)

RT: Residence time (h)

L: Length of the tubular reactor (cm)
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The precipitates were then concentrated, washed and re-concentrated in a
single continuous filtration unit to decrease the number of equipment required.
After an in-line resolubilisation in another static mixer, a depth filtration was also
included to avoid solid particles entering the remaining DSP. Before the viral
inactivation, an extra concentration step was modelled to achieve the target

concentration.

2.4 Cost and environmental models

The key performance indicators that will allow the evaluation and comparison
of different scenarios are divided into 1) economic and 2) environmental
metrics. This section will describe the procedures adopted for the calculation of
the Fixed Capital Investment (FCI) and Cost of Goods (COG), as economic
metrics, and of water and consumables PMI and PCF, as environmental

metrics.

2.4.1 Fixed capital investment

The fixed capital investment (FCI) can be calculated through the product
between the total equipment purchase cost and a cost factor which accounts
for items such as piping, instrumentation, electrical work, site preparation,
design, engineering and contract manufacturing fees. This simpler technique of
calculating the FCI using a factorial method was originally suggested by Lang
(1948) and the factors, called Lang factors, will depend on the type of facility in
case. For biopharmaceutical facilities, these factors may vary between 3.3 and
8.1 (Farid, 2007). The present project assumes different Lang factors for
stainless-steel based or single-use facilities, with values of 8.1 and 4.7,

respectively. The calculation is described by equation 2.8.

FCI =L Xx Z Costgquipment (2.8)

Where FCI: Fixed capital investment ($)
L: Lang factor

Costgquipment- EqUipment purchase cost ($)

79



The equipment needed for each unit operation (i.e. specific hardware and
ancillary solution and product tanks) is sized according to the scale required to
respond to a defined annual product demand. As it is not always possible to
obtain the equipment prices across all needed sizes, another factorial method
(six-tenths rule) was used to relate the cost of equipment with its calculated size
based on a known price found for another dimension (equation 2.9). The
exponential scaling coefficient (c) is specific for different types of equipment
and it is typically lower than 1, since the purchase cost is not linearly scalable

with the equipment size.

Sizenew >C 2.9)

CoStpew = CoStpgse X <5iZ€base
Where Cost,,,,: Cost of equipment with calculated size ($)
Costy,se: Cost known of equipment from same type and known size ($)
Size,,.,,: Required equipment size (m, m?, L, L/h, etc.)

Sizey,se. Size of equipment whose cost is known (m, m?, L, L/h, etc.)

c. Exponential scaling coefficient (equipment dependent)

2.4.2 Cost of goods

The term Cost of Goods (COG) usually comprises 1) indirect and 2) direct

manufacturing costs.

The indirect costs can be calculated through the fixed capital investment and
include the depreciation of equipment, cost of general utilities, cost of
maintaining and insuring the production facility and local taxes. The term of
general utilities accounts for facility running cost, such as the HVAC systems
used in the clean-rooms and depends on the facility size, which is calculated
based on a function suggested by George (2008).

The direct costs are variable costs and include the expenditures in reagents,
consumables, quality control materials and labour, depending on the amount of
product manufactured. Reagents costs include all buffers (including cleaning

buffers), media and water for injection required, while the consumables costs
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encompass the cost of chromatography resins, pre-packed columns,
membrane filters and all single-use materials. Quality control materials account
for the reagents and consumables used in quality control tests of produced
batches. Labour costs represent the cost of direct labour and the cost of
additional supervision, management and QCQA (quality control and quality
assurance) personnel. The direct labour costs are estimated based on a fixed
annual salary and yearly facility utilisation, while the extra personnel expenses

are derived based on this value.

The detailed breakdown of the COG calculation is presented in Table 2.2.
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Table 2.2 - Breakdown of cost of goods for a biomanufacturing facility.

Fixed capital investment, FCI ($) FCI =L x z Cequipment
Depreciation of equipment, Cpep, ($) FCl/tproject

General utilities, Cgenye ($) Fgize X Foost
Maintenance, €y, ($) 0.1 X FCI

Insurance, Cp,s ($) 0.01 X FCI

Local taxes, Crocr (B) 0.02 X FCI

Indirect costs, Cingirect ($) Cpepr + Coenve + Cuen + Cins + Crocr

ClaborD + ClaborS + ClaborM

Total labor costs, Cigpor ($) + Cuavor ocon

Direct labor costs, Cjapor p (3) Noperators % Salary X u
Supervisors’ costs, Cigpors () 0.2 X Ciapor b
Management costs, Cgpor m($) Clabor b
QCOQA staff costs, Ciapor gcoa ($) Clabor b
Facility utilisation, u (%) tecampaign/ 365
Number of operators, Noperators Nopusp + Noppsp

Shiftsyspjaay X Nopusp/shift
Number of USP operators, No,ysp M X Py

Traingspream
N, .

Number of DSP operators, Nyppsp Shifw% % Nosel?;f % Trc;]if;;:::m

X P, trains

Materials costs from QC tests,

N C batches X Price C materials
CQC materials ($) Q Q

Creagents + Cconsumables + CQC materials

Direct costs, Cgirect () + Cp,
apor

Cost of goods per gram, COG/g ($/9) (Cingirect + Cairect)/ Demand

Note:
L: Lang factor

Costgquipment: EqQuipment purchase cost Nop/shie: Number of USP/DSP

operators per shift

3) .
tproject: TiMe of project (assumed 10 iVU.'S'P/DSP ¢trains: Number of USP/DSP
years) rains

F..,.: Facility size (m?) Trainysp/pspream: Number of USP/DSP

F.osc: Monetary units per sq. meters trains per team _
(assumed 525 $/m2) Pirains: Product parallel traln_s _
tcampaign: CAMPAIGN running time (days) Priceqterials: Price of materials used in

. C test ($)
Demand: Annual product demand (kg or g) Q . ,
SRiftSysp aay or psp/aay: Shifts of Noc batches: Number of cycles of final

USP/DSP per day product out
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2.4.3 Environmental metrics

2.4.3.1 Process Mass Intensity

The environmental burden caused by running a biomanufacturing facility will be
evaluated through the water and disposables consumption. Process mass
intensities (PMIs) will be calculated for each scenario across different product
throughputs and, along with the economic metrics, will help comparing

alternatives for the production of monoclonal antibodies.

The mass of water is determined by summing up the quantities of all liquid
reagents consumed in the process. On the other hand, the mass of disposables
is estimated based on the weights of all single-use materials (Table 2.3). A wide
range of materials weights was collected for different dimensions; however,
when the required size is not part of the gathered list, the weight of the
consumable with the closest size is assumed. Equations 2.10 and 2.11 present

the calculation of the water PMI and consumables PMI, respectively.

mwater
Water PM] = ————— 2.10
aer Demand ( )

mdisposables

Consumables PMI = (2.11)
Demand
Where m,,q4.r: Quantity of water consumed per year (kg)
Maisposabies- Mass of disposables consumed per year (kg)
Demand: Annual product demand (kg)
Table 2.3 - Weights of consumables used for the PMI calculation.
Material Example of weight & scale
SU bag 7 Kg (2000 L)
Depth filter 5 Kg (2.5 m?)
Virus removal filter 4 Kg (1 m?)
Inline concentration/diafiltration (ILC/ILD)
3 Kg (2.5 m?)
membrane
UFDF membrane 2 Kg (1 m?)
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2.4.3.2 Life Cycle Assessment (LCA)

To perform the Life Cycle Assessment and compute the Product Carbon

Footprint (PCF) associated to different flowsheets, OpenLCA was used.

OpenLCA is a widely used open-source software tool for life cycle assessment

(LCA) and sustainability analysis. It is typically used in conjunction with life cycle

inventory databases, such as Ecolnvent, which contain data on the

environmental inputs and outputs associated with various processes and

activities.

The workflow followed in OpenLCA was:

1.

Creating processes

Defining processes, which represented the stages of mAb life cycle

(e.g., raw material extraction, manufacturing, use, disposal).
Adding flows

Within each process (i.e., unit operation), the material and energy
flows that go in and out of that process were added. Flows represented
the inputs and outputs of the system.

Linking processes

Processes were linked to show the flow of materials and energy

between them.
Selecting methodologies

Choosing the appropriate impact assessment methodology that

aligned with the project goals (ReCiPe).
Running the analysis

Quantifying the environmental impacts of each process in terms of

selected impact categories (climate change).
Interpreting and presenting Results

OpenLCA provided visualisation tools to help extract and understand

the results.
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24321 Global Warming Potential (GWP) and Product Carbon Footprint
(PCF)

Global Warming Potential (GWP) is a fundamental aspect of Life Cycle
Assessment (LCA) used to assess the impact of greenhouse gas emissions on
global warming. The GWP calculation is based on the concept of equivalency,
which compares the warming potential of different greenhouse gases to that of

carbon dioxide (COZ2) over a specific time horizon.

The GWP represents a relative index that measures the potential of a
greenhouse gas (GHG) to trap heat in the atmosphere compared to CO2. It is
expressed as a factor that indicates how many times more effective a particular
gas is at warming the atmosphere than an equivalent mass of CO2. GWP takes
into account the radiative forcing effects of each gas and the time it remains in

the atmosphere.

GWP = X (E X GWPrqcror) (2.12)

Where E: Quantity of a specific greenhouse gas emitted during a process,

product life cycle, or activity (C0,-eq).

GW Pracror: Global Warming Potential of the greenhouse gas in

guestion, considering a specific time horizon.

The GWP factors are determined based on scientific assessments and are
provided for various time horizons, usually 20, 100, and 500 years. The choice
of time horizon depends on the intended focus of the assessment. The most
common time horizon is 100 years, as it provides a balanced view of both short-

term and longer-term impacts.

Product Carbon Footprint (PCF) is specifically concentrated on GWP as
environmental impact category and it is directly calculated on the LCA platform
used (openLCA). According to BioPhorum’s Roadmap to Sustainability, there
is an increasing demand for product transparency with respect to sustainability

and metrics harmonisation, thus, PCF is a valuable tool, especially when
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conducting a full Life Cycle Assessment (LCA) is resources and time
consuming (BioPhorum, 2023).

2.4.4 Multi-criteria decision making (MCDM)
methodology

The MCDM technique incorporated in the decisional tool was based on the
weighted sum method and was designed to provide an overall measure of
attractiveness for each flowsheet that reconciled economic, environmental and
operational criteria (Pollock, Ho and Farid, 2013; Pollock et al., 2017). The
economic (COG and FCI) and environmental (water and consumables process
mass intensities (PMI)) ratings (x;;) were directly obtained from the process
economics model. The operational criteria identified for the analysis were
robustness, ease of validation, ease of installation, ease of scale-up and ease
of operation. The relative rating values of each flowsheet at each operational
criteria (x;;) and the rank of importance of each criterion amongst all operational
criteria (E;) were gathered from a survey questionnaire sent to industry and
academic experts on the field. The criteria expressing economic (COG and FCI)
and environmental feasibilities (water PMI and consumables PMI) were ranked
equally within each criteria category based on personal communication with
industrial partners. All rating values were standardised to a common

dimensionless scale (r;;) between 0 and 100 according to equation 2.13.

Xij—Xiworst
rj = — 22— x 100 (2.13)
XiBest—XiWorst

The weight of each criterion, E;, was based on the rank of importance (most
important weighs the most) and was then normalised as w; according to
equation 2.14.

E;
DYy

w; ,where Ei =a,a—1,..,1 forrank =1,2, ...,a (2.14)

The weighted score of each flowsheet for each criterion, yjy, (i.e., economic,

operational and environmental) was derived using equation 2.15.
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n
Yijk = Z__lrij X Wi (2.15)

The overall aggregated score, S;, was computed according to equation 2.16.
The ratios of importance of each criteria category (Ry) enabled the priorities of
the economic, environmental and operational criteria to be altered based on
user preferences, where the sum of the R, values was equal to 1
(Reco + Reny + Rop = 1).

n
S] = zk_lyjk X Rk =y]',eco X Reco + yj,env X Renv + yj,op X Rop (2.16)

Where j: alternative (Conti — ProA, Conti — ATPE, Conti — PP)
k: criteria category (economic, environmental, operational)
i: criterion (COG,FCI,PMI,robustness, ease of validation, etc)
1;j: standardised rating of alternative j in subcriterion i
x;j: rating value of alternative j in subcriterion i
Xiworst/est: Worst/Best rating value for subcriteron i among all alternatives
w;:normalised weight of criterion i in category k
E;:weight of criterioni in category k (based on rank)
a:number of rankings
Yjk: weighted score of each alternative j in category k
S;:overall aggregated score of alternative j

Ry:ratio of importance of criteria k
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Chapter 3: Evaluating end-to-end continuous antibody
manufacture with column-free capture alternatives
from economic, environmental and robustness

perspectives

3.1 Introduction

Across the years, a highly standardised platform has been shared for the
production and purification of monoclonal antibodies. In most instances, this
platform has been including protein A affinity chromatography as primary mAb
capture step, due to the high binding levels and purities obtained; however,
disadvantages of using such technique include the high costs associated to the
resin, ligand leaching and poor stability at high pH, which have elevated the
need of investigating new alternatives that allow to overcome such challenges

and develop a renovated, protein A-free capture step.

The technical potential of column-free alternatives for capture based on either
agueous two-phase extraction (ATPE) or precipitation (PP) has been discussed
in Chapter 1. Nevertheless, the economic evaluation of these technologies
when integrated in a full production platform has been scarcely reported,
leaving questions on the feasibility of these operations compared to protein A
based chromatography.

In this chapter, the impact of integrating ATPE or PP is presented at economic,
environmental and robustness levels using the tool developed in Chapter 2.
Moreover, the study includes the modelling of batch and continuous production
schemes with protein A capture, broadening the evaluation and providing
extended insights on how the simulation framework can be used in different

scenarios.

Section 3.2 presents the flowsheets, key assumptions and process parameter
values used in the case studies, while Section 3.3 deals with the results and
discussion. Section 3.4 summarises the main conclusions on the comparison

between scenarios.
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3.2 Methods

The tool developed in Chapter 2 was used to model and evaluate commercial
mADb facilities using different production schemes across different annually
required product quantities. The case-study explored three antibody capture
technologies: protein A affinity chromatography, aqueous two-phase extraction
(ATPE) and mADb precipitation. While Batch-ProA depicted a typical fed-batch
process, the continuous flowsheets integrated a perfusion bioreactor that
enabled the retention of the cells inside the bioreactor and, therefore, did not
require centrifugation and depth filtration as primary recovery steps before mAb
capture. The simulation of the batch and continuous flowsheets integrating
protein A chromatography was described by Mahal, Branton and Farid (2021).
In Conti-ATPE and Conti-PP, only the capture stage was re-designed, thus, the
process modelling from the viral inactivation to the final inline diafiltration was
kept. The description of the unit operation and respective sizing equations for
Conti-ATPE and Conti-PP were described in Sections 2.3.2.1 and Section
2.3.2.2, respectively.

All batch and continuous process trains were designed to produce 100 to 1000
kg per year. The cell culture size was calculated based on the annual demand
required and on the overall yields computed for the DSP train in each flowsheet.
Bioreactor sizes were adjusted based on vendor constraints with a maximum
size of 20,000L for stainless steel bioreactors and 2000L for single-use
bioreactors. The single-use based continuous production flowsheets (Conti-
ProA, Conti-ATPE and Conti-PP) were compared with the reference batch
stainless-steel facility type with protein A chromatography as capture step
(Batch-ProA). For Batch-ProA, the equipment sizing was based on the mass
entering each unit operation and all steps were carried out sequentially. For the
continuous options, the sizing was based on the outlet flowrate of the previous
unit operation in the process train and the end-to-end continuous process was
achieved through keeping the product outlet and inlet flows between units
constant to avoid surge vessels or hold-times. When sizing the continuous
ATPE glass column, the height was kept constant, whilst for continuous

precipitation the length of the static mixers (Li et al., 2019) was kept constant.
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The cost of goods and PMI metrics were computed according to the
methodology described in Section 2.4. Following a deterministic analysis
based on values from literature, previous group projects, and discussions with
academic and industrial partners, a sensitivity analysis was conducted to
predict the maximum variation in cost of goods resulting from broad changes in
process parameters (worst vs best outcomes). After the sensitivity analysis,
Monte Carlo simulations were employed to comprehend and compare the
robustness upon process variability of ATPE and precipitation with protein A
chromatography. For both analyses, the range of values for ATPE input
parameters was deliberated with IST-Lisbon, while the precipitation technique
and inputs were reviewed with BOKU and AstraZeneca. This approach aimed

to capture both the present and future capabilities of these technologies.

The integration of economic, environmental and operational metrics was
subsequently done through multi-criteria decision-making (MCDM), which
reconciled quantitative outputs from the process economics model and
gualitative scores obtained for each technology from an industrial survey. A final
target analysis was generated by changing relevant process parameters and
analysing the combination of inputs that would turn column-free options 15%

cheaper the current ProA chromatography in continuous mAb manufacturing.

3.2.1 Flowsheets & key assumptions

As aforementioned, the goal of this study was to compare different capture
alternatives and production running modes, which was fundamentally
translated in modelling different mAb manufacturing flowsheets. Figure 3.1
shows the different process sequences studied within the project and Table 3.1
summarises the key input assumptions for each flowsheet. These inputs were

integrated in the mass balance and sizing equations described in Chapter 2.
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Figure 3.1 - Process flowsheets studied in batch and continuous production of monoclonal antibodies. ProA: protein A; CEX: cation
exchange; AEX: anion exchange; TFF: tangential flow filtration; SP-TFF: Single-pass tangential flow filtration. Batch-ProA: batch mAb
production with protein A as capture step; Conti-ProA: continuous mAb production with protein A chromatography as capture step;
Conti-ATPE: continuous mAb production with agueous two-phase extraction as capture step; Conti-PP: continuous mAb production
with product precipitation as capture step. Batch success rate is considered 96% across flowsheets.
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Table 3.1 - Process-specific input assumptions in the COG model for Batch-
ProA, Conti-ProA, Conti-ATPE and Conti-PP flowsheets.

ggciatration Parameter Batch Continuous
Cell culture  Culture Duration (days) 14 28
Perfusion rate (vv/day) - 15
Volumetric productivity (g/Lw/d) 0.5 3
Max bioreactor volume (L) 20 000 2 000
Collected Titre (g/Lnarvest) 5 2
Batches per year, Npgtches 20 10
:ré’;ii)”m_ Bed height, BH (cm) 20 10
Loading capacity, DBC (g/Lresin) 40 65
Linear velocity (cm/h) 350 180
Number of columns, N,,,; 1 3
Resin reuse limit, N, (Cycles) 200 200
ATPE HCCF (%) - 18
PEG (%) - 9.6
Phosphate (%) - 13
NaCl (%) - 10
RatiOop/bottom - 0.4
Precipitation HCCF (%) - 50
PEG (%) - 7
ZnCl; (%) - 10
Vi Concentration into VI (g/L) ~18 31.5
Final UFDF Final target concentration (g/L) 30 30

Notes: Collected titre is measured in grams of product per litre of harvested cell culture fluid.

Volumetric productivity is measured in grams of product produced per litre of the bioreactor

working volume per day. The perfusion productivity, loading capacity and bed heights are taken
from Mahal (2021). The fed-batch productivity (0.5 g/L/day) is derived based on the collected
titre of 5g/L divided by 10 days of fed-batch expansion (after a 4-days ramp-up phase). The

perfusion rate is measured as the equivalent number of bioreactor vessel working volumes (vv)

exchanged per day. The higher mAb concentration after ProA elution into the virus inactivation

step in continuous mode results from the higher loading capacity (65 vs 40 g/L resin) for the

same eluted column volumes (CVs batch & continuous: 4 equilibration, 5 elution, 2 wash, 3

strip, 3 regeneration)
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A total 14-day fed-batch process with a 5 g/L titre was compared with a total
28-day perfusion in the continuous mAb production strategies. For continuous
perfusion, the product collection starts after the initial growth and ramp-up
phase of 8 days (versus 4 days in fed-batch) and a 6-fold increase in volumetric
productivity (3 g/L/d) was assumed over batch. For continuous multicolumn
chromatography, higher resin loading capacities (ProA DBC=65g/L resin, AEX
DBC=100g/L resin, CEX DBC=100g/L resin) were assumed given the better
resin capacity utilisation compared to batch (Pollock et al., 2013; Jagschies,
2018). The binding capacities and prices for protein A resin in the different
modes were selected to reflect the latest industry benchmarks. A 3 column
system is assumed in continuous chromatography. While column #1 is in
loading mode, column #2 collects the unbound material (therefore the higher
capacities assumed in continuous). Column #3 is used to collect the unbound
materials from column #2 once this starts to be loaded when column #1 reaches

capacity and enters the elution phase,

For continuous ATPE and continuous precipitation, the percentage of HCCF
(percentage of the final volume in the ATPE/PP system corresponding to the
perfusion broth volume after adding the other components, such as PEG or
salt) was assumed as 18 (Rosa et al.,, 2012) and 50% (Li et al.,, 2019),
respectively. The yield of continuous ProA chromatography in Conti-ProA was
set as 95%, while the base case recovery of the ATPE step was 85% (Rosa et
al., 2012) and the wash yield in Conti-PP was 82% (Li et al., 2019). The
resulting overall DSP vyields were of 70, 60 and 55% for Conti-ProA, Conti-
ATPE and Conti-PP, respectively. The product concentration prior to the viral
inactivation step in Conti-ATPE and Conti-PP was set as the same found after
protein A chromatography in Conti-ProA (32 g/L), so the size and time of the

polishing stage would be kept constant across continuous flowsheets.

Some authors have shown comparable purity (Azevedo, Rosa and Ferreira,
2008; Rosa et al., 2012) when using alternatives to ProA chromatography in
mAb capture, others state further work is required to improve impurity removal
(Li et al., 2019). In this work, the economic potential of the flowsheets was
explored on the basis that all flowsheets are able to meet the target purity

specifications.
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The batch and continuous labour requirements are as described by Mahal et
al. (2021) and 3 shifts per day are assumed with 6 operators per USP and per
DSP shifts in Batch-ProA and 3 operators per USP and per DSP shifts in Conti-
ProA, Conti-ATPE and Conti-PP. In this study, the definition of “batch” in the
continuous flowsheets is taken as the quantity of product delivered per cell
culture run (10 batches per year). Similarly to what is described in Mahal,
Branton and Farid (2021), as a quality control batch release test in continuous
is performed every four days on the material collected in that period of time,
there are 5 “QC batches” per perfusion culture (perfusion expansion phase of
20 days), which is taken into account when calculating the QC costs (35k$ per

batch release test).

In the present model, all process buffers were purchased for a fixed cost (no
buffer preparation in-house). In single-use facilities, these buffers are stored in
single-use bags (maximum capacity of 5000 L) and bag containers and trolleys
are required to hold them in place where needed throughout the process train.
These containers were considered in the indirect costs as part of the equipment

purchase cost used in the calculation of the fixed capital investment.

3.2.1.1 Uncertainty assumptions

One-way sensitivity analyses were used to identify the key COG drivers. These
were then used in the Monte Carlo simulations. The Monte Carlo simulation
algorithm was coded in Python to enable distributions (e.g., triangular) to be
applied to the designated input parameters and used a random number
generator to create the set of iterations. The algorithm computed the likelihood
of the COG output falling below different thresholds. A two-tailed t-test was
performed to evaluate whether there was a significant difference between the
COG/g distributions of the flowsheets, as indicated by the p-values and a
chosen significance level of 0.05. The algorithm was used to perform 100
iterations per run which was found to be sufficient to reach convergence. The
number of iterations needed to reach convergence was determined by
calculating the mean and standard deviation after each run (from n=2) and

monitoring when these values were within a tolerance of 5% from the global
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mean and standard deviation. The global mean and standard deviation
corresponded to the values calculated after 1000 runs.

Typical cell culture titre fluctuations are of +20% (Pollock, Ho and Farid, 2013).
This variation was also applied to the dynamic binding capacity (DBC) of protein
A, as a way of simulating the influence that different required quantities of
expensive resin could have on the cost of goods. The specific column-free
alternatives’ parameters and ranges were discussed with experts in these
technologies. Variations at the cell culture tire or volumetric productivity were
translated into smaller/bigger/more/fewer bioreactors required and
smaller/larger media consumption. The same effect was seen when
considering uncertainty in the process step yields, as the USP was redesigned
to compensate for the product gain/loss during the downstream processing.
The variation of the HCCF percentage in ATPE and PP impacted the dilution of
the broth coming from perfusion, thus, the burden on the concentration steps

required before the virus inactivation.

Table 3.2 - Triangular distributions used in Monte Carlo simulations for the
uncertainty analysis. HCCF % and respective distributions are different for
ATPE and PP based on different research papers in which the model was

based and discussion with the respective authors.

Parameter Distribution Flowsheet

Fermentation titre (g/L) Tr (3.75,5,6.25) Batch-ProA

Perf. Volumetric productivity
(g/L/day)
ProA Dynamic binding capacity

Tr (2.25, 3, 3.75) Conti-ProA/ATPE/PP

(g/L resin) Tr (50, 65, 80) Conti-ProA
ATPE vyield Tr (0.80, 0.85, 0.90) Conti-ATPE
HCCF% ATPE Tr (0.14, 0.18, 0.25) Conti-ATPE
HCCF% PP Tr (0.40, 0.50, 0.60) Conti-PP
Wash yield Tr (0.75,0.82, 0.90) Conti-PP
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3.3 Results and discussion

The attractiveness of batch and continuous manufacturing strategies with
different capture technologies was assessed using a decisional tool that
captured the nuances of different modes of operation and different technology
choices. The cost analysis was extended by evaluating each process’s
environmental burden and using stochastic uncertainty analysis to assess the
robustness of the different scenarios under inherent process variability. An
MCDM analysis was used to weigh up the financial, environmental and
operational attributes of each flowsheet. A final target analysis highlighted the
process changes needed for alternative production strategies to become cost-

competitive.

3.3.1 Deterministic Cost Analysis

The COG/g outputs from the deterministic analysis conducted with the
decisional tool are shown in Error! Reference source not found.a on a cost
category basis for the batch and continuous mADb flowsheets. This figure shows
that the continuous production flowsheets, whether ProA-based or column-free
(Conti-ProA, Conti-ATPE and Conti-PP) could offer COG savings of ~20-40%
compared to the standard batch flowsheet (Batch-ProA) at lower and medium
scales (100 and 500 kg/year). In contrast, at higher scales (1000 kg/year) only
Conti-ProA and Conti-PP presented a similar or slightly lower COG than Batch-
ProA.
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stainless equipment and SU materials are doubled. The fed-batch flowsheet is integrated in a stainless-steel

based facility, while the continuous flowsheets are single-use based. The titre for fed-batch culture is 5g/L and

the perfusion volumetric productivities assumed in all continuous strategies was 3g/L/day. SU bags include both
bioreactor bags and buffer hold bags. The embedded table in (a) indicates the key parameters for each batch and

continuous facility and the percentage of indirect, reagents and consumables in each flowsheet's COG/g. Different
filtration areas in ATPE and PP’s SPTFF steps are a result of different volumes (higher dilution in ATPE) to be

concentrated. The embedded table in (b) presents the percentage difference in equipment, reagents and

consumables costs between flowsheets.

Figure 3.2 - Breakdown of (a) COG/g on a cost category basis and (b) materials

(reagents and consumables) cost for four mAb production flowsheets at 100,

500 and 1000 kg/year commercial scales. Mahal et al. (2021) presents results
for the Batch-ProA and Conti-ProA flowsheets for demands up 3000 kg/year.
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The cost savings with continuous flowsheets relative to batch at low and
medium scales were driven by savings in indirect and reagent costs. The
decrease in indirect costs can be attributed to the smaller equipment needed in
continuous mode given the higher cell culture productivities in perfusion; e.g. at
500kg/year the indirect costs change from 56%$/g for Batch-ProA to 25%/g for
Conti-ProA, 31%/g for Conti-ATPE and 24%/g for Conti-PP. The savings in
equipment costs switching from Batch-ProA to the continuous flowsheets could
go up to 50% for 7-fold productivity differences. Also, as shown in Error!
Reference source not found.b, the savings associated with the absence of CIP
cleaning procedures in SU facilities outweighed the 2 to 3-fold higher media
consumption found for perfusion bioreactors and led to a 10 to 60% cost
reduction in reagents across scales and flowsheets (e.g. 500kg/year reagents
costs: 27%/g Batch-ProA, 21$/g Conti-ProA, 25%/g Conti-ATPE, 26%$/g Conti-
PP). Media consumption costs are higher in continuous due to higher perfusion
media prices and volumes. Hybrid SU facilities operated in batch mode have
been reported by Mahal (2021) and showed benefits over stainless steel based
batch facilities at lower (100 kg/year) and medium (500 kg/year), but always
higher COG compared to SU facilities operated in continuous mode for mAb
manufacture. The savings in indirect and reagent costs were more significant
than the increase in consumables costs (up to 2-fold) when using single-use
continuous flowsheets (e.g. 500kg/year consumables costs: 7$/g Batch-ProA,
11%$/g Conti-ProA; 13%/g Conti-ATPE, 10$/g Conti-PP).

Turning to the comparison at the higher 1000 kg/year demand, the lower COG
savings with the continuous flowsheets were due to the need for multiple (two)
parallel production trains. As the capacity of the SU bioreactor bags is limited
(maximum capacity assumed was 2000L), when more than one bioreactor was
required, an additional dedicated DSP train was simulated in parallel. At 1000
kg/year, Conti-ProA and Conti-PP presented COG savings of 8% and 3%,
respectively, compared to Batch-ProA, which were not so significant given the
typical accuracy of cost estimates. Due to the comparable indirect costs and
higher consumables costs of Conti-ATPE compared to Batch-ProA at high

scale, the ATPE-based flowsheet showed a COG/g increase of more than 10%
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compared to the batch case; this was the only scenario where a continuous
flowsheet was found to perform worse than the batch flowsheet.

The cost comparison among continuous flowsheets in Error! Reference source
not found.a also showed that Conti-ProA was the strategy offering the lowest
COGl/g across scales, followed closely by Conti-PP (2-6% higher COG). Conti-
ATPE presented the highest COG/g (8-22% higher COG than Conti-ProA)
amongst all continuous flowsheets. For Conti ATPE, all cost categories were
higher than Conti-ProA. This is mainly attributed to the HCCF dilution that drives
up equipment costs (bag containers and filtration skids), consumables (SU
bags) and reagents (ATPE-specific buffers and diafiltration buffers). For Conti
PP, the overall cost was similar or slightly higher than Conti-ProA. While the
reagents costs were 24% higher, driven by the larger media volumes (30%
higher media costs than Conti-ProA), the consumables costs were lower (9-
14%), mainly due to the absence of ProA resin, and the total equipment

purchase cost was similar.
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Figure 3.3 - Breakdown of COG/g per processing stage of four mAb production
flowsheets. The COG breakdown on a process stage basis is showed for 100,
500 and 1000kg/year commercial scales, while the contribution of each process
stage in each cost category is shown for the 500kg/year scale. USP and
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polishing steps are fixed among continuous flowsheets, while the capture stage

comprises different unit operations (as presented in Figure 3.1).

Error! Reference source not found. depicts the COG breakdown by major stage

(USP/capture/polishing). This highlights that the steps involved in the capture

stage represent a significant proportion of the COG with a base value of ~30%

for the conventional batch flowsheet. Moving from the conventional batch

flowsheet (Batch-ProA) to continuous flowsheets with chromatography (Conti-

ProA) or precipitation (Conti-PP) results in a reduction in the contribution of the

capture stage to the overall COG from ~30% to <25%. In contrast, the

continuous ATPE flowsheet (Conti-ATPE) results in a higher contribution of the

capture stage to the overall COG than any of the other strategies (37-44%).
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Figure 3.4 - Breakdown of impact of each cost category in the different

manufacturing stages of four mAb production flowsheets for the 500kg/year
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scale. USP and polishing steps are fixed among continuous flowsheets, while
the capture stage comprises different unit operations (as presented in Figure
3.1).

Error! Reference source not found. provides benchmark cost category
distributions by stage at 500 kg/year, focusing on the stages most affected by
the change in strategy — USP and capture. For the capture, both batch and
continuous processes are dominated by the indirect costs that consume over
50% of the capture COG (COG capture distribution = 19-37% Materials, 4-14%
Labour and QC, 55-68% Indirect); hence for capture stages, changes in capital
equipment will have a larger impact than changes in materials, such as the
resin. In contrast, for the USP stage, the move from batch to continuous
flowsheets results in a shift in the USP COG distribution from being dominated
by USP indirect costs (50%) in batch processes (COG USP batch
distribution=41% Materials: 9% Labour: 50% Indirect), to USP materials (~70-
80%, predominantly culture media reagents) in continuous processes (COG
USP continuous distribution = 68-77% Materials: 7-9% Labour and QC, 12-23%
Indirect). As the polishing steps are kept constant across the continuous
strategies, the contribution of indirect, materials and labour and QC costs are

identical.

Table 3.3 shows the items that contributed the most for each cost group in the
capture stage only at a demand of 500 kg/year. In the equipment costs, which
are directly related to the indirect costs, the centrifuge and chromatography
skids in Batch-ProA and Conti-ProA, respectively, are the most expensive items
in the capture step. Regarding the column-free capture alternatives, one can
confirm the significant contribution of bag containers for the total equipment
cost in Conti-ATPE and Conti-PP capture, due to the large volumes associated
with the HCCF dilution and multiple filtration steps in these flowsheets. In the
reagents and consumables front, buffers and resin weight the most in Batch-
ProA and Conti-ProA materials cost and it is also possible to observe the
significant portion of CIP buffer costs in Batch-ProA capture costs (59%). For
Conti-ATPE and Conti-PP, the membranes used in the filtration steps and the

specific reagents (e.g., PEG, HEPES) sum the major materials in costs.
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Batch- Conti-

ProA Conti-ProA ATPE Conti-PP
EQUIPMENT
Centrifuges 26% N/A N/A N/A
Bag containers N/A 14% 94% 86%
Bag trolleys N/A <1% <1% <1%
Hold-tanks 53% N/A N/A N/A
Filtration skids/pumps 1% N/A 4% 13%
Chromatography skids 16% 86% N/A N/A
Chrom. columns (glass) 4% N/A N/A N/A
Extractor N/A N/A 1% N/A
REAGENTS
CIP buffer 59% N/A N/A N/A
PW & WFI 7% 0% 20% 26%
Buffers 35% 100% 28% 10%
ATPE/PP specific N/A N/A 53% 64%
reagents
CONSUMABLES
Guard filters 8% N/A N/A N/A
Hold bags N/A 8% 27% 40%
Filters 7% N/A 73% 60%
Packed columns and 85% 9206 N/A N/A

resin
Table 3.3 - Contribution of each equipment, reagents and consumables item

for the total cost of the capture step only. N/A: not applicable (USP and polishing

steps not included).
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3.3.2 Environmental Analysis

The potential environmental benefits moving from batch to continuous and from
column-based to column-free mAb capture were evaluated by analysing the
environmental burden associated with each mAb flowsheet. The process mass
intensities (PMIs) are shown in Figure 3.5 and are split into water and

consumables PMI for the different production strategies.
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Figure 3.5 - a) Water and b) consumables process mass intensity (PMI)
breakdown for four mAb production flowsheets at 100, 500 and 1000 kg/year
commercial scales. The water and consumables PMIs include the complete
production train liquid and solid waste, respectively. The consumables PMI is
based on the total weight of individual disposable material (SU bags, filters,
resin and pre-packed columns). The weight of each material was found in

literature or given by suppliers. SU bags include both bioreactor bags and buffer
hold bags.
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Continuous flowsheets offered a significant reduction in the overall PMI
compared to the traditional batch process depending on scale, with Conti-ProA
offering the most environmentally friendly strategy of all mAb production
strategies. This was driven by the reduction in water PMI that outweighed any
increases in consumables PMI since water PMI values were in the order of
thousands of kg/kg while consumables PMI were significantly lower and in the
order of tens of kg/kg.

Digging deeper into the analysis produces useful PMI benchmark values for the
sector. Water PMIs for Batch-ProA were between 5000 and 17,000 kg/kg, while
consumables PMiIs ranged between 4 and 6 kg/kg, depending on the
production scale. According to Figure 3.5a, the switch from batch to continuous
flowsheets can lead to 2-8-fold lower water PMIs from high to low production
scales (2200 kg/kg Conti-ProA, 3300 kg/kg Conti-ATPE, 3600 kg/kg Conti-PP
across scales). As discussed in the cost analysis, the absence of CIP
procedures in continuous single-use based facilities results in significant water
savings compared to the batch stainless-steel based strategy. Although the
continuous options have a lower water PMI than the batch flowsheet, the
continuous column-free options fare worse than the continuous ProA option.
The higher water PMIs of Conti-ATPE and Conti-PP compared to Conti-ProA

can be attributed to the higher media consumption and diafiltration buffers.

In contrast to the water PMI trends, the consumables PMI in Figure 3.5b was
4 to 5-fold higher in continuous mode (e.g. 500 kg/year consumables PMI: 5
kg/kg Batch-ProA, 15kg/kg Conti-ProA, 18 kg/kg Conti-ATPE, 16 kg/kg Conti-
PP). However, the order of magnitude is negligible compared to the lower liquid
waste. On the consumables front, as expected from the cost analysis, Conti-
ATPE resulted in a higher consumables PMI (SU bags and membranes).
Regarding Conti-PP, contrary to the consumables cost savings compared to
Conti-ProA, the consumables PMI in Conti-PP was in fact higher than the
column-based option. This comes from the higher usage of filters and SU bags
that outweigh the reduction in consumables weight (kg) from the absence of
Pro-A pre-packed columns. Overall, Conti-ATPE presents a water PMI and a

consumables PMI approximately 70% and 20% higher than Conti-ProA,
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respectively, and Conti-PP presents a water PMI and consumables PMI
approximately 60% and 10% higher than Conti-ProA, respectively.

The water and consumables PMI values are within the range of values reported
in the literature for continuous mAb flowsheets (Ho et al., 2010; Pollock et al.,
2017; Madabhushi et al., 2018; Cataldo et al.,, 2020) and suggest that
continuous and single-use technologies can be key enablers for improving

environmental impact in terms of overall PMI.

3.3.3 Sensitivity Analysis

In every large-scale bioprocess there are inherent uncertainties; thus, it is
important to identify the key sources for technical deviations and account for
them in the cost model to generate representative results. While the economic
and environmental advantages of pursuing Conti-ProA strategy were
highlighted during the deterministic cost comparison, a stochastic analysis
enabled the evaluation of different scenarios under process variability. The first
step was to conduct a sensitivity analysis by changing some critical process
parameters in the column-based and column-free capture flowsheets to
understand which factors had the largest influence on mAb production costs
and to identify the major risks or benefits for production in terms of process
changes. The selected ranges presented were discussed with academic and
industrial partners, so the analysis could fairly represent the best and worst

technical parameters found for each one of the technologies.

The results of the sensitivity analysis are illustrated in the tornado diagrams in
Figure 3.66. The diagrams illustrate that the key COG driver is the titre (in
Batch-ProA) and volumetric productivity (in Conti-ProA/ATPE/PP) in cell
culture. Lower titres/productivities than expected resulted in higher USP costs
as larger or more bioreactors were required to meet the demand. This had a
knock-on impact on total reagent costs, dominated by CIP buffer costs in Batch-
ProA (58%) and media costs in the continuous strategies (>75%). On the other
hand, working with increased volumetric productivities and more concentrated
HCCF would benefit specially the column-free alternatives, as lower perfusion

volumes would require a smaller DSP.
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Figure 3.6 - Sensitivity analysis of COG/g showing the effect of process
parameters variation on a) Batch-ProA, b) Conti-ProA, c) Conti-ATPE or d)
Conti-PP mAb production flowsheets, at 500 kg/year scale. The percentage

differences are relative to the COG/g in the base case.
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Figure 3.6¢ and Figure 3.6d show that the HCCF percentage was the second
parameter with the largest impact on the cost of goods in both column-free
capture alternatives. The HCCF% in the ATPE or PP systems’ composition
determined the dilution of the broth and the volume handled in the following
steps. Therefore, changes at this level had a large impact on the equipment
investment (associated with the indirect costs), consumables and reagents
costs. In Conti-ATPE, an increase from 18% to 25% of perfusion liquid in the
ATPE system (HCCF%) could decrease the final COG/g by more than 10% at
medium and large scales, demonstrating the benefits of a lower product dilution
on the cost-effectiveness of liquid extraction for mAb capture.

The diagrams illustrate that the key COG driver is the titre (in Batch-ProA) and
volumetric productivity (in Conti-ProA/ATPE/PP) in cell culture. Lower
titres/productivities than expected resulted in higher USP costs as larger or
more bioreactors were required to meet the demand. This had a knock-on
impact on total reagent costs, dominated by CIP buffer costs in Batch-ProA
(58%) and media costs in the continuous strategies (>75%). On the other hand,
working with increased volumetric productivities and more concentrated HCCF
would benefit specially the column-free alternatives, as lower perfusion
volumes would require a smaller DSP. Figure 3.6¢ and Figure 3.6d show that
the HCCF percentage was the second parameter with the largest impact on the
cost of goods in both column-free capture alternatives. The HCCF% in the
ATPE or PP systems’ composition determined the dilution of the broth and the
volume handled in the following steps. Therefore, changes at this level had a
large impact on the equipment investment (associated with the indirect costs),
consumables and reagents costs. In Conti-ATPE, an increase from 18% to 25%
of perfusion liquid in the ATPE system (HCCF%) could decrease the final
COG/g by more than 10% at medium and large scales, demonstrating the
benefits of a lower product dilution on the cost-effectiveness of liquid extraction

for mAb capture.

The concentration of buffers was also a factor to be considered when looking
at process changes that could reduce costs in column-free strategies. As the
bag containers dominate the equipment costs for the capture sequence in

Conti-ATPE and Conti-PP, using buffer concentrates and inline dilution would
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bring savings in the final cost of goods. Other changes in parameters such as
the reagents’ price, filtration fluxes, or other equipment price (besides capture
EPC) had a lower impact on the final COG/g; thus, they are not considered to
portray significant risks for the process. The individual parameter changes that
resulted in greater than a 5% change in COG were selected and integrated into
the uncertainty analysis using Monte Carlo simulations, where the process
mass output was fixed (100, 500 and 1000 kg/year) and the facility was resized

for each iteration to reflect the consequences of different starting assumptions.

3.3.4 Uncertainty analysis with Monte Carlo

simulations

Accounting for key uncertainties in the batch and continuous processes with a
stochastic analysis enables the robustness of the options to be determined as
well as the likelihood of meeting certain COG/g threshold values. The results of
the stochastic Monte Carlo analysis are depicted in the COG frequency
distributions in Figure 3.7 with an embedded table of key statistics. The figure
shows that Conti-ProA presented the most robust alternative across demands
compared to the batch and continuous column-free options as indicated by its
narrower distribution and lowest standard deviation and hence risk. It had also
the lowest expected cost and the differences in COG distributions were found
to be statistically significant, as indicated by all p-values being below 0.05
(embedded table). Of the column-free options, Conti-PP had the higher
probability of matching Conti-ProA expected COG values, with a likelihood
ranging from 10 to 30% across scales (embedded table). Bimodal distributions,
with peaks occurring at different COG values for the same alternative and scale,
were observed for Batch-ProA at 100 kg/year and Conti-PP at 500 kg/year,
when there was a jump in bioreactor scale due to low titre or productivity,
respectively. Apart from this scenario, uncertainties in titres, process yields,
HCCF% or binding capacities did not represent major shifts in the most likely
COG/qg for each flowsheet (peaks from stochastic distributions are within 5% of

costs attained in the deterministic analysis, as shown in the embedded table).
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Deterministic COG ($/g) 242 148 159 150 94 63 77 67 67 61 75 65
eCOG ($/g) 246 149 158 151 96 64 78 68 68 62 75 66
Standard deviation 52 25 47 43 42 1.8 4.2 39 32 1.7 4.3 42
p-value (Batch-ProA) N.A <0.001 <0.001 <0.001 N.A <0.001 <0.001 <0.001 N.A <0.001 <0.001 <0.001
p-value (Conti-ProA) <0.001 NA <0.001 <0.001 <0.001 N.A <0.001 <0.001 <0.001 N.A <0.001 <0.001
p(COG < eCOG;,,,) 0% 49% 1% 31% 0% 52% 0% 13% 1% 51% 0% 12%

Figure 3.7 - COG/g probability distribution plots under manufacturing

uncertainty at a) 100 kg/year, b) 5000 kg/year and c) 1000 kg/year production

scales. d) Statistical data on COG/g for the competing technologies under

process variability across demands. The p-values were computed using a two-

tailed homoscedastic t-test with an alpha value of 0.05; p-values below this

value indicate a significant difference. p-value (Batch-ProA) and p-value (Conti-

ProA) refer to the values when the COG distributions from each flowsheet were
Batch-ProA and Conti-ProA,

compared with
eCOG = expected COG.

that

of
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3.3.5 Multi-criteria decision making

MCDM analysis was used to reconcile economic, environmental and
operational criteria and identify the most advantageous continuous strategy
considering all perspectives. While the economic (COG/g and FCI) and
environmental (water and consumables PMI) criteria were directly obtained as
model outputs, the qualitative criteria (e.g., ease of scale-up, ease of validation)
were derived from survey responses from academia and industry experts with
experience in affinity chromatography, liquid-liquid extraction and precipitation

used in mAb capture.

Table 3.4 summarises the key values used in the MCDM to compute the overall
aggregate scores for each flowsheet (ProA chromatography, ATPE and PP),
including the criteria weights, standardised ratings and weighted category
scores. From the list of qualitative operational criteria, robustness was the most
important metric, while ease of installation ranked last, based on the survey

responses.

The radar chart in Figure 3.8a shows all standardised rating values for each
criteria for each flowsheet and it was used to simplify the visualisation of the
preferred flowsheet at each criteria. As expected, Conti-ProA scored the
highest in all economic and environmental criteria. Moreover, it had the
maximum score in two out of five operational criteria, including robustness, the
most important metric. Conti-ATPE had very poor scores across all quantitative
metrics due to its high COG/g, equipment cost, consumable usage and water
consumption; however, its operational feasibility was reasonably high
according to the qualitative scores given by experts. Conti-PP scored well in
the economic criteria, whereas, operational-wise, it only showed high scores

for the two least important criteria (ease of operation and installation).

To reconcile the competing outputs, the overall aggregate score was generated
for each flowsheet across different combination ratios of the economic,
environmental and operational categories (Figure 3.8b and Figure 3.8c). The
resulting sensitivity spider plots illustrate how the ranking of the alternative
continuous options changes depending on user priorities. The figures clearly

illustrate that Conti-ProA was the preferred continuous strategy irrespective of
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the relative importance of the economic, environmental or operational category
scores. The ranking between the remaining column-free options of Conti-PP
and Conti-ATPE depended on the weightings of the categories. When
economic and environmental performance were prioritised, Conti-PP was
preferred over Conti-ATPE for all combinations of these two categories (Figure
3.8b). However, when operational performance was brought into the picture as
a key priority (Figure 3.8c) and weighed against economic savings, then a
switch point occurred where the operational category was twice as important

as the economic category (R,, = 0.6,R.,, = 0.3). When the operational
benefits dominated in the final score above this threshold (R,, > 0.6) then

Conti-ATPE become the preferred column-free option over Conti-PP.

3.3.6 Target Analysis

The earlier COG analysis showed that the continuous mAb facilities modelled
with column-free capture technologies did not offer lower manufacturing costs
compared to the column-based option (Conti-ProA). This section determines
the cost reductions required for column-free alternatives to achieve a target
COG saving threshold of at least 15% compared to the continuous flowsheet
with ProA capture to justify the process change. The ATPE and PP process
changes implemented were based on the parameters that had the highest
impact on COG/g savings in the sensitivity analysis, namely the perfusion
volumetric productivity with either the ATPE HCCF% or the PP wash yield.

Figure 3.9 displays the target analysis as a matrix of heatmaps across scales
and buffer preparation methods to determine the windows of operation where
parallel improvements in ATPE and PP flowsheets result in COG savings that
meet the target threshold of 15% (highlighted by the region within the black

solid lines).
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Table 3.4 - Multi-criteria decision making summary of weights, ratings and overall aggregate weighted scores

_ _ Overall aggregate
Standardised Weighted category

Rating value, x;; ) score, S (Rec,=0.8,
Criteria category, o Weight,|Normalised rating, 7;; score, yji
Criteria, i Rank . Reny=0.1, R,,=0.1)
k Ei WEIght, w;
Conti |Conti |Conti [Conti |Conti |Conti [Conti |{Conti |{Conti |Conti [Conti |Conti
ProA |ATPE | PP |ProA ATPE | PP |ProA |[ATPE | PP |ProA |ATPE | PP
. Cost of Goods ($/g) 1 1 0.5 63 77 67 | 100 0 75
Economic 100 0 g5
Fixed Capital
(500Kg) P 1 1 0.5 25M| 27M| 25M| 100 | O 96
Investment ($)
. Water PMI (kg/kg) 1 1 0.5 2 156| 3 684| 3566 100 0 54
Environmental 100 0 31
Consumables PMI
(500 Kg) i 1 1 0.5 15 | 18 | 16 | 100| O 8
(kg/kg) 97 5 75
Robustness 1 5 0.33 44| 40| 25 84 75 38
Ease of scale-up 2 4 0.27 34 | 47| 3.8 60 92 69
Operational Ease of validation 3 3 0.20 39| 27| 20 72 42 25 72 54 36
Ease of operation 4 2 0.13 33| 27| 35 56 42 63
Ease of installation 5 1 0.07 2.9 40| 3.8 47 75 69

Note: Rank of 1 indicates most important. For the operational metrics, a rating value of 5/5 represents the best outcome.
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Figure 3.8 - Rating values of Conti-ProA, Conti-ATPE and Conti-PP flowsheets
for each economic (Cost of Good — COG,; Fixed Capital Investment — FCI),
environmental (Consumables PMI; Water PMI) and operational (robustness,
ease of operation, scale up, installation and validation) criteria. b and c) Effect
of the economic, operational and environmental criteria combination ratios on
the overall aggregate scores when the operational attribute ratio is constant at
10% (b) and when the environmental attribute ratio is constant at 10% (c). All

graphs are generated for a mAb demand of 500 kg/year.
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Figure 3.9 - Heat maps showing the COG difference for Conti-ATPE and Conti-
PP relative to Conti-ProA as a function of the perfusion volumetric productivity
versus either the HCCF% fraction for Conti-ATPE or the wash yield for Conti-
PP. The target analysis is shown for scenarios using traditional buffer
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With traditional buffer preparation, the target COG saving was not achieved
regardless of the combination of parameters in the column-free flowsheets.
Also, in Conti-ATPE, possible increases in volumetric productivity or HCCF
fraction rarely led to COG values matching Conti-ProA COG. On the other
hand, in Conti-PP, as the base-case COG is already very similar to Conti-ProA,
changes in these process parameters led to scenarios offering modest savings

over ProA chromatography.

The implementation of inline dilution of buffers (2-fold buffer concentrates)
across all options conferred a strong advantage particularly for both Conti-
ATPE and Conti-PP. The target COG saving could be reached for a broad
combination of parameters in Conti-ATPE and Conti-PP. The window of
feasible combinations meeting the target increased as scales increased due to
the larger contribution of consumables and reagents costs to the total COG at
higher scales and the ability of the process changes to minimise material

consumption.

The attractiveness of Conti-ATPE and Conti-PP will depend on the
improvement of multiple process parameters to levels that may be beyond the
current best cases found in literature. The usage of buffer concentrates is
becoming more commonplace and improved perfusion volumetric productivities

may be envisioned for the near future.

Also, the implementation of a simple pre-concentration step before capture has
been already discussed with partners and it would resemble the benefits of
having higher volumetric productivities, as working with a more concentrated
HCCF would lead to smaller volumes during DSP. However, increasing the
HCCF percentage in the ATPE/PP systems without compromising capture
performance and achieving higher step yields would entail further studies on
the technical optimisation of aqueous two-phase extraction and precipitation as

capture technologies applied to monoclonal antibodies.
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3.4 Conclusion

This chapter presented the extent of capabilities configured in a process
economics model that enabled the comparison of different mAb production
flowsheets from economic, environmental and robustness perspectives. The
simulation tool built in Python was used to design batch and continuous facilities
and provided an in-depth evaluation of the trade-offs associated to protein A
chromatography, aqueous two-phase extraction and product precipitation as
mADb capture steps across production scales. The cost drivers for each scenario
were highlighted and determined that the implementation of continuous
manufacturing was preferable over batch, especially at lower scales, and that
the broth dilution in ATPE and higher media consumption in PP could favour
the selection of ProA as capture step in continuous mAb processing. Although
there was an increase in consumables usage in continuous mode, the
environmental analysis showed that the water savings found over batch would
decrease the overall environmental burden associated with continuous mAb
production. The multi-criteria decision-making analysis presented higher
aggregate scores for continuous mAb processing with column-based capture
across scenarios with different weightings for economic, operational and
environmental performance. The target analysis showed that ATPE and PP
could provide lower cost of goods than ProA if buffer concentrates are
implemented and if the cell culture volumetric productivity, the HCCF% in the
ATPE system and precipitates wash yields were maximised altogether. The
added value of such a simulation framework was revealed through the
assessment of different technologies, flowsheets and scenarios, as these are
critical during process development and decision-making on future facility

designs in the biopharmaceutical sector.
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Chapter 4: Carbon footprint of different batch and
end-to-end continuous antibody manufacture
flowsheets

4.1 Introduction

As sustainability becomes a key focus for biopharmaceutical industry,
measuring and reporting environmental metrics demonstrates not only an
important commitment to the environment, but it can also help companies
identify opportunities for improvement and make informed decisions about

product design and manufacturing processes.

In this chapter, a cradle-to-gate life cycle analysis is carried out to determine
the product carbon footprint resulting from different mAb manufacture
flowsheets. The decision-support tool presented in the previous chapter was
used to generate the mass balance and facility layout to feed into the
environmental analysis. The PMI metrics from Chapter 3, which captured only
waste generated, are compared with the sustainability metric related to product
carbon footprint, which captures the impact of energy consumption, raw

material extraction and waste treatment.

The key drivers of carbon footprint are identified and are used to provide an
insightful overview of the areas in which industry should focus on when tackling
process changes towards a more environmental-friendly production.
Optimisation routes are also simulated to understand the potential decrease of
carbon footprint in different mAb manufacturing flowsheets.

Section 4.2 presents the key assumptions and methodologies used during the
life cycle assessment, including important approximations used in the
database. Section 4.3 starts by delving into the breakdown of the carbon
footprint contributors and shares the environmental impact of each flowsheet,
before and after process optimisation. Section 4.4 reviews the main

environmental outcomes shared during the chapter.
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4.2 Methods

The case-study explored the life cycle assessment of three of the mAb
flowsheets described in Chapter 3: Batch-ProA, Conti-ProA and Conti-PP. As
Conti-ProA and Conti-PP were the end-to-end continuous flowsheets which
presented the lowest COG/g and PMI, these were the focus of this in-depth

environmental analysis.

The main attributes of the LCA are shown in Table 4.1. The assessment was
performed according to the standards described in ISO 14040:2006 and 14044
2006 (ISO, 20064, 2006b).

Table 4.1 - Life Cycle Assessment main attributes

Software OpenLCA

Database Ecolnvent 3.7

Impact Assessment Method ReClPe 2016 midpoint (H)

System Boundary Cradle-to-gate
Scopes 1,2and 3
Goal Evaluate the carbon footprint of Batch-ProA, Conti-
oa
ProA and Conti-PP
Functional unit 500 kg of mAb
Product demand 500 kgl/year
Facility location United Kingdom
Supply chain location Europe

Impact categories _ .
Climate change (kg of CO, equivalent)
assessed

Evaluation metric Product carbon footprint (kg of CO2 equivalent)
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The LCA boundary of this analysis was cradle-to-gate, i.e. from raw material
extraction to waste disposal. It was essential to start at “the cradle” and include
the emissions coming from supply chain activities so that the impact of different
raw materials used in the flowsheets could be assessed. The study boundary
ended at the “gate”, rather than “grave” aspect, as there was limited data on
how the recycling of stainless-steel equipment is done across the industry or

on how the product is discarded when it reaches the end of its useful life.

The carbon footprint of each flowsheet was divided into three categories:
supply-phase, use-phase and end-of-life. The supply-phase considered raw
material extraction, consumables and reagents production and the transport of
these materials to the facility. The use-phase reflected the carbon footprint
derived from the main production facility, including the energy and utilities
required in the production process and in the facility in general. The end-of-life
phase concerned the disposal of waste streams according to proper

procedures.

The quantities of raw materials used, the processing times per unit operation
and the weight of consumables waste were computed via the process

economics model described in Chapter 3.

The LCA analysis is aligned with the Greenhouse Gas Protocol’s scopes 1, 2
and 3 for GHG emissions (described in Section 1.5.3.2.1). Scope 1
incorporated the entire manufacturing process and buffer and media
preparation; Scope 2 involved the consumption of externally sourced energy,
such as purchased electricity; and Scope 3 comprised the raw materials
extraction and production, their transport and disposal. The equipment
fabrication (usually included in Scope 1) was not included in the analysis, as its
carbon footprint was assumed to be very small compared to other sources, due
to the high durability of stainless-steel equipment and its frequent re-usage

within the facility.
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4.2.1 Key assumptions

4.2.1.1 Energy requirements

The unit operations included in each mAb production flowsheet require energy
to run. Also, PW and WFI skids and ancillary activities, such as buffer and
media preparation, involve electricity expenditures. These electricity
requirements, including the energy needed for lighting the facility, were
obtained from technical datasheets or gathered from the literature and are
presented in

Table 4.2.

Table 4.2 - Energy input for the different unit operations and supporting
activities used in mAb production process. Watt-units were multiplied by the
time of operation. For media and buffer preparation, 1h of agitation was
assumed. For lighting, the energy requirement was multiplied by the total site

operating days.

Unit Energy requirement Reference

Cell Culture Agitation 2 W/L (Doran, 2013)

Media/Buffer Preparation 70 W/L (Walas, 1990)

Cell Culture Heating 7700 Wh (AlfaLaval, 2022)

Centrifugation 17500 W (ThermoFisher Scientific, 2021)

Eiltration 50 W/m?2 (Lipnizki, = Boelsmand and
Madsen, 2002)

Chromatography 600 W (Bunnak et al., 2016)

CIP/PW/WFI Generation 155 Wh/L (Rawlings and Pora, 2009)

Lighting 15 W/m? (Bunnak et al., 2016)

The energy required for cell culture agitation can vary depending on factors
such as the specific cell line, the stage of cell culture, the vessel type, and the
agitation method used (Li et al., 2010). Specific power inputs (power/volume,
P/V) for the agitation of CHO cells can range from 0.2 to 10 W/L (e.g.,
Balandras et al., 2011; Doran, 2013; Isailovic, Rees and Kradolfer, 2015) with
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values more commonly reported at the lower end of the scale. For the analysis
a value of 2 W/L (Doran, 2013) was selected.

Similarly, the level of agitation used in the dissolution of salts during media and
buffer preparation also depends on the type of vessel and impeller. Values
reported range from 0.5 — 70 W/L and the upper end was used in the analysis
(Walas, 1990) to reflect the energy consumption in stirred tank reactors.

Besides the direct requirements of the bioprocess, there are other facility-
related sources of energy consumption in biopharmaceutical facilities, including
heat, ventilation and air conditioning (HVAC) systems. The energy
requirements from the HVAC systems are dependent on the grade of each the

cleanroom, based on the desired air change rate, and its floor area.

Table 4.3 shows the energy demand per cleanroom. These values were taken
from Sinclair et al. (2008), who provided an overview of typical energy
requirements for each area classification (Sinclair et al., 2008). As more recent
data on the breakdown of these energy inputs per cleanroom were desired, a
survey was sent to several partners in industry. However, it was not possible to
gather a consistent range of values for the expected energy required per

cleanroom class.

These parameters were later multiplied by each cleanroom area, derived from
the process economics model according to Section 4.2.1.1. Also, the electricity
needed for lighting all rooms in the facility was grouped with the HVAC

requirements.

Table 4.3 - HVAC energy requirements per room classification (Sinclair et al.,
2008).

Energy requirement (kWh/m2) on an

Room annual basis
Cleanroom C 237
Cleanroom D 119
Controlled Not Classified (CNC) 47
Unclassified area 47
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The electricity source for the analysis was based on UK’s national consumption
mix of electricity, as documented in the Ecolnvent database. The breakdown of
this consumption mix is presented in the Table 4.4.

Table 4.4 - Electricity consumption mix in the United Kingdom from Ecoinvent
database (2014).

Category Share of the Total Electricity Supply (%)
Hydraulics 3

Nuclear 19

Fossil Fuel 60

Wind 9

Solar 1

Biowaste 9

42111 Cleanroom classifications and facility area

The equipment footprint was calculated based on the area that each process
skid occupied, according to each unit technical datasheet. For single-use hold
buffer bags, these were stacked in piles of 2, 3 or 6, depending on the volumes.
Bags larger than 1500 L were not stacked. Ranges of equipment footprints are
shown in Table 4.5. The cleanroom area was determined assuming that the
equipment occupied 15% of a cleanroom (Pereira Chilima, 2019) to allow for
space for piping, walkways, maintenance and ancillary equipment, such as

shelving, trolleys or testing devices.
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Table 4.5 - Equipment footprint based on size range. This information was
taken from the brochures of specific equipment.

Equipment Size (min —=max)  Floor Area (min —max) (m?)
Bioreactor 10 — 25000 L 1.6-20
Hold vessel 10 — 20000 L 04-6.4
Bioreactor bag container 10 - 2000 L 1.2-10
Hold bag container 1-5000L 01-16
Centrifuge 600 — 5000 L/h 3.5-45
Depth filter holder 1-24m? 02-21
Virus filter holder 1.5-10 m? 0.1-0.3
ATF filter holder 0.13-11m? 0.1-0.3
Filtration skid 3-24 m? 1.6-4.38
UFDF holder 1-100 m? 0.1-0.5
UFDF skid 1-85 m? 04-7.2
ILC & ILD module 0.13-1.2 0.2
Continuous VI tank 1-50L 05-26
Chromatography skid (batch) 1-100L/h 04-27
Chromatography skid 1_6Uh 0.9_35

(continuous)

The total facility footprint encompassed the main manufacturing area, clean
circulation area, waste circulation, and the utility level and were determined
based on the methodology provided in Pereira Chilima et al. (2016). However,
certain zones were excluded from the facility footprint estimates. The general
area, inclusive of the warehouse and logistics, was omitted due to the
considerable variability in this estimation, which depends on each facility
design. Additionally, areas such as Research and Development (R&D), Quality
Assurance/Quality Control (QA/QC) and offices were not scoped in the study,
as they can be separate from the main facility. Table 4.6 shows the calculation
factors to estimate the areas of the clean circulation, waste circulation and utility
level based on the manufacturing footprint. The final facility areas were

compared and validated against footprints provided by industry (personal
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communication with Jasmin Kee, Kee Bio, UK) to increase the confidence in
the HVAC calculations. Cleanroom classifications were based on information in
the literature (Eibl and Eibl, 2019).

Table 4.6 - Cleanroom classification and facility footprint calculating ratios for
stainless-steel (SS) and single-use (SU) based flowsheets (Pereira Chilima et
al., 2016). In the manufacturing area, 16 m?are added to each room to account

for the airlocks.

Ratio of manufacturing
Area Description footprint
SS based  SU based

Classification C
e Cell culture — seed
e Polishing (CEX, AEX, VF,
UFDF, ILC, ILD)

Classification D
e Cell culture — main
e Centrifugation
e Depth Filtration, capture, VI

Manufacturing

Classification CNC
e Buffer preparation
Classification CNC
Clean circulation ¢ Clean corridors 0.2 0.2
e Buffer storage

e Operator stations
Classification CNC

Waste circulation e Waste corridors 0.2 0.2
e Staging
Classification U
Utility level e CIP 1.2 1
e PW/WFI

4.2.1.2 Database

As aforementioned, Ecolnvent 3.7 was the main LCA database used in this
study. However, items of various streams, including reagents and
consumables, were not available in the database. Thus, some approximations

and suitable substitutions to specific components available in the database had
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to be made. The main assumptions regarding the database of raw materials
are listed below.

e Cleaning solutions

In the CIP buffer, sodium hydroxide was assumed as the main

component;
e Cell culture media

The media individual components were taken from technical datasheets

of media from Lonza Pharmaceuticals;
e Chromatography buffers

Protein A chromatography buffers were based on the buffers used by
Pollock et al. (2013) in the application of semi-continuous
chromatography for commercial manufacture (Pollock et al., 2013). The
CEX and AEX buffers were obtained from Cytiva. The buffers were
mostly composed of Tris buffer and NaCl. Tris was substituted by the

closest analogue in Ecolnvent database, dimeethylaminopropylamine;
e Viral inactivation buffer

For simplification, it was assumed that citric acid was the major

component in this reagent recipe;
e Plastic consumables and resins

The carbon footprint of the consumables of each stream (i.e., SU bags,
filters and pre-packed columns) was derived from Ramasamy (2018)
using linear regressions according to the specified size of each item. The
items and respective carbon footprint used in the regressions are shown
in Table 4.7. As there was no data on the carbon footprint of fabricating
chromatography pre-packed columns, a simplification was made and it
was assumed the same kg CO2 per kg as in the filters. The calculated
carbon footprint included raw material extraction of the required
components, molding or fabricating to the final form, sterilisation and

delivery of the items to the facility (Ramasamy, 2018).
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e Liquid waste treatment

The liquid waste was assumed to be heat treated in-house before being

sent for disposal,
e Liquid and solid waste disposal

The single-use materials (solid waste) were assumed to be disposed via
incineration, while the liquid waste was transported to the local

wastewater treatment facility.

Table 4.7 - Carbon footprint of different consumables based on size

(Ramasamy, 2018).

Item Size Carbon footprint (CO»-eq)
10L 35
SU bag 200 L 60
500 L 126
0.3 kg 8
Filter
1 kg 45
ProA resin - 77 CO2-eqg/kg
AEX & CEX resin - 18 COz-eq/kg

4.2.1.3 Flowsheets optimisation

The impact of process changes in the environmental footprint of mAb
production flowsheets was assessed. Discussions with the Przybycien group
from Renssealaer Polytechnic Institute, who published on the precipitation
conditions taken as reference for this thesis on mAb production with capture by
precipitation (Li et al, 2019), revealed that critical process parameters have
been optimised to reduce water and raw materials consumption since the work
outlined in Chapter 3. These changes were introduced in the process
economics model and the outputs were compared with the product carbon

footprint from the base case. Also, increased titres and volumetric productivities
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were scoped in during the evaluation of the flowsheets environmental impact.
Table 4.8 shows the parameters that were changed in each one of the

flowsheets during the environmental assessment.

Table 4.8 - Process parameters changed in Batch-ProA, Conti-ProA and Conti-
PP optimisation.

Flowsheet Parameter Base case Best case
Cell culture titre 5¢/L 15g/L
Batch-ProA Equivalent
volumetric 0.5 g/L/day 1.25 g/L/day
productivity
_ Perf. Volumetric 3 g/L/day (2 g/L 9 g/L/day (6 g/L
Conti-ProA o ) )
Productivity harvested titre) harvested titre)
Perf. Volumetric 3 g/L/day (2 g/L 9 g/L/day (6 g/L
Productivity harvested titre) harvested titre)
Concentration step None (2 g/L harvested Up to 5-fold (10 g/L
Cont-PP prior PP titre) harvested titre)
HCCF % 50% 80%
Capture yield 74% 90%

From discussions with the Przybycien research group, the best titre envisioned
for the future of fed-batch mAb manufacture was 15 g/L (equivalent volumetric
productivity of 1.25 g/L/day). For the fed-batch and perfusion stages, the
volumetric productivity difference was kept constant (at 7.2-fold) for the base
case (0.42 vs 3.0 g/L/day) and best cases (1.25 vs 9 g/L/day). Therefore, the
best case titre for perfusion was at 6 g/L.

In Conti-PP, the base case was based on data provided in Li et. al (2019) and
the best case was based on unpublished data from the Przybycien research
group. The best case assumed an HCCF concentration increase from 2g/L to
10 g/L through the implementation of a filtration step prior to the precipitation
based on proof-of-concept currently under development by Przybycien'’s group.

This concentration step was implemented without hampering the precipitation
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step (acceptable liquid viscosity). Also, conversations with the same group
revealed that the 2-fold dilution of HCCF seen in Conti-PP base case (50%
HCCEF in the precipitation system) could be reduced through the increase of the
HCCF ratio in the precipitation system (from 50 to 80% HCCF) with the
utilisation of higher concentrated stock solutions of PEG and zinc chloride and
lower quantities of PEG (%PEG was reduced from 7 to 5% after process
optimisation). Additionally, major advances concerning mAb recovery from the
precipitates wash step were shown during these conversations, which allowed
for an overall capture yield increase of more than 20% (capture yield base

case=74%; capture yield best case=90%).

4.2.1.4 Benchmarks of carbon emissions

The product carbon footprint of each flowsheet was translated into day-to-day
metrics to allow for a more relatable understanding of their environmental

impact.

Table 4.9 shows the approximated conversion rates from 1 ton of emitted CO>

into several metrics, with the respective assumptions.

Table 4.9 - Conversion rates for the emissions of 1 ton CO2-eq.

Conversion rate

Metric Assumption 1 ton CO»-eq Reference
Number of
individuals e 5000 kg :
equivalent COz/person/year 0.20 (Statista, 20232)
emissions

e London to New York
Number of e 5000 km
intercontinental e 0.15kg 03 (Statista, 2023Db)
flights CO./passenger/km

e 400 passengers

Number of trees
to offset
emissions

e 22 kg CO,

absorbed/tree/year 46 (Encon, 2023)
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4.3 Results and discussion

The environmental outputs of producing monoclonal antibodies using protein A
chromatography or product precipitation for capture were derived by combining
the decision-support tool and OpenLCA. In this section, the sustainability
assessment started by diving into the product carbon footprint of Batch-ProA,
Conti-ProA and Conti-PP, which was compared with the PMI metric derived in
Chapter 3. The breakdown of energy requirements and carbon footprint of
single-use items was subsequently showed to provide insights on the total
product carbon footprint trends. The last stage of analysis comprised the
optimisation of the flowsheets, with focus on Conti-PP as a column-free capture
alternative, to identify the key changes in process parameters that could lead
to a more environmentally friendly production scheme. All studies were

performed for a mAb demand of 500 kg/year.

4.3.1 Product carbon footprint

After integrating the mass balances of each process together with the
calculated energy requirements and SU consumables carbon footprint directly
in OpenLCA, the lifecycle assessment of Batch-ProA, Conti-ProA and Conti-PP

was performed.

The PMI analysis presented in Chapter 3 indicated that continuous flowsheets
result in lower PMI metrics that focus on waste generation. Here the analysis
explored whether continuous flowsheets would also result in lower carbon
footprints. Figure 4.1 presents the product carbon footprint (PCF) of each
flowsheet, which corresponded to the climate change impact category from
OpenLCA. The results indicated that whilst Conti-ProA can lead to savings in
PCF, Conti-PP led to the highest carbon footprint from all three flowsheets
(PCF: 4.8x10° kg COz2/year Batch-ProA; 3.6x10° kg COz2/year Conti-ProA;
7.1x10° kg COz/year Conti-PP). This is in contrast to the rankings observed
when using the PMI metric for waste in Section 3.3.2, where both continuous
options (column-based and column-free) resulted in significantly less waste and

hence lower PMI metrics.
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Figure 4.1 - Product carbon footprint and PMI for an annual demand of 500
kg/year using Batch-ProA, Conti-ProA or Conti-PP flowsheets.

The investigation and comparison of the PMI and PCF metrics revealed that
they yield different conclusions owing to the different environmental impacts
that they capture. Since the PMI metric focuses on waste generation and
biotech processes use more water than consumables, it will favour process
intensification strategies such as continuous that reduce water consumption.
The PMI treats the consumables and reagents streams with equal weighting
and does not account for the specific fabrication process of the items. In
contrast, since the PCF metric focuses on climate change, it will favour

processes with lower GHG emissions.

The breakdown of the PCF was analysed to determine the key drivers for each
flowsheet and to determine why the Conti-PP led to the highest carbon footprint.
As described in Section 4.2, the PCF was divided into 3 categories: supply-
phase, use-phase and end-of-life. The main driver for the high carbon footprint
of Conti-PP was the supply-phase related emissions for extracting and
producing the raw materials (63%). This exceeded the carbon footprint related
to the energy requirements (use-phase) (32%) or disposing the waste streams
after production (end-of-life phase) (5%). The carbon footprint from the supply-
phase in Conti-PP was, approximately, 4 and 2-fold higher than Batch-ProA
and Conti-ProA, respectively (supply-phase carbon footprint: 1.0x10° kg
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COzlyear Batch-ProA; 1.9x10° kg COz2/year Conti-ProA; 4.5x10° kg CO2/year
Conti-PP). For Batch-ProA, the main carbon footprint contributor was the use-
phase, which accounted for 76% of the total PCF. The use-phase in Batch-
ProA was 2.6 and 1.6-fold higher than Conti-ProA and Conti-PP, respectively,
mainly due to the large energy requirements from CIP buffer generation (use-
phase carbon footprint: 3.6x10° kg CO2/year Batch-ProA; 1.4x10° kg CO2/year
Conti-ProA; 2.3x10° kg COz/year Conti-PP). Similarly to Conti-PP, the supply-
phase emissions also dominated Conti-ProA’s PCF (53%), while the use-phase
comprised 39% of the flowsheet related emissions. The reduced use-phase
emissions compared to Batch-ProA and Conti-PP contributed to the lowest

Conti-ProA’s PCF value amongst flowsheets.

The detailed breakdowns of the GHG emissions related to the supply, use and
end-of-life phases from each flowsheet are explored in the following sections to
help explain the contributing factors to the trends.

4.3.2 Carbon footprint of the supply-phase materials

Error! Reference source not found.a shows the breakdown associated with the
carbon emissions from the supply phase for each flowsheet and the contribution
of consumables and reagents components fabrication. Error! Reference source
not found.b-e present the contribution per type of reagent or consumable and
per production stage (USP/capture/polishing). As described in the previous
section, continuous flowsheets presented higher supply-phase emissions than
in batch (1.9 and 4.4-fold higher for Conti-ProA and Conti-PP, respectively).
Additionally, for these flowsheets, consumables production dominates the
supply-phase emissions, while in batch the contribution of consumables and
reagents production is almost equal (ratio of consumables and reagents
production: 44:56 Batch-ProA; 87:13 Conti-ProA; 68:32 Conti-PP). These
results help highlighting trends between stainless steel based (Batch-ProA) and
single-use based (Conti-ProA and Conti-PP) facilities. The consumables
emissions relate to the fabrication of SU bags, resins and filtration membranes,

while the fabrication of reagents components includes salts used in culture
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media and buffers and specific chemicals, like PEG, used in the precipitation of
antibodies in Conti-PP.
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Figure 4.2 - Breakdown of a) carbon emissions related to the entire supply-
phase and fabrication of b) reagents per type, ¢) reagents per production stage,
d) consumables per type and e) consumables production stage for an annual
demand of 500 kg/year using Batch-ProA, Conti-ProA or Conti-PP flowsheets.
The polishing steps’ emissions are the same for Conti-ProA and Conti-PP, but

represent different percentages of the emissions.
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Conti-PP presents the highest supply-phase emission, with both consumables
and reagents fabrication higher than Batch-ProA and Conti-ProA. The
emissions derived from consumables fabrication are 6.8 and 1.8-fold larger
than in Batch-ProA and Conti-ProA, respectively, and the emissions from
reagents are 6.0 and 2.5-fold larger than in Batch-ProA and Conti-ProA,

respectively.

The significant contribution (89%) of PEG to the reagents emissions of Conti-
PP is showed in Error! Reference source not found.b and explains the major
impact of the capture stage in the flowsheet reagents emissions (Error!
Reference source not found.c). Moreover, the emissions from PEG fabrication
represent 9% of the total PCF from Conti-PP. The production of polyethylene
glycol is derived from ethylene oxide, which is produced from ethylene, a
hydrocarbon derived from fossil fuels. Also, the polymerisation process into
PEG requires high temperatures and pressures, leading to increased energy
consumption. This results in a carbon-intensive raw material that is also used
in a significant amount in Conti-PP. Sodium chloride, which is used in the
culture media, chromatography buffers or antibody precipitation, has also a
visible contribution in the reagents emissions, especially in Batch-ProA
(contribution of sodium chloride in the reagents emissions: 42% in Batch-ProA;
32% in Conti-ProA ; 3% in Conti-PP).

The impact from the fabrication of different consumables is showed in Error!
Reference source not found.d and reveals that SU bags in Conti-ProA and
Conti-PP drive the high consumables emissions from these continuous
flowsheets (>90% contribution). In Conti-PP, the number of single-use bags
used in the capture stage is significantly larger than Conti-ProA, which supports
the higher consumables emissions from this stage (Error! Reference source not
found.e). This can be attributed to the 4-fold higher number of larger (>= 1000
L) SU bags used in the capture stage when precipitation is used instead of
ProA.

The consumables emissions presented in Batch-ProA derive only from the
production of UFDF filters, guard filters and resins. As expected from the PMI
analysis, the consumables environmental impact in a stainless-steel based

facility are significantly lower than in a single-use based one.
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4.3.3 Carbon footprint of the use-phase: Energy

requirements

The deeper analysis of the energy requirements provided clarification on the
use-phase carbon footprint shown for each flowsheet. Error! Reference
source not found. depicts the breakdown of the annual energy requirements
by major processing stage (USP/capture/polishing) combined with the HVAC
and lighting energy consumption.

This investigation highlighted that Batch-ProA had the highest energy
consumption out of all the flowsheets. This can be attributed to both the larger
scale required in batch and the need for CIP with stainless steel equipment.
This is reinforced by the larger manufacturing area (embedded table) that
directly impacts the HVAC and lighting consumption and the high contribution
of emissions coming from CIP buffer generation. From Chapter 3, it was clear
that the CIP cleaning in Batch-ProA led to a negative impact both on costs and
PMI. In the analysis showed in Error! Reference source not found., it can
also be confirmed that stainless-steel based facilities will require an increased
energy input for CIP buffer preparation (CIP generation represents 22% of the
total energy requirements — embedded table). This is also reflected in the large
energy values and high contribution of the polishing stage (3.2x10° kWh/year,
28% of total annual consumption), which was the stage with more unit

operations and, therefore, more CIP buffer required.

Turning the comparison to the continuous flowsheets, while both Conti-ProA
and Conti-PP presented lower energy requirements than Batch-ProA (annual
energy requirements: 1.1x108 kWh/year Batch-ProA; 4.3x10° kWh/year Conti-
ProA; 7.2x10° kWh/year Conti-PP), Conti-ProA was clearly the less energy-

intensive option studied.
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Figure 4.3 - Breakdown of energy requirements for an annual demand of 500

kgl/year using Batch-ProA, Conti-ProA or Conti-PP flowsheets. The total energy

requirements of Conti-ProA and Conti-PP are benchmarked against Batch-

ProA. SIP was not considered in the process economic model, therefore, the

energy from steam generation is not included in product carbon footprint. Media

and buffer prep row relate to the energy usage during mixing of the ingredients.

WEFI and CIP generation rows indicate the energy spent in the stations used to

prepare these liquids. The polishing steps energy requirements are the same

for Conti-ProA and Conti-PP, but represent different percentages of the total

energy requirements.
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As observed in Figure 3.1, Conti-ProA presented the shortest length overall
and for the capture train specifically, which had a direct impact on the total
facility footprint and resulted in lower HVAC and lighting requirements.
Moreover, the energy needed to prepare buffers and run the unit operations in
the capture stage came uniquely from the protein A chromatography step. In
contrast, Conti-PP required higher energy consumption for HVAC and
operations due to the 5-step capture train and the higher buffer demand from
the concentration, wash and resolubilisation steps during the capture stage.
Also, as discussed in the PMI analysis in Section 3.3.2, due to the lower DSP
yields, more product output was needed from Conti-PP’s cell culture to meet

the same annual demand and, thus, more media was required.

While the PMI metric only showed the larger media volumes needed in Conti-
PP compared to Conti-ProA, the bar chart in Error! Reference source not
found. revealed the big impact that this also had on the facility energy
requirements. The energy contribution from the USP step in Conti-PP is almost
3-fold higher than in Conti-ProA (USP annual energy requirements: 2.4x10°
kWh/year Batch-ProA; 6.0x10% kWh/year Conti-ProA; 1.6x10° kWh/year Conti-
PP).

The contributions of each stage (USP/capture/polishing) or category (e.g.,
HVAC, buffer preparation, unit operations) on the total energy requirements will
highly depend on the energy input (kWh) of the utilities and unit operations, as
well as on the clean rooms’ classifications in a certain facility. HVAC, for
instance, is used to ensure the optimal conditions in production rooms by
regulating temperature and humidity. Thus, it is expected to contribute a
significant portion of the energy usage in a facility. However, its actual impact
will depend on several parameters, such as the type of fan filter units utilised,
the choice of heating/cooling equipment and the air change rates (total air
volume in a certain space that is replaced with fresh or recirculated air) per
cleanroom to meet the required concentration of particles according to GMP
standards. As more HVAC energy data becomes available in future and more
efficient HVAC systems are designed, it is expected that these differences

would have an impact on the energy utilisation reported.
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In the present study, the HVAC contribution to the total energy usage of mAb
facilities ranged from 30 to 50%, depending on the production scheme.
Additionally, when looking into the HVAC energy required per square meter,
the flowsheets in this thesis presented consumptions ranging from 400 to 450
kWh/m? (Sinclair et al., 2008). Other studies (e.g., Galitsky, 2011; Ramasamy,
2018) used benchmark values for HYAC consumption 5 to 10-fold higher than
Sinclair (2008) (Boyd, 2005; Capparella, 2013), which led to HVAC
contributions from 65 to 85% of the total energy requirements. However, these
benchmarks did not consider the different HVAC features per cleanroom and
there was limited information on the scale of production or the area
classifications included in the HVAC area. Once more, it is important to
acknowledge that the energy outputs presented in this section were based on
the references showed in

Table 4.2 and Table 4.3 and that other assumptions may vyield different
outcomes. Discussions with industry experts also revealed that a wide range of
energy usage can be expected from facilities with different configurations and
strategies. Therefore, the total product carbon footprint will also be influenced
from facility-to-facility or scenario-to-scenario, yielding to higher or lower values

than the ones reported in this thesis.

4.3.4 Carbon footprint of end-of-life phase

The emissions from the end-of-life phase relate to the activities of disposing the

waste streams from each production flowsheet.

Although in Batch-ProA the liquid waste stream is significantly higher than in
the continuous flowsheets (Figure 4.1), the disposal of solid waste in Conti-
ProA and Conti-PP drove the higher carbon footprint of the end-of-life phase
(end-of-life carbon footprint: 1.6x10* kg CO2/year Batch-ProA; 2.9x10* kg
CO2lyear Conti-ProA; 3.6x10* kg COz/year Conti-PP). The contribution of the
end-of-life phase for the total PCF was lower than 10% amongst flowsheets;
however, this may vary according to the assumptions taken for liquid and solid
disposable in OpenLCA. In the present study, the solid waste was treated via

incineration and the liquid waste was sent to the local wastewater treatment

138



facility for treatment. These options were discussed with industrial partners and
recognised as the most common practices currently applied in the sector.

4.3.5 Optimisation of batch and end-to-end

continuous mAb production

As discussed in Chapter 3, there have been efforts from both academia and
industry towards improving the cell culture output in mAb manufacture. These
improvements in mAD titres lead not only to economic advantages but can also

reflect a significant decrease in the environmental impact in mAb flowsheets.

Figure 4.4 shows that Conti-PP is the flowsheet that benefited the most from
the increase in cell culture productivity. While Batch-ProA and Conti-ProA
presented PCF reductions of 8 and 22%, respectively, the carbon footprint of

Conti-PP was 50% lower moving from 3 g/L/day to 9 g/L/day.

For the same annual demand (500 kg/year), a more concentrated cell culture
fluid results in a smaller volume output. Thus, the 3-fold increase in mAD titre
(Batch-ProA) or volumetric productivity (Conti-ProA and Conti-PP) had a direct
impact on the USP and DSP sizes. In Conti-PP, the capture steps (e.g.,
precipitation, concentration) were sized based on the HCCF volume, whereas
in Batch-ProA and Conti-ProA the chromatography step was sized based on
the product mass (the quantity of mAb in the HCCF is the same regardless the
HCCEF titre). As a result, the decrease in HCCF volume through the increase in
perfusion productivity had a more significant impact in the carbon footprint of
Conti-PP.

The carbon footprint related to the supply-phase, use-phase, and end-of-life
before and after simulating the optimisation in titre in Batch-ProA is nearly the
same. In Conti-ProA, the lower supply-phase footprint is the driver for the PCF
reduction, due to the decrease in media consumption and SU bags in the USP.
In Conti-PP, both supply-phase and use-phase showed a strong decrease of
56 and 42%, respectively, mainly caused by the decrease in media, buffer, and
PEG volumes and the associated decrease in energy required for material

preparation.
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Figure 4.4 - Comparison of product carbon footprint obtained for the base-case
and optimised Batch-ProA, Conti-ProA or Conti-PP flowsheets for an annual
demand of 500 kg/year using.

Table 4.10 portrays the key drops in output parameters from optimising the
perfusion volumetric productivity in Conti-PP. The major decrease in reagent
volumes and resulting decrease in SU hold bags led to a 40% smaller facility
area. As a result, the HVAC and lighting requirements, which comprised 40%
of the total energy requirement in Conti-PP’s base-case, were reduced in 39%.
In the supply-phase, the SU materials and PEG emissions decreased 53 and

67%, respectively.

4.3.5.1 Strategies to decrease the product carbon footprint of
Conti-PP

In addition to increasing cell culture productivity, the environmental impact of
improving other DSP-related features in Conti-PP was investigated. The
collaborative discussions with Przybycien’s research group that formed the
basis of Conti-PP flowsheet uncovered specific advances in several capture
steps, as described in Section 4.2.1.3. Ultimately, the investigators suggested
that these improvements could be combined into an optimised Conti-PP

flowsheet with a decreased product carbon footprint.
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Table 4.10 - Key environmental outputs and respective reduction for Conti-PP

before and after process optimisation.

Output B(?c?r?ti(?g;e VP 9 g/L/day Reduction
PMI (kg/kg) 3931 1944 -51%
Use-phase

Equipment footprint (m?) 94 51 -46%
Total manufacturing area (m?) 1742 1039 -40%
Anngal HVAC + lighting 289 048 175 760 -39%
requirements (kWh)
Total annual energy requirements 716 392 412 680 _429%
(kWh)

Supply-phase
Annual SU emissions (kg CO»-eq) 302 777 142 719 -53%
PEG carbon footprint (kg CO»-eq) 127 000 42 220 -67%

Total product carbon footprint (kg

-500
COs-eq) 1415 217 393 687 50%
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This section aims to provide insights on the strategies that lead to the most
accentuated PCF decrease in Conti-PP and highlight the priorities for process
optimisation. Figure 4.5 shows that increasing the volumetric productivity (VP)
in cell culture is still the strategy with the highest impact on product carbon
footprint (-50%). This strategy reduces media consumption and the HCCF
volume, as previously discussed. The volume of media in cell culture has a
direct impact on the energy required for media production and on consumables
emissions from SU hold bags fabrication. On the other hand, reducing the
HCCF % influences the volume of PEG needed. Comparing to the VP increase,
the integration of a mAb concentration step to 10 g/L before the product
precipitation resulted in a higher reduction in HCCF volume before precipitation
(reduction of HCCF volume compared to base-case: 3-fold with increased VP;
5-fold with concentration step) which led to an 80% decrease in PEG emissions;
however, there was no impact on the required media volumes. The integration

of a concentration step led to a PCF decrease of 37%.

The strategies of increasing the HCCF percentage in the precipitation system
or increasing the overall capture yield had a similar effect on the PCF reduction
from the Conti-PP base-case (-26% and -19%, respectively). According to the
Przybycien’s research group, changing the HCCF% from 50 to 80% was
possible by optimising the quantity of PEG required for precipitating the product
(%PEG reduced from 7 to 5%) and utilising higher concentrated stock solutions
of PEG and zinc chloride. This had a direct impact not only on the PEG footprint
(-55%), but also on the SU bags required in the following steps and (-26%
consumables emissions). Increasing the overall capture yield was possible
through the efforts shown by academia on optimising the precipitates wash
step. The increase in capture yield from 74 to 90% led to a smaller USP and
DSP size, with modest effects on the energy requirements (-16%),

consumables emissions (-24%) and PEG carbon footprint (-17%).

All process improvements described in Figure 4.5 were sequentially
implemented by order of impact in reducing the product carbon footprint of
Conti-PP. Figure 4.6a shows the cumulative influence of implementing the
process changes in terms of energy and PEG consumption, while Figure 4.6b

presents the overall PCF decrease in Conti-PP.

142



Base case

Product carbon footprint
PEG fabrication emissions
Consumables emissions
Energy emissions

Others

VP 9 g/L/day

Product carbon footprint
PEG fabrication emissions
Consumables emissions
Energy emissions

Others

-50%
-67%

-563%
-42%
-26%

10 g/L/day prior PP

Product carbon footprint
PEG fabrication emissions
Consumables emissions
Energy emissions

Others

— -37%
-80%

-31%
-23%
-31%

80% HCCF

Product carbon footprint
PEG fabrication emissions
Consumables emissions
Energy emissions

Others

F -26%
-55%

-26%
-13%
-11%

90% capture yield

Product carbon footprint
PEG fabrication emissions
Consumables emissions
Energy emissions

Others

-19%

-13%

0 200000

400000 600000 800000
Carbon emissions (kg CO2-eq)

Figure 4.5 - One-way sensitivity analysis from implementing different process
improvements in Conti-PP. All percentage differences refer to the parameters’
values found for Conti-PP base-case. “Others” refer to all supply-phase related
emissions besides PEG and consumables (e.g., salts) and the end-of-life phase

emissions.
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Figure 4.6 - a) Energy and PEG consumptions and b) product carbon footprint

reduction after implementation of sequential process optimisations in Conti-PP.

c) Comparison of product carbon footprint obtained for the base-case and all

optimised Batch-ProA, Conti-ProA or Conti-PP flowsheets. All results are

showed for an annual demand of 500 kg/year. In c) “optimised” refers to the

implementation of all USP and DSP improvements.
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Savings in energy consumption increased from 42 (with a perfusion volumetric
productivity of 9 g/L/day) to 51% after integrating all remaining DSP
improvements. The decrease in PEG consumption was more accentuated after
a complete optimisation, as the PEG quantity required in the process could be

reduced up to 91% if all advances were to be integrated.

The full extent of process optimisation in Conti-PP could lead to a PCF
decrease of 64%, as shown in Figure 4.6b and Figure 4.6¢ also shows an
even contribution of the supply and use phases for the total product carbon
footprint, as PEG fabrication emissions are significantly reduced (reduction of
supply-phase contribution). The 64% savings in PCF represented a modest
extra 14% improvement comparing to the PCF reduction attained after

improving only the cell culture productivity.

The estimated PCF value after the complete optimisation of Conti-PP was,
approximately, 9% lower than Conti-ProA’s optimised flowsheet with a
volumetric productivity of 9 g/L/day (PCF after optimisation: 2.7x10%kg CO2-eq
Conti-ProA; 2.5 x10° kg COz2-eq Conti-PP). As seen in Section 3.3.6, the effect
of increasing the perfusion volumetric productivity is higher in Conti-PP’s COG
than in Conti-ProA. Thus, further economic and PCF reductions might also
entalil putting efforts into boosting the USP output in mAb manufacture to help

the business case of Conti-PP.

4.3.6 Benchmarks of mAb product carbon footprint

Converting the values calculated for the carbon footprint of each flowsheet into
more tangible day-to-day metrics allowed for a more relatable understanding of
its environmental impact. Travel distances (e.g., intercontinental flights) or land
area (e.g., hectares of trees) are relatable measurements that can help to grasp
the scale of carbon emissions in this study. The impact of optimising Batch-
ProA, Conti-ProA and Conti-PP flowsheets is presented in Table 4.11.
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Table 4.11 shows that, after process optimisation, Batch-ProA is the flowsheet
whose PCF is translated into the largest day-to-day carbon metrics, while Conti-

ProA is the strategy with the lowest values amongst all.

Table 4.11 - Conversion of Product Carbon Footprint into day-to-day activities
and annual carbon emission taxes in the UK. All metrics are calculated on a

yearly basis and relative to the PCF values for a demand of 500 kg mAb/year.

Base-case Optimised flowsheet
Batch Conti Conti PP Batch Conti Conti
ProA ProA ProA ProA PP

PCF (kg COz-eq)

: 4.8x10° 3.6x10°  7.1x10° 4.4x10°  2.7x10° 2.5x10°
(annual basis)

Number of
individuals
equivalent
emissions

97 72 143 89 56 51

Number of
intercontinental 2 2 3 2 1 1
flights

Number of trees to
offset emissions 22 167 16416 32 682 20398 12740 11614
(hectares?/ (56/112) (42/84) (82/164) (51/102)  (32/64) (30/60)
stadiumsP)

Note: a) 400 trees/hectare; b) 0.5 hectares/stadium

As demonstrated in the previous section, the optimisation of Conti-PP resulted
in 64% PCF savings. To put this into a broader context with day-to-day carbon
metrics, this was found to be equivalent to the decrease in 92 individuals’
emissions, 2 flights from NY to London or 21068 trees to offset emissions
(equivalent of 104 hectares stadiums). Especially turning the attention to the
savings in trees to offset emissions, it was possible to understand the
significance of the outputs from this chapter. Additionally, highlighting the
equivalence of PCF reductions to these tangible carbon savings emphasised

the positive environmental impact of the optimisation efforts.
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4.4 Conclusions

The life cycle assessment of mAb production using different flowsheets
provided a deeper understanding of its environmental impact. The evaluation
was conducted for an annual mAb demand of 500 kg/year and encompassed
energy requirements, carbon footprints, and compared the environmental
output before and after the optimisation of each flowsheet. Previous indications
from the Process Mass Intensity (PMI) evaluation showed that the stainless-
steel based batch production was the least environmentally friendly from all
flowsheets; nevertheless, the single-use based continuous flowsheet with
product precipitation emerged as the option with the highest product carbon
footprint (PCF) among the strategies after a life cycle assessment. This
emphasised that PMI and PCF metrics can result in different conclusions, as
the first focuses on resources consumption (e.g., water and consumables) and
the second focuses on processes’ GHG emissions. The preferred metric to
focus on will depend on each company’s strategies (e.g., utilities and materials

reduction versus meeting carbon emissions/net zero goals).

Examining the energy landscape, the batch alternative exhibited the highest
energy consumption, primarily attributed to CIP cleaning and the electricity
demands of large stainless-steel facilities. Amongst the continuous flowsheets,
mAb production with protein A capture demonstrated the highest energy
efficiency. When precipitation was chosen for the capture step, higher energy
demands, particularly due to the large reagents preparation and consumables
emissions, were expected comparing to protein A capture. Optimisation efforts,
including increasing cell culture productivity, demonstrated considerable
reductions in PCF across all flowsheets, with the precipitation flowsheet
experiencing the most significant reduction. Finally, this chapter provided a
broader perspective by translating PCF into day-to-day relatable metrics, such
as equivalent emissions from intercontinental flights or the area of trees needed
for carbon offsetting. The benchmarks highlighted that, after flowsheets
optimisation, 30 to 50 hectares planted with trees were still needed to offset the

carbon emissions of an annual production of 500 kg of mAb across flowsheets.

Extending the simulation framework with the LCA methodology presented in

this chapter elevated the added value of the decision-support tool, as full
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process economics coupled with comprehensive environmental evaluation help

to better understanding the potential of mAb production alternatives.

Chapter 5: Economic impact of implementing process
analytical technologies (PAT) in end-to-end continuous
antibody manufacture

5.1 Introduction

Process analytical technologies (PAT) comprise advanced analytical
techniques, sensors, and data-driven strategies that enable real-time
monitoring, control and optimisation of critical parameters. In the dynamic
landscape of mAb continuous manufacturing, the adoption of these
technologies is expected to offer several economic benefits; however, exact
cost savings are not yet clear and this information is shown to be critical to help
the business case of PAT implementation.

This chapter delves into the acceptance of PAT across the sector and provides
insights into the most commonly used technologies in bioprocessing. The
current large-scale implementation level and the barriers that might be
hindering the widespread application of these tools are also unveiled through

the results of an industrial survey.

Several implementation scenarios comprising different levels of investment and
cost savings are also shared. These studies aim to provide evidence on the
economic trade-offs of PAT and contribute to a better-informed decision-

making related to PAT in continuous mAb manufacturing.

Section 5.2 presents the questions included in the industrial survey and the
methodology followed, including selected technologies and process changes,
when assessing PAT integration from an economic perspective. Section 5.3
starts by delving into the survey results and shares the economic outputs from
bioprocesses with integrated process analytical technologies. Section 5.4

summarises the main conclusions shared during the chapter.
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5.2 Methods

5.2.1 Industrial survey

An industrial survey was designed to gain insight into the impact of process
analytical tools on current and future Quality Control & Quality Assurance
(QCQA) activities and process understanding in continuous manufacturing. The
respondent pool comprised specialists from a wide range of organisations,
including contract manufacturers and large biopharmaceutical companies. A
mixture of R&D, manufacturing and management members was selected for
this study to include broad points of view. The individuals to whom the survey
was circulated were asked to either complete the survey or to distribute it to
people within their organisations whom they felt were best positioned to provide

a response.

The review of PAT technologies presented in Chapter 1 shed light on the
available options and capabilities of these technologies when applied to
bioprocesses. From the examples showed, it was clear that PAT could enable
several benefits, such as reducing batch failure, improving process
performance or reducing costs. However, it was not clear from the literature
which of these benefits was the key motivator for the implementation and
current PAT interest from bio-industry. Knowing the relative importance of these
benefits could help targeting the development of specific techniques and
accelerate the level of adoption across the sector. Equally relevant was to
understand what might be slowing down PAT application to bioprocesses and

discuss the strategies that can help moving PAT faster into continuous facilities.

As the present chapter also aims to provide insights on the economic impact of
implementing PAT in continuous mAb manufacture, get benchmarks on the
price of these techniques was crucial. At the same time that the process
parameters that translate the PAT benefits (e.g., increased batch success rate,
increased volumetric productivity, decreased buffer consumption) were
changed, the investment on PAT was also added to the equipment costs in the

process economics model described in Chapter 2.

The simulation tool also computed the period in which cost savings coming from

PAT implementation would balance the investment on these technologies; thus,

149



it was also important to understand the expectations from the respondents
regarding payback timelines.

Most of the surveys were followed by online interviews, which enabled further
discussion on the topics and explanation of specific efforts from each
organisation towards PAT implementation. These interviews also provided an
opportunity for respondents to elaborate on their survey responses, share
specific examples or case studies from their organisations, and offer insights
that may not have been captured by the structured survey questions alone. This
qualitative approach complemented the “more quantitative” data gathered
through the survey, enriching the overall analysis and findings of the study.
Table 5.1 presents the list of organisations to which the respondents were
affiliated and their respective position within the organisation. The individual
interviews consisted of 40-minute online meetings and took place on dates
between November 2021 and July 2022.

5.2.2 Process Economics with PAT

5.2.2.1 Selection of process analytical technologies

The previous chapters showed that mAb production with protein A
chromatography capture was the most economic and environmentally
sustainable scheme across the continuous flowsheets studied. Thus, Conti-
ProA was selected as the base for the integration of different process analytical
technologies. The analysis of the potential of PAT implementation towards cost
savings demanded the integration of modified process inputs in the decision-
support tool described in Chapter 2. The process simulation with new
parameters resulted in new COG values that were compared with Conti-ProA’s
COG from the base-case flowsheet (as described in Chapter 3). Chapter 1
presented several studies and PAT examples that indicated advantages over
uncontrolled processes. However, only a limited number of authors have
described PATs with tangible process benefits that could be translated into
modified input parameters. These examples were selected, and the improved
process parameters were used in the economic model. Figure 5.1 presents the

steps in which the integration of PATs was considered.
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Table 5.1 - List of organisations and the position held by the respondents who

completed the survey.

Interview
Organisation Position post
survey
3M Application Engineering Specialist X
Achilles Therapeutics Vice-President Bioprocessing X
Amgen Vice-President Drug Substance X
Amgen Vice-President Process Development X
AstraZeneca Executive Director X
Biogen Viqe-President Global Manufacturing X
Sciences
Biogen Senior Director
gi‘g p'll'Jrllterapy Industrialisation and Manufacturing Director X
CPI Chief Technologist X
CPI Principal Strategic Opportunities Manager X
CSL Behring Executive Director X
CSL Behring Senior Manager Process Development X
Cytiva Business Leader X
Cytiva Senior Director X
Eli Lilly Director Manufacturing X
Eli Lilly Director Process Development X
Evelo Biosciences  Vice-President Bioprocess Development
FUJIFILM Diosynth  Vice-President Process Development
GSK Director X
GSK DSP R&D investigator X
Lonza Director External Innovation X
Lund University Professor
Merck & Co. (MSD) Principal Scientist X
Merck & Co. (MSD) Senior Director X
Oxford Biomedica R&D Team Lead X
Pall (now Cytiva) Senior Director
Pharmaron UK Senior Technical Specialist X
Sanofi Head of Purification Development X
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Figure 5.1 - Process flowsheet used in the simulation of PAT integration in mAb
manufacture and respective PAT considered. ProA: protein A; CEX: cation
exchange; AEX: anion exchange; TFF: tangential flow filtration; SP-TFF:
Single-pass tangential flow filtration; MIR: medium infra-red; HPLC: high

performance liquid chromatography.

The potential impact of PAT implementation on USP (e.g., volumetric
productivity, perfusion rate) and DSP performance (e.g, buffer consumption,

resin capacity) were determined through assessing literature reports.

Goldrick et al. (2019) and Esmond-White et al. (2022) utilised multi-variate data
analysis (MVDA) via a partial least squares (PLS) model to analyse the data
collected in Raman spectra and demonstrated that Raman spectroscopy could
significantly impact fermentation or cell culture productivity. Both case studies
revealed a 20% increase in output by controlling the concentration of nutrients
in solution (e.g., phenylacetic acid for penicillin production, glucose for mAbs)
and adjusting the feed rate in the bioreactor. These investigations were
conducted in fed-batch mode; however, personal communication with
Goldrick’s research group confirmed that the level of impact of this PAT would
also be expected in continuous mAb manufacture. In the process economics
model, the volumetric productivity assumed for Conti-ProA’s base-case, 3
g/L/day, was increased to 3.6 g/L/day with the implementation of PAT, to reflect

this 20% increase.

With regards to batch success rate, Goldrick et. al (2019) also showed that the
control strategy with Raman spectroscopy reduced the number of below-target
batches to zero, resulting in an increase from 94% to 100% batch success rate.
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A study carried out by Konakovsky et al. (2015) illustrated that biocapacitance
probes could be used to achieve real-time biomass control in cell culture, which
could also translate into a 2% increase in batch success rate relative to
uncontrolled scenarios. Based on personal communication with Goldrick’s
group, the increase in batch success rate found in batch mode could also be
applied in continuous mode. Therefore, the batch success rate in Conti-ProA
was increased from 96% to 99%, to reflect an improvement in the range of 2%
(Konakovsky et al., 2015) to 6% (Goldrick et al., 2019) by implementing PAT.

Moving on to perfusion rate, Ozturk et. al (1996), Moore (2019) and Brunner
(2019) used Raman spectroscopy, biocapacitance, and 2D-fluorescence and
medium infra-red (MIR), respectively, to monitor media components during cell
culture (e.g., glucose and lactate) and control the media quality and feeding
regimes, leading to savings in media consumption (Ozturk et al., 1997; Brunner
et al., 2019; Moore, Sanford and Zhang, 2019). In Conti-ProA’s base-case, the
perfusion rate was set at 1.5 vv/day. With optimised media recipes and a better
understanding of the cells’ needs, a lower rate of fresh media and product
removal could be applied, without compromising optimal cell growth conditions.
In the PAT-controlled scenario, media savings were translated into a decrease

of 20% in perfusion rate (1.2 vv/day).

For DSP, Lofgren et al. (2021) introduced an integrated continuous process
with real-time control utilising an at-line HPLC and an online UV monitor to track
product concentration in the chromatography loading and eluate streams
(Lofgren et al., 2021). This iterative learning controller (ItLC) detected
disturbances of product concentration and automatically adjusted the peaks
cutoff during elution. Compared to the uncontrolled scheme, the authors
reported a ~25% increase in resin capacity (associated to more product being
purified in each cycle compared to the process without the controller) and a
20% decrease in buffer consumption. In the process economics model, these
benefits were reflected by changing the binding capacity of ProA from 65 to 74
g mAb/ml resin and CEX and AEX resins from 100 to 124 g mAb/ml resin. For
simplicity, the decrease in buffer consumption was simulated by assuming 80%

of the base-case column-volumes (CVs) in every chromatography step.
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With regards to membrane lifespan, Raman spectroscopy was also employed
during DSP by Virtanen et al. (2017), who detected early-stage membrane
fouling by monitoring product concentration in the concentrated stream during
ultrafiltration (Virtanen et al., 2017). Principal component analysis (PCA)
analysed the variation within the Raman spectra and accurately identified the
moment when membranes should be replaced during the process. Utilising this
PAT demonstrated that membrane lifespan (i.e., operational time before
switching) could be extended if fouling was monitored and assuming that there
would be no concerns from a regulatory perspective. ILC membranes in Conti-
ProA operate for 4 days before replacement, meaning that, per 20 days
continuous cycle, 5 sets are required. Personal communication with a leading
membrane vendor (Gregor Kalinowski, Pall Life Sciences (now Cytiva),
Germany) supported the assumption of extending operation time from 4 to 5
days (25%) with PAT control, decreasing the total number of filters from 5 to 4
per continuous cycle. This increase in membrane lifespan has also an impact

on the number of QCQA tests that changed from 5 to 4 per continuous cycle.

Some of previous examples already showcased the benefits of utilising
multivariate data analysis coupled with PAT sensors to monitor and control USP
and DSP. Other direct cost benefits were discussed during the interviews in the
industrial survey. Respondents anticipated that a full integrated continuous
process with PAT and MVDA could result in savings of approximately 20% in
QC materials and labour costs. For simplicity, this was translated into the
economic model by reducing the QCQA test cost from 35 to 28 k$ per batch
release and directly reducing QC labour (calculated in Chapter 2 through the
equations shown in Table 2.2) by 20%. Additionally, the number of operators
required in the plant could be significantly reduced with the increased
automation and fewer in-process sampling. Schmidt et al. (2021) estimated a
50% decrease in labour by implementing a digital-twin based process in the
continuous production of an mRNA vaccine for SARS-COVID-19. Discussions
with industry experts revealed that similar reductions could be expected in
continuous mAb manufacture. To reflect this PAT benefit, the number of
operators in the process economics model was reduced from 6 to 3 (1 USP, 1
DSP, 1 checker) per shift.
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These last PAT benefits (decrease in QC materials and labour costs and the
number of USP and DSP operators) were only simulated when all other USP
and DSP PAT strategies were also implemented, reflecting the full PAT
integrated scenario.

Table 5.2 summarises the changes in input parameters in the process
economics model.

Table 5.2 — Process changes simulated in Conti-ProA for the integration of PAT
per production area.

Area of PAT Change to
_ . Improved parameter
integration base-case
Perfusion volumetric
o +20%
productivity
USP ,
Perfusion rate -20%
Batch success rate +3%
Buffer consumption -20%
DSP Resin capacity +25%
Days of membrane lifespan +25%
(all the above) (all the above)
USP+DSP QC materials cost -20%
(incl. MVDA) QC labour costs -20%
Number of operators -50%

5222 Investment on process analytical technologies

The implementation of PAT strategies entails investing in analytical
technologies, which must be factored into the total equipment costs in the

process economics model.
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Table 5.3 shows the prices obtained from research projects within UCL
Decisional Tools group and through personal communication with companies

that have already invested in these tools (data from survey).

Table 5.3 — Equipment costs assumed in the integration of PAT in Conti-ProA

PAT Price Process step & benefits
Raman Cell culture: increased volumetric
: productivity; increased batch success rate;
(dr?r\:)lct;zg) 4 400 k$ decreased perfusion rate

ILC: increased days of lifespan

Cell culture: increased batch success rate;
decreased perfusion rate

ProA chromatography, CEX and AEX:
200 k$ increased resin capacity; decreased buffer
consumption.

Biocapacitance 200 k$

At-line HPLC
(2 systems)

As mentioned earlier, several technologies could yield similar PAT benefits;
thus, it was assumed that the PAT investment would correspond to the most
expensive option per process step. The investment in PAT in USP was 400 k$,
allocated to Raman spectroscopy, while in DSP it was 600 k$, which included
2 HPLC apparatus from the iterative learning controller (personal
communication, Bernt Nilsson, Lund University, Sweden) and the device for
Raman spectroscopy. The scenario reflecting PAT integration across the entire
process was simulated with an investment of 1 M$ (Raman in USP, Raman in
DSP and the iterative learning controller in DSP). The investment in MVDA or
model validation was not incorporated into the COG model, as it was assumed
to be part of the prior process development phase. Additionally, based on the
survey responses regarding the impact of PAT on the total consumables and
reagents costs of mAb manufacture, these were considered negligible and not

added to the simulation.

5.2.2.3 Target analysis

The economic evaluation of the impact of PAT implementation included a target
analysis based on the level of PAT benefits and investment. Three levels of

implementation were explored: low, medium and high. The process
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improvements and technology investment presented in Table 5.2 and Table
5.3, respectively, were considered as the medium level. The low and higher
levels were designed with the aim of understanding if the cost savings would
significantly if the PAT benefits were more modest or more accentuated than
expected. The changes captured at each level of PAT implementation are

presented in Table 5.4.

Table 5.4 - Process changes simulated in Conti-ProA to reflect different levels
of implementation. The batch success rate in the high impact was assumed as
100%. The change in increased days of membrane lifespan was of 0.5 days
from the medium (5 days) to low (4.5 days) and high (5.5 days). The number of
QCOQA tests based on the membrane lifespan was kept at 4/batch for low,
medium and high impact. The number of operators was 4 in the low impact and
2 in the high.

Low Medium High
Benefits
Perfusion volumetric productivity  +10% +20% +30%
Perfusion rate -10% -20% -30%
Batch success rate +1% +3% +4%
Buffer consumption -10% -20% -30%
Resin capacity +12% +24% +30%
Days of membrane lifespan +15% +25% +35%
QC materials cost -10% -20% -30%
QC labour costs -10% -20% -30%
Number of operators -33% -50% -67%
Investment

Raman spectroscopy 200 k$ 400 k$ 600 k$
Iterative learning controller 100 k$ 200 k$ 400 k$
Integrated (2 Raman + ItLC) 500 k$ 1M$ 1600 k$
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After simulating the cost savings for each scenario, the number of batches
required to payback the investment in PAT was calculated according to
equation 5.1. The number of batches was used instead the number of years,
as it was observed that for the majority of the scenarios the return would be
considerably fast (<1 year). As described in Chapter 2, for Conti-ProA, the
process economics model simulated 10 batches per year.

PAT Investment

(COGTraditionai—COGpAT)X

Demand (51)

Annual batches

Npatches =

Where  Nyu:ches: Number of batches required so the cost savings from PAT

implementation would balance the investment
PAT Investment: Investment in specific PAT ($)

COGrraaitionar - COSt of goods computed for the scenario using Conti-

ProA without PAT, as the base-case from Chapter 3 ($/g)

COGp,r: Cost of goods computed for the scenario using Conti-ProA
flowsheet with PAT ($/g)

Demand: Annual product demand (g/year)

Annual batches: Number of batches per year (batches/year)
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5.3 Results and discussion

This section presents an analysis of the PAT survey results followed by an
economic analysis of the impact of PAT implementation on the process
economics of continuous bioprocessing. More specifically, the views of the
biopharmaceutical sector on the current state of play and future potential of
PAT implementation are discussed; these were solicited via an international
industrial survey combined with follow-on one-to-one interviews with
industrialists. The survey results fed into an evaluation of the potential
economic benefits of PAT. The COG savings resulting from different PAT
benefits compared to uncontrolled processes are presented. This analysis was
extended by understanding the cost categories (e.g., reagents costs, QC costs,
indirect costs) that would benefit the most from each PAT implementation
strategy. The last stage of the assessment highlighted the expected number of
batches required for the cost savings to balance the investment in enhanced
analytics and control.

5.3.1 Industrial survey

The results of the survey are based on the responses of 28 experts. From these
28 respondents, 25 provided further insights via an online interview. The next
sections will provide insights on PAT viewpoints and trends within the sector.

5.3.1.1 “What is the key motivation for PAT implementation?”

Respondents were asked to rate the following potential PAT benefits in terms
of their relative importance: reduced batch failure, increased process
performance and reduced QCQA and labour costs. Figure 5.2 presents the

distribution of responses per PAT benefit.
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Increased process performance 227

Reduced batch failure 2.0
Reduced QCQA and labour costs 1.8
1 2 3

Average score
Figure 5.2 — Score reflecting the importance of different benefits when
considering PAT implementation in mAb manufacture. The survey results were
converted to a score where 3 represented a high level of importance and 1

representing a low level of importance.

Figure 5.2 highlights that the benefit of increasing process performance was
slightly favoured over reducing batch failure or reducing QCQA and labour
costs; however, all benefits showed a similar level of importance. The
interviews shed further light on the reasons for prioritising a particular benefit

that were found to be highly company-specific.

Participants in the pool of companies that gave “increased process
performance” the highest importance suggested that the benefits from process
intensification attained from continuous biomanufacturing could be augmented
through the implementation of PAT. In general, companies which envision
improved processes through PAT implementation also implemented PAT in a
process development (PD) stage to help optimising their commercial scale. In
PD, GSK is currently using automated samplers and SEC methods in the
chromatography steps with the goal of monitoring the process and maximising
yields and purity. Additionally, Cytiva shared their work with AstraZeneca on
using PAT and MVDA to unlock benefits related to early column aging and
fouling detection, also in chromatography (Ravi et al., 2023). In the upstream
process development, AstraZeneca and Eli Lilly have investigated the use of
Raman spectroscopy to monitor nutrients’ concentration and optimise cell
culture outputs (Goldrick et al., 2020; Yousefi-Darani et al., 2022). In contrast,

there were respondents who believed that mAb processes were currently
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relatively well designed and optimised and that the installation of PAT would
not lead to significant increases in process performance. These respondents
belonged to the pool of companies whose PAT implementation efforts were

driven by the benefits of reducing batch failure.

Several respondents emphasised the importance of reducing batch failure and
how PAT could be beneficial in reducing process variability and improving
control. Even if current batch failure rates for mAb manufacturing are relatively
low (1 to 5%), each batch loss represents a significant impact on a company’s
cash flow (e.g. $1-8M per batch depending on the production scale (based on
Chapter 3 for 100 to 1000 kg/year)). Many participants highlighted that the
importance of PAT to monitor in-process parameters in continuous
manufacturing may be even higher than in batch, due to the (almost)
uninterrupted stream of product from one unit operation to the other (ideally,
without holding times) and potentially a higher reliance on final batch release
testing. Merck, for instance, confirmed its keenness on implementing real-time
in-process testing and shared results from their already published work on
using online liquid chromatography (LC) to monitor impurities and avoid out-of-
specification batches (Patel et al, 2017). Additionally, there were companies
emphasising that the time that they are currently spending on offline testing is
slowing down crucial stages of decision-making and can be the cause of
sacrificing partial or entire batches. In general, companies that were focused
on improving their batch success rates were developing PATs and integrating
MVDA techniques with the aim of creating robust inline feedback controls. Many
respondents relayed their efforts transitioning from offline testing to using real-
time or near-real-time data obtained from inline and at-line PATs to monitor
mAb production. For this, critical process parameters (CPPs) such as
temperature, pressure, flow rates, or pH, and critical quality attributes (CQAS),
such as purity, are continuously analysed and compared to established models

so the process conditions are automatically adjusted during manufacture.

With a small margin of difference, QCQA and labour cost savings were the third
ranked PAT benefit amongst the surveyed experts. Many of the respondents
acknowledged the importance of reducing offline in-process and drug

substance testing in mAb manufacturing. Participants shared that 20 to 50%
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QCQA and labour savings would be expected after PAT implementation in
continuous mAb manufacture. This information fed directly into this thesis’
assumptions for PAT economic evaluation. In general, companies that were
focused on decreasing QCQA and labour costs were also developing
multivariate data analysis models coupled with inline testing. These models can
interpret complex data and establish relationships between multiple variables;
therefore, decreasing the number of tests (and sampling) needed during the
process. From a regulatory point of view, it was interesting to witness that
different opinions rule the sector concerning implementing inline testing. Whilst
there were companies that suggested that regulatory agencies would easily
follow the efforts on switching from offline towards inline testing, there were
others that found it more challenging, as the validation of new inline testing can

be complex and time-consuming.

When enquired about other key motivators for the implementation of PAT in
mAb manufacture, the most prevalent additional factor suggested by the
respondents was reducing the waiting times for product release. Regular batch
release takes, approximately, 45 to 60 days (reference given by CSL Behring
and Eli Lilly), and, as an example, with PAT implementation Eli Lilly is on its
way to reducing this time to 30 days or lower. According to the interviewed
experts, a faster release of material would bring significant advantages in terms
of flexibility, planning and storage. The faster in-process testing could also allow
for faster cycles and increasing the annual productivities. Interestingly, there
were companies that viewed PAT implementation as a move towards increased
modernisation and innovation and were keen to act as trendsetters for the

sector.

5.3.1.2 “Where has PAT been implemented?”

Turning the attention to the level of PAT adoption in biopharma, the survey
aimed to understand the process steps in which PAT has been integrated

across the sector. (Figure 5.3).
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= Not implemented
@At least cell culture
| At least harvest

E At least chromatography

mE Other

Figure 5.3 — Distribution of PAT implementation per production step across the

interviewed companies. “Other” refers to PAT installed for sample automation.

The results showed that more than 90% of the respondents were from
companies that, by 2022, had already adopted some form of process analytical
technology either in process development or manufacture. Cell culture and
chromatography were the process steps with the largest implementation rate.
Moreover, from the interviews it was possible to uncover the clear link between
the level of PAT implementation and companies with ongoing efforts towards
switching to end-to-end continuous processes. Raman spectroscopy was the
technology with the highest adoption rate. Published work from the interviewed
companies on Raman spectroscopy include Goldrick et al. (2020), Eyster et al.
(2021) and Darani et al. (2022). Sanofi disclosed the development of UV-based
column switching in continuous capture (Godawat et al., 2012), and Evelo
Biosciences shared the usage of near-real-time UPLC coupled with models,
also for chromatography monitoring. As aforementioned, Merck had also
developed online LC for the monitoring of impurities in mAb manufacture. Other
adopted technologies included biocapacitance in cell culture, UV-based loading
and eluting, online LC and online SEC-UPLC in chromatography. From the pool
of respondents who had not implemented PAT (9%), most of them shared their
intention to invest in these technologies to realise the benefits related to a

better-controlled manufacture.
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5.3.1.3 “What is slowing down the implementation of PAT in mAb

manufacture?”

Moving on to the factors slowing down the implementation of PAT, the

respondents raised the following issues:

e Technology readiness level (TRL);

Difficult implementation;

Sector mind-set;

Regulatory uncertainties; and

Lack of knowledge regarding concrete economic benefits.

Regarding the TRL and implementation challenges, many respondents
highlighted that, as the development of PATs is very product and process
specific, there is a lack of robustness, reliability, or scalability still required for
widespread adoption. Additionally, the implementation of PAT often requires
that the companies possess expertise on data processing and integration,
which may be limiting. Linking to the major QCQA bottlenecks, it was also
suggested that, for companies looking for improving quality control, advanced
analytical options to detect bioburden, for instance, needed further maturation
to justify the investment in these technologies. Respondents also pointed out
the challenge associated with the pre-treatment of samples required in many
analytical tests. The implementation of inline small buffer exchange steps prior

to inline testing may also add complexity to these technologies’ implementation.

Transitioning to the mind-set, implementing PAT often requires organisational
shifts towards changing, which can encounter resistance and inertia, especially
for well-stablished production platforms, such as mAb manufacture. The
participants expressed that this is intrinsically related to the first two mentioned
topics, as new technologies or complex data-driven methods can be the source

of reluctance within the sector.
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The hindering factor of regulatory uncertainty was frequently seen in the survey
responses as well. As aforementioned, some respondents shared their opinion
that it can be challenging to move to inline testing. While regulatory agencies
have made strides in recognising the potential benefits of PAT, there is still
variability in their acceptance and validation of PAT technologies. These
concerns were echoed by respondents who had to undergo intensive validation
to replace offline with inline testing. Companies must demonstrate that inline
testing does not compromise product safety, efficacy, or regulatory compliance
and that appropriate controls are in place to mitigate risks associated with PAT
implementation (e.g., unexpected process variability and modelling variation).
On the other hand, there were also participants who suggested that by fostering
open communication and transparency about their efforts and protocols, the
sector could build credibility with regulatory reviewers and navigate the

regulatory approval process more effectively.

Regarding the lack of information on economic benefits, participants shared
that, although cost savings are expected, many companies are waiting for
evidence of a clear return on investment from those that have already
implemented PAT. As discussed in Section 5.2, although there were many
examples of improvements through PAT implementation, reports on tangible
cost reductions were limited. In this thesis, an economic evaluation
encompassing the analysis of COG savings for different implementation
strategies will be shared. This will provide extra insight to the sector and,

hopefully, accelerate the decision-making about PAT implementation.

5.3.1.4 “What is the expected timeline for widespread PAT
implementation?”

The final stage of the survey explored the view of biopharma towards the future

of PAT implementation, including timelines and economic insights. Figure 5.4

presents respondents’ selection of the timeframes expected for the widespread

integration of PAT in continuous bioprocesses.

The results revealed an optimistic short-term outlook, as a combined total of

41% of respondents anticipated seeing widespread PAT implementation within
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3 years. Interestingly, another 33% of respondents foresaw implementation
within 4 to 5 years, which means that the vast majority of the survey participants
(74%) anticipated the materialisation of continuous bioprocesses with PAT in
less than 5 years. These results supported the findings from Figure 5.3, where
90% of the interviewed companies had already shared the application of PAT
to their processes.

BE<1year
BE1-3years
B4 - Syears
B6 - 10 years

B Not sure

Figure 5.4 — Expected timeline for widespread PAT implementation across the

biopharmaceutical sector.

5.3.1.5 “What is the desired payback time for PAT investment?”

Prior to the economic evaluation presented in the next section, it was also
important to understand the respondents’ time expectations for PAT financial
returns. The selected timeframes showed in Figure 5.5 corresponded to the
periods after which the respondents would desire that cost savings coming from
PAT implementation would balance their investment on these technologies.
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@1-3years
m4 - Syears
m6 - 10 years
m> 10 years

m Not sure

Figure 5.5 — Desired payback times (years) for PAT investment.

According to Figure 5.5, the majority of the respondents (38%) would consider
to investing in PAT even if cost savings would be seen only after 6 to 10 years.
Also, there was a considerable percentage of participants (17%) that would
consider to investing if the economic returns would take more than 10 years,
emphasising that the pursuit of technology modernisation was more relevant
than rapid profitability. Interestingly, most of the respondents who selected the
ranges “1 - 3 years” or “4 - 5 years” expressed their beliefs that cost savings
from PAT would enable shorter payback times. Therefore, longer timeframes,

such as more than 5 years, would be out of scope.

5.3.2 Cost-benefit and environmental analysis of PAT

implementation in continuous processes

The economic and environmental consequences of implementing PAT in
continuous processes were assessed using the decisional tool introduced in
Chapter 2. This section starts by providing insights on the economic and
environmental outputs from controlled flowsheets compared to traditional
uncontrolled schemes. The analysis is then extended by offering a target
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analysis showing the impact of PAT on COG savings and technology payback

time at different conditions.

5.3.2.1 Cost analysis of PAT implementation

A detailed economic assessment of PAT implementation was carried out,
examining the trade-offs between different PAT instruments and their adoption
across different process stages, specifically USP versus DSP. Raman
spectroscopy and an iterative learning controller (ItLC) were the technologies
selected for this analysis due to their broad applicability and potential benefits
in USP and/or DSP.

Figure 5.6 outlines the economic impact of different PAT instruments across
different productions scales in terms of COG/g for the traditional uncontrolled
Conti-ProA and controlled flowsheets adopting one or more PAT instruments.
When considering which PAT technology (Raman vs. ItLC) to invest in, Figure
5.6 highlights that Raman offers greater cost efficiency at medium and larger
scales, while the installation of either Raman spectroscopy or ItLC did not
demonstrate major benefits at the lower 100 kg/year scale (-1% to -4% across
single implementation scenarios). At both 500 and 1000 kg/year, Raman
spectroscopy showed COG savings of ~20% and ~15% when installed in USP
and DSP or in USP only, respectively. Raman at DSP only did not show relevant
cost benefits. At the same scales, the iterative learning controller showed a

~10% cost reduction.

When considering which stage to focus on for PAT implementation (USP vs.
DSP), Raman spectroscopy and the ItLC were combined in the DSP flowsheet
and compared to the scenario with Raman in USP (now “PAT USP”). Figure
5.7 illustrates once more the small benefits from PAT at low scale and shows
that focusing on PAT implementation in USP is more advantageous than

implementation in DSP at medium and larger scales.

The increased COG savings from lower to medium and higher scales was
explained by the fixed PAT investment being spread over a larger product
output and the savings in variable costs (e.g., reagents, consumables) coming

from multiple process improvements having a higher impact. The larger benefits

168



of PAT in USP (i.e., Raman spectroscopy) over the other strategies can be
attributed to the significant decrease in reagents costs when installing Raman
spectroscopy in cell culture (decrease in media consumption due to higher
perfusion volumetric productivity and lower perfusion rate). For PAT in DSP
only, the higher indirect costs (due to the investment in a 400k$ Raman system
and a 200k$ ItLC) and higher reagents costs relative to PAT in USP outweighed

the savings in consumables and QCQA costs.

In the previous section, the results from the survey explored the opinion of the
respondents on the benefits on the QCQA and labour savings of adopting PAT
and the associated MVDA across the end-to-end process. The PAT End-to-End
flowsheet represented in Figure 5.6 and Figure 5.7 reflected the additional
advantages from reducing the QCQA materials and labour costs and the
number of operators relative to Raman and ItLC process improvements only
and included PAT implemented in both USP and DSP. This flowsheet was the
one presenting the highest COG savings across scales (COG savings from
PAT End-to-End flowsheet: -9% at 100 kg/year; -26% at 500 kg/year and 1000
kglyear).
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Figure 5.6 - Breakdown of COG/g on a cost category basis for traditional

continuous mAb production and 6 other flowsheets with different PAT

technologies (Raman vs. iterative learning controller) at 100, 500 and 1000

kg/year commercial scales. At 1000 kg/year the production platform is built by

two identical USP and DSP trains; therefore the equipment investment

(including PAT) is approximately the double of the one found for 500 kg/year

scenario. The embedded table shows which process benefits are simulated for

each flowsheet. The PAT investment is a model input, while the total equipment

costs are an output. The equipment cost is the basis for the fixed capital

investment (FCI) calculation, from which the indirect costs are derived.
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Figure 5.7 - Breakdown of COG/g on a cost category basis for traditional
continuous mAb production and three flowsheets with PAT adopted at different
stages (USP vs. DSP vs. PAT End-to-End) at 100, 500 and 1000 kg/year

commercial scales.

Diving deeper into the nuances of the PAT impact helped in understanding the
COG outputs. The radar chart in Figure 5.8 displays all standardised values for
each cost category across each flowsheet and it was used to simplify the
visualisation of the PAT impact on each type of cost. Values toward the outer
edges of the radar chart indicate relatively higher costs in that category, while

values closer to the centre represent relatively lower costs.

In general, the traditional flowsheet demonstrated higher costs across cost

categories, with the exception of indirect costs. In contrast, while presenting
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high indirect costs, the End-to-End scenario showed the lowest cost outputs in

the remainder categories.

Looking at reagents costs, PAT in DSP showed the highest values amongst the
controlled flowsheets, as the reduction in chromatography buffer consumption
alone was not as substantial as reducing cell culture media (reagents cost
savings: -34% PAT in USP; -18% PAT in DSP; -51% PAT End-to-End). In
contrast, moving to the consumables costs and QCQA costs, the increase in
resin capacity offered by the iterative learning controller and the decrease in
number of “membrane replaces/switches” offered by Raman spectroscopy in
DSP had a marked effect in the consumables cost. Additionally, the extension
in membrane lifespan in PAT DSP through Raman decreased the number of
QCOQA tests, which had a direct impact on the QCQA materials costs
(consumables cost savings: -5 to -10% PAT in USP; -16 to -23% PAT in DSP;
-21 to -44% PAT End-to-End; QCQA materials cost savings: 0% PAT in USP;
-25% PAT in DSP; -41% PAT End-to-End). The labour costs were similar
across flowsheets, with the only significant reduction seen for the End-to-End
scenario. For this flowsheet, the number of operators was reduced from 6 to 3,

leading to a significant decrease in labour expenses.

The indirect cost category was the only one where the PAT End-to-End
scenario showed higher values relative to the other flowsheets. As previously
discussed, the additional cost of integrating PAT in mAb manufacture can have
an impact on the total equipment purchase cost that influences the final COG.
As summarised in the embedded table from Figure 5.6, for the PAT End-to-
End flowsheet, the investment in PAT equipment is simulated as 1 (for 100 and
500 kgl/year) or 2 M$ (for 1000 kg/year, with 2 parallel process trains). At 500
and 1000 kg/year, the decrease in media and buffer volumes with the combined
PAT benefits in USP and DSP had a significant impact on reducing the number
of purchased SU bag containers and the size of the bioreactor, and this saving

exceeded the investment in the PAT.
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OPAT USP
PAT DSP
O PAT End-to-End
Labour Reagents
QC materials Consumables
b) Indirect
Labour Reagents
QC materials Consumables
Indirect
c)
Labour Reagents
QC materials Consumables

Figure 5.8 - Rating values ($/g converted into O to 1 values per category, based
on the same methodology as detailed in Section 3.3.5) of Traditional Conti-
ProA, PAT in USP, PAT in DSP and PAT End-to-End for cost category at a)
100 kg/year, b) 500 kg/year, and c) 1000 kg/year. Higher ratings reflect higher

costs and are seen on the outer edges of the chart and represent higher costs.
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5.3.2.2 Environmental Analysis

To quantify the broader impact of PAT implementation and the resulting
process improvements, the economics analysis was extended with an
environmental analysis. The PMI metric captures the reduction in water and
consumables waste as a result of the PAT implementation and is a metric that
is generated automatically from the cost model. The potential benefit of
transitioning from uncontrolled to PAT-based manufacture was evaluated by
analysing the PMI of each scenario. The results are shown in Figure 5.9 and

are split into water and consumables PMI for the different production strategies.

The PAT End-to-End flowsheet demonstrated the most substantial reduction in
overall PMI compared to the Traditional flowsheet (PMI: 2200 kg/kg Traditional
Conti-ProA; 1800 kg/kg PAT USP; 1900 kg/kg PAT DSP; 1500 kg/kg PAT End-
to-End across scales). This reduction was driven by a decrease in the water
PMI and consumables PMI, coming from the PATSs installed in USP and DSP,
respectively. The PAT End-to-End flowsheet represented a controlled mAb
flowsheet with Raman in USP, Raman in DSP and an iterative learning
controller in DSP. The Raman in USP resulted in less media consumption and
less SU bags by increasing the perfusion volumetric productivity and
decreasing perfusion rate. The iterative learning controller in DSP resulted in
lower buffer volumes and less SU bags waste by decreasing buffer
consumption, and in lower resin consumption by increasing resin utilisation.
Also in DSP, the Raman system resulted in less filters by increasing the

membrane lifespan.

Turning to the environmental burden comparison of PAT USP vs. PAT DSP,
following the cost analysis where PAT USP generally presented lower COG
than PAT DSP, the PMI results also favoured advanced control implementation

in upstream processes over downstream.
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Figure 5.9 - a) Water and b) consumables process mass intensity (PMI)
breakdown for Traditional Conti-ProA, PAT in USP, PAT in DSP and PAT End-
to-End flowsheets at 100, 500 and 1000 kg/year commercial scales. The water
and consumables PMiIs include the complete production train liquid and solid
waste, respectively. The consumables PMI is based on the total weight of
individual disposable material (SU bags, filters, resin and pre-packed columns).
The weight of each material was found in literature or given by suppliers. SU
bags include both bioreactor bags and buffer hold bags.

As discussed in the cost analysis, the PAT implementation in USP vyielded
significant savings in media consumption, which were also reflected in a sizable

difference in water PMI in PAT USP relative to the Traditional flowsheet.
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Conversely, the small savings in chromatography buffers when installing PAT
in DSP did not significantly impact water PMI. On the consumables level, the
decrease in SU bags from media volume reduction in PAT USP was small
compared to the significant decrease in resin and membranes consumption in
PAT DSP (e.g. 500 kg/year consumables PMI: 15 kg/kg Traditional Conti-ProA,;
14 kg/kg PAT USP; 10 kg/kg PAT DSP; 9 kg/kg PAT End-to-End). As seen in
Chapter 3, the water PMI (order of thousands of kg/kg) outweighs the
consumables PMI (order of tens of kg/kg); therefore, flowsheets leading to
smaller water PMIs reflect a lower environmental burden according to this

metric.

Overall, the PAT End-to-End flowsheet presented a 30% decrease in overall
PMI compared to the Traditional flowsheet, while PAT USP and PAT DSP led
to 17% and 12% lower PMIs, respectively. These findings suggest that the
environmental benefits of moving from batch to continuous flowsheets with
protein A chromatography, as discussed in Chapters 2 and 3, could potentially

be augmented by integrating process control in these flowsheets.

5.3.2.3 Target Analysis

The COG analysis showed that continuous mAb flowsheets modelled with PAT
could offer lower costs compared to the traditional uncontrolled scheme,
depending on the scale and stage of implementation. This section begins by
highlighting the conditions necessary in terms of process benefits and PAT
investment to achieve a target COG saving threshold of at least 20% compared
to the continuous flowsheet with ProA capture, thereby justifying the PAT
implementation. The process changes implemented and PAT investment
assumed were based on Table 5.4. This exercise also helped understanding
the potential impact of PAT when the investment in such technologies exceeds
anticipated values or if the process benefits fail to meet expectations. Error!
Reference source not found. summarises the target analysis as a matrix of
heatmaps across scales and PAT implementation strategies (PAT in USP vs.
PAT in DSP vs. PAT End-to-End PAT). The conditions that met the target 20%
COG savings were highlighted by the region within the thick black solid lines.
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Figure 5.10 - Heat maps showing the COG difference for a) PAT in USP, b)
PAT in DSP and c) PAT End-to-End flowsheets relative to Traditional Conti-
ProA as a function of the level of process benefit and level of investment. Blue
cells represent COG/savings compared to the uncontrolled scheme, while red
cells represent higher costs (i.e., when the investment in PAT equipment is not
compensated by the associated benefits of implementing PAT). The area within
the thick solid black line indicates the conditions at which controlled flowsheets
present 220% COG/g savings compared to the uncontrolled scheme. The base
case is with medium benefits and investment. The levels of investment at 100
and 500 kg/year correspond to 200k$/400k$/600k$ for Low/Medium/High USP;
300k$/600k$/1IM$ for Low/Medium/High DSP and 500k$/1M$/1.6M$ for
Low/Medium/High PAT End-to-End. The levels of investment at 1000 kg/year
correspond to  400k$/800k$/1.2M$  for  Low/Medium/High  USP;
600k$/1.2M$/2M$ for Low/Medium/High DSP and 1M$/2M$/3.2M$ for
Low/Medium/High PAT End-to-End.
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Examining Error! Reference source not found. vertically (PAT implemented
at different stages), the 20% target COG saving was not achieved for
flowsheets with PAT in DSP, while PAT in USP and the PAT End-to-End
flowsheets showed successful combinations of benefit vs. investment. Given
that the ranking of the options was End-to-End >USP>DSP, that trend was also
generally mirrored in the size of the window that met the target. Additionally,
the 20% target COG saving was not achieved for low levels of process benefits
across strategies. While the medium benefit level represented the process
improvements gathered from literature or discussed with industrial experts and
simulated in the previous cost analysis, the lower benefit levels reflected
improvements generally 50% lower than these. This indicated that the
investment in PAT would be most attractive when the resulting process

improvements are expected to be as significant as those reported in this work.

Looking at the heat maps from left to right (PAT per stage at different scales),
it was possible to infer about the impact of production scale in meeting the target
cost saving. At 100 kg/year, implementing PAT solely in the upstream (USP) or
downstream (DSP) stages did not result in the desired 20% cost reduction. The
PAT End-to-End strategy, which covers both USP and DSP, could meet the
target only if the investment was halved and/or the process benefits increased
by 50%. Additionally, for both USP and DSP-specific PAT implementations,
scenarios with low benefits or high investments generally led to processes with
higher COG compared to the baseline (as seen by the red-shaded cells). As
the production scale increased to 500 kg/year and 1000 kg/year, the range of
conditions that could achieve the target cost savings expanded. For example,
applying PAT only in the USP could yield savings of 220% if the benefits were
high, regardless of the investment level. For the PAT End-to-End configuration,
cost savings between 25% and 35% were achieved, highlighting the potential

of a fully controlled bioprocess as the production scale grows.

To link to the survey results regarding the desired payback time for PAT
investment, the number of production batches that would reflect COG savings
to offset the investment in enhanced control was calculated. The simulation of
Conti-ProA using the process economics model described in Chapter 2

assumes that each production year consists of 10 batches of 20 days. Figure
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5.11 illustrates the payback batches, i.e. the number of batches required to pay
back the investment in PAT, required for each combination of PAT investment

versus benefit.

The solid black lines in Figure 5.11 highlight the combinations of PAT
investment and benefits leading to payback batches below 10 (i.e. 1 year) and
reveal that, for the combinations resulting in actual COG savings, the payback

was fast for the vast majority of cases (<1 year).

When the decision is based on the payback, the window of combinations that
justify the investment is larger than when looking at COG savings only. From
top to bottom, PAT in USP and the PAT End-to-End flowsheets showed similar
windows. PAT in DSP did not reach the 20% COG savings target for any scale
in the previous analysis; however, it could offer payback times shorter than 1

year depending on the conditions.

Looking from left to right, at 100 kg/year, the payback target account be met if
the PAT investment and the benefits are low, particularly for the PAT in USP
and PAT in DSP scenarios. At 500 and 1000 kg/year, the only combinations
that did not meet the target payback were medium to high investment combined
with medium to low benefit for PAT in DSP or the “low benefit — high investment”

scenario for PAT in USP and End-to-End flowsheets.

The large number of batches seen on the “low/medium benefit — medium/high
investment” cells reflects scenarios where PAT implementation is leading to
minimal cost savings, therefore, the number of batches needed to meet the

investment is accentuated.

Crossing these results with the survey outputs, 8% of the participants indicated
that the desirable payback time for PAT investment should be under 3 years,
while the remainder pool of respondents suggested that a longer payback
would also justify the investment. In the present payback analysis, a large range
of PAT investment and resulting benefits were simulated and showed fast
payback times for the majority of conditions. Therefore, the findings suggest
that PAT in mAb manufacture can potentially satisfy the requirements from

industry in terms of payback time.

179



PATin USP
Benefits

PATin DSP

PAT End-to-End

Benefits
=
g
=
El
Benefits

500 Kg 1000 Kg

Benefits
=
a1}
a
c
=3

Benefits

Low |Medium| High Low |Medium| High

Investment Investment

Benefits

Low |Medium| High Low |Medium| High

Low |Medium| High

Investment Investment Investment

Benefits
Benefits

Low |Medium| High Low |Medium| High

Low |Medium| High

Investment Investment Investment

Figure 5.11 - Heat maps showing the payback batches (the number of batches
required to payback the investment in PAT) for a) PAT in USP, b) PAT in DSP
and c) PAT End-to-End flowsheets relative to Traditional Conti-ProA as a
function of the level of process benefit and level of investment. The area within
the solid green line indicates the conditions at which the number of batches
required is lower than 10 (i.e., 1 production year). The area in black
corresponds to combinations that did not result in COG savings. The base case

is with medium benefits and investment.

5.4 Conclusions

This chapter evaluated the trade-offs of implementing process analytical
technologies in continuous mAb manufacture. The decisional tool was used to
assess the implementation of different PAT systems at different process stages

from both economic and environmental dimensions. The approach consisted of
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configuring PAT process benefits and respective investment into the simulation
framework, deriving the cost of goods and process mass intensity metrics and
comparing the output from controlled flowsheets with traditional uncontrolled
schemes. The analysis demonstrated that end-to-end continuous mAb
flowsheets with protein A capture would benefit from the adoption of PAT
systems in both USP and DSP. Additionally, the simulations showed that
Raman spectroscopy, mainly through the increase in cell culture performance,
could have a positive impact on reagents reduction and consequently COG
savings. From an environmental perspective, controlled flowsheets showed a
smaller PMI, meaning that the environmental benefits from process
intensification through continuous manufacture could be augmented with the
installation of PAT. The assessment was extended by performing a target
analysis showing the level of investment and process improvements required
to achieve 20% COG savings relative to end-to-end continuous mAb production
without PAT. The analysis showed that a broad range of conditions would meet
the target cost reduction at medium and large scales and that savings higher
than 30% could be expected. When computing the number of production
batches required for the cost of goods savings to balance the investment in
PAT, it was clear that the PAT payback period would be fast for an extended
array of combinations of investment vs. benefit. A process with PAT
implemented end-to-end could deliver payback times shorter than one year for
the majority of scenarios tested. Overall, this work helped quantify the expected
cost savings from PAT implementation, which can help inform decision-making

in the sector regarding the investment in enhanced control.
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Chapter 6: Conclusions & future work

The biopharmaceutical industry is pursuing novel strategies to deliver
innovative therapies while minimising costs and environmental footprint.
Continuous manufacturing is gaining traction as an enabler of smaller facilities
and lower resource utilisation, thus acting as a response to the sector’s
economic and environmental goals. Also, there is a renewed interest in using
column-free techniques to decrease the consumption of expensive resins in
mAb manufacture. Nevertheless, reports on the evaluation of end-to-end
continuous bioprocessing and its benefits are still limited. Also, there is a lack
of economic and environmental data to support the decision-making regarding
the introduction of column-free alternatives or process analytical tools to
decrease costs. In the context of biopharmaceutical decision-making,
decisional tools have been used at different stages of the product lifecycle, from
early development to commercial production, enabling the analysis of complex
alternatives, predict outcomes and optimise various processes. In this thesis,
decisional tools were used to explore the economic and environmental trade-
offs of batch and continuous mAb manufacturing flowsheets with column-based

and column-free capture steps and enhanced control.

This chapter outlines the main conclusions derived from the work developed in
this thesis. Additionally, several future developments are suggested to extend
the capabilities of the decision-support framework and increase the

understanding on continuous mAb manufacture and its potential.

6.1 Overall conclusions

Chapter 3 focused on the detailed application of process modelling to predict
cost of goods, capital investment and PMI indicators and derive key cost
drivers. The tool to model end-to-end continuous bioprocesses was built on
previous UCL work and extended to integrate: i) mass balance and design
equations for aqueous-two phase extraction and precipitation; ii) equipment
costs and default process parameter values for column-free capture operations
and; iii) calculations for environmental metrics with an updated database

including masses of consumables.
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The results showed that the continuous production strategies, whether ProA-
based (Conti-ProA) or column-free, offered COG savings compared to the
standard batch (Batch-ProA) at lower and medium scales, while at higher
scales only the continuous flowsheets with ProA capture or product
precipitation (Conti-PP) presented a similar or slightly lower COG than batch.
The cost comparison among continuous flowsheets also showed that the ProA-
based flowsheet had the lowest COG across demands, followed closely by
product precipitation. The continuous flowsheet with aqueous two-phase
extraction as capture step (Conti-ATPE) showed the highest cost of goods
amongst all continuous flowsheets. The analysis revealed the underlying cost
drivers for each flowsheet, highlighting the significant contribution of large
media volumes costs and high equipment costs in the COG of Conti-PP and

Conti-ATPE, respectively.

On the environmental front, although the consumables PMI was 4 to 5-fold
higher in continuous flowsheets, this order of magnitude was negligible
compared to the liquid waste in batch. The water PMI of Conti-ProA, Conti-
ATPE and Conti-PP was 2 to 8-fold lower than Batch-ProA; therefore, these

values were the key drivers for continuous environmental improvements.

A holistic approach considering not only the economic and PMI metrics derived
from the model, but also the operational aspects of the different flowsheets was
developed by using a multi-criteria decision-making technigue. The rankings for
the qualitative operational criteria were obtained from a survey sent to experts
in the field and aggregate scores were generated for each strategy. The tool
has predicted that Conti-ProA was the best option even when environmental or
operational criteria were considered more important than cost savings. Also,
when the relative importance of operational criteria was low, Conti-ATPE was
the strategy with the lowest aggregate score across scenarios. A switch point
in the decision, where ATPE would be preferable over product precipitation,
was found when the importance of operational feasibility (e.g., robustness, ease

of scale-up) outweighed the environmental aspect (ratio>0.7).

The final part of the chapter showed a target analysis to determine the cost

reductions needed so the column-free capture flowsheets could meet a 15%
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COG savings target compared to Conti-ProA. Based on ATPE and precipitation
process parameters changes that showed a high impact in decreasing the cost
of goods, the goal was to find the technological advances needed to justify the
switch from protein A chromatography to aqueous two-phase extraction or
product precipitation in mAb manufacturing. The installation of inline dilution
and implementation of buffer concentrates would significantly benefit both
column-free strategies. Also, the target was met when the usage of buffer
concentrates was combined with increased perfusion volumetric productivities
and increased harvest cell culture fluid percentage (HCCF %) in Conti-ATPE or
the precipitates wash yield in Conti-PP. COG savings around 30% were
possible at the most favourable conditions for both column-free capture

flowsheets.

Chapter 4 explored the application of an LCA tool to carry out a more in-depth
environmental evaluation of different mAb production flowsheets. When
compared to the environmental PMI metrics derived from the process model,
this tool allowed for a more comprehensive analysis of the entire life cycle of
products, processes and activities, as the impact of energy consumption or raw
materials extraction was part of the methodology. The LCA tool showed that
Conti-ProA was the strategy also with the lowest carbon footprint amongst
flowsheets. The absence of the CIP cleaning and the smaller processing train
led to significant energy savings that were the key driver for the smaller
environmental footprint. The high CO2 emissions associated to PEG combined
with the high energy consumption from the series of capture steps in Conti-PP
were the main contributors for the high carbon footprint of the precipitation
flowsheet. Also, contrary to what was observed through the PMI analysis, the
environmental burden based on the carbon footprint of Conti-PP was higher
than Batch-ProA. This result showed that different assessment methodologies
(process mass intensity vs. product carbon footprint) can result in different
conclusions. As PMI considers the quantity of generated waste, it favours
intensified processes with lower water consumption, whereas PCF focuses on
climate change and favours processes with lower GHG emissions. The
framework was also used to understand the impact of process optimisation in

each flowsheet’'s carbon emissions and showed significant PCF reductions
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from continuous flowsheets after increasing cell culture productivity.
Additionally, the analysis revealed that a higher degree of optimisation of Conti-
PP, including increasing HCCF concentration, could result in carbon footprints
lower than Conti-ProA. When converting the environmental savings into
tangible day-to-day metrics, optimising the precipitation flowsheet led to a PCF
reduction equivalent to reducing in more than 21 thousand the number of trees

to offset mAb manufacture carbon emissions.

In Chapter 5, the current state-of-the-art and the view for the implementation
of PAT in continuous bioprocesses was explored by conducting a survey and
series of interviews with experts in the biopharma space. The pool of
respondents was selected to include experts from different companies and
departments (e.g., QCQA, Engineering, R&D), ensuring that the outcomes of
the survey would reflect different perspectives and the industry as a whole.
Detailed overall trends and opinions ranging from the most common factors
slowing down PAT implementing to the predicted timelines for a widespread
adoption of these technologies in mAb manufacturing were discussed. The
survey results showed that 90% of the respondents had already integrated
enhanced control in at least one processing step either during process
development or manufacture. In addition, there was also a clear link drawn
between PAT implementation and continuous manufacturing efforts. Specific
process benefits deriving from the implementation of these technologies were
discussed with the experts. Such information was crucial to understand the
technical feasibility of PAT as well as determining the inputs for the process
economics model. Nevertheless, the set of improvements applied to reflect PAT
benefits was still limited, as the translation into economic impacts had only been
done (either by the interviewed experts or found in the literature) for a few of
these applications. In the process economics model, the changes to the base-
case included USP parameters (e.g., increased perfusion volumetric
productivities, increased perfusion rates), DSP parameters (e.g., increased
resin capacity, increased membrane re-usage) and overall process benefits
(e.g., decreased number of operators). The simulation tool predicted that the
PAT attractiveness would depend on the production scale, with the investment
being more diluted for medium and large scale facilities (500 and 1000 kg mAb
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per year) compared to smaller scales (100 kg/year). The analysis was extended
to look at the trade-offs in terms of levels of PAT investment and resulting
process benefits (low vs. medium vs. high). The model determined that savings
higher than 30% could be achieved at medium and large scales if the process
performance was highly improved. The calculation of the number of production
batches required so COG savings would balance the investment in PAT
equipment also helped to provide clarity regarding the payback period of these
technologies. For most of the scenarios assessed, the return would be visible
in less than 1 year (10 batches). Overall, the results showed that mAb
manufacture with end-to-end PAT integration (USP and DSP) would result in
both COG savings and environmental gains, increasing the advantages of

continuous bioprocessing.

6.2 Future work

While the chapters of results have showed how the framework was used to
successfully simulate and evaluate continuous manufacturing processes, future
work can further explore the capabilities of the decisional tool and deliver an
expanded insight for a more informed decision-making when installing new

processes and technologies.

In the process economics work, the economic potential of the different
flowsheets was investigated on the basis that the target purity specifications
were met for all capture techniques. However, impurity removal improvements
can be necessary when using alternatives to ProA chromatography, thus, it can
be of interest to incorporate these differences in the process assumptions and
evaluate the economic impact of the diverse production outputs. On the other
hand, advances on the technical performance of aqueous two-phase extraction
and product precipitation were discussed with experts in the field who state that
higher process yields and lower dilution levels are currently under investigation.
Some of these improvements were included in Chapter 2, during the
environmental optimisation of mAb flowsheets with product precipitation;
however, the economic outcomes should also be studied, as it is expected an

economic positive impact that may support these alternatives’ business cases.
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The decisional tool also embodied Monte Carlo simulations capabilities, where
the flowsheets were evaluated under uncertainty and the likelihood of column-
free techniques achieving lower costs than the continuous ProA reference was
checked. These simulations were performed by fixing the production scale
(e.g., 100, 500 or 1000 kg of mAb per year) and re-sizing the facilities according
to the batch-to-batch variation of certain process parameters. However, it would
also be relevant to assess the likelihood of these flowsheets to meet target
product demands under uncertainty when the size of the facility is fixed. This
study would further clarify the perceived risks associated with column-free
capture strategies and characterise the output variability in pre-existing facilities

that do not look for completely re-designing their production lines.

Furthermore, the framework developed in this research would also benefit from
the integration of a risk-adjusted cash flow model in order to calculate net
present value (NPV). As NPV is a metric which considers running costs, capital
investment, but also future cash flows and risks, this would allow to account for
longer-term consequences associated with implementing new production

strategies.

In the environmental sustainability work, the carbon emissions associated with
different mAb manufacturing flowsheets were evaluated as a way of quantifying
the climate change potential of each strategy. This metric was the one
highlighted in this work, as biopharma’s net zero ambitions are mainly focused
on the carbon footprint of bioprocesses. However, there are further impact
categories, such as acidification potential, land use or ozone depletion, that can
be analysed through the LCA tool. The relevance of these other metrics should
be assessed together with industry experts to determine which factors must be

in scope when looking at the environmental burden related to biomanufacturing.

To improve the confidence on the LCA outputs it would be also relevant to
extend the current built-in databases to better represent biopharma-related raw
materials and processes. One of the main challenges faced in this simulation
software was the lack of environmental data for some critical components
integrated in the production flowsheets, such as resins or filtration membranes.

The necessary approximations were performed to support the assessment of
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different raw materials’ impact; however, future cooperation between suppliers
and LCA users would certainly help increasing the robustness of this technique
and provide more accurate estimations. On the other hand, also the application
of sensitivity analysis in the input parameters, either raw materials or processes
related, would offer a better understanding regarding the factors which have the
largest influence on mAb production carbon footprint.

Although the presented LCA approach (cradle-to-gate) had in scope the
disposal of solid waste (consumables: filtration membranes, single-use bags)
via incineration, it would also be of interest to study the potential of energy
recovery, which is currently not in scope. As the mAb production process is very
energy intense, especially due to the HVAC systems and WFI preparation, the
utilisation of the heat coming from waste disposal could decrease the facility

energy demand and create a more sustainable scenario.

Comparing the energy outputs in this thesis with literature benchmarks showed
that these calculations are highly dependent on the assumptions regarding
HVAC and other ancillary activities requirements (e.g., WFI and CIP stations,
media and buffer mixing). As the use-phase emissions are a big contributor for
total product carbon footprint across flowsheets, accurate energy data is
needed. Working with partners to get better HVAC data that covers fans,
heating and cooling requirements for different area classifications would be
highly recommended. Getting accurate data on current energy demands from
WFI and CIP water generation and other process related activities would also
be of relevance to increase the confidence in the energy outputs. Additionally,
comparing current HVAC designs with more environmental-efficient future
HVAC options could provide insights on the leads towards net zero

manufacturing.

Finally, while the LCA tool presented in this research was only applied to mAb
manufacturing to provide benchmarks on several mAb production strategies, it
would be also useful to apply the framework to other modalities, such as CAR-
T or AAVs. The current tool provides a strong foundation for the environmental
assessment of other manufacturing bioprocesses, as most of the activities and

processes can be transferred across schemes. This way, by deriving more
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benchmarks for further modalities, one could provide a more complete
understanding of the environmental impact of biopharmaceutical sector as a

whole.

In the PAT evaluation work, the model captured current expected benefits of
PAT related to yields, failure and costs. However, the full potential of PAT in an
Industry 4.0 future requires further scoping and demonstration in industrial
settings on what can be achieved with PAT enabling self-autonomous
processes that adapt automatically to variability and ultimately facilitate real-
time release. Then these need to be translated into clear process improvements
with direct economic relevance that can be captured in the decisional tool to

calculate the trade-offs between PAT investment and cost reduction.

Also, the impact of installing PAT on an environmental level should be assessed
through PCF metric. While PMIs can easily be derived from the process
economics model, a full life cycle assessment could also indicate the impact
that the improved process performance coming from PAT installation could
have on the carbon footprint of mAb production. As aforementioned, a
sensitivity analysis in the LCA study would be helpful to understand the
parameters influencing the most the environmental impact of mAb
manufacturing. Therefore, USP (e.g., increased perfusion volumetric
productivities) and DSP (e.qg., lower buffer consumption) parameters influenced
by enhanced control should integrate this analysis and provide another level of

understanding on PAT gains.

As PAT implementation is also envisioned as a route to reduce process and
product variability, the likelihood of meeting target costs should be compared
with processes with higher uncertainty. Future studies should aim to integrate
Monte Carlo simulations where the distribution of cost outputs of processes with
and without PAT can be evaluated. Also, multiple interviewed experts have
suggested the PAT integration in the process development stage, where these
technologies can provide a faster process understanding and enable a more
robust technology transfer into manufacturing. Thus, an NPV analysis would
reflect the benefits of a shorter (and possibly less costly) development phase

and time-to-market.
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Appendix
Al. Chapter 3 appendix

Al.1 Mass balance equations

The input parameters and main model outputs of each stage are summarised
in Table A1.1. Process variables such as volume, mass, concentration or

processing time represent infoutputs of most operations and are not indicated.
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Table Al1.1 - Input parameters and key model outputs for each unit operation modelled with the tool.

Unit Operation Mode Technology Class Input parameters Key model outputs
Inoculum Batch/continuous Vial/Shake flask Inoculum e Inoculation ratio -
Batch Fed-batch e Inoculation ratio _ o Wet-cell volume « Broth composition
Cell culture Bioreactor * Target concentration
Continuous Perfusion ¢ Volumetric productivity ¢ Perfusion rate ¢ Broth composition
¢ ATF membrane capacity ¢ Wet-cell volume ¢ Flow-rate
. . . . Operating duration limit e Dewatering level e Yield
Batch Centrifugation Centrifugation * ) -
9 9 ¢ Solid carry-over e Wet-cell volume e Supernatant composition
Solid-Liquid Batch Depth Filtration e Filter capacity e Maximum Flux e Membrane area
Separation (dead-end) Filtration e Flush volume e Yield o Number of filters
Continuous Depth filtration e Filter capacity o Maximum Flux e Membrane area
(cross-flow) e Flush volume e Yield o Number of filters
: Ellunriltr)lgrcoe;pz:agltgs : gg;nrt:glr ch]ftcqumns ¢ Product stream composition
Batch/continuous Chromatography Chromatography Y heignt e Column volume
o Buffer volumes ¢ Resin loading tolerance .
- . . e Column Diameter
Purification e Linear velocity e Yield

Batch/continuous

Aqueous two-phase
extraction

Aqueous two-phase
systems

¢ Ratio of cells in
e System composition

e Top/bottom phases ratio
e Yield

e Product stream composition

Batch/continuous

Precipitation

Precipitation

¢ Ratio of cells in
e System composition

e Yield
e Residence time

¢ Product stream composition

Viral Inactivation Batch/continuous (agitated tank) Reactor e Base/Acid volume -
Batch Dead-end filtration e Filter capacity o Maximum Flux e Membrane area
Virus removal ¢ Flush volume e Yield o Number of filters
o i N i Filtration
filtration Continuous S;;‘t?;?igsigéa;]gg rlt'srlgjs()sw « Filter capacity o Maximum Flux o Membrane area
flow) ¢ Flush volume e Yield e Number of filters
. — e Target concentration e Flush volume e Concentration factor
Batch TangenEe:zlrgcs)Sﬂ:‘tlz)a\lS)on (TFF e Diafiltration cycles e Maximum Flux e Membrane area
Concentration and e Filter capacity e Yield e Number of filters
Diafiltration (UFDF) Filtration * Target concentration .
« Diafiltration cycles ¢ Flush volume ¢ Concentration factor
Continuous SPTFF o Filter capacity e Maximum Flux e Membrane area

¢ Operating duration limit
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Al.1.1. Cell culture

Demand AL
m duct = ———————— .
plr)Ztghc n X Nbatches

Mproduct

BWV = Titre o i (A1.2)

fed—batch or perfusion

. VPR
Titreperfusion = PR (A1.3)
Mproduct

Cout perfusion — VPR X d = % (41.4)

out
Vout perfusion — BWV X PR x d (A1.5)
Vout fea—patcn = BWV (A1.6)
Mediaseq-patcn = BWV X (1 —1) X (1 + Media Overfill) (A1.7)

Mediayer fusion = BWV X [PR X d + PRrgmp—up X Aramp—up| X (1 + Media Overfill)(A1.8)

BWYV
Vbioreactor = S (A1.9)
Vpioreact
Npioreactors = —Vwriacbjr (A1.10)
available
BWYV x PR
FRyyue perfusion — T (A1.11)

Myroauct/batch: Mass of product output per batch (kg/batch/year)
Demand: Annual product demand (kg)

n: Cumulative DSP yield (%)

Npatches: Number of batches designed per year (batch/year)

BWYV: Bioreactor working volume (L)

Titre: Concentration of product in the moment of harvest (g/L installed)
VPR: Volumetric productivity (g/L/day)

PR: Perfusion rate, i.e. daily vessels harvested (BWVs/day)
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Cout perfusion: CONcentration of product collected after the entire perfusion time

(g/L harvest)
d: Days of perfusion, excluding expansion phase (day)

Vout perfusion- VOlume collected after the entire perfusion time (L harvest)

Vout rea-batcn- VOlume of product collected at once after a fed-batch batch (L

harvest)
Media: Volume of media required for cell growing-out (L)
i: Inoculation ratio (%)

Media overfill: Safety factor of media fill-in to account for pipes/valves dead-

volume (%)

PR,qmp-up- Perfusion rate, i.e. daily vessels harvested during the ramp-up

phase (BWVs/day)
Vpioreactor- ACtual bioreactor volume (L)
s: Vessel sizing safety factor (%)
Npioreactor- Number of bioreactors needed for cell growing-out
Vavaitavie: Closest bioreactor size commercially available to the BWV (L)

FR oyt perfusion: Flow-rate out of fermentation broth during perfusion (L/h)

Al.1.2 Centrifugation

FRin = FRoue = Durat[i/(im limit (4.12)
Mooy = WCV X Vi (4.13)
Mseaiment = Meen X (1 —SCO) (A.14)
. Msediment /psoud v msedirr;;/ Psolid _ Mgediment /pso”d (A.15)

m .
Vsediment + sedlment/p

solid
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Ncentrifugation = = ”;n' e X100 (A.16)
in

Vin: Bioreactor working volume (BWV) from fermentation step

Duration limit: Limit set for the operation of centrifuge (h)

me.;s: Mass of cells found in the fermentation broth (kg)

WCV: Wet cell volume, i.e. ratio of cells found in the fermentation broth (%)
Mgeaiment. Mass of solid particles found in the sediment after centrifugation (kg)
SCO: Percentage of cell mass that stays in the supernatant (%)

DW': Dewatering level, i.e. level of liquid in the sediment (%)

Psoria. Density of solid phase in the sediment (kg/L)

Vseaiment- VOlume of liquid phase in the sediment (L)

Neentrifugation- Yi€ld Of centrifugation step (%)

Al1.1.3 Filtration
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Table A1.2 - Overview of filtration modelling equations

Alternating tangential flow (ATF) Depth Filtration Virus Removal Filtration Concentration and Diafiltration
Continuous Batch Continuos Batch Continuos Batch Continuos
Cross-flow Dead-end Cross-flow Dead-end Cross-flow Cross-flow Cross-flow
0 Ultrafiltration: Diafiltration:
2 Mout = My X 1; CF = g—o— FR;y,
Ape=—0—
E FR A PR / Vin LC™ Max flux A = FRin
(%) _ in VRF _ in P =V X (1 — 1/ ) D™ Max flux
Appp = —— FR; A = UF
2 AT Max flux Aver . = W]ifriux Ayrr = __Min VRE ™ Max flux " CF tC
Q _ in - B e
o = Capacity, Capacityn b _Vin / . X DF 1 X Cip FRour = FRin
© FRyye = FRiy FR...=FR. FRoys = FRip br = CF cycles
< — out " Mout = Min X1 FR; m, =My XM
o Moyt = My XM (PUF + PDF) FRy; = in out in
0 Moy = Mip XM Moy = Myp XM Moyt = Mip XM / CF
% Ayrpr = - M'ax'flux
= Duration limit Mot = Min X 1
out — mn
1]
= Vi A A A A A
c Nfilters= ; N¢: 1 — N;: —_ ‘DeF N. = __ TUFDF N, Il | N L —_ b
:tst AaTF setectea % Capacity, Jiteers ApeF available Jiteers AVRF available TEF skids ATFF available [LC skids AlLF available [LD skids AlLF available
V. (Pyr + Ppr) /
() i V: V: V. 1 V. V:
£ OPtime = 75— Opyi, =— 2 A Opy = | Op,. =— — Max flux 0p,ir, = — 0p,i, = —e
£ me = FRun Dtime Aper X Max flux Dtime Ayrr X Max flux Ptime FRy, OPtime = y——— Ptime FRin Ptime FRin

Aurp: ATF filtering area required (m?)

Aurr setecteq: Closest filtering area commercially available to the

Aprp (M?)

Aper: Depth filtering area required (m?)

Aper avaitapie: Filtering area commercially available (m?)

Apc: Area required for inline concentration (m?)

A;Lp: Area required for inline diafiltration (m?)

Ayppr: Ultrafiltration area required (m?)

Aygr: Filtering area required for virus removal (m?)

Capacity, ,m: Maximum loading capacity achievable by the filter

according to vendor (L/m?) / (g product/ m?)
CF: Concentration factor

D¢y cies: Diafiltration cycles

Duration limit: Limit set for the operation (h)
FRin/ous: Flow rate infout (L/h)

Min/out: Mass of product infout (kg)

Max flux: Maximum flux achievable by the filter according to
vendor (L/m?/h)
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Nriirers- Number of filters needed with area available/selected
Nsrias: Number of skids required

Op:ime: Operating time (h)

Pyr: Ultrafiltration permeate (L)

Py Diafiltration permeate (L)

tC: Target concentration (g/L)

Vinjout: Volume infout (L)

n: Step yield (%)



Al.1.4 Chromatography

BH

thon—loading =

LV, X Z CVeyw/Eys/r/c (17)
non—loading

_ min
DBC X Nop X Neycres

Do CV x 4000 (19)
.| mxBH

Ncycles X Nbatches

cv (18)

R= (20)
Nlifespan cycles
BH
RToading = 75,——— (21)
LVloading
Vin/(N N )
1 X l
tioading = RTloading X COCV e (22)

CV: Chromatography column volume (L)

DBC: Dynamic binding capacity (kg product/L resin)
D: Chromatography column diameter (cm)

R: Replaces of resin during a year

Niifespan cycles- Number of cycles corresponding to the resin lifespan
thon—loading: OPErating time of the non-loading chromatography steps (h)

BH: Chromatography column bed height (cm)

LVyon-10aaing: Linear velocity of non-loading steps (cm/h)

CVgw/es/r/c- Number of column volumes of buffer for each non-loading step
RTypqqing: Residence time of product inside the column (h)

LVipaaing- Linear loading velocity (cm/h)

tioading: Operating time corresponding to loading step (h)
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Al1.1.5 Virus Inactivation

Vour = Vin X (1 + Titratey.;q) X (1 + Titratepqse)

Titrate,.;q: Molar ratio of acid added for pH adjustment

Titrate,,s.. Molar ratio of base added for pH adjustment

Al.2 Equipment and material prices

(23)

Table A1.3 — Equipment costs and scaling factors used in the calculation of fixed

capital investment (FCI)

Equipment Base size units Base cost Scaling
(USD) factor, c

Bioreactor 200 L 240 000 0.38
SU Bioreactor Container 500 L 200 000 0.48
Incubator 24 #Flasks 5000 NA
Hold-Tanks 500 L 50 000 0.38
Product Hold-Tanks 500 L 40 000 0.38
Product Accumulation-Tanks 500 L 40 000 0.38
Hold-Bags Container 500 L 7 000 1
Hold-Bags Trolleys 2000 L 450 0.13
Prep-Tanks 500 L 50 000 0.38
Chromatography Skid 3 L/min 160 000 0.25
PCC Skid 1.33 L/min 280 000 0.75
Chromatography Column 60 cm 66 500 0.90
Packing System 50 L/min 35 000 0.36
Centrifuge 600 L/hr 430 000 0.16
Filter Housing 2 sgm 3500 0.31
TFF Skid 20 sgm 245 000 0.30
PW Vessel 1000 L 27 500 0.38
WEFI Vessel 1000 L 36 500 0.38
Fill-Finish Machine-A 500 Vial/hr 350 000 1
ATF Filter Housing 5 sgm 90 300 -
ATF Skid 5 sgm 54 400 0.38
In-line filter skid 3.5 sgm 5000 -
Continuous VI system 50 L 280 000 1
ATPE Extractor 30 cm 66 500 0.90
Precipitation Tubular Reactor 0.48 cm 1000 0.30
SP TFF 0.33 sgm 250 000 -
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Table A1.4 — Reagents and consumables prices

Material Base size units BEEEeSCD?St fii?cl)lrrTQC
Hold-Tank Guard Filter 1000 L 310 0.65
Hold-Bags 500 L 530 0.47
Product Hold-Bags 500 L 530 0.47
Product Accumulation-Bags 500 L 530 0.47
Prep-Bags 500 L 530 0.47
Bioreactor Bags 500 L 5100 0.44
Continuous VI bags 500 L 5100 0.44
Wave Bioreactor 50 L 270 0.24
Shake Flask 0.50 L 500 0.40
ATF Membrane 5 sgm 10 300 0.35
Membrane Chromatography 0 L 180 0.55
Fill-Finish Syringe 10 mL - -
Vial 0.50 mL 10 -
0.45um Filter 0.60 sgm 340 -
Depth Filter 1 sgm 300 -
Virus Removal Membrane 1 sgm 6 800 -
Ultrafiltration Membrane 1 sgm 3200 -
ILC - 0.065 0.07 sqm 4177 -
ILC-0.13 0.13 sgm 4 699 -
ILC-0.7 0.70 sgqm 9 399 -
ILC-35 3.50 sqm 24 983 -
ILD-0.11 0.11 sgm 15574 -
ILD - 0.22 0.22 sqm 16 233 -
ILD-1.2 1.20 sqm 22 669 -
SP TFF Membrane 1 sgm 4243 -
Empty Pre-packed Column 1 cm 2 000 -
PEG 3350 1 Kg 2 -
Na-Phosphate 1 Kg 1 -
NaCl 1 Kg 0.2 -
NaOH 1 Kg 5 -
ZnCI2 1 Kg 0.20 -
HEPES 1 Kg 10 -
Glycine 1 Kg 3 -
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A1.2 Multi-criteria decision making survey

Operational Criteria for Precipitation

Name:
Company/Institution:

Position held within the company/institution:

Survey Aim: Evaluate the operational attributes of promising column-free mAb capture techniques
as substitutes of protein A chromatography in mAb manufacturing

This survey is composed of 2 questions. The survey should not take more than 10 min to be
completed.

1. How would you rank the relative importance of the following criteria when developing
mAb commercial scale processes?

Please rank the criteria from A to E, A being most important and E being the least important.

Criteria Rank

Robustness

Ease of validation

Ease of installation

Ease of operation/ Degree of automation

Ease of scale up

2. For each criteria (i.e. row), how would you rate the performance of precipitation and
protein A chromatography?

Please rate the technologies from 1 to 5, 1 being a “low” score, 3 a “medium” score and 5
a “high” score.

Criteria Rating

ProA Precipitation

Robustness

Ease of validation

Ease of installation

Ease of operation/ Degree of
automation

Ease of scale up

Figure A1.1 — Survey sent to industry and academia experts on precipitation
operational criteria. The same survey was sent to evaluate aqueous-two phase
extraction (ATPE)
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Table A1.5 - Responses from operational criteria survey. R= respondent.

ProAv. ATPE

ProA v. Precipitation

R1

R2

R3

R4

R5

R6

R7

R8

ProA

ATPE

ProA | ATPE

ProA

ATPE

ProA

PP

ProA

PP

ProA

PP

ProA

PP

ProA

PP

AVG
ProA

STD
ProA

AVG
ATPE

STD
ATPE

AVG
PP

STD
PP

Rating value, x;;

Robustness

2

4

5

3

4.4

0.9

4.0

1.0

25

1.7

Ease of
validation

3.9

11

2.7

0.6

2.0

2.0

Ease of

installation

2.9

11

4.0

1.0

3.8

1.0

Ease of
operation

3.3

13

2.7

15

35

13

Ease of

scale up

3.4

18

4.7

0.6

3.8

15

Weight, E;

Robustness

Ease of

validation

Ease of

installation

Ease of
operation

Ease of

scale up
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A2. Chapter 4 appendix

A2.1 Inputs of OpenLCA

Table A2.1 — Buffers’ composition

Cell culture media

Anhydrous Calcium Chloride: 0.165 g/L
Dextrose: 4.5 g/L

Magnesium Sulfate Anhydrous:0.1 g/L
Potassium Chloride: 0.33 g/L

Sodium Bicarbonate: 3 g/L

Sodium Chloride: 4.5 g/L

HEPES Buffer: 6 g/L

Sodium Phosphate 0.1 g/L

amino acids: 0.2 g/L

Diafiltration buffer e 50 mM HEPES
Chromatography equilibration buffer : écS)(r)nT/IMTEI:CI
Chromatography wash buffer 1 . éOSnI:/IMC?r(i:slz
Chromatography wash buffer 2 : égmm 'II\'I;’JiIsCI
Chromatography elution buffer : égmm gligilne
Chromatography strip buffer : ngXMSI(\)l:iCU)rIII] sulfate

CIP buffer

NaOH 1% w/v

General substitutions

HEPES was substituted to methane sulfonic acid
Tris was substituted by
dimeethylaminopropylamine
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A2.2 Mass balances — 500 kg/year

Table A2.2 — Mass balance per batch using Batch-ProA (base case).

Step Liquids In (L) Out (L) Solids In (9) Out (9)
Media 875 80 Guardfilters 200 200
CIP buffer 4037 4037 Bioreactors bags 0 0
PW and WFI 2306 2307 Hold bags 0 0
Seed -
Buffer 0 0 Filters 0 0
Resin 0 0
Media 7879 716 Guardfilters 400 400
CIP buffer 8163 8163 Bioreactors bags 0 0
Bioreactor PW and WFI 4665 4665 Hold bags 0 0
Filters 0 0
Buffer 0 0 Resin 0 0
Media 0 1008 Guardfilters 200 200
CIP buffer 8944 8944 Bioreactors bags 0 0
Centrifugation | PW and WFI 3178 3178 Hold bags 0 0
Filters 0 0
Buffer 0 0 Resin 0 0
Media 0 0 Guardfilters 200 200
CIP buffer 4650 4650 Bioreactors bags 0 0
Depth filtration | PW and WFI 5057 4937 3 Hold bags 0 0
Buffer 600 600 Filters 48000 48000
Resin 0 0
Media 0 7071 Guardfilters 1400 1400
CIP buffer 14677 14678 Bioreactors bags 0 0
ProA PW and WFI 8387 8387 Hold bags 0 0
Filters 0 0
Buffer 20126 18920 Resin 8294 8294
Media 0 0 Guardfilters 400 400
CIP buffer 4110 4110 Bioreactors bags 0 0
VI PW and WFI 2348 2349 Hold bags 0 0
Filters 0 0
Buffer 584 53 Resin 0 0
Media 0 0 Guardfilters 1400 1400
CIP buffer 14062 14063 Bioreactors bags 0 0
CEX PW and WFI 8035 8036 Hold bags 0 0
Filters 0 0
Buffer 10201 11090 Resin 9331 9331
Media 0 0 Guardfilters 1200 1200
CIP buffer 12143 12143 Bioreactors bags 0 0
AEX PW and WFI 6938 6939 Hold bags 0 0
Filters 0 0
Buffer 8335 7699 Resin 9331 9331
Media 0 Guardfilters 200 200
CIP buffer 2517 2517 Bioreactors bags 0 0
VRF PW and WFI 1738 1738 Hold bags 0 0
Buffer 39 36 Filte_rs 12000 12000
Resin 0 0
Media 0 0 Guardfilters 200 200
CIP buffer 5102 5102 Bioreactors bags 0 0
UFDF PW and WFI 4595 4595 Hold bags 0 0
Buffer 8824 9478 Filters 48000 48000
mAb 0 830 Resin 0 0
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Table A2.3 — Conti-ProA (base case)

Step Liguids In (L) Out (L) Solids In (9) Out (g)
Media 130 12 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 4500 4500
Seed PW and WFI 0 0 Hold bags 2600 2600
Filters 0 0
Buffer 0 0 Resin 0 0
Media 46112 10705 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 7000 7000
Bioreactor PW and WFI 0 0 Hold bags 23600 23600
Filters 2000 2000
Buffer 0 0 Resin 0 0
Media 35526 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 0 0
ProA PW and WFI 0 0 Hold bags 31400 31400
Filters 0 0
Buffer 24455 22266 Resin 108000 | 108000
Media 0 0 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 0 0
VI PW and WFI 0 0 Hold bags 7580 7580
Filters 0 0
Buffer 1060 96 Resin 0 0
Media 0 0 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 0 0
CEX PW and WFI 0 0 Hold bags 22500 22500
Filters 0 0
Buffer 11475 13107 Resin 236000 | 236000
Media 0 0 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 0 0
AEX PW and WFI 0 0 Hold bags 13800 13800
Filters 0 0
Buffer 7509 6455 Resin 221000 | 221000
Media 0 0 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 0 0
VRF PW and WFI 500 500 Hold bags 0 0
Buffer 50 50 Filte_rs 20000 20000
Resin 0 0
Media 0 0 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 0 0
ILC PW and WFI 46 46 Hold bags 0 0
Filters 19 19
Buffer 65 1619 Resin 0 )
Media 0 0 Guardfilters 0 0
CIP buffer 0 Bioreactors bags 0 0
ILD PW and WFI 420 420 Hold bags 31000 31000
Buffer 15984.92 15339 Filters 19 19
mAb 0 1670 Resin 0 0
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Table A2.4 — Conti-PP (base case)

Step Liguids In (L) Out (L) Solids In (9) Out (9)
Media 167 15 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags| 4500 4500
Seed PW and WFI 0 0 Hold bags 2600 2600
Buffer 0 0 Filters 0 0
PEG 0 0 Resin 0 0
Media 59145 13731 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 7000 7000
Bioreactor | PW and WFI 0 0 Hold bags 24400 24400
Buffer 0 0 Filters 2000 2000
PEG 0 0 Resin 0 0
Media 0 0 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 0 0
PP PW and WFI 27340 0 Hold bags 84000 84000
Buffer 0 0 Filters 0 0
PEG 6370 0 Resin 0 0
Media 0 45566 Guardfilters 0 0
CIP buffer 0 Bioreactors bags 0 0
SPTFF PW and WFI 2625 2625 Hold bags 23600 23600
Buffer 42807 62823 Filters 2560 2560
PEG 0 6370 Resin 0 0
Media 0 0 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 0 0
RESOL PW and WFI 0 0 Hold bags 7000 7000
Buffer 3662 0 Filters 0 0
PEG 0 0 Resin 0 0
Media 0 Guardfilters 200 200
Depth CIP buffer 3 3879 Bioreactors bags 0 0
Filtration PW and WFI 3879 380 Hold bags 2600 2600
Buffer 380 0 Filters 76000 76000
PEG 0 0 Resin 0 0
Media 0 0 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 0 0
ILC PW and WFI 245 245 Hold bags 0 0
Buffer 350 9192 Filters 19 19
PEG 0 0 Resin 0 0
Media 0 0 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 0 0
VI PW and WFI 0 0 Hold bags 7240 7240
Buffer 1037 94 Filters 0 0
PEG 0 0 Resin 0 0
Media 0 0 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 0 0
CEX PW and WFI 0 0 Hold bags 22500 22500
Buffer 11475 13040 Filters 0 0
PEG 0 0 Resin 236000 236000
Media 0 0 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 0 0
AEX PW and WFI 0 0 Hold bags 13800 13800
Buffer 7509 6455 Filters 0 0
PEG 0 0 Resin 221000 221000
VRF Media 0 0 Guardfilters 0 0




CIP buffer 0 0 Bioreactors bags 0 0
PW and WFI 500 500 Hold bags 1700 1700
Buffer 50 50 Filters 20000 20000
PEG 0 0 Resin 0 0
Media 0 0 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 0 0
ILC PW and WFI 46 46 Hold bags 0 0
Buffer 65 1619 Filters 19 19
PEG 0 0 Resin 0 0
Media 0 0 Guardfilters 0 0
CIP buffer 0 0 Bioreactors bags 0 0
ILD PW and WFI 420 420 Hold bags 31000 31000
Buffer 16066 15420 Filters 19 19
PEG 0 0 Resin 0 0
mAb 0 1670 - - -
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A3. Chapter 5 appendix

A3.1 Survey

Process Analytical Technology (PAT) implementation in Continuous
Bioprocessing

Name:
Companyl/Institution:

Position held within the companyl/institution:

Survey Aim: This survey is part of a UCL doctoral research project on process economics of
continuous manufacture with PhD researcher Catarina Neves and supervisor Suzy Farid. We are
seeking your input to gain insight into the impact of continuous bioprocessing on QCQA activities
now and in the future where PAT is implemented to enable real-time release testing. This survey is
composed of 8 questions and should take no longer than 10 min to be completed.

1. How would you rank the relative importance of the following benefits when considering PAT
implementation? Please rank from 1-3, with 1 being the most important and 3 being the least
important.

Reduce batch failure
Higher overall yields or productivities (e.g. due to better control)
Reduce offline QCQA costs

Comments

2. Are there other key motivators for implementing PAT in continuous bioprocesses?

3. Where have you implemented PAT in you process (pilot or commercial scale)? Please feel free
to elaborate on the types of PAT in the comments section. Please put an “X” in the appropriate
row(s).

Cell culture
Harvest
Purification
Other

Not implemented

Comments
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4. Based upon your experience, what are the gaps slowing down the implementation of real-time

release testing enabled by PAT in the mAb sector?

5. For continuous bioprocesses, when do you think we will see implementation of real-time
release testing enabled by PAT in the mAb sector? Please put an “X” in the appropriate row.

<1 year

1 — 3 years

4 -5 years

6 — 10 years

> 10 years

Not sure

Comments

6. What would be a reasonable payback time (when savings coming from PAT implementation
meet investment on PAT) that would make you consider investing in PAT? Please put an “X” in

the appropriate row.

<1 year

1 -3 years

4 — 5 years

6 — 10 years

Not sure

7. Based upon your experience, please indicate whether the equipment costs for the PAT
systems below are in the right ballpark or too low or high (please do not consider data

integration costs)? Scale: 2000 L perfusion bioreactor

Lower Roughly as Higher
than expected than
expected expected

400k$ for Raman (system + probes)

200K$ for Biocapacitance (system + probes)

100k$ for each at-line HPLC system after ProA
and polishing chrom. (excl. consumables)

200k$ for each online LC-MS system (excl.
consumables)

Comments

8. Do you believe reagent and consumable costs from running PAT systems will significantly

increase the total material costs for production?

Yes

No
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