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Abstract 

The biopharmaceutical industry is navigating a dynamic landscape marked by 

heightened competition, cost pressures, and the pursuit of innovative 

manufacturing solutions. As a result, the sector is exploring new manufacturing 

avenues in continuous mode, with renewed interest in the potential of column-

free capture alternatives for monoclonal antibody (mAb) production. This stems 

from a desire to reduce manufacturing costs and to align with global 

commitments to achieve net zero carbon emissions. In addition, concerted 

efforts are being directed to automate the control of continuous bioprocesses 

to enhance quality control and process performance levels. This thesis aims to 

create a decisional tool that facilitates an integrated evaluation of the economic 

and environmental aspects of end-to-end continuous antibody manufacturing 

routes, with a focus on column-free routes and automated control. 

A comprehensive framework for modelling the economic, environmental, and 

technological dimensions of end-to-end continuous manufacture was 

developed. The trade-offs of integrating the column-free options of precipitation 

or aqueous two-phase extraction in mAb capture on end-to-end continuous 

flowsheets were quantified with a process economics model. The assessment 

incorporated deterministic analysis, Monte Carlo simulations and multi-criteria 

decision making techniques and showed that continuous manufacturing was 

preferable over batch and that column-free based flowsheets could offer 

economic advantages for processes with intensified cell culture productivities 

and optimised yields.  

On the environmental front, a life cycle assessment of different manufacturing 

alternatives demonstrated that the key drivers of product carbon footprint were 

related to energy use and material supply. For batch processes, emissions 

were mostly related to a high energy consumption related to larger facilities, 

while for continuous processes the carbon footprint from reagents and 

consumables fabrication was a key driver. Carbon reduction strategies were 

identified and the flowsheet with product precipitation showed the most 

accentuated decrease in carbon emissions after process optimisation.  

Finally, the current state-of-the-art and vision for the implementation of process 

analytical technologies (PAT) in bioprocessing were investigated by conducting 
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a survey and a series of interviews with global industrial and academic experts. 

The simulation tool also demonstrated the potential impact of PAT to decrease 

manufacturing costs, with a payback time of less than one year on the PAT 

investment.  

The work in this thesis showcased the added value of a simulation framework 

that provides an in-depth evaluation of different technologies, flowsheets and 

scenarios and streamlines the route to industrialisation for end-to-end 

continuous manufacture.  
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Impact statement 

Decisional tools have been empowering the biopharmaceutical sector in 

identifying cost-saving opportunities and efficient manufacturing approaches. 

By leveraging computational models, these tools allow for the integration and 

evaluation of multiple scenarios that can be adjusted to each company’s 

manufacturing schemes and products, enabling more informed decision-

making and, ultimately, accelerating the development or improvement of life-

saving therapeutics. The research outlined in this thesis offered a novel 

framework that integrated not only the cost assessment of end-to-end 

continuous strategies, but also a comprehensive environmental analysis of said 

schemes. As companies have been clearly stating their net zero ambitions and 

working towards more economic and environmentally sustainable processes, 

the tools developed in this work provide tangible benchmarks that are highly 

useful for the sector. The proposed framework can also identify early on the 

combination of technical parameters, both from upstream or downstream 

processing, that can be used to minimise cost of goods or carbon footprint. 

Additionally, this work united the economic and environmental assessment of 

continuous manufacture with the prospect of mAb continuous facilities of the 

future, with enhanced control and more automated systems, which aligns well 

with the Industry 4.0 vision. With these tools, companies can explore which 

process analytical technologies are the most attractive for their processes and 

gain insights into the level of investment they would have to commit to benefit 

from enhanced control in their facilities.  

Industrial experts who were interviewed for specific topics of this study 

underscored the practical significance of the present research, as it provides 

decision-makers with the tools and insights needed to navigate complex 

process development ideas. Also, partners from academia endorsed this 

thesis’s potential impact as it delivers relevant knowledge for future academic 

research endeavours.    
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Chapter 1: Scope and Background 

1.1 Introduction 

The biopharmaceutical sector has demonstrated sustained progress in 

addressing the gaps that would enable a shift from batch to integrated 

continuous bioprocesses, driven by the desire to increase productivity and 

flexibility while reducing costs  (e.g., Konstantinov and Cooney, 2015; 

Schofield, 2018; Mahal, Branton and Farid, 2021; Rathore, Thakur and Kateja, 

2023). Moreover, with the increasing focus on achieving net zero emissions, 

there is a growing emphasis on adopting sustainable and eco-friendly practices 

(BioPhorum, 2023), and continuous manufacturing has the potential to act as 

an enabler for smaller facility footprints that may facilitate achieving these 

targets. Notable investments in continuous processing plants by both 

biopharma companies (e.g., Sanofi, Framingham, MA) and contract 

development and manufacturing organisations (e.g., Fujifilm Diosynth 

Biotechnologies, Billingham, UK) (Stanton, 2019a & 2019b) have been 

underscoring the industry's commitment to this transition. Additionally, given 

that purification steps constitute a significant portion of bioprocess costs, there 

is a trend towards exploring alternative configurations and unit operations to 

enable more cost-effective separations. One such area of interest is the 

exploration of column-free alternatives to protein A (ProA) chromatography for 

monoclonal antibody (mAb) capture. Despite this renewed interest, there 

remains a lack of a definitive business case for implementing such techniques 

at large scale.  

The aim of this thesis is to develop and apply a decisional tool that enables a 

comprehensive evaluation of column-based and column-free capture steps in 

mAb manufacture and to shed light on the economic and environmental 

feasibility of such production schemes in conjunction with enhanced process 

control. The investigation of end-to-end continuous manufacturing will be based 

on seamless and uninterrupted schemes from cell culture to drug substance. 

This introductory chapter aims to provide insight into the potential of 

biopharmaceuticals in the medicines market (Section 1.2 and Section 1.3) and 

the inherent complexities of biomanufacturing that are driving the efforts for 
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innovation at clinical and commercial scales of biologics production (Section 

1.4). Section 1.5 provides background on several technologies used in 

biologics manufacture and explores the rising trend in running in continuous 

mode. A range of decision-support tools, including simulation software, is also 

reviewed in Section 1.6.  

The aims and structure of the present thesis are described in Section 1.7. 

 

1.2 The rise and evolution of biopharmaceuticals 

Genetic engineering enabled the cloning of human insulin genes in Escherichia 

coli and the commercialisation of insulin by Genentech and Eli Lilly; this 

development made insulin the first biomolecule with pharmaceutical properties 

that was approved by the FDA in 1982. Three years later, two other products, 

human growth hormone and tissue-plasminogen activator, were also approved 

and introduced by Genentech to treat children with growth hormone deficiency 

and resolve blood clots in patients with acute myocardial infarction, respectively 

(Nielsen, 2013).  

The term "biopharmaceuticals" was coined during the 1980s to describe 

pharmaceutical molecules produced through biotechnological processes and 

molecular biology techniques. Today, biopharmaceuticals stand as a 

remarkable accomplishment of modern science, addressing the limitations of 

synthetic drugs and un-met medical needs and offering heightened activity, 

specificity, and a reduced likelihood of causing side effects during treatment 

(Wilson and Neumann, 2012; Kesik-Brodacka, 2018).  The soaring demand for 

biopharmaceuticals has driven substantial profits, prompting major 

pharmaceutical corporations to shift their research and production focus toward 

large-molecule products. 

Figure 1.1 exhibits the sale forecast increase of biologics for 2027 and confirms 

that biologics have cemented their position, slightly surpassing small molecules 

and emerging as the primary drivers of value generation for major 

pharmaceutical companies. The production scale for the different modalities 

presented in the distribution shown in Figure 1.1 was not available. However, 
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it can be assumed that small molecules are produced in larger quantities, while 

biologics typically command higher prices. 

 

Figure 1.1 - Forecast sales ($) distribution of biologics versus small molecules 

by 2027. Sourced from (GlobalData Healthcare, 2022). 

 

The remainder of this chapter provides insights into the processes involved in 

biopharmaceutical drug development, the applications of biopharmaceuticals, 

and the challenges the industry faces as market competition intensifies. 

 

 

1.3 Applications and Market Landscape of 

Biopharmaceuticals 

The escalating elderly population afflicted by chronic conditions like diabetes, 

cancer, and autoimmune disorders is a pivotal driver behind the continuous 

growth of the biopharmaceutical market (Kesik-Brodacka, 2018). 

Simultaneously, this is enabled by the breakthroughs in the fields of antibody-

drug conjugates or cell and gene therapy, along with the better understanding 

of process scale-up of recombinant protein production. 

The average annual approvals of biopharmaceutical drugs in the US and EU 

doubled since the beginning of the century (Figure 1.2). Monoclonal antibodies, 
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recombinant hormones (e.g. insulin) and blood clotting factors (e.g. factor VIII) 

dominated the new biotech-based products entering the market between 2014 

and 2019. Since 2020, although COVID-19 vaccines shot to the top of the list 

of highest-grossing individual products, monoclonal antibodies continue to lead 

biopharmaceuticals in numbers of approvals and sales (Walsh and Walsh, 

2022). 

 

Figure 1.2 - Biopharmaceuticals approval profile up to 2022. The data labels 

indicate the number of total biologics approvals in that period and the 

percentage of mAb approvals from the total number. Sourced from (Walsh and 

Walsh, 2022). 

 

Table 1.1 highlights the top 20 best-selling biologics globally in 2021, 

showcasing their respective product types, revenues, approval dates, and 

patent expiries (Walsh and Walsh, 2022). 

The total sales of monoclonal antibodies in 2021 reached $217 billion, which 

represented more than 80% of total biopharmaceuticals sales that year. COVID 

vaccines ranked third on reported sales values, with $54 billion revenues 

(Walsh and Walsh, 2022).  

As monoclonal antibodies are subjects of this thesis, further details on their 

characteristics and production will be presented in Section 1.5. 
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Table 1.1 - Top 20 best-selling biologics in 2021 worldwide.  

Sourced from (Walsh and Walsh, 2022). All products from this table are 

produced in a batch platform. 

 

 

# Product Type 
Revenues 2021  

($ billions) 
Approva

l 
Company 

Patent 
Expiry 

1 Comirnaty® 
mRNA 
vaccine 

36.8 2020 
Pfizer & 

BioNTech 
N/A 

2 Humira® mAb 21.2 2002 AbbVie, Eisai 
2016 (US), 
2018 (EU) 

3 Spikevax® 
mRNA 
vaccine 

17.7 2020 Moderna N/A 

4 Keytruda® mAb 17.2 2014 Merck 
2036 (US), 
2028 (EU) 

5 Stelara® mAb 9.5 2009 Janssen 
2023 (US), 
2024 (EU) 

6 Eylea® 
fusion 
protein 

9.4 2011 
Regeneron, 

Bayer 
2027 (US), 
2027 (EU) 

7 Opdivo® mAb 8.5 2014 

Bristol-Myers 
Squibb,  

Ono 
Pharmaceutica

l 

2027 (US), 
2026 (EU) 

8 
Ronapreve/ 

Regen-Cov® 
mAb 7.6 2020 

Roche, 
Regeneron 

N/A 

9 Trulicity® GLP 6.7 2014 Eli Lilly 
2026 (US), 
2024 (EU) 

10 Darzalex® mAb 6.0 2015 Janssen 
2027 (US), 
2026 (EU) 

11 Dupixent® mAb 5.9 2017 
Sanofi-Aventis, 

Regeneron 
N/A 

12 Prolia/Xgeva® mAb 5.7 2010 Amgen 
2025 (US), 
2022 (EU) 

13 Gardasil 9® 
fusion 
protein 

5.7 2014 Merck 
2028 (US), 
2028 (EU) 

14 Enbrel® 
fusion 
protein 

5.6 1998 
Amgen, Pfizer, 

Takeda 
2028 (US), 
2015 (EU) 

15 Ocrevus® mAb 5.5 2017 
Roche, 

Genentech 
2029 (US), 
2027 (EU) 

16 Consentyx® mAb 4.7 2015 Novartis 2026 (US) 

17 Entyvio® mAb 4.4 2014 Takeda 2026 (US) 

18 Perjeta® mAb 4.3 2012 
Roche, 

Genentech 
2024 (US), 
2023 (EU) 

19 Soliris® mAb 4.2 2007 
Alexion 

Pharmaceutica
ls 

2021 (US), 
2020 (EU) 

20 Lantus® insulin 3.9 2000 Sanofi 
2014 (US), 
2014 (EU) 
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1.4 Challenges in the biopharmaceutical industry 

The inherent complexity of biologics and biological processes, coupled with 

stringent regulatory requirements within pharmaceutical companies, poses 

challenges across the biopharmaceutical industry. Apart from the substantial 

construction costs and validation demands associated with GMP facilities, 

expenses linked to complex analytical technologies and costly cell culture 

media significantly impact manufacturing costs. Synthetic drugs, synthesised 

through conventional chemical methods, can be produced at around $5 per 

gram, while biologics' production costs can range between hundreds and 

hundreds of thousands of dollars per gram (Sommerfeld and Strube, 2005; 

Farid, 2007 & 2017).  

Also, the increase in product pipeline diversity associated with the growing 

market demand for biopharmaceutical creates the need for production 

flexibility, which is delicate due to the capacity adjustments associated. 

Likewise, scaling speed must be swift, prompting the industry to focus more on 

standardised production platforms (Konstantinov and Cooney, 2015). 

Furthermore, ensuring standardisation in biomanufacturing is particularly 

challenging, demanding rigorous control systems and robust manufacturing 

processes. Because of traditionally higher holding times of products during 

batch production, their quality attributes may vary, which is not desirable at a 

regulatory level. More recently, attention has also been given to the 

environmental impact of the biotech industry, with focus on the water and 

energy consumption and waste generated on biopharmaceuticals production 

(BioPhorum, 2023).  

Owing to the pressing markets, the rise of biosimilars and, thus, the mission of 

creating more cost-effective products, biopharmaceutical companies have 

been working on overcoming these challenges. This includes the adoption of 

new production schemes, such as continuous processes, and leveraging 

process economic models to make informed decisions about production 

strategies (Yang, Qadan and Ierapetritou, 2020).  
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1.5 Biologics manufacture 

In biologics production, the technological advances at a manufacturing level 

demonstrate significant potential to reduce costs, increase productivity, allow 

production flexibility and reduce facility footprints (Fisher et al, 2019). Workflows 

for the processing of biotech-based products have been established and 

optimised over the years. A generic process scheme for these products is 

presented in Figure 1.3. 

 

Figure 1.3 - Generic production scheme of biologics when cells are the product 

(e.g., probiotic products, live attenuated vaccines) or the products are located 

intra and extracellularly. Insulin, growth factors, monoclonal antibodies and 

other products can be produced both intra and extracellularly. Adapted from 

(Doran, 2013) with some unit operations (e.g., ATPE, precipitation) added to 

the original scheme. 

Production characteristics and technical advances in the field of monoclonal 

antibodies manufacture are in the scope of this thesis and will be further 

reviewed in the next sections. 

 

    Production of monoclonal antibodies 

The field of engineered mAbs derives from Köhler et al. who discovered in 1975 

that single fusion cell lines (hybridomas) could be generated by fusing murine 
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B cells with murine myeloma cells to produce antibodies with a unique 

specificity, i.e. monoclonal antibodies (Köhler and Milstein, 1975).  As the 

hybridoma technology started to lead to human anti-mouse antibodies 

development by the patients, a new generation of recombinant mAbs based on 

the production of antibodies in cellular systems arose (Kunert and Reinhart, 

2016).  

Reports using CHO cells for mAb expression show production yields ranging 

from 1 to 10 g/L using fed-batch cultures (Luan Y, 2006; Reinhart et al., 2015; 

Zboray et al., 2015) and titres higher than 10 g/L in perfusion modes (Liang, 

Luo and Li, 2023). For PER.C6, impressive results were achieved by Kuczewski 

et al. (2011) using a high cell density bioreactor, where 27 g/L of mAb were 

obtained (Kuczewski et al., 2011). CHO cells are still commonly favoured for 

mAb production due to their well-established track record, robustness, stability 

and safety (Zhang, 2014).  

The most commonly used scheme for the production and purification of 

monoclonal antibodies is presented in Figure 1.4. 

As mAbs are typically expressed extracellularly in mammalian systems, the first 

processing step after harvesting the cell culture is centrifugation followed by 

depth filtration to remove the biomass/large debris and clarify the resulting liquid 

(in batch/fed-batch based cell culture). The primary capture of the antibodies is 

then achieved with Protein A chromatography, which has a high selectivity for 

mAbs. The dynamic binding capacity of such resins vary from 15 to 100 g/L of 

resin and the purity achieved is typically higher than 95% (Tarrant et al., 2012; 

Dransart et al., 2018). In this step, impurities such as host cell proteins or DNA 

are removed typically in the flow through and the elution step is performed at 

low pH, which eliminates the need for buffer exchange or pH adjustment before 

the virus inactivation. Protein A resin can be re-used for several cycles (up to 

200, depending on the product); nevertheless, it has some disadvantages, 

mainly related with the high cost of the resin, which ranges from 8000 to 15000 

£/L resin (Karst et al., 2017; Yamada et al., 2017; Ramos-de-la-Peña, 

González-Valdez and Aguilar, 2019). After the virus inactivation, ion exchange 

chromatography takes place to remove residual impurities, including leached 

Protein A. Cation and anion exchange (CEX and AEX) are often in the process 
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in interchangeable order, depending on process requirements and constraints. 

Hydrophobic interaction chromatography may be also integrated to assist with 

aggregates removal (Shukla et al., 2017). Finally, a virus reduction filtration 

assures the viral safety of the product before the concentration of the product 

at the final UF/DF step. 

 

Figure 1.4 - Typical monoclonal antibodies production scheme. Cation and 

anion-exchange steps may be in switched order. 

 

 Continuous manufacturing of biopharmaceuticals 

While continuous processing is considered a standard approach for wastewater 

treatment, composting and certain bioenergy processes such as bioethanol and 

biogas production, the production of biopharmaceuticals relies predominantly 

on batch processes. However, the interest in reducing the cost of  

biopharmaceuticals coupled with the challenges outlined in Section 1.4 has led 

to a growing awareness of the advantages of continuous biomanufacturing. 

Examples of benefits commonly reported in the literature are: enhanced 

efficiency and productivity, reduced operational costs, reduced waste or more 

consistent product quality (Gerstweiler, Bi and Middelberg, 2021; Rathore, 

Thakur and Kateja, 2023). Also, regulatory authorities have been increasingly 

supporting this new production paradigm for biopharmaceuticals (Hernandez, 

2015).  
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Continuous upstream technologies, such as perfusion and chemostat cell 

cultures, are the most common examples of continuous bioprocesses applied 

to biologics manufacture. Also, the emergence of continuous chromatography 

has paved the way for the integration of continuous upstream and downstream 

processing.  

Examples of biopharma investment in the research and implementation of 

continuous technologies have been reported: 

• In  2014, Amgen completed a $200 million plant in Singapore for the 

use of continuous purification of monoclonal antibodies (Palmer, 2014); 

• In 2019, Sanofi Genzyme opened a $320 million manufacturing facility 

in Framingham (MA, USA) for continuous mAb production; 

• In 2022, Just-Evotec inaugurated its first modular continuous 

manufacturing “facility of the future” in Washington, named J.POD 

biologics. The company is also in process of building a similar $180 

million facility in Toulouse, with a projected operational date set for 

2024 (Kansteiner, 2021); 

 

Single-use (SU) technology combined with continuous processing is also a 

pathway that has been studied to decrease overall production costs in 

biopharmaceuticals production (Hummel et al., 2019; Mahal, Branton and 

Farid, 2021). While in a batch process the increment in cost - due to the high 

consumables expenditure at large scales - can be discouraging (Shukla and 

Gottschalk, 2013), the synergy between SU and continuous technology allows 

for the reduction of equipment sizes (and disposables), thus, turning the 

application of single-use attractive. Single-use facilities may lead to cost 

savings related to avoidable cleaning procedures, ease of validation and 

consequent higher throughputs. A leading example of continuous single-use 

technology applied in biomanufacturing is Amgen’s facility in Singapore for the 

production of monoclonal antibodies (Shukla et al., 2017). 
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 Continuous Upstream Processing  

Batch commercial manufacture often requires reactors over 2000L, more 

commonly between 10,000 and 20,000L, which involves significant capital 

investments, large footprints and large energetic inputs for heating and cooling. 

With bioreactors operating in continuous mode, not only is the equipment 

required smaller (around 500 - 2000L for equivalent demands), but the 

operation can also be steadier and the productivity higher, as cells remain in 

their optimal growth and production phases for longer periods and the 

production downtime is minimised (Langer and Rader, 2014; Bielser et al., 

2018).  

Efforts have been made to improve perfusion architecture and further augment 

the advantages of continuous technology. Improvement efforts include the 

increase in host cell line stability and robustness to deliver high productivities 

for periods of 2 to 3 months, media optimisation that can support cell densities 

higher than 50E6 cells/mL at perfusion rates between 1 and 2 reactor vol/day, 

automatic cell density control and foam control (Konstantinov and Cooney, 

2015). 

A list of commercialised monoclonal antibodies produced through continuous 

cell culture is presented in Table 1.2. There is limited data on the annual 

demand or bioreactor volumes for these products; however, personal 

communications with Janssen representatives indicate that these monoclonal 

antibodies are typically produced at lower volumes compared to those 

commonly seen in batch production. Interestingly, none of the examples 

presented in Table 1.2 are included in the top 20 best-selling products listed in 

Table 1.1, which could reflect the cautious adoption of continuous 

biomanufacturing by large BioPharma companies.  

 



30 
 

Table 1.2 - Recombinant monoclonal antibodies produced via perfusion cell 

culture. Source: Pollock, Ho, and Farid, 2013; Chu and Robinson, 2001; 

Lindskog, 2018.  

 

 Continuous Downstream Processing  

While continuous upstream is reasonably well established and thoroughly 

reported in literature (Henry, Kwok and Piret, 2008; Langer and Rader, 2014; 

Desai, 2015; Dorceus et al., 2017; Bielser et al., 2018; Kim et al., 2019), 

adoption of continuous downstream processes has been slow due to the 

ongoing maturation of the technologies and the need for proof of cost-

effectiveness.  

One of the main advantages of continuous DSP in bioprocesses is the decrease 

in hold steps and residence times (which can go up to 72h), which not only 

contributes to the production overall throughput, but also decreases the 

likelihood of degradation of unstable products (Warikoo et al., 2012; Godawat 

et al., 2015). 

In conventional processes, DSP costs can range from 50 to 90% of the total 

cost of goods. Moreover, around two thirds of total DSP equipment costs can 

be attributed to chromatography units (Strube et al., 2011; Subramanian, 2012). 

In continuous separation processes, costs can be reduced due to the decrease 

in equipment size and buffer consumption (Cramer and Holstein, 2011). 

Product Name Type Approval Company 
Retention 

Device 

ReoPro® mAb 1994 Janssen Spin filter 

Remicade® mAb 1998 Janssen Spin filter 

Simulect® mAb 1998 Novartis Rotational sieve 

Simponi® mAb 2009 Janssen ATF 

Stelara® mAb 2009 Janssen ATF 
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Most common continuous DSP operations in mAb production include 

continuous chromatography steps for capture and polishing (e.g. periodic-

counter current chromatography - PCC, simulated moving bed - SMB, multi-

column counter-current solvent gradient continuous purification - MCSGP, 

continuous annular chromatography - CAC) and continuous filtration applied to 

virus removal, concentration and buffer exchange (e.g. single-pass tangential 

flow filtration - SPTFF, alternating tangential flow filtration - ATF). Continuous 

virus inactivation can be also achieved by having alternating tanks incubation 

(semi-continuous) and, most recently, Martins et al. (2019) presented a packed-

bed reactor coupled with an in-line mixer which proved to be as efficient as the 

operation in batch (Martins et al., 2019). Also, in mAb production, Protein A 

elution step is commonly done at low pH, thus, continuous capture 

enables/facilitates the virus inactivation.  

 

1.5.1.1.2.1 Continuous Chromatography 

In chromatography, as the mass of protein to purify increases with scale, the 

required resin, buffer and elution volumes also escalate. Moreover, in 

conventional batch chromatography, the resin is not loaded to its maximum 

capacity to avoid losses and it is typically cycled multiple times per batch. In 

continuous chromatography, instead of the average 80% capacity used, 

columns can achieve complete saturation, as the flow-through is loaded to a 

second column connected (Hernandez, 2015). This process maximises 

productivity and reports cite improvements in resin utilisation of up to 30% 

(Hernandez, 2015), with associated 20 to 40% savings in resin volume and 20% 

in buffer (Shanley, 2017). 

Periodic counter-current chromatography (PCC) was developed by GE 

Healthcare and uses multiple packed columns in a continuous bind-and-elute 

purification process.  The most important focus of a PCC design is to ensure 

that the number of columns is so that the loading time is greater or equal to the 

time needed for elution, recovery and regeneration (Zydney, 2016). Simulated 

moving bed technology is also based on a counter-current operation, however, 

it is typically run with four columns assigned to four zones and provides high-
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resolution separation of compounds due to molecules with different interaction 

strengths being eluted in different streams (Subramanian, 2018). Although PCC 

and SMB are the most common chromatography setups adopted in continuous 

processing, there are other configurations studied to provide higher 

productivity, smaller resin and buffer requirements and smaller footprints 

compared to conventional batch purification steps (Vogel et al., 2002; Aumann 

and Morbidelli, 2007; Muller-Spath et al., 2010). A scheme of different systems 

is presented in Figure 1.5. 

As continuous chromatography is undoubtedly the most well-characterised 

process within continuous downstream processing, several suppliers have 

been making available continuous chromatography systems for the purification 

of biopharmaceuticals. A list of pilot and large-scale continuous 

chromatography equipment is shared in Table 1.3. 

 

 

Figure 1.5 - Continuous chromatography configurations in pharmaceuticals 

processing. a) Periodic counter-current chromatography - PCC, b) simulated 

moving bed - SMB, c) multi-column solvent gradient purification – MCSGP and 

d) continuous annular chromatography. Source: (Jungbauer, 2013; Rathore et 

al., 2015) 

a) b) 

c) d) 
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Table 1.3 - List of continuous chromatography equipment, specifications, and 

suppliers. 

 

1.5.1.1.2.2 Continuous Filtration 

Single-pass tangential flow filtration (SPTFF) was designed to answer the 

needs of converting conventional tangential flow filtration, which involves the 

recirculation of liquid across a recirculation tank, into a continuous unit 

operation. In SPTFF, which can be used for product concentration and 

diafiltration, as soon as the feed reaches the filtration module, it is distributed 

over multiple cassettes and, in a single-pass, it must reach the desired 

concentration. More recently, Pall has also developed an in-line configuration 

of SPTFF which allows for in-line concentration (ILC) and in-line diafiltration 

(ILD) of the product (Dizon-Maspat et al., 2011). SPTFF can also be used in 

the virus filtration step, where typical instalments rely on an in-line SPTFF built 

with a filter for virus clearance in between the chromatography and 

concentration units (Clutterbuck et al., 2017). 

In continuous biopharmaceuticals production, alternating tangential flow 

filtration (ATF) is frequently used to separate cells from the product and 

retain/return them in/to the perfusion. The low shear pump built in these 

systems prevents cells from damage, while the alternating flow maintains the 

flux by unblocking any clogged fibres (Zydney, 2016).  

 

Equipment 
Name 

Chromatography 
type 

Columns 
installed 

(basic 
setup) 

Flow 
Rates 
(L/h) 

Supplier 

AKTA PCC PCC 4 
0.03  
– 2000 

GE Healthcare (New 
Jersey, USA) 

BioSC PCC 6 
0.06 
– 90 

Novasep (Pompey, France) 

Contichrom 
CUBE 

SMB/MCSGP 2 
0.01  
– 6 

ChromaCon (Zurique, 
Switzerland) 

Cadence 
BioSMB 

SMB 8 
0.06  
– 350 

Ex-Pall Life Sciences (New 
York, USA) 

SembaPro SMB 8 
0.06  
– 120  

Semba (Wiscousin, USA) 
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  Column-free purification strategies 

As mentioned in Section 0, despite its good performance in mAb capture, 

protein A affinity chromatography constitutes a very expensive step in the 

overall process, which has led to a longstanding interest in purification 

alternatives from both academia and industry. As the goal of this thesis is to 

investigate how competitive such alternatives can be compared with protein A 

chromatography, the following sections provide insights into the technical 

parameters and results obtained for several options. 

Different choices include aqueous two-phase systems and protein precipitation, 

which have showed to enable higher volume feeds, thus, lowering processing 

times (Gronemeyer, Ditz and Strube, 2014). 

 

 Membrane Chromatography  

Membrane chromatography employs membranes with immobilised ligands that 

facilitate selective binding of target molecules. Unlike conventional 

chromatographic techniques, membrane chromatography integrates the 

separation and purification processes into a single step, thereby streamlining 

production workflows. The technology is highly compatible with continuous 

processing, allowing for effective operation in integrated and scalable systems 

(Muthukumar et al., 2017; Trnovec et al., 2020; Chen et al., 2023) 

In the context of monoclonal antibody (mAb) purification, membrane 

chromatography has also been demonstrated (Osuofa and Husson, 2023; 

Schmitz, Minceva and Kampmann, 2024). For instance, Osuofa et al. (2023) 

have shown that membrane chromatography can achieve high purification 

levels with good product recovery compared to traditional methods. 

Specifically, membrane chromatography setups have demonstrated dynamic 

binding capacities of approximately 40 mg/mL, comparable to traditional resins, 

with faster binding times. Another example of the successful application of 

membrane chromatography is shared by Schmitz et al. (2024), presented a 

membrane chromatography system designed for mAb purification with a 

dynamic binding capacity up to 150 mg/mL and 95% removal of impurities.  
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Challenges related to membrane chromatography include membrane fouling 

and limited selectivity for certain feedstocks, which can impact the overall 

efficiency of the process. Moreover, membrane chromatography generally 

exhibits lower selectivity compared to Protein A affinity chromatography. This 

lower specificity can result in less efficient separation of antibodies from other 

proteins and impurities, affecting overall product purity (Ghosh, 2002). 

 

 Aqueous Two-Phase Extraction (ATPE) 

The interest in aqueous two-phase extraction for biopharmaceutical processes 

is linked to its high biocompatibility with biomolecules (phases are 80 to 90% 

water), high capacity and ease of scaling-up (Rosa et al., 2010; Iqbal et al., 

2016). Also, in contrast to other chromatographic or non-chromatography 

techniques, ATPE enables the purification of proteins from crude feedstocks, 

showing both clarification and purification/concentration functionalities. Figure 

1.6 represents a continuous ATPE scheme developed by Rosa et al. (2012). 

The application of ATPE in mAb purification has been widely reported (e.g., 

Bras et al., 2017; Azevedo, Rosa, and Ferreira, 2008; Oelmeier, Ladd-Effio, 

and Hubbuch, 2013; Azevedo et al., 2007). In 2013, Rosa et al. presented a 

continuous ATPE setup for the purification of human IgG using a multi-stage 

extractor, where recovery yields between 80 and 100% and purities between 

97 and 100% were obtained. The economic and environmental evaluation of 

ATPE in continuous mode was also performed by the researchers, who 

estimate 39% cost-savings comparing to conventional protein A 

chromatography (batch-based) (Rosa et al, 2011). More recent studies by 

Anupa et al. demonstrated the use of ATPE for the purification of mAbs with a 

PEG-sulfate sytem, achieving yields higher than 80% and purities of 97% 

(Anupa et al., 2024). Similarly, Lohmann et al. explored a novel approach 

combining ATPE and precipitation for mAb capture. The integrated process 

resulted in a mAb recovery yield of 85% with significant impurity removal 

(Lohmann and Strube, 2020). 

Challenges of ATPE typically relate to the purity levels reached compared with 

affinity chromatography and the sensitivity to feed stream variability; 
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nevertheless, process optimisation is ongoing and new ATPE strategies are 

being developed to be technical and financially competitive with current protein 

A capture (Low, Leary and Pujar, 2007; Gronemeyer, Ditz and Strube, 2014). 

 

Figure 1.6 – Schematic of a glass continuous ATPE extractor (Rosa et al., 

2012). The column is operated at room temperature in a continuous operation 

mode, with the top (TP) PEG-rich phase being continuously dispersed at the 

bottom (BP) of the column through a capillar and the bottom phosphate-rich 

phase being continuously fed at the top of the column. CS stands for cells 

supernatant (or HCCF - harvest cell culture fluid - , as further referenced in this 

thesis). 

 

 Precipitation 

Precipitation has been used both for purifying target products or reducing 

impurities in biopharmaceutical production. Common systems comprise co-

precipitation of antibodies or impurities with negatively or positively charged 

agents, respectively (e.g., Peram et al., 2010; Ma et al., 2010; McDonald et al., 
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2009). Precipitation with caprylic acid or PEG has been also broadly applied in 

fractionation of antibodies and blood factors from plasma (Buchacher and 

Curling, 2019). PEG precipitation can also be combined with isoelectric 

precipitation to improve separation efficiency (Lain et al., 2010). 

Literature shows that precipitation is mostly suitable when feedstocks have a 

high titre and fairly high purity, as the selectivity of the technique is poor 

compared to other alternatives (Jungbauer, 2013; Li et al., 2019); nevertheless, 

precipitation in continuous mode is an interesting option in non-protein A 

platforms for mAb production. In 2014, Hammerschmidt et al. modelled a series 

of precipitation steps in a fully continuous recombinant mAb production scheme 

without protein A affinity chromatography and performed an economic analysis 

that showed that the operation was cost-competitive with a conventional mAb 

batch process at titres higher than 6 g/L (Figure 1.7a). Kateja et al. presented 

continuous precipitation in a coiled flow inverter reactor (Figure 1.7b) and 

obtained 7 times higher productivities and 5 times lower cycle times and 

equipment utilisation comparing to batch processes, with a recovery yield 

higher than 95% for the step (Kateja et al., 2016 & 2018). Following the work of 

Burgstaller and Satzer (2019), Li et al. (2019) used zinc chloride coupled with 

PEG to precipitate mAbs in a tubular reactor directly from harvested cell culture, 

showing a fully integrated continuous process for precipitation, dewatering, 

washing, and mAb resolubilisation with an overall product recovery of 80% 

(Figure 1.7c).  
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Figure 1.7 - Fully continuous non-Protein A flowsheets for antibodies 

production with integrated purification by precipitation. a) Series of four 

precipitation steps presented by (Hammerschmidt et al., 2014), where caprylic 

and CaCl2 precipitate contaminants and PEG and ethanol precipitate the 

product. b) Coiled flow inversion reactor presented by (Kateja et al., 2016) with 

the same precipitation steps than previous scheme, but with several pumping 

strategies to deliver the reagents inside the coiled reactor. c) Continuous 

precipitation system coupled with counter current tangential flow filtration for 

mAb separation, dewatering and washing (Li et al., 2019). 

 

 Crystallisation 

Crystallisation is a technique that can be for purifying and concentrating 

monoclonal antibodies and involves inducing the formation of a solid crystalline 

phase from a protein solution. This method leverages the unique 

physicochemical properties of molecules to achieve high purity and 

a) 

b) 

c) 
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concentration, making it particularly suitable for final product polishing and 

formulation (Chougale et al., 2023). 

While both precipitation and crystallisation techniques aim to separate the 

target molecule from a solution by changing its conformation, crystallisation 

typically results in higher purity and concentration due to the selective nature of 

crystal formation (Pu and Hadinoto, 2020). In contrast, precipitation often 

involves less selective aggregation of proteins and impurities, which might 

require additional purification steps, but generally results in higher yields.  

Several studies have demonstrated the application of crystallisation in mAb 

production. For example, Rajoub et al. demonstrated that conventional protein 

A chromatography could be replaced with a single crystallisation step. The 

process achieved a final purity of 98% and a recovery yield of 85% (Rajoub et 

al., 2023). 

Nevertheless, the main challenge regarding crystallisation lies on the 

optimisation of conditions for effective crystallisation, which can be complex and 

time-consuming, as it requires careful adjustment of numerous factors (e.g., 

temperature, pH, concentration) to achieve high-quality crystals (Chen et al., 

2021).  

 

    Environmental analysis of biomanufacturing 

Recent attention has also been directed toward the environmental impact of the 

biopharmaceutical industry, with emphasis on water and energy consumption 

as well as waste generation during production. 

This emphasis on sustainability has driven the integration of environmental 

analysis into biomanufacturing processes. Two key metrics, Process Mass 

Intensity (PMI) and Life Cycle Assessment (LCA) outputs, have been playing a 

pivotal role in assessing and optimising the environmental performance of 

biomanufacturing processes. 
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 Process Mass Intensity (PMI) 

PMI is a straightforward metric that gauges the utilisation of raw materials 

during a manufacturing process relative to the resulting product output. This 

metric offers valuable insights into resource efficiency and waste generation of 

a production scheme. Madabhushi et al. (2018) and Cataldo et al. (2020) have 

also used the PMI to identify the main sources of waste generation and most 

environmentally friendly process alternatives. Another metric, E-factor, is also 

often used when evaluating the environmental impact of biochemical 

processes. However, while the PMI relates to the total mass of all materials 

used in the process, including the part corresponding to the product stream, the 

E-factor is defined as the ratio of mass of waste generated to the mass of the 

desired produc,t and excludes the components of the product stream.  

Typical PMIs for batch and continuous antibody manufacturing flowsheets have 

been reported and present a wide range of values. Table 1.4 presents the PMI 

values found across the literature.  

However, due to their simplicity, both PMI and E-factor do have their limitations, 

namely the inability to provide insights on the environmental impact coming 

from the facility energy usage or the footprint associated to single-use plastics 

consumption. Also, with novel policies regarding companies’ sustainability, 

especially on carbon emissions, they lack the broader analysis needed from the 

biopharmaceutical sector to answer to these concerns. 
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Table 1.4 - PMI values found in literature for batch and continuous mAb 

flowsheets.  SS: stainless steel; SU: single use. 

 

 Life Cycle Assessment (LCA)  

LCA is a more comprehensive methodology that analyses the environmental 

impact of a product or process across its entire life cycle, encompassing stages 

from raw material extraction to end-of-life disposal. It can be used to assess not 

only water or consumables usage, but other factors, such as resource 

depletion, energy consumption and greenhouse gas emissions. 

Figure 1.8 shows the main stages followed in a typical LCA study. 

 

Reference 
Scale 

(kg/year) 
Assumptions 

Batch  
PMIs 

Continuous 
PMIs 

Water 
(kg/kg) 

Consum. 
(kg/kg) 

Water 
kg/kg) 

Consum. 
(kg/kg) 

Ho et al. 
(2011) 

N/A 
• Batch SS 

• Cleaning water of 
tanks not included 

3000 – 
5000 

- 
4000 – 
6000 

- 

Bunnak et 
al. (2016) 

28 
• Batch & Conti SS 

• Cleaning water of all 
tanks included 

40000 25 54000 46 

Pollock et 
al. (2017) 

100 – 
1000 

• Batch SS 

• Conti SU 

• Cleaning water of 
preparation tanks 
not included 

3900 – 
7250 

6 – 73 
2300 – 
5550 

8-25 

Madabhushi 
et al. (2018) 

N/A 

• Batch SS 

• Conti SS with AEX 
SU 

• Cleaning water of 
tanks not included 

2600 140 1900 100 

Cataldo et 
al. (2020) 

266 – 
1000 

• Batch SS 

• Conti SU for smaller 
scales and SS for 
larger scales 

• No information 
about cleaning of 
tanks 

7000 N/A 
3000 – 
7000 

N/A 
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Figure 1.8 - LCA workflow from goal definition to interpretation of results. 

 

 Goal and scope in LCA 

In the context of the life cycle assessment, defining the goal refers to 

establishing the specific objectives and purposes of conducting the assessment 

for a particular process. By clearly defining the goal upfront, one can ensure 

that the assessment is tailored to meet specific objectives and address the 

needs of the stakeholders (BioPhorum, 2023). For instance, different LCA goals 

may involve optimising the environmental performance of a process, or 

comparing the environmental outputs of different alternatives, or simply 

analysing the environmental markers of a specific process. 
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The scope of an LCA defines the boundaries and parameters of the 

assessment, including what processes and inputs are included and excluded. 

This encompasses defining the functional unit (e.g., number of batches, kg of 

mAb), in which the performance of the process is based, and establishing the 

system boundaries, which delineate the stages of the life cycle to be 

considered. The system boundary is a fundamental concept, as its choice 

significantly impacts the accuracy of the LCA results.  The most typical system 

boundaries are described in Figure 1.9.  

 

Figure 1.9 - System boundaries in an LCA study. 

 

Additionally, the scope outlines the allocation procedures, data sources, and 

assumptions used in the assessment to ensure consistency and accuracy. The 

impact categories of interest are also identified based on the goals. A list 

covering the most common impact categories is showed below (ISO, 2006a & 

2006b): 

• Global Warming Potential (GWP): Measures the contribution to climate 

change in terms of equivalent carbon dioxide emissions. 

• Ozone Depletion Potential (ODP): Assesses the potential for chemicals 

to deplete the ozone layer in the atmosphere. 
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• Acidification Potential (AP): Evaluates the contribution to acid rain and 

acidification of ecosystems. 

• Eutrophication Potential (EP): Measures the potential for nutrient 

enrichment leading to excessive growth of algae and aquatic plant 

species, which can harm ecosystems. 

• Human Toxicity Potential (HTP): Assesses the potential for exposure to 

toxic substances and their impacts on human health. 

• Freshwater Ecotoxicity Potential (FEP): Measures the potential for 

chemicals to harm freshwater ecosystems and aquatic life. 

• Terrestrial Ecotoxicity Potential (TEP): Evaluates the potential for 

chemicals to harm terrestrial ecosystems and organisms. 

• Marine Ecotoxicity Potential (MEP): Assesses the potential for chemicals 

to harm marine ecosystems and organisms. 

• Photochemical Ozone Formation Potential (POFP): Measures the 

potential for chemicals to contribute to the formation of ground-level 

ozone and smog. 

• Depletion of Abiotic Resources: Evaluates the depletion of non-

renewable resources, such as minerals and fossil fuels. 

• Depletion of Fossil Energy Resources: Assesses the consumption of 

fossil fuels and their contribution to resource depletion. 

• Water Consumption: Measures the amount of water withdrawn or 

consumed during a life cycle. 

• Land Use: Evaluates the amount of land area required for a particular 

activity, including agriculture, forestry, and infrastructure. 

• Occupational Health and Safety: Assesses the risks to workers' health 

and safety associated with a product or process. 

• Noise Pollution: Measures the contribution to noise pollution from 

various activities or processes. 
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• Visual Impact: Assesses the aesthetic impact of a product or process on 

landscapes and views. 

In this thesis, only the climate change impact category was assessed, as it 

represents a critical and widely recognised environmental concern. The 

decision not to disclose the values for other impact categories was based 

on the reliability and robustness of the underlying data. The carbon emission 

inputs were thoroughly reviewed in collaboration with project partners to 

ensure their relevance. However, the available data for other impact 

categories did not meet the same level of scrutiny, raising concerns about 

their consistency and potential to produce misleading conclusions.  

 

 Scopes of greenhouse gas emissions 

The Greenhouse Gas Protocol, developed by the World Resources Institute 

and the World Business Council for Sustainable Development, outlines three 

scopes of emissions to categorise greenhouse gas emissions associated with 

the activities within an organisation. By categorising emissions into these 

scopes, companies can better understand the full extent of their greenhouse 

gas footprint and identify opportunities for emissions reduction and mitigation 

throughout their operations and value chain (WBCSD and WRI, 2012). 

Each scope encompasses different stages and types of environmental impacts.  

• Scope 1 - Direct Emissions 

Scope 1 focuses on direct emissions from sources that are owned or controlled 

by the biopharmaceutical company itself. In the biopharma context, Scope 1 

emissions might include energy consumption associated with the operation of 

facilities, including manufacturing, heating, cooling, lighting and waste 

generated on-site, including hazardous waste and non-hazardous waste. 

• Scope 2 - Indirect Emissions  

Scope 2 focuses on indirect emissions that result from the generation of 

purchased electricity, heat, or steam used by the biopharmaceutical company. 

These emissions occur outside the company's control but are associated with 

its energy consumption.  
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• Scope 3 - Indirect Value Chain Emissions  

Scope 3 involves a broader perspective, looking at indirect emissions occurring 

outside of the company's operations. These emissions are often more 

challenging to quantify and manage because they involve various suppliers, 

customers, and other stakeholders. In the context of biopharma, Scope 3 

emissions might include emissions during raw materials production, distribution 

and emissions from the disposal, recycling, or treatment of products at the end 

of their life cycle. Scope 3 emissions often have a significant impact on a 

product's overall environmental footprint but can be complex to assess due to 

the multitude of external factors involved. 

 

 LCA in the Biopharmaceutical Sector 

The health sector contributes with around 4-5% for the total global emissions, 

primarily due to supply chain operations and the global shipping of equipment 

and medicines (Nelson, 2023). Thus, large pharmaceutical companies like 

GSK, AstraZeneca, and Roche, and academia are launching sustainability 

programmes, indicating their serious commitment to addressing sustainability 

challenges (Nelson, 2023). Also, CO2 emissions taxes currently in-place are 

providing a financial incentive for businesses to reduce their carbon emissions.  

From the several impact categories provided by LCA (ISO, 2006a, 2006b), the 

Global Warming Potential (GWP) has been the one more commonly assessed 

and shared by industry to convey its sustainability efforts. GWP measures the 

potential for global warming caused by greenhouse gas emissions, reported in 

CO2-equivalents, and helps in understanding the relative environmental burden 

of various greenhouse gases. Also, carbon footprint, and more specifically 

Product Carbon Footprint (PCF), as the quantitative measure of actual 

emissions linked to specific activity, is typically used when referring to the 

environmental impact of a product. Armed with this information, industry can 

implement strategies to minimise their footprint and contribute to overall 

environmental sustainability, while complying with governmental regulation and 

protecting their reputation (BioPhorum, 2023). 
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LCA has been already used and reported in different biomanufacturing contexts 

(Table 1.5). The impact of single-use systems versus conventional stainless-

steel facilities has been evaluated and it has been shown that SU flowsheets 

can contribute to reducing the environmental impact of biopharmaceutical 

products  (e.g., Sinclair et al., 2008; Pietrzykowski et al., 2013; Budzinski et al., 

2022). Also, Bunnak et al. (2016) conducted an LCA and cost assessment of 

fed-batch and perfusion (stainless-steel based) manufacturing processes for 

monoclonal antibodies, highlighting the trade-offs between environmental 

impact and manufacturing costs associated with different process strategies. 

The studies presented in Table 1.5 used the raw materials (e.g., media, 

buffers), energy consumption, water consumption and waste generation taken 

from modelling different flowsheets as input to their lifecycle assessment.  

 

Table 1.5 - System boundary of the different LCA studies found in literature in 

the biopharmaceutical space. 

 

Nevertheless, the biopharmaceutical sector is lacking reports on a full and 

comprehensive environmental assessment of different batch and end-to-end 

Case study (Reference) System boundary 

Batch SS & SU   

(Sinclair et al., 2008) 
Cradle-to-grave 

Batch SS & SU  

(Pietrzykowski et al., 2013) 
Cradle-to-grave 

FB SS & perfusion SS (batch DSP) 

(Bunnak et al., 2016) 
Cradle-to-gate 

Perfusion SS & perfusion SU (batch DSP) 

(Renteria Gamis et al., 2019) 
Cradle-to-gate 

FB SS, FB SU, perfusion SS & perfusion SU  

(Amasawa et al., 2021) 
Gate-to-gate 

Batch SU  

(Budzinski et al., 2022) 
Cradle-to-gate 
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continuous manufacturing processes. A Product Carbon Footprint evaluation 

from raw material production to waste disposal, encompassing all three 

analysis scopes (Scopes 1, 2 and 3) and integrating industry-based 

assumptions for facility requirements (e.g., energy) and state-of-the-art 

flowsheets (e.g., end-to-end SU continuous strategies) would provide important 

insights for a more informed and environmentally friendly decision-making.  

 

    Process Analytical Technologies in 

biomanufacturing 

Process Analytical Technologies (PAT) have emerged as vital tools in 

biomanufacturing, aiming to provide real-time insights and control over critical 

parameters and allowing for the promptly adjustment of process conditions. As 

these technologies have a strong foundation in the Quality by Design (QbD) 

initiative introduced by the U.S. Food and Drug Administration (FDA) in 2004, 

they are used to improve pharmaceutical manufacture by integrating analytical 

tools, sensor technologies, and data analysis methods into the manufacturing 

process (Rathore et al., 2008; Gillespie et al., 2022; Rathore, Jesubalan and 

Thakur, 2022). Also, with the emergence of Industry 4.0 that emphasises the 

integration of digital technologies, data-driven processes and smart 

manufacture, PAT contributes with advanced analytics and interconnectedness 

of machines, systems, and processes (Chen et al., 2020; Narayanan et al., 

2020; Wasalathanthri, Rehmann, et al., 2020). 

As the biopharmaceutical industry undergoes technology advances with the 

integration of end-to-end continuous manufacture strategies, it must also 

ensure product quality, safety and production efficiency targets are met. PAT’s 

ability to provide real-time data supports regulatory compliance and aligns with 

integrated continuous bioprocessing (ICB) demands on control and 

consistency, while enabling possible cost savings. Table 1.6 summarises the 

main economic benefits that can be provided by integrating PAT in integrated 

continuous bioprocessing.  

  



49 
 

Table 1.6 - Key improvements from implementing process analytical 

technologies in biomanufacturing. 

 

Apart from reducing batch failure, improving process performance or reducing 

QCQA costs at commercial scale, PAT can also enhance the understanding of 

critical parameters and their impact on product quality attributes in ICB. 

Examples of PAT utilisation in process development to gain process 

understanding and build robust manufacturing strategies have also been 

Benefit Impact to ICB References 

Reduce 

batch failure 

PAT provides immediate insights into the 

process behaviour, enabling rapid 

adjustments to process conditions and 

minimising the risk of producing off-

specification products. Rapid aggregation, 

glycosylation and glucose measurements 

have proved to be crucial to anticipate out-

of-spec batches. 

Patel et al., 2017; 

 Czeterko et al., 2018; 

 Feidl et al., 2019;  

M. Y. Li et al., 2019; 

Goldrick et al., 2020; 

Rafferty et al., 2020; 

Schwarz et al., 2022 

Improve 

process 

performance 

The integration of PAT further enhances 

process performance by providing a 

continuous stream of data for monitoring 

and control. Augmented cell culture 

productivities, increases in resin utilisation 

or decrease in buffer consumption are 

some examples of PAT economic benefits 

on the process performance front.  

Ozturk et al., 1997 

Virtanen et al., 2017 

Brunner et al., 2019 

Goldrick et al., 2019 

Moore, Sanford and 

Zhang, 2019 

Löfgren et al., 2021 

Esmonde-White, Cuellar 

and Lewis, 2022 

Tiwari et al., 2023 

Reduce 

QCQA and 

labour costs 

The real-time monitoring and control 

offered by PAT contribute to further 

reducing in-process (and release) testing 

and, thus, materials and labour costs.  

Bro, Kwiatkowski and 

Tolstrup, 2018 

Wasalathanthri, Feroz, et 

al., 2020  

Gomis-Fons et al., 2020 

Schmidt et al., 2021  

Schwarz et al., 2022 
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shared in literature (e.g., Metze, 2020; Wasalathanthri et al., 2020; Santos et 

al., 2019; Sokolov et al., 2021).   

Several PAT techniques have been integrated in continuous biomanufacturing. 

These techniques include spectroscopic techniques, chromatography and 

other sensors with multivariate data analysis (MVDA). 

Spectroscopic techniques, including Infrared (IR), Raman, and Near-Infrared 

(NIR) spectroscopy, have gained prominence due to their non-invasive and 

real-time monitoring capabilities. In continuous cell culture processes, IR and 

Raman spectroscopy are used for monitoring cellular metabolic activity, nutrient 

consumption, and the production of metabolites (Rathore et al., 2015; Goldrick 

et al., 2020). NIR spectroscopy is employed for rapid analysis of critical 

parameters such as nutrient concentration, cell density, and product quality 

attributes during fermentation (Vogelsang et al., 2019).  

Chromatographic techniques, such as High-Performance Liquid 

Chromatography (HPLC) and Liquid Chromatography-Mass Spectrometry (LC-

MS), are essentially used for analysing product purity and post-translational 

modifications in continuous biomanufacturing processes (Patel et al., 2017; 

Chemmalil et al., 2021).  

Mass spectrometry (MS) techniques are known for their ability to provide 

comprehensive information on protein composition, modifications, and 

impurities. Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-

TOF) and LC-MS are extensively used for peptide mapping, protein 

identification, and characterisation of post-translational modifications (Goh et 

al., 2020; Bose et al., 2022). 

On the sensors front, biomass and viability probes are commonly used in real-

time monitoring in continuous biomanufacturing. Capacitance, dielectric, and 

impedance-based sensors enable the assessment of cell viability, growth 

kinetics, and biomass concentration, facilitating timely adjustments to culture 

conditions (Konakovsky et al., 2015; Metze et al., 2020). 

In continuous biomanufacturing, the integration of PAT techniques is also 

accompanied by advanced multivariate data analysis methods. MVDA is 

employed to extract meaningful information,  interpret complex data, detect 
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patterns, and enable real-time process monitoring, fault detection, and 

deviation prediction (Mercier et al., 2013; Goldrick et al., 2017; Wasalathanthri, 

Rehmann, et al., 2020). Also, with the advances in sensor technologies and 

MVDA models, the inception of digital twins in continuous manufacturing of 

biopharmaceuticals marked a transformative phase in the industry, introducing 

innovative approaches to enhance process efficiency and adaptability (Park et 

al., 2021; Rathore et al., 2021; Gerzon, Sheng and Kirkitadze, 2022; Schmidt 

et al., 2022). Digital twins are data-driven, virtual and dynamic representations 

of bioprocesses and mirror their real action, enabling real-time monitoring, 

analysis, and optimisation. Ultimately, these digital replicas aim to enable 

model-based process control, and recent studies have showed their integration 

in small-scale end-to-end continuous manufacturing of mAbs with remarkable 

impacts on attaining consistent product quality (e.g., low HCP levels and low 

aggregate levels) with reduced labour (Gomis-Fons et al., 2020; Tiwari et al., 

2023). 

 

1.6 Decision-support tools in biomanufacturing 

The inception of decision-support tools as a mesh of human judgement and 

powerful computer algorithms dates from the mid-70’s (Keen, 1987). Since 

then, these tools have been used across agriculture (e.g., Kure, Thysen and 

Kristense, 1997; Rose et al., 2016), chemical (e.g., Grunow and Gunther, 

2008), food (e.g., Arason et al., 2010), health care (e.g., Bryan and Boren, 

2008) and construction (e.g., Shen and Chung, 2002) industries, supporting the 

design, optimisation, evaluation and planning of procedures.  

Over the last 40 years, computer-aided simulation tools have been developed 

to capture both business and technical features of biomanufacturing, mainly 

focusing on biopharmaceutical production, as the fastest growing biotech-

based market. Insights into the impact of process modifications on the capacity, 

cost of goods and environmental footprint of existing manufacturing facilities 

have been demonstrated (e.g., George, Titchener-Hooker and Farid, 2007; Liu 

et al., 2013; Bunnak et al., 2016; Pollock et al., 2017; Mahal, Branton and Farid, 

2021) and the awareness for sources of uncertainties (e.g., batch titre, step 
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yields) in biomanufacturing has already been raised and integrated in these 

tools (e.g., Farid, Washbrook and Titchener-Hooker, 2005; Rajapakse, 

Titchener-Hooker and Farid, 2005; Pollock, Ho and Farid, 2013; Lyle et al., 

2023; Neves, Coffman and Farid, 2024). 

This chapter will cover software and methodologies used in the design of 

decision-support tools in biomanufacturing, as well as relevant industrial case 

studies to which these tools were applied. As the goal of the present research 

is to assess continuous bioprocesses from economic, environmental and 

robustness perspectives, this review aims to highlight the benefits from 

integrating technical and business computer simulation to expedite the 

evaluation of alternatives. 

 

    Bioprocess software tools and mathematical 

programming used in process economic models 

As the design and performance of key unit operations can be described 

mathematically, the characterisation of bioprocesses can typically be done in 

silico. The choice of the most suitable software or programming languages to 

build bioprocess models is done according to the most important characteristics 

required by the user, such as flexibility, easy-to-use interface, in-built databases 

or the capability of performing uncertainty analysis. In the need of modelling 

novel production schemes, assessing the robustness of different alternatives 

and implementing user-defined equations and methodologies, tools which 

provide a higher level of flexibility will be prioritised. This section reviews several 

off-the-shelf process economics tools and mathematical languages and 

discusses the main differences, advantages and drawbacks of each option.  

Different software tools for process design, economic analysis and scheduling 

commercially available include SuperPro Designer (SPD) (Intelligen, Scotch 

Plains, NJ, USA), aspenONE (Aspen Technology Inc., Cambridge, MA, USA) 

and BioSolve Process (Biopharm Services Ltd, Birmingham, UK). SPD and 

aspenONE are flowsheet-driven simulators that facilitate mass and energy 

balances, equipment sizing, cost analysis, debottlenecking, scheduling and 
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environmental impact assessment of modelled processes (Rouf et al., 2001; 

Petrides and Siletti, 2005). One of the main advantages of these tools is to 

integrate built-in process economic models and databases for raw materials, 

consumables and equipment costs. However, these software lack flexibility 

when considering the creation of user-defined models or the use of probability 

distributions to represent the uncertainty in process parameters (Mustafa et al., 

2004). The coupling of SuperPro and Matlab was reported to enable uncertainty 

analysis and optimisation of bioprocesses (Taraş and Alexandria Woinaroschy, 

2011; Brunet et al., 2012), yet, restrictions related with the availability of 

variables to be selected were encountered revealing the lack of flexibility of this 

methodology.  BioSolve is an Excel-based process and cost modelling software 

and shows a higher level of flexibility compared to SPD and aspenONE, since 

it can perform multiple process comparisons (e.g., Torres-Acosta et al., 2016; 

Sinclair and Monge, 2002 & 2010; Whitford, 2018). The application of BioSolve 

has been regular in the most recent years when evaluating and comparing 

continuous bioprocessing with batch (e.g., Pollard et al. 2016; Walther et al. 

2015; Hummel et al. 2019). However, this software is unable to capture 

dynamic modelling, such as the impact of delays, and lacks built-in features for 

uncertainty analysis (Torres-Acosta et al., 2015 & 2016). 

Process economic models developed in programming languages as C-

Sharp/C# (e.g., Simaria et al., 2014; Hassan et al., 2015) and Python (e.g., 

Cortes-Pena, 2019; Mahal, Branton and Farid, 2021; Lyle et al., 2023) have 

been reported and illustrate the versatility and extended capabilities of these 

tools with regard to process modelling, uncertainty analysis and application of 

optimisation algorithms. Although targeted bioprocess simulation tools, such as 

SPD, aspenONE or BioSolve can be beneficial due to the support given in 

integrating specific and pre-characterised unit operations in a process queue, 

the usage of generic mathematical packages can offer the additional flexibility 

and statistical power needed when simulating modifications and analysing their 

impact in a given process. Also, in fit-to-purpose models, where all operations, 

resources, allocation and methods are user-defined, the biomanufacturing 

facility can be customised and designed based on project priorities (e.g., sizing 

or rating mode).  
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    Scope of Decision-Support Tools  

The research into decision-support tools for bioprocesses generally focuses on 

supporting the decision-making on i) process synthesis and facility design 

and/or ii) portfolio management and capacity planning levels (Farid, 2012). In 

the first realm, the performance of different facility and process designs involves 

analysing economic metrics, throughput, and risk. Typically, various process 

sequences or unit operations are modelled in prototypes of single or multi-

product facilities, and a range of sizing strategies can be chosen based on the 

decision-makers' priorities or preferences. As for portfolio management and 

capacity planning, the scope includes optimising the planning of development, 

manufacturing, and commercial activities for various modalities, as well as 

making decisions about building versus buying capacity for in-house and 

contract manufacturing facilities (Farid, 2012).  

The different methodologies and stages used in the support to decision-making 

at both process design and portfolio/capacity management levels are explored 

in the subsequent sections and inspire the workflow followed throughout the 

research project. 

 

 Process Economics 

The foundation of decision-support tools is process economics models. These 

models are designed to execute detailed mass balances and equipment sizing 

for every unit within the bioprocess and compute the economic (and 

environmental) indicators for the overall process. Figure 1.10 summarises the 

framework of these models.   
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Figure 1.10 - Process economics model decomposition with key input and 

output parameters. Adapted from Lim et al. (2005). 

.  

While the first step of a decision-making process deals with computing the 

process economics based on deterministic modelling (i.e., single defined 

conditions), the understanding of robustness includes the application of further 

methods. The confidence during decision-making is supported by accounting 

for uncertainties in the process (Monte Carlo simulation) or reconciling different 

criteria and priorities (multi-criteria decision making). The analysis workflow is 

shown in Figure 1.11 and some of the tools are described in the following 

chapters.  
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Figure 1.11 - Stages of alternatives analysis with the application of decision-

support tools.  

 

  Monte Carlo Simulation  

In every large-scale bioprocess manufacturing there are inherent uncertainties, 

thus, it is important to identify the key sources for technical deviations and 

account for them in the cost model to generate representative results. The 

application of stochastic modelling with Monte Carlo simulation allows to 

capture the effect of these uncertainties. Random values following Gaussian, 

triangular or Poisson distributions can be generated for certain parameters 

(e.g.: titres after fermentation, yields, duration of the manufacturing tasks, 

annual demands) and the impact on the decision-making is assessed by the 

likelihood of outputs exceeding certain threshold values (e.g.:  cost of goods 

per gram of product)  (Farid, Washbrook and Titchener-Hooker, 2005b).  

At the process design level, Monte Carlo simulation has been used to capture 

the robustness of different upstream (e.g., Lim et al., 2005; Pollock, Ho and 

Farid, 2013) and downstream (e.g., Rosa et al., 2011; Li and 

Venkatasubramanian, 2016; Torres-Acosta et al., 2016) strategies upon 

technical fluctuations or to evaluate stainless steel based, single-use based or 

hybrid facilities according to their likelihood of meeting desired cost of goods or 

project throughputs (Farid, Washbrook and Titchener-Hooker, 2005b). 

Examples of Monte Carlo simulation application in predicting facility fit issues 

are also given by Stonier et al. (2013) and Yang et al. (2014). Stonier et al. 

(2013) evaluated the facility fit for scale-up considering uncertainties in product 

titre, eluate volumes and step yields (triangular distributions applied). The 

likelihood of having product loss and of meeting facility demand was studied 

and the impact on cost of goods was estimated, proving that Monte Carlo 
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enables to identify risks and plan ahead on strategies to avoid facility 

constraints (Stonier et al., 2013). At the portfolio level, examples are shared by 

Rajapakse et al. (2005) and George and Farid (2008), who studied the impact 

of, not only technical, but also market uncertainties (e.g.: annual demand, drug 

price, market share) on the net present value using Monte Carlo simulations. 

 

 

  Multi-Criteria Decision Making  

The evaluation of bioprocess viability can be extended through the application 

of multi-criteria decision making (MCDM) methods, where a set of alternatives 

is ranked in an order of preference according to pre-established attributes 

(Konstantinidis et al., 2012). The general structure of an MCDM process is 

depicted in Figure 1.12 and there are three tasks which should be highlighted: 

the establishment of alternatives to consider, the evaluation criteria, and the 

relative importance of the different criteria (weights) (Pavan and Todeschini, 

2009). In the biopharmaceutical industry, MCDM methods have been used to 

rank different manufacturing and portfolio approaches, aiding decision-makers 

in implementing sustainable processes. Additionally, as the industry is 

increasingly paying more attention to the environmental impact of 

bioprocesses, environmental metrics should also be incorporated as criteria. 

The ranking of different chromatography resins (e.g., Nfor et al., 2011; Stamatis 

et al., 2019), different upstream (e.g., Pollock, Ho and Farid, 2013) and 

downstream (e.g., Yang et al., 2017) techniques or conditions, or different 

process flowsheets (e.g., Farid and Jenkins, 2018) are some of the examples 

of MCDM application at the level of process design and facility fit. In capacity 

planning, build versus buy capacity sourcing strategies were also ranked 

according to certain business criteria, such as flexibility, location or 

manufacturing knowledge by George et al. (2007).  

Table 1.7 and Table 1.8 present a summary of research studies that used 

Monte Carlo simulations and multi-criteria decision making methodologies, 

highlighting the respective parameters in scope.  
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Figure 1.12 - Generic structure of multi-criteria decision-making tools. Adapted 

from (Pavan and Todeschini, 2009). 
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Case Study (Reference) 

Monte Carlo Simulation Multi-criteria decision making 

Sources of Uncertainty Metrics Alternatives Criteria 

SS versus SU facilities 
(Farid, Washbrook and Titchener-Hooker, 2005a)   

• SS  based 
• SU based 
• Hybrid 

• Capital investment 
• Annual COG 
• Construction time 
• Project throughput 

• Online control 
• Validation effort 
• Ease of scale-up 
• Suppliers reliance 

SS versus SU facilities 
(Farid, Washbrook and Titchener-Hooker, 2005b) 

• Fermentation titre 
• DSP Yield 
• Phase I demand 
• FCI  

• Material Cost 
• WFI Cost 
• Turnaround time 

• COG 
• Market Success 
• Project Throughput 

  

Pooling strategies in perfusion 
(Lim et al., 2005) 

• Fermentation titer 
• DSP Yield 
• Turnaround time 
• Lang factor 

• Media cost 
• WFI Cost 
• Operator Wage 

• Project throughput 
• COG   

 Perfusion versus batch processes 
(Lim et al., 2006) 

• Fermentation titre  
• DSP yield 
• Lang factor Media cost 

• CIP reagents cost 
• Reagents cost 

• Annual output 
• COG 
• NPV 

  

Chromatography Design 
(Nfor et al., 2011)   • Different chromatography resins 

• Purity 
• Yield 
• Concentration factor 

• Productivity 
• Throughput 
• Cost 

Continuous ATPS as capture step 
(Rosa et al, 2011) 

• Protein A DBC 
• Protein A lifespan 

• WFI cost 
• Waste/disposable cost 

• Operating cost 
• Capital investment   

Feb-batch vs perfusion (ATF vs spin-filter) 
(Pollock, Ho and Farid, 2013) 

• Scale of production 
• Fermentation titer 

• Water consumption 
• Consumables 

• Project Throughput 
• COG 
• Batch failures 

• Fed-batch culture 
• Spin-filter perfusion 
• ATF perfusion 

• COG 
• Initial capital expenditure  
• Water E-factor  
• Consumable E-factor  
• Batch-to-batch variability  

• Ease of control  
• Operational flexibility 
• Ease of development 
• Ease of validation 

Prediction of suboptimal facility fit  
(Stonier et al., 2013) 

• Product Titer 
• Eluate Volumes • Step Yields 

• Product Mass Loss 
• COG 
• Batch duration 
• Processing time 
• Batch Cost 

  

 Prediction of suboptimal facility fit  
(Yang, Farid and Thornhill, 2014)  

• Product titre 
• Step yields 

• Eluate volumes 
• Filter flux rates 

• Product mass loss 
• Processing time   

Process Intensification through continuous 
mode (Walther et al., 2015) 

• Technical transfer delays 
• Product failure 

• Product demand • NPV   

mAbs process development 
(Li and Venkatasubramanian, 2016) 

• Protein A yield 
• Protein A loading 

• IEX I/II yield 
• IEX I/II loading • COG   

UF/DF conditions in mAbs manufacturing 
(Yang et al., 2017)   •  Different formulation designs • Viscosity Fed-batch culture • Thermostability 

ATPS and TFF as extraction strategies 
(Torres-Acosta et al., 2018) 

• Extract titer 
• Recovery Yield • Material Cost • COG   

Bioprocess design of CAR-T cell therapies  
(Jenkins and Farid, 2018) 

• Capital investment 
• COG per dose  
• Process control 
• Process containment  

• Ease of scale-up 
• Ease of validation  
• Validation effort 

• Overall performance 
aggregated score • Different flowsheets  

• Capital investment 
• COG per dose  
• Process control 
• Process containment  

• Ease of scale-up 
• Ease of validation  
• Validation effort 

HTPS in chromatography design 
(Stamatis et al., 2019) 

• Load pH 
• Load conductivity 
• Load linear velocity 

• Elution pH 
• Load Challenge 
• Elution linear velocity 

• DBC 
• Purity 
• Yield 
• Elution Pool Volume 

• Different chromatography resins • HMW species removal 
• Purity change 

• Yield 
• Productivity 

Process Economics of AAVs 
(Lyle et al., 2023) 

• Cell productivity 
• Cell density 

• Centrifugation yield 
• AEX yield • COG   

Table 1.7 - Literature overview on decision-support tools used on process synthesis and facility design models.   
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Table 1.8 - Literature overview on decision-support tools used on portfolio management and capacity models. 

 

 

Case Study (Reference) 
Monte Carlo Simulation Multi-criteria decision making 

Sources of Uncertainty Metrics Alternatives Criteria 

 Portfolio management  
(Rajapakse, Titchener-Hooker and Farid, 2005) 

• Market Share 
• Drug price  
• Development Time  
• Clinical Trial Time 
• Personnel  
• Building Delay 

• CMO Negotiation Time 
• Presence of a competitor 
• Mass per batch  
• Manufacturing Cost 
• Product Demand 
• CM Time 

• NPV   

 Capacity planning  
(George, Titchener-Hooker and Farid, 2007) 

  

• Built plant 
• Partner with other company 
• Contract manufacturing (CMO) 
• Hybrid Partner/Build 
• Hybrid CMO/Build 

• NPV 
• Profits to sales 
• Profits to assets 
• Profits to equity 
• Sales to fixed assets 
• Profit to current assets  
• Sales to equity 
• Average inverted COGS 
• Profit to manufacturing 

personnel 

• Qualitative productivity score 
• Location 
• Flexibility 
• Manufacturing knowledge 
• Current assets to current 

liabilities 
• Equity to liabilities 
• Assets to equity 

Portfolio management 
(George and Farid, 2008) 

• Annual demand 
• Compound annual growth 

rate 
• Target identification cost 
• Scale-up cost 
• Commercial preparation cost 
• Marketing Cost 
• FDA Review Cost 

• Clinical trial costs 
• Manufacturing Costs 
• Process Yields 
• Fermentation titer 
• Batch success 
• Ramp time to peak 

market 
• Decay time after market 

• NPV   
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    Decision-support tools in continuous 

production of biopharmaceuticals 

As biopharmaceutical companies have started the research and 

implementation of continuous manufacturing in their processes, the application 

of decision-support tools has been crucial on the overview and understanding 

of the best alternatives comparing to batch schemes. This chapter highlights 

some examples (Table 1.8) and conclusions obtained from applying process 

economics and other decision-support methodologies to relevant industrial 

case studies of continuous manufacturing.  

As the primary focus of the biopharmaceutical industry on implementing 

continuous manufacturing has typically been on upstream processing, the 

comparison between perfusion technologies and fed-batch culture emerged as 

one of the early scenarios for applying computer-based tools in the simulation 

and assessment of continuous processes.  Lim et al. (2006) described the 

importance of Monte Carlo simulation in bioprocess design and showed that, 

although the perfusion option had a higher NPV and required less capital 

investment under deterministic evaluation, the fed-batch option was found to 

be more robust when accounting for risks and uncertainties. Pollock et al. 

(2013) used sensitivity analysis and multi-criteria decision making to compare 

fed-batch with two perfusion strategies and concluded that the alternating 

tangential filtration (ATF) perfusion operation could offer economic advantages 

in cell culture; however, if environmental or operational feasibility were 

preferable over economic savings, fed-batch was the preferred strategy. 

Several options and conditions within perfusion cultivation, such as, different 

pooling strategies or media optimisation were also evaluated (e.g., Lim et al., 

2005; Xu et al., 2017), showing relevant effects in production productivity. The 

impact on capacity planning compared to fed-batch has also been studied, 

indicating that perfusion processes could offer higher productivity and flexibility 

compared to fed-batch processes, but they also required more complex 

planning and management due to the continuous nature of the operation (e.g., 

Siganporia et al., 2014).  
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Regarding downstream processing, purification strategies have been a core 

focus when simulating continuous processes. The impact of (semi) continuous 

chromatography has been assessed by Pollock et al. (2013), who highlights the 

reduced costs offered by PCC in the early phase – “proof of concept” material 

generation. Xenopoulos (2015) also showed cost reductions higher than 20% 

and 30–60% at commercial and clinical scales, respectively, using several 

continuous DSP units integrated, with potential improvements as titre and scale 

increase. The integration of continuous upstream and downstream processing 

has also been simulated and the goal has been to understand the benefits that 

companies can have by integrating either hybrid (batch and continuous unit 

operations) or end-to-end continuous processes. Pollock et al. (2017) found 

that an integrated continuous strategy can be preferred for early phase 

production in small and medium-sized companies and that a hybrid strategy 

can be preferred in commercial production and in companies with large 

portfolios. Walther et al. (2015) used decision-support tools and Monte Carlo 

simulation to compare the net present value of integrated continuous schemes 

of mAb and non-mAb production and suggested savings of 55% on average 

using continuous manufacturing instead of conventional batch platforms. More 

recently, Mahal et al. (2021) demonstrated that single-use continuous facilities 

offered more substantial cost savings over stainless-steel batch at lower and 

medium scales (100-500 kg/year) compared to larger demands (>1000 

kg/year), as the latter required parallel production trains and, thus, higher 

capital investments. 

Although Table 1.9 depicts the broad application of decision-support tools in 

continuous manufacture, it also reveals the limited research on crucial topics: 

the combination of cost and environmental outputs of batch and end-to-end 

continuous manufacturing processes, the analysis of end-to-end continuous 

manufacturing through different production flowsheets (e.g., column-free 

techniques comparing to standard column-based processes) and the 

application of  Monte Carlo simulations to evaluate the robustness of different 

process under uncertainty were not found in literature altogether and are 

essential to create a comprehensive overview of end-to-end continuous 

manufacturing capabilities and trade-offs.  



63 
 

Table 1.9 - Literature overview on decision support tools applied in continuous 

biomanufacturing models. DES: discrete-event simulation; rec P: recombinant 

protein. 

 

Case Study/Reference Focus Simulation Decision-support 
tools Metrics 

Pooling strategies in perfusion 
(Lim et al., 2005) 

USP rec P 
Extend 
(DES) 

• Process Economics 
• Monte Carlo Simulation 

• Project throughput 
• COG 

Perfusion versus batch 
processes 
(Lim et al., 2006) 

USP rec P 
Extend 
(DES) 

• Process Economics 
• Monte Carlo Simulation 

• COG 
• Capital investment 
• NPV 

Feb-batch vs perfusion (ATF vs 
spin-filter) 
(Pollock, Ho and Farid, 2013) 

USP mAb 
Extend 
(DES) 

• Process Economics 
• Monte Carlo Simulation 
• MCDM 

• Project Throughput 
• COG 
• Batch failures 
• E-factor 
• Operational benefits 

Media cost and productivity in 
perfusion vs fed-batch  
(Xu et al., 2017) 

USP mAb BioSolve 
• Process Economics 
• (brief sensitivity analysis) 

• COG 

Capacity planning 
(Siganporia et al., 2014) 

USP rec P 
General Algebraic 
Modelling System  

• Process Economics 
• Optimisation 

• Facility utilisation 
• Inventory Cost 
• Inventory penalty 

cost 
• Variable cost 
• Fixed cost 
• Transportation cost 
• Waste cost 
• Backlog penalty cost 
• Facility investment 
• Retrofitting cost 
• License cost 

Continuous ATPS as capture 
step 
(Rosa et al., 2011) 

DSP mAb 
Excel & 

SuperPro Designer 
• Process Economics 
• Monte Carlo Simulation 

• Operating cost 
• Capital investment 

Semi-continuous affinity 
chromatography 
(Pollock et al., 2013) 

DSP mAb 
 Extend 
(DES) 

• Process Economics 
• Monte Carlo Simulation 
• MCDM 

• Project Throughput 
• COG 
• Batch failures 
• E-factor 
• Operational benefits 

Continuous precipitation 
(Hammerschmidt et al., 2014) 

DSP mAb BioSolve 
• Process Economics 
• Monte Carlo Simulation 

• COG 

Continuous integrated DSP 
(Xenopoulos, 2015) 

DSP mAb BioSolve 
• Process Economics 
• Monte Carlo Simulation 

• COG 

Integrated continuous 
production of recombinant 
proteins  
(Walther et al., 2015) 

USP & DSP 
rec P 

BioSolve 
• Process Economics 
• Monte Carlo Simulation 

• NPV 

Batch vs continuous antibody 
production  
(Pollard et al., 2016) 

USP & DSP 
mAb 

BioSolve 
• Process Economics 
• Monte Carlo Simulation 

• Capital investment 
• COG 
• Facility utilisation 
• Net present cost 

Batch vs continuous antibody 
production  
(Klutz et al., 2016) 

USP & DSP 
mAb 

Not disclosed • Process Economics • COG 

Batch vs semi-continuous 
antibody production  
(Pollock et al., 2017) 

USP & DSP 
mAb 

Extend 
(DES) 

• Process Economics 
• Monte Carlo Simulation 
• MCDM 

• COG 
• E-factor 

Batch vs continuous antibody 
production  
(Arnold et al., 2019) 

USP & DSP 
mAb 

BioSolve • Process Economics • COG 

Batch vs continuous antibody 
production with different 
capture alternatives 
(Cataldo et al., 2020) 

USP & DSP 
mAb 

BioSolve • Process Economics 
• COG 
• Process mass 

intensity 

Batch vs continuous antibody 
production 
(Mahal, Branton and Farid, 2021) 

USP & DSP 
mAb 

Python • Process Economics • COG 
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1.7 Aim and organisation 

Existing research on biopharmaceutical manufacture and decision-support 

tools was reviewed in the previous sections. A special focus was placed on 

publications targeting mAbs, as the biological molecule of this thesis. Moreover, 

biomanufacturing in continuous mode was addressed and alternatives within 

upstream and downstream processing were discussed.  

Through Chapter 1, one could infer that the effort of both academia and 

industry in tackling the challenges of biomanufacturing is clear. Whilst new 

technologies have been enabling the conversion of batch processes into faster, 

more flexible and productive continuous operations, decisional tools have been 

keeping up the pace of innovation by presenting economic evaluations of latest 

alternatives and their impact on facility capacities and cost of goods.  

While protein A chromatography stands as a highly specific but expensive step 

in mAb manufacturing, the economic evaluation of end-to-end continuous 

processes with column-free options and the environmental impact of such 

changes in biopharmaceutical production have been scarcely approached by 

literature. Also, the benefits of enhanced control through advanced analytical 

technologies are rarely translated into tangible economic outputs. With the push 

for coupling continuous technologies with smaller, single-use based facilities, 

and with real-time control, there is a need for studying the consequent changes 

in costs and environmental footprint of new flowsheets.  

The aim of this thesis is to develop a decisional tool that supports the evaluation 

of batch and continuous flowsheets with different processing alternatives and 

control systems. The simulation and optimisation of mAb manufacture will 

facilitate a more informed decision-making, which reconcile technical, 

economic and environmental feasibilities.     

In Chapter 2, the decision-support tool structure and the manufacturing domain 

is described. The scope of the tool and requirements specifications are crossed 

with the capabilities of different software. The interface to build the process 

economics will also be selected. The modelling approach and key process 

models for batch and continuous unit operations are further addressed and the 

economic and environmental metrics are introduced.   
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The first chapter of results, Chapter 3, focus on the evaluation of mAb capture 

alternatives. Aqueous two-phase extraction (ATPE) and precipitation were 

selected as the most mature technologies from the column-free alternatives 

pool and with the highest technical potential to compete with protein A 

chromatography. Economic and environmental scores are derived from 

integrating ATPE and precipitation in the process economic model and the 

performance of these options is evaluated against protein A.  

Chapter 4 presents the application of a life cycle assessment tool to estimate 

the product carbon footprint of different mAb flowsheets. The key contributors 

for the carbon emissions are identified to determine the best optimisation routes 

for carbon footprint reduction. The resulting emissions from each flowsheet 

before and after optimisation is then converted into common daily metrics to 

provide an easier view of the environmental impact associated with mAb 

manufacture. 

In Chapter 5, the view of the biopharmaceutical sector on process analytical 

technologies (PAT) and enhanced control is assessed through a survey and 

interviews. The economic impact of state-of-the-art analytical technologies 

integrated in current and future mAb facilities is also evaluated via the 

decisional tool framework. Different degrees of process improvement and 

technology investment are addressed to simulate the cost savings and financial 

return of implementing PAT. 

Chapter 6 presents the main conclusions of this thesis and suggests future 

research directions to expand the insights delivered by this work.  
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Chapter 2: Materials and methods 

2.1 Introduction 

The previous chapter highlighted the challenges faced by biopharmaceutical 

companies and their endeavours to develop more cost-effective products, 

which has prompted the exploration of continuous manufacturing. However, 

questions regarding the competitiveness of these innovative platforms from 

economic, environmental, and robustness perspectives persist. The 

importance of using predictive software to assess and optimise the technical 

and business performance of bioprocesses has also been highlighted, proving 

crucial for decision-makers when selecting strategies. 

In this chapter, a decision-support tool designed to simulate and assess 

different production platforms will be described alongside with the 

manufacturing domain in scope. Section 2.2 presents the required 

specifications for the tool and analyses the eligibility of different software to use.  

Section 2.3 elaborates on the tool implementation and structure, including key 

features, parameters, and equations, while economic and environmental 

metrics are outlined in Section 2.4.  

 

2.2 Scope of the tool 

As described in Section 1.5, monoclonal antibodies are produced through 

mammalian cell culture fermentation and then recovered and purified via a 

series of downstream processing steps. Within each production platform 

several options can be taken, as the fermentation can be operated in batch, 

fed-batch or continuous perfusion mode and the DSP, even after deciding on 

the operation mode (batch, semi-continuous, continuous), can be designed by 

numerous different technologies with different configurations. Alongside with 

the selected unit operations, there are other ancillary activities, such as the 

cleaning of equipment or preparation of intermediate solutions that should also 

be considered. Moreover, the biopharmaceutical facility itself must be scaled 

according to the production demands for clinical trials or larger scale 

commercialisation and the scheduling of different operations must be optimised 

to minimise USP or DSP bottlenecks. As a result, it is vital to define the software 
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requirements to address this range of operations and needs and ultimately 

enable the calculation of operational, economic and environmental scores for 

different alternatives. The scope of the tool was built upon previous work from 

the Decisional Tools group at UCL (Farid, 2007; Pollock, Ho and Farid, 2013) 

and it is defined as follows: 

• To enable the simulation of a biopharmaceutical facility to produce 

different products, process configurations, process performances and 

product demands in a campaign basis (e.g. 14 days fed-batch, 28 days 

perfusion) according to user-defined mass balance, sizing and costing 

equations; 

• To enable the customisation/update of prices, equipment/ materials 

characteristics, and process parameters databases;  

• To enable a production design in sizing mode, where the 

facility/equipment size is defined by a pre-set product demand, or in 

rating mode, where the facility/equipment size is fixed, and the 

production output is calculated; 

• To track, record and distinguish input and output parameters/results 

from each step during the train of unit operations, including labor and 

equipment resources, raw materials consumption, and processing times; 

• To evaluate and directly compare different manufacturing alternatives 

across designs (e.g., batch vs continuous) and technologies (e.g. 

chromatography vs precipitation) in terms of cost, environmental impact 

and robustness for different product demands; 

• To capture different resource requirements between batch and 

continuous production modes in a dynamic environment; 

• To enable different value distributions of input parameters and 

statistically evaluate the performance of different alternatives under 

uncertainty (e.g., impact of batch-to-batch titre variability, yield 

variability); 

• To enable direct and rapid plotting of selected outputs across scenarios. 
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    Software selection 

Once the framework's scope and requirements were established, an analysis 

was conducted to determine the suitability of different bioprocess software or 

mathematical languages for modelling the decision-support tool. Based on the 

review presented in Section 1.6 it was possible to ascertain which available 

interfaces could meet the project's needs. Table 2.1 provides an overview of 

the tool prerequisites and assists in selecting the simulation package that 

encompasses most of the required capabilities. 

 

Table 2.1 - Overview of bioprocess software and mathematical programming 

languages capabilities 

 

 

 
SuperPro 
Designer 

aspenONE BioSolve 
Programming 

Languages 

Mass Balances ✓  ✓  ✓  ✓  

In-process 
parameters/results recording 

✓  ✓  ✓  ✓  

Sizing/rating mode ✓  ✓  ✓  ✓  

Cost analysis ✓  ✓  ✓  ✓  

Environmental analysis ✓  ✓  ✓  ✓  

Direct results visualisation 
across scenarios 

✓  ✓  ✓  ✓  

Uncertainty analysis      ✓  

Dynamic modelling       ✓  

Fully customisable database       ✓  



69 
 

While commercially available software like SuperPro Designer, aspenONE, or 

BioSolve offer many of the needed capabilities for constructing the tool, they 

seem to lack the capacity to incorporate dynamic and stochastic dimensions of 

modelling simultaneously, failing to meet the tool's design requirements. 

The distinction between static and dynamic modelling determines whether 

systems can be represented over time. This distinction is particularly relevant 

when simulating continuous manufacturing. Static modelling (spreadsheet-

derived) only captures bioprocesses at a specific moment, while dynamic 

modelling allows for the evolution and design of processes over time. In the 

current project, simulating tasks sequentially or in parallel and allocating 

resources must be done in a dynamic, time-dependent environment. Regarding 

deterministic versus stochastic simulations, although deterministic modelling is 

essential during the initial design of a biopharmaceutical facility, stochastic 

simulations provide valuable insights into the range of possible outcomes if 

input values (i.e., process parameters across unit operations) change, 

representing the inherent variability of large-scale production. 

Due to their flexibility and user-defined structure, programming languages 

(such as C-Sharp, Python, etc.) can be employed to design discrete-event tools 

incorporating the envisioned dynamic and stochastic capabilities. Other 

available discrete-event simulators, such as ExtendSim® (Imagine That, 

California, USA) or ProModel® (ProModel Corporation, Utah, USA), also allow 

dynamic and stochastic modelling. However, they are not as customisable in 

terms of coding or database and often require linkage to external sources. 

Among mathematical languages, Python has emerged as a prominent choice 

for scientific programming due to its speed, performance, and strong support 

as an open-source community-based language (Langtangen and Cai, 2008). 

Consequently, Python was selected to develop the dynamic stochastic 

decision-support tool, encompassing all the requirements mentioned earlier. 

The tool's architecture and implementation are detailed in the following section. 
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2.3 Tool implementation 

In a manufacturing facility, key tasks and resources can be described in a 

hierarchical representation, where each higher-level activity is broken down into 

sub-tasks (Lim et al., 2004; Mustafa et al., 2004; Rajapakse, Titchener-Hooker 

and Farid, 2005). As illustrated in Figure 2.1, the levels in the hierarchy are 

modelled separately and built onto each other, increasing the complexity and 

consequent accuracy of the complete system. 

 

Figure 2.1 - Hierarchical decomposition of manufacturing tasks in a bioprocess. 

Sourced from Lim et al. (2004). 

  

The model was developed through the object-oriented features of Python that 

allow the progressively design of a facility activity-based that pulls specific 

information from different classes. The translation of the hierarchical approach 

is achieved by having tasks which are described once and further used to 

create specific steps in the process as well as having functions which are 

written and then invoked as needed. Also, just as complex functions can be 

built from simple functions, large programs are built up from smaller 

subsystems that are documented and tested individually. These subsystems 

have well-defined input and output interfaces and can be used as libraries that 

enable to generate new programs using simple coding vocabulary. The 

decomposition of a complex bioprocess models in this manner decreases the 

extension of the model and improves the transparency and accuracy of the 

simulating tools. 
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    Modelling structure 

In the hierarchal approach adopted to model the required tool, different classes 

were implemented into the framework and are represented in Figure 2.2. 

 

Figure 2.2 - Tool structure with breakdown of classes and respective attributes. 

The tool portrays the database, assumptions and classes needed to the 

different case studies (i.e., batch, continuous, column-based, column-free).  

In an object-oriented manner, each class, with its own functions and attributes, 

can be affiliated with others, generating outputs that correspond to input 

parameters of the linked object. In the present framework, there are two types 

of classes: 

1. The ones corresponding to unit operations in the bioprocess train (e.g., 

centrifugation, chromatography), which include specific process and 

sizing equation for that technology, and 
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2. The ones comprising support functions and tasks that allow the 

connection between all the elements in the model and computation and 

recording of intermediate/final results (e.g., facility, process synthesis, 

track record).  

Before modelling the desired scenarios for the project, discussions with 

academic and industrial partners and vendors (e.g., IST-Lisbon, AstraZeneca, 

CPI, Sartorius, PALL, ThermoFisher, and others) were held to gain 

understanding and gather process/facility assumptions and equipment/material 

specifications/prices, so a database of values to input into the process 

economics model could be created. Throughout time, this database was 

updated and extended, so the model output would represent realistic production 

schemes as much as possible.  

Regarding the modelling task, the definition of a certain modelling scenario 

started by creating a list of unit operations in sequence in the interface upon 

which the model would run. The different flowsheets considered for each case-

study are presented in Chapter 3. Then, the Facility class, which recognises 

the user-defined process train (flowsheet) and annual product demand for 

which the process must be designed (if in sizing mode), is associated with the 

Process Synthesis class, where the model runs through each unit operation in 

the list, triggering the calculation of outputs associated to each step. The 

procedure begins by calculating the mass of product needed after fermentation 

based on the annual product demand and on the intermediate step yields taken 

from the database or interface. In the Bioreactor class, for instance, the size 

and number of bioreactors to achieve the desired product throughput are 

calculated through mass balances (from Methodologies class) and sizing 

equations, according to specific parameters from the database (e.g., product 

titre after fermentation). In each unit operation class (e.g. Bioreactor, 

Chromatography, Filtration, etc.), most of the process assumptions are taken 

from the database and the calculation of process outputs is done through the 

application of functions defined in the Methodologies class. The process 

economic equations integrated in Methodologies make also use of the facility 

assumptions and prices gathered in the database and are described in Section 

2.4 and in the Appendix A1. Due to the existence of numerous secondary 
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tanks for solution preparation and product hold, the set-up of these vessels and 

calculation of the respective CIP buffer volumes required for cleaning, water for 

injection and process water is done in the Hold-vessels class. For each step in 

the process train, the outputs are recorded in lists through the Process 

Synthesis class, where also the in-process parameters, such as mass, volume 

or flowrate out of one unit are loaded as attributes of the next one. The lists 

from the Process Synthesis are finally read in the Facility class, which computes 

the overall economic and environmental metrics of the process. All the 

intermediate and final results are exported to a file through the Track Record 

class.   

In the present simulation tool designed in Python, one can run several 

flowsheets and compute results for several product demands at once, 

increasing the speed of analysis and comparison of different scenarios. Also, 

in the running interface assembled, it is possible to automatically plot of the 

obtained results.   

Figure 2.3 provides a comprehensive overview of the connections between 

inputs, tools, and outputs. 

 

Figure 2.3 – Decisional tool framework, with examples of inputs, tool 

calculations and outputs. 
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    Modelling of unit operations 

In this section, the process models corresponding to the different unit 

operations in a desired process train are generally described. For each 

operation, designs in batch and continuous are modelled within the class. The 

fundamental assumption adopted between continuous units is considering that 

the flowrate into a step is equal to the flowrate out of the previous one. In cases 

in which this set-up is not possible (due to capacity or time – scheduling – 

constraints), an accumulation of product in hold-tanks is recognised and the 

ancillary vessels are created in the Hold-vessels class. 

While mass stoichiometry models or detailed mass transfer equations can be 

used to design bioprocesses and calculate the output streams composition, 

these often lead to an extra level of complexity whose advantage is poorly 

represented in the overall facility design due to the inherent variability of 

process economics models. Therefore, short-cut models based on empirical 

correlations or parameters found in the literature are herein used to determine 

the size, number and other equipment characteristics, determine processing 

times and compute other outputs from each unit operation. As aqueous two-

phase extraction and precipitation are the main unit operations in which this 

thesis is focused on, the mass balance equations are showed in the next 

chapter. All the equations involving the other used upstream and downstream 

processing techniques can be found in the Appendix A1.  

 

 Aqueous two-phase extraction 

Aqueous two-phase extraction (ATPE) makes use of liquids with different 

physicochemical properties (special attention given to density) to extract the 

desired product into a phase, while most of impurities (DNA, HCP, and cell 

debris) migrate to another phase or stay in the interface of liquids. 

Most of ATPE systems involve the mixture of the following components: 

• Polyethylene-glycol (PEG), that will be the main compound of the phase 

to which mAbs will migrate (top phase). 
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• A salt, such as phosphate or citrate, or another polymer with different 

density from PEG, such as dextran, which will represent most of the 

impurities-rich phase (bottom phase). 

• NaCl, which partitions evenly between both phases. On the one hand, it 

is used to increase the ionic strength of the bottom phase, reducing 

protein solubility. On the other, negatively charged chloride ions provide 

an increased electrostatic attraction of positively charged monoclonal 

antibodies to the top phase.  

• Crude feedstock from fermentation, or harvest cell culture fluid (HCCF) 

(including cells and other solid particles in the batch scenario), whose 

components will be segregated into the different phases.  

ATPE optimisation is achieved by finding the relative percentages of these four 

constituents (and “make-up” water) which lead to the best mAb recovery yield. 

In the short-cut model adopted, the percentages of PEG, salt and NaCl are 

based on literature and will be fixed, while the ratio of crude feedstock, as the 

driving force of the ATPE system sizing, may be optimised. The present project 

makes use of ATPE as an alternative capture step of protein A chromatography; 

thus, the unit operation is placed directly after cell culture.  

In continuous ATPE, the aqueous two-phase extraction takes place in a glass 

column and the operation occurs countercurrently, where the top PEG-rich 

phase is continuously fed at the bottom of the column, while the bottom salt-

rich phase is fed at the top of the column (Rosa et al., 2012). The product is 

recovered from the top PEG-rich phase.  

The design of the glass column (or extractor), i.e. height and diameter, is, at a 

first stage, fixed. The flowrate out of the perfusion bioreactor will then allow the 

calculation of the total flowrate into the extractor (equation 2.1) and the 

consequent linear flowrate and residence time (equation 2.2 and 2.3). After, if 

the residence time achieved is lower or higher than the limits established, the 

diameter of the extractor is redefined according to the minimum or maximum 

residence times allowed (equation 2.4), otherwise, the initial extractor design is 

kept. 
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𝐹𝑅𝑖𝑛 𝑡𝑜𝑡𝑎𝑙 =
𝐹𝑅𝑜𝑢𝑡 𝑝𝑒𝑟𝑓𝑢𝑠𝑖𝑜𝑛

HCCF
 (2.1) 

𝐿𝐹𝑅𝑖𝑛 𝑡𝑜𝑡𝑎𝑙 =
𝐹𝑅𝑖𝑛 𝑡𝑜𝑡𝑎𝑙 × 4000

𝜋 × 𝐷𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 
2

(2.2) 

𝑅𝑇 =
𝐻𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟

𝐿𝐹𝑅𝑖𝑛 𝑡𝑜𝑡𝑎𝑙 

(2.3) 

𝐷𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = √
𝐹𝑅𝑖𝑛 𝑡𝑜𝑡𝑎𝑙 × 4000 × 𝑅𝑇𝑚𝑎𝑥/𝑚𝑖𝑛

𝜋 × 𝐻
(2.4) 

Where   𝐹𝑅𝑖𝑛 𝑡𝑜𝑡𝑎𝑙: Flow-rate of PEG, salt, NaCl and crude feedstock loaded to 

the extractor (L/h) 

 𝐿𝐹𝑅𝑖𝑛 𝑡𝑜𝑡𝑎𝑙: Linear total flow rate (cm/h) 

 𝐷𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 : Initial assumed extractor diameter (cm) 

 𝑅𝑇: Residence time (h) 

 𝐻𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟: Extractor height (cm) 

 𝐷𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑: Calculated extractor diameter based on assumed 

residence time (cm) 

 𝑅𝑇𝑚𝑎𝑥/𝑚𝑖𝑛: Assumed maximum or minimum residence time (h) 

The total ATPE volume will be calculated through equation 2.5.  

𝑊𝑉𝐴𝑇𝑃𝐸 =
𝑉𝑖𝑛

𝐻𝐶𝐶𝐹
(2.5) 

Where   𝑉𝑖𝑛: Perfusion volume (BWV) from cell culture (L) 

 𝑊𝑉𝐴𝑇𝑃𝐸 : ATPE volume (L) 

 HCCF : Ratio of harvested cell culture fluid in the ATPE system 

The quantities of PEG, salt and NaCl are computed based on the percentages 

of each component defined in the literature, which are multiplied by the total 

extraction volume. Compensation water may be introduced to make up for the 

total volume.  

The product stream that will be sent to the next unit operation corresponds to 

the top PEG-rich phase, whose volume is determined through the ratio between 
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the top and bottom phases (equation 2.6). This ratio is taken from literature and 

it is specific for each PEG/salt initial composition in the system (assuming a 

similar density and product concentration of the feedstock used in the 

literature). Figure 2.4 shows a generic binodal curve and tie lines which 

represent the ATPE phases’ diagram. PEG and salt mixtures below the bimodal 

curve form monophasic systems, while mixtures above will lead to two-phase 

regions. Any ATPE system prepared with the PEG/salt compositions along the 

dotted tie line will result in the same top and bottom phase conditions; however, 

for each starting PEG/salt concentrations, different volume ratios between the 

two phases will be obtained.  

𝑉𝑜𝑢𝑡 =
𝑊𝑉𝐴𝑇𝑃𝐸 

ratio 𝑡𝑜𝑝
𝑏𝑜𝑡𝑡𝑜𝑚

 (2.6) 

Where   𝑟𝑎𝑡𝑖𝑜𝑡𝑜𝑝/𝑏𝑜𝑡𝑡𝑜𝑚: Volume ratio between top and bottom phases 

As the extraction led to a dilution of the stream, a concentration step (single-

pass filtration) was included afterwards to concentrate the product phase. A 

subsequent diafiltration step was added for buffer exchange and removal of the 

PEG from the system before the viral inactivation. 

 

Figure 2.4 - Generic ATPE phase diagram. TPEG: PEG composition in top 

phase, BPEG: PEG composition in bottom phase, TSALT: Salt (or other polymer) 

composition in top phase, BSALT: Salt (or other polymer) composition in bottom 

phase. Sourced from Iqbal et al. (2016). 
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 Precipitation 

The principle behind precipitation (PP) lies in reducing the solubility of target 

molecules so they come out of solution in form of insoluble precipitates and can 

be separated. This technique can be used either to precipitate the product or 

impurities and efforts have been made to increase the selectivity of the process 

and increase recovery yields.  

The PP system will then comprise: 

• PEG, which increases the viscosity of the system and acts as a volume 

exclusion agent to enhance mAb precipitation; 

• Zinc chloride, or other bridging salt, that cross-links to protein molecules 

in a flocculent‐like manner and helps neutralising surface charges and 

precipitating the antibodies; 

• Cell culture broth after cell removal, which contains the target product 

precipitate. 

The harvested cell culture fluid (HCCF) and zinc are continuously fed to a static 

mixer, where product precipitation occurs inline. A second static mixer was 

placed in series, to which PEG is added to promote the growth of precipitates 

(Li et al., 2019).  

In continuous precipitation, after discussion with experts, the static mixers 

described by Li et al. (2019) were designed as plastic tubes placed between 

the single-pass tangential flow filtration pump and the filtration membranes, 

which do not require any additional operating system. The sizing of the tubing 

is performed by fixing the length and residence time described in the publication 

and by computing the desired diameter based on the new flowrate (equation 

2.7).

𝐷𝑡𝑢𝑏𝑢𝑙𝑎𝑟 𝑟𝑒𝑎𝑐𝑡𝑜𝑟 = √
𝐹𝑅𝑖𝑛 𝑡𝑜𝑡𝑎𝑙 ×4000× 𝑅𝑇

𝜋×𝐿
(2.7) 

Where   𝐹𝑅𝑖𝑛 𝑡𝑜𝑡𝑎𝑙: Flow-rate of PEG, zinc chloride and HCCF loaded to the 

tubular reactor (L/h) 

 𝐷𝑡𝑢𝑏𝑢𝑙𝑎𝑟 𝑟𝑒𝑎𝑐𝑡𝑜𝑟 : Initial assumed extractor diameter (cm) 

 𝑅𝑇: Residence time (h) 

 𝐿: Length of the tubular reactor (cm) 
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The precipitates were then concentrated, washed and re-concentrated in a 

single continuous filtration unit to decrease the number of equipment required. 

After an in-line resolubilisation in another static mixer, a depth filtration was also 

included to avoid solid particles entering the remaining DSP. Before the viral 

inactivation, an extra concentration step was modelled to achieve the target 

concentration. 

 

2.4 Cost and environmental models 

The key performance indicators that will allow the evaluation and comparison 

of different scenarios are divided into 1) economic and 2) environmental 

metrics. This section will describe the procedures adopted for the calculation of 

the Fixed Capital Investment (FCI) and Cost of Goods (COG), as economic 

metrics, and of water and consumables PMI and PCF, as environmental 

metrics. 

 

    Fixed capital investment  

The fixed capital investment (FCI) can be calculated through the product 

between the total equipment purchase cost and a cost factor which accounts 

for items such as piping, instrumentation, electrical work, site preparation, 

design, engineering and contract manufacturing fees. This simpler technique of 

calculating the FCI using a factorial method was originally suggested by Lang 

(1948) and the factors, called Lang factors, will depend on the type of facility in 

case. For biopharmaceutical facilities, these factors may vary between 3.3 and 

8.1 (Farid, 2007). The present project assumes different Lang factors for 

stainless-steel based or single-use facilities, with values of 8.1 and 4.7, 

respectively. The calculation is described by equation 2.8. 

𝐹𝐶𝐼 = 𝐿 × ∑ 𝐶𝑜𝑠𝑡𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 (2.8) 

Where   𝐹𝐶𝐼: Fixed capital investment ($) 

              𝐿: Lang factor 

      𝐶𝑜𝑠𝑡𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡: Equipment purchase cost ($) 
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The equipment needed for each unit operation (i.e. specific hardware and 

ancillary solution and product tanks) is sized according to the scale required to 

respond to a defined annual product demand. As it is not always possible to 

obtain the equipment prices across all needed sizes, another factorial method 

(six-tenths rule) was used to relate the cost of equipment with its calculated size 

based on a known price found for another dimension (equation 2.9). The 

exponential scaling coefficient (𝑐) is specific for different types of equipment 

and it is typically lower than 1, since the purchase cost is not linearly scalable 

with the equipment size. 

𝐶𝑜𝑠𝑡𝑛𝑒𝑤 = 𝐶𝑜𝑠𝑡𝑏𝑎𝑠𝑒 × (
𝑆𝑖𝑧𝑒𝑛𝑒𝑤

𝑆𝑖𝑧𝑒𝑏𝑎𝑠𝑒
)

𝑐

(2.9) 

Where   𝐶𝑜𝑠𝑡𝑛𝑒𝑤: Cost of equipment with calculated size ($) 

   𝐶𝑜𝑠𝑡𝑏𝑎𝑠𝑒: Cost known of equipment from same type and known size ($) 

   𝑆𝑖𝑧𝑒𝑛𝑒𝑤: Required equipment size (m, m2, L, L/h, etc.) 

             𝑆𝑖𝑧𝑒𝑏𝑎𝑠𝑒: Size of equipment whose cost is known (m, m2, L, L/h, etc.) 

             𝑐:  Exponential scaling coefficient (equipment dependent) 

 

    Cost of goods 

The term Cost of Goods (COG) usually comprises 1) indirect and 2) direct 

manufacturing costs.  

The indirect costs can be calculated through the fixed capital investment and 

include the depreciation of equipment, cost of general utilities, cost of 

maintaining and insuring the production facility and local taxes. The term of 

general utilities accounts for facility running cost, such as the HVAC systems 

used in the clean-rooms and depends on the facility size, which is calculated 

based on a function suggested by George (2008). 

The direct costs are variable costs and include the expenditures in reagents, 

consumables, quality control materials and labour, depending on the amount of 

product manufactured. Reagents costs include all buffers (including cleaning 

buffers), media and water for injection required, while the consumables costs 
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encompass the cost of chromatography resins, pre-packed columns, 

membrane filters and all single-use materials. Quality control materials account 

for the reagents and consumables used in quality control tests of produced 

batches. Labour costs represent the cost of direct labour and the cost of 

additional supervision, management and QCQA (quality control and quality 

assurance) personnel. The direct labour costs are estimated based on a fixed 

annual salary and yearly facility utilisation, while the extra personnel expenses 

are derived based on this value.  

The detailed breakdown of the COG calculation is presented in Table 2.2. 
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Table 2.2 - Breakdown of cost of goods for a biomanufacturing facility. 

  

Fixed capital investment, 𝑭𝑪𝑰 ($) 𝐹𝐶𝐼 = 𝐿 × ∑ 𝐶𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 

Depreciation of equipment, 𝑪𝑫𝒆𝒑𝒓 ($) 𝐹𝐶𝐼/𝑡𝑝𝑟𝑜𝑗𝑒𝑐𝑡 

General utilities, 𝑪𝑮𝒆𝒏𝑼𝒕 ($) 𝐹𝑠𝑖𝑧𝑒 × 𝐹𝑐𝑜𝑠𝑡 

Maintenance, 𝑪𝑴𝒕𝒏 ($) 0.1 × 𝐹𝐶𝐼 

Insurance, 𝑪𝑰𝒏𝒔 ($) 0.01 × 𝐹𝐶𝐼 

Local taxes, 𝑪𝑳𝒐𝒄𝑻 ($) 0.02 × 𝐹𝐶𝐼 

Indirect costs, 𝑪𝒊𝒏𝒅𝒊𝒓𝒆𝒄𝒕 ($) 𝐶𝐷𝑒𝑝𝑟 + 𝐶𝐺𝑒𝑛𝑈𝑡 + 𝐶𝑀𝑡𝑛 + 𝐶𝐼𝑛𝑠 + 𝐶𝐿𝑜𝑐𝑇 

Total labor costs, 𝑪𝒍𝒂𝒃𝒐𝒓 ($) 
𝐶𝑙𝑎𝑏𝑜𝑟 𝐷 +  𝐶𝑙𝑎𝑏𝑜𝑟 𝑆 + 𝐶𝑙𝑎𝑏𝑜𝑟 𝑀

+ 𝐶𝑙𝑎𝑏𝑜𝑟 𝑄𝐶𝑄𝐴 ⬚ 

Direct labor costs, 𝑪𝒍𝒂𝒃𝒐𝒓 𝑫 ($) 𝑁𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 × 𝑆𝑎𝑙𝑎𝑟𝑦 × 𝑢 

Supervisors’ costs, 𝑪𝒍𝒂𝒃𝒐𝒓 𝑺 ($) 0.2 × 𝐶𝑙𝑎𝑏𝑜𝑟 𝐷 

Management costs, 𝑪𝒍𝒂𝒃𝒐𝒓 𝑴($) 𝐶𝑙𝑎𝑏𝑜𝑟 𝐷 

QCQA staff costs, 𝑪𝒍𝒂𝒃𝒐𝒓 𝑸𝑪𝑸𝑨 ($) 𝐶𝑙𝑎𝑏𝑜𝑟 𝐷 

Facility utilisation, 𝒖 (%) 𝑡𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛 365⁄  

Number of operators, 𝑵𝒐𝒑𝒆𝒓𝒂𝒕𝒐𝒓𝒔 𝑁𝑜𝑝𝑈𝑆𝑃 + 𝑁𝑜𝑝𝐷𝑆𝑃 

Number of USP operators, 𝑵𝒐𝒑𝑼𝑺𝑷 

𝑆ℎ𝑖𝑓𝑡𝑠𝑈𝑆𝑃/𝑑𝑎𝑦 × 𝑁𝑜𝑝𝑈𝑆𝑃/𝑠ℎ𝑖𝑓𝑡

×
𝑁𝑈𝑆𝑃 𝑡𝑟𝑎𝑖𝑛𝑠

𝑇𝑟𝑎𝑖𝑛𝑈𝑆𝑃𝑡𝑒𝑎𝑚
× 𝑃𝑡𝑟𝑎𝑖𝑛𝑠 

Number of DSP operators, 𝑵𝒐𝒑𝑫𝑺𝑷 
𝑆ℎ𝑖𝑓𝑡𝑠𝐷𝑆𝑃

𝑑𝑎𝑦
× 𝑁𝑜𝑝𝐷𝑆𝑃

𝑠ℎ𝑖𝑓𝑡
×

𝑁𝑈𝑆𝑃 𝑡𝑟𝑎𝑖𝑛𝑠

𝑇𝑟𝑎𝑖𝑛𝐷𝑆𝑃𝑡𝑒𝑎𝑚

× 𝑃𝑡𝑟𝑎𝑖𝑛𝑠 

Materials costs from QC tests, 
𝑪𝑸𝑪 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍𝒔 ($) 

𝑁𝑄𝐶 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 × 𝑃𝑟𝑖𝑐𝑒𝑄𝐶 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 

Direct costs, 𝑪𝒅𝒊𝒓𝒆𝒄𝒕 ($) 
𝐶𝑟𝑒𝑎𝑔𝑒𝑛𝑡𝑠 + 𝐶𝑐𝑜𝑛𝑠𝑢𝑚𝑎𝑏𝑙𝑒𝑠 + 𝐶𝑄𝐶 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠

+ 𝐶𝑙𝑎𝑏𝑜𝑟 

Cost of goods per gram, 𝑪𝑶𝑮/𝒈 ($/g) (𝐶𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 + 𝐶𝑑𝑖𝑟𝑒𝑐𝑡)/ 𝐷𝑒𝑚𝑎𝑛𝑑 

Note: 
𝐿:  Lang factor 

𝐶𝑜𝑠𝑡𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡:  Equipment purchase cost 

($) 
𝑡𝑝𝑟𝑜𝑗𝑒𝑐𝑡: Time of project (assumed 10 

years) 
𝐹𝑠𝑖𝑧𝑒: Facility size (m2) 
𝐹𝑐𝑜𝑠𝑡: Monetary units per sq. meters 
(assumed 525 $/m2) 
𝑡𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛: Campaign running time (days) 

𝐷𝑒𝑚𝑎𝑛𝑑: Annual product demand (kg or g) 
𝑆ℎ𝑖𝑓𝑡𝑠𝑈𝑆𝑃/𝑑𝑎𝑦 𝑜𝑟 𝐷𝑆𝑃/𝑑𝑎𝑦: Shifts of 

USP/DSP per day 
 

𝑁𝑜𝑝/𝑠ℎ𝑖𝑓𝑡: Number of USP/DSP 

operators per shift 
𝑁𝑈𝑆𝑃/𝐷𝑆𝑃 𝑡𝑟𝑎𝑖𝑛𝑠: Number of USP/DSP 

trains 
𝑇𝑟𝑎𝑖𝑛𝑈𝑆𝑃/𝐷𝑆𝑃𝑡𝑒𝑎𝑚: Number of USP/DSP 

trains per team 
𝑃𝑡𝑟𝑎𝑖𝑛𝑠: Product parallel trains 

𝑃𝑟𝑖𝑐𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠: price of materials used in 
QC test ($) 
𝑁𝑄𝐶 𝑏𝑎𝑡𝑐ℎ𝑒𝑠: Number of cycles of final 

product out 
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    Environmental metrics 

 Process Mass Intensity 

The environmental burden caused by running a biomanufacturing facility will be 

evaluated through the water and disposables consumption. Process mass 

intensities (PMIs) will be calculated for each scenario across different product 

throughputs and, along with the economic metrics, will help comparing 

alternatives for the production of monoclonal antibodies.  

The mass of water is determined by summing up the quantities of all liquid 

reagents consumed in the process. On the other hand, the mass of disposables 

is estimated based on the weights of all single-use materials (Table 2.3). A wide 

range of materials weights was collected for different dimensions; however, 

when the required size is not part of the gathered list, the weight of the 

consumable with the closest size is assumed. Equations 2.10 and 2.11 present 

the calculation of the water PMI and consumables PMI, respectively. 

𝑊𝑎𝑡𝑒𝑟 𝑃𝑀𝐼 =
𝑚𝑤𝑎𝑡𝑒𝑟

𝐷𝑒𝑚𝑎𝑛𝑑
 (2.10) 

𝐶𝑜𝑛𝑠𝑢𝑚𝑎𝑏𝑙𝑒𝑠 𝑃𝑀𝐼 =
𝑚𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑏𝑙𝑒𝑠

𝐷𝑒𝑚𝑎𝑛𝑑
 (2.11) 

Where   𝑚𝑤𝑎𝑡𝑒𝑟: Quantity of water consumed per year (kg) 

  𝑚𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑏𝑙𝑒𝑠: Mass of disposables consumed per year (kg) 

  𝐷𝑒𝑚𝑎𝑛𝑑: Annual product demand (kg) 

 

Table 2.3 - Weights of consumables used for the PMI calculation. 

Material Example of weight & scale 

SU bag 7 Kg (2000 L) 

Depth filter 5 Kg (2.5 m2) 

Virus removal filter 4 Kg (1 m2) 

Inline concentration/diafiltration (ILC/ILD) 

membrane 
3 Kg (2.5 m2) 

UFDF membrane  2 Kg (1 m2) 
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 Life Cycle Assessment (LCA) 

To perform the Life Cycle Assessment and compute the Product Carbon 

Footprint (PCF) associated to different flowsheets, OpenLCA was used. 

OpenLCA is a widely used open-source software tool for life cycle assessment 

(LCA) and sustainability analysis. It is typically used in conjunction with life cycle 

inventory databases, such as EcoInvent, which contain data on the 

environmental inputs and outputs associated with various processes and 

activities. 

The workflow followed in OpenLCA was:  

1. Creating processes 

Defining processes, which represented the stages of mAb life cycle 

(e.g., raw material extraction, manufacturing, use, disposal). 

2. Adding flows 

Within each process (i.e., unit operation), the material and energy 

flows that go in and out of that process were added. Flows represented 

the inputs and outputs of the system. 

3. Linking processes 

Processes were linked to show the flow of materials and energy 

between them. 

4. Selecting methodologies 

Choosing the appropriate impact assessment methodology that 

aligned with the project goals (ReCiPe). 

5. Running the analysis 

Quantifying the environmental impacts of each process in terms of 

selected impact categories (climate change). 

6. Interpreting and presenting Results 

OpenLCA provided visualisation tools to help extract and understand 

the results.  
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 Global Warming Potential (GWP) and Product Carbon Footprint 

(PCF) 

Global Warming Potential (GWP) is a fundamental aspect of Life Cycle 

Assessment (LCA) used to assess the impact of greenhouse gas emissions on 

global warming. The GWP calculation is based on the concept of equivalency, 

which compares the warming potential of different greenhouse gases to that of 

carbon dioxide (CO2) over a specific time horizon. 

The GWP represents a relative index that measures the potential of a 

greenhouse gas (GHG) to trap heat in the atmosphere compared to CO2. It is 

expressed as a factor that indicates how many times more effective a particular 

gas is at warming the atmosphere than an equivalent mass of CO2. GWP takes 

into account the radiative forcing effects of each gas and the time it remains in 

the atmosphere. 

𝐺𝑊𝑃 = 𝛴 (𝐸 × 𝐺𝑊𝑃𝑓𝑎𝑐𝑡𝑜𝑟) (2.12) 

 

Where   𝐸: Quantity of a specific greenhouse gas emitted during a process, 

product life cycle, or activity (𝐶𝑂2-eq). 

    𝐺𝑊𝑃𝑓𝑎𝑐𝑡𝑜𝑟: Global Warming Potential of the greenhouse gas in 

question, considering a specific time horizon. 

 

The GWP factors are determined based on scientific assessments and are 

provided for various time horizons, usually 20, 100, and 500 years. The choice 

of time horizon depends on the intended focus of the assessment. The most 

common time horizon is 100 years, as it provides a balanced view of both short-

term and longer-term impacts. 

Product Carbon Footprint (PCF) is specifically concentrated on GWP as 

environmental impact category and it is directly calculated on the LCA platform 

used (openLCA). According to BioPhorum’s Roadmap to Sustainability, there 

is an increasing demand for product transparency with respect to sustainability 

and metrics harmonisation, thus, PCF is a valuable tool, especially when 
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conducting a full Life Cycle Assessment (LCA) is resources and time 

consuming (BioPhorum, 2023).  

 

    Multi-criteria decision making (MCDM) 

methodology 

The MCDM technique incorporated in the decisional tool was based on the 

weighted sum method and was designed to provide an overall measure of 

attractiveness for each flowsheet that reconciled economic, environmental and 

operational criteria (Pollock, Ho and Farid, 2013; Pollock et al., 2017). The 

economic (COG and FCI) and environmental (water and consumables process 

mass intensities (PMI)) ratings (xij) were directly obtained from the process 

economics model. The operational criteria identified for the analysis were 

robustness, ease of validation, ease of installation, ease of scale-up and ease 

of operation. The relative rating values of each flowsheet at each operational 

criteria (xij) and the rank of importance of each criterion amongst all operational 

criteria (𝐸𝑖) were gathered from a survey questionnaire sent to industry and 

academic experts on the field. The criteria expressing economic (COG and FCI) 

and environmental feasibilities (water PMI and consumables PMI) were ranked 

equally within each criteria category based on personal communication with 

industrial partners.  All rating values were standardised to a common 

dimensionless scale (𝑟𝑖𝑗) between 0 and 100 according to equation 2.13.  

𝑟𝑖𝑗 =  
𝑥𝑖𝑗−𝑥𝑖𝑊𝑜𝑟𝑠𝑡

𝑥𝑖𝐵𝑒𝑠𝑡−𝑥𝑖𝑊𝑜𝑟𝑠𝑡
× 100                                    (2.13) 

The weight of each criterion, 𝐸𝑖, was based on the rank of importance (most 

important weighs the most) and was then normalised as 𝑤𝑖 according to 

equation 2.14.  

𝑤𝑖 =  
𝐸𝑖

∑ 𝐸𝑖𝑖=1
 , 𝑤ℎ𝑒𝑟𝑒 𝐸𝑖 = 𝑎, 𝑎 − 1, … ,1  𝑓𝑜𝑟 𝑟𝑎𝑛𝑘 = 1, 2, … , 𝑎               (2.14) 

The weighted score of each flowsheet for each criterion, 𝑦𝑗𝑘, (i.e., economic, 

operational and environmental) was derived using equation 2.15.  
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𝑦𝑗𝑘 = ∑ 𝑟𝑖𝑗 × 𝑤𝑖

𝑛

𝑖=1
                                                         (2.15) 

The overall aggregated score, 𝑆𝑗, was computed according to equation 2.16. 

The ratios of importance of each criteria category (𝑅𝑘) enabled the priorities of 

the economic, environmental and operational criteria to be altered based on 

user preferences, where the sum of the 𝑅𝑘 values was equal to 1  

(𝑅𝑒𝑐𝑜 + 𝑅𝑒𝑛𝑣 + 𝑅𝑜𝑝 = 1). 

𝑆𝑗 = ∑ 𝑦𝑗𝑘 × 𝑅𝑘 =
𝑛

𝑘=1
𝑦𝑗,𝑒𝑐𝑜  × 𝑅𝑒𝑐𝑜 +  𝑦𝑗,𝑒𝑛𝑣  × 𝑅𝑒𝑛𝑣 + 𝑦𝑗,𝑜𝑝  × 𝑅𝑜𝑝         (2.16) 

 

Where 𝑗: 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 (𝐶𝑜𝑛𝑡𝑖 − 𝑃𝑟𝑜𝐴, 𝐶𝑜𝑛𝑡𝑖 − 𝐴𝑇𝑃𝐸, 𝐶𝑜𝑛𝑡𝑖 − 𝑃𝑃)  

𝑘: 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐, 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙) 

𝑖: 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 (𝐶𝑂𝐺, 𝐹𝐶𝐼, 𝑃𝑀𝐼, 𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠, 𝑒𝑎𝑠𝑒 𝑜𝑓𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, 𝑒𝑡𝑐)  

𝑟𝑖𝑗: 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 𝑟𝑎𝑡𝑖𝑛𝑔 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑗 𝑖𝑛 𝑠𝑢𝑏𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖 

𝑥𝑖𝑗: 𝑟𝑎𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑗 𝑖𝑛 𝑠𝑢𝑏𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖 

             𝑥𝑖𝑊𝑜𝑟𝑠𝑡/𝐵𝑒𝑠𝑡: 𝑊𝑜𝑟𝑠𝑡 𝐵𝑒𝑠𝑡⁄  𝑟𝑎𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑠𝑢𝑏𝑐𝑟𝑖𝑡𝑒𝑟𝑜𝑛 𝑖 𝑎𝑚𝑜𝑛𝑔 𝑎𝑙𝑙 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 

𝑤𝑖: 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖 𝑖𝑛 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘 

𝐸𝑖: 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖 𝑖𝑛 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘 (𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑟𝑎𝑛𝑘) 

𝑎: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑎𝑛𝑘𝑖𝑛𝑔𝑠 

𝑦𝑗𝑘: 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑗 𝑖𝑛 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘 

𝑆𝑗: 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑗 

𝑅𝑘: 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑘 
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Chapter 3: Evaluating end-to-end continuous antibody 

manufacture with column-free capture alternatives 

from economic, environmental and robustness 

perspectives 

3.1 Introduction 

Across the years, a highly standardised platform has been shared for the 

production and purification of monoclonal antibodies. In most instances, this 

platform has been including protein A affinity chromatography as primary mAb 

capture step, due to the high binding levels and purities obtained; however, 

disadvantages of using such technique include the high costs associated to the 

resin, ligand leaching and poor stability at high pH, which have elevated the 

need of investigating new alternatives that allow to overcome such challenges 

and develop a renovated, protein A-free capture step.  

The technical potential of column-free alternatives for capture based on either 

aqueous two-phase extraction (ATPE) or precipitation (PP) has been discussed 

in Chapter 1. Nevertheless, the economic evaluation of these technologies 

when integrated in a full production platform has been scarcely reported, 

leaving questions on the feasibility of these operations compared to protein A 

based chromatography.  

In this chapter, the impact of integrating ATPE or PP is presented at economic, 

environmental and robustness levels using the tool developed in Chapter 2. 

Moreover, the study includes the modelling of batch and continuous production 

schemes with protein A capture, broadening the evaluation and providing 

extended insights on how the simulation framework can be used in different 

scenarios.  

Section 3.2 presents the flowsheets, key assumptions and process parameter 

values used in the case studies, while Section 3.3 deals with the results and 

discussion. Section 3.4 summarises the main conclusions on the comparison 

between scenarios. 
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3.2 Methods 

The tool developed in Chapter 2 was used to model and evaluate commercial 

mAb facilities using different production schemes across different annually 

required product quantities. The case-study explored three antibody capture 

technologies: protein A affinity chromatography, aqueous two-phase extraction 

(ATPE) and mAb precipitation. While Batch-ProA depicted a typical fed-batch 

process, the continuous flowsheets integrated a perfusion bioreactor that 

enabled the retention of the cells inside the bioreactor and, therefore, did not 

require centrifugation and depth filtration as primary recovery steps before mAb 

capture. The simulation of the batch and continuous flowsheets integrating 

protein A chromatography was described by Mahal, Branton and Farid (2021). 

In Conti-ATPE and Conti-PP, only the capture stage was re-designed, thus, the 

process modelling from the viral inactivation to the final inline diafiltration was 

kept. The description of the unit operation and respective sizing equations for 

Conti-ATPE and Conti-PP were described in Sections 2.3.2.1 and Section 

2.3.2.2, respectively. 

All batch and continuous process trains were designed to produce 100 to 1000 

kg per year. The cell culture size was calculated based on the annual demand 

required and on the overall yields computed for the DSP train in each flowsheet. 

Bioreactor sizes were adjusted based on vendor constraints with a maximum 

size of 20,000L for stainless steel bioreactors and 2000L for single-use 

bioreactors. The single-use based continuous production flowsheets (Conti-

ProA, Conti-ATPE and Conti-PP) were compared with the reference batch 

stainless-steel facility type with protein A chromatography as capture step 

(Batch-ProA). For Batch-ProA, the equipment sizing was based on the mass 

entering each unit operation and all steps were carried out sequentially. For the 

continuous options, the sizing was based on the outlet flowrate of the previous 

unit operation in the process train and the end-to-end continuous process was 

achieved through keeping the product outlet and inlet flows between units 

constant to avoid surge vessels or hold-times. When sizing the continuous 

ATPE glass column, the height was kept constant, whilst for continuous 

precipitation the length of the static mixers (Li et al., 2019) was kept constant. 
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The cost of goods and PMI metrics were computed according to the 

methodology described in Section 2.4. Following a deterministic analysis 

based on values from literature, previous group projects, and discussions with 

academic and industrial partners, a sensitivity analysis was conducted to 

predict the maximum variation in cost of goods resulting from broad changes in 

process parameters (worst vs best outcomes). After the sensitivity analysis, 

Monte Carlo simulations were employed to comprehend and compare the 

robustness upon process variability of ATPE and precipitation with protein A 

chromatography. For both analyses, the range of values for ATPE input 

parameters was deliberated with IST-Lisbon, while the precipitation technique 

and inputs were reviewed with BOKU and AstraZeneca. This approach aimed 

to capture both the present and future capabilities of these technologies. 

The integration of economic, environmental and operational metrics was 

subsequently done through multi-criteria decision-making (MCDM), which 

reconciled quantitative outputs from the process economics model and 

qualitative scores obtained for each technology from an industrial survey. A final 

target analysis was generated by changing relevant process parameters and 

analysing the combination of inputs that would turn column-free options 15% 

cheaper the current ProA chromatography in continuous mAb manufacturing.  

 

    Flowsheets & key assumptions 

As aforementioned, the goal of this study was to compare different capture 

alternatives and production running modes, which was fundamentally 

translated in modelling different mAb manufacturing flowsheets. Figure 3.1 

shows the different process sequences studied within the project and Table 3.1 

summarises the key input assumptions for each flowsheet. These inputs were 

integrated in the mass balance and sizing equations described in Chapter 2. 
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Figure 3.1 - Process flowsheets studied in batch and continuous production of monoclonal antibodies. ProA: protein A; CEX: cation 

exchange; AEX: anion exchange; TFF: tangential flow filtration; SP-TFF: Single-pass tangential flow filtration. Batch-ProA: batch mAb 

production with protein A as capture step; Conti-ProA: continuous mAb production with protein A chromatography as capture step; 

Conti-ATPE: continuous mAb production with aqueous two-phase extraction as capture step; Conti-PP: continuous mAb production 

with product precipitation as capture step. Batch success rate is considered 96% across flowsheets. 
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Table 3.1 - Process-specific input assumptions in the COG model for Batch-

ProA, Conti-ProA, Conti-ATPE and Conti-PP flowsheets. 

 

Notes:  Collected titre is measured in grams of product per litre of harvested cell culture fluid. 

Volumetric productivity is measured in grams of product produced per litre of the bioreactor 

working volume per day. The perfusion productivity, loading capacity and bed heights are taken 

from Mahal (2021). The fed-batch productivity (0.5 g/L/day) is derived based on the collected 

titre of 5g/L divided by 10 days of fed-batch expansion (after a 4-days ramp-up phase). The 

perfusion rate is measured as the equivalent number of bioreactor vessel working volumes (vv) 

exchanged per day. The higher mAb concentration after ProA elution into the virus inactivation 

step in continuous mode results from the higher loading capacity (65 vs 40 g/L resin) for the 

same eluted column volumes (CVs batch & continuous: 4 equilibration, 5 elution, 2 wash, 3 

strip, 3 regeneration) 

Unit 
operation 

Parameter Batch Continuous 

Cell culture Culture Duration (days) 14 28 

 

Perfusion rate (vv/day) - 1.5 

Volumetric productivity (g/Lvv/d) 0.5 3 

Max bioreactor volume (L) 20 000 2 000 

Collected Titre (g/Lharvest) 5 2 

Batches per year, 𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠 20 10 

Protein  
A chrom. 

Bed height, 𝐵𝐻 (cm) 20 10 

 

Loading capacity,  𝐷𝐵𝐶 (g/Lresin) 40 65 

Linear velocity (cm/h) 350 180 

Number of columns, 𝑁𝑐𝑜𝑙 1 3 

Resin reuse limit, 𝑁𝑟𝑒𝑢𝑠𝑒 (cycles) 200 200 

ATPE HCCF (%) - 18 

 

PEG (%) - 9.6 

Phosphate (%) - 13 

NaCl (%) - 10 

Ratiotop/bottom - 0.4 

Precipitation HCCF (%) - 50 

 
PEG (%) - 7 

ZnCl2 (%) - 10 

VI Concentration into VI (g/L) ~18 31.5 

Final UFDF Final target concentration (g/L) 30 30 
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A total 14-day fed-batch process with a 5 g/L titre was compared with a total 

28-day perfusion in the continuous mAb production strategies. For continuous 

perfusion, the product collection starts after the initial growth and ramp‐up 

phase of 8 days (versus 4 days in fed-batch) and a 6-fold increase in volumetric 

productivity (3 g/L/d) was assumed over batch. For continuous multicolumn 

chromatography, higher resin loading capacities (ProA DBC=65g/L resin, AEX 

DBC=100g/L resin, CEX DBC=100g/L resin) were assumed given the better 

resin capacity utilisation compared to batch (Pollock et al., 2013; Jagschies, 

2018). The binding capacities and prices for protein A resin in the different 

modes were selected to reflect the latest industry benchmarks. A 3 column 

system is assumed in continuous chromatography. While column #1 is in 

loading mode, column #2 collects the unbound material (therefore the higher 

capacities assumed in continuous). Column #3 is used to collect the unbound 

materials from column #2 once this starts to be loaded when column #1 reaches 

capacity and enters the elution phase,  

For continuous ATPE and continuous precipitation, the percentage of HCCF 

(percentage of the final volume in the ATPE/PP system corresponding to the 

perfusion broth volume after adding the other components, such as PEG or 

salt) was assumed as 18 (Rosa et al., 2012) and 50% (Li et al., 2019), 

respectively. The yield of continuous ProA chromatography in Conti-ProA was 

set as 95%, while the base case recovery of the ATPE step was 85% (Rosa et 

al., 2012) and the wash yield in Conti-PP was 82% (Li et al., 2019). The 

resulting overall DSP yields were of 70, 60 and 55% for Conti-ProA, Conti-

ATPE and Conti-PP, respectively.  The product concentration prior to the viral 

inactivation step in Conti-ATPE and Conti-PP was set as the same found after 

protein A chromatography in Conti-ProA (32 g/L), so the size and time of the 

polishing stage would be kept constant across continuous flowsheets. 

Some authors have shown comparable purity (Azevedo, Rosa and Ferreira, 

2008; Rosa et al., 2012) when using alternatives to ProA chromatography in 

mAb capture, others state further work is required to improve impurity removal 

(Li et al., 2019). In this work, the economic potential of the flowsheets was 

explored on the basis that all flowsheets are able to meet the target purity 

specifications.  
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The batch and continuous labour requirements are as described by Mahal et 

al. (2021) and 3 shifts per day are assumed with 6 operators per USP and per 

DSP shifts in Batch-ProA and 3 operators per USP and per DSP shifts in Conti-

ProA, Conti-ATPE and Conti-PP. In this study, the definition of “batch” in the 

continuous flowsheets is taken as the quantity of product delivered per cell 

culture run (10 batches per year). Similarly to what is described in Mahal, 

Branton and Farid (2021), as a quality control batch release test in continuous 

is performed every four days on the material collected in that period of time, 

there are 5 “QC batches” per perfusion culture (perfusion expansion phase of 

20 days), which is taken into account when calculating the QC costs (35k$ per 

batch release test).  

In the present model, all process buffers were purchased for a fixed cost (no 

buffer preparation in-house). In single-use facilities, these buffers are stored in 

single-use bags (maximum capacity of 5000 L) and bag containers and trolleys 

are required to hold them in place where needed throughout the process train. 

These containers were considered in the indirect costs as part of the equipment 

purchase cost used in the calculation of the fixed capital investment. 

 

 Uncertainty assumptions 

One-way sensitivity analyses were used to identify the key COG drivers. These 

were then used in the Monte Carlo simulations. The Monte Carlo simulation 

algorithm was coded in Python to enable distributions (e.g., triangular) to be 

applied to the designated input parameters and used a random number 

generator to create the set of iterations. The algorithm computed the likelihood 

of the COG output falling below different thresholds. A two-tailed t-test was 

performed to evaluate whether there was a significant difference between the 

COG/g distributions of the flowsheets, as indicated by the p-values and a 

chosen significance level of 0.05. The algorithm was used to perform 100 

iterations per run which was found to be sufficient to reach convergence. The 

number of iterations needed to reach convergence was determined by 

calculating the mean and standard deviation after each run (from n=2) and 

monitoring when these values were within a tolerance of 5% from the global 
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mean and standard deviation. The global mean and standard deviation 

corresponded to the values calculated after 1000 runs.  

Typical cell culture titre fluctuations are of ±20% (Pollock, Ho and Farid, 2013). 

This variation was also applied to the dynamic binding capacity (DBC) of protein 

A, as a way of simulating the influence that different required quantities of 

expensive resin could have on the cost of goods. The specific column-free 

alternatives’ parameters and ranges were discussed with experts in these 

technologies. Variations at the cell culture tire or volumetric productivity were 

translated into smaller/bigger/more/fewer bioreactors required and 

smaller/larger media consumption. The same effect was seen when 

considering uncertainty in the process step yields, as the USP was redesigned 

to compensate for the product gain/loss during the downstream processing. 

The variation of the HCCF percentage in ATPE and PP impacted the dilution of 

the broth coming from perfusion, thus, the burden on the concentration steps 

required before the virus inactivation.  

 

Table 3.2 - Triangular distributions used in Monte Carlo simulations for the 

uncertainty analysis. HCCF % and respective distributions are different for 

ATPE and PP based on different research papers in which the model was 

based and discussion with the respective authors. 

Parameter Distribution Flowsheet 

Fermentation titre (g/L) Tr (3.75,5,6.25) Batch-ProA 

Perf. Volumetric productivity 

(g/L/day) 
Tr (2.25, 3, 3.75) Conti-ProA/ATPE/PP 

ProA Dynamic binding capacity  

(g/L resin) 
Tr (50, 65, 80) Conti-ProA 

ATPE yield Tr (0.80, 0.85, 0.90) Conti-ATPE 

HCCF% ATPE Tr (0.14, 0.18, 0.25) Conti-ATPE 

HCCF% PP Tr (0.40, 0.50, 0.60) Conti-PP 

Wash yield Tr (0.75,0.82, 0.90) Conti-PP 
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3.3 Results and discussion  

The attractiveness of batch and continuous manufacturing strategies with 

different capture technologies was assessed using a decisional tool that 

captured the nuances of different modes of operation and different technology 

choices. The cost analysis was extended by evaluating each process’s 

environmental burden and using stochastic uncertainty analysis to assess the 

robustness of the different scenarios under inherent process variability. An 

MCDM analysis was used to weigh up the financial, environmental and 

operational attributes of each flowsheet. A final target analysis highlighted the 

process changes needed for alternative production strategies to become cost-

competitive. 

 

    Deterministic Cost Analysis 

The COG/g outputs from the deterministic analysis conducted with the 

decisional tool are shown in Error! Reference source not found.a on a cost 

category basis for the batch and continuous mAb flowsheets. This figure shows 

that the continuous production flowsheets, whether ProA-based or column-free 

(Conti-ProA, Conti-ATPE and Conti-PP) could offer COG savings of ~20-40% 

compared to the standard batch flowsheet (Batch-ProA) at lower and medium 

scales (100 and 500 kg/year). In contrast, at higher scales (1000 kg/year) only 

Conti-ProA and Conti-PP presented a similar or slightly lower COG than Batch-

ProA.  
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Notes: At 1000 kg/year, two parallel trains are implemented in continuous mode; therefore, the number of batches, 

stainless equipment and SU materials are doubled. The fed-batch flowsheet is integrated in a stainless-steel 

based facility, while the continuous flowsheets are single-use based. The titre for fed-batch culture is 5g/L and 

the perfusion volumetric productivities assumed in all continuous strategies was 3g/L/day. SU bags include both 

bioreactor bags and buffer hold bags. The embedded table in (a) indicates the key parameters for each batch and 

continuous facility and the percentage of indirect, reagents and consumables in each flowsheet’s COG/g. Different 

filtration areas in ATPE and PP’s SPTFF steps are a result of different volumes (higher dilution in ATPE) to be 

concentrated. The embedded table in (b) presents the percentage difference in equipment, reagents and 

consumables costs between flowsheets. 

Figure 3.2 - Breakdown of (a) COG/g on a cost category basis and (b) materials 

(reagents and consumables) cost for four mAb production flowsheets at 100, 

500 and 1000 kg/year commercial scales. Mahal et al. (2021) presents results 

for the Batch-ProA and Conti-ProA flowsheets for demands up 3000 kg/year.   
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The cost savings with continuous flowsheets relative to batch at low and 

medium scales were driven by savings in indirect and reagent costs. The 

decrease in indirect costs can be attributed to the smaller equipment needed in 

continuous mode given the higher cell culture productivities in perfusion; e.g. at 

500kg/year the indirect costs change from 56$/g for Batch-ProA to 25$/g for 

Conti-ProA, 31$/g for Conti-ATPE and 24$/g for Conti-PP. The savings in 

equipment costs switching from Batch-ProA to the continuous flowsheets could 

go up to 50% for 7-fold productivity differences. Also, as shown in Error! 

Reference source not found.b, the savings associated with the absence of CIP 

cleaning procedures in SU facilities outweighed the 2 to 3-fold higher media 

consumption found for perfusion bioreactors and led to a 10 to 60% cost 

reduction in reagents across scales and flowsheets (e.g. 500kg/year reagents 

costs: 27$/g Batch-ProA, 21$/g Conti-ProA, 25$/g Conti-ATPE, 26$/g Conti-

PP). Media consumption costs are higher in continuous due to higher perfusion 

media prices and volumes. Hybrid SU facilities operated in batch mode have 

been reported by Mahal (2021) and showed benefits over stainless steel based 

batch facilities at lower (100 kg/year) and medium (500 kg/year), but always 

higher COG compared to SU facilities operated in continuous mode for mAb 

manufacture. The savings in indirect and reagent costs were more significant 

than the increase in consumables costs (up to 2-fold) when using single-use 

continuous flowsheets (e.g. 500kg/year consumables costs: 7$/g Batch-ProA; 

11$/g Conti-ProA; 13$/g Conti-ATPE, 10$/g Conti-PP).  

Turning to the comparison at the higher 1000 kg/year demand, the lower COG 

savings with the continuous flowsheets were due to the need for multiple (two) 

parallel production trains. As the capacity of the SU bioreactor bags is limited 

(maximum capacity assumed was 2000L), when more than one bioreactor was 

required, an additional dedicated DSP train was simulated in parallel. At 1000 

kg/year, Conti-ProA and Conti-PP presented COG savings of 8% and 3%, 

respectively, compared to Batch-ProA, which were not so significant given the 

typical accuracy of cost estimates. Due to the comparable indirect costs and 

higher consumables costs of Conti-ATPE compared to Batch-ProA at high 

scale, the ATPE-based flowsheet showed a COG/g increase of more than 10% 
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compared to the batch case; this was the only scenario where a continuous 

flowsheet was found to perform worse than the batch flowsheet. 

The cost comparison among continuous flowsheets in Error! Reference source 

not found.a also showed that Conti-ProA was the strategy offering the lowest 

COG/g across scales, followed closely by Conti-PP (2-6% higher COG). Conti-

ATPE presented the highest COG/g (8-22% higher COG than Conti-ProA) 

amongst all continuous flowsheets. For Conti ATPE, all cost categories were 

higher than Conti-ProA. This is mainly attributed to the HCCF dilution that drives 

up equipment costs (bag containers and filtration skids), consumables (SU 

bags) and reagents (ATPE-specific buffers and diafiltration buffers). For Conti 

PP, the overall cost was similar or slightly higher than Conti-ProA. While the 

reagents costs were 24% higher, driven by the larger media volumes (30% 

higher media costs than Conti-ProA), the consumables costs were lower (9-

14%), mainly due to the absence of ProA resin, and the total equipment 

purchase cost was similar. 

 

Figure 3.3 - Breakdown of COG/g per processing stage of four mAb production 

flowsheets. The COG breakdown on a process stage basis is showed for 100, 

500 and 1000kg/year commercial scales, while the contribution of each process 

stage in each cost category is shown for the 500kg/year scale. USP and 
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polishing steps are fixed among continuous flowsheets, while the capture stage 

comprises different unit operations (as presented in Figure 3.1). 

Error! Reference source not found. depicts the COG breakdown by major stage 

(USP/capture/polishing). This highlights that the steps involved in the capture 

stage represent a significant proportion of the COG with a base value of ~30% 

for the conventional batch flowsheet. Moving from the conventional batch 

flowsheet (Batch-ProA) to continuous flowsheets with chromatography (Conti-

ProA) or precipitation (Conti-PP) results in a reduction in the contribution of the 

capture stage to the overall COG from ~30% to <25%. In contrast, the 

continuous ATPE flowsheet (Conti-ATPE) results in a higher contribution of the 

capture stage to the overall COG than any of the other strategies (37-44%).  

 

Figure 3.4 - Breakdown of impact of each cost category in the different 

manufacturing stages of four mAb production flowsheets for the 500kg/year 
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scale. USP and polishing steps are fixed among continuous flowsheets, while 

the capture stage comprises different unit operations (as presented in Figure 

3.1). 

Error! Reference source not found. provides benchmark cost category 

distributions by stage at 500 kg/year, focusing on the stages most affected by 

the change in strategy – USP and capture. For the capture, both batch and 

continuous processes are dominated by the indirect costs that consume over 

50% of the capture COG (COG capture distribution = 19-37% Materials, 4-14% 

Labour and QC, 55-68% Indirect); hence for capture stages, changes in capital 

equipment will have a larger impact than changes in materials, such as the 

resin. In contrast, for the USP stage, the move from batch to continuous 

flowsheets results in a shift in the USP COG distribution from being dominated 

by USP indirect costs (50%) in batch processes (COG USP batch 

distribution=41% Materials: 9% Labour: 50% Indirect), to USP materials (~70-

80%, predominantly culture media reagents) in continuous processes (COG 

USP continuous distribution = 68-77% Materials: 7-9% Labour and QC, 12-23% 

Indirect). As the polishing steps are kept constant across the continuous 

strategies, the contribution of indirect, materials and labour and QC costs are 

identical. 

Table 3.3 shows the items that contributed the most for each cost group in the 

capture stage only at a demand of 500 kg/year. In the equipment costs, which 

are directly related to the indirect costs, the centrifuge and chromatography 

skids in Batch-ProA and Conti-ProA, respectively, are the most expensive items 

in the capture step. Regarding the column-free capture alternatives, one can 

confirm the significant contribution of bag containers for the total equipment 

cost in Conti-ATPE and Conti-PP capture, due to the large volumes associated 

with the HCCF dilution and multiple filtration steps in these flowsheets. In the 

reagents and consumables front, buffers and resin weight the most in Batch-

ProA and Conti-ProA materials cost and it is also possible to observe the 

significant portion of CIP buffer costs in Batch-ProA capture costs (59%). For 

Conti-ATPE and Conti-PP, the membranes used in the filtration steps and the 

specific reagents (e.g., PEG, HEPES) sum the major materials in costs. 
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Table 3.3 - Contribution of each equipment, reagents and consumables item 

for the total cost of the capture step only. N/A: not applicable (USP and polishing 

steps not included). 

 

 
Batch-
ProA 

Conti-ProA 
Conti-
ATPE 

Conti-PP 

EQUIPMENT     

Centrifuges 26% N/A N/A N/A 

Bag containers N/A 14% 94% 86% 

Bag trolleys N/A <1% <1% <1% 

Hold-tanks 53% N/A N/A N/A 

Filtration skids/pumps 1% N/A 4% 13% 

Chromatography skids 16% 86% N/A N/A 

Chrom. columns (glass) 4% N/A N/A N/A 

Extractor N/A N/A 1% N/A 

REAGENTS     

CIP buffer 59% N/A N/A N/A 

PW & WFI 7% 0% 20% 26% 

Buffers  35% 100% 28% 10% 

ATPE/PP specific 
reagents 

N/A N/A 53% 64% 

CONSUMABLES     

Guard filters 8% N/A N/A N/A 

Hold bags N/A 8% 27% 40% 

Filters 7% N/A 73% 60% 

Packed columns and 
resin 

85% 92% N/A N/A 
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    Environmental Analysis 

The potential environmental benefits moving from batch to continuous and from 

column-based to column-free mAb capture were evaluated by analysing the 

environmental burden associated with each mAb flowsheet. The process mass 

intensities (PMIs) are shown in Figure 3.5 and are split into water and 

consumables PMI for the different production strategies. 
 

 

Figure 3.5 - a) Water and b) consumables process mass intensity (PMI) 

breakdown for four mAb production flowsheets at 100, 500 and 1000 kg/year 

commercial scales. The water and consumables PMIs include the complete 

production train liquid and solid waste, respectively. The consumables PMI is 

based on the total weight of individual disposable material (SU bags, filters, 

resin and pre-packed columns). The weight of each material was found in 

literature or given by suppliers. SU bags include both bioreactor bags and buffer 

hold bags. 
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Continuous flowsheets offered a significant reduction in the overall PMI 

compared to the traditional batch process depending on scale, with Conti-ProA 

offering the most environmentally friendly strategy of all mAb production 

strategies. This was driven by the reduction in water PMI that outweighed any 

increases in consumables PMI since water PMI values were in the order of 

thousands of kg/kg while consumables PMI were significantly lower and in the 

order of tens of kg/kg.   

Digging deeper into the analysis produces useful PMI benchmark values for the 

sector. Water PMIs for Batch-ProA were between 5000 and 17,000 kg/kg, while 

consumables PMIs ranged between 4 and 6 kg/kg, depending on the 

production scale. According to Figure 3.5a, the switch from batch to continuous 

flowsheets can lead to 2-8-fold lower water PMIs from high to low production 

scales (2200 kg/kg Conti-ProA, 3300 kg/kg Conti-ATPE, 3600 kg/kg Conti-PP 

across scales). As discussed in the cost analysis, the absence of CIP 

procedures in continuous single-use based facilities results in significant water 

savings compared to the batch stainless-steel based strategy. Although the 

continuous options have a lower water PMI than the batch flowsheet, the 

continuous column-free options fare worse than the continuous ProA option. 

The higher water PMIs of Conti-ATPE and Conti-PP compared to Conti-ProA 

can be attributed to the higher media consumption and diafiltration buffers.  

In contrast to the water PMI trends, the consumables PMI in Figure 3.5b was 

4 to 5-fold higher in continuous mode (e.g. 500 kg/year consumables PMI: 5 

kg/kg Batch-ProA, 15kg/kg Conti-ProA, 18 kg/kg Conti-ATPE, 16 kg/kg Conti-

PP). However, the order of magnitude is negligible compared to the lower liquid 

waste. On the consumables front, as expected from the cost analysis, Conti-

ATPE resulted in a higher consumables PMI (SU bags and membranes). 

Regarding Conti-PP, contrary to the consumables cost savings compared to 

Conti-ProA, the consumables PMI in Conti-PP was in fact higher than the 

column-based option. This comes from the higher usage of filters and SU bags 

that outweigh the reduction in consumables weight (kg) from the absence of 

Pro-A pre-packed columns. Overall, Conti-ATPE presents a water PMI and a 

consumables PMI approximately 70% and 20% higher than Conti-ProA, 
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respectively, and Conti-PP presents a water PMI and consumables PMI 

approximately 60% and 10% higher than Conti-ProA, respectively.  

The water and consumables PMI values are within the range of values reported 

in the literature for continuous mAb flowsheets (Ho et al., 2010; Pollock et al., 

2017; Madabhushi et al., 2018; Cataldo et al., 2020) and suggest that 

continuous and single-use technologies can be key enablers for improving 

environmental impact in terms of overall PMI. 

 

    Sensitivity Analysis 

In every large-scale bioprocess there are inherent uncertainties; thus, it is 

important to identify the key sources for technical deviations and account for 

them in the cost model to generate representative results. While the economic 

and environmental advantages of pursuing Conti-ProA strategy were 

highlighted during the deterministic cost comparison, a stochastic analysis 

enabled the evaluation of different scenarios under process variability. The first 

step was to conduct a sensitivity analysis by changing some critical process 

parameters in the column-based and column-free capture flowsheets to 

understand which factors had the largest influence on mAb production costs 

and to identify the major risks or benefits for production in terms of process 

changes. The selected ranges presented were discussed with academic and 

industrial partners, so the analysis could fairly represent the best and worst 

technical parameters found for each one of the technologies.  

The results of the sensitivity analysis are illustrated in the tornado diagrams in 

Figure 3.66. The diagrams illustrate that the key COG driver is the titre (in 

Batch-ProA) and volumetric productivity (in Conti-ProA/ATPE/PP) in cell 

culture. Lower titres/productivities than expected resulted in higher USP costs 

as larger or more bioreactors were required to meet the demand. This had a 

knock-on impact on total reagent costs, dominated by CIP buffer costs in Batch-

ProA (58%) and media costs in the continuous strategies (>75%). On the other 

hand, working with increased volumetric productivities and more concentrated 

HCCF would benefit specially the column-free alternatives, as lower perfusion 

volumes would require a smaller DSP.   
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Figure 3.6 - Sensitivity analysis of COG/g showing the effect of process 

parameters variation on a) Batch-ProA, b) Conti-ProA, c) Conti-ATPE or d) 

Conti-PP mAb production flowsheets, at 500 kg/year scale. The percentage 

differences are relative to the COG/g in the base case.  
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Figure 3.6c and Figure 3.6d show that the HCCF percentage was the second 

parameter with the largest impact on the cost of goods in both column-free 

capture alternatives. The HCCF% in the ATPE or PP systems’ composition 

determined the dilution of the broth and the volume handled in the following 

steps. Therefore, changes at this level had a large impact on the equipment 

investment (associated with the indirect costs), consumables and reagents 

costs. In Conti-ATPE, an increase from 18% to 25% of perfusion liquid in the 

ATPE system (HCCF%) could decrease the final COG/g by more than 10% at 

medium and large scales, demonstrating the benefits of a lower product dilution 

on the cost-effectiveness of liquid extraction for mAb capture.  

The diagrams illustrate that the key COG driver is the titre (in Batch-ProA) and 

volumetric productivity (in Conti-ProA/ATPE/PP) in cell culture. Lower 

titres/productivities than expected resulted in higher USP costs as larger or 

more bioreactors were required to meet the demand. This had a knock-on 

impact on total reagent costs, dominated by CIP buffer costs in Batch-ProA 

(58%) and media costs in the continuous strategies (>75%). On the other hand, 

working with increased volumetric productivities and more concentrated HCCF 

would benefit specially the column-free alternatives, as lower perfusion 

volumes would require a smaller DSP.  Figure 3.6c and Figure 3.6d show that 

the HCCF percentage was the second parameter with the largest impact on the 

cost of goods in both column-free capture alternatives. The HCCF% in the 

ATPE or PP systems’ composition determined the dilution of the broth and the 

volume handled in the following steps. Therefore, changes at this level had a 

large impact on the equipment investment (associated with the indirect costs), 

consumables and reagents costs. In Conti-ATPE, an increase from 18% to 25% 

of perfusion liquid in the ATPE system (HCCF%) could decrease the final 

COG/g by more than 10% at medium and large scales, demonstrating the 

benefits of a lower product dilution on the cost-effectiveness of liquid extraction 

for mAb capture.  

The concentration of buffers was also a factor to be considered when looking 

at process changes that could reduce costs in column-free strategies. As the 

bag containers dominate the equipment costs for the capture sequence in 

Conti-ATPE and Conti-PP, using buffer concentrates and inline dilution would 
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bring savings in the final cost of goods. Other changes in parameters such as 

the reagents’ price, filtration fluxes, or other equipment price (besides capture 

EPC) had a lower impact on the final COG/g; thus, they are not considered to 

portray significant risks for the process. The individual parameter changes that 

resulted in greater than a 5% change in COG were selected and integrated into 

the uncertainty analysis using Monte Carlo simulations, where the process 

mass output was fixed (100, 500 and 1000 kg/year) and the facility was resized 

for each iteration to reflect the consequences of different starting assumptions. 

 

    Uncertainty analysis with Monte Carlo 

simulations 

Accounting for key uncertainties in the batch and continuous processes with a 

stochastic analysis enables the robustness of the options to be determined as 

well as the likelihood of meeting certain COG/g threshold values. The results of 

the stochastic Monte Carlo analysis are depicted in the COG frequency 

distributions in Figure 3.7 with an embedded table of key statistics. The figure 

shows that Conti-ProA presented the most robust alternative across demands 

compared to the batch and continuous column-free options as indicated by its 

narrower distribution and lowest standard deviation and hence risk. It had also 

the lowest expected cost and the differences in COG distributions were found 

to be statistically significant, as indicated by all p-values being below 0.05 

(embedded table). Of the column-free options, Conti-PP had the higher 

probability of matching Conti-ProA expected COG values, with a likelihood 

ranging from 10 to 30% across scales (embedded table). Bimodal distributions, 

with peaks occurring at different COG values for the same alternative and scale, 

were observed for Batch-ProA at 100 kg/year and Conti-PP at 500 kg/year, 

when there was a jump in bioreactor scale due to low titre or productivity, 

respectively. Apart from this scenario, uncertainties in titres, process yields, 

HCCF% or binding capacities did not represent major shifts in the most likely 

COG/g for each flowsheet (peaks from stochastic distributions are within 5% of 

costs attained in the deterministic analysis, as shown in the embedded table).  
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Figure 3.7 - COG/g probability distribution plots under manufacturing 

uncertainty at a) 100 kg/year, b) 5000 kg/year and c) 1000 kg/year production 

scales. d) Statistical data on COG/g for the competing technologies under 

process variability across demands. The p-values were computed using a two-

tailed homoscedastic t-test with an alpha value of 0.05; p-values below this 

value indicate a significant difference. p-value (Batch-ProA) and p-value (Conti-

ProA) refer to the values when the COG distributions from each flowsheet were 

compared with that of Batch-ProA and Conti-ProA, respectively.  

eCOG = expected COG.  
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    Multi-criteria decision making 

MCDM analysis was used to reconcile economic, environmental and 

operational criteria and identify the most advantageous continuous strategy 

considering all perspectives. While the economic (COG/g and FCI) and 

environmental (water and consumables PMI) criteria were directly obtained as 

model outputs, the qualitative criteria (e.g., ease of scale-up, ease of validation) 

were derived from survey responses from academia and industry experts with 

experience in affinity chromatography, liquid-liquid extraction and precipitation 

used in mAb capture.  

Table 3.4 summarises the key values used in the MCDM to compute the overall 

aggregate scores for each flowsheet (ProA chromatography, ATPE and PP), 

including the criteria weights, standardised ratings and weighted category 

scores. From the list of qualitative operational criteria, robustness was the most 

important metric, while ease of installation ranked last, based on the survey 

responses. 

The radar chart in Figure 3.8a shows all standardised rating values for each 

criteria for each flowsheet and it was used to simplify the visualisation of the 

preferred flowsheet at each criteria. As expected, Conti-ProA scored the 

highest in all economic and environmental criteria. Moreover, it had the 

maximum score in two out of five operational criteria, including robustness, the 

most important metric. Conti-ATPE had very poor scores across all quantitative 

metrics due to its high COG/g, equipment cost, consumable usage and water 

consumption; however, its operational feasibility was reasonably high 

according to the qualitative scores given by experts. Conti-PP scored well in 

the economic criteria, whereas, operational-wise, it only showed high scores 

for the two least important criteria (ease of operation and installation).  

To reconcile the competing outputs, the overall aggregate score was generated 

for each flowsheet across different combination ratios of the economic, 

environmental and operational categories (Figure 3.8b and Figure 3.8c). The 

resulting sensitivity spider plots illustrate how the ranking of the alternative 

continuous options changes depending on user priorities. The figures clearly 

illustrate that Conti-ProA was the preferred continuous strategy irrespective of 
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the relative importance of the economic, environmental or operational category 

scores. The ranking between the remaining column-free options of Conti-PP 

and Conti-ATPE depended on the weightings of the categories. When 

economic and environmental performance were prioritised, Conti-PP was 

preferred over Conti-ATPE for all combinations of these two categories (Figure 

3.8b). However, when operational performance was brought into the picture as 

a key priority (Figure 3.8c) and weighed against economic savings, then a 

switch point occurred where the operational category was twice as important 

as the economic category (𝑅𝑜𝑝 = 0.6, 𝑅𝑒𝑐𝑜 = 0.3). When the operational 

benefits dominated in the final score above this threshold (𝑅𝑜𝑝 > 0.6) then 

Conti-ATPE become the preferred column-free option over Conti-PP. 

 

    Target Analysis 

The earlier COG analysis showed that the continuous mAb facilities modelled 

with column-free capture technologies did not offer lower manufacturing costs 

compared to the column-based option (Conti-ProA). This section determines 

the cost reductions required for column-free alternatives to achieve a target 

COG saving threshold of at least 15% compared to the continuous flowsheet 

with ProA capture to justify the process change. The ATPE and PP process 

changes implemented were based on the parameters that had the highest 

impact on COG/g savings in the sensitivity analysis, namely the perfusion 

volumetric productivity with either the ATPE HCCF% or the PP wash yield. 

Figure 3.9 displays the target analysis as a matrix of heatmaps across scales 

and buffer preparation methods to determine the windows of operation where 

parallel improvements in ATPE and PP flowsheets result in COG savings that 

meet the target threshold of 15% (highlighted by the region within the black 

solid lines). 
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Table 3.4 - Multi-criteria decision making summary of weights, ratings and overall aggregate weighted scores 
 

Note: Rank of 1 indicates most important. For the operational metrics, a rating value of 5/5 represents the best outcome. 

Criteria category, 

k 
Criteria, i Rank 

Weight, 

𝐸𝑖 

Normalised 

weight, 𝑤𝑖 

Rating value, 𝑥𝑖𝑗 
Standardised 

rating, 𝑟𝑖𝑗 

Weighted category 

score, 𝑦𝑗𝑘 

Overall aggregate 

score, 𝑆𝑗 (𝑅𝑒𝑐𝑜=0.8, 

𝑅𝑒𝑛𝑣=0.1, 𝑅𝑜𝑝=0.1) 

Conti 

ProA 

Conti 

ATPE 

Conti 

PP 

Conti 

ProA 

Conti 

ATPE 

Conti 

PP 

Conti 

ProA 

Conti 

ATPE 

Conti 

PP 

Conti 

ProA 

Conti 

ATPE 

Conti 

PP 

Economic 

(500Kg) 

Cost of Goods ($/g) 1 1 0.5 63 77 67 100 0 75 

100 0 85 

97 5 75 

Fixed Capital 

Investment ($) 
1 1 0.5 25 M 27 M 25 M 100 0 96 

Environmental 

(500 Kg) 

Water PMI (kg/kg) 1 1 0.5 2 156 3 684 3 566 100 0 54 

100 0 31 Consumables PMI 

(kg/kg) 
1 1 0.5 15 18 16 100 0 8 

Operational 

Robustness 1 5 0.33 4.4 4.0 2.5 84 75 38 

72 54 36 

Ease of scale-up 2 4 0.27 3.4 4.7 3.8 60 92 69 

Ease of validation 3 3 0.20 3.9 2.7 2.0 72 42 25 

Ease of operation 4 2 0.13 3.3 2.7 3.5 56 42 63 

Ease of installation 5 1 0.07 2.9 4.0 3.8 47 75 69 
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Figure 3.8 - Rating values of Conti-ProA, Conti-ATPE and Conti-PP flowsheets 

for each economic (Cost of Good – COG; Fixed Capital Investment – FCI), 

environmental (Consumables PMI; Water PMI) and operational (robustness, 

ease of operation, scale up, installation and validation) criteria. b and c) Effect 

of the economic, operational and environmental criteria combination ratios on 

the overall aggregate scores when the operational attribute ratio is constant at 

10% (b) and when the environmental attribute ratio is constant at 10% (c). All 

graphs are generated for a mAb demand of 500 kg/year.  
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Figure 3.9 - Heat maps showing the COG difference for Conti-ATPE and Conti-

PP relative to Conti-ProA as a function of the perfusion volumetric productivity 

versus either the HCCF% fraction for Conti-ATPE or the wash yield for Conti-

PP. The target analysis is shown for scenarios using traditional buffer 

preparation as well as buffer concentrates. * indicates the base case scenario. 

The area within the solid black line indicates the conditions at which Conti-

ATPE and Conti-PP present ≥15% COG/g savings compared to Conti-ProA. 
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With traditional buffer preparation, the target COG saving was not achieved 

regardless of the combination of parameters in the column-free flowsheets. 

Also, in Conti-ATPE, possible increases in volumetric productivity or HCCF 

fraction rarely led to COG values matching Conti-ProA COG. On the other 

hand, in Conti-PP, as the base-case COG is already very similar to Conti-ProA, 

changes in these process parameters led to scenarios offering modest savings 

over ProA chromatography.  

The implementation of inline dilution of buffers (2-fold buffer concentrates) 

across all options conferred a strong advantage particularly for both Conti-

ATPE and Conti-PP. The target COG saving could be reached for a broad 

combination of parameters in Conti-ATPE and Conti-PP. The window of 

feasible combinations meeting the target increased as scales increased due to 

the larger contribution of consumables and reagents costs to the total COG at 

higher scales and the ability of the process changes to minimise material 

consumption.  

The attractiveness of Conti-ATPE and Conti-PP will depend on the 

improvement of multiple process parameters to levels that may be beyond the 

current best cases found in literature. The usage of buffer concentrates is 

becoming more commonplace and improved perfusion volumetric productivities 

may be envisioned for the near future. 

Also, the implementation of a simple pre-concentration step before capture has 

been already discussed with partners and it would resemble the benefits of 

having higher volumetric productivities, as working with a more concentrated 

HCCF would lead to smaller volumes during DSP.  However, increasing the 

HCCF percentage in the ATPE/PP systems without compromising capture 

performance and achieving higher step yields would entail further studies on 

the technical optimisation of aqueous two-phase extraction and precipitation as 

capture technologies applied to monoclonal antibodies. 
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3.4 Conclusion 

This chapter presented the extent of capabilities configured in a process 

economics model that enabled the comparison of different mAb production 

flowsheets from economic, environmental and robustness perspectives. The 

simulation tool built in Python was used to design batch and continuous facilities 

and provided an in-depth evaluation of the trade-offs associated to protein A 

chromatography, aqueous two-phase extraction and product precipitation as 

mAb capture steps across production scales. The cost drivers for each scenario 

were highlighted and determined that the implementation of continuous 

manufacturing was preferable over batch, especially at lower scales, and that 

the broth dilution in ATPE and higher media consumption in PP could favour 

the selection of ProA as capture step in continuous mAb processing.  Although 

there was an increase in consumables usage in continuous mode, the 

environmental analysis showed that the water savings found over batch would 

decrease the overall environmental burden associated with continuous mAb 

production. The multi-criteria decision-making analysis presented higher 

aggregate scores for continuous mAb processing with column-based capture 

across scenarios with different weightings for economic, operational and 

environmental performance. The target analysis showed that ATPE and PP 

could provide lower cost of goods than ProA if buffer concentrates are 

implemented and if the cell culture volumetric productivity, the HCCF% in the 

ATPE system and precipitates wash yields were maximised altogether. The 

added value of such a simulation framework was revealed through the 

assessment of different technologies, flowsheets and scenarios, as these are 

critical during process development and decision-making on future facility 

designs in the biopharmaceutical sector. 
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Chapter 4: Carbon footprint of different batch and 

end-to-end continuous antibody manufacture 

flowsheets 

4.1 Introduction 

As sustainability becomes a key focus for biopharmaceutical industry, 

measuring and reporting environmental metrics demonstrates not only an 

important commitment to the environment, but it can also help companies 

identify opportunities for improvement and make informed decisions about 

product design and manufacturing processes. 

In this chapter, a cradle-to-gate life cycle analysis is carried out to determine 

the product carbon footprint resulting from different mAb manufacture 

flowsheets. The decision-support tool presented in the previous chapter was 

used to generate the mass balance and facility layout to feed into the 

environmental analysis. The PMI metrics from Chapter 3, which captured only 

waste generated, are compared with the sustainability metric related to product 

carbon footprint, which captures the impact of energy consumption, raw 

material extraction and waste treatment. 

The key drivers of carbon footprint are identified and are used to provide an 

insightful overview of the areas in which industry should focus on when tackling 

process changes towards a more environmental-friendly production. 

Optimisation routes are also simulated to understand the potential decrease of 

carbon footprint in different mAb manufacturing flowsheets. 

Section 4.2 presents the key assumptions and methodologies used during the 

life cycle assessment, including important approximations used in the 

database. Section 4.3 starts by delving into the breakdown of the carbon 

footprint contributors and shares the environmental impact of each flowsheet, 

before and after process optimisation. Section 4.4 reviews the main 

environmental outcomes shared during the chapter. 
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4.2 Methods 

The case-study explored the life cycle assessment of three of the mAb 

flowsheets described in Chapter 3: Batch-ProA, Conti-ProA and Conti-PP. As 

Conti-ProA and Conti-PP were the end-to-end continuous flowsheets which 

presented the lowest COG/g and PMI, these were the focus of this in-depth 

environmental analysis. 

The main attributes of the LCA are shown in Table 4.1. The assessment was 

performed according to the standards described in ISO 14040:2006 and 14044: 

2006 (ISO, 2006a, 2006b). 

 Table 4.1 - Life Cycle Assessment main attributes 

Software OpenLCA 

Database EcoInvent 3.7 

Impact Assessment Method ReCIPe 2016 midpoint (H) 

System Boundary Cradle-to-gate 

Scopes 1, 2 and 3 

Goal 
Evaluate the carbon footprint of Batch-ProA, Conti-

ProA and Conti-PP 

Functional unit 500 kg of mAb 

Product demand 500 kg/year 

Facility location United Kingdom 

Supply chain location Europe 

Impact categories 

assessed 
Climate change (kg of CO2 equivalent) 

Evaluation metric Product carbon footprint (kg of CO2 equivalent) 
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The LCA boundary of this analysis was cradle-to-gate, i.e. from raw material 

extraction to waste disposal. It was essential to start at “the cradle” and include 

the emissions coming from supply chain activities so that the impact of different 

raw materials used in the flowsheets could be assessed. The study boundary 

ended at the “gate”, rather than “grave” aspect, as there was limited data on 

how the recycling of stainless-steel equipment is done across the industry or 

on how the product is discarded when it reaches the end of its useful life.  

The carbon footprint of each flowsheet was divided into three categories: 

supply-phase, use-phase and end-of-life. The supply-phase considered raw 

material extraction, consumables and reagents production and the transport of 

these materials to the facility. The use-phase reflected the carbon footprint 

derived from the main production facility, including the energy and utilities 

required in the production process and in the facility in general. The end-of-life 

phase concerned the disposal of waste streams according to proper 

procedures.  

The quantities of raw materials used, the processing times per unit operation 

and the weight of consumables waste were computed via the process 

economics model described in Chapter 3.  

The LCA analysis is aligned with the Greenhouse Gas Protocol’s scopes 1, 2 

and 3 for GHG emissions (described in Section 1.5.3.2.1).  Scope 1 

incorporated the entire manufacturing process and buffer and media 

preparation; Scope 2 involved the consumption of externally sourced energy, 

such as purchased electricity; and Scope 3 comprised the raw materials 

extraction and production, their transport and disposal. The equipment 

fabrication (usually included in Scope 1) was not included in the analysis, as its 

carbon footprint was assumed to be very small compared to other sources, due 

to the high durability of stainless-steel equipment and its frequent re-usage 

within the facility.  
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    Key assumptions 

 Energy requirements 

The unit operations included in each mAb production flowsheet require energy 

to run. Also, PW and WFI skids and ancillary activities, such as buffer and 

media preparation, involve electricity expenditures. These electricity 

requirements, including the energy needed for lighting the facility, were 

obtained from technical datasheets or gathered from the literature and are 

presented in  

Table 4.2. 

 

Table 4.2 - Energy input for the different unit operations and supporting 

activities used in mAb production process. Watt-units were multiplied by the 

time of operation. For media and buffer preparation, 1h of agitation was 

assumed. For lighting, the energy requirement was multiplied by the total site 

operating days. 

 

The energy required for cell culture agitation can vary depending on factors 

such as the specific cell line, the stage of cell culture, the vessel type, and the 

agitation method used (Li et al., 2010). Specific power inputs (power/volume, 

P/V) for the agitation of CHO cells can range from 0.2 to 10 W/L (e.g.,  

Balandras et al., 2011; Doran, 2013; Isailovic, Rees and Kradolfer, 2015) with 

Unit Energy requirement Reference 

Cell Culture Agitation 2 W/L (Doran, 2013) 

Media/Buffer Preparation 70 W/L (Walas, 1990) 

Cell Culture Heating  7700 Wh (AlfaLaval, 2022) 

Centrifugation  17500 W (ThermoFisher Scientific, 2021) 

Filtration 50 W/m2 
(Lipnizki, Boelsmand and 

Madsen, 2002) 

Chromatography 600 W (Bunnak et al., 2016) 

CIP/PW/WFI Generation 155 Wh/L (Rawlings and Pora, 2009) 

Lighting 15 W/m2 (Bunnak et al., 2016) 
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values more commonly reported at the lower end of the scale. For the analysis 

a value of 2 W/L (Doran, 2013) was selected.  

Similarly, the level of agitation used in the dissolution of salts during media and 

buffer preparation also depends on the type of vessel and impeller. Values 

reported range from 0.5 – 70 W/L and the upper end was used in the analysis 

(Walas, 1990) to reflect the energy consumption in stirred tank reactors.  

Besides the direct requirements of the bioprocess, there are other facility-

related sources of energy consumption in biopharmaceutical facilities, including 

heat, ventilation and air conditioning (HVAC) systems. The energy 

requirements from the HVAC systems are dependent on the grade of each the 

cleanroom, based on the desired air change rate, and its floor area.  

Table 4.3 shows the energy demand per cleanroom. These values were taken 

from Sinclair et al. (2008), who provided an overview of typical energy 

requirements for each area classification (Sinclair et al., 2008). As more recent 

data on the breakdown of these energy inputs per cleanroom were desired, a 

survey was sent to several partners in industry. However, it was not possible to 

gather a consistent range of values for the expected energy required per 

cleanroom class.  

These parameters were later multiplied by each cleanroom area, derived from 

the process economics model according to Section 4.2.1.1. Also, the electricity 

needed for lighting all rooms in the facility was grouped with the HVAC 

requirements. 

 

Table 4.3 - HVAC energy requirements per room classification (Sinclair et al., 

2008). 

Room 
Energy requirement (kWh/m2) on an  

annual basis 

Cleanroom C 237 

Cleanroom D 119 

Controlled Not Classified (CNC) 47 

Unclassified area 47 
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The electricity source for the analysis was based on UK’s national consumption 

mix of electricity, as documented in the EcoInvent database. The breakdown of 

this consumption mix is presented in the Table 4.4. 

Table 4.4 - Electricity consumption mix in the United Kingdom from Ecoinvent 

database (2014). 

 

 Cleanroom classifications and facility area 

The equipment footprint was calculated based on the area that each process 

skid occupied, according to each unit technical datasheet. For single-use hold 

buffer bags, these were stacked in piles of 2, 3 or 6, depending on the volumes. 

Bags larger than 1500 L were not stacked. Ranges of equipment footprints are 

shown in Table 4.5. The cleanroom area was determined assuming that the   

equipment occupied 15% of a cleanroom (Pereira Chilima, 2019) to allow for 

space for piping, walkways, maintenance and ancillary equipment, such as 

shelving, trolleys or testing devices. 

  

Category Share of the Total Electricity Supply (%) 

Hydraulics  3 

Nuclear 19 

Fossil Fuel 60 

Wind 9 

Solar 1 

Biowaste 9 
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Table 4.5 - Equipment footprint based on size range. This information was 

taken from the brochures of specific equipment. 

 

The total facility footprint encompassed the main manufacturing area, clean 

circulation area, waste circulation, and the utility level and were determined 

based on the methodology provided in Pereira Chilima et al. (2016). However, 

certain zones were excluded from the facility footprint estimates. The general 

area, inclusive of the warehouse and logistics, was omitted due to the 

considerable variability in this estimation, which depends on each facility 

design. Additionally, areas such as Research and Development (R&D), Quality 

Assurance/Quality Control (QA/QC) and offices were not scoped in the study, 

as they can be separate from the main facility. Table 4.6 shows the calculation 

factors to estimate the areas of the clean circulation, waste circulation and utility 

level based on the manufacturing footprint. The final facility areas were 

compared and validated against footprints provided by industry (personal 

Equipment Size (min – max) Floor Area (min – max) (m2) 

Bioreactor 10 – 25000 L 1.6 – 20 

Hold vessel  10 – 20000 L 0.4 - 6.4 

Bioreactor bag container  10 – 2000 L 1.2 – 10 

Hold bag container  1 – 5000 L 0.1 – 1.6 

Centrifuge 600 – 5000 L/h 3.5 – 4.5 

Depth filter holder 1 – 24 m2 0.2 – 2.1 

Virus filter holder 1.5 – 10  m2 0.1 – 0.3 

ATF filter holder 0.13 – 11 m2 0.1 – 0.3 

Filtration skid 3 – 24  m2 1.6 – 4.8 

UFDF holder 1 – 100  m2 0.1 – 0.5 

UFDF skid 1 – 85  m2 0.4 – 7.2 

ILC & ILD module 0.13 – 1.2 0.2 

Continuous VI tank 1 – 50 L 0.5 – 2.6 

Chromatography skid (batch) 1 – 100 L/h 0.4 – 2.7 

Chromatography skid 

(continuous) 
1 – 6 L/h 0.9 – 3.5 
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communication with Jasmin Kee, Kee Bio, UK) to increase the confidence in 

the HVAC calculations. Cleanroom classifications were based on information in 

the literature (Eibl and Eibl, 2019).  

 

Table 4.6 - Cleanroom classification and facility footprint calculating ratios for 

stainless-steel (SS) and single-use (SU) based flowsheets (Pereira Chilima et 

al., 2016). In the manufacturing area, 16 m2 are added to each room to account 

for the airlocks. 

 

 

 Database 

As aforementioned, EcoInvent 3.7 was the main LCA database used in this 

study. However, items of various streams, including reagents and 

consumables, were not available in the database. Thus, some approximations 

and suitable substitutions to specific components available in the database had 

Area Description 

Ratio of manufacturing 
footprint 

SS based SU based 

Manufacturing  

Classification C 

• Cell culture – seed 

• Polishing (CEX, AEX, VF, 
UFDF, ILC, ILD) 

 
Classification D 

• Cell culture – main  

• Centrifugation 

• Depth Filtration, capture, VI 
 

Classification CNC 

• Buffer preparation 

1 1 

Clean circulation 

Classification CNC 

• Clean corridors 

• Buffer storage 

• Operator stations 

0.2 0.2 

Waste circulation 

Classification CNC 

• Waste corridors 

• Staging 

0.2 0.2 

Utility level  

Classification U 

• CIP 

• PW/WFI 

1.2 1 
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to be made. The main assumptions regarding the database of raw materials 

are listed below. 

• Cleaning solutions 

In the CIP buffer, sodium hydroxide was assumed as the main 

component; 

• Cell culture media 

The media individual components were taken from technical datasheets 

of media from Lonza Pharmaceuticals; 

• Chromatography buffers 

Protein A chromatography buffers were based on the buffers used by 

Pollock et al. (2013) in the application of semi-continuous 

chromatography for commercial manufacture (Pollock et al., 2013). The 

CEX and AEX buffers were obtained from Cytiva. The buffers were 

mostly composed of Tris buffer and NaCl. Tris was substituted by the 

closest analogue in EcoInvent database, dimeethylaminopropylamine; 

• Viral inactivation buffer 

For simplification, it was assumed that citric acid was the major 

component in this reagent recipe; 

• Plastic consumables and resins 

The carbon footprint of the consumables of each stream (i.e., SU bags, 

filters and pre-packed columns) was derived from Ramasamy (2018) 

using linear regressions according to the specified size of each item. The 

items and respective carbon footprint used in the regressions are shown 

in Table 4.7. As there was no data on the carbon footprint of fabricating 

chromatography pre-packed columns, a simplification was made and it 

was assumed the same kg CO2 per kg as in the filters. The calculated 

carbon footprint included raw material extraction of the required 

components, molding or fabricating to the final form, sterilisation and 

delivery of the items to the facility (Ramasamy, 2018). 
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• Liquid waste treatment 

The liquid waste was assumed to be heat treated in-house before being 

sent for disposal; 

• Liquid and solid waste disposal 

The single-use materials (solid waste) were assumed to be disposed via 

incineration, while the liquid waste was transported to the local 

wastewater treatment facility.  

 

Table 4.7 - Carbon footprint of different consumables based on size 

(Ramasamy, 2018). 

 

 

 Flowsheets optimisation 

The impact of process changes in the environmental footprint of mAb 

production flowsheets was assessed. Discussions with the Przybycien group 

from Renssealaer Polytechnic Institute, who published on the precipitation 

conditions taken as reference for this thesis on mAb production with capture by 

precipitation (Li et al, 2019), revealed that critical process parameters have 

been optimised to reduce water and raw materials consumption since the work 

outlined in Chapter 3. These changes were introduced in the process 

economics model and the outputs were compared with the product carbon 

footprint from the base case. Also, increased titres and volumetric productivities 

Item Size Carbon footprint (CO2-eq) 

SU bag 

10 L 35 

200 L 60 

500 L 126 

Filter 

0.3 kg 8 

1 kg 45 

ProA resin - 77 CO2-eq/kg 

AEX & CEX resin - 18 CO2-eq/kg 
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were scoped in during the evaluation of the flowsheets environmental impact. 

Table 4.8 shows the parameters that were changed in each one of the 

flowsheets during the environmental assessment. 

 

Table 4.8 - Process parameters changed in Batch-ProA, Conti-ProA and Conti-

PP optimisation. 

 

From discussions with the Przybycien research group, the best titre envisioned 

for the future of fed-batch mAb manufacture was 15 g/L (equivalent volumetric 

productivity of 1.25 g/L/day). For the fed-batch and perfusion stages, the 

volumetric productivity difference was kept constant (at 7.2-fold) for the base 

case (0.42 vs 3.0 g/L/day) and best cases (1.25 vs 9 g/L/day). Therefore, the 

best case titre for perfusion was at 6 g/L.  

In Conti-PP, the base case was based on data provided in Li et. al (2019) and 

the best case was based on unpublished data from the Przybycien research 

group. The best case assumed an HCCF concentration increase from 2g/L to 

10 g/L through the implementation of a filtration step prior to the precipitation 

based on proof-of-concept currently under development by Przybycien’s group. 

This concentration step was implemented without hampering the precipitation 

Flowsheet Parameter Base case Best case 

Batch-ProA 

Cell culture titre 5 g/L 15 g/L 

Equivalent 

volumetric 

productivity 

0.5 g/L/day 1.25 g/L/day 

Conti-ProA 
Perf. Volumetric 

Productivity 

3 g/L/day (2 g/L 

harvested titre) 

9 g/L/day (6 g/L 

harvested titre) 

Conti-PP 

Perf. Volumetric 

Productivity 

3 g/L/day (2 g/L 

harvested titre) 

9 g/L/day (6 g/L 

harvested titre) 

Concentration step 

prior PP 

None (2 g/L harvested 

titre) 

Up to 5-fold (10 g/L 

harvested titre) 

HCCF % 50% 80% 

Capture yield 74% 90% 
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step (acceptable liquid viscosity). Also, conversations with the same group 

revealed that the 2-fold dilution of HCCF seen in Conti-PP base case (50% 

HCCF in the precipitation system) could be reduced through the increase of the 

HCCF ratio in the precipitation system (from 50 to 80% HCCF) with the 

utilisation of higher concentrated stock solutions of PEG and zinc chloride and 

lower quantities of PEG (%PEG was reduced from 7 to 5% after process 

optimisation). Additionally, major advances concerning mAb recovery from the 

precipitates wash step were shown during these conversations, which allowed 

for an overall capture yield increase of more than 20% (capture yield base 

case=74%; capture yield best case=90%).  

 

 Benchmarks of carbon emissions  

The product carbon footprint of each flowsheet was translated into day-to-day 

metrics to allow for a more relatable understanding of their environmental 

impact.  

Table 4.9 shows the approximated conversion rates from 1 ton of emitted CO2 

into several metrics, with the respective assumptions. 

 

 

 

Table 4.9 - Conversion rates for the emissions of 1 ton CO2-eq. 

Metric Assumption 
Conversion rate  

1 ton CO2-eq 
Reference 

Number of 
individuals 
equivalent 
emissions 

• 5000 kg 
CO2/person/year 

0.20 (Statista, 2023a) 

Number of 
intercontinental 
flights 

• London to New York 

• 5 000 km 

• 0.15 kg 
CO2/passenger/km 

• 400 passengers 

0 3 (Statista, 2023b) 

Number of trees 
to offset 
emissions 

• 22 kg CO2 
absorbed/tree/year 

46 (Encon, 2023) 
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4.3 Results and discussion 

The environmental outputs of producing monoclonal antibodies using protein A 

chromatography or product precipitation for capture were derived by combining 

the decision-support tool and OpenLCA. In this section, the sustainability 

assessment started by diving into the product carbon footprint of Batch-ProA, 

Conti-ProA and Conti-PP, which was compared with the PMI metric derived in 

Chapter 3. The breakdown of energy requirements and carbon footprint of 

single-use items was subsequently showed to provide insights on the total 

product carbon footprint trends. The last stage of analysis comprised the 

optimisation of the flowsheets, with focus on Conti-PP as a column-free capture 

alternative, to identify the key changes in process parameters that could lead 

to a more environmentally friendly production scheme. All studies were 

performed for a mAb demand of 500 kg/year. 

 

    Product carbon footprint  

After integrating the mass balances of each process together with the 

calculated energy requirements and SU consumables carbon footprint directly 

in OpenLCA, the lifecycle assessment of Batch-ProA, Conti-ProA and Conti-PP 

was performed. 

The PMI analysis presented in Chapter 3 indicated that continuous flowsheets 

result in lower PMI metrics that focus on waste generation. Here the analysis 

explored whether continuous flowsheets would also result in lower carbon 

footprints. Figure 4.1 presents the product carbon footprint (PCF) of each 

flowsheet, which corresponded to the climate change impact category from 

OpenLCA. The results indicated that whilst Conti-ProA can lead to savings in 

PCF, Conti-PP led to the highest carbon footprint from all three flowsheets 

(PCF: 4.8x105 kg CO2/year Batch-ProA; 3.6x105 kg CO2/year Conti-ProA; 

7.1x105 kg CO2/year Conti-PP). This is in contrast to the rankings observed 

when using the PMI metric for waste in Section 3.3.2, where both continuous 

options (column-based and column-free) resulted in significantly less waste and 

hence lower PMI metrics.  



131 
 

 

Figure 4.1 - Product carbon footprint and PMI for an annual demand of 500 

kg/year using Batch-ProA, Conti-ProA or Conti-PP flowsheets. 

 

The investigation and comparison of the PMI and PCF metrics revealed that 

they yield different conclusions owing to the different environmental impacts 

that they capture. Since the PMI metric focuses on waste generation and 

biotech processes use more water than consumables, it will favour process 

intensification strategies such as continuous that reduce water consumption. 

The PMI treats the consumables and reagents streams with equal weighting 

and does not account for the specific fabrication process of the items. In 

contrast, since the PCF metric focuses on climate change, it will favour 

processes with lower GHG emissions. 

The breakdown of the PCF was analysed to determine the key drivers for each 

flowsheet and to determine why the Conti-PP led to the highest carbon footprint. 

As described in Section 4.2, the PCF was divided into 3 categories: supply-

phase, use-phase and end-of-life. The main driver for the high carbon footprint 

of Conti-PP was the supply-phase related emissions for extracting and 

producing the raw materials (63%). This exceeded the carbon footprint related 

to the energy requirements (use-phase) (32%) or disposing the waste streams 

after production (end-of-life phase) (5%). The carbon footprint from the supply-

phase in Conti-PP was, approximately, 4 and 2-fold higher than Batch-ProA 

and Conti-ProA, respectively (supply-phase carbon footprint: 1.0x105 kg 



132 
 

CO2/year Batch-ProA; 1.9x105 kg CO2/year Conti-ProA; 4.5x105 kg CO2/year 

Conti-PP). For Batch-ProA, the main carbon footprint contributor was the use-

phase, which accounted for 76% of the total PCF. The use-phase in Batch-

ProA was 2.6 and 1.6-fold higher than Conti-ProA and Conti-PP, respectively, 

mainly due to the large energy requirements from CIP buffer generation (use-

phase carbon footprint: 3.6x105 kg CO2/year Batch-ProA; 1.4x105 kg CO2/year 

Conti-ProA; 2.3x105 kg CO2/year Conti-PP). Similarly to Conti-PP, the supply-

phase emissions also dominated Conti-ProA’s PCF (53%), while the use-phase 

comprised 39% of the flowsheet related emissions. The reduced use-phase 

emissions compared to Batch-ProA and Conti-PP contributed to the lowest 

Conti-ProA’s PCF value amongst flowsheets. 

The detailed breakdowns of the GHG emissions related to the supply, use and 

end-of-life phases from each flowsheet are explored in the following sections to 

help explain the contributing factors to the trends.  

 

    Carbon footprint of the supply-phase materials 

Error! Reference source not found.a shows the breakdown associated with the 

carbon emissions from the supply phase for each flowsheet and the contribution 

of consumables and reagents components fabrication. Error! Reference source 

not found.b-e present the contribution per type of reagent or consumable and 

per production stage (USP/capture/polishing). As described in the previous 

section, continuous flowsheets presented higher supply-phase emissions than 

in batch (1.9 and 4.4-fold higher for Conti-ProA and Conti-PP, respectively). 

Additionally, for these flowsheets, consumables production dominates the 

supply-phase emissions, while in batch the contribution of consumables and 

reagents production is almost equal (ratio of consumables and reagents 

production: 44:56 Batch-ProA; 87:13 Conti-ProA; 68:32 Conti-PP). These 

results help highlighting trends between stainless steel based (Batch-ProA) and 

single-use based (Conti-ProA and Conti-PP) facilities. The consumables 

emissions relate to the fabrication of SU bags, resins and filtration membranes, 

while the fabrication of reagents components includes salts used in culture 
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media and buffers and specific chemicals, like PEG, used in the precipitation of 

antibodies in Conti-PP. 

 

Figure 4.2 - Breakdown of a) carbon emissions related to the entire supply-

phase and fabrication of b) reagents per type, c) reagents per production stage, 

d) consumables per type and e) consumables production stage for an annual 

demand of 500 kg/year using Batch-ProA, Conti-ProA or Conti-PP flowsheets. 

The polishing steps’ emissions are the same for Conti-ProA and Conti-PP, but 

represent different percentages of the emissions. 
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Conti-PP presents the highest supply-phase emission, with both consumables 

and reagents fabrication higher than Batch-ProA and Conti-ProA. The 

emissions derived from consumables fabrication are 6.8 and 1.8-fold larger 

than in Batch-ProA and Conti-ProA, respectively, and the emissions from 

reagents are 6.0 and 2.5-fold larger than in Batch-ProA and Conti-ProA, 

respectively.  

The significant contribution (89%) of PEG to the reagents emissions of Conti-

PP is showed in Error! Reference source not found.b and explains the major 

impact of the capture stage in the flowsheet reagents emissions (Error! 

Reference source not found.c). Moreover, the emissions from PEG fabrication 

represent 9% of the total PCF from Conti-PP. The production of polyethylene 

glycol is derived from ethylene oxide, which is produced from ethylene, a 

hydrocarbon derived from fossil fuels. Also, the polymerisation process into 

PEG requires high temperatures and pressures, leading to increased energy 

consumption. This results in a carbon-intensive raw material that is also used 

in a significant amount in Conti-PP. Sodium chloride, which is used in the 

culture media, chromatography buffers or antibody precipitation, has also a 

visible contribution in the reagents emissions, especially in Batch-ProA 

(contribution of sodium chloride in the reagents emissions: 42% in Batch-ProA; 

32% in Conti-ProA ; 3% in Conti-PP). 

The impact from the fabrication of different consumables is showed in Error! 

Reference source not found.d and reveals that SU bags in Conti-ProA and 

Conti-PP drive the high consumables emissions from these continuous 

flowsheets (>90% contribution). In Conti-PP, the number of single-use bags 

used in the capture stage is significantly larger than Conti-ProA, which supports 

the higher consumables emissions from this stage (Error! Reference source not 

found.e). This can be attributed to the 4-fold higher number of larger (>= 1000 

L) SU bags used in the capture stage when precipitation is used instead of 

ProA.  

The consumables emissions presented in Batch-ProA derive only from the 

production of UFDF filters, guard filters and resins. As expected from the PMI 

analysis, the consumables environmental impact in a stainless-steel based 

facility are significantly lower than in a single-use based one.  
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    Carbon footprint of the use-phase: Energy 

requirements  

The deeper analysis of the energy requirements provided clarification on the 

use-phase carbon footprint shown for each flowsheet. Error! Reference 

source not found. depicts the breakdown of the annual energy requirements 

by major processing stage (USP/capture/polishing) combined with the HVAC 

and lighting energy consumption.  

This investigation highlighted that Batch-ProA had the highest energy 

consumption out of all the flowsheets. This can be attributed to both the larger 

scale required in batch and the need for CIP with stainless steel equipment. 

This is reinforced by the larger manufacturing area (embedded table) that 

directly impacts the HVAC and lighting consumption and the high contribution 

of emissions coming from CIP buffer generation. From Chapter 3, it was clear 

that the CIP cleaning in Batch-ProA led to a negative impact both on costs and 

PMI. In the analysis showed in Error! Reference source not found., it can 

also be confirmed that stainless-steel based facilities will require an increased 

energy input for CIP buffer preparation (CIP generation represents 22% of the 

total energy requirements – embedded table). This is also reflected in the large 

energy values and high contribution of the polishing stage (3.2x105 kWh/year, 

28% of total annual consumption), which was the stage with more unit 

operations and, therefore, more CIP buffer required.  

Turning the comparison to the continuous flowsheets, while both Conti-ProA 

and Conti-PP presented lower energy requirements than Batch-ProA (annual 

energy requirements: 1.1x106 kWh/year Batch-ProA; 4.3x105 kWh/year Conti-

ProA; 7.2x105 kWh/year Conti-PP), Conti-ProA was clearly the less energy- 

intensive option studied. 
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Figure 4.3 - Breakdown of energy requirements for an annual demand of 500 

kg/year using Batch-ProA, Conti-ProA or Conti-PP flowsheets. The total energy 

requirements of Conti-ProA and Conti-PP are benchmarked against Batch-

ProA. SIP was not considered in the process economic model, therefore, the 

energy from steam generation is not included in product carbon footprint. Media 

and buffer prep row relate to the energy usage during mixing of the ingredients. 

WFI and CIP generation rows indicate the energy spent in the stations used to 

prepare these liquids. The polishing steps energy requirements are the same 

for Conti-ProA and Conti-PP, but represent different percentages of the total 

energy requirements. 
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As observed in Figure 3.1, Conti-ProA presented the shortest length overall 

and for the capture train specifically, which had a direct impact on the total 

facility footprint and resulted in lower HVAC and lighting requirements. 

Moreover, the energy needed to prepare buffers and run the unit operations in 

the capture stage came uniquely from the protein A chromatography step. In 

contrast, Conti-PP required higher energy consumption for HVAC and 

operations due to the 5-step capture train and the higher buffer demand from 

the concentration, wash and resolubilisation steps during the capture stage. 

Also, as discussed in the PMI analysis in Section 3.3.2, due to the lower DSP 

yields, more product output was needed from Conti-PP’s cell culture to meet 

the same annual demand and, thus, more media was required. 

While the PMI metric only showed the larger media volumes needed in Conti-

PP compared to Conti-ProA, the bar chart in Error! Reference source not 

found. revealed the big impact that this also had on the facility energy 

requirements. The energy contribution from the USP step in Conti-PP is almost 

3-fold higher than in Conti-ProA (USP annual energy requirements: 2.4x105 

kWh/year Batch-ProA; 6.0x104 kWh/year Conti-ProA; 1.6x105 kWh/year Conti-

PP). 

The contributions of each stage (USP/capture/polishing) or category (e.g., 

HVAC, buffer preparation, unit operations) on the total energy requirements will 

highly depend on the energy input (kWh) of the utilities and unit operations, as 

well as on the clean rooms’ classifications in a certain facility. HVAC, for 

instance, is used to ensure the optimal conditions in production rooms by 

regulating temperature and humidity. Thus, it is expected to contribute a 

significant portion of the energy usage in a facility. However, its actual impact 

will depend on several parameters, such as the type of fan filter units utilised, 

the choice of heating/cooling equipment and the air change rates (total air 

volume in a certain space that is replaced with fresh or recirculated air) per 

cleanroom to meet the required concentration of particles according to GMP 

standards. As more HVAC energy data becomes available in future and more 

efficient HVAC systems are designed, it is expected that these differences 

would have an impact on the energy utilisation reported.  
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In the present study, the HVAC contribution to the total energy usage of mAb 

facilities ranged from 30 to 50%, depending on the production scheme. 

Additionally, when looking into the HVAC energy required per square meter, 

the flowsheets in this thesis presented consumptions ranging from 400 to 450 

kWh/m2 (Sinclair et al., 2008). Other studies (e.g., Galitsky, 2011; Ramasamy, 

2018) used benchmark values for HVAC consumption 5 to 10-fold higher than 

Sinclair (2008) (Boyd, 2005; Capparella, 2013), which led to HVAC 

contributions from 65 to 85% of the total energy requirements. However, these 

benchmarks did not consider the different HVAC features per cleanroom and 

there was limited information on the scale of production or the area 

classifications included in the HVAC area. Once more, it is important to 

acknowledge that the energy outputs presented in this section were based on 

the references showed in 

Table 4.2 and Table 4.3 and that other assumptions may yield different 

outcomes. Discussions with industry experts also revealed that a wide range of 

energy usage can be expected from facilities with different configurations and 

strategies. Therefore, the total product carbon footprint will also be influenced 

from facility-to-facility or scenario-to-scenario, yielding to higher or lower values 

than the ones reported in this thesis. 

 

    Carbon footprint of end-of-life phase 

The emissions from the end-of-life phase relate to the activities of disposing the 

waste streams from each production flowsheet. 

Although in Batch-ProA the liquid waste stream is significantly higher than in 

the continuous flowsheets (Figure 4.1), the disposal of solid waste in Conti-

ProA and Conti-PP drove the higher carbon footprint of the end-of-life phase 

(end-of-life carbon footprint: 1.6x104 kg CO2/year Batch-ProA; 2.9x104 kg 

CO2/year Conti-ProA; 3.6x104 kg CO2/year Conti-PP). The contribution of the 

end-of-life phase for the total PCF was lower than 10% amongst flowsheets; 

however, this may vary according to the assumptions taken for liquid and solid 

disposable in OpenLCA. In the present study, the solid waste was treated via 

incineration and the liquid waste was sent to the local wastewater treatment 
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facility for treatment. These options were discussed with industrial partners and 

recognised as the most common practices currently applied in the sector.  

 

    Optimisation of batch and end-to-end 

continuous mAb production 

As discussed in Chapter 3, there have been efforts from both academia and 

industry towards improving the cell culture output in mAb manufacture. These 

improvements in mAb titres lead not only to economic advantages but can also 

reflect a significant decrease in the environmental impact in mAb flowsheets. 

Figure 4.4 shows that Conti-PP is the flowsheet that benefited the most from 

the increase in cell culture productivity. While Batch-ProA and Conti-ProA 

presented PCF reductions of 8 and 22%, respectively, the carbon footprint of 

Conti-PP was 50% lower moving from 3 g/L/day to 9 g/L/day.   

For the same annual demand (500 kg/year), a more concentrated cell culture 

fluid results in a smaller volume output. Thus, the 3-fold increase in mAb titre 

(Batch-ProA) or volumetric productivity (Conti-ProA and Conti-PP) had a direct 

impact on the USP and DSP sizes. In Conti-PP, the capture steps (e.g., 

precipitation, concentration) were sized based on the HCCF volume, whereas 

in Batch-ProA and Conti-ProA the chromatography step was sized based on 

the product mass (the quantity of mAb in the HCCF is the same regardless the 

HCCF titre). As a result, the decrease in HCCF volume through the increase in 

perfusion productivity had a more significant impact in the carbon footprint of 

Conti-PP. 

The carbon footprint related to the supply-phase, use-phase, and end-of-life 

before and after simulating the optimisation in titre in Batch-ProA is nearly the 

same. In Conti-ProA, the lower supply-phase footprint is the driver for the PCF 

reduction, due to the decrease in media consumption and SU bags in the USP. 

In Conti-PP, both supply-phase and use-phase showed a strong decrease of 

56 and 42%, respectively, mainly caused by the decrease in media, buffer, and 

PEG volumes and the associated decrease in energy required for material 

preparation. 
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Figure 4.4 - Comparison of product carbon footprint obtained for the base-case 

and optimised Batch-ProA, Conti-ProA or Conti-PP flowsheets for an annual 

demand of 500 kg/year using.  

Table 4.10 portrays the key drops in output parameters from optimising the 

perfusion volumetric productivity in Conti-PP. The major decrease in reagent 

volumes and resulting decrease in SU hold bags led to a 40% smaller facility 

area. As a result, the HVAC and lighting requirements, which comprised 40% 

of the total energy requirement in Conti-PP’s base-case, were reduced in 39%. 

In the supply-phase, the SU materials and PEG emissions decreased 53 and 

67%, respectively.  

 

 Strategies to decrease the product carbon footprint of 

Conti-PP 

In addition to increasing cell culture productivity, the environmental impact of 

improving other DSP-related features in Conti-PP was investigated. The 

collaborative discussions with Przybycien’s research group that formed the 

basis of Conti-PP flowsheet uncovered specific advances in several capture 

steps, as described in Section 4.2.1.3. Ultimately, the investigators suggested 

that these improvements could be combined into an optimised Conti-PP 

flowsheet with a decreased product carbon footprint. 
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Table 4.10 - Key environmental outputs and respective reduction for Conti-PP 

before and after process optimisation. 

 

  

Output 
Base Case 
Conti-PP 

VP 9 g/L/day Reduction 

PMI (kg/kg) 3 931 1 944 -51% 

Use-phase  

Equipment footprint (m2) 94 51 -46% 

Total manufacturing area (m2) 1 742 1 039 -40% 

Annual HVAC + lighting 
requirements (kWh) 

289 048 175 760 -39% 

Total annual energy requirements 
(kWh) 

716 392 412 680 -42% 

Supply-phase 

Annual SU emissions (kg CO2-eq) 302 777 142 719 -53% 

PEG carbon footprint (kg CO2-eq) 127 000 42 220 -67% 

Total product carbon footprint (kg 
CO2-eq) 

1 415 217 393 687 -50% 
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This section aims to provide insights on the strategies that lead to the most 

accentuated PCF decrease in Conti-PP and highlight the priorities for process 

optimisation. Figure 4.5 shows that increasing the volumetric productivity (VP) 

in cell culture is still the strategy with the highest impact on product carbon 

footprint (-50%). This strategy reduces media consumption and the HCCF 

volume, as previously discussed. The volume of media in cell culture has a 

direct impact on the energy required for media production and on consumables 

emissions from SU hold bags fabrication. On the other hand, reducing the 

HCCF % influences the volume of PEG needed. Comparing to the VP increase, 

the integration of a mAb concentration step to 10 g/L before the product 

precipitation resulted in a higher reduction in HCCF volume before precipitation 

(reduction of HCCF volume compared to base-case: 3-fold with increased VP; 

5-fold with concentration step) which led to an 80% decrease in PEG emissions; 

however, there was no impact on the required media volumes. The integration 

of a concentration step led to a PCF decrease of 37%. 

The strategies of increasing the HCCF percentage in the precipitation system 

or increasing the overall capture yield had a similar effect on the PCF reduction 

from the Conti-PP base-case (-26% and -19%, respectively). According to the 

Przybycien’s research group, changing the HCCF% from 50 to 80% was 

possible by optimising the quantity of PEG required for precipitating the product 

(%PEG reduced from 7 to 5%) and utilising higher concentrated stock solutions 

of PEG and zinc chloride. This had a direct impact not only on the PEG footprint 

(-55%), but also on the SU bags required in the following steps and (-26% 

consumables emissions). Increasing the overall capture yield was possible 

through the efforts shown by academia on optimising the precipitates wash 

step. The increase in capture yield from 74 to 90% led to a smaller USP and 

DSP size, with modest effects on the energy requirements (-16%), 

consumables emissions (-24%) and PEG carbon footprint (-17%). 

All process improvements described in Figure 4.5 were sequentially 

implemented by order of impact in reducing the product carbon footprint of 

Conti-PP. Figure 4.6a shows the cumulative influence of implementing the 

process changes in terms of energy and PEG consumption, while Figure 4.6b 

presents the overall PCF decrease in Conti-PP. 
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Figure 4.5 - One-way sensitivity analysis from implementing different process 

improvements in Conti-PP. All percentage differences refer to the parameters’ 

values found for Conti-PP base-case. “Others” refer to all supply-phase related 

emissions besides PEG and consumables (e.g., salts) and the end-of-life phase 

emissions. 
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Figure 4.6 - a) Energy and PEG consumptions and b) product carbon footprint 

reduction after implementation of sequential process optimisations in Conti-PP. 

c) Comparison of product carbon footprint obtained for the base-case and all 

optimised Batch-ProA, Conti-ProA or Conti-PP flowsheets. All results are 

showed for an annual demand of 500 kg/year. In c) “optimised” refers to the 

implementation of all USP and DSP improvements. 
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Savings in energy consumption increased from 42 (with a perfusion volumetric 

productivity of 9 g/L/day) to 51% after integrating all remaining DSP 

improvements. The decrease in PEG consumption was more accentuated after 

a complete optimisation, as the PEG quantity required in the process could be 

reduced up to 91% if all advances were to be integrated.   

The full extent of process optimisation in Conti-PP could lead to a PCF 

decrease of 64%, as shown in Figure 4.6b and Figure 4.6c also shows an 

even contribution of the supply and use phases for the total product carbon 

footprint, as PEG fabrication emissions are significantly reduced (reduction of 

supply-phase contribution). The 64% savings in PCF represented a modest 

extra 14% improvement comparing to the PCF reduction attained after 

improving only the cell culture productivity.  

The estimated PCF value after the complete optimisation of Conti-PP was, 

approximately, 9% lower than Conti-ProA’s optimised flowsheet with a 

volumetric productivity of 9 g/L/day (PCF after optimisation: 2.7x105 kg CO2-eq 

Conti-ProA; 2.5 x105 kg CO2-eq Conti-PP). As seen in Section 3.3.6, the effect 

of increasing the perfusion volumetric productivity is higher in Conti-PP’s COG 

than in Conti-ProA. Thus, further economic and PCF reductions might also 

entail putting efforts into boosting the USP output in mAb manufacture to help 

the business case of Conti-PP. 

 

    Benchmarks of mAb product carbon footprint 

Converting the values calculated for the carbon footprint of each flowsheet into 

more tangible day-to-day metrics allowed for a more relatable understanding of 

its environmental impact. Travel distances (e.g., intercontinental flights) or land 

area (e.g., hectares of trees) are relatable measurements that can help to grasp 

the scale of carbon emissions in this study. The impact of optimising Batch-

ProA, Conti-ProA and Conti-PP flowsheets is presented in Table 4.11.  
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Table 4.11 shows that, after process optimisation, Batch-ProA is the flowsheet 

whose PCF is translated into the largest day-to-day carbon metrics, while Conti-

ProA is the strategy with the lowest values amongst all. 

 

Table 4.11 - Conversion of Product Carbon Footprint into day-to-day activities 

and annual carbon emission taxes in the UK. All metrics are calculated on a 

yearly basis and relative to the PCF values for a demand of 500 kg mAb/year.   

 
Note: a) 400 trees/hectare; b) 0.5 hectares/stadium 

 

As demonstrated in the previous section, the optimisation of Conti-PP resulted 

in 64% PCF savings. To put this into a broader context with day-to-day carbon 

metrics, this was found to be equivalent to the decrease in 92 individuals’ 

emissions, 2 flights from NY to London or 21068 trees to offset emissions 

(equivalent of 104 hectares stadiums). Especially turning the attention to the 

savings in trees to offset emissions, it was possible to understand the 

significance of the outputs from this chapter. Additionally, highlighting the 

equivalence of PCF reductions to these tangible carbon savings emphasised 

the positive environmental impact of the optimisation efforts. 

 

Base-case Optimised flowsheet 

Batch 
ProA 

Conti 
ProA 

Conti PP 
Batch 
ProA 

Conti 
ProA 

Conti 
PP 

PCF (kg CO2-eq) 
(annual basis) 

4.8x105 3.6x105 7.1x105 4.4x105 2.7x105 2.5x106 

Number of 
individuals 
equivalent 
emissions 

97 72 143 89 56 51 

Number of 
intercontinental 
flights 

2 2 3 2 1 1 

Number of trees to 
offset emissions 
(hectaresa/ 
stadiumsb) 

22 167 
(56/112) 

16 416 
(42/84) 

32 682 
(82/164) 

20398 
(51/102) 

12 740 
(32/64) 

11 614 
(30/60) 
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4.4 Conclusions 

The life cycle assessment of mAb production using different flowsheets 

provided a deeper understanding of its environmental impact. The evaluation 

was conducted for an annual mAb demand of 500 kg/year and encompassed 

energy requirements, carbon footprints, and compared the environmental 

output before and after the optimisation of each flowsheet. Previous indications 

from the Process Mass Intensity (PMI) evaluation showed that the stainless-

steel based batch production was the least environmentally friendly from all 

flowsheets; nevertheless, the single-use based continuous flowsheet with 

product precipitation emerged as the option with the highest product carbon 

footprint (PCF) among the strategies after a life cycle assessment. This 

emphasised that PMI and PCF metrics can result in different conclusions, as 

the first focuses on resources consumption (e.g., water and consumables) and 

the second focuses on processes’ GHG emissions. The preferred metric to 

focus on will depend on each company’s strategies (e.g., utilities and materials 

reduction versus meeting carbon emissions/net zero goals). 

Examining the energy landscape, the batch alternative exhibited the highest 

energy consumption, primarily attributed to CIP cleaning and the electricity 

demands of large stainless-steel facilities. Amongst the continuous flowsheets, 

mAb production with protein A capture demonstrated the highest energy 

efficiency. When precipitation was chosen for the capture step, higher energy 

demands, particularly due to the large reagents preparation and consumables 

emissions, were expected comparing to protein A capture. Optimisation efforts, 

including increasing cell culture productivity, demonstrated considerable 

reductions in PCF across all flowsheets, with the precipitation flowsheet 

experiencing the most significant reduction. Finally, this chapter provided a 

broader perspective by translating PCF into day-to-day relatable metrics, such 

as equivalent emissions from intercontinental flights or the area of trees needed 

for carbon offsetting. The benchmarks highlighted that, after flowsheets 

optimisation, 30 to 50 hectares planted with trees were still needed to offset the 

carbon emissions of an annual production of 500 kg of mAb across flowsheets. 

Extending the simulation framework with the LCA methodology presented in 

this chapter elevated the added value of the decision-support tool, as full 
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process economics coupled with comprehensive environmental evaluation help 

to better understanding the potential of mAb production alternatives. 

 

Chapter 5: Economic impact of implementing process 

analytical technologies (PAT) in end-to-end continuous 

antibody manufacture  

5.1 Introduction 

Process analytical technologies (PAT) comprise advanced analytical 

techniques, sensors, and data-driven strategies that enable real-time 

monitoring, control and optimisation of critical parameters. In the dynamic 

landscape of mAb continuous manufacturing, the adoption of these 

technologies is expected to offer several economic benefits; however, exact 

cost savings are not yet clear and this information is shown to be critical to help 

the business case of PAT implementation. 

This chapter delves into the acceptance of PAT across the sector and provides 

insights into the most commonly used technologies in bioprocessing. The 

current large-scale implementation level and the barriers that might be 

hindering the widespread application of these tools are also unveiled through 

the results of an industrial survey.  

Several implementation scenarios comprising different levels of investment and 

cost savings are also shared. These studies aim to provide evidence on the 

economic trade-offs of PAT and contribute to a better-informed decision-

making related to PAT in continuous mAb manufacturing.  

Section 5.2 presents the questions included in the industrial survey and the 

methodology followed, including selected technologies and process changes, 

when assessing PAT integration from an economic perspective. Section 5.3 

starts by delving into the survey results and shares the economic outputs from 

bioprocesses with integrated process analytical technologies. Section 5.4 

summarises the main conclusions shared during the chapter.  
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5.2 Methods 

    Industrial survey 

An industrial survey was designed to gain insight into the impact of process 

analytical tools on current and future Quality Control & Quality Assurance 

(QCQA) activities and process understanding in continuous manufacturing. The 

respondent pool comprised specialists from a wide range of organisations, 

including contract manufacturers and large biopharmaceutical companies. A 

mixture of R&D, manufacturing and management members was selected for 

this study to include broad points of view. The individuals to whom the survey 

was circulated were asked to either complete the survey or to distribute it to 

people within their organisations whom they felt were best positioned to provide 

a response. 

The review of PAT technologies presented in Chapter 1 shed light on the 

available options and capabilities of these technologies when applied to 

bioprocesses. From the examples showed, it was clear that PAT could enable 

several benefits, such as reducing batch failure, improving process 

performance or reducing costs. However, it was not clear from the literature 

which of these benefits was the key motivator for the implementation and 

current PAT interest from bio-industry. Knowing the relative importance of these 

benefits could help targeting the development of specific techniques and 

accelerate the level of adoption across the sector. Equally relevant was to 

understand what might be slowing down PAT application to bioprocesses and 

discuss the strategies that can help moving PAT faster into continuous facilities.  

As the present chapter also aims to provide insights on the economic impact of 

implementing PAT in continuous mAb manufacture, get benchmarks on the 

price of these techniques was crucial. At the same time that the process 

parameters that translate the PAT benefits (e.g., increased batch success rate, 

increased volumetric productivity, decreased buffer consumption) were 

changed, the investment on PAT was also added to the equipment costs in the 

process economics model described in Chapter 2.  

The simulation tool also computed the period in which cost savings coming from 

PAT implementation would balance the investment on these technologies; thus, 
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it was also important to understand the expectations from the respondents 

regarding payback timelines.   

Most of the surveys were followed by online interviews, which enabled further 

discussion on the topics and explanation of specific efforts from each 

organisation towards PAT implementation. These interviews also provided an 

opportunity for respondents to elaborate on their survey responses, share 

specific examples or case studies from their organisations, and offer insights 

that may not have been captured by the structured survey questions alone. This 

qualitative approach complemented the “more quantitative” data gathered 

through the survey, enriching the overall analysis and findings of the study. 

Table 5.1 presents the list of organisations to which the respondents were 

affiliated and their respective position within the organisation. The individual 

interviews consisted of 40-minute online meetings and took place on dates 

between November 2021 and July 2022.   

 

    Process Economics with PAT 

 Selection of process analytical technologies 

The previous chapters showed that mAb production with protein A 

chromatography capture was the most economic and environmentally 

sustainable scheme across the continuous flowsheets studied. Thus, Conti-

ProA was selected as the base for the integration of different process analytical 

technologies. The analysis of the potential of PAT implementation towards cost 

savings demanded the integration of modified process inputs in the decision-

support tool described in Chapter 2. The process simulation with new 

parameters resulted in new COG values that were compared with Conti-ProA’s 

COG from the base-case flowsheet (as described in Chapter 3). Chapter 1 

presented several studies and PAT examples that indicated advantages over 

uncontrolled processes. However, only a limited number of authors have 

described PATs with tangible process benefits that could be translated into 

modified input parameters. These examples were selected, and the improved 

process parameters were used in the economic model. Figure 5.1 presents the 

steps in which the integration of PATs was considered.  
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Table 5.1 - List of organisations and the position held by the respondents who 

completed the survey. 

 

Organisation Position 
Interview 

post 
survey  

3M Application Engineering Specialist X 

Achilles Therapeutics Vice-President Bioprocessing X 

Amgen Vice-President Drug Substance X  

Amgen Vice-President Process Development X 

AstraZeneca Executive Director X  

Biogen 
Vice-President Global Manufacturing 
Sciences 

X 

Biogen Senior Director   

C&G Therapy 
Catapult 

Industrialisation and Manufacturing Director X 

CPI Chief Technologist X 

CPI Principal Strategic Opportunities Manager X 

CSL Behring Executive Director X 

CSL Behring Senior Manager Process Development X  

Cytiva Business Leader X  

Cytiva Senior Director X  

Eli Lilly Director Manufacturing X  

Eli Lilly Director Process Development X  

Evelo Biosciences Vice-President Bioprocess Development  

FUJIFILM Diosynth Vice-President Process Development  

GSK Director X  

GSK DSP R&D investigator X  

Lonza Director External Innovation X  

Lund University Professor  

Merck & Co. (MSD) Principal Scientist X 

Merck & Co. (MSD) Senior Director X 

Oxford Biomedica R&D Team Lead X  

Pall (now Cytiva) Senior Director   

Pharmaron UK Senior Technical Specialist X  

Sanofi Head of Purification Development X  
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Figure 5.1 - Process flowsheet used in the simulation of PAT integration in mAb 

manufacture and respective PAT considered. ProA: protein A; CEX: cation 

exchange; AEX: anion exchange; TFF: tangential flow filtration; SP-TFF: 

Single-pass tangential flow filtration; MIR: medium infra-red; HPLC: high 

performance liquid chromatography. 

 

The potential impact of PAT implementation on USP (e.g., volumetric 

productivity, perfusion rate) and DSP performance (e.g, buffer consumption, 

resin capacity) were determined through assessing literature reports. 

Goldrick et al. (2019) and Esmond-White et al. (2022) utilised multi-variate data 

analysis (MVDA) via a partial least squares (PLS) model to analyse the data 

collected in Raman spectra and demonstrated that Raman spectroscopy could 

significantly impact fermentation or cell culture productivity. Both case studies 

revealed a 20% increase in output by controlling the concentration of nutrients 

in solution (e.g., phenylacetic acid for penicillin production, glucose for mAbs) 

and adjusting the feed rate in the bioreactor. These investigations were 

conducted in fed-batch mode; however, personal communication with 

Goldrick’s research group confirmed that the level of impact of this PAT would 

also be expected in continuous mAb manufacture. In the process economics 

model, the volumetric productivity assumed for Conti-ProA’s base-case, 3 

g/L/day, was increased to 3.6 g/L/day with the implementation of PAT, to reflect 

this 20% increase.   

With regards to batch success rate, Goldrick et. al (2019) also showed that the 

control strategy with Raman spectroscopy reduced the number of below-target 

batches to zero, resulting in an increase from 94% to 100% batch success rate. 
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A study carried out by Konakovsky et al. (2015) illustrated that biocapacitance 

probes could be used to achieve real-time biomass control in cell culture, which 

could also translate into a 2% increase in batch success rate relative to 

uncontrolled scenarios. Based on personal communication with Goldrick’s 

group, the increase in batch success rate found in batch mode could also be 

applied in continuous mode. Therefore, the batch success rate in Conti-ProA 

was increased from 96% to 99%, to reflect an improvement in the range of 2% 

(Konakovsky et al., 2015) to 6% (Goldrick et al., 2019) by implementing PAT. 

Moving on to perfusion rate, Ozturk et. al (1996), Moore (2019) and Brunner 

(2019) used Raman spectroscopy, biocapacitance, and 2D-fluorescence and 

medium infra-red (MIR), respectively, to monitor media components during cell 

culture (e.g., glucose and lactate) and control the media quality and feeding 

regimes, leading to savings in media consumption (Ozturk et al., 1997; Brunner 

et al., 2019; Moore, Sanford and Zhang, 2019). In Conti-ProA’s base-case, the 

perfusion rate was set at 1.5 vv/day. With optimised media recipes and a better 

understanding of the cells’ needs, a lower rate of fresh media and product 

removal could be applied, without compromising optimal cell growth conditions. 

In the PAT-controlled scenario, media savings were translated into a decrease 

of 20% in perfusion rate (1.2 vv/day). 

For DSP, Lofgren et al. (2021) introduced an integrated continuous process 

with real‐time control utilising an at-line HPLC and an online UV monitor to track 

product concentration in the chromatography loading and eluate streams 

(Löfgren et al., 2021). This iterative learning controller (ItLC) detected 

disturbances of product concentration and automatically adjusted the peaks 

cutoff during elution. Compared to the uncontrolled scheme, the authors 

reported a ~25% increase in resin capacity (associated to more product being 

purified in each cycle compared to the process without the controller) and a 

20% decrease in buffer consumption. In the process economics model, these 

benefits were reflected by changing the binding capacity of ProA from 65 to 74 

g mAb/ml resin and CEX and AEX resins from 100 to 124 g mAb/ml resin. For 

simplicity, the decrease in buffer consumption was simulated by assuming 80% 

of the base-case column-volumes (CVs) in every chromatography step.  
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With regards to membrane lifespan, Raman spectroscopy was also employed 

during DSP by Virtanen et al. (2017), who detected early-stage membrane 

fouling by monitoring product concentration in the concentrated stream during 

ultrafiltration (Virtanen et al., 2017). Principal component analysis (PCA) 

analysed the variation within the Raman spectra and accurately identified the 

moment when membranes should be replaced during the process. Utilising this 

PAT demonstrated that membrane lifespan (i.e., operational time before 

switching) could be extended if fouling was monitored and assuming that there 

would be no concerns from a regulatory perspective. ILC membranes in Conti-

ProA operate for 4 days before replacement, meaning that, per 20 days 

continuous cycle, 5 sets are required. Personal communication with a leading 

membrane vendor (Gregor Kalinowski, Pall Life Sciences (now Cytiva), 

Germany) supported the assumption of extending operation time from 4 to 5 

days (25%) with PAT control, decreasing the total number of filters from 5 to 4 

per continuous cycle. This increase in membrane lifespan has also an impact 

on the number of QCQA tests that changed from 5 to 4 per continuous cycle.  

Some of previous examples already showcased the benefits of utilising 

multivariate data analysis coupled with PAT sensors to monitor and control USP 

and DSP. Other direct cost benefits were discussed during the interviews in the 

industrial survey. Respondents anticipated that a full integrated continuous 

process with PAT and MVDA could result in savings of approximately 20% in 

QC materials and labour costs. For simplicity, this was translated into the 

economic model by reducing the QCQA test cost from 35 to 28 k$ per batch 

release and directly reducing QC labour (calculated in Chapter 2 through the 

equations shown in Table 2.2) by 20%. Additionally, the number of operators 

required in the plant could be significantly reduced with the increased 

automation and fewer in-process sampling. Schmidt et al. (2021) estimated a 

50% decrease in labour by implementing a digital-twin based process in the 

continuous production of an mRNA vaccine for SARS-COVID-19. Discussions 

with industry experts revealed that similar reductions could be expected in 

continuous mAb manufacture. To reflect this PAT benefit, the number of 

operators in the process economics model was reduced from 6 to 3 (1 USP, 1 

DSP, 1 checker) per shift.  
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These last PAT benefits (decrease in QC materials and labour costs and the 

number of USP and DSP operators) were only simulated when all other USP 

and DSP PAT strategies were also implemented, reflecting the full PAT 

integrated scenario. 

Table 5.2 summarises the changes in input parameters in the process 

economics model. 

 

 

 

 Investment on process analytical technologies 

The implementation of PAT strategies entails investing in analytical 

technologies, which must be factored into the total equipment costs in the 

process economics model.  

Table 5.2 – Process changes simulated in Conti-ProA for the integration of PAT 

per production area. 

Area of PAT 

integration 
Improved parameter 

Change to  

base-case 

USP 

Perfusion volumetric 

productivity 
+20% 

Perfusion rate -20% 

Batch success rate +3% 

DSP 

Buffer consumption -20% 

Resin capacity +25% 

Days of membrane lifespan +25% 

USP+DSP  

(incl. MVDA) 

(all the above) (all the above) 

QC materials cost -20% 

QC labour costs -20% 

Number of operators -50% 
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Table 5.3 shows the prices obtained from research projects within UCL 

Decisional Tools group and through personal communication with companies 

that have already invested in these tools (data from survey).  

 

Table 5.3 – Equipment costs assumed in the integration of PAT in Conti-ProA  

  

As mentioned earlier, several technologies could yield similar PAT benefits; 

thus, it was assumed that the PAT investment would correspond to the most 

expensive option per process step. The investment in PAT in USP was 400 k$, 

allocated to Raman spectroscopy, while in DSP it was 600 k$, which included 

2 HPLC apparatus from the iterative learning controller (personal 

communication, Bernt Nilsson, Lund University, Sweden) and the device for 

Raman spectroscopy. The scenario reflecting PAT integration across the entire 

process was simulated with an investment of 1 M$ (Raman in USP, Raman in 

DSP and the iterative learning controller in DSP). The investment in MVDA or 

model validation was not incorporated into the COG model, as it was assumed 

to be part of the prior process development phase. Additionally, based on the 

survey responses regarding the impact of PAT on the total consumables and 

reagents costs of mAb manufacture, these were considered negligible and not 

added to the simulation. 

 

 Target analysis 

The economic evaluation of the impact of PAT implementation included a target 

analysis based on the level of PAT benefits and investment. Three levels of 

implementation were explored: low, medium and high. The process 

PAT Price Process step & benefits 

Raman  
(device + 4 

probes) 
400 k$ 

Cell culture: increased volumetric 
productivity; increased batch success rate; 
decreased perfusion rate 
ILC: increased days of lifespan 

Biocapacitance 200 k$ 
Cell culture:  increased batch success rate; 
decreased perfusion rate 

At-line HPLC 
(2 systems) 

200 k$ 
ProA chromatography, CEX and AEX: 
increased resin capacity; decreased buffer 
consumption. 
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improvements and technology investment presented in Table 5.2 and Table 

5.3, respectively, were considered as the medium level. The low and higher 

levels were designed with the aim of understanding if the cost savings would 

significantly if the PAT benefits were more modest or more accentuated than 

expected. The changes captured at each level of PAT implementation are 

presented in Table 5.4. 

 

Table 5.4 - Process changes simulated in Conti-ProA to reflect different levels 

of implementation. The batch success rate in the high impact was assumed as 

100%. The change in increased days of membrane lifespan was of 0.5 days 

from the medium (5 days) to low (4.5 days) and high (5.5 days). The number of 

QCQA tests based on the membrane lifespan was kept at 4/batch for low, 

medium and high impact. The number of operators was 4 in the low impact and 

2 in the high. 

 

 Low Medium High 

Benefits 

Perfusion volumetric productivity +10% +20% +30% 

Perfusion rate -10% -20% -30% 

Batch success rate +1% +3% +4% 

Buffer consumption -10% -20% -30% 

Resin capacity +12% +24% +30% 

Days of membrane lifespan +15% +25% +35% 

QC materials cost -10% -20% -30% 

QC labour costs -10% -20% -30% 

Number of operators -33% -50% -67% 

Investment 

Raman spectroscopy 200 k$ 400 k$ 600 k$ 

Iterative learning controller 100 k$ 200 k$ 400 k$ 

Integrated (2 Raman + ItLC) 500 k$ 1 M$ 1600 k$ 
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After simulating the cost savings for each scenario, the number of batches 

required to payback the investment in PAT was calculated according to 

equation 5.1. The number of batches was used instead the number of years, 

as it was observed that for the majority of the scenarios the return would be 

considerably fast (<1 year). As described in Chapter 2, for Conti-ProA, the 

process economics model simulated 10 batches per year. 

  

𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠 =  
PAT Investment

(𝐶𝑂𝐺𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙−𝐶𝑂𝐺𝑃𝐴𝑇)×
𝐷𝑒𝑚𝑎𝑛𝑑

𝐴𝑛𝑛𝑢𝑎𝑙 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 

                                 (5.1) 

 

Where   𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠: Number of batches required so the cost savings from PAT 

implementation would balance the investment  

 𝑃𝐴𝑇 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡: Investment in specific PAT ($) 

𝐶𝑂𝐺𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 : Cost of goods computed for the scenario using Conti-

ProA without PAT, as the base-case from Chapter 3 ($/g) 

 𝐶𝑂𝐺𝑃𝐴𝑇 : Cost of goods computed for the scenario using Conti-ProA 

flowsheet with PAT ($/g) 

 𝐷𝑒𝑚𝑎𝑛𝑑: Annual product demand (g/year) 

 𝐴𝑛𝑛𝑢𝑎𝑙 𝑏𝑎𝑡𝑐ℎ𝑒𝑠: Number of batches per year (batches/year) 
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5.3 Results and discussion 

This section presents an analysis of the PAT survey results followed by an 

economic analysis of the impact of PAT implementation on the process 

economics of continuous bioprocessing. More specifically, the views of the 

biopharmaceutical sector on the current state of play and future potential of 

PAT implementation are discussed; these were solicited via an international 

industrial survey combined with follow-on one-to-one interviews with 

industrialists. The survey results fed into an evaluation of the potential 

economic benefits of PAT. The COG savings resulting from different PAT 

benefits compared to uncontrolled processes are presented. This analysis was 

extended by understanding the cost categories (e.g., reagents costs, QC costs, 

indirect costs) that would benefit the most from each PAT implementation 

strategy. The last stage of the assessment highlighted the expected number of 

batches required for the cost savings to balance the investment in enhanced 

analytics and control.   

 

   Industrial survey 

The results of the survey are based on the responses of 28 experts. From these 

28 respondents, 25 provided further insights via an online interview. The next 

sections will provide insights on PAT viewpoints and trends within the sector.  

 

 “What is the key motivation for PAT implementation?” 

Respondents were asked to rate the following potential PAT benefits in terms 

of their relative importance: reduced batch failure, increased process 

performance and reduced QCQA and labour costs. Figure 5.2 presents the 

distribution of responses per PAT benefit. 
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Figure 5.2 – Score reflecting the importance of different benefits when 

considering PAT implementation in mAb manufacture. The survey results were 

converted to a score where 3 represented a high level of importance and 1 

representing a low level of importance. 

 

Figure 5.2 highlights that the benefit of increasing process performance was 

slightly favoured over reducing batch failure or reducing QCQA and labour 

costs; however, all benefits showed a similar level of importance. The 

interviews shed further light on the reasons for prioritising a particular benefit 

that were found to be highly company-specific.  

Participants in the pool of companies that gave “increased process 

performance” the highest importance suggested that the benefits from process 

intensification attained from continuous biomanufacturing could be augmented 

through the implementation of PAT. In general, companies which envision 

improved processes through PAT implementation also implemented PAT in a 

process development (PD) stage to help optimising their commercial scale. In 

PD, GSK is currently using automated samplers and SEC methods in the 

chromatography steps with the goal of monitoring the process and maximising 

yields and purity. Additionally, Cytiva shared their work with AstraZeneca on 

using PAT and MVDA to unlock benefits related to early column aging and 

fouling detection, also in chromatography (Ravi et al., 2023). In the upstream 

process development, AstraZeneca and Eli Lilly have investigated the use of  

Raman spectroscopy to monitor nutrients’ concentration and optimise cell 

culture outputs (Goldrick et al., 2020; Yousefi-Darani et al., 2022). In contrast, 

there were respondents who believed that mAb processes were currently 
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relatively well designed and optimised and that the installation of PAT would 

not lead to significant increases in process performance. These respondents 

belonged to the pool of companies whose PAT implementation efforts were 

driven by the benefits of reducing batch failure. 

Several respondents emphasised the importance of reducing batch failure and 

how PAT could be beneficial in reducing process variability and improving 

control. Even if current batch failure rates for mAb manufacturing are relatively 

low (1 to 5%), each batch loss represents a significant impact on a company’s 

cash flow (e.g. $1-8M per batch depending on the production scale (based on 

Chapter 3 for 100 to 1000 kg/year)). Many participants highlighted that the 

importance of PAT to monitor in-process parameters in continuous 

manufacturing may be even higher than in batch, due to the (almost) 

uninterrupted stream of product from one unit operation to the other (ideally, 

without holding times) and potentially a higher reliance on final batch release 

testing. Merck, for instance, confirmed its keenness on implementing real-time 

in-process testing and shared results from their already published work on 

using online liquid chromatography (LC) to monitor impurities and avoid out-of-

specification batches (Patel et al, 2017). Additionally, there were companies 

emphasising that the time that they are currently spending on offline testing is 

slowing down crucial stages of decision-making and can be the cause of 

sacrificing partial or entire batches. In general, companies that were focused 

on improving their batch success rates were developing PATs and integrating 

MVDA techniques with the aim of creating robust inline feedback controls. Many 

respondents relayed their efforts transitioning from offline testing to using real-

time or near-real-time data obtained from inline and at-line PATs to monitor 

mAb production. For this, critical process parameters (CPPs) such as 

temperature, pressure, flow rates, or pH, and critical quality attributes (CQAs), 

such as purity, are continuously analysed and compared to established models 

so the process conditions are automatically adjusted during manufacture.  

With a small margin of difference, QCQA and labour cost savings were the third 

ranked PAT benefit amongst the surveyed experts. Many of the respondents 

acknowledged the importance of reducing offline in-process and drug 

substance testing in mAb manufacturing. Participants shared that 20 to 50% 
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QCQA and labour savings would be expected after PAT implementation in 

continuous mAb manufacture. This information fed directly into this thesis’ 

assumptions for PAT economic evaluation.  In general, companies that were 

focused on decreasing QCQA and labour costs were also developing 

multivariate data analysis models coupled with inline testing. These models can 

interpret complex data and establish relationships between multiple variables; 

therefore, decreasing the number of tests (and sampling) needed during the 

process. From a regulatory point of view, it was interesting to witness that 

different opinions rule the sector concerning implementing inline testing. Whilst 

there were companies that suggested that regulatory agencies would easily 

follow the efforts on switching from offline towards inline testing, there were 

others that found it more challenging, as the validation of new inline testing can 

be complex and time-consuming. 

When enquired about other key motivators for the implementation of PAT in 

mAb manufacture, the most prevalent additional factor suggested by the 

respondents was reducing the waiting times for product release. Regular batch 

release takes, approximately, 45 to 60 days (reference given by CSL Behring 

and Eli Lilly), and, as an example, with PAT implementation Eli Lilly is on its 

way to reducing this time to 30 days or lower. According to the interviewed 

experts, a faster release of material would bring significant advantages in terms 

of flexibility, planning and storage. The faster in-process testing could also allow 

for faster cycles and increasing the annual productivities. Interestingly, there 

were companies that viewed PAT implementation as a move towards increased 

modernisation and innovation and were keen to act as trendsetters for the 

sector. 

 

 “Where has PAT been implemented?” 

Turning the attention to the level of PAT adoption in biopharma, the survey 

aimed to understand the process steps in which PAT has been integrated 

across the sector. (Figure 5.3). 
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Figure 5.3 – Distribution of PAT implementation per production step across the 

interviewed companies. “Other” refers to PAT installed for sample automation. 

 

The results showed that more than 90% of the respondents were from 

companies that, by 2022, had already adopted some form of process analytical 

technology either in process development or manufacture. Cell culture and 

chromatography were the process steps with the largest implementation rate. 

Moreover, from the interviews it was possible to uncover the clear link between 

the level of PAT implementation and companies with ongoing efforts towards 

switching to end-to-end continuous processes. Raman spectroscopy was the 

technology with the highest adoption rate. Published work from the interviewed 

companies on Raman spectroscopy include Goldrick et al. (2020), Eyster et al. 

(2021) and Darani et al. (2022). Sanofi disclosed the development of UV-based 

column switching in continuous capture (Godawat et al., 2012), and Evelo 

Biosciences shared the usage of near-real-time UPLC coupled with models, 

also for chromatography monitoring. As aforementioned, Merck had also 

developed online LC for the monitoring of impurities in mAb manufacture. Other 

adopted technologies included biocapacitance in cell culture, UV-based loading 

and eluting, online LC and online SEC-UPLC in chromatography. From the pool 

of respondents who had not implemented PAT (9%), most of them shared their 

intention to invest in these technologies to realise the benefits related to a 

better-controlled manufacture. 
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 “What is slowing down the implementation of PAT in mAb 

manufacture?” 

Moving on to the factors slowing down the implementation of PAT, the 

respondents raised the following issues:  

• Technology readiness level (TRL);  

• Difficult implementation; 

• Sector mind-set; 

• Regulatory uncertainties; and  

• Lack of knowledge regarding concrete economic benefits.  

 

Regarding the TRL and implementation challenges, many respondents 

highlighted that, as the development of PATs is very product and process 

specific, there is a lack of robustness, reliability, or scalability still required for 

widespread adoption. Additionally, the implementation of PAT often requires 

that the companies possess expertise on data processing and integration, 

which may be limiting. Linking to the major QCQA bottlenecks, it was also 

suggested that, for companies looking for improving quality control, advanced 

analytical options to detect bioburden, for instance, needed further maturation 

to justify the investment in these technologies. Respondents also pointed out 

the challenge associated with the pre-treatment of samples required in many 

analytical tests. The implementation of inline small buffer exchange steps prior 

to inline testing may also add complexity to these technologies’ implementation. 

Transitioning to the mind-set, implementing PAT often requires organisational 

shifts towards changing, which can encounter resistance and inertia, especially 

for well-stablished production platforms, such as mAb manufacture. The 

participants expressed that this is intrinsically related to the first two mentioned 

topics, as new technologies or complex data-driven methods can be the source 

of reluctance within the sector.     
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The hindering factor of regulatory uncertainty was frequently seen in the survey 

responses as well. As aforementioned, some respondents shared their opinion 

that it can be challenging to move to inline testing. While regulatory agencies 

have made strides in recognising the potential benefits of PAT, there is still 

variability in their acceptance and validation of PAT technologies. These 

concerns were echoed by respondents who had to undergo intensive validation 

to replace offline with inline testing. Companies must demonstrate that inline 

testing does not compromise product safety, efficacy, or regulatory compliance 

and that appropriate controls are in place to mitigate risks associated with PAT 

implementation (e.g., unexpected process variability and modelling variation). 

On the other hand, there were also participants who suggested that by fostering 

open communication and transparency about their efforts and protocols, the 

sector could build credibility with regulatory reviewers and navigate the 

regulatory approval process more effectively.  

Regarding the lack of information on economic benefits, participants shared 

that, although cost savings are expected, many companies are waiting for 

evidence of a clear return on investment from those that have already 

implemented PAT. As discussed in Section 5.2, although there were many 

examples of improvements through PAT implementation, reports on tangible 

cost reductions were limited. In this thesis, an economic evaluation 

encompassing the analysis of COG savings for different implementation 

strategies will be shared. This will provide extra insight to the sector and, 

hopefully, accelerate the decision-making about PAT implementation. 

 

 “What is the expected timeline for widespread PAT 

implementation?” 

The final stage of the survey explored the view of biopharma towards the future 

of PAT implementation, including timelines and economic insights. Figure 5.4 

presents respondents’ selection of the timeframes expected for the widespread 

integration of PAT in continuous bioprocesses.  

The results revealed an optimistic short-term outlook, as a combined total of 

41% of respondents anticipated seeing widespread PAT implementation within 
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3 years. Interestingly, another 33% of respondents foresaw implementation 

within 4 to 5 years, which means that the vast majority of the survey participants 

(74%) anticipated the materialisation of continuous bioprocesses with PAT in 

less than 5 years. These results supported the findings from Figure 5.3, where 

90% of the interviewed companies had already shared the application of PAT 

to their processes. 

 

 

Figure 5.4 – Expected timeline for widespread PAT implementation across the 

biopharmaceutical sector. 

 

 “What is the desired payback time for PAT investment?” 

Prior to the economic evaluation presented in the next section, it was also 

important to understand the respondents’ time expectations for PAT financial 

returns. The selected timeframes showed in Figure 5.5 corresponded to the 

periods after which the respondents would desire that cost savings coming from 

PAT implementation would balance their investment on these technologies.   
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Figure 5.5 – Desired payback times (years) for PAT investment. 

 

According to Figure 5.5, the majority of the respondents (38%) would consider 

to investing in PAT even if cost savings would be seen only after 6 to 10 years. 

Also, there was a considerable percentage of participants (17%) that would 

consider to investing if the economic returns would take more than 10 years, 

emphasising that the pursuit of technology modernisation was more relevant 

than rapid profitability. Interestingly, most of the respondents who selected the 

ranges “1 - 3 years” or “4 - 5 years” expressed their beliefs that cost savings 

from PAT would enable shorter payback times. Therefore, longer timeframes, 

such as more than 5 years, would be out of scope.  

 

 

    Cost-benefit and environmental analysis of PAT 

implementation in continuous processes 

The economic and environmental consequences of implementing PAT in 

continuous processes were assessed using the decisional tool introduced in 

Chapter 2. This section starts by providing insights on the economic and 

environmental outputs from controlled flowsheets compared to traditional 

uncontrolled schemes. The analysis is then extended by offering a target 
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analysis showing the impact of PAT on COG savings and technology payback 

time at different conditions. 

 

 Cost analysis of PAT implementation 

A detailed economic assessment of PAT implementation was carried out, 

examining the trade-offs between different PAT instruments and their adoption 

across different process stages, specifically USP versus DSP. Raman 

spectroscopy and an iterative learning controller (ItLC) were the technologies 

selected for this analysis due to their broad applicability and potential benefits 

in USP and/or DSP.  

Figure 5.6 outlines the economic impact of different PAT instruments across 

different productions scales in terms of COG/g for the traditional uncontrolled 

Conti-ProA and controlled flowsheets adopting one or more PAT instruments. 

When considering which PAT technology (Raman vs. ItLC) to invest in, Figure 

5.6 highlights that Raman offers greater cost efficiency at medium and larger 

scales, while the installation of either Raman spectroscopy or ItLC did not 

demonstrate major benefits at the lower 100 kg/year scale (-1% to -4% across 

single implementation scenarios). At both 500 and 1000 kg/year, Raman 

spectroscopy showed COG savings of ~20% and ~15% when installed in USP 

and DSP or in USP only, respectively. Raman at DSP only did not show relevant 

cost benefits. At the same scales, the iterative learning controller showed a 

~10% cost reduction. 

When considering which stage to focus on for PAT implementation (USP vs. 

DSP), Raman spectroscopy and the ItLC were combined in the DSP flowsheet 

and compared to the scenario with Raman in USP (now “PAT USP”). Figure 

5.7 illustrates once more the small benefits from PAT at low scale and shows 

that focusing on PAT implementation in USP is more advantageous than 

implementation in DSP at medium and larger scales. 

The increased COG savings from lower to medium and higher scales was 

explained by the fixed PAT investment being spread over a larger product 

output and the savings in variable costs (e.g., reagents, consumables) coming 

from multiple process improvements having a higher impact. The larger benefits 
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of PAT in USP (i.e., Raman spectroscopy) over the other strategies can be 

attributed to the significant decrease in reagents costs when installing Raman 

spectroscopy in cell culture (decrease in media consumption due to higher 

perfusion volumetric productivity and lower perfusion rate). For PAT in DSP 

only, the higher indirect costs (due to the investment in a 400k$ Raman system 

and a 200k$ ItLC) and higher reagents costs relative to PAT in USP outweighed 

the savings in consumables and QCQA costs. 

In the previous section, the results from the survey explored the opinion of the 

respondents on the benefits on the QCQA and labour savings of adopting PAT 

and the associated MVDA across the end-to-end process. The PAT End-to-End 

flowsheet represented in Figure 5.6 and Figure 5.7 reflected the additional 

advantages from reducing the QCQA materials and labour costs and the 

number of operators relative to Raman and ItLC process improvements only 

and included PAT implemented in both USP and DSP. This flowsheet was the 

one presenting the highest COG savings across scales (COG savings from 

PAT End-to-End flowsheet: -9% at 100 kg/year; -26% at 500 kg/year and 1000 

kg/year). 
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Figure 5.6 - Breakdown of COG/g on a cost category basis for traditional 

continuous mAb production and 6 other flowsheets with different PAT 

technologies (Raman vs. iterative learning controller) at 100, 500 and 1000 

kg/year commercial scales. At 1000 kg/year the production platform is built by 

two identical USP and DSP trains; therefore the equipment investment 

(including PAT) is approximately the double of the one found for 500 kg/year 

scenario. The embedded table shows which process benefits are simulated for 

each flowsheet. The PAT investment is a model input, while the total equipment 

costs are an output. The equipment cost is the basis for the fixed capital 

investment (FCI) calculation, from which the indirect costs are derived. 
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Figure 5.7 - Breakdown of COG/g on a cost category basis for traditional 

continuous mAb production and three flowsheets with PAT adopted at different 

stages (USP vs. DSP vs. PAT End-to-End) at 100, 500 and 1000 kg/year 

commercial scales.  

 

Diving deeper into the nuances of the PAT impact helped in understanding the 

COG outputs. The radar chart in Figure 5.8 displays all standardised values for 

each cost category across each flowsheet and it was used to simplify the 

visualisation of the PAT impact on each type of cost. Values toward the outer 

edges of the radar chart indicate relatively higher costs in that category, while 

values closer to the centre represent relatively lower costs. 

In general, the traditional flowsheet demonstrated higher costs across cost 

categories, with the exception of indirect costs. In contrast, while presenting 
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high indirect costs, the End-to-End scenario showed the lowest cost outputs in 

the remainder categories.  

Looking at reagents costs, PAT in DSP showed the highest values amongst the 

controlled flowsheets, as the reduction in chromatography buffer consumption 

alone was not as substantial as reducing cell culture media (reagents cost 

savings: -34% PAT in USP; -18% PAT in DSP; -51% PAT End-to-End). In 

contrast, moving to the consumables costs and QCQA costs, the increase in 

resin capacity offered by the iterative learning controller and the decrease in 

number of “membrane replaces/switches” offered by Raman spectroscopy in 

DSP had a marked effect in the consumables cost. Additionally, the extension 

in membrane lifespan in PAT DSP through Raman decreased the number of 

QCQA tests, which had a direct impact on the QCQA materials costs 

(consumables cost savings: -5 to -10% PAT in USP; -16 to -23% PAT in DSP; 

-21 to -44% PAT End-to-End; QCQA materials cost savings: 0% PAT in USP; 

-25% PAT in DSP; -41% PAT End-to-End). The labour costs were similar 

across flowsheets, with the only significant reduction seen for the End-to-End 

scenario. For this flowsheet, the number of operators was reduced from 6 to 3, 

leading to a significant decrease in labour expenses. 

The indirect cost category was the only one where the PAT End-to-End 

scenario showed higher values relative to the other flowsheets. As previously 

discussed, the additional cost of integrating PAT in mAb manufacture can have 

an impact on the total equipment purchase cost that influences the final COG. 

As summarised in the embedded table from Figure 5.6, for the PAT End-to-

End flowsheet, the investment in PAT equipment is simulated as 1 (for 100 and 

500 kg/year) or 2 M$ (for 1000 kg/year, with 2 parallel process trains). At 500 

and 1000 kg/year, the decrease in media and buffer volumes with the combined 

PAT benefits in USP and DSP had a significant impact on reducing the number 

of purchased SU bag containers and the size of the bioreactor, and this saving 

exceeded the investment in the PAT.  
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Figure 5.8 - Rating values ($/g converted into 0 to 1 values per category, based 

on the same methodology as detailed in Section 3.3.5) of Traditional Conti-

ProA, PAT in USP, PAT in DSP and PAT End-to-End for cost category at a) 

100 kg/year, b) 500 kg/year, and c) 1000 kg/year. Higher ratings reflect higher 

costs and are seen on the outer edges of the chart and represent higher costs. 
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 Environmental Analysis 

To quantify the broader impact of PAT implementation and the resulting 

process improvements, the economics analysis was extended with an 

environmental analysis. The PMI metric captures the reduction in water and 

consumables waste as a result of the PAT implementation and is a metric that 

is generated automatically from the cost model. The potential benefit of 

transitioning from uncontrolled to PAT-based manufacture was evaluated by 

analysing the PMI of each scenario. The results are shown in Figure 5.9 and 

are split into water and consumables PMI for the different production strategies. 

The PAT End-to-End flowsheet demonstrated the most substantial reduction in 

overall PMI compared to the Traditional flowsheet (PMI: 2200 kg/kg Traditional 

Conti-ProA; 1800 kg/kg PAT USP; 1900 kg/kg PAT DSP; 1500 kg/kg PAT End-

to-End across scales). This reduction was driven by a decrease in the water 

PMI and consumables PMI, coming from the PATs installed in USP and DSP, 

respectively. The PAT End-to-End flowsheet represented a controlled mAb 

flowsheet with Raman in USP, Raman in DSP and an iterative learning 

controller in DSP. The Raman in USP resulted in less media consumption and 

less SU bags by increasing the perfusion volumetric productivity and 

decreasing perfusion rate. The iterative learning controller in DSP resulted in 

lower buffer volumes and less SU bags waste by decreasing buffer 

consumption, and in lower resin consumption by increasing resin utilisation. 

Also in DSP, the Raman system resulted in less filters by increasing the 

membrane lifespan. 

Turning to the environmental burden comparison of PAT USP vs. PAT DSP, 

following the cost analysis where PAT USP generally presented lower COG 

than PAT DSP, the PMI results also favoured advanced control implementation 

in upstream processes over downstream.  
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Figure 5.9 - a) Water and b) consumables process mass intensity (PMI) 

breakdown for Traditional Conti-ProA, PAT in USP, PAT in DSP and PAT End-

to-End flowsheets at 100, 500 and 1000 kg/year commercial scales. The water 

and consumables PMIs include the complete production train liquid and solid 

waste, respectively. The consumables PMI is based on the total weight of 

individual disposable material (SU bags, filters, resin and pre-packed columns). 

The weight of each material was found in literature or given by suppliers. SU 

bags include both bioreactor bags and buffer hold bags. 

 

As discussed in the cost analysis, the PAT implementation in USP yielded 

significant savings in media consumption, which were also reflected in a sizable 

difference in water PMI in PAT USP relative to the Traditional flowsheet. 
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Conversely, the small savings in chromatography buffers when installing PAT 

in DSP did not significantly impact water PMI. On the consumables level, the 

decrease in SU bags from media volume reduction in PAT USP was small 

compared to the significant decrease in resin and membranes consumption in 

PAT DSP (e.g. 500 kg/year consumables PMI: 15 kg/kg Traditional Conti-ProA; 

14 kg/kg PAT USP; 10 kg/kg PAT DSP; 9 kg/kg PAT End-to-End). As seen in 

Chapter 3, the water PMI (order of thousands of kg/kg) outweighs the 

consumables PMI (order of tens of kg/kg); therefore, flowsheets leading to 

smaller water PMIs reflect a lower environmental burden according to this 

metric.  

Overall, the PAT End-to-End flowsheet presented a 30% decrease in overall 

PMI compared to the Traditional flowsheet, while PAT USP and PAT DSP led 

to 17% and 12% lower PMIs, respectively. These findings suggest that the 

environmental benefits of moving from batch to continuous flowsheets with 

protein A chromatography, as discussed in Chapters 2 and 3, could potentially 

be augmented by integrating process control in these flowsheets. 

 

 Target Analysis 

The COG analysis showed that continuous mAb flowsheets modelled with PAT 

could offer lower costs compared to the traditional uncontrolled scheme, 

depending on the scale and stage of implementation. This section begins by 

highlighting the conditions necessary in terms of process benefits and PAT 

investment to achieve a target COG saving threshold of at least 20% compared 

to the continuous flowsheet with ProA capture, thereby justifying the PAT 

implementation. The process changes implemented and PAT investment 

assumed were based on Table 5.4. This exercise also helped understanding 

the potential impact of PAT when the investment in such technologies exceeds 

anticipated values or if the process benefits fail to meet expectations. Error! 

Reference source not found. summarises the target analysis as a matrix of 

heatmaps across scales and PAT implementation strategies (PAT in USP vs. 

PAT in DSP vs. PAT End-to-End PAT). The conditions that met the target 20% 

COG savings were highlighted by the region within the thick black solid lines. 



177 
 

 

Figure 5.10 - Heat maps showing the COG difference for a) PAT in USP, b) 

PAT in DSP and c) PAT End-to-End flowsheets relative to Traditional Conti-

ProA as a function of the level of process benefit and level of investment. Blue 

cells represent COG/savings compared to the uncontrolled scheme, while red 

cells represent higher costs (i.e., when the investment in PAT equipment is not 

compensated by the associated benefits of implementing PAT). The area within 

the thick solid black line indicates the conditions at which controlled flowsheets 

present ≥20% COG/g savings compared to the uncontrolled scheme. The base 

case is with medium benefits and investment. The levels of investment at 100 

and 500 kg/year correspond to 200k$/400k$/600k$ for Low/Medium/High USP; 

300k$/600k$/1M$ for Low/Medium/High DSP and 500k$/1M$/1.6M$ for 

Low/Medium/High PAT End-to-End. The levels of investment at 1000 kg/year 

correspond to 400k$/800k$/1.2M$ for Low/Medium/High USP; 

600k$/1.2M$/2M$ for Low/Medium/High DSP and 1M$/2M$/3.2M$ for 

Low/Medium/High PAT End-to-End.  
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Examining Error! Reference source not found. vertically (PAT implemented 

at different stages), the 20% target COG saving was not achieved for 

flowsheets with PAT in DSP, while PAT in USP and the PAT End-to-End 

flowsheets showed successful combinations of benefit vs. investment. Given 

that the ranking of the options was End-to-End >USP>DSP, that trend was also 

generally mirrored in the size of the window that met the target. Additionally, 

the 20% target COG saving was not achieved for low levels of process benefits 

across strategies. While the medium benefit level represented the process 

improvements gathered from literature or discussed with industrial experts and 

simulated in the previous cost analysis, the lower benefit levels reflected 

improvements generally 50% lower than these. This indicated that the 

investment in PAT would be most attractive when the resulting process 

improvements are expected to be as significant as those reported in this work. 

Looking at the heat maps from left to right (PAT per stage at different scales), 

it was possible to infer about the impact of production scale in meeting the target 

cost saving. At 100 kg/year, implementing PAT solely in the upstream (USP) or 

downstream (DSP) stages did not result in the desired 20% cost reduction. The 

PAT End-to-End strategy, which covers both USP and DSP, could meet the 

target only if the investment was halved and/or the process benefits increased 

by 50%. Additionally, for both USP and DSP-specific PAT implementations, 

scenarios with low benefits or high investments generally led to processes with 

higher COG compared to the baseline (as seen by the red-shaded cells). As 

the production scale increased to 500 kg/year and 1000 kg/year, the range of 

conditions that could achieve the target cost savings expanded. For example, 

applying PAT only in the USP could yield savings of ≥20% if the benefits were 

high, regardless of the investment level. For the PAT End-to-End configuration, 

cost savings between 25% and 35% were achieved, highlighting the potential 

of a fully controlled bioprocess as the production scale grows. 

To link to the survey results regarding the desired payback time for PAT 

investment, the number of production batches that would reflect COG savings 

to offset the investment in enhanced control was calculated. The simulation of 

Conti-ProA using the process economics model described in Chapter 2 

assumes that each production year consists of 10 batches of 20 days. Figure 
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5.11 illustrates the payback batches, i.e. the number of batches required to pay 

back the investment in PAT, required for each combination of PAT investment 

versus benefit.  

The solid black lines in Figure 5.11 highlight the combinations of PAT 

investment and benefits leading to payback batches below 10 (i.e. 1 year) and 

reveal that, for the combinations resulting in actual COG savings, the payback 

was fast for the vast majority of cases (<1 year). 

When the decision is based on the payback, the window of combinations that 

justify the investment is larger than when looking at COG savings only. From 

top to bottom, PAT in USP and the PAT End-to-End flowsheets showed similar 

windows. PAT in DSP did not reach the 20% COG savings target for any scale 

in the previous analysis; however, it could offer payback times shorter than 1 

year depending on the conditions. 

Looking from left to right, at 100 kg/year, the payback target account be met if 

the PAT investment and the benefits are low, particularly for the PAT in USP 

and PAT in DSP scenarios. At 500 and 1000 kg/year, the only combinations 

that did not meet the target payback were medium to high investment combined 

with medium to low benefit for PAT in DSP or the “low benefit – high investment” 

scenario for PAT in USP and End-to-End flowsheets.   

The large number of batches seen on the “low/medium benefit – medium/high 

investment” cells reflects scenarios where PAT implementation is leading to 

minimal cost savings, therefore, the number of batches needed to meet the 

investment is accentuated.  

Crossing these results with the survey outputs, 8% of the participants indicated 

that the desirable payback time for PAT investment should be under 3 years, 

while the remainder pool of respondents suggested that a longer payback 

would also justify the investment. In the present payback analysis, a large range 

of PAT investment and resulting benefits were simulated and showed fast 

payback times for the majority of conditions. Therefore, the findings suggest 

that PAT in mAb manufacture can potentially satisfy the requirements from 

industry in terms of payback time.  
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Figure 5.11 - Heat maps showing the payback batches (the number of batches 

required to payback the investment in PAT) for a) PAT in USP, b) PAT in DSP 

and c) PAT End-to-End flowsheets relative to Traditional Conti-ProA as a 

function of the level of process benefit and level of investment. The area within 

the solid green line indicates the conditions at which the number of batches 

required is lower than 10 (i.e., 1 production year). The area in black 

corresponds to combinations that did not result in COG savings. The base case 

is with medium benefits and investment. 

 

5.4 Conclusions 

This chapter evaluated the trade-offs of implementing process analytical 

technologies in continuous mAb manufacture. The decisional tool was used to 

assess the implementation of different PAT systems at different process stages 

from both economic and environmental dimensions. The approach consisted of 
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configuring PAT process benefits and respective investment into the simulation 

framework, deriving the cost of goods and process mass intensity metrics and 

comparing the output from controlled flowsheets with traditional uncontrolled 

schemes. The analysis demonstrated that end-to-end continuous mAb 

flowsheets with protein A capture would benefit from the adoption of PAT 

systems in both USP and DSP. Additionally, the simulations showed that 

Raman spectroscopy, mainly through the increase in cell culture performance, 

could have a positive impact on reagents reduction and consequently COG 

savings. From an environmental perspective, controlled flowsheets showed a 

smaller PMI, meaning that the environmental benefits from process 

intensification through continuous manufacture could be augmented with the 

installation of PAT. The assessment was extended by performing a target 

analysis showing the level of investment and process improvements required 

to achieve 20% COG savings relative to end-to-end continuous mAb production 

without PAT. The analysis showed that a broad range of conditions would meet 

the target cost reduction at medium and large scales and that savings higher 

than 30% could be expected. When computing the number of production 

batches required for the cost of goods savings to balance the investment in 

PAT, it was clear that the PAT payback period would be fast for an extended 

array of combinations of investment vs. benefit. A process with PAT 

implemented end-to-end could deliver payback times shorter than one year for 

the majority of scenarios tested. Overall, this work helped quantify the expected 

cost savings from PAT implementation, which can help inform decision-making 

in the sector regarding the investment in enhanced control.  
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Chapter 6: Conclusions & future work 

The biopharmaceutical industry is pursuing novel strategies to deliver 

innovative therapies while minimising costs and environmental footprint. 

Continuous manufacturing is gaining traction as an enabler of smaller facilities 

and lower resource utilisation, thus acting as a response to the sector’s 

economic and environmental goals. Also, there is a renewed interest in using 

column-free techniques to decrease the consumption of expensive resins in 

mAb manufacture.  Nevertheless, reports on the evaluation of end-to-end 

continuous bioprocessing and its benefits are still limited. Also, there is a lack 

of economic and environmental data to support the decision-making regarding 

the introduction of column-free alternatives or process analytical tools to 

decrease costs. In the context of biopharmaceutical decision-making, 

decisional tools have been used at different stages of the product lifecycle, from 

early development to commercial production, enabling the analysis of complex 

alternatives, predict outcomes and optimise various processes. In this thesis, 

decisional tools were used to explore the economic and environmental trade-

offs of batch and continuous mAb manufacturing flowsheets with column-based 

and column-free capture steps and enhanced control.  

This chapter outlines the main conclusions derived from the work developed in 

this thesis. Additionally, several future developments are suggested to extend 

the capabilities of the decision-support framework and increase the 

understanding on continuous mAb manufacture and its potential.  

 

6.1  Overall conclusions 

Chapter 3 focused on the detailed application of process modelling to predict 

cost of goods, capital investment and PMI indicators and derive key cost 

drivers. The tool to model end-to-end continuous bioprocesses was built on 

previous UCL work and extended to integrate: i) mass balance and design 

equations for aqueous-two phase extraction and precipitation; ii) equipment 

costs and default process parameter values for column-free capture operations 

and; iii) calculations for environmental metrics with an updated database 

including masses of consumables.  
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The results showed that the continuous production strategies, whether ProA-

based (Conti-ProA) or column-free, offered COG savings compared to the 

standard batch (Batch-ProA) at lower and medium scales, while at higher 

scales only the continuous flowsheets with ProA capture or product 

precipitation (Conti-PP) presented a similar or slightly lower COG than batch. 

The cost comparison among continuous flowsheets also showed that the ProA-

based flowsheet had the lowest COG across demands, followed closely by 

product precipitation. The continuous flowsheet with aqueous two-phase 

extraction as capture step (Conti-ATPE) showed the highest cost of goods 

amongst all continuous flowsheets. The analysis revealed the underlying cost 

drivers for each flowsheet, highlighting the significant contribution of large 

media volumes costs and high equipment costs in the COG of Conti-PP and 

Conti-ATPE, respectively. 

On the environmental front, although the consumables PMI was 4 to 5-fold 

higher in continuous flowsheets, this order of magnitude was negligible 

compared to the liquid waste in batch. The water PMI of Conti-ProA, Conti-

ATPE and Conti-PP was 2 to 8-fold lower than Batch-ProA; therefore, these 

values were the key drivers for continuous environmental improvements.  

A holistic approach considering not only the economic and PMI metrics derived 

from the model, but also the operational aspects of the different flowsheets was 

developed by using a multi-criteria decision-making technique. The rankings for 

the qualitative operational criteria were obtained from a survey sent to experts 

in the field and aggregate scores were generated for each strategy. The tool 

has predicted that Conti-ProA was the best option even when environmental or 

operational criteria were considered more important than cost savings. Also, 

when the relative importance of operational criteria was low, Conti-ATPE was 

the strategy with the lowest aggregate score across scenarios. A switch point 

in the decision, where ATPE would be preferable over product precipitation, 

was found when the importance of operational feasibility (e.g., robustness, ease 

of scale-up) outweighed the environmental aspect (ratio>0.7).  

The final part of the chapter showed a target analysis to determine the cost 

reductions needed so the column-free capture flowsheets could meet a 15% 
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COG savings target compared to Conti-ProA. Based on ATPE and precipitation 

process parameters changes that showed a high impact in decreasing the cost 

of goods, the goal was to find the technological advances needed to justify the 

switch from protein A chromatography to aqueous two-phase extraction or 

product precipitation in mAb manufacturing. The installation of inline dilution 

and implementation of buffer concentrates would significantly benefit both 

column-free strategies. Also, the target was met when the usage of buffer 

concentrates was combined with increased perfusion volumetric productivities 

and increased harvest cell culture fluid percentage (HCCF %) in Conti-ATPE or 

the precipitates wash yield in Conti-PP. COG savings around 30% were 

possible at the most favourable conditions for both column-free capture 

flowsheets.  

Chapter 4 explored the application of an LCA tool to carry out a more in-depth 

environmental evaluation of different mAb production flowsheets. When 

compared to the environmental PMI metrics derived from the process model, 

this tool allowed for a more comprehensive analysis of the entire life cycle of 

products, processes and activities, as the impact of energy consumption or raw 

materials extraction was part of the methodology. The LCA tool showed that 

Conti-ProA was the strategy also with the lowest carbon footprint amongst 

flowsheets. The absence of the CIP cleaning and the smaller processing train 

led to significant energy savings that were the key driver for the smaller 

environmental footprint. The high CO2 emissions associated to PEG combined 

with the high energy consumption from the series of capture steps in Conti-PP 

were the main contributors for the high carbon footprint of the precipitation 

flowsheet. Also, contrary to what was observed through the PMI analysis, the 

environmental burden based on the carbon footprint of Conti-PP was higher 

than Batch-ProA. This result showed that different assessment methodologies 

(process mass intensity vs. product carbon footprint) can result in different 

conclusions. As PMI considers the quantity of generated waste, it favours 

intensified processes with lower water consumption, whereas PCF focuses on 

climate change and favours processes with lower GHG emissions. The 

framework was also used to understand the impact of process optimisation in 

each flowsheet’s carbon emissions and showed significant PCF reductions 
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from continuous flowsheets after increasing cell culture productivity. 

Additionally, the analysis revealed that a higher degree of optimisation of Conti-

PP, including increasing HCCF concentration, could result in carbon footprints 

lower than Conti-ProA. When converting the environmental savings into 

tangible day-to-day metrics, optimising the precipitation flowsheet led to a PCF 

reduction equivalent to reducing in more than 21 thousand the number of trees 

to offset mAb manufacture carbon emissions. 

In Chapter 5, the current state-of-the-art and the view for the implementation 

of PAT in continuous bioprocesses was explored by conducting a survey and 

series of interviews with experts in the biopharma space. The pool of 

respondents was selected to include experts from different companies and 

departments (e.g., QCQA, Engineering, R&D), ensuring that the outcomes of 

the survey would reflect different perspectives and the industry as a whole. 

Detailed overall trends and opinions ranging from the most common factors 

slowing down PAT implementing to the predicted timelines for a widespread 

adoption of these technologies in mAb manufacturing were discussed. The 

survey results showed that 90% of the respondents had already integrated 

enhanced control in at least one processing step either during process 

development or manufacture. In addition, there was also a clear link drawn 

between PAT implementation and continuous manufacturing efforts. Specific 

process benefits deriving from the implementation of these technologies were 

discussed with the experts. Such information was crucial to understand the 

technical feasibility of PAT as well as determining the inputs for the process 

economics model. Nevertheless, the set of improvements applied to reflect PAT 

benefits was still limited, as the translation into economic impacts had only been 

done (either by the interviewed experts or found in the literature) for a few of 

these applications. In the process economics model, the changes to the base-

case included USP parameters (e.g., increased perfusion volumetric 

productivities, increased perfusion rates), DSP parameters (e.g., increased 

resin capacity, increased membrane re-usage) and overall process benefits 

(e.g., decreased number of operators). The simulation tool predicted that the 

PAT attractiveness would depend on the production scale, with the investment 

being more diluted for medium and large scale facilities (500 and 1000 kg mAb 
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per year) compared to smaller scales (100 kg/year). The analysis was extended 

to look at the trade-offs in terms of levels of PAT investment and resulting 

process benefits (low vs. medium vs. high). The model determined that savings 

higher than 30% could be achieved at medium and large scales if the process 

performance was highly improved. The calculation of the number of production 

batches required so COG savings would balance the investment in PAT 

equipment also helped to provide clarity regarding the payback period of these 

technologies. For most of the scenarios assessed, the return would be visible 

in less than 1 year (10 batches). Overall, the results showed that mAb 

manufacture with end-to-end PAT integration (USP and DSP) would result in 

both COG savings and environmental gains, increasing the advantages of 

continuous bioprocessing. 

 

6.2 Future work 

While the chapters of results have showed how the framework was used to 

successfully simulate and evaluate continuous manufacturing processes, future 

work can further explore the capabilities of the decisional tool and deliver an 

expanded insight for a more informed decision-making when installing new 

processes and technologies.  

In the process economics work, the economic potential of the different 

flowsheets was investigated on the basis that the target purity specifications 

were met for all capture techniques. However, impurity removal improvements 

can be necessary when using alternatives to ProA chromatography, thus, it can 

be of interest to incorporate these differences in the process assumptions and 

evaluate the economic impact of the diverse production outputs. On the other 

hand, advances on the technical performance of aqueous two-phase extraction 

and product precipitation were discussed with experts in the field who state that 

higher process yields and lower dilution levels are currently under investigation. 

Some of these improvements were included in Chapter 2, during the 

environmental optimisation of mAb flowsheets with product precipitation; 

however, the economic outcomes should also be studied, as it is expected an 

economic positive impact that may support these alternatives’ business cases. 
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The decisional tool also embodied Monte Carlo simulations capabilities, where 

the flowsheets were evaluated under uncertainty and the likelihood of column-

free techniques achieving lower costs than the continuous ProA reference was 

checked. These simulations were performed by fixing the production scale 

(e.g., 100, 500 or 1000 kg of mAb per year) and re-sizing the facilities according 

to the batch-to-batch variation of certain process parameters. However, it would 

also be relevant to assess the likelihood of these flowsheets to meet target 

product demands under uncertainty when the size of the facility is fixed. This 

study would further clarify the perceived risks associated with column-free 

capture strategies and characterise the output variability in pre-existing facilities 

that do not look for completely re-designing their production lines.  

Furthermore, the framework developed in this research would also benefit from 

the integration of a risk-adjusted cash flow model in order to calculate net 

present value (NPV). As NPV is a metric which considers running costs, capital 

investment, but also future cash flows and risks, this would allow to account for 

longer-term consequences associated with implementing new production 

strategies.  

In the environmental sustainability work, the carbon emissions associated with 

different mAb manufacturing flowsheets were evaluated as a way of quantifying 

the climate change potential of each strategy. This metric was the one 

highlighted in this work, as biopharma’s net zero ambitions are mainly focused 

on the carbon footprint of bioprocesses. However, there are further impact 

categories, such as acidification potential, land use or ozone depletion, that can 

be analysed through the LCA tool. The relevance of these other metrics should 

be assessed together with industry experts to determine which factors must be 

in scope when looking at the environmental burden related to biomanufacturing.  

To improve the confidence on the LCA outputs it would be also relevant to 

extend the current built-in databases to better represent biopharma-related raw 

materials and processes. One of the main challenges faced in this simulation 

software was the lack of environmental data for some critical components 

integrated in the production flowsheets, such as resins or filtration membranes. 

The necessary approximations were performed to support the assessment of 
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different raw materials’ impact; however, future cooperation between suppliers 

and LCA users would certainly help increasing the robustness of this technique 

and provide more accurate estimations. On the other hand, also the application 

of sensitivity analysis in the input parameters, either raw materials or processes 

related, would offer a better understanding regarding the factors which have the 

largest influence on mAb production carbon footprint. 

Although the presented LCA approach (cradle-to-gate) had in scope the 

disposal of solid waste (consumables: filtration membranes, single-use bags) 

via incineration, it would also be of interest to study the potential of energy 

recovery, which is currently not in scope. As the mAb production process is very 

energy intense, especially due to the HVAC systems and WFI preparation, the 

utilisation of the heat coming from waste disposal could decrease the facility 

energy demand and create a more sustainable scenario.  

Comparing the energy outputs in this thesis with literature benchmarks showed 

that these calculations are highly dependent on the assumptions regarding 

HVAC and other ancillary activities requirements (e.g., WFI and CIP stations, 

media and buffer mixing). As the use-phase emissions are a big contributor for 

total product carbon footprint across flowsheets, accurate energy data is 

needed. Working with partners to get better HVAC data that covers fans, 

heating and cooling requirements for different area classifications would be 

highly recommended. Getting accurate data on current energy demands from 

WFI and CIP water generation and other process related activities would also 

be of relevance to increase the confidence in the energy outputs. Additionally, 

comparing current HVAC designs with more environmental-efficient future 

HVAC options could provide insights on the leads towards net zero 

manufacturing. 

Finally, while the LCA tool presented in this research was only applied to mAb 

manufacturing to provide benchmarks on several mAb production strategies, it 

would be also useful to apply the framework to other modalities, such as CAR-

T or AAVs. The current tool provides a strong foundation for the environmental 

assessment of other manufacturing bioprocesses, as most of the activities and 

processes can be transferred across schemes. This way, by deriving more 
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benchmarks for further modalities, one could provide a more complete 

understanding of the environmental impact of biopharmaceutical sector as a 

whole. 

In the PAT evaluation work, the model captured current expected benefits of 

PAT related to yields, failure and costs. However, the full potential of PAT in an 

Industry 4.0 future requires further scoping and demonstration in industrial 

settings on what can be achieved with PAT enabling self-autonomous 

processes that adapt automatically to variability and ultimately facilitate real-

time release. Then these need to be translated into clear process improvements 

with direct economic relevance that can be captured in the decisional tool to 

calculate the trade-offs between PAT investment and cost reduction. 

Also, the impact of installing PAT on an environmental level should be assessed 

through PCF metric. While PMIs can easily be derived from the process 

economics model, a full life cycle assessment could also indicate the impact 

that the improved process performance coming from PAT installation could 

have on the carbon footprint of mAb production. As aforementioned, a 

sensitivity analysis in the LCA study would be helpful to understand the 

parameters influencing the most the environmental impact of mAb 

manufacturing. Therefore, USP (e.g., increased perfusion volumetric 

productivities) and DSP (e.g., lower buffer consumption) parameters influenced 

by enhanced control should integrate this analysis and provide another level of 

understanding on PAT gains.  

As PAT implementation is also envisioned as a route to reduce process and 

product variability, the likelihood of meeting target costs should be compared 

with processes with higher uncertainty. Future studies should aim to integrate 

Monte Carlo simulations where the distribution of cost outputs of processes with 

and without PAT can be evaluated. Also, multiple interviewed experts have 

suggested the PAT integration in the process development stage, where these 

technologies can provide a faster process understanding and enable a more 

robust technology transfer into manufacturing. Thus, an NPV analysis would 

reflect the benefits of a shorter (and possibly less costly) development phase 

and time-to-market.  
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Appendix 

A1. Chapter 3 appendix 

A1.1 Mass balance equations 

The input parameters and main model outputs of each stage are summarised 

in Table A1.1. Process variables such as volume, mass, concentration or 

processing time represent in/outputs of most operations and are not indicated. 
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Table A1.1 - Input parameters and key model outputs for each unit operation modelled with the tool. 

Unit Operation Mode Technology Class Input parameters Key model outputs 

Inoculum Batch/continuous Vial/Shake flask Inoculum • Inoculation ratio  - 

Cell culture 

Batch Fed-batch 

Bioreactor 

• Inoculation ratio 

• Target concentration 

• Wet-cell volume 
 

• Broth composition 

Continuous Perfusion  
• Volumetric productivity 

• ATF membrane capacity 

• Perfusion rate 

• Wet-cell volume 

• Broth composition 

• Flow-rate 

Solid-Liquid 
Separation 

Batch Centrifugation Centrifugation 
• Operating duration limit 

• Solid carry-over 

• Dewatering level 

• Wet-cell volume 

• Yield 

• Supernatant composition 

Batch 
Depth Filtration 

(dead-end) 
Filtration 

• Filter capacity 

• Flush volume 

• Maximum Flux 

• Yield 

• Membrane area 

• Number of filters 

Continuous 
Depth filtration 

(cross-flow) 
• Filter capacity 

• Flush volume 

• Maximum Flux 

• Yield 

• Membrane area 

• Number of filters 

Purification 
 

Batch/continuous Chromatography Chromatography 

• Binding capacity 

• Number of cycles 

• Buffer volumes 

• Linear velocity 

• Number of columns 

• Bed height 

• Resin loading tolerance 

• Yield 

• Product stream composition 

• Column volume 

• Column Diameter 

Batch/continuous 
Aqueous two-phase 

extraction 
Aqueous two-phase 

systems 
• Ratio of cells in 

• System composition 

• Top/bottom phases ratio 

• Yield 

 

• Product stream composition 
 

Batch/continuous Precipitation Precipitation 
• Ratio of cells in 

• System composition 

• Yield 

• Residence time 
• Product stream composition 

Viral Inactivation Batch/continuous (agitated tank) Reactor • Base/Acid volume  - 

Virus removal 
filtration 

Batch Dead-end filtration 

Filtration 

• Filter capacity 

• Flush volume 

• Maximum Flux 

• Yield 

• Membrane area 

• Number of filters 

Continuous 
Single-pass tangential flow 
filtration (SPTFF – cross 

flow) 

• Filter capacity 

• Flush volume 

• Maximum Flux 

• Yield 

• Membrane area 

• Number of filters 

Concentration and 
Diafiltration (UFDF) 

 

Batch 
Tangential flo filtration (TFF 

– cross flow) 

Filtration 

• Target concentration 

• Diafiltration cycles 

• Filter capacity 

• Flush volume 

• Maximum Flux 

• Yield 

• Concentration factor 

• Membrane area 

• Number of filters 

Continuous SPTFF 

• Target concentration 

• Diafiltration cycles 

• Filter capacity 

• Operating duration limit 
 

• Flush volume 

• Maximum Flux 

• Yield 

• Concentration factor 

• Membrane area 

• Number of     filters 



217 
 

A1.1.1.  Cell culture 

𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡
𝑏𝑎𝑡𝑐ℎ

=
𝐷𝑒𝑚𝑎𝑛𝑑

η × 𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠
 (𝐴1.1) 

𝐵𝑊𝑉 =
𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑏𝑎𝑡𝑐ℎ

𝑇𝑖𝑡𝑟𝑒𝑓𝑒𝑑−𝑏𝑎𝑡𝑐ℎ 𝑜𝑟 𝑝𝑒𝑟𝑓𝑢𝑠𝑖𝑜𝑛
 (𝐴1.2)  

𝑇𝑖𝑡𝑟𝑒𝑝𝑒𝑟𝑓𝑢𝑠𝑖𝑜𝑛 =
𝑉𝑃𝑅

PR
 (𝐴1.3) 

𝐶𝑜𝑢𝑡 𝑝𝑒𝑟𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑉𝑃𝑅 × 𝑑 =

𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡
𝑏𝑎𝑡𝑐ℎ

𝑉𝑜𝑢𝑡
 (𝐴1.4) 

𝑉𝑜𝑢𝑡 𝑝𝑒𝑟𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐵𝑊𝑉 × 𝑃𝑅 × 𝑑 (𝐴1.5) 

𝑉𝑜𝑢𝑡 𝑓𝑒𝑑−𝑏𝑎𝑡𝑐ℎ = 𝐵𝑊𝑉 (𝐴1.6) 

𝑀𝑒𝑑𝑖𝑎𝑓𝑒𝑑−𝑏𝑎𝑡𝑐ℎ = 𝐵𝑊𝑉 × (1 − 𝑖) × (1 + 𝑀𝑒𝑑𝑖𝑎 𝑂𝑣𝑒𝑟𝑓𝑖𝑙𝑙) (𝐴1.7) 

𝑀𝑒𝑑𝑖𝑎𝑝𝑒𝑟𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐵𝑊𝑉 × [𝑃𝑅 × 𝑑 + 𝑃𝑅𝑟𝑎𝑚𝑝−𝑢𝑝 × 𝑑𝑟𝑎𝑚𝑝−𝑢𝑝] × (1 + 𝑀𝑒𝑑𝑖𝑎 𝑂𝑣𝑒𝑟𝑓𝑖𝑙𝑙)(𝐴1.8)  

𝑉𝑏𝑖𝑜𝑟𝑒𝑎𝑐𝑡𝑜𝑟 =
𝐵𝑊𝑉

s
 (𝐴1.9) 

𝑁𝑏𝑖𝑜𝑟𝑒𝑎𝑐𝑡𝑜𝑟𝑠 =
𝑉𝑏𝑖𝑜𝑟𝑒𝑎𝑐𝑡𝑜𝑟

𝑉𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
 (𝐴1.10) 

𝐹𝑅𝑜𝑢𝑡 𝑝𝑒𝑟𝑓𝑢𝑠𝑖𝑜𝑛 =
𝐵𝑊𝑉 × 𝑃𝑅

24
 (𝐴1.11) 

𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡/𝑏𝑎𝑡𝑐ℎ: Mass of product output per batch (kg/batch/year) 

 𝐷𝑒𝑚𝑎𝑛𝑑: Annual product demand (kg) 

 η: Cumulative DSP yield (%) 

 𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠: Number of batches designed per year (batch/year) 

             𝐵𝑊𝑉: Bioreactor working volume (L) 

 𝑇𝑖𝑡𝑟𝑒: Concentration of product in the moment of harvest (g/L installed) 

 𝑉𝑃𝑅: Volumetric productivity (g/L/day) 

 𝑃𝑅: Perfusion rate, i.e. daily vessels harvested (BWVs/day) 
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 𝐶𝑜𝑢𝑡 𝑝𝑒𝑟𝑓𝑢𝑠𝑖𝑜𝑛: Concentration of product collected after the entire perfusion time 

(g/L harvest) 

 𝑑: Days of perfusion, excluding expansion phase (day) 

 𝑉𝑜𝑢𝑡 𝑝𝑒𝑟𝑓𝑢𝑠𝑖𝑜𝑛: Volume collected after the entire perfusion time (L harvest) 

 𝑉𝑜𝑢𝑡 𝑓𝑒𝑑−𝑏𝑎𝑡𝑐ℎ: Volume of product collected at once after a fed-batch batch (L 

harvest) 

𝑀𝑒𝑑𝑖𝑎: Volume of media required for cell growing-out (L) 

 𝑖: Inoculation ratio (%) 

 𝑀𝑒𝑑𝑖𝑎 𝑜𝑣𝑒𝑟𝑓𝑖𝑙𝑙: Safety factor of media fill-in to account for pipes/valves dead-

volume (%) 

 𝑃𝑅𝑟𝑎𝑚𝑝−𝑢𝑝: Perfusion rate, i.e. daily vessels harvested during the ramp-up 

phase (BWVs/day) 

 𝑉𝑏𝑖𝑜𝑟𝑒𝑎𝑐𝑡𝑜𝑟: Actual bioreactor volume (L) 

 𝑠: Vessel sizing safety factor (%) 

 𝑁𝑏𝑖𝑜𝑟𝑒𝑎𝑐𝑡𝑜𝑟: Number of bioreactors needed for cell growing-out 

 𝑉𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒: Closest bioreactor size commercially available to the BWV (L) 

𝐹𝑅𝑜𝑢𝑡 𝑝𝑒𝑟𝑓𝑢𝑠𝑖𝑜𝑛: Flow-rate out of fermentation broth during perfusion (L/h) 

 

A1.1.2 Centrifugation 

𝐹𝑅𝑖𝑛 = 𝐹𝑅𝑜𝑢𝑡 =
𝑉𝑖𝑛

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡
 (𝐴. 12) 

𝑚𝑐𝑒𝑙𝑙𝑠 = 𝑊𝐶𝑉 × 𝑉𝑖𝑛 (𝐴. 13) 

𝑚𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 = 𝑚𝑐𝑒𝑙𝑙 × (1 − 𝑆𝐶𝑂) (𝐴. 14) 

𝐷𝑊 =

𝑚𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡
ρ𝑠𝑜𝑙𝑖𝑑

⁄

𝑉𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 +
𝑚𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡

ρ𝑠𝑜𝑙𝑖𝑑
⁄

⟺ 𝑉𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 =

𝑚𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡
ρ𝑠𝑜𝑙𝑖𝑑

⁄

𝐷𝑊
−

𝑚𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡
ρ𝑠𝑜𝑙𝑖𝑑

⁄ (𝐴. 15) 
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η𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑡𝑖𝑜𝑛 =
𝑚𝑖𝑛 − 𝐶𝑖𝑛 × 𝑉𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡

𝑚𝑖𝑛
 × 100 (𝐴. 16) 

 

𝑉𝑖𝑛: Bioreactor working volume (BWV) from fermentation step 

 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡: Limit set for the operation of centrifuge (h) 

 𝑚𝑐𝑒𝑙𝑙𝑠: Mass of cells found in the fermentation broth (kg) 

 𝑊𝐶𝑉: Wet cell volume, i.e. ratio of cells found in the fermentation broth (%) 

 𝑚𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡: Mass of solid particles found in the sediment after centrifugation (kg) 

 𝑆𝐶𝑂: Percentage of cell mass that stays in the supernatant (%) 

 𝐷𝑊: Dewatering level, i.e. level of liquid in the sediment (%) 

 ρ𝑠𝑜𝑙𝑖𝑑: Density of solid phase in the sediment (kg/L) 

 𝑉𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡: Volume of liquid phase in the sediment (L) 

 η𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑡𝑖𝑜𝑛: Yield of centrifugation step (%) 

 

A1.1.3 Filtration  
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Table A1.2 - Overview of filtration modelling equations 

 

Alternating tangential flow (ATF)  Depth Filtration Virus Removal Filtration Concentration and Diafiltration 

Continuous Batch Continuos Batch Continuos Batch Continuos 

Cross-flow Dead-end Cross-flow Dead-end Cross-flow Cross-flow Cross-flow 

M
a

s
s

 b
a

la
n

c
e

 &
 S

iz
in

g
 

𝐴𝐴𝑇𝐹 =
𝐹𝑅𝑖𝑛

𝑀𝑎𝑥 𝑓𝑙𝑢𝑥
 

 
𝐹𝑅𝑜𝑢𝑡 = 𝐹𝑅𝑖𝑛 

 
𝑚𝑜𝑢𝑡 = 𝑚𝑖𝑛 × η 

𝐴𝐷𝑒𝐹

=
𝑉𝑖𝑛

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑣

 

 
𝑚𝑜𝑢𝑡 = 𝑚𝑖𝑛 × η 

𝐴𝑉𝑅𝐹

=
𝐹𝑅𝑖𝑛

𝑀𝑎𝑥 𝑓𝑙𝑢𝑥
 

 
𝐹𝑅𝑜𝑢𝑡 = 𝐹𝑅𝑖𝑛 

 
𝑚𝑜𝑢𝑡 = 𝑚𝑖𝑛 × η 

𝐴𝑉𝑅𝐹 =
𝑚𝑖𝑛

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑚
 

 
𝑚𝑜𝑢𝑡 = 𝑚𝑖𝑛 × η 

𝐴𝑉𝑅𝐹 =
𝐹𝑅𝑖𝑛

𝑀𝑎𝑥 𝑓𝑙𝑢𝑥
 

 
𝐹𝑅𝑜𝑢𝑡 = 𝐹𝑅𝑖𝑛 

 
𝑚𝑜𝑢𝑡 = 𝑚𝑖𝑛 × η 

𝑚𝑜𝑢𝑡 = 𝑚𝑖𝑛 × η;  𝐶𝐹 =
𝑡𝐶

𝑚𝑜𝑢𝑡
𝑉𝑖𝑛

⁄
 

𝑃𝑈𝐹 = 𝑉𝑖𝑛 × (1 − 1
𝐶𝐹⁄ ) 

 

𝑃𝐷𝐹 =
𝑉𝑖𝑛

𝐶𝐹⁄ × 𝐷𝐹𝑐𝑦𝑐𝑙𝑒𝑠 

 

𝐴𝑈𝐹𝐷𝐹 =

(𝑃𝑈𝐹 + 𝑃𝐷𝐹)
𝑀𝑎𝑥 𝑓𝑙𝑢𝑥⁄

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡
 

 

Ultrafiltration: 

𝐴𝐼𝐿𝐶 =
𝐹𝑅𝑖𝑛

𝑀𝑎𝑥 𝑓𝑙𝑢𝑥
 

 

𝐶𝐹 =
𝑡𝐶

η × 𝐶𝑖𝑛
 

 

𝐹𝑅𝑜𝑢𝑡 =
𝐹𝑅𝑖𝑛

𝐶𝐹
 

 
𝑚𝑜𝑢𝑡 = 𝑚𝑖𝑛 × η 

Diafiltration: 
 

𝐴𝐼𝐿𝐷 =
𝐹𝑅𝑖𝑛

𝑀𝑎𝑥 𝑓𝑙𝑢𝑥
 

 
𝐹𝑅𝑜𝑢𝑡 = 𝐹𝑅𝑖𝑛 

 
𝑚𝑜𝑢𝑡 = 𝑚𝑖𝑛 × η 

 
 

#
 u

n
it

s
 

𝑁𝑓𝑖𝑙𝑡𝑒𝑟𝑠 =
𝑉𝑖𝑛

𝐴𝐴𝑇𝐹 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑣
 𝑁𝑓𝑖𝑙𝑡𝑒𝑟𝑠 =

𝐴𝐷𝑒𝐹

𝐴𝐷𝑒𝐹 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
 𝑁𝑓𝑖𝑙𝑡𝑒𝑟𝑠 =

𝐴𝐷𝑒𝐹

𝐴𝑉𝑅𝐹 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
 𝑁𝑇𝐹𝐹 𝑠𝑘𝑖𝑑𝑠 =

𝐴𝑈𝐹𝐷𝐹

𝐴𝑇𝐹𝐹 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
 𝑁𝐼𝐿𝐶 𝑠𝑘𝑖𝑑𝑠 =

𝐴𝐼𝐿𝐶

𝐴𝐼𝐿𝐹 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
 𝑁𝐼𝐿𝐷 𝑠𝑘𝑖𝑑𝑠 =

𝐴𝐼𝐿𝐷

𝐴𝐼𝐿𝐹 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
 

ti
m

e
 

𝑂𝑝𝑡𝑖𝑚𝑒 =
𝑉𝑖𝑛

𝐹𝑅𝑖𝑛
 𝑂𝑝𝑡𝑖𝑚𝑒 =

𝑉𝑖𝑛

𝐴𝐷𝑒𝐹 × 𝑀𝑎𝑥 𝑓𝑙𝑢𝑥
 𝑂𝑝𝑡𝑖𝑚𝑒 =

𝑉𝑖𝑛

𝐴𝑉𝑅𝐹 × 𝑀𝑎𝑥 𝑓𝑙𝑢𝑥
 𝑂𝑝𝑡𝑖𝑚𝑒 =

𝑉𝑖𝑛

𝐹𝑅𝑖𝑛
 𝑂𝑝𝑡𝑖𝑚𝑒 =

(𝑃𝑈𝐹 + 𝑃𝐷𝐹)
𝑀𝑎𝑥 𝑓𝑙𝑢𝑥⁄

𝐴𝑇𝐹𝐹 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
 𝑂𝑝𝑡𝑖𝑚𝑒 =

𝑉𝑖𝑛

𝐹𝑅𝑖𝑛
 𝑂𝑝𝑡𝑖𝑚𝑒 =

𝑉𝑖𝑛

𝐹𝑅𝑖𝑛
 

 

 

𝐴𝐴𝑇𝐹 : ATF filtering area required (m2) 

𝐴𝐴𝑇𝐹 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 : Closest filtering area commercially available to the 

𝐴𝐴𝑇𝐹 (m2) 

𝐴𝐷𝑒𝐹 :  Depth filtering area required (m2) 

𝐴𝐷𝑒𝐹 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒: 𝐹iltering area commercially available (m2) 

𝐴𝐼𝐿𝐶 : Area required for inline concentration (m2) 

𝐴𝐼𝐿𝐷: Area required for inline diafiltration (m2) 

𝐴𝑈𝐹𝐷𝐹: Ultrafiltration area required (m2)  

𝐴𝑉𝑅𝐹 :  Filtering area required for virus removal (m2) 

 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑣/𝑚: Maximum loading capacity achievable by the filter 

according to vendor (L/m2) / (g product/ m2) 

𝐶𝐹:  Concentration factor 

𝐷𝑐𝑦𝑐𝑙𝑒𝑠: Diafiltration cycles  

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡: Limit set for the operation (h) 

𝐹𝑅𝑖𝑛/𝑜𝑢𝑡: Flow rate in/out (L/h) 

𝑚𝑖𝑛/𝑜𝑢𝑡: Mass of product in/out (kg) 

𝑀𝑎𝑥 𝑓𝑙𝑢𝑥: Maximum flux achievable by the filter according to 

vendor (L/m2/h) 

 

𝑁𝑓𝑖𝑙𝑡𝑒𝑟𝑠: Number of filters needed with area available/selected 

𝑁𝑠𝑘𝑖𝑑𝑠: Number of skids required 

𝑂𝑝𝑡𝑖𝑚𝑒: Operating time (h) 

𝑃𝑈𝐹: Ultrafiltration permeate (L) 

𝑃𝐷𝐹: Diafiltration permeate (L) 

𝑡𝐶: Target concentration (g/L) 

𝑉𝑖𝑛/𝑜𝑢𝑡: Volume in/out (L) 

η: Step yield (%) 



221 
 

A1.1.4 Chromatography  

𝑡𝑛𝑜𝑛−𝑙𝑜𝑎𝑑𝑖𝑛𝑔 =
𝐵𝐻

𝐿𝑉𝑛𝑜𝑛−𝑙𝑜𝑎𝑑𝑖𝑛𝑔
× ∑ 𝐶𝑉𝐸/𝑊/𝐸𝑙/𝑆/𝑅/𝐶 (17) 

𝐶𝑉 =
𝑚𝑖𝑛

𝐷𝐵𝐶 × 𝑁𝑐𝑜𝑙 × 𝑁𝑐𝑦𝑐𝑙𝑒𝑠
 (18) 

𝐷 = √
𝐶𝑉 × 4000

𝜋 × 𝐵𝐻
(19) 

𝑅 =
𝑁𝑐𝑦𝑐𝑙𝑒𝑠 × 𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠

𝑁𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑐𝑦𝑐𝑙𝑒𝑠

(20) 

𝑅𝑇𝑙𝑜𝑎𝑑𝑖𝑛𝑔 =
𝐵𝐻

𝐿𝑉𝑙𝑜𝑎𝑑𝑖𝑛𝑔

(21) 

𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 = 𝑅𝑇𝑙𝑜𝑎𝑑𝑖𝑛𝑔 ×

𝑉𝑖𝑛
(𝑁𝑐𝑜𝑙 × 𝑁𝑐𝑦𝑐𝑙𝑒𝑠)⁄

𝐶𝑉
 (22)

 

𝐶𝑉: Chromatography column volume (L) 

 𝐷𝐵𝐶: Dynamic binding capacity (kg product/L resin) 

 𝐷: Chromatography column diameter (cm) 

 𝑅: Replaces of resin during a year 

 𝑁𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑐𝑦𝑐𝑙𝑒𝑠: Number of cycles corresponding to the resin lifespan 

𝑡𝑛𝑜𝑛−𝑙𝑜𝑎𝑑𝑖𝑛𝑔: Operating time of the non-loading chromatography steps (h) 

 𝐵𝐻: Chromatography column bed height (cm) 

 𝐿𝑉𝑛𝑜𝑛−𝑙𝑜𝑎𝑑𝑖𝑛𝑔: Linear velocity of non-loading steps (cm/h) 

 𝐶𝑉𝐸/𝑊/𝐸𝑙/𝑆/𝑅/𝐶: Number of column volumes of buffer for each non-loading step  

𝑅𝑇𝑙𝑜𝑎𝑑𝑖𝑛𝑔: Residence time of product inside the column (h) 

 𝐿𝑉𝑙𝑜𝑎𝑑𝑖𝑛𝑔: Linear loading velocity (cm/h) 

 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔: Operating time corresponding to loading step (h) 
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A1.1.5 Virus Inactivation 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 × (1 + 𝑇𝑖𝑡𝑟𝑎𝑡𝑒𝑎𝑐𝑖𝑑) × (1 + 𝑇𝑖𝑡𝑟𝑎𝑡𝑒𝑏𝑎𝑠𝑒) (23) 

𝑇𝑖𝑡𝑟𝑎𝑡𝑒𝑎𝑐𝑖𝑑: Molar ratio of acid added for pH adjustment 

 𝑇𝑖𝑡𝑟𝑎𝑡𝑒𝑏𝑎𝑠𝑒: Molar ratio of base added for pH adjustment 

 

A1.2 Equipment and material prices 

Table A1.3 – Equipment costs and scaling factors used in the calculation of fixed 

capital investment (FCI) 

 

Equipment Base size units 
Base cost 

(USD) 
Scaling 
factor, c 

Bioreactor 200 L 240 000 0.38 

SU Bioreactor Container 500 L 200 000 0.48 

Incubator 24 #Flasks 5 000 NA 

Hold-Tanks 500 L 50 000 0.38 

Product Hold-Tanks 500 L 40 000 0.38 

Product Accumulation-Tanks 500 L 40 000 0.38 

Hold-Bags Container 500 L 7 000 1  

Hold-Bags Trolleys 2000 L 450 0.13 

Prep-Tanks 500 L 50 000 0.38 

Chromatography Skid 3 L/min 160 000 0.25 

PCC Skid 1.33 L/min 280 000 0.75 

Chromatography Column 60 cm 66 500 0.90 

Packing System 50 L/min 35 000 0.36 

Centrifuge 600 L/hr 430 000 0.16 

Filter Housing 2 sqm 3 500 0.31 

TFF Skid 20 sqm 245 000 0.30 

PW Vessel 1000 L 27 500 0.38 

WFI Vessel 1000 L 36 500 0.38 

Fill-Finish Machine-A 500 Vial/hr 350 000 1  

ATF Filter Housing 5 sqm 90 300 - 

ATF Skid 5 sqm 54 400 0.38 

In-line filter skid 3.5 sqm 5 000 - 

Continuous VI system 50 L 280 000 1  

ATPE Extractor 30 cm 66 500 0.90 

Precipitation Tubular Reactor 0.48 cm 1 000 0.30 

SP TFF 0.33 sqm 250 000 - 
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Table A1.4 – Reagents and consumables prices 

  

Material Base size units 
Base cost 

(USD) 
Scaling 
factor, c 

 Hold-Tank Guard Filter   1 000    L   310   0.65  

 Hold-Bags   500    L   530  0.47  

 Product Hold-Bags   500    L   530  0.47  

 Product Accumulation-Bags   500    L   530   0.47  

 Prep-Bags   500    L   530   0.47  

 Bioreactor Bags   500    L   5 100   0.44  

 Continuous VI bags   500    L   5 100   0.44  

 Wave Bioreactor   50    L   270    0.24  

 Shake Flask   0.50   L   500    0.40  

 ATF Membrane   5    sqm   10 300    0.35  

 Membrane Chromatography   0    L   180    0.55  

 Fill-Finish Syringe   10    mL   -    - 

 Vial   0.50   mL   10   - 

 0.45um Filter   0.60   sqm   340   - 

 Depth Filter   1    sqm   300   - 

 Virus Removal Membrane   1    sqm   6 800   - 

 Ultrafiltration Membrane   1    sqm   3 200   - 

 ILC - 0.065   0.07   sqm   4 177   - 

 ILC - 0.13   0.13   sqm   4 699   - 

 ILC - 0.7   0.70   sqm   9 399   - 

 ILC - 3.5   3.50   sqm   24 983   - 

 ILD - 0.11   0.11   sqm   15 574   - 

 ILD - 0.22   0.22   sqm   16 233   - 

 ILD - 1.2   1.20   sqm   22 669   - 

 SP TFF Membrane   1    sqm   4 243   - 

 Empty Pre-packed Column   1    cm   2 000   - 

 PEG 3350  1   Kg  2   - 

 Na-Phosphate  1   Kg  1   - 

 NaCl  1   Kg 0.2 - 

 NaOH  1   Kg 5  - 

 ZnCl2  1   Kg  0.20  - 

 HEPES  1   Kg  10   - 

 Glycine 1   Kg  3   - 
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A1.2 Multi-criteria decision making survey 

 

Figure A1.1 – Survey sent to industry and academia experts on precipitation 

operational criteria. The same survey was sent to evaluate aqueous-two phase 

extraction (ATPE) 
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Table A1.5 - Responses from operational criteria survey. R= respondent. 

 

 

  ProA v. ATPE ProA v. Precipitation 
AVG 

ProA 

STD 

ProA 

AVG 

ATPE 

STD 

ATPE 

AVG 

PP 

STD 

PP 
  R1 R2 R3 R4 R5 R6 R7 R8 

  ProA ATPE ProA ATPE ProA ATPE ProA PP ProA PP ProA PP ProA PP ProA PP 

R
a
ti
n
g
 v

a
lu

e
, 

𝑥
𝑖𝑗

 

Robustness 5 3 3 5 5 4 5 2 5 2 4 5 3 1 5 4 4.4 0.9 4.0 1.0 2.5 1.7 

Ease of 

validation 
4 3 4 3 4 2 5 1 3 1 3 5 3 1 5 4 3.9 1.1 2.7 0.6 2.0 2.0 

Ease of 

installation 
3 4 2 5 1 3 4 4 4 3 3 5 2 3 5 4 2.9 1.1 4.0 1.0 3.8 1.0 

Ease of 

operation 
4 3 4 4 2 1 4 3 2 4 2 5 3 2 5 3 3.3 1.3 2.7 1.5 3.5 1.3 

Ease of 

scale up 
4 4 4 5 3 5 5 3 1 5 2 5 3 2 5 3 3.4 1.8 4.7 0.6 3.8 1.5 

W
e
ig

h
t,

 𝐸
𝑖 

Robustness 5 3 5 5 5 5 5 4 5 

Ease of 

validation 
4 5 3 2 2 4 4 3 3 

Ease of 

installation 
2 1 2 1 1 1 1 2 1 

Ease of 

operation 
4 2 1 3 4 2 2 1 2 

Ease of 

scale up 
4 4 4 4 3 3 3 3 4 
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A2. Chapter 4 appendix 

A2.1 Inputs of OpenLCA 

Table A2.1 – Buffers’ composition 

 

  

Cell culture media  

• Anhydrous Calcium Chloride: 0.165 g/L  

• Dextrose: 4.5 g/L 

• Magnesium Sulfate Anhydrous:0.1 g/L 

• Potassium Chloride: 0.33 g/L 

• Sodium Bicarbonate: 3 g/L 

• Sodium Chloride: 4.5 g/L 

• HEPES Buffer: 6 g/L 

• Sodium Phosphate 0.1 g/L 

• amino acids: 0.2 g/L 

Diafiltration buffer  • 50 mM HEPES 

Chromatography equilibration buffer  
• 150mM NaCl 

• 50mM Tris 

Chromatography wash buffer 1 
• 1.8M CaCl2 

• 50mM Tris 

Chromatography wash buffer 2 
• 10mM NaCl 

• 50mM Tris 

Chromatography elution buffer 
• 10mM NaCl 

• 50mM glycine 

Chromatography strip buffer 
• 0.5M Sodium sulfate 

• 50mM NaOH 

CIP buffer • NaOH 1% w/v 

General substitutions 
• HEPES was substituted to methane sulfonic acid 

• Tris was substituted by  
dimeethylaminopropylamine 
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A2.2 Mass balances – 500 kg/year 

Table A2.2 – Mass balance per batch using Batch-ProA (base case).  

Step Liquids In (L) Out (L) Solids In (g) Out (g) 

 
Seed 

Media 875 80 Guardfilters 200 200 

CIP buffer 4037 4037 Bioreactors bags 0 0 

PW and WFI 2306 2307 Hold bags 0 0 

Buffer 0 0 
Filters 0 0 

Resin 0 0 

Bioreactor 

Media 7879 716 Guardfilters 400 400 

CIP buffer 8163 8163 Bioreactors bags 0 0 

PW and WFI 4665 4665 Hold bags 0 0 

Buffer 0 0 
Filters 0 0 

Resin 0 0 

Centrifugation 

Media 0 1008 Guardfilters 200 200 

CIP buffer 8944 8944 Bioreactors bags 0 0 

PW and WFI 3178 3178 Hold bags 0 0 

Buffer 0 0 
Filters 0 0 

Resin 0 0 

Depth filtration 

Media 0 0 Guardfilters 200 200 

CIP buffer 4650 4650 Bioreactors bags 0 0 

PW and WFI 5057 4937 3 Hold bags 0 0 

Buffer 600 600 
Filters 48000 48000 

Resin 0 0 

ProA 

Media 0 7071 Guardfilters 1400 1400 

CIP buffer 14677 14678 Bioreactors bags 0 0 

PW and WFI 8387 8387 Hold bags 0 0 

Buffer 20126 18920 
Filters 0 0 

Resin 8294 8294 

VI 

Media 0 0 Guardfilters 400 400 

CIP buffer 4110 4110 Bioreactors bags 0 0 

PW and WFI 2348 2349 Hold bags 0 0 

Buffer 584 53 
Filters 0 0 

Resin 0 0 

CEX 

Media 0 0 Guardfilters 1400 1400 

CIP buffer 14062 14063 Bioreactors bags 0 0 

PW and WFI 8035 8036 Hold bags 0 0 

Buffer 10201 11090 
Filters 0 0 

Resin 9331 9331 

AEX 

Media 0 0 Guardfilters 1200 1200 

CIP buffer 12143 12143 Bioreactors bags 0 0 

PW and WFI 6938 6939 Hold bags 0 0 

Buffer 8335 7699 
Filters 0 0 

Resin 9331 9331 

VRF 

Media   0 Guardfilters 200 200 

CIP buffer 2517 2517 Bioreactors bags 0 0 

PW and WFI 1738 1738 Hold bags 0 0 

Buffer 39 36 
Filters 12000 12000 

Resin 0 0 

UFDF 

Media 0 0 Guardfilters 200 200 

CIP buffer 5102 5102 Bioreactors bags 0 0 

PW and WFI 4595 4595 Hold bags 0 0 

Buffer  8824 9478 Filters 48000 48000 

mAb 0 830 Resin 0 0 
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Table A2.3 – Conti-ProA (base case) 

Step Liquids In (L) Out (L) Solids In (g) Out (g) 

Seed 

Media 130 12 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 4500 4500 

PW and WFI 0 0 Hold bags 2600 2600 

Buffer  0 0 
Filters 0 0 

Resin 0 0 

Bioreactor 

Media 46112 10705 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 7000 7000 

PW and WFI 0 0 Hold bags 23600 23600 

Buffer  0 0 
Filters 2000 2000 

Resin 0 0 

ProA 

Media   35526 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 0 0 

PW and WFI 0 0 Hold bags 31400 31400 

Buffer  24455 22266 
Filters 0 0 

Resin 108000 108000 

VI 

Media 0 0 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 0 0 

PW and WFI 0 0 Hold bags 7580 7580 

Buffer  1060 96 
Filters 0 0 

Resin 0 0 

CEX 

Media 0 0 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 0 0 

PW and WFI 0 0 Hold bags 22500 22500 

Buffer 11475 13107 
Filters 0 0 

Resin 236000 236000 

AEX 

Media 0 0 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 0 0 

PW and WFI 0 0 Hold bags 13800 13800 

Buffer  7509 6455 
Filters 0 0 

Resin 221000 221000 

VRF 

Media 0 0 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 0 0 

PW and WFI 500 500 Hold bags 0 0 

Buffer  50  50  
Filters 20000 20000 

Resin 0 0 

ILC 

Media 0 0 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 0 0 

PW and WFI 46 46 Hold bags 0 0 

Buffer  65 1619 
Filters 19 19 

Resin 0 0 

ILD 

Media 0 0 Guardfilters 0 0 

CIP buffer 0   Bioreactors bags 0 0 

PW and WFI 420 420 Hold bags 31000 31000 

Buffer  15984.92  15339 Filters 19 19 

mAb 0 1670 Resin 0 0 
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Table A2.4 – Conti-PP (base case) 
 

Step Liquids In (L) Out (L) Solids In (g) Out (g) 

Seed 

Media 167 15 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 4500 4500 

PW and WFI 0 0 Hold bags 2600 2600 

Buffer 0 0 Filters 0 0 

PEG 0 0 Resin 0 0 

Bioreactor 

Media 59145 13731 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 7000 7000 

PW and WFI 0 0 Hold bags 24400 24400 

Buffer 0 0 Filters 2000 2000 

PEG 0 0 Resin 0 0 

PP 

Media 0 0 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 0 0 

PW and WFI 27340 0 Hold bags 84000 84000 

Buffer 0 0 Filters 0 0 

PEG 6370 0 Resin 0 0 

SPTFF 

Media 0 45566 Guardfilters 0 0 

CIP buffer 0   Bioreactors bags 0 0 

PW and WFI 2625 2625 Hold bags 23600 23600 

Buffer 42807 62823 Filters 2560 2560 

PEG 0 6370 Resin 0 0 

RESOL 

Media 0 0 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 0 0 

PW and WFI 0 0 Hold bags 7000 7000 

Buffer 3662 0 Filters 0 0 

PEG 0 0 Resin 0 0 

Depth 
Filtration 

Media 0   Guardfilters 200 200 

CIP buffer 3 3879 Bioreactors bags 0 0 

PW and WFI 3879 380 Hold bags 2600 2600 

Buffer 380 0 Filters 76000 76000 

PEG 0 0 Resin 0 0 

ILC 

Media 0 0 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 0 0 

PW and WFI 245 245 Hold bags 0 0 

Buffer 350 9192 Filters 19 19 

PEG 0 0 Resin 0 0 

VI 

Media 0 0 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 0 0 

PW and WFI 0 0 Hold bags 7240 7240 

Buffer 1037 94 Filters 0 0 

PEG 0 0 Resin 0 0 

CEX 

Media 0 0 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 0 0 

PW and WFI 0 0 Hold bags 22500 22500 

Buffer 11475 13040 Filters 0 0 

PEG 0 0 Resin 236000 236000 

AEX 

Media 0 0 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 0 0 

PW and WFI 0 0 Hold bags 13800 13800 

Buffer 7509 6455 Filters 0 0 

PEG 0 0 Resin 221000 221000 

VRF Media 0 0 Guardfilters 0 0 
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CIP buffer 0 0 Bioreactors bags 0 0 

PW and WFI 500 500 Hold bags 1700 1700 

Buffer 50 50 Filters 20000 20000 

PEG 0 0 Resin 0 0 

ILC 

Media 0 0 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 0 0 

PW and WFI 46 46 Hold bags 0 0 

Buffer 65 1619 Filters 19 19 

PEG 0 0 Resin 0 0 

ILD  

Media 0 0 Guardfilters 0 0 

CIP buffer 0 0 Bioreactors bags 0 0 

PW and WFI 420 420 Hold bags 31000 31000 

Buffer 16066 15420 Filters 19 19 

PEG 0 0 Resin 0 0 

mAb 0 1670 - - - 
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A3. Chapter 5 appendix 

A3.1 Survey 
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