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ABSTRACT
Archetype-based housing stock models of summer indoor temperature can support the develop-
ment of policies to manage the climate change-driven increase in cooling demand and heat-related
health impacts. Calibration can reduce the performance gap of such models, however, work on this
topic is limited.Motivatedby thegrowing importanceof this underexplored research area, this paper
introduces a framework for the Bayesian calibration of archetype-based housing stock models of
summer indoor temperature. The framework includes data-driven procedures to classify dwellings
into homogeneous groups and specify prior probability distributions. To demonstrate its applica-
tion, an established bottom-upmodel based on EnergyPluswas calibrated using data collected from
193 dwellingsmonitored during the 2009 4M survey in Leicester, England. Post-calibration, the root-
mean-square error reduced from 2.5°C to 0.6°C and remaining uncertainties were quantified. The
application of this modular framework may be extended to models of energy use and other indoor
environmental parameters.
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1. Introduction

The scale of ongoing and future climate change, largely
driven by the anthropogenic emission of greenhouse
gases, is unprecedented; global surface temperature has
increased faster since 1970 than in any other 50-year
period in the last 2000 years (IPCC 2021). The past decade
has seen the 10 hottest years since 1850, with 2023
being the warmest year on record with a mean temper-
ature 1.35°C greater than the pre-industrial (1850–1900)
average (NOAA 2024). The impact of heat on human
health and wellbeing is substantial. For example, out of
85,000–145,000 fatalities in the European Economic Area
linked to weather- and climate-related events between
1980 and 2022, 86–91% were due to heatwaves (Euro-
pean Environment Agency 2022). The effects of elevated
temperatures extend to countries for which summer heat
has not traditionally been a major public health con-
cern (Taylor et al. 2023). One such country is the United
Kingdom (UK), for which heat-related annual mortality is
projected to grow in the absence of adaptation from a
baseline of 2000 deaths in 2012 to 7,000–11,000 deaths
in 2050 (Macintyre and Murage 2023).
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The built environment plays an important role in
adapting to rising temperatures. Data from seven Euro-
pean countries suggest that people typically spend over
90% of their time indoors (Schweizer et al. 2007), and
evidence of the adverse effects of indoor heat on cogni-
tive performance, productivity, sleep quality and mortal-
ity exist (Kovats and Brisley 2021). Indoor heat exposure
can vary between buildings and occupants (Lomas et al.
2021), and its consequences will partly depend on occu-
pant vulnerability (Macintyre and Murage 2023). Thus,
effective climate change adaptation policies should take
into consideration the diversity in building characteris-
tics, occupant needs and desires.

An approach that can support effective policy devel-
opment is building stock modelling (Oraiopoulos and
Howard 2022). Building stock models can enable poli-
cymakers to assess how summer indoor temperatures
would respond to different adaptation measures and
under future climatic scenarios. Such models can be
deployed at the local, regional and national level to
inform a range of decisionmakers. A sub-class of building
stockmodels are archetype-based housing stockmodels.
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A building archetype may be defined as a notional
building that represents a group of buildings with similar
properties (Reinhart and Cerezo Davila 2016). A building
archetype is specified by: (i) grouping the building stock
according to a set of criteria (classifiers – classification);
and (ii) defining each group’s geometry, thermal prop-
erties, occupancy patterns and systems (characterization)
(Reinhart and Cerezo Davila 2016).

A concern with building energy and indoor environ-
mental performancemodelling is themismatch between
the measured and predicted performance of a build-
ing, often referred to as the performance gap (de Wilde
2014). The performance gap arises in part due to our
inability to accurately represent the real-world system
as a mathematical model, and has been described as
fundamentally an issue of verification, validation and
calibration (de Wilde 2023). This inability results from
the several sources of uncertainty that are integral to
the modelling practice (Saltelli et al. 2008). To reduce
model uncertainty, and the performance gap, one can
use calibration, which typically refers to the process of
learning the values of unknown model inputs using
field observations of the model output (Kennedy and
O’Hagan 2001). Several approaches to calibration exist
that can be broadly categorized as manual or auto-
mated (Coakley, Raftery, and Keane 2014). While man-
ual approaches predominantly rely on iterative pragmatic
intervention by the modeller, automated approaches
employ a computer-based mathematical approach to
infer parameter values. Over the last decade, automated
approacheshavebecome themorepopular choice in aca-
demic research, with several methods being proposed,
including genetic algorithms and particle swarm opti-
mization (Chong, Gu, and Jia 2021). One such method
that has gainedprominencewithin the built environment
field, with several applications demonstrating its effi-
cacy in reducing the performance gap, relies on Bayesian
inference (Oraiopoulos and Howard 2022). Introduced
by Kennedy and O’Hagan, Bayesian calibration aims to
improve a computer model’s predictive ability while
simultaneously quantifying the uncertainty of: unknown
model inputs (parametric uncertainty), themodel’s struc-
ture (model bias) and measurement error (Kennedy and
O’Hagan 2001).

Building performancemay refer to several characteris-
tics, including thermal comfort, daylight levels or indoor
air quality. Yet, the gap between actual and predicted
energy performance has received far more attention,
partly due to the greater availability of energy data (de
Wilde 2014), and partly due to the emphasis placed on
lowering energy consumption in buildings (Jain et al.
2020). In a recent review on the Bayesian calibration of

archetype-based housing stock models, all papers iden-
tified were concerned with the prediction of energy use
(Petrou 2023). Further, the review revealed that: (i) there
was limited discussion surrounding the choice of priors,1

with uniform distributions often used despite their short-
comings in representing the best available evidence; (ii)
classification, a source of uncertainty in archetype-based
Bayesian calibration,wasoften implementedonanadhoc
basis and without a clear definition of homogeneity; (iii)
in the limited examples where a data-driven approach to
classification was used, it was unclear how this approach
linkedwith the subsequent calibration process. An adhoc
approach will not necessarily result in a poor classifier
selection. However, a data-driven approach that identi-
fies classifiers based on their effect on the quantity being
modelled may reveal useful insights, result in a more
accurate classification process and, potentially, better-
performing models (Sokol, Cerezo Davila, and Reinhart
2017).

The discrepancy between actual and modelled sum-
mer indoor temperature is a pertinent performance gap
that has thus far received limited attention, despite
its implications for thermal comfort, health, and cool-
ing demand. Calibration efforts have more commonly
focused on individual buildings (Baba et al. 2022) and
test cells (Calama-González et al. 2021). A recent study
that incorporated Bayesian calibration when modelling
thermal comfort in the social housing stock of southern
Spain indicates the growing interest in the accurately pre-
dicting summer indoor temperatures (Calama-González,
Suárez, and León-Rodríguez 2022). As with most stud-
ies reviewed in Petrou (2023), the classification process
was not informed by a data-driven process. Further-
more, the limited data availablemeant that the archetype
model was calibrated against measurements from a sin-
gle dwelling.

1.1. Aim and objectives

Recognizing the important role that modelling can play
in adapting the housing stock, and with the ambi-
tion to improve existing practices, this paper aims to
explore methods to quantify and reduce uncertainties
of archetype-based housing stock models of summer
indoor temperature. This is achieved through the follow-
ing steps:

(1) Developing a Bayesian calibration framework for
archetype-based housing stock models of summer
indoor temperature;

(2) Demonstrating the framework’s application on the
UK Housing Stock Model (UK-HSM);
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(3) Quantifying the post-calibration improvement in
UK-HSM predictions.

The key contributions of this work are:

• Developing a modular framework for the data-driven
classification and Bayesian calibration of archetype-
based housing models of summer indoor tempera-
tures that relies on an explicit definition of
homogeneity

• Employing an approach to identify prior probability
distributions of model inputs depending on the data
available

• Exploring the impact that outdoor temperatures have
on the calibration of models of summer indoor
temperature

This work is the outcome of a doctoral study, andmore
information can be found in Petrou (2023).

2. Framework

Contrary to most papers reviewed in Petrou (2023),
the proposed framework relies on a clear and prac-
tical definition of homogeneity that can guide data-
driven classification: a group of dwellings is considered

Figure 1. Workflow diagram for Bayesian calibration framework.



4 G. PETROU ET AL.

homogeneous if the variability of influential building
parameters could be described by unimodal distributions.

Only the most influential parameters are considered
to: (i) avoid the excessive segmentation of the hous-
ing stock based on parameters that would not largely
influence the Quantity of Interest (QoI – desired model
output), (ii) reduce computational cost (since a greater
number of parameters would generally require a larger
training dataset), and (iii) to reduce the risk of parameter
non-identifiability2 (Chong andMenberg 2018; Menberg,
Heo, and Choudhary 2019).

The focus on unimodal distributions stems from prac-
tical and computational considerations. Multimodal dis-
tributions of building parameters are often the result
of building characteristics that differ between modes
but are shared amongst dwellings within modes (Petrou
2023). By identifying such characteristics, and group-
ing dwellings based on them, the analysis can be more
informative to policymakers who are often interested in
applying measures to groups of similar dwellings (Booth,
Choudhary, and Spiegelhalter 2012). Further, the Markov
Chain Monte Carlo (MCMC) algorithms often used in
Bayesianmodel calibration, includingHamiltonianMonte
Carlo, donotperformaswellwhen facedwithmultimodal
posteriors3 (Yun et al. 2020).

Following from the definition of homogeneity, the
Bayesian calibration framework is presented in Figure 1.

Step 1: Statistical analysis.

Bivariate and multivariate methods are used to anal-
yse empirical observations and identify which variables
(e.g. wall U-value) have a statistically significant associa-
tionwith the QoI. If the archetype-basedmodel has yet to
be developed, or further development is desired, Step 1
could inform this process.

Step 2: Categorical variable classification.

Considering the model structure, the housing stock
is segmented based on statistically significant categori-
cal variables (identified as such in Step 1) whose effect
cannot be captured by a continuous model input. For
example, assume dwelling type and floor area bandswere
both shown to be significantly associated with the QoI. If
floor area can be specified as a continuousmodel input, it
is not used as a classifier. On the other hand, the housing
stock would need to be clustered based on the dwelling
type, since this is not a continuous model input.

Step 3: Stochastic characterization.

For each cluster, a probability distribution is defined
for each continuous model input (see Section 3.6 for the

approach proposed). Where possible, the types of prob-
ability distribution functions (e.g. uniform, normal, log-
normal) are best informed by empirical data. This pro-
cess is not constrained to the dataset used in Steps 1
and 2.

Step 4: Sensitivity analysis.

This step has two main aims: (1) To determine which
of the uncertain continuous model inputs are influential
and should be calibrated, and (2) To determine whether
further segmentation of the housing stock is needed due
to influential model inputs being described by multi-
modal distributions. The first aim is common amongst
Bayesian calibration studies in the built environment,
with theMorrismethodmost frequently being used (Hou,
Hassan, and Wang 2021). The second aim is based on
the proposed definition of homogeneity. Having iden-
tified the distribution that best describes each model
input in Step 3, sensitivity analysis is used to rank model
inputs based on their feasible range of values. Subse-
quently, if any influential variables are described by mul-
timodal distributions, the housing stock is further seg-
mented for eachmode and Steps 3–4 are repeated for the
newly formedclusters. Influentialmodel inputs character-
ized by unimodal distributions can be calibrated. Fixed
values may be used to describe non-influential model
inputs.

Step 5: Bayesian calibration.

Bayes’ theorem is used to infer the posterior distri-
butions of calibration variables (and other parameters if
specified) givenempirical observations of theQoI andany
prior knowledge about the distributional form of uncer-
tain parameters. The implementation will depend on a
few factors, such as:

• Computational cost: A surrogatemodel may replace
a computationally expensive computer model (Hig-
don et al. 2004).

• Posterior estimation method: MCMC is the most
frequently used approach (Hou, Hassan, and Wang
2021).

• Data Aggregation and Likelihood: Data aggrega-
tion from different dwellings, and the choice of like-
lihood,4 are important considerations (Petrou 2023).

By sampling from the posterior distributions, the com-
puter or surrogate model can be used for predictions
under new settings that incorporate parameter and
model inadequacy uncertainties. To quantify improve-
ments in predictive performance post-calibration, part
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of the empirical observations should be reserved for
validation.

3. Methods

Section 2 introduced the general form of the Bayesian
calibration framework. In this section, the framework’s
application on a case study model is described. Sections
3.1 and 3.2 provide an overview of the model and key
datasets used. The selection of QoI is discussed in Section
3.3, while the implementation of each step of the frame-
work is detailed in Sections 3.4–3.8.

3.1. UK Housing StockModel

UK-HSM is an established bottom-up energy and indoor
environmentmodel, that reliesonEnergyPlus fordynamic
thermal simulations. Its development and application has
been discussed in-depth (Petrou 2023). Briefly, at the core
of UK-HSM is a parametric toolwritten in Pythonwith pre-
defined material, construction, geometry and occupancy
libraries, thought to be representative of the English
housing stock (Oikonomou et al. 2018; Symonds et al.
2016). Following the specification of seventeen model
inputs (Figure 2), an EnergyPlus Input Data File (.idf) is
generated and simulated. For the present analysis, Ener-
gyPlus version 8.8.0. was used, with six timesteps per
hour.

3.2. Datasets

Numerous datasets were used when implementing the
framework for the case study described in this paper. For
brevity, this sectionwill focus on the dataset used in Steps
2 and 5. The datasets used in Steps 1 and 3 have been
described in previously published work (Petrou 2023;
Petrou et al. 2019).

3.2.1. The 4M dataset
Steps 2 and 5 relied on data collected from face-to-face
questionnaires and surveys as part of the 4M project
(Lomas andKane2013). A stratified randomsampleof 575
homes, containing a mixture of dwelling types, located
in Leicester, England, was used. In addition to data on
the dwelling and occupant characteristics, hourly mea-
surements of indoor air temperature were also collected
from the living roomandmainbedroom. Further informa-
tion on the 4M survey, including details on the tempera-
ture sensors used, is given in Lomas and Kane (2013). A
subsample of 193 homes with adequate metadata were
available to use in this study.

This paper focused on the period between 1st July
and 31st August 2009 when indoor temperature

measurements were available, and heating was assumed
to be off for most homes. As noted by Lomas and Kane
(2013), the summer of 2009 was relatively cool with aver-
age temperatures for July (16.2°C) and August (16.6°C)
being 1.0°C and 0.5°C below the Leicester 10-year aver-
ages, respectively. The hottest period was between 28th
of June and 2nd of July, with the average daily tem-
perature exceeding 19°C and peaking on the 1st of July
at 24.1°C.

3.2.2. Weather data
Data from three weather stations (Figure 3), accessed
through the Met Office Integrated Data Archive System
(Met Office 2018), were used to construct a whole-year
weather file for 2009. The stations were selected based
on data availability and their proximity to the centre
of Leicester. Hourly non-solar data were taken from the
Cottesmore station. If a single hourly observation was
missing, the mean of the hour before and after was used.
Therewasone instancewhendataweremissing for a con-
tinuous time period (13 consecutive hours). In that case,
the hourly mean of same time period for the days before
and after were used. Hourly solar data were based on
recordings from the Sutton Bonington station. To replace
missing solar data for 240 hours in December 2009, data
recorded at the Church Lawford station were used. To
estimate the solar components needed for the simula-
tion, an in-house tool developed for the work described
by Symonds et al. (2017) was used.

3.3. Quantity of interest

The chosen QoI was the archetype Mean of the Daytime
Living Room Temperature (MDLRT): The mean of the day-
time (08:00–22:00) hourly living room temperatures, esti-
mated daily and averaged across dwellings belonging to
the same archetype.

The choice of QoI was based on previous and planned
use of UK-HSM in modelling the effects of home energy
efficiency and heat adaptation measures on heat-related
mortality, with the purpose to inform policymakers on
the potential costs and benefits of such measures (Tay-
lor et al. 2018, 2021). Due to the lack of evidence on
the relationship between indoor temperature and heat-
mortality, previous work assumed the effect of daytime
maximum living room temperature on heat-mortality to
beproportional to that established fordaily ambientmax-
imum temperatures (Taylor et al. 2018). Since epidemi-
ological relationships between heat-mortality and daily
mean ambient temperatures also exist (Hajat et al. 2014),
and measurements of daytime maximum living room
temperature can be biased by short-term exposure to
heat (e.g. direct sunlight), MDLRT was preferred.
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Figure 2. UK housing stock model flowchart.

3.4. Step 1: statistical analysis

Step1 for thisworkhasbeenpreviously implementedand
published (Petrou et al. 2019). The linked 2011 English
Housing Survey and Energy Follow-up Survey were used
to study the association of dwelling and household char-
acteristics with summertime Standardized Indoor Tem-
perature (SIT) in the Englishhousing stock. A linear regres-
sion model was fitted for each home using observations
of indoor living room temperature, and the daily mean
of outdoor temperature (Tout,mean) and global horizontal

irradiance (GHImean) (Petrou et al. 2019):

TLR = β0 + β1Tout,mean + β2GHImean (1)

where TLR is the daily daytime (08:00–22:00)mean indoor
temperature estimated from hourly measurements of liv-
ing room temperature and β0−2 are the fitted linear
regression coefficients for eachhome. Thesemodelswere
subsequently used to predict each home’s indoor tem-
perature for the same outdoor conditions (i.e. the SIT),
allowing for comparisons between dwellings in different
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Figure 3. The location of the weather stations used to construct the 2009 weather file.

locations. Variables with a statistically significant asso-
ciation with SIT were identified using Kruskal–Wallis
and Pairwise Mann–Whitney U-test for multiple compar-
isons with the False Discovery Rate (FDR) p-adjustment
method.

3.5. Step 2: categorical variable classification

In accordance with the definition of homogeneity pro-
vided in Section 2, and by considering the UK-HSMmodel
structure, a categorical variable shown to be statistically
significant in Step 1 was:

• Used as a classifier if modelled explicitly (e.g. dwelling
type).

• Not used as a classifier if it could be represented by
a continuous UK-HSM model input (e.g. loft U-value
representing loft insulation thickness).

Where empirical data are abundant, it is advisable to
use all classifiers in the segmentation process. In the case
study described in this paper, due to the relatively small
number of homes monitored in the 4M project, not all
classifiers were used to avoid excessive segmentation
(see Section 4.2).

3.6. Step 3: stochastic characterization

Themethodused to identify eachmodel input’s probabil-
ity distribution depended on the data available (Figure 4).
For an empirical dataset whose tabulated values are
available, a distribution-fittingmethodwas implemented
(Petrou et al. 2021). If empirical data were available only
in a graphical form, information was extracted by over-
laying the visualization onto a set of axes within the R
packageggplot2 (Wickham2016).Where thiswas applied
to a barplot or histogram, a distribution was fitted to
the extracted data. If empirical data were not available,
the probability distributions were assumed based on
judgement, experience and the information knownabout
the uncertain variable (Mun 2012). These methods are
described in detail within Section 3.1 of the Supplemen-
tary Material.

Where tabulated empirical data were available, distri-
butions were derived from dwellings whose character-
istics matched the classifiers identified in Step 2, cap-
turing potential associations between the classifiers and
model inputs. The quality of the fitted distributions was
assessed using the Akaike Information Criterion (AIC)
and Goodness-of-Fit plots, following the methodology in
Petrou et al. (2021).
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Figure 4. Workflow diagram for Step 3 (stochastic characterization).

3.7. Step 4: sensitivity analysis

The Morris method was used to carry out a two-stage
sensitivity analysis using the Python package SALib (Her-
man and Usher 2017; Iwanaga, Usher, and Herman 2022).
Informed by the work of Petersen, Kristensen, and Knud-
sen (2019), the number of levels was set at 12, while the
trajectory number was set to 500 and simulations were
run in batches until convergencewas achieved after 1300
simulations. The summer-averaged (July–August 2009)
MDLRT was used.

In the first stage, all continuous model inputs were
sampled, with their bounds informed by Step 3 (Table 1).
Categorical model inputs were specified as the most

frequent value in the homogeneous cluster (Table 1).
Through this process, variables to be calibrated or kept
fixed were identified.

In the second stage, whether the Floor Area Factor
(FAF), the only continuousmodel input available from the
4M survey, should be used as an explanatory variable was
investigated. In this stage, FAFwas allowed to vary within
0.9–1.1 (compared to 0.55–1.94 in the first stage). The
Stage 2 interval represents the idea that the FAF of a typ-
ical house (FAF = 1) has a measurement error of 10%. By
considering its influence on MDLRT in Stages 1 and 2, a
decision on whether FAF should be kept fixed, calibrated
or used as an explanatory variable was taken.
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Table 1. Lower and upper bounds of model inputs sampled to
train the surrogate model, and values of model inputs kept fixed.

Sensitivity Surrogate
analysis model training

Model input [unit] (Stage 1) Type values

Wall U-value [W/(m2K)] 0.26–1.48 Fixed 0.71
Window U-value [W/(m2K)] 1.70–3.27 Fixed 2.5
Roof U-value [W/(m2K)] 0.10–2.53 Fixed 0.51
Floor U-value [W/(m2K)] 0.22–0.90 Fixed 0.70
Permeability [m3/h/m2 @ 50 Pa] 1.7–24.7 Fixed 11.29
Solar Absorptivity 0.16–0.96 Fixed 0.63
Glazing Fraction 0.12–0.48 Calib. 0.12–0.48
Orientation [°] 0.0–330.0 Calib. 0.0–330.0
Floor Area Factor 0.55–1.94 Explan 0.55–1.94
Floor-to-Ceiling Height [m] 2.32–2.77 Fixed 2.53
Window Opening Threshold [°C] 18.0–32.0 Calib. 18.0–32.0
Electrical Gains Factor 0.08–1.21 Calib. 0.08–1.21
Dwelling Type – Fixed Semi-detached
Wall Type – Fixed Filled cavity
Occupancy Type – Fixed Pensioners
Terrain – Fixed Urban

3.8. Step 5: Bayesian calibration

The calibration approach employed in this study was
informed by the work of Kennedy and O’Hagan (2001);
Booth, Choudhary, and Spiegelhalter (2012); and Kris-
tensen et al. (2017)

A ‘complete pooling’ approach was selected, which
assumes that all observations of daily indoor temperature
come from a single distribution, the archetype distribu-
tion. Thus, all dwellings have an equal contribution to
the estimation of the calibration parameters and model
hyperparameters. The use of this method is supported
by the idea that a homogeneous cluster has been iden-
tified, and influential calibration variables are modelled
explicitly. Contrary to Booth, Choudhary, and Spiegel-
halter (2012), the monitored data within the homoge-
neous cluster were not averaged across dwellings prior
to the calibration, in order to quantify the level of unex-
plained variance that remained following the calibra-
tion. In addition, this implementation does not require
the choice of an arbitrary cut-off point for calibration
parameter values to discard, as per Cerezo et al. (2017).
It includes a model discrepancy term which could poten-
tially reveal shortcomings of UK-HSM. It also allows for
the straightforward specification of non-normal and non-
uniform priors for the calibration parameters, which will
be shown to describe the calibration parameters best in
Section 4.3.

3.8.1. Data generation and transformation
The monitored data consisted of hourly measurements
of indoor temperature collected in dwellings belonging
to the homogeneous cluster (Section 4.2). The simulation
data were generated by sampling 50 times from uniform

distributions assigned to the calibration and explana-
tory variables (Table 1). The commonly used Latin Hyper-
cube Sampling (LHS) procedurewas employed (Tian et al.
2018), following the suggestion of having at least ten
samples per variable (Chong and Menberg 2018). Uni-
formly sampling, with the same lower and upper bounds
as in Step 4, ensured that the surrogate model repre-
sented the computer model well across the entire range
of input values. As per Higdon et al. (2004), the calibration
and explanatory variables were standardized to bewithin
the range [0, 1], while the observations (monitored and
simulated MDLRT) were transformed to have a mean of 0
and variance of 1.

3.8.2. Statistical framework
Due to the large computational cost of UK-HSM simula-
tions, a Gaussian process (GP) was trained as a surrogate
model on simulated (y(S)

c ) andmonitored (y(M)
c ) data (Hig-

don et al. 2004). Each monitored or simulated home is
associatedwithD values ofMDLRT. A subset of these days
was used for the calibration (Dc = 10 days), while the
remaining was used for validation (Dv = 52 days). With
M monitored dwellings, the total number of monitored
datapoints used for the calibration isN(M)

c = M × Dc. Sim-
ilarly, with S computer simulations the total number of
simulated data points used for calibration were N(S)

c =
S × Dc. What differentiates each day in this statistical for-
mulation is a set of weather variables. Day 1 (d = 1) is
associated with weather variable valuesw1, day 2 (d = 2)
is associated with weather variable values w2 and so on.
What differentiates dwellings on the same day is the set
of explanatory variables; in this paper, the only explana-
tory variable was FAF. Thus, monitored dwelling m = 1
is associated with explanatory variable value x(M)

m=1, while
simulated dwelling s = 1 is associated with explanatory
variable value x(S)

s=1. Note that x
(M)
m=1 and x

(S)
s=1 are not equiv-

alent; x(M)
m=1 came from measurements associated with

the monitored dwelling m = 1 while x(S)
s=1 was sampled

probabilistically.
For the N(M)

c monitored data points used for the
model calibration, the following statistical relationship
was established:

y(M)
md = y(x(M)

m ,wd) = η(x(M)
m ,wd , θ) + δ(x(M)

m ,wd) + ε
(M)
md
(2)

where y(M)
md is theMDLRT for monitored homem on day d;

η(·) is the surrogatemodel represented by aGP; δ(·) is the
discrepancy term (ormodel bias) represented by a GP;wd

are the weather-related variables corresponding to day
d; x(M)

m are all other explanatory variables associated with
monitored dwelling m; θ are the calibration parameters,
and ε

(M)
md is the associated error term.
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The error term, ε(M)
md , allows for different observations,

y(x(M)
m ,wd), to exist for the same conditions and cap-

tures the measurement error and any residual variation
(Higdon et al. 2004); this might include stochastic occu-
pant behaviour and violations of the cluster homogeneity
assumption (Kristensen et al. 2017). This is assumed to
be normally distributed, with a mean of zero and a vari-
ance of 1/λε (Chong and Menberg 2018). For the N(S)

c

model data points, the following statistical relationship
was defined:

y(S)
sd = y(x(S)

s ,wd , ts) = η(x(S)
s ,wd , ts) + ε

(S)
sd

(3)

where y(S)
sd is the MDLRT for simulated home s on day

d; x(S)
s are explanatory variables associated with simu-

lated dwelling s; ts are sampled values of the calibration
parameters and ε

(S)
sd is a simulation error (or noise) term.

The simulation error term ε
(S)
sd hasbeenadded for three

reasons: (i) It ensures the numerical stability of the covari-
ance function (Higdon et al. 2004), (ii) it allows for differ-
ent values of y(x(S)

s ,wd , ts) for the same combination of
[x(S)

s ,wd , ts], which in theory couldoccurdue to the aggre-
gation process, (iii) it allows the same set of UK-HSM sim-
ulations to be used in the parametric analysis discussed in
Section 3.8.3, reducing the computational cost. The noise
term is also assumed to be normally distributed, with a
mean of zero and a variance of 1/λsim. For both relation-
ships defined in Equations (2–3), the measurement error
of x(M)

m and wd was assumed to be negligible and was
ignored.

As per Higdon et al. (2004), a single combined vector
of monitored and simulation data (of length N(M)

c + N(S)
c )

was constructed z = [y(M)
c , y(S)

c ].5 By making the com-
monly used assumption that the error terms are indepen-
dentlyand identically distributed (iid) – they come from the
same distribution and are mutually independent (Smith
2013) – the resulting likelihood function was defined as
(Higdon et al. 2004):

L(z|θ ,μ, ξ) ∝ |Kz|− 1
2 exp

{
−1
2
(z − μ)TK−1

z (z − μ)

}
(4)

where Kz is the combined covariance matrix, μ is the
mean function defined as a vector of zeros, and ξ repre-
sents thehyperparameters of the surrogatemodel,model
bias and error terms (please refer to Section 1.5.3 of the
Supplementary Material for further information). |Kz| and
K−1
z represent the determinant and inverse of the com-

bined covariance matrix, respectively.
The calibration parameter priors were based on the

distributions identified in Step 3 of the Bayesian calibra-
tion framework. However, since the calibration parame-
ters were standardized to be in the interval [0, 1], the prior

distributions had to be reparametrized to be on the same
scale. Further information on the re-parametrization pro-
cess, and the complete set of priors is provided in Sections
1.5.4–1.5.5 of the Supplementary Material.

3.8.3. The choice of variables: parametric calibration
The MDLRT observed on day d (y(M)

m,d) for a free-running

building6 is more likely to be similar to the value of
the previous day y(M)

m,d−1, than that of the previous week

y(M)
m,d−7. This is supported by the AutoCorrelation Func-
tion plot (Figure 5), where the cluster’s mean MDLRT is
autocorrelated for up to four days. For the purposes of
statistical modelling and calibration, while y(M)

md (and ε
(M)
md )

are not independent variables, they can be conditionally
independent given the right selection of predictors x(M)

m

and wd . In turn, this satisfies the assumption of the error
terms to be iid. The explanatory parameters (x(M)

m ) do not
influence the autocorrelation observed in Figure 5 since
they do not vary between days. However, the choice of
weather variables is expected to have an effect. To evalu-
ate this effect, in addition to the use of daily mean out-
door temperature and global horizontal irradiance, the
use of lag components7 of the daily mean outdoor tem-
perature was explored, with the rationale that the indoor
temperature will be affected from the ambient condi-
tions of the previous days as a result of the building and
surrounding environment’s thermal mass. The focus on
lag components of outdoor temperature was informed
by an exploratory analysis that preceded the paramet-
ric analysis. For brevity, this analysis is included in the
Supplementary Material.

While the calibration variables were selected using
the Morris method, it was not possible to know whether
parameter identifiability issues would arise prior to the
calibration (Chong and Menberg 2018), nor what their
effect would be on the model’s predictive performance.
To determine this and the effect of using one or two lag
components of outdoor temperature, a parametric cali-
bration analysis was conducted (Table 2). Due to its dom-
inance during the sensitivity analysis, the Window Open-
ing Threshold (WOT) was included in all calibration runs.
The calibrations were run for 500 MCMC iterations using
the No-U-Turn Sampler (NUTS) MCMC algorithm, shown
toperformbetter thanother commonlyusedMCMCalgo-
rithms (Chong et al. 2017).

3.8.4. Training and validation
Due to the strong association between MDLRT and Out-
door Temperature (OT) (see Section 2.2.1 of the Sup-
plementary Material), 10 days of observations (16.1%)
that provided good coverage of the OT variation over
the monitored period (62-day) were selected for training.
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Figure 5. AutoCorrelation function plot of the mean of the mean daytime living room temperature for the homogeneous cluster of
dwellings.

Table 2. Summary of variable combinations assessed during the
parametric calibration.

Experiment Weather Explanatory Calibration

EXP1 OT, GHI FAF WOT, Orientation, GF, EGF
EXP2 OT, GHI FAF WOT, Orientation, GF
EXP3 OT, GHI FAF WOT, Orientation, EGF
EXP4 OT, GHI FAF WOT, GF, EGF
EXP5 OT, GHI FAF WOT, GF
EXP6 OT, GHI FAF WOT, EGF
EXP7 OT, GHI FAF WOT, Orientation
EXP8 OT, GHI FAF WOT
EXP1L1 OT, GHI, OTL1 FAF WOT, Orientation, GF, EGF
EXP2L1 OT, GHI, OTL1 FAF WOT, Orientation, GF
EXP3L1 OT, GHI, OTL1 FAF WOT, Orientation, EGF
EXP4L1 OT, GHI, OTL1 FAF WOT, GF, EGF
EXP5L1 OT, GHI, OTL1 FAF WOT, GF
EXP6L1 OT, GHI, OTL1 FAF WOT, EGF
EXP7L1 OT, GHI, OTL1 FAF WOT, Orientation
EXP8L1 OT, GHI, OTL1 FAF WOT
EXP1L2 OT, GHI, OTL1, OTL2 FAF WOT, Orientation, GF, EGF
EXP2L2 OT, GHI, OTL1, OTL2 FAF WOT, Orientation, GF
EXP3L2 OT, GHI, OTL1, OTL2 FAF WOT, Orientation, EGF
EXP4L2 OT, GHI, OTL1, OTL2 FAF WOT, GF, EGF
EXP5L2 OT, GHI, OTL1, OTL2 FAF WOT, GF
EXP6L2 OT, GHI, OTL1, OTL2 FAF WOT, EGF
EXP7L2 OT, GHI, OTL1, OTL2 FAF WOT, Orientation
EXP8L2 OT, GHI, OTL1, OTL2 FAF WOT

Note: OT = Outdoor Temperature; GHI = Global Horizontal Irradiance,
OTL1/2 = Outdoor Temperature with Lag of 1/2 d(s); GF = Glazing
Fraction; FAF = Floor Area Factor; WOT = Window Opening Threshold;
EGF = Electrical Gains Factor.

These days were chosen because their OT values corre-
sponded to regular intervals across the rangeofOT values
observed. The remaining 52 days of observations (83.9%)
were used for validation. As the computational cost of
GP-based Bayesian calibration scales rapidly with data
(∼ O(N3)) (Chong et al. 2017), and initial calibration runs
demonstrated substantial improvement in performance
with 10 training days, the chosen length of training was
thought to offer an appropriate balance between compu-
tational cost and calibration performance.

To capture the uncertainty in the calibrated param-
eters and hyperparameters, 500 posterior samples were
used to predict the MDLRT of each day. To quantify
the calibrated model’s predictive performance, the mean
predicted MDLRT was estimated for each day, resulting

in a vector of predictions y(P)
v = [y(P)

1 , y(P)
2 , · · · , y(P)

Dv
]. The

averaged predictions were compared against the daily
mean values of the monitored data during the same

unseen period (y(M)
v = [y(M)

1 , y(M)
2 , · · · , y(M)

Dv
]) using a set

commonly used set of validation metrics: Root Mean
Square Error (RMSE), Mean Bias Error (NMBE) and Coeffi-
cient of Determination (R2). Themonitoreddatawere also
compared against the MDLRT predicted by UK-HSM, pro-
viding a baseline for the improvement in predictive per-
formance following the calibration. The computer simu-
lations and calibrations were run on UCL’s High Perfor-
mance Computing facilities utilizing Intel(R) Xeon(R) Gold
6140 CPU (2.30GHz) and Intel(R) Xeon(R) Gold 6240 CPU
(2.60GHz) processors.

4. Results

4.1. Step 1: statistical analysis

The first step relies on the analysis carried out by Petrou
et al. (2019). Statistically significant differences were
found in the living room SIT for the following variables:
dwelling type, dwelling age, floor area, storey, construc-
tion, presence of double glazing, nature of area, main
heating system and SAP 09,8 age band of oldest per-
son, extended tenure of household, occupant with illness
or disability, household income (5 bands) and occupant
on means tested or certain disability-related benefits.
From these variables, floor area is modelled as continu-
ous model input. The choice of classifiers based on the
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Figure 6. Flowchart of the first stage of the classification process and the subsequent cleaning.

remaining variables, and the UK-HSM model structure, is
discussed in the next section.

4.2. Step 2: categorical variable classification

The 4M dataset was first segmented according to the
dwelling type, a categorical model input in UK-HSM
(Figure 6). Due to its larger sample size compared to oth-
ers, the rest of the classification focused on the group of
semi-detached dwellings, which is the most frequently
occurring dwelling type in the UK (DLUHC 2021). Since
all dwellings were located in Leicester, the same terrain
(Urban) was assumed.

The wall type and glazing type were both associated
with the living room SIT and were thus used as classifiers.

Of the dwelling characteristics identified as potentially
important in Step 1, number of storeys, dwelling age and
SAP 09 were not used as classifiers. This was a pragmatic
decision since further classification could result in groups
of dwellings that were too small, and where extreme
values (outliers) within these groups could significantly
influence the calibration process. The number of storeys
was thought to have a small effect since the calibra-
tion focused on living rooms which are most commonly
located on the ground floor. The effects of the dwellings’
age and SAP rating are expected to be at least partly
captured through the wall and glazing type.

Classification based on household variables was not
performed. The only household variable that may be
partly captured in UK-HSM is the household composition
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Table 3. Model input distributions identified for the chosen clus-
ter of dwellings.

Parameter Distribution Resources

Wall U-value gamma(shape = 9.5, rate = 13) [1]
Window U-value norm(mean = 2.5, sd = 0.3) [2]
Roof U-value Multimodal [2, 3]
Floor U-value Multimodal [2, 4]
Permeability weibull(shape = 2.6, scale = 13) [3, 5, 6, 7]
Solar Absorptivity beta(shape1 = 4, shape2 = 2.5) [8]
Glazing Fraction gamma(shape = 14, rate = 53) [4]
Orientation unif(min = 0, max = 330) [4]
Floor Area Factor invweibull(shape = 5.5, scale = 0.74) [3]
Floor-to-Ceiling
Height

lnorm(meanlog = 0.93, sdlog = 0.034) [4]

Window Opening
Threshold

logis(location = 23.6, scale = 1.85) [9]

Electrical Gains Fac-
tor

gamma(shape = 4.3, rate = 9.5) [10]

Sources: [1] Hulme and Doran (2014); [2] BRE (2019); [3] 4M; [4] DLUHC (2021);
[5] Stephen (2000); [6] BRE (2004); [7] Pan (2010); [8] CIBSE (2015); [9] Rijal
et al. (2007); [10] Intertek (2012).

which was not shown to be significantly associated with
summer living room indoor temperatures. Followingdata
cleaning – see Petrou (2023) – the rest of this paper
will concentrate on the largest cluster: semi-detached
dwellings with filled cavity walls and double glazing.

4.3. Step 3: stochastic characterization

Through the application of the methods described in
Section 3.6, a unimodal probability distribution was iden-
tified for ten out of the twelve continuous model inputs.
Further discussion on selecting these distributions, and
their goodness-of-fit, is provided in Petrou (2023). The
two model inputs described by multimodal distributions
are the Roof U-value and Floor U-value (Table 3). Whether
further segmentation is recommended based on the
modes of these twomodel inputs was determined by the
sensitivity analysis in Section 4.4.

4.4. Step 4: sensitivity analysis

Floor U-value and Roof U-value, the two model inputs
described by a multimodal distribution in Step 3 were
found to be non-influential, thus, further segmentation
based on their modes was not required (Table 4). Assum-
ing an uncertainty of ±10% around the FAF value of 1.0
resulted in a comparatively small μ∗ = 0.16, almost 2.5
times smaller than the next largest μ∗ and 43.5 times
smaller than the most influential parameter. Therefore,
variation within this bound is relatively unimportant and
this parameter may be used as an explanatory variable.
In both stages of the sensitivity analysis, WOT was the
dominant model input and was selected for calibration,
together with the Orientation, Glazing Fraction and Elec-
trical Gains Factor (EGF).

Table 4. Summary of the rank and absolute mean of elementary
effects (μ∗) for eachparameter, in ascendingorder of Stage2 rank.

Stage 1 Stage 2
Parameter Rank (μ∗) Rank (μ∗) Type

WindowOpening Threshold 1 (7.20) 1 (6.96) Calib.
Orientation 3 (1.21) 2 (1.10) Calib.
Glazing Fraction 2 (1.40) 3 (0.97) Calib.
Electrical Gains Factor 4 (1.14) 4 (0.86) Calib.
Permeability 6 (0.74) 5 (0.71) Fixed
Wall U-value 7 (0.68) 6 (0.63) Fixed
Window U-value 8 (0.57) 7 (0.58) Fixed
Solar Absorptivity 9 (0.46) 8 (0.37) Fixed
Floor Area Factor 5 (0.91) 9 (0.16) Explan
Roof U-value 10 (0.11) 10 (0.08) Fixed
Floor U-value 11 (0.09) 11 (0.08) Fixed
Floor-to-Ceiling Height 12 (0.08) 12 (0.08) Fixed

Notes: Type corresponds to how each parameter will be treated at the calibra-
tion step. Calibration parameters are in bold.

4.5. Step 5: Bayesian calibration

The daily mean MDLRT (y(M)
v ) of the calibrated, bias-

corrected,models (η(x,w, t) + δ(x,w)) is comparedagainst
the uncalibrated model in Section 4.5.1. An in-depth
exploration of the calibration results for a single model is
presented in Section 4.5.2.

4.5.1. Parametric analysis
For the models where the outdoor temperature and
GHI were the only weather variables used (EXP1–8), the
only experiment that did not converge is EXP3 (Table 5).
For the models that converged, their out-of-sample pre-
dictive performance was higher than the uncalibrated
model according to RMSE, and MBE, but lower accord-
ing to R2. Specifically, RMSE reduced by 60.5–62.4% from
a baseline of 2.53°C, while MBE decreased from −2.44°C
by 93.1–93.9%. However, R2 also reduced from 0.79 to
0.41–0.45.

Following the addition of a one-day lag compo-
nent of the outdoor temperature (EXP1L1–EXP8L1), five
out of the eight experiments converged (Table 5). The
performance of these experiments is comparable, and
has improved compared to the first set of experiments
(EXP1–8); RMSE andMBE range between 0.64–0.70°C and
0.03–0.05°C, respectively. The R2 for the calibrated mod-
els is lower (0.70–0.74) than that of the uncalibrated
model (0.79), but higher than for EXP1–8 (0.41–0.45).

The addition of a second outdoor temperature lag
component (EXP1L2–EXP8L2) resulted in further improve-
ment in predictive performance across most metrics.
RMSEandR2 for EXP1L2–EXP8L2havemarginally improved
when compared against EXP1L1–EXP8L1. Themagnitude
of MBE is comparable for the two sets of models and less
than 0.1°C, but the sign differs. Two experiments (EXP1L2,
EXP7L2) did not converge within 500 iterations.
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Table 5. Validation metrics calculated over a 52-day period for
the parametric calibration experiments.

RMSE [°C] MBE [°C]
(�RMSE [%]) (�MBE [%]) R2 Time [hrs]

Uncalb. 2.53 (0) −2.44 (0) 0.79 –
EXP1 0.98 (−61.2) −0.16 (−93.5) 0.43 1.77
EXP2 1.00 (−60.6) −0.16 (−93.3) 0.41 1.02
EXP3 –
EXP4 1.00 (−60.5) −0.15 (−93.9) 0.41 1.14
EXP5 0.96 (−61.9) −0.15 (−93.9) 0.43 0.99
EXP6 0.96 (−62.1) −0.16 (−93.3) 0.44 1.2
EXP7 0.95 (−62.3) −0.17 (−93.1) 0.44 1.32
EXP8 0.95 (−62.4) −0.17 (−93.2) 0.45 0.73
EXP1L1 –
EXP2L1 0.64 (−74.5) 0.05 (−101.9) 0.73 1.35
EXP3L1 –
EXP4L1 0.65 (−74.2) 0.04 (−101.8) 0.73 1.25
EXP5L1 0.70 (−72.5) 0.05 (−101.9) 0.7 1.36
EXP6L1 0.64 (−74.8) 0.03 (−101.1) 0.74 1.29
EXP7L1 –
EXP8L1 0.65 (−74.2) 0.03 (−101) 0.72 1.2
EXP1L2 –
EXP2L2 0.59 (−76.5) −0.02 (−99.3) 0.77 1.53
EXP3L2 0.58 (−76.9) −0.04 (−98.2) 0.77 1.95
EXP4L2 0.60 (−76.2) −0.05 (−98.1) 0.76 2.13
EXP5L2 0.64 (−74.6) −0.04 (−98.2) 0.74 1.68
EXP6L2 0.59 (−76.8) −0.05 (−98) 0.77 1.67
EXP7L2 –
EXP8L2 0.60 (−76.5) −0.04 (−98.3) 0.77 1.66

Notes: RMSE = Root-mean-square error, �RMSE = Percentage change
in RMSE post-calibration, MBE = mean bias error, �MBE = Percentage
change in MBE post-calibration, R2 = coefficient of determination,
Time = Calibration computing time. Experiments EXP3, EXP1L1, EXP3L1,
EXP7L1, EXP1L2 and EXP7L2 did not converge. Best performing models are
in bold.

A common characteristic amongst all experiments
that did not converge (EXP3, EXP1L1, EXP3L1, EXP7L1,
EXP1L2, EXP7L2) was the use of Orientation and WOT
as calibration parameters. Since other calibration experi-
ments that included WOT did converge, including EXP8,
EXP8L1 and EXP8L2 where WOT was the only calibra-
tion parameter, the use of Orientation may have con-
tributed to the lack of convergence. A clear pattern
regarding the time taken to complete 500MCMCwas not
observed.

Within the first set of experiments (EXP1–8), the best-
performing model is EXP8, WOT being the only cali-
bration parameter. Amongst the models with a single
lag component, the best-performing model is EXP6L1,
where EGF was calibrated together with WOT. The best-
performing model across all experiments is EXP3L2, with
WOT, EGF and Orientation being calibrated, although
its performance was only marginally better than EXP6L2
where Orientation was not used. Given the lack of con-
vergence in other models that included Orientation, and
the small difference in predictive performance between
the two models, subsequent analysis will concentrate
EXP6L2.

4.5.2. Detailed analysis
Figure 7 reveals that, in general, the calibrated model
without bias-correction performs better (RMSE of 0.96°C)
than the uncalibrated model (2.53°C) but worse than the
calibrated model with bias-correction (RMSE = 0.59°C).
For 34out of the 52days, the absolutedifferencebetween
monitored data and predictions of the calibrated model
with bias-correction is less than 0.5°C, while for 18 days
the differences are less than 0.2°C.

The largest discrepancy occurred on the 3rd of July,
when the mean calibrated prediction deviated from the
mean MDLRT by 2.6°C (Figure 7). On the three days fol-
lowing the 3rd of July (4th–6th of July), the absolute
discrepancies were within 0.3°C. According to Bastos and
O’Hagan (2009), a single extreme point could indicate a
local problem that might be addressed with the addition
of more data points. Further, the extreme discrepancy of
July 3rd is largely responsible for the marginally lower R2

of the calibrated model (0.77) compared to the uncali-
brated model (0.79). If R2 were to be recalculated after
excluding the 3rd of July, R2 would improve as a result
of the calibration from 0.81 to 0.86.9 Thus, the calibrated
model represents day-to-day fluctuations better than the
uncalibrated model for most days.

The spread in the posterior distribution of WOT is
smaller than its prior, with a posterior median of 21.8°C,
and a 90% credible interval of 20.7–22.9°C (Figure 8). A
credible interval contains a specified amount of posterior
probability, in this case the central 90% probability. The
prior and posterior distributions of EGF are similar, with a
small shift in themedian being observed post-calibration.
The posterior median of EGF is 0.46 (3878 kWh/year)
with a 90% credible interval of 0.19–0.93 (1602–7841
kWh/year). The hyperparameter posteriors can be found
in Section 2.2.3.1 of the Supplementary Material.

With a median model bias of −0.5°C and a mean of
−0.38°C, despite the use of a prior with a mean of zero,
the computer model is more likely to over-predict even
after the model calibration. Themodel biaswaspositively
correlated with outdoor temperature and its lag compo-
nents (see Section 2.2.3 of the SupplementaryMaterial for
further discussion).

5. Discussion

Bayesian calibration offers the potential to quantify and
reduce uncertainties in archetype-based models. Follow-
ing calibration, the gap betweenmodel outputs and real-
world observations is expected to reduce, increasing the
level of trust that may be placed on the model.
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Figure 7. Timeseries plot of the mean daytime living room temperature, averaged per day across: (i) Monitored dwellings in the homo-
geneous cluster, (ii) Simulated (uncalibrated) dwellings, (iii) the bias-corrected calibrated model predictions (η(x,w, t) + δ(x,w)), and
(iv) the calibratedmodel predictions without model bias (η(x,w, t)). The shaded region represents an uncertainty of±1.96σ around the
mean.

Figure 8. Density plot lines and histograms for the prior and posterior distributions of the calibration parameters, respectively. The
vertical solid (dashed) line indicates the median of the prior (posterior) distribution. Area under each plot is unity.

Existing work on Bayesian calibration has largely
focused on the reduction of the energy performance
gap in archetype-based housing models, with limited
work onmodels of summer indoor temperature (Calama-
González, Suárez, andLeón-Rodríguez2022). Furthermore,

previous studies seldomly considered the classification of
the housing stock into homogeneous groups in tandem
with the calibration procedure, with a clear definition
of homogeneity often lacking, and an ad hoc approach
being commonly used (Petrou 2023). In addition, the
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choice of prior distributions for the calibration parame-
ters – an essential ingredient in Bayesian calibration –
has received limited attention to date. Building on exist-
ingworkwith the purpose of improving current practices,
this paper presents a framework for the Bayesian cal-
ibration of archetype-based models of summer indoor
temperature. The framework relies on a clear definition
of homogeneity and proposes data-driven approaches to
classify the housing stock into groups, to identify the cali-
bration parameters and their corresponding prior proba-
bility distributions. To demonstrate its use, the framework
was used to calibrate a previously developed archetype-
basedmodel (UK-HSM) and quantify the improvement in
its out-of-sample predictive performance.

5.1. Main findings

By drawing on ten data sources, probability distributions
were identified for all twelve continuous UK-HSM model
inputs (Table 3). In all but two cases, non-normal and
non-uniform distributions were found to best describe
the possible values of the model inputs. Informed by
these distributions, the sensitivity analysis revealed that
Window Opening Threshold was the dominant UK-HSM
model input, followed by the Glazing Fraction, Orien-
tation and Electrical Gains Factor. This result provides
further evidence of the importance of window open-
ing in determining summer indoor temperatures in UK
dwellings.

The parametric calibration revealed that including at
least one lag component of outdoor temperature led
to substantial improvements in predictive performance
compared to a calibration with no lag components; the
addition of a second lag component further improved
out-of-sample predictions. Someparametric experiments
did not converge, all of which included orientation as a
calibration parameter. A possible reason for the lack of
convergence in these models could be multi-modality in
the posterior distributions of the orientation parameter
that results in poor MCMC sampling.

For the calibrations that converged, RMSE reduced
post-calibration from 2.53°C to 0.58–0.70°C. Such per-
formance exceeds what has been previously achieved
(RMSE of 0.94–1.73°C) for the semi-detached archetype
of UK-HSM (Symonds et al. 2017). Even more encourag-
ing is the fact that MBE for the calibrated models was
less than 0.1°C, comparable to values obtained from the
calibration of a test cell (Calama-González et al. 2021),
suggesting that the calibrated model does not have a
tendency to under- or over-predict. This contrasts with
the tendency of the uncalibrated UK-HSM to overpre-
dict (Figure 7). The calibration process came at a com-
putational cost of 0.73–2.13 h (Table 5), a cost thought

to be warranted given the improvement in RMSE and
MBE.

A comparison between prior and posterior distribu-
tions for one of the best-performingmodels revealed the
EGF distributions to be similar, indicating confirmation
of the prior knowledge, or parameter non-identifiability
(Menberg, Heo, and Choudhary 2019). Further calibra-
tion using a different prior for EGF provided further evi-
dence to the lack of identifiability (Section 2.2.4 of Sup-
plementary Material). The improvement in out-of-sample
prediction despite the suspected lack of parameter iden-
tifiability is not surprising, and it has been previously
observed (Arendt, Apley, and Chen 2012). On the inter-
pretationof theposterior distributions as real-worldphys-
ical quantities, caution should be applied as highlighted
by (Booth, Choudhary, and Spiegelhalter 2012; Kennedy
and O’Hagan 2001). The extent to which the posterior
distributions are representative of the physical quantities
can seldomly be verified, since a ground truth10 about
the physical quantities does not exist, unless a study is
concerned with synthetic or test cell data.

The association between the model bias and the lag
components of outdoors temperature may indicate lim-
itations in the modelling of thermal mass by UK-HSM.
However, further investigation is required to understand
this finding.

5.2. Strengths and contributions

A key contribution of this study to academic research is
the development and application of a Bayesian calibra-
tion framework that has several potential uses within the
field of building modelling. The proposed framework is
modular and flexible; a modeller can choose what meth-
ods to use in each step depending on the data avail-
able, their model and preference. It was demonstrated
that the framework application on UK-HSM substantially
improved its predictive performance while simultane-
ously apportioning uncertainties to different sources.
While developed with models of summer indoor tem-
perature in mind, it is expected that the framework can
be tailored to the use of different types of archetype-
based building stock models, such as those of winter
indoor temperature, energy use or fuel poverty. Although
the framework could be applied with a relatively small
amount of data, it is likely to be most beneficial and
suitable for applications with large datasets.

Themethodologyused for identifyingprior probability
distributions depending on the data available can inform
future Bayesian calibration work. Further, this approach
may be of value in other analyses beyond Bayesian
calibration where identifying analytical distributions is
required.
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A further novel contribution is the set of learnings
derived from the first application of Bayesian calibra-
tion on archetype-based models of free-floating sum-
mer indoor temperature. One such learning relates to
the importance of outdoor temperature lag components,
which have not been previously used or discussed in
publishedwork on archetype-based Bayesian calibration.

Through the potential for improvement in modelling
practice offered by this work, there could be indirect
benefits to the construction industry, energy and pub-
lic health policy-making where that may be informed by
archetype-based models.

5.3. Limitations

The use of a parametric approach highlighted the impact
that weather variables, and specifically the lag compo-
nents of outdoor temperature, can have on the calibra-
tion of MDLRT. While informative, the parametric exper-
iment was not exhaustive. For instance, the inclusion of
a third outdoor temperature lag component could have
led to further model improvement, although any further
improvement was expected to be marginal.

The choice of MDLRT was informed by previous
research utilizing UK-HSM to evaluate heat-related mor-
tality changes due to home energy efficiency measures.
While findings from this research will guide the future
use of UK-HSM, their generalizability to other models
of summer indoor temperature remains uncertain, espe-
cially when modelling buildings at different temporal
resolutions, with heating or air conditioning. Neverthe-
less, the framework may still be applied to calibrate such
models.

This study did not attempt to optimize the choice of
hyperparameter priors but has instead relied on pub-
lished recommendations (Chong and Menberg 2018;
Menberg, Heo, and Choudhary 2019). Recent work sug-
gests that refining the hyperparameter priors can be of
benefit (Wang et al. 2022), although it is expected to only
offer a small improvement in comparison to the overall
improvement.

In practice, the framework’s implementation will often
be impacted by the limited availability of empirical data.
As a result, classifiers may not all be identified or used,
and the priors may be poorly defined. In turn, the attri-
bution of uncertainties, along with parameter inference
and predictive performance may be affected. The frame-
work’s users should attempt to utilize all evidence avail-
able and carefully apply expert judgment where needed
to reduce the impact of limited data. Moreover, effort
is required to collect and make openly available large-
scale datasets of linked indoor temperature, dwelling
andhousehold characteristics; such actionswould enable

further development and comprehensive calibration of
building stock models.

Finally, it was assumed that explanatory and weather
variables did not have measurement error (or that its
influence was negligible). This is a common (Booth,
Choudhary, and Spiegelhalter 2012; Chong andMenberg
2018), yet simplifying assumption, whose impact was not
investigated.

6. Conclusions

This paper developed and applied a modular Bayesian
calibration framework for archetype-based housing stock
models of summer indoor temperature. The framework
relies on a practical definition of homogeneity and cov-
ers the steps of data-driven classification, stochastic char-
acterization, sensitivity analysis, and calibration through
Bayesian inference. The framework’s use was demon-
strated using data collected from 193 dwellings located
in Leicester, monitored as part of the 4M project, and the
UK Housing Stock Model (UK-HSM). The calibration was
carried out using the Mean of the Daytime Living Room
Temperature for the chosen cluster of semi-detached
dwellings. To assess the impact that the choice of cali-
bration parameter andweather variables can have on the
outcome, the calibration was carried out for 18 different
combinations of variables.

This work revealed that the inclusion of lag compo-
nents of outdoor temperature resulted in improved per-
formance, and the temperature at which windows open
was thedominantmodel input forUK-HSM. Followingcal-
ibration, the model’s root-mean-square error reduced by
∼77% (to ∼0.6°C), and the uncertainties from different
sourceswere quantified. The framework offers the poten-
tial to reduce the performance gap in various modelling
applications, increasing the trust that can be placed on
archetype-based models, and thus their utility as tools to
inform policy-making.
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Notes

1. A prior distribution captures how plausible each value of a
parameter is, according to the modeller’s subjective opin-
ion, before observing the data (Bolstad and Curran 2017).

2. Non-identifiability, indicated by posterior distributions that
are weak (uninformative) or mirror the priors, arises when
a unique combination of calibration parameters does not
exist or cannot be determined by the currently available
data (ChongandMenberg 2018;Menberg, Heo, andChoud-
hary 2019).

3. A posterior distribution represents the relative weights
of belief for each parameter value, estimated after the
application of Bayes’ theorem (Bolstad and Curran 2017):
Posterior = Likelihood× Prior

Average probability of the data .
4. Assuming the observations are fixed, the likelihood repre-

sents the relative weights of belief for the observed data for
different values of the unknown parameters (Bolstad and
Curran 2017).

5. The combined vector z is a subset of the combined vector
of all observations, [y(M), y(S)], which has been normalised
to have a mean of 0 and variance of 1.

6. A free-running building does not make use of mechanical
heatingor cooling. This is the case for thehomes considered
in this study during the summer period.

7. For day d, with weather observations wd , the one-day lag
components are the weather observations of the previous
day (wd−1).

8. This refers to the SAP rating estimated using the 2009 ver-
sion of the Standard Assessment Procedure (SAP), and it is a
measure of the floor area adjusted energy costs (BRE 2011).

9. The R2 of the uncalibratedmodel would also improve if this
point was excluded in the validation procedure.

10. Ground truth in this context refers to information provided
by direct observation as opposed to information provided
by inference (Ground truth definition and meaning | Collins
English Dictionary, n.d.).
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