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Abstract.  Proof-theoretic semantics (P-tS) is an innovative approach to grounding log-
ical meaning in terms of proofs rather than traditional truth-conditional semantics. The
point is not that one provides a proof system, but rather that one articulates meaning in
terms of proofs and provability. To elucidate this paradigm shift, we commence with an
introduction that contrasts the fundamental tenets of P-tS with the more prevalent model-
theoretic approach to semantics. The contribution of this paper is a P-tS for a substruc-
tural logic, intuitionistic multiplicative linear logic (IMLL). Specifically, we meticulously
examine and refine the established P-tS for intuitionistic propositional logic. Subsequently,
we present two novel and comprehensive forms of P-tS for IMLL. Notably, the semantics
for IMLL in this paper embodies its resource interpretation through its number-of-uses
reading (restricted to atoms). This stands in contrast to the conventional model-theoretic
semantics of the logic, underscoring the value that P-tS brings to substructural logics.
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Resources, Multiplicative connectives.

1. Introduction

In model-theoretic semantics (M-tS), logical consequence is defined in terms
of models; that is, abstract mathematical structures in which propositions
are interpreted and their truth is judged. In the standard reading given by
Tarski [57,58], a propositional formula ¢ follows model-theoretically from a
context I' iff every model of I' is a model of ¢; that is,

I'E e iff for all models M, if M 4 for all ¢ € T',then M = ¢

In this setup, meaning and validity are characterized is terms of truth.
Proof-theoretic semantics (P-tS) [12,49,60] is an alternative approach to
meaning and validity in which they are characterized in terms of proofs—
understood as objects denoting collections of acceptable inferences from ac-
cepted premisses. To be clear, P-tS is not about providing a proof system,
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but rather about expressing the meaning and validity in terms of proofs and
provability. Schroeder-Heister [50] observes, since no formal system is fixed
(only notions of inference) the relationship between semantics and provabil-
ity remains the same as it has always been: soundness and completeness
are desirable features of formal systems. The semantic paradigm supporting
P-tS is inferentialism—the view that meaning (or validity) arises from rules
of inference (see Brandom [6]).

Heuristically, what differs is that proofs in P-tS serve the role of truth in
M-tS. This shift has substantial and subtle mathematical and conceptional
consequences, as discussed below. Importantly, ‘proof’ here refers to a pre-
logical notion of valid argument, not proof in a formal system.

To illustrate the paradigmatic shift from M-tS to P-tS, consider the
proposition “Tammy is a vixen”. What does it mean? Intuitively, it means,
somehow, “Tammy is female” and “Tammy is a fox”. On inferentialism, its
meaning is given by the rules,

Tammy is a fox Tammy is female Tammy is a vixen Tammy is a vixen

Tammy is a vixen Tammy is female Tammy is a fox

These merit comparison with the laws governing A in IPL, which justify the
sense in which the above proposition is a conjunction,

Y pny  PAY

enNY e (4

There are several branches of research within P-tS—see, for example, the
discussion on proof-theoretic validity in the Dummett—Prawitz tradition by
Schroeder-Heister [52]. This paper is concerned with a formalism called base-
extension semantics, following in the tradition of Sandqvist [46-48].

In general, a B-eS is determined by a judgement called support defined
inductively according to the structure of formulae with the base case (i.e.,
the support of atoms) given by proof in a base (a collection of inference rules
over atoms—see below); this is analogous to satisfaction in M-tS, with the
base case given by truth at a world. Though this approach is closely related
to possible-worlds semantics in the sense of Beth [3] and Kripke [27]—see, for
example, Goldfarb [19], Makinson [34], and Stafford and Nascimento [55]—
it remains subtle. For example, there are several incompleteness results for
intuitionistic logics—see, for example, Piecha et al. [39-41], Goldfarb [19],
Sandqvist [45-48], Stafford [54].

Significantly, a sound and complete B-eS for IPL has been given by
Sandqvist [48]. This is the point of departure for this paper:
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ks p iff bz p (At)

bz o = iff ¢z (=)

bz oAy iff kg @ and lbg ¢ (N)

bz oV iff V€ DO BandVp e A, if plke p and ¥ kg p, then kg p (V)

bz L iff Ik p for any p € A (L)
Tl e iff V€ 2 B, if lkg 1 for any ¢ € T, then Iky ¢ (Inf)
T'lFe iff T Iz ¢ holds for any %

Figure 1. Base-extension semantics for IPL

— Given a base %, we write l» p to denote that p € A can be derived in
PB—defined in Section 2.

— Support in a base #8—denoted |lz—is defined by the clauses of Figure 1
in which ' # @.

We desire to give an analogous semantics for intuitionistic multiplicative
linear logic (IMLL). We study this logic as it is the minimal setting in which
we can explore how to set up B-eS (and P-tS in general) for substructural
logics, which enables extension to, for example, (intuitionistic) Linear Logic
[18] and the logic of Bunched Implications [36]. Again, the aim is not simply
to give a proof-theoretic interpretation of IMLL, which already exist, but to
give a proof-theoretic semantics.

A compelling reading of IMLL is its ‘number-of-uses’ resource interpre-
tation, which is inherently proof-theoretic—see, for example, [1,18,22,28].
Accordingly, looking at (Inf), we expect that ¢ being supported in a base %
relative to some multiset of formulae I" means that the ‘resources’ garnered
by I' suffice to produce ¢. In this paper, we express this by enriching the
notion of support with multisets of resources P and U combined with multi-
set union—denoted , . Then, that the resources garnered by I' are given to
@ is captured by the following property:

T iff  for any 2 D % and any U, if |y T, then ”_31:ng ¥

The present authors have explored further IMLL’s resource interpretation
in the setting of P-tS in [13].
Naively, we may define ® as a resource-sensitive version of (A); that is,

W, @4y iff  there are Py, Py s.t. P = (P1,P2), Ik, ¢, and 117 4

While the resulting semantics is sound, proving completeness is more
subtle. We aim to follow the method by Sandqvist [46], and this clause is
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not suitable because the following is not the case for IMLL:

ey iff there are A1, Ay s.t. I' = (A1,A2), A1 Fy, and Ay Fp
(1)

—a counter-example is the case where I is the (singleton) multiset consist-
ing of ¢ ® 1, which denies any non-trivial partition into smaller multisets.
We employ, therefore, a more complex clause, which is inspired by the treat-
ment of disjunction in IPL, that enables us to prove completeness using the
approach by Sandqvist [48].

There is an obvious difference between the B-eS for IPL and its standard
possible-worlds semantics in the sense of Kripke [27]—namely, the treatment
of disjunction (V) and absurdity (). The possible-worlds semantics has the
clause,

M xl-eoVy iff M, zlFporMazl-ep

If such a clause is taken in the definition of validity in a B-eS for IPL, it leads
to incompleteness—see, for example, Piecha and Schroeder-Heister [39,40].
To yield completeness, Sandqvist [46] uses a more complex form that is close
to the elimination rule for disjunction in natural deduction (see Gentzen [56]
and Prawitz [42])—that is,

b2 @V iff for any % such that 4 C ¢ and any p € A,
if plky pand ¢ Ik p, then ks p

One justification for the clauses is the principle of definitional reflection
(DR) (see Hallnés [20,21] and Schroeder-Heister [51]):

whatever follows from all the defining conditions of an assertion also
follows from the assertion itself

Taking the perspective that the introduction rules are definitions, DR pro-
vides an answer for the way in which the elimination rules follow. Similarly,
it justifies that the clauses for the logical constants take the form of their
elimination rules.

Why does the clause for conjunction (A) not take the form given by DR?
What DR gives is the generalized elimination rule,

X0
oA [wx ]
X

We may modify the B-eS for IPL by replacing (A) with the following:

bz o AN iff for any ¥ O % and any p € A,if ¢,9 Iy p, then Ik p  (A)
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We show in Section 2.3 that the result does indeed characterize IPL. In-
deed, it is easy to see that the generalized elimination rule and the usual
elimination rule for A have the same expressive power.

Note, we here take the definitional view of the introduction rules for the
logical constants of IPL, and not of bases themselves, thus do not contradict
the distinctions made by Piecha and Schroeder-Heister [37,38].

Taking this analysis into consideration, we take the following definition of
the multiplicative conjunction that corresponds to the definitional reflection
of its introduction rule:

I%% YR iff for any 2" O £, resources U, and p € A,
if w40 I p, then IH7Y p

We show in Section 4 that the result does indeed characterize IMLL.

Having mimicked the approach used by Sandqvist [48] to prove complete-
ness for the semantics of IMLL, we return to the naive clause for ®. Through
a subtle modification of the setup of the completeness proof, we establish
that the resulting semantics is indeed sound and complete. Essentially, the
modification means that we do not require (}), but rather the following in
which P is a multiset of atoms:

Prp®y iff  there exist Qp, Q2 s.t. P = (Q1,Qz2), and ()
Q1 Fy and Q2 Fo

Finally, we explore the B-eS for IMLL from a category-theoretic perspec-
tive. This follows the work of Pym et al. [43,44] to bring P-tS (in particular,
for IPL) into categorical logic—the field where category theory is applied to
the study of mathematical logic (see, for example, [29,30,32]). In the same
spirit as in Pym et al. [43], we interpret formulae as functors, and establish
a formal naturality of the semantics by the existence of natural transfor-
mations between functors. Briefly speaking, for atomic propositions, such
functors encode the proof-theoretic content of the bases; for compound for-
mulae, we employ certain category-theoretic constructions—based on Day’s
construction of monoidal structure in functor categories [9]—that mimick
the semantics clauses of the connectives. The interesting shift here is from
an additive to a multiplicative setting; category-theoretically, this means
moving from cartesian categories to monoidal ones. This brings insights
into the intricate structure of the B-eS; for instance, it demonstrates that
the atomic resources in the support relation are well-behaved—that is, they
have an appropriate naturality property.
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Figure 2. Natural deduction system NJ

The paper is structured as follows: in Section2 we review two base-
extension semantics for IPL, one is Sandqvist [48]’s and one is by the authors
[14]. In Sects. 4 and 5, we give two base-extension semantics for IMLL, and
prove soundness and completeness for both. In Section 6, we give a category-
theoretic semantics for IMLL based on the base-extension semantics in Sec-
tion 4. We conclude, in Section 7, with a summary of our contributions and
a discussion of some directions for further research.

2. Intuitionistic Propositional Logic

This section first summarizes the main results and methods given by Sandqvist
[48] for the B-eS of IPL and then modifies them to motivate the work on
IMLL in Sections4 and 5.

2.1. Syntax and Consequence

There are many presentations of IPL in the literature. Therefore, we begin
by fixing the relevant concepts and terminology for this paper.
Fix a denumerable set of propositional variables A.

DEFINITION 1. (Formula) The set of formulae F (over A) is constructed by
the following grammar:

p:=pEApVolpAplp— L

DEFINITION 2. (Sequent) A sequent is a pair I'> ¢ in which T' is a set of
formulae and ¢ is a formula.

DEFINITION 3. (Natural Deduction System NJ) The natural deduction sys-
tem NJ is composed of the rules in Figure 2.
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2.2. Base-Extension Semantics for IPL

The B-eS for IPL begins by defining atomic rules. An atomic rule is a natural

deduction rule of the following form, in which q,q,...,q, are atoms and
Q1,...,Q, are (possibly empty) sets of atoms:
[Qi] [Qn]
- di ... dn
q q

They may be expressed inline as (Q1 >q1,...,Q, >qy,) = g—note, the ax-
iom case is the special case when the left-hand side is empty, = q.

A base is a set of atomic rules. We write %4,%,... to denote bases, and
& to denote the empty base (i.e., the base with no rules). We say % is an
extension of % if € is a superset of %4, denoted € 2O A.

Bases are to be read as natural deduction systems in the sense of Gentzen
[56]. That is, = q means that the atom q may be concluded whenever,
while (Q1>q1,...,Qn>qn) = q means that one may derive ¢ from a set of
atoms S if, for ¢ = 1,...,n, one has derived q; from S while assuming Q;.
Importantly, atomic rules are taken per se and not closed under substitution
when creating derivations.

DEFINITION 4. (Derivability in a Base) Derivability in a base A is the
smallest relation 5 satisfying the following:

— REF-IPL S,q Fz q.

— App-IPL If atomic rule (Q; >q1,...,Qn>dqn) = q € A, and S,Q; bz q;
fori=1,...,n, then Sty q.
This forms the base case of the B-eS for IPL:

DEFINITION 5. (Support for IPL) Support is the smallest relation IFsatis-
fying the clauses of Figure 1.

Every base is an extension of the empty base (&), therefore I' IF ¢ iff
I' Ik ¢. Sandqvist [48] showed that this semantics characterizes IPL:

THEOREM 1. (Sandqvist [48]) I'Fe iff T' Ik

Soundness—that is, I' - implies I' IFp—follows from showing that I+
respects the rules of Gentzen’s [56] NJ; for example, I' IFp and A IF1) implies
' A IFe A 1. Completeness—that is, I' IF¢ implies I' F¢—is more subtle.
We give terse but complete account of it here as we use the same overall
idea for IMLL in Sections4 and 5.

We require to show that I' I implies that there is an NJ-proof witnessing
I' k. To this end, we associate to each sub-formula p of I'U {¢} a unique
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Figure 3. Atomic system .4

atom r, and construct a base .4 such that r behaves in .4 as p behaves in
NJ. Moreover, formulae and their atomizations are semantically equivalent
in any extension of .4 so that support in .4 characterizes both validity and
provability. When p € A, we take r := p, but for a complex p we choose 7 to
be alien to I' and ¢.

EXAMPLE 1. Suppose p := p A q is a sub-formula of I" U {¢}. Associate to
it a fresh atom r. Since the principal connective of p is A, we require .4 to
contain the following rules:

P q r r

r p q

We may write (p A q)b for r so that these rules may be expressed as follows:

P94 (pArq’” (pPAQ)
(pAq) D q

We shall use the latter to explicate the encoded compound formulae. [

Formally, given a judgement I' I, to every sub-formula p associate a
unique atomic proposition p’ as follows:

—if p & A, then p’ is an atom that does not occur in any formula in
Fu{eh
— if p € A, then p* = p.

By unique we mean that (-)° is injective—that is, if p # &, then p* # ¢°. The
left-inverse of (-)* is ()%, and the domain may be extended to the entirety
of A by identity on atoms not in the codomain of (-)’. Both functions act on
sets pointwise—that is, %2 := {¢°|¢ € X} and P% := {p%|p € P}. Relative to
(:)?, let 4 be the base containing the rules of Figure 3 for any sub-formulae
p and o of I and ¢, and any p € A.

Sandqvist [48] establishes three claims that deliver completeness:

IPL-AtComp Let SC Aandp € Aand let Zbeabase: Sl p iff Shkyg
p-
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IPL-Flat For any sub-formula & of TU{p} and A" D A : 1y € iff Iy
&.
IPL-Nat Let S C A and p € A: if S 4 p, then S Fph.

The first claim is completeness in the atomic case. The second claim is that
¢ and € are equivalent in A4 —that is, £ -y € and € Iy €°. Consequently,

I by o iff Ly

The third claim is the simulation statement which allows us to make the
final move from derivability in .4” to derivability in NJ.

PrROOF OF COMPLETENESS—THEOREM 1. Assume I' IF¢ and let .4 be its
bespoke base. By IPL-Flat, I'” Iy ¢”. Hence, by IPL-AtComp, I’ 4 ¢”.
Whence, by IPL-Nat, (I'*)f F(¢”)%—that is, T' Fp—as required. |

2.3. Base-extension Semantics for IPL, Revisited

Goldfarb [19,41] has also given a (complete) P-tS for IPL, but it mimics
Kripke’s [27] semantics. What is interesting about the B-eS in Sandqvist
[48] is the way in which it is not a representation of the possible-worlds
semantics. This is most clearly seen in (V), which takes the form of the
‘second-order’ definition of disjunction (see Prawitz [42]),

U4+V=vVX(U—-X)—(V-oX)—X)

This adumbrates the category-theoretic perspective on B-eS given by Pym
et al. [43,44]. Proof-theoretically, this recalls the elimination rule for the
connective restricted to atomic conclusions,

[o] [¢]

VY p p
p

Indeed, all of the clauses in Figure 1 may be regarded as taking the form of
the corresponding elimination rules.

The principle of definitional reflection (as described in Section 1) justi-
fies this phenomenon. According to this principle, an alternative candidate
clause for conjunction is as follows:

s o A iff for any € D % and any p € A, if p,9 IF, p, then IE, p (A

DEFINITION 6. (Support’ for IPL) Support’ is the smallest relation IF sat-
isfying the clauses in Figure 1 with (A’) replacing (A).

The resulting semantics is also sound and complete for IPL:
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THEOREM 2. T'IF ¢ iff T .

PROOF. We assume the following: for arbitrary base 4, and formulae ¢, ¥, ¥,

IPL* — Monotone If I, ¢, then IE, ¢ for any € O £.
IPL* — AndCut If IE, ¢ Ay and ¢, 9 IE, x, then I, x.

The first claim follows easily from (Inf). The second is a generalization
of (A"); it follows by induction on the structure of y—an analogous treatment
of disjunction was given by Sandqvist [48]. They are proved at the end of
this section.

By Theorem 1, it suffices to show that I' I o iff I IFp. For this, it suffices
to show IF, 0 iff Iz 0 for arbitrary % and 6. We proceed by induction on
the structure of 6. Since the two relations are defined identically except in
the case when 0 is a conjunction, we restrict our attention to this case.

First, we show that Iz 61 A 02 implies IE, 61 A 6,. By (A’), the conclusion
is equivalent to the following: for any 4 O % and p € A, if 01,0, I, p,
then I, p. Therefore, fix 4 O % and p € A such that 0,0 I, p. By (Inf),
this entails the following: if I}, 6; and IFf, 65, then I, p. By (A) on the
assumption (i.e., Iz 01 A 63), we obtain |z 67 and Iz 6. Hence, by the
induction hypothesis (IH), IE, 6; and ¥, 6. Whence, by IPL*-Monotone,
IFe, 01 and I, 02. Therefore, I, p. We have thus shown IF, 61 Af, as required.

Second, we show I, 01 A 2 implies Ik 01 A 02. It is easy to see that
61,02 I, 0; obtains for i = 1,2. Applying IPL*-AndCut (setting ¢ = 01,
Y = 03) once with x = 6, and once with x = 6, yields IF, 6; and IF, 6,. By
the IH, Ikz 61 and |z 6. Hence, bz 01 A 05, as required. [

A curious feature of the new semantics is that the meaning of the context-
former (i.e., the comma) is not interpreted as A; that is, defining the context-
former as

K, T A iff Iz T and IF; A
we may express (Inf) with
T'IFz ¢ iff for any ¢ 2 4, if I, T, then IF, ¢

The clause for contexts is not the same as the clause for A in the new seman-
tics. Nonetheless, as shown in the proof of Theorem 2, they are equivalent
at every base—that is, I, ¢, iff ¥, o A9 for any .

This equivalence of the two semantics yields the following:

COROLLARY 3. For arbitrary base % and formula @, bz o iff, for any Z 2
B and every atom p, if ¢ by p, then Iy p.
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PROOF. Let T be any formula such that IF T—for example, T :=p A (p —
q) — q. The proof uses T to transition between the two definitions of A:

bz ¢ iff Iz pand kg T (def. of T)
iff kAT (N)
ifft V22 BVp e A, p,if T Iy p, then Iy p (A)
iff V2 O BVp e A if ol p, then |kzp (def. of T)
This establishes the desired equivalence. [

The significance of this result is that we see that formulae in the B-eS are
precisely characterized by their support of atoms. To conclude this section
we restate and prove all of the lemmas.

LEMMA 4. (IPL*-Monotone) If ' IE, o, then I' I, ¢ for any € O 4.

ProOF. By (Inf), the conclusion I' IF, ¢ means: for every 2 2 ¢, if I, v
for every v € I, then IF, . Since 2 2 ¢ 2 %, this follows by (Inf) on the
hypothesis I' IF, . [

LEMMA 5. (IPL*-AndCut) If IE, ¢ A and ¢, IE, X, then IE, x.
PRrROOF. We proceed by induction on the structure of y:

—x = p € A. This follows immediately by expanding the hypotheses
with (A) and (Inf), choosing the atom to be x.

— X = X1 — X2. By (—), the conclusion is equivalent to x1 IE, x2. By (Inf),
this is equivalent to the following: for any 4" O %, if I, x1, then IF, xo.
Therefore, fix an arbitrary ¢ 2 2% such that IF, xi. By the induction
hypothesis (IH), it suffices to show: (1) I, ¢ A4 and (2) for any 2 O €,
if I, ¢ and IE, 9, then IE, xo. By IPL*-Monotone on the first hypothesis
we immediately get (1). For (2), fix an arbitrary base Z O % such that
Iy @, and IF, 9. By the second hypothesis, we obtain IF, x1 — x2—that
is, x1 ¥, x2. Hence, by (Inf) and IPL*-Monotone (since 2 2O %) we have
¥ X2, as required.

— X = x1 A x2- By (A'), the conclusion is equivalent to the following: for
any ¢ 2 % and atomic p, if x1,x2 IF, p, then I, p. Therefore, fix
arbitrary ¢ 2O % and p such that x1, x2 I, p. By (Inf), for any 2 O €,
if IF, x1 and ¥, x2, then I, p. We require to show I, p. By the IH, it
suffices to show the following: (1) I, ¢ A% and (2), for any & 2 ¢, if
I%. ¢ and IE, 9, then I p. Since # C ¢, By IPL*-Monotone on the first
hypothesis we immediately get (1). For (2), fix an arbitrary base & 2 ¢
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such that I, ¢ and IF, 1. By the second hypothesis, we obtain IFf, p, as
required.

— X = X1V x2- By (V), the conclusion is equivalent to the following: for any
¢ 2 % and atomic p, if x1 I, p and x2 IF, p, then IF, p. Therefore, fix
an arbitrary base 4 2 % and atomic p such that x; IF, p and x2 IF, p.
By the IH, it suffices to prove the following: (1) I, ¢ A and (2). for
any 2 2 ¢, if I, ¢ and IE, ¢, then I, p. By IPL*-Monotone on the first
hypothesis we immediately get (1). For (2), fix an arbitrary 2 2O % such
that IF, ¢ and IF, 9. Since 2 2 %, we obtain IF, x1 V x2 by the second
hypothesis. By (V), we obtain I, p, as required.

— x = L. By (L), the conclusion is equivalent to the following: I, r for all
atomic r. By the IH, it suffices to prove the following: (1) I, ¢ A9 and
(2), for any € O A, if IFf, p and IF, 4, then I, r. By the first hypothesis
we have (1). For (2), fix an arbitrary ¢ O 2 such that IF, ¢ and I, 9. By
the second hypothesis, If, L obtains. By (L), we obtain IF, r, as required.

This completes the induction. [

3. Intuitionistic Multiplicative Linear Logic

Having reviewed the B-eS for IPL, we turn now to intuitionistic multiplica-
tive linear logic (IMLL). We first define IML and then analyse the challenges
of giving a B-eS for it; this motivates the technical work in Section 4. Hence-
forth, we abandon the notation of the previous section as we do not need it
and may recycle symbols and conventions.

Fix a countably infinite set A of atoms.

DEFINITION 7. (Formula) The set of formulae F (over A) is defined by the
following grammar:

@, =p e ApP|Ip —

We use p, q, ... for atoms and ¢, 9, x, ... for formulae. In contrast to the
work on IPL, collections of formulae in IMLL are more typically multisets.
We write P, Q, ... to denote finite multisets of atoms, and I', A, . .. to denote
finite multisets of formulae.

We use [ -] to specify a multiset; for example, [, ¢, 1] denotes the multiset
consisting of two occurrence of ¢ and one occurrences of 1. The empty
multiset (i.e., the multiset with no elements) is denoted &. The union of two
multisets I' and A is denoted 'y A. We may identify a multiset containing
one element with the element itself; thus, we may write 1), A instead of [¢)], A
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Figure 4. The sequential natural deduction system NIMLL for IMLL

to denote the union of multiset A and the singleton multiset [¢/]. Thus, when
no confusion arises, we may write ¢1 ..., @, to denote [p1,...,¢,]. The
set of all multisets over a given set X is denoted M(X). With a bit abuse of
notation, we use C to denote the multiset inclusion.

DEFINITION 8. (Sequent) A sequent is a pair I'> ¢ in which I' is a multiset
of formulae and ¢ is a formula.

We characterize IMLL by proof in a natural deduction system. Since it is
a substructural logic, we write the system in the format of a sequent calcu-
lus as this represents the context management explicitly. We assume general
familiarity with sequent calculi—see, for example, Troelstra and Schwicht-
enberg [59].

DEFINITION 9. (System NIMLL) The sequential natural deduction system
for IMLL, denoted NIMLL, is given by the rules in Figure 4.

A sequent I'> ¢ is a consequence of IMLL—denoted I" - ¢—iff there is a
NIMLL-proof of it.

One may regard IMLL as IPL without the structural rules of weakening
and contraction—see Dosen [10]. In other words, adding the following rules
to NIMLL recovers a sequent calculus for IPL:

I'>p w AA T
AT A,T'>p
To stay close to the work in Section 2.2 it is instructive to consider the

natural deduction presentation, too. The rule figures may be the same, but
their application is not; for example,

e Y
pRY

means ifI'Fpand AF 1, then I'yAF p®
(i.e., not if '@ and I' - 4, then I' - o @ ¢")

Here, it is important that the context are multisets, not as sets.
The strict context management in IMLL yields the celebrated ‘resource
interpretations’ of Linear Logic—see Girard [18]. The leading example of
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which is, perhaps, the number-of-uses reading in which a proof of a formula
@ —o 1) determines a function that uses its arguments exactly once. This
reading is, however, entirely proof-theoretic and is not expressed in the truth-
functional semantics of IMLL—see Girard [18], Allwein and Dunn [2], and
Coumans et al. [8]. Though these semantics do have sense of ‘resource’ it is
not via the number-of-uses reading, but instead denotational in the sense of
the treatment of resources in the truth-functional semantics of the logic of
Bunched Implications [36]. The number-of-uses reading is, however, reflected
in the category-theoretic semantics—see Seely [53] and Biermann [4,5].

How do we render support to be sensitive to the resource reading? The
subtlety is that for T' IF¢ (where I' # &), we must somehow transmit the
resources captured by I' to ¢. From Corollary 3, we see that in B-eS the
content of a formula is captured by the atoms it supports. Therefore, we
enrich the support relation with an multiset of atoms P,

T I@ @ iff for any 2 O % and any U, if Hgg- I', then H—I;)E/U ©
where
IK} T1,T2 iff there are Uy and Uz such that U = (Uy,Us), 1K)} Ty, and IF)? Ty

This completes the background on IMLL.

4. Base-extension Semantics for IMLL

In this section, we present a B-eS for IMLL. We begin by defining all the
requisite notions such a derivability in a base and support, closely follow-
ing the presentation of the B-eS for IPL in Section 2.2, but accounting for
substructurality. We then prove soundness and completeness, following the
strategies used for IPL, illustrating that the modifications meant to account
for substructurality are correct. Importantly, as discussed below, this B-eS
for IMLL enables a bone fide resource interpretation of the logic via the
number-of-uses reading (restricted to atoms).

4.1. Support in a Base

The definition of the B-eS proceeds in line with that for IPL (Section 2.2)
while taking substructurality into consideration.

DEFINITION 10. (Atomic Sequent) An atomic sequent is a pair P> p in
which P is a multiset of atoms and q is an atom.

DEFINITION 11. (Atomic Rule) An atomic rule is a pair P = p in which
P is a (possibly empty) finite set of atomic sequents and p in an atom.
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K, p iff Prtgp (At)
oo it oIy (—)
B, oy if V2 D%, VU €M), Vp € A, if vt IF)- p, then \%;‘jU p (®)
I 1 iff V2 2B, VU € M(A), ¥p € A, if IFY. p, then 57" p (1)
W, T,A iff 30U,V e M(A) st. P=(U,V), IH, T, and I, A ()
T iff V2 2% and VU € M(A), if ) T, then I,V ¢ (Inf)
TIE g iff T, ¢ for any base %.
TIFe iff TIF ¢

Figure 5. Base-extension semantics for IMLL

DEFINITION 12. (Base) A base 4 is a (possibly infinite) set of atomic rules.
The set of all bases is B.

DEFINITION 13. (Derivability in a Base) Let B € B. The derivability in
A relation bz is the smallest relation satisfying the following:

— REF. p Iz p.

— APP. If S;yP; kg p; fori =1,...,n and (Pll>p1,...,Pn1>pn) = p € %,
then S1,...55, k2 p.

Note the differences between Definitions 4 and 13: first, in REF, no re-
dundant atoms are allowed to appear, while in REF-IPL they may; second,
in APP, the multisets Si,...,S, are collected together as a multiset, while
in ApP-IPL there is one set. These differences reflect the fact in the multi-
plicative setting that ‘resources’ can neither be discharged nor shared.

DEFINITION 14. (Support) Support is the smallest relation satisfying the
clauses of Figure 5 in which I'; A € M(F), P, U,V € M(A), and &, Z € B.

We may say that I' > ¢ is supported in the base B using resources S iff
r I% . It is easy to see that this is an inductive definition on a struc-
ture of formulae that prioritizes conjunction (®) over implication (—o)—an
analogous treatment in IPL with disjunction (V) prioritized over implica-
tion (—) has been given by Sandqvist [48]. As explained in Section 3, the
purpose of the multisets of atoms S in the support relation ”22 is to express
the substructurality of the logical constants. The naive ways of using mul-
tisets of formulae rather than multisets of atoms—for example, T’ I@ @ iff

Hj%A p—results in impredicative definitions of support.

PROPOSITION 6. The support relation I is well-defined.
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PrOOF. We define the degree of IMLL formulae as follows:

1 ifo=peA

2 if p=1
deg(p1) + deg(p2) +1 if © = 1 ® @
deg(p1) + deg(p2) +1 if o =1 — ¢y

deg(p) :==

Note that for each of (I), (®), and (—), the formulae appearing in the
definitional clauses all have strictly smaller degrees than the formula itself,
and the atomic case Ihs% is defined by the derivability relation as S Fz p.
Therefore this is a valid inductive definition. |

We read (Inf) as saying that T' IS, ¢ (for I # @) means, for any extension
Z of A, if T is supported in 2~ with some resources U (i.e. Illgif I'), then
¢ is also supported by combining the resources U with the resources S (i.e.,
II—;’U ©). The treatment of the context-former , is consistent with the case
where I'; A is a singleton.

The following observation on the monotonicity of the semantics with
regard to base extensions follows immediately by unfolding definitions:

ProposiTION 7. If T |F% p and € O B, then T’ IF% ®.

PRrOOF. By (Inf), it suffices to show the following: for any # € B, any
S € M(A), and any ¢ € F, if I}, p and € 2 %, then I, ¢. We proceed by
induction on I (see Definition 14).

— BASE CASE. In this case, IF% © is of the form IFS@ p, where p € A. By (At),

infer S b p. Since € 2 4, every rule in & is also a rule in %, so S k¢ p.
By (At), conclude I, p.

— INDUCTIVE STEP. For the inductive cases (®), (I), (—o) (expanded us-
ing (Inf) and (,)), note that each takes an arbitrary extension of 8—that
is, says ‘for every Z D 4, ... —so the conclusion follows immediately. If
the statement takes place over an arbitrary € 2 %, such extensions also
holds; that is, we choose Z D %. Therefore the inductive steps also pass.
To see an example, consider ¢ of the form ¢ —o 7. Assume IF% o —o 7 and
¢ 2 A, we show that |5, ¢ —o 7. According to (—o), the goal is o I, 7.
By (Inf), we fix some arbitrary 2 O € and T € M(A) such that I, o, and

show H—%T 7. This follows immediately from IFff/,’3 o —o T,since Z O € O A.

This completes the induction. [

COROLLARY 8. T'I o iff T I .
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PROOF. Recall that the definition that I' I° ¢ means the following: for any
base %, I’ IF% © holds.

— =. By definition, T' II® ¢ implies that in particular, T' I, ¢ holds.

— <. Suppose I' I¥ ¢ holds. For arbitrary % € 9B, since # 2 @ holds, we
can apply Proposition 7 and conclude that T’ IFS@ © holds. Since this is
true for arbitrary base %, we have I' I o.

This completes the proof. [

As expected, we do not have monotonicity on resources—that is, IT' II®
¢ does not, in general, imply I T ¢ for arbitrary T. This exposes the
different purposes of the bases and the resources in the semantics: bases are
the setting in which a formula is supported, resources are tokens used in
that setting to establish the support.

A distinguishing aspect of support is the structure of (Inf). In one di-
rection, it is merely cut, but in the other it says something stronger. The
completeness argument will go through the atomic case (analogous to the
treatment of IPL in Section 2.2), and the following proposition suggests that
the setup is correct:

PROPOSITION 9. Let € B, P,S € M(A), and q € A be arbitrary such that
P= [pla"'apn]-

P,Stpq iff YZ 2O % andVTq,..., Ty € M(A),
if Tibgr ps fori=1,...,n, then T1,...,T,,S k2 q.

PROOF. Let (1) be the statement P , S Fz q and (2) be the statement:
VZ O % and VTq,...,T, € M(A), if T; b» p; for i = 1,...,n, then
T19. . .9Tn98 |—3{ qg.

It is straightforward to see that (2) entails (1): we take 2~ to be £, and
T, to be [p;] for each ¢ = 1,...,n. Since p1 k% p1,...,Pn r pn all hold
by REF, it follows from (2) that pis...sPnsS bz q, namely P,S 3 q.

As for (1) entails (2), we proceed by induction on how P,S bz q is derived
(see Definition 13).

— P,S k% q holds by REF. That is, P,S = [q], and q  q follows by REF.
Here are two subcases, depending on which of P and S is [q].
— Suppose P = [q] and S = @. So (2) becomes: for every 2" O % and
T, if T k5 q, then T k5 q. This holds a fortiori.

— Suppose S = [q] and P = @. Since P = &, (2) becomes: for every
Z D A, Sty q. This holds by REF.
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— P,S k= q holds by AppP. We assume that P = Py,...,Pr, S = S1,...45%,

and the following hold for some Qq,...,Qr and ry,...,Tg:
P15S15Q1 b1, ProSkoQr g 1 (3)
(Qipry,...,Qrb>rg) = qisin £ (4)

In order to prove (2), we fix some arbitrary base ¥ O % and atomic
multisets T4, ..., T, such that Ty k¢ p1,..., Ty ks pn, and show Ty,.. .,
T, sS k q. Let us assume P; = p;15...4pip, foreachi =1,..., k. We apply
IH to every P;,S;,Q; tz r; from 3, and get Ti15...5Tir, o5: Qi ks 13-
Moreover, the atomic rule from 4 is also in €, since € 2 %. Therefore
we can apply APP and get

Ti1g...9T10,9519- 9 Th1g. - .5 The, Sk b Q.
By the definition of S; and T}j, this is precisely T1,...,T) S s q.
This completes the inductive proof. [

It remains to prove soundness and completeness.

4.2. Soundness
THEOREM 10. (Soundness) IfT't ¢, then T'IF .

The argument follows a typical strategy of showing that the semantics
respects the rules of NIMLL—that is, for any I', A, , %, and x:

(Ax) ¢lFg

) IfT,pl- 1, then Tl g —o 1

) UTIFp-—ovand AlF g, then I' A lF 4

) IHTIFpand AlFe, then IAlFp®
(RE) I TIFe®yand Aypyt - x, then I'yA IF x
(Il) IFI
) ITIFxand AlFIL then I'AlF x

These follow quickly from the fact that the clauses of each connective
in Figure5 takes the form of its elimination rules. The only subtle cases
are (®E) and (IE).

First, consider (IE). Suppose I' IF x and A |- I. We require to show
'y A IF x. By (Inf), we fix some base # and multisets of atoms P and Q
such that Ilj% I' and H—% A. Tt remains to verify ||—;9Q X- When y is atomic,
this follows immediately from Il-ng x and Ilj% I by (I). To handle non-atomic
X, we require the following:

VB € BYS, T € M(A)Vx €F, if I, Tand I x, then II—Z;,T X- (Lemma 11)
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This lemma follows by induction on the structure of x, with the base case
given by (I). One cannot use this general form to define I as it would result
in an impredicative definition of support.

Similarly, we require the following to prove (®E):

VB € BYS, T € M(A) Vo, v, x €F, if 5, o @1 and @49 I x, then I%T X-
With these results, which are proved at the end of this section, we may

prove soundness:

PROOF OF THEOREM 10—SOUNDNESS. We demonstrate (®I) and (QE).

— (®I). Assume T' IF ¢ and A I 1, we require to show I' y A IF ¢ ® 1.
By (Inf), the conclusion is equivalent to the following: V% € BVT, S €
M(A), if I, T and I, A, then H—QS Y ®1). So we fix some % and T, S such
that I, T and I, A, and show that II—E;S p®1. By (®), it suffices to show:
V€ 2O BYU € M(A)Vp € A, if p,9 I p, then Hr?ng p. So we fix some
€ O A, multiset of atoms U, and atom p such that ¢, ché p, and the
goal is to show that II—;"’SgU p- From the assumptions I" IF ¢ and A I+ 1, we
see that I%?T @ 4 ¥ obtains. Therefore, by monotonicity, II—S;T 51 obtains.
By (Inf), infer Il—;"S?U p, as required.

— (®E). Assume I' IF ¢ ® ¢ and Ay, IF x. We require to show I'y A IF x.
By (Inf), it suffices to assume I, T and IF; A and show that IljigT x. First,

L I ¢ ® 1 together with I, T entails that IS, ¢ ® 1. Second, by (Inf),
Ay, IF x is equivalent to the following:

V2 € BP,Qe M), if 5 Aand K ¢,9, then I x
Since I, A, setting P := T and Q := S, yields,
V2 DB, it 15 gy, then K5 x (1)

Now, given I, o®1 and (1), we can apply Lemma 12 and conclude Il—ngx.
This concludes the case analysis. [

LEMMA 11. For arbitrary base %, multisets of atoms S, T, and formula x,
if 118, 1, 2. 1K x, then 3. 155" x.

PRrROOF. We proceed by induction on the structure of y:

— X =D € A. is some atom q. This case follows immediately from (I).

~ x=L Fix € 2 8, Wel(A), and q € A such that Y q. It suffices to prove
that H—S?;Tgw q. By (I) on (1) using It} q, infer II—S%’W q. By monotonicity on
(2), infer I, q. By (I) on (1) using this, infer II—CSK’T’W q, as required.
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- X = 0 ®71. By (®), the conclusion (3) is equivalent to the following:

VZ OB, UVpeA ifo,r Ilg{ p, then Iﬁs(/,gT?U p. Therefore, fix € O %,
W € M(A), and q € A such that 0,7 IKY q; we require to show I%Tgw q
By (2) and monotonicity, infer I, ¢ ® 7. By Lemma 12, infer IF%;?W q.

By (I) on (1), conclude IthZTgW q, as required.

— X = 0 —o 7. By (—), the conclusion (3) is equivalent to o IljggT 7. Fix
some base ¢ D % and W € M(A) such that IEY o. By (Inf), it suffices to
show that 227" 7. By the IH, from It£ T and IY o, infer £V o. By (I)

FnggVV

on (2), infer | T, as required.

This completes the induction. [

LEMMA 12. For arbitrary base %, multisets of atoms S, T, and formulae
0. X if 115 0 @0, 2 a1y x, then 3. 157 x.

PRrROOF. We proceed by induction on the structure of y:

— X = p € A. This case follows immediately from (®).

— x = L. Expanding (3) with (I) yields: V2" 2 ZVU € M(A)Vp € A, if
Illf% p, then Il—igT"’U p. Therefore, fix a base € 2 A, Q € M(A), and q € A,
such that II—%Q) q, we require to show II—S Q4. By (®), it suffices to show
the following: (1) I ¢ ® ¢ and (11) ¢, ¢ Ik, T5Q . We have (1) from (1)
since € O A. For (f1), fix 2 O € and R, Ra € M(A) such that H—gl ¢ and
I—R2 1; we require to show II—T"’Q*’R19R2 q. By (Inf), condition (2) becomes
R H—T 1. Hence, together with II—Rl @ and II—%2 1, it follows that II— RuRa 1
By (I), infer V2" O 2VU € M(A )Vp € A, if IF)- p, then II—T il p. Since
H—f; q and Z O ¥, infer H—% q, therefore II—;9R19R29Q q, as required.

— x = 0 — 7. By (—o) and (Inf), condition (3) becomes: V.2~ O #VYU €
M(A), if IF)- o, then Il—ingU 7. Therefore, fix € O % and P € M(A) such
that II-}; o; we require to show H%T"P 7. By the IH, it suffices to show the
following: (1) I ¢ ® ¢ and (1) ¢, ¢ H:?P 7. We have (}) from (1). For
(1), fix 2 O € and Q € M(A) such that H—% [p,1]; we require to show
KT 7. By (2) using I} [, 4], infer X" o — 7. By (I), infer o X" 7.
Since I} &, by monotonicity we have II-E o. Hence, by (Inf), conclude

II—%9T9P T, as required.

- x=0®T7.Fix% 2 %, P €M), p € Asuch that 0,7 I, p. By (®) on 3,
it suffices to show H—S’T’P p.- By the IH, it suffices to prove the following:
(1) £ ¢ ®¢ and (H)gogz/; H—T’ p. We have (f) from (1), by monotonicity.
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— i (0" T) = (0 —T) —og” (D(O’ —o T)7,DO'7> =7
@’ (bo®,>rt) = (ce7) ®E’ : (D(o®7)b,a’97b |>p) =p
I’: =0 I : (le,bp) =D

Figure 6. Atomic system .#

For (f1), fix 2 2 € and Q € M(A) such that II—% Y 41); we require to show
Il—%rf?P p. By (2), from Il—g Y41 infer H—%T o ® 7. By (®), infer

for every # O 2,V and q, if 0,7 |5, q, then H—g,’T’V q. (1)
Since o7 I@ p, conclude II—%9T9P p, as required.

This completes the induction. [

4.3. Completeness
THEOREM 13. (Completeness) IfT'IF ¢, then T Fo.

The argument follows the strategy used by Sanqvist [48] for IPL—see
Section 2.2.

Let = be the set of all sub-formulae of I U {¢}. Let (-)b: = — A be an
injection that is fixed on = N A—that is, p® = p for p € ZN A. Let ()h be
the left-inverse of (-)b—that is pt = xy if p = x°, and p? = p if p is not
in the image of ()b Both act on multisets of formulae pointwise; that is,
A’ :=[6°|6 € A] and P? := [pf|p € P].

We construct a base .# such that ¢° behaves in .# as ¢ behaves in
NIMLL. The base .# contains all instances of the rules of Figure6 when o
and 7 range over =, and p ranges over A. We illustrate how .# works with
an example.

EXAMPLE 2. Consider the sequent I'> ¢ where I' = [p1,p2,p1 ® p2 — q, p1]
and » = q ® p1. By definition, = := {p1,p2,p1 ® p2 —© q,p1 ® p2,4,4 ®
p1}, and, therefore, the image of ()b is {p1,p2,q, (p1 ® p2 — q)b, (p1® pz)b,

b
(a®p1)’}.
That I' F ¢ obtains is witnessed by the following NIMLL-proof:

ax aX
P1b>p1 P2 > p2 ]
X
P1yP2 > P1 @ p2 I p1 ® p2 —oqbp1 ®p2 —o q
—o

E — aX
P1sP2sP1 ® p2 —0 q>q pP1>Dp1
&
P1sP2sP1 ® P2 —© qsp1>q & p1
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The base .# is designed so that we may simulate the rules of NIMLL; for
example, the ®g is simulated by using APP on ®bE,

b

(o> (U(X)7')b,<7b97"’l>’y"):>fyb means if A” -, (o ®7’)b and ¥°,0%,7" 4 7’

then A”, X" -, ~°

In this sense, the proof above is simulated by the following steps:

. b b
(i) By REF, (1) p1 oz P15 (2) P2 P23 (3) (P1 @ p2 — q)’ g (P1 ® P2 —q)
(ii) By APP, using (®1) on (1) and (2), we obtain (4) p1,p2 F (p1® p2)’
(i) By APP, using (—og)” on (3) and (4), we obtain (5) (p1 ® p2 — q)’ P15
P2 Fa q
(iv) By APP, using (®|)b on (1) and (5), we have (p; ® pa —o 01)b 9P19DP2 s
b
p1bs (A®p1).
Significantly, steps (i)—(iv) are analogues of the steps in the proof tree above.
Completeness follows from the following three observations, which are
counterparts to IPL-AtComp, IPL-Flat, and IPL-Nat from Section 2.2:
IMLL-AtComp For any %4, P, S, and q, PyS kg q iff P IF% q.
IMLL-Flat For any £ € =, 2" O ./ and U, Ill} &0 iff Illjg» £.
IMLL-Nat For any P and q, if P -4 ¢ then P? - ¢f.
They are proved at the end of this section. First, IMLL-AtComp follows
from Proposition 9 and is the base case of completeness. Second, IMLL-Flat
formalizes the idea that every formula ¢ appearing in I' > ¢ behaves the
same as £ in any base extending ./; consequently, I I, ¢” iff T Ik, o.

Thirdly, IMLL-Nat intuitively says that .# is a faithful atomic encoding of
NIMLL, witnessed by (-)*.

PROOF. (Theorem 13—Completeness) Assume I' IF ¢ and let .# be the
bespoke base for I' > . By IMLL-Flat, I I, ¢". Therefore, by IMLL-
AtComp, we have I? k-, . Finally, by IMLL-Nat, (I*)° - (¢*)*that is,
I'Fep. ]

The required lemmas for the simulation argument hold because of the
close relationship between proof for IMLL, derivability in .4, and the clauses
of the semantics.

LEMMA 14. The following holds for arbitrary base B O # and atomic
multiset S, when o — 7, 0 @ T, or | is in =, respectively:
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1. Stz (0 — T)b iff Sy0” kg 7.

2. S kg (0'(2)7')b iff for every @ O B, V, p, if Voo’ 41 by p, then
S,V by p.
3. Sty I’ iff for every @ D B, V, p, if V by p, then S,V by p.

PROOF. Let us fix arbitrary base & O .# and atomic multiset S.

1. We prove the two directions separately.

— Left to right: We assume S b (0 — T)b. Note that o” k3 o” by REF.
Also, the atomic rule (>(0 —o T)b, I>O'b) = 77 is in .# thus in 4. There-

fore, by APP we can conclude S,0” bz 7.
— Right to left: We assume S,0” z 7°. Together with that (¢° > 7°) =

(0 —o 7')b is in .# thus in 4, it follows from APP that S b (0 —o T)b.
2. Again we show the two directions separately.

— Left to right: We assume S b (0 ® T)b. It suffices to fix some ¢ 2 %4, T

and q satisfying T,0”,7” k% q, and then show S, T  q. Note that the

b

atomic rule (>(o ® T)b, oy’ > q) = qis in % thus also in €, therefore

from the two assumptions we can derive S,T k¢ q.
— Right to left: We assume that for every ¢ D %, V, and p, if V,
0”37 Fy p, then S,V by p. The goal is to show S Fy (a®7’)b. In

particular, suppose we have ¢ , 7° bz (o ®T)b, then S k5 (o ®T)b
b

)

immediately follows from the assumption. To show o’ ,7° b3 (0 ® 7)
it suffices to apply APP to the atomic rule (>0”,>7") = (0 ® ) in B

as well as the fact that both o” bz 0 and 7° b3 77 hold (using REF).
3. We prove the two directions separately.

o Left to right: We fix some ¥ 2 %, T, and q such that T kK, ¢, and
the goal is to show that S, T ky q holds. Notice that the atomic rule
(DIb, l>7'b) = 7° is in £ thus in €, so apply APP to this rule together
with S by I° (immediate consequence of S bz I’ and € O %) and T k¢ g
entails that S, T k¢ q.

e Right to left: This is the simpler direction. Since the atomic rule = I?
is in %, using APP we have 3 I’. The RHS of the statement entails
that S bz I.

This completes the proof for all the three statements. [
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LEMMA 15. (IMLL-AtComp) For arbitrary base £ € B, any P,S € M(A),
and any q € A,

P,Skzq iff Pl aq

PROOF. The equivalence follows immediately from Proposition 9. Let us
assume that P = [py,...,py]. Starting from P IF% q, by (Inf), it means for
every base 2" O % and atomic multisets Tq,...,T,, II—;% pl,...,ll—ng” Pn
implies Il—igT g. Spelling out the definition of I, for atoms IMLL-AtComp,
P IFSF/7 q is equivalent to that, for every base Z° O % and atomic multisets
Ty,....,Tn, T1 k2 p1,..., Ty, k2o pp implies S, T k- q. This is precisely
P,S Fz q, given Proposition 9. [

LEMMA 16. (IMLL-Flat) For any £ € =, 2 O .4 and U, 1) & iff I} €.

PRrROOF. We fix an arbitrary base & O .# and atomic multiset S, and
proceed by induction on the structure of &.

— & is atomic. Then by definition, £ = £, so the statement is a tautology.
- &is L.

B, iff Shul (IMLL-AtComp)
ifft VZ 2 %,U,p, if Uky p, then S,U by p (Lemma 14)
iff V2 2 #,U,p, if I p, then 15" p (IMLL-AtComp)
iff 15,1 I

— £ is of the form ¢ —o 7.

B, (0 —7) if Sty (oc—71) (IMLL-AtComp)
iff o IS, 7 (Lemma 14)
iff ol T (TH)
iff 1,0 —or7 (—)

— & is of the form o ® 7.

B (cor) iff St (c®7) (IMLL-AtComp)
ift V24 2 2,U,p, if abgTb Iy p, then II—S;U P (Lemma 14)
iff V2 D %,U,p, if 0,7 IF) ,then K p (IH)
iff 15, 007 (®).

This completes the induction. [
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LeEMMA 17. (IMLL-Nat) For any P € M(A) and q € A, if P k4 q then
Po - .

PROOF. By the definition of I-, (Definition 13), it suffices to show the fol-
lowing:
p F pf (2)
and
if (Pioqi),...,(Pabqn)=r1)€.#, and S1%,P1"Fqi?, ..., Sn P F g,
then S1%,...,S8,7 1%

(3)

First, 2 follows immediately from ax. Second, for 3, we simply need to
prove the statement for each atomic rule in base .#, which according to the
definition of .#Z

amounts to proving the following facts:

— Suppose (0”>7") = (0 —o T)b is in .#, and S, ((7")h H (Tb)h, we show

St F (o = 7)°)". By the definition of (-)f, S, ()" F () is §%,0 F 7,
i
and the goal S - ((0 —o T)b) is S% F 0 —o 7, which follows immediately
from —o.
b
— Suppose (>(o —o T)b), (>0?) = 77 is in .#. We show that S, - ((¢ — T)b>
and Sy + (Ub)h implies S1% , Sof F (Tb)h. This is equivalent to that
Slh F o — 7 and Sgh F o implies 81h 5 Sgu F 7, which follows immedi-
ately from —og.
— Suppose (>0°), (>7°) = (O’®7’)b is in .#. We show that S;° - (o*b)h and
b
Sy (7”)u implies S$1%,S5° - ((0 ® T)b) . According to the definition of
(-)h, this is equivalent to that S1 - o and So? F 7 implies $1%,S: F o @ 7,
which follows immediately from ®.
— Suppose (l>(a®7')b),(ab s 7" >p) = p is in .#. We show that S? I
b
((U@T)b) together with T% (crb)h 5 (7'b)h - p? implies S%, T¢ + ph.
According to the definition of (-)h, this is equivalent to that S* - o ® 7
and T¢,0,7 F p? implies S%, T% - p?, which follows immediately from ®g.
— Suppose = Iis in .#, then we show - I%, namely - I. And this is exactly I;.

~ Suppose (bI’), (>77) = 7° is in .#, we show that S;% (Ib)tl together
with So° (Tb)tl implies $1%,8," - (Tb)h. By the definition of (-), this is
equivalent to that S;% I and So” - 7 implies S17,S5" F 7. This follows
from Ig.
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This completes the case analysis. [

5. Base-extension Semantics for IMLL, Revisited

The B-eS of IMLL presented in Section 4 is inspired by the revised version
of the B-eS for IPL, in the sense that the clauses take the form of the
generalized elimination rules of their logical constants. As seen in Section 2,
for conjunction in IPL (A), one can choose two different clause to use—that
is,

bz o A iff bz p and kg ¢ (N)
or
IFz @ A iff V€ O BNp e A, if p, ¢ IF, p, then IF p (A)

Here bases % and ¥ and relations IFand I are with reference to the setup
in Section 2.2.

Does one have the same flexibility in IMLL? That is, could one take
the following clause—cf. the discussion in, for example, [17]—for ® in place
of (®):

Y p@y  iff AU,V eMA): P=(U,V),IE] p,and IB) ¢  (®)

There is nothing conceptually wrong about this clause, but the usual
completeness proof does not go through. The challenge is that the analogue
of Lemma 14 fails; in particular, it is not the case that the following holds:

SE, (G ®&) it FU,VeEMA):S=(U,V),UE,&° and VE, &

The obvious counter-example is the case where S = [(£&; ® &)]. Therefore,
to use (®)" demands modifying the completeness proof in some way.

Observe that in the case where S is composed of atoms which do not
representing complex formulae, the required statement does hold; that is, if
S =S¢, then

SEy (G @&) iff U, VeM®A): S=(U,V), UK, &° and VE, &’

How can we force such a restriction? Rather than ()b map [ to A, we map
F to some alien set of atoms B so S € M(A) automatically means S = SF.
Observe that the counter-example ceases to be valid as (¢ ® 1/1)'7 Z A

A subtlety is that we now we cannot construct a ‘simulation base’ .#
since bases are defined over A, not B. Therefore, we introduce an auxillary
notion of derivability in a base F_ that allows the simulation steps to take
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=2 p ifft Plgp (At)
L vy iff 3U,VeMA):P=(U,V), EYT, and IE} A (®)
[ iff P=o (I
EE o —yp iff @)@ (—

P T,A  iff JUV eM(A): P = (U,V), KV T, and Y A (

T IEP o iff V2 2 B YU e W(A), if K] T, then 18,777 ¢ (Inf
TIES o iff T Ilij o for any A
TIEo iff TIE2 ¢

Figure 7. Base-extension semantics for IMLL, revisited

place; that is, rather than being defined over A, it is defined over AU B with
explicit closure conditions governing the elements of B—for example,

if UE, & and VI, &, then U,V E, (& &)’

While prima facie, this appears to be a superficial change, it precisely allows
us to restrict the clause for ® to ‘real’ atoms A, which enables the proof to
go through.

Importantly, the auxiliary derivability-in-a-base relation is defined rela-
tive to a fixed B and (-)b, and allows us to pass from support to auxiliary
derivability in a base—the simulation step. The closure conditions match
exactly the rules of NM, and thus auxiliary derivability in the empty base
corresponds to provability in NM.

The details of these modifications are included below.

5.1. Support in a Base

The notion of base and derivability in a base in Section 4 remain unchanged,
so we do not discuss it here. The introduction of B and the auxillary deriv-
ability in a base relation is confined to Section 5.3.

The notion of support is modified with the new clause for ®, which also
demands modifying the clause for its associated unit I.

DEFINITION 15. (Support) The support relation is defined inductively by
the clauses of Figure7, in which I'; A € M(F), p € A, P,U,V € M(A), and
B, X €B.

It is this notion of support that we desire to show is sound and complete
for IMLL. We can recover the analogous preliminary results from Section 4
without challenge:

PROPOSITION 18. (Monotonicity) IfT'IE} ¢ and € O B, then T IE] ¢.
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PROOF. This argument is similar to the one for Proposition 7. As before,
we proceed by induction on I (see Definition 15).

~ BASE CASE. In this case, I' I3 ¢ is of the form IJ p, where p € A. By (At),
infer S bz p. Since € O %, every rule in A is also a rule in 4%, so S k¢ p.
By (At), conclude I, p.

— INDUCTIVE STEP. For the inductive cases (I), (—) (expanded using (Inf)
and (,)), note that each takes an arbitrary extension of Z#—that is, says
‘for every 2" D A, ... —so follows immediately. If the statement takes
place over an arbitrary ¥ C 4, such extensions also holds; that is, we
choose 2" O €. Therefore, the inductive steps also pass. In the remaining
case of (®)’, the result follows from the induction hypothesis.

This completes the induction. [
COROLLARY 19. T I o iff T IS .
Proor. This follows mutatis mutandis on the proof of Corollary 8 [

It remains to prove soundness and completeness.

5.2. Soundness
THEOREM 20. (Soundness) IfI'F ¢, then I' I .

We proceed as in Sections2 and 4; that is, by showing that support re-
spects the inductive definition of IMLL as provided by NM. Since the clauses
for ® and,coincide, we no longer require the ancillary lemmas showing that
the semantics for ® and,are coherent (e.g., Lemma 12).

PrOOF. It suffices to show the following;:

(Ax) ¢l

(—I) I, plEY, then I'IEF ¢ —o 1)

(—E) IfTIF @ —od and Al ¢, then T, A I ¢
(®I) IfTIE @ and A IF o, then T, A If o ® ¢
(RE) U TIF e®1Y and Ayp,) I x, then I'yA I x

(I) =1
(IE) IfT ¥ x and AIF I, then T A IF x

We prove each claim separately:

— (Ax). This statement is a tautology after applying (Inf), so it holds triv-
ially.

— (—oI). Assume (1) T’y IF 9, we require show (2) I' IF ¢ —o ). Let € B
and P € M(A) be arbitrary such that I} T'; by (Inf), (2) becomes (3)
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K}, ¢ —o 1b. By (—o), from (3) infer (4) ¢ I} ). Let ¢ D % and T € M(A)
be arbitrary such that IE} ¢; by (Inf), (4) becomes (5) IP%P’T . Thus, we
require to show that (1) implies (5) for bases and resource satisfying the
give conditions. By Proposition 18 (monotonicity) on [E} T, infer H%‘;’ Ir.
The desired result holds by (Inf) and () on (1).

— (—oE). Assume (1) T' IF ¢ —o ¢ and (2) A I ¢, we require to show (3)
DyAIE 9. Let 2 € B and P € M(A) be arbitrary such that (4) I} T'yA;
by (Inf), (3) becomes (5) I} 1. Thus: we require to show that under
the conditions given (e.g., (4)), (1) and (2) imply (5). By () on (4),
3Py, P, € M(A) such that P = Py, P, K1 T, and 2 A. By (Inf) on (1)
and (2), infer (6) Ilifglj1 @ —o 1 and (7) Il’—g2 ¢. By (—) on (5) infer (8)
@ IE,—o 1. By (Inf) on (8) using (7), infer (5), as required.

— (®I) Assume (1) T' IF ¢ and (2) A IF 9, we require to show (3) T A IF &
Y. Let 2 € B and P € M(A) be arbitrary such that (4) IE) T A; by (Inf),
(3) becomes (5) I} o ®1. Thus, we require to show that (1) and (2) imply
(5) for the given bases and resources. By () on (4), 3Py, P, € M(A) such
that (6) I£,* T and (7) I#}* A. By (Inf) on (1) and (2) using (6) and (7),
respectively, infer (8) Ili;gl ¢ and (9) Ili;gQ 1. By (®)" using (8) and (9)
infer (5), as required.

— (®E). Assume (1) T'IF o ® ¢ and (2) Ayps¢ IE x, then (3) Ty A IF x.
Let # € B and P € M(A) be arbitrary such that (4) IE) 'y A; by (Inf),
(3) becomes (5) I} x. Thus, we require to show that (1) and (2) imply
(5) for the bases and resource given. By (,), 3P, P, € M(A) such that
P =P;,P,, (6)IF,* T, and (7) I£;> A. By (Inf) on (1) using (6) infer (8)
Iy ¢ ® 4. By () and (,), infer (9) 5, @,9. By () on (7) and (9),
infer (10) IE} A,p41. By (Inf) on (2) using (10), infer (5), as required.

~ (II). By (=), IE7 I for any % € $B. This is precisely ¥ 1.

— (IE). Assume (1) I I x and (2) A I¥ I, then (3) 'y A IF x. Let # € 9B and
P € M(A) be arbitrary such that (4) IEY 'y A; by (Inf), (3) becomes (5)
#2 x. Thus, we require to show that (1) and (2) imply (5) for the given
base and resources. By () on (4), 3P1,Py € M(A) such that P = Py ,Po,
(6) IE,* T, and (7) IE,> A. By (Inf) on (1) and (2) using (6) and (7),
respectively, infer (8) Ilif;1 x and (9) Ili;;2 I. By (I) on (9), P2 = @; hence,
P =P;. Thus (9) is (5), which is the required result.

This completes the case analysis. [
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5.3. Completeness

THEOREM 21. (Completeness) IfT'IE ¢, then T'F .

Fix a sequent I'>p and let = be the set of sub-formulae. Fix a denumerable

set of fresh atoms B—that is, BN A = @—and an injection ()b E—-A—B

and extend it to ()b : 2 — B with identity on A. Let ()h be the left-inverse

of (-)b—that is,
e JX X =D
' p otherwise

Both act on multisets of formulae pointwise; that is,
A= [8]6 € A] and P? = [pfp € P]

The point of B is to isolate elements of = when moving from support to
derivability in a base. Crucially, bases and support are defined over A, not
A U B. Therefore, to enable simulation, we require an auxiliary notion of
derivability in a base that incorporates both the uses of the base to handle
A and simulates NM for B. This is the major point of departure from the
previous completeness proofs in this paper. Note that the auxiliary notion
of derivability in a base is dependent on the choice of I'> ¢, B, and ()b

DEFINITION 16. (Auziliary Derivablity-in-a-Base) Let I'>p, B, ()b be fixed.
Let % € B. The auxiliary derivability-in-# relation is #,C M(AUB) x (AU
B) is the smallest relation satisfying the following conditions (when well-
defined): VS, T C M(A)Vp € AVp,1h, x € ZUA,

— REF. pF,p

— APP. IfSZgPZ 'i% Pi forizl,...,n and (Pl Dpl,...,PnDpn) :>p€,%,
then Si4...43S, P, p.

— (=B). IE S, 1, ¢, then S B, (¢ —o ).

— (—B). If S, ¢* and T £, (¢ —o )°, then S, T £, ¢".

— (®B). If S, ¢ and S I, ¢°, then S &, (o @ 1)),

~ (®B). If Sk, (<p®111) and T,¢° 0 Ii‘%x then S Tl—%x
- (IP). 5, .

~ (IB). If S, x” and T ¥, I, then S, T I,

I

B
|

B
IE
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EXAMPLE 3. Let p,q,r,s € Aand x € B. Suppose I' = [p, q] and ¢ = (pRq),
and define (p®q)b = x accordingly. By ®F, for any # € 4, including
% = &, we have pyq Py, x.

This auxiliary notion of derivability in a base allows us to establish an
appropriate version of Lemma 14 for this semantics.

PROPOSITION 22. For any S € M(A), and £ € E,

Sty (&1 — &) iff &SPy &
PROOF. The right-to-left direction obtains immediately by —>EB in Defini-
tion 16. For the left-to-right observe that flb Pz flb obtains by REF in

Definition 16; the desired result follows —oE using the hypothesis. [

PROPOSITION 23. For any S € M(A), and £ € E,
SEy (@& iff  FUVENR):S=(U,V),UBy &', and VE, &’

PROOF. The right-to-left direction obtains by ®FE. It remains to consider
the left-to-right direction.

While Definition 16 has been given inductively as closure conditions of
the relations ¥ , we assume its correspondence to natural deduction to make
the proofs of the required propositions is self-evident. Let D be a derivation
witnessing S ¥, (§1 ® §2)b. If the last rule used in D is ®,”, then we are done.
Therefore, it suffices to show that such a derivation always exists.

Suppose the given D does not conclude by ®,°, then we transform D such
that it is the case. To this end, we require some preliminary observations
about the structure of D:

— Since (& ®§2)b € B and REF in Definition 16 only applies to A the
derivation D uses at least one instance of a condition that is not REF;

— At some point ®F is used to conclude (£; ® fg)b as it is the only condition
that can do so without the formula being a premiss or an assumption
(e.g., in ®F);

— Since (£ ® fg)b € B and the rules in % all conclude with an element of
A, the last condition used must be of the auxillary closure conditions;

— The closure conditions that can conclude (§; ® fg)b are @F, @B, I, —oE.

Henceforth, we shall call the ‘closure conditions’ rules as we take the nat-
ural deduction perspective; the natural deduction proofs represent a trace
through Definition 16. The height & of D is the number of nodes it contains;
this corresponds to the total number of times a closure condition is used
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to witness the judgement. We proceed by induction on h to establish that
there is a derivation concluding ({3 ® fg)b from S by ®F:

— BASE CASE. h = 1. We are done as D must conclude by an instance
of ®EB.

— INDUCTIVE STEP. h > 1. If D concludes by ®=B, then we are done. Other-
wise, following the observations above, it concludes by one of ®EB, ®E, IE,
—oE. We proceed by case analysis to replace D with a derivation D’ that
has the same open assumptions and conclusion but concludes by ®EB.
To simplify matters, we eliminate the case in which D ends by —o[E. In
this case, the given D is of the following form, with S = S;,S5:

Sl SQ

Dl DZ

& (e (61—&)
(6 ® &)

Observe that D, witnesses Sy F, € —o (£ — §g)b. By Proposition 22,
infer ”,S, Fy (&1 — gz)b. Let D} be a derivation witnessing this judge-
ment,
€b982
Dy
b
(§1 — &2)
We can remove the instance of —>EB in D by composing D; with D) to
yield DY,
SI9S2
Dy
b
(61— &2)

Importantly, D4 has strictly fewer such instance of —F (reading up-
ward) until another rule is used that concludes £ —o (§; — fz)b. There-
fore, without loss of generality, we can assume that the given D does not
conclude by —F.
It remains to consider the cases where it concludes by ®E and I[E. The
transformations are as follows:
— ®E. By the induction hypothesis (IH), the sub-derivation of the
premisses both end by ®EB; that is, D is of the following form, where
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51b952b9s = 51952553454:

Sl Sg S3 S4
N R
b b
€1 52b®| &1 §2b®l
(61 ®e2) (&1 ® &)
; &KE
(&1 ® &)

By definition of ®E, we have £1°, 5" € S3,S4. There are four possible
distributions of £;° and €5’ in Sg S4—mnamely: one, £1°,e5” € Ss; two,
£17,9” € Sy; three, £,” € S3 and e5° € Sy; four, £,° € Sy and £5” € Ss.
We illustrate case one and four, the others following by symmetry.
— One. If €%, 65" € S3, let D5 be the result of composing D; and

Dy with Ds. Let S5 = Sz —¢£1°,5°. The desired D’ is as follows:
Sl 982 98{3 S4

Dy D,
& &
& ® 52)b

— Two. If &1” € S5 and £5” € S4. Let D5 and D) be the results of
composing D; and D, with D3 and Dy, respectively. Let S; =
Sz —e1” and S = Sy — £1°,¢5°. The desired D’ is as follows:

D, D
b b

&1 5?) &,

(&1 ® &)

This completes the case analysis.
— IE. By the IH, the sub-derivation ending with (& ® §z)b conclude by
®; that is, D is of the following form, where S = S;455,S53:

S1 S

D, Do

é— b &- b SS
1 2 ® ’D3

(51®§2)b ! r
(61 ©8&)
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The desired D’ obtains by permuting the rules in either one of the
two possible ways—for example,

Sl Sg
1 D
b bg S2
S D
Ie 2
&’ &'
@
(61 ® &2)
This completes the case analysis.
This completes the induction. [

PROPOSITION 24. Let € B be arbitrary and P € M(A), P, I iff P = o.

PROOF. The right-to-left obtains by —P in Definition 16. The left-to-right
proceeds as a simplified version of the proof of Proposition 23, because I is
the unit of ®. m

Observe that tz and I, are identical when restricted to A—that is, S lz p
iff S, p for Syp € M(A). The elements of B are used as an intermediate
step that moves us from the semantics of complex formulae (i.e., formulae in
F — A) to atomic formulae (i.e., formulae in A). To enable this shift we also
use an auziliary notion of support that is grounded in the auxiliary notion
of derivability in a base.

DEFINITION 17. (Auxillary Support-in-a-Base) Let IF*™ have the clauses in
Figure 7, which define IF~, but with k- replaced with ¥ —that is, (At) is
replaced by the following:

[ iff PFyp (At)’

For clarity, quantification in the clauses defining I*~ takes place over A
and M(A) and bases are over A, not over AU B. For example, the clause for
® is

By o®4  iff 33U, VeM@A):P=(U,V),IEJ T, and I} A (®)
not

Iy p@¢ if  JU,VEMAUB):P=(U,V),IEJ T, and IE} A (®)

This auxillary support relation enable us to prove the key lemmas deliv-
ering completeness:
— IMLL-AtComp’. For any %4, P,S € M(AUB), and q € AUB, P,SF, q
iff P IS q.
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— IMLL-Flat’. For any & € =, base 2" and U € M(A),
|§*U gb iff *U 5
— IMLL-Nat’. For any P € M(AUB) and p € AUB: if P K, p, then
Po - ph.

PROOF OF THEOREM 21—COMPLETENESS. Assume I ¥ ¢ and let B, (-)",

and F be as described. By IMLL-Flat’ and (Inf), infer I IEF9 ", Therefore,
i

by IMLL-AtComp, we have I’ E; . Finally, by IMLL-Nat, (rb)h F (") —
that is, I' Fe. ]
LEmMMA 25. (IMLL-AtComp’) For any base A, P,S € M(AUB), and p €
AU B,

P,SE,p  iff  PIESD

PROOF. This is the same as for the proof of IMLL-AtComp as it only con-
cerns the base case of the relation and (Inf). |

LEMMA 26. (IMLL-Flat’) For any ¢ € Z, 2 € B, and U € M(A),
Ve il g e
PROOF. Fix an arbitrary # € % and P € M(A). We proceed by case analysis

on the structure of £:

— £ is atomic. This follows from (At) and (At)’ by observing that P k5 p iff
PE,p.
7

- &is L.
(577 O G o S (IMLL-AtComp’)
iff P=go (Proposition 24)
iff  ED T (1)
— £ is of the form & —o &;.
2P (& —0 &) iff PE, (& — &) (IMLL-AtComp)
iff P,&° Fz fgb (Proposition 22)
it & P g (IMLL-AtComp')
it &° IED & (IH)

— £ is of the form & ® &;.

P (61 ®6)° iff PR, (610&) (IMLL-AtComp’)
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iff JU,VemM@a): P=(U,V), U, &°, and VE, &°  (Proposition 23)
iff 3U,VeMa): P=(U,V),IEY &° and 1BV £&°  (IMLL-AtComp)

iff JU,VeM@a): P=(U,V),IEY &, and I & (TH)
iff 1B & ® & (®)

The (IH) refers to the induction hypothesis. This completes the
induction. |

LEMMA 27. (IMLL-Nat’) For any P € M(AUB) and p € AUB: if P &, p,
then P I ph.

PRrROOF. This follows immediately from the fact that the defining conditions
of ¥ exactly simulate the rules defining - after —% has been applied. [

6. Category-theoretic Interpretation

Pym et al. (2023, 2024) [43,44] initiated the integration of P-tS into category-
theoretic logic. They concentrated on the orignal B-eS for IPL by Sandqvist
[46]: they provided a sound and complete interpretation within a presheaf
category, demonstrating the formal naturality of the constructions—that
is, interpreting formulae as functors, support in a base is interpreted as
a natural transformation. By considering associated sheaf categories, they
also established topological characterizations of possible interpretations of
disjunction.

In this section, we adopt a similar approach, providing a category-theoretic
interpretation of the B-eS for IMLL as introduced in Section 4. Our category-
theoretic semantics for IMLL relies on symmetric monoidal categories (SMCs)
—see, for example, [5] on categorical models of intuitionistic linear logic. We
assume familiarity with SMCs—see, for example, [11,33] for further details.

Before delving into technical details, we establish some intuitions. We
interpret each IMLL formula as a presheaf—that is, a functor of the form
WeP — Set. The category W (see Definition 21) represents bases and multi-
sets of atoms.

In this context, the functor corresponding to the formula ¢ at (%,P)
in W corresponds to the judgment Ilj% . The monoidal structure on these
presheaves is derived from that of W using the celebrated Day convolution
or Day product [9]. Its importance in this work merits some elaboration.
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6.1. Background: Day’s Convolution

Let V be an SMC with all small limits and colimits, and let C be an arbitrary
V-enriched category. Day [9] presents a general method for constructing a
monoidal closed structure on the (V-enriched) functor category [C, V]. These
monoidal structures ®pa,y are called Day convolution or Day product.

In this paper, V is Set, the category of sets. The Day product ®p,, and
its adjoint —pa,y will be deployed to interpret, (though not precisely ® due
to its nonstandard semantic clause (®)) and —o, respectively. That is, let
(C,®,I) be a (small) SMC, then (by Day’s construction), we have a SMC
structure on the presheaf category C (i.e., [CP, Set]).

One way to understand Day’s construction is as a (co)end. We refer to
Loregian [31] for an introduction to (co)end calculus, and only sketch the
necessary definitions and notations.

DEFINITION 18. (Wedge) Let F: X°P? x X — Y be a functor. A wedge for
F is an object w: e = F that consists of a Y-object e and a family of Y-
morphisms w, : e — F(x,z) such that, for any X-morphism f : z — 2/, the
following diagram commutes:

e —2= F(z,x)
wz/l l}'(idmf)

F(2, :r’)uf’id ')}'(a:, x')

A cowedge is the dual notion of a wedge.

DEFINITION 19. (End) Let F: X°P x X — Y be a functor. The end for F is a
universal wedge—that is, a wedge w such that any other wedge w’: ¢/ = F
factors through w by some unique Y-morphism f: e’ — e. It is denoted
as fM F(z,x), and equipped with a universal extranatural transformation
m: [ g Flx,xz) = F.

A cowedge is the dual notion of a wedge, and a coend is the dual notion
of an end; that is, a universal cowedge. It is denoted f S (z,z) and comes

equipped with a universal extranatural transformation ¢: F = [ S (z,x).

A useful alternative statement of the above definition of ends is in terms
of equalizers:

S Fl,2) = Tex Flanz) — 11 Fluo)  (4)

(uL)v)EX
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Here, X\ and p are the ‘left” and ‘right’ actions respectively; at each f: u — v,
the f-th component of A and p, say A, pr: [[,ex F(z,2) — F(u,v), are
defined as follows:

= Af(t) = F(f,0)(tw)

= py(t) = Flu, f)(tu)
The end, as an equalizer, then collects all those tuples in [[, F(x,z) on
which the left and right actions coincide.

Dually, coends are coequalizers:

sy F00) =3 Lex Flaw) — [ Fwa) ()

(uim)ex

EXAMPLE 4. One elementary example of ends is the end presentation of nat-
ural transformations. Given functors F,G: C — D, one has [C,D](F,G) =
[..c D(Fxz,Gzx). Use (4), one can spell out the end concretely as equalizers,
so elements in [ . D(Fx,Gx) are precisely those families of D-morphisms
{02 : Fx — G} such that the following diagram commutes for arbitrary
frx—uy:

Fr -2 Gz

sl e

Fy — Gy

This is exactly the defining naturality condition for natural transformations.

Let X denote the Yoneda embedding; that is, x(c¢) = C(—,c), and X(c ER

d) = C(—, f). The symbol ‘X’ is a hiragana character pronounced ‘Yo’. It
was first used by Johnson-Freyd and Scheimbauer [26] to denote the Yoneda
embedding.

Day’s Construction. The SMC structure on C is defined as follows:

— The monidal product ® is the Day product ®pay: for any F,G: C? —
Set and ¢ € C,

z1,z2:C
(F @pay G)(€) = / F(o) x Glaa) x Cle;n ®22)  (6)

— The monoidal unit for ®@pay is I
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— The internal hom is the adjoint —p,y of ®pay: for any F,G: C? —
Set and ¢ € C,

(F=pw Ol = [ _Set(F@).Glewa) =EF.Gee-) (7

We provide some intuition on the use of (co)ends above:

— As a coend, (F ®pay G)(c) are equivalence classes of triples in F(z1) x
G(z2) x C(c,x1 ® x2). They are thought of as pairs (A, B) in F(x1) X
G(x2) such that x; and zo ‘cover’ of c—that is, there is a C-morphism
c— 11 R Iy

— The = in (7) applies the end presentation of natural transformations
from Example 4

— (F —pay G)(c) is (up to isomorphism) all the natural transformations
of the form F = Go(c®—). The (c® —) in the target functor models a
‘contextual’ resource c¢ in the sense of IMLL—that is, a function that,
given a resource, returns that resource composed with the resource c.

The following fact turns out to be useful when commuting this ‘contex-
tual” resource (¢ ® —).

LEMMA 28. G —pay (H(c® —)) ~ (G —pay H)(c® —)

PROOF. Both the LHS and RHS are equivalent to [ . Set (g(:c), Hrz®c®

f)). -

ExaMpPLE 5. We give a simple example of the Day product on ﬁ, where
N is the discrete category of natural numbers, equipped with the monoidal
structure (+,0). Given two functors F,G: N°? — Selt (note that NP is
exactly N due to discreteness), their Day product is

F®pay G: (nE€N) = Y F(i) x G(j) x N(n,i+j) = > F(i) x G(j)
i,jEN i,jritj=n

where ) is the disjoint union.

6.2. Formulae as Preasheves

Having given the relevant background and established some intuition, we
are ready to start our constructions of a category-theoretic presentation of
the B-eS of IMLL. To begin, we define the category of worlds; this is the
domain of the functor spaces in which formulae are interpreted.
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DEFINITION 20. (Context) A context is a finite list of variable-type pairs
of the form z1: p1,...,Zm: pm in which each x; is a variable, and p; is an
atom (seen as a type).

We adopt the standard convention—see, for example, Jacobs [25]—that
variables in contexts are listed in order x1, 2, ..., and concatenation of two
contexts z1: p1,...,Tm: Pm and x1: q1,...,%n: g, requires accumulation
of the variable indices:

T1:P1y--5Tm: PmsTm4+1-dly -+ -y Tm+n: An

Since the variable orders are fixed, once the length of the context is given,
we may simply denote a context by the list of types, which we also write
as P,Q,... with a bit abuse of notation. Indeed, we will use P for both
a context and for the multiset of atoms to which it corresponds. This is
because every list determines a multiset by forgetting the ordering, and all
the lists obtained from a given multiset by assigning different orders are
isomorphic, up to which we view as equivalent from a category-theoretic
persepctive. Hence, we use , for both the concatenation of a context and for
the concatenation of lists of atoms. Moreover, henceforth, we use the term
‘context’ both in the sense of Definition 20 and in the sense of a multiset of
atoms.

DEFINITION 21. (Category of Worlds) The category of worlds W has the
following components:

— The objects are pairs (%, P), where Z is a base, and P is a context

— A morphism (%,Q) to (#,P) (where P = p;,...5pm) is given by an
inclusion ¢ 2 % and an m-tuple of derivations (®4,...,®,,) in € of the
form Q; kg ®;: p; for each i = 1,...,m, where Q1,..., Q. = Q. For
each object (%, P), its identity morphism is witnessed by & O % and
x1: pi b x1: p; for each (occurrence of) p; in P;.

— Composition of morphisms is defined by the transitivity of base inclusion
and substitution of derivations. That is, given two morphisms (Z,R) —
(¢,Q) and (¥¢,Q) — (A,P), say (Z22%¢,(V1,...,¥,)) and
(¢ 2 A, (Pq,...,P,,)) respectively, their composite morphism is

<@ 0 %, (@1,... ,@m)[\lll/xl,.. ,\I/n/an
In other words: there is a morphism (¢,Q) to (#,P) if ¢ extends A

and in %, there are derivations of P from Q; that is, there is a partition
Q= Q1y...,Qmn and derivations Q; k» p; for alli =1,...,m.
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It is easy to give W a symmetric monoidal structure. By Day’s construc-
tion, this induces a SMC structure on W, which is used for interpreting IMLL
formulae.

DEFINITION 22. (Symmetric Monoidal Category of Worlds) The symmetric
monoidal category of worlds (W, e, I), where

— the monoidal tensor e is defined on objects by
(B, P)e (B P =(BJIA (P,P)))
and on morphisms by
(€ 2B, (P1,...,0,)) e (€' DA (D),...,d)))
=(CUC" DBUR, (Dy,...,D,,0),...,9 )

— the monoidal unit I is defined by I := (&, @)—that is, the pair of the
empty base and the empty context.

The symmetry (%A, P) o (#',P')) — (#',P’)) e ($,P) is simply swapping of
variables.

Observe that e is not cartesian—for example, it lacks canonical projec-
tions.

We desire to interpret every IMLL formula ¢ as a presheaf of the form
] : WP — Set. Intuitively, at a world (4, P), the value [q]((%, P)) is the
set of all derivations of q in A using resources P. For complex formulae,
[] is defined by mimicking the clauses of the connectives (see Figure5) in
category-theoretic terms. Crucially, the functor V) defined below plays the
role of ‘for all p € A’. As in standard practice of categorical logic (see, for
example, Jacobs [25]), it is obtained as the right adjoint for the functor that
‘forgets’ the variable to be universally quantified over, which simulates the
V-introduction rule in first-order logic.

DEFINITION 23. (Free-variable Forgetful Functor) Let the free-variable func-
tor Ap: [WP, Selt] — [WP x A, Set] be defined by composing the projection
on the first component with F; that is, if m1: W x A — WP is the projec-
tion, then

Ap(WP L Seb) = (WP x A T WP L, Set)
Let ¥y be the right adjoint of A, such that Va(G): WP — Set for any
functor G: W° x A — Set is defined as follows:

(#,8) — W(An (£(2.5)) .9)
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Since A is discrete—a set seen as a category where the only morphisms are
identities, each natural transformation Ay (x(%,S)) = G consists a family
of natural transformationsx(%,S) = G(—,q) determined by atoms q € A.
In other words, using the universal mapping property (UMP) of products,

W(An (52,8)),6) = [[W(x(2.8).6(.n) = [ 6((2.9).5) (&)
pEA pEA

This setup suffices to define the the category-theoretic interpretation of
IMLL formulae based on its B-eS:

DEFINITION 24. (Interpretation) The interpretation [—]: F — [WP, Set]
is defined inductively on the structure of ¢ € [ as follows:

— [a]({(#,P)) := {®|P k ®: q}—that is, the set of all derivations from P
to q in base 4.

= [¢ — ¥] == [¢] —pay [¥].

— [ ® Y] := VaFg, where Fg: WP x A — Set is defined by

Fo((#.P).p) = ( (([61 8oy 191) —0uy [91) —puy ] ) (.

— [1] := VaF1, where Fi: WP x A — Set is defined by
Fi((#,P),p) = ([p] —ay [P]) (2, P))

The interpretation extends to a multiset of formulae I' = [v1,...,7,] by
taking the product of all the elements,

[]:= [n] ©pay - - ®pay [7n]
As a special case, [9] := X(2, D).

In this specific semantic setup, the Day convolution becomes quite
intuitive. Recall that elements in (F ®pay G)(c) are equivalence classes
of triples in (F(z1),G(x2),C(c,z1 ® x2)). When F and G are instantiated
to the interpretation of formulae ¢ and 1, respectively, and c¢
is instantiated to (A, P), each such triple in
(Il ({21, Q1)) [¥]({ 22, Q2)), W({#, P), (21 U 22,Q1,Q2))) requires a

derivation of Q1 y Q2 from P in £ such that ¢ and 1 are witnessed in

(Z1,Q1) and (23, Q2) (thus in (£, Q1) and (A, Q2)), respectively.

The internal hom means that, at an arbitrary (%, S), the formula ¢ —o
1 is interpreted as those natural transformations that send an element of
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[£]({27,U)) to one of [{]((#U Z°,5,U)),
(] —pay [¥D((#,5))

[ set(e@ on @ 2., 0))
(2, U):Wop
= 4([e]. [)(2.5) « -))

As expected, this matches the semantics of ¢ IF% ¥ given by (Inf); that is,
for arbitrary 2”2 % and U € M(A), if I} ¢, then Il—isz ).

Finally, observe that expanding the meaning of V) in [ ® 9] exactly
mimicks the semantic clause (®):

I & u1(#,2)) = [T ( (@) 5y 191~y D)~y 1) (2,7 )

pPEA

The situation is analogous for [I].

6.3. Category-theoretic Validity

Having interpreted the formulae as presheaves, we can now state the notion
of support in category-theoretic terms as natural transformations between
the corresponding functors.

DEFINITION 25. (Categorical Base-extension Validity) The sequent I'> ¢ is
categorically valid in % using resources S—denoted I’ l=§g (o—iff there exists
a natural transformation n: [I'] = [¢](— e (£, S)).

In other words, I' B}, ¢ iff there exists a W-indexed family of functions of
the following form that are natural in (2, U):

vy 12, 0)) = [e]((27,U) o (#,P))

The naturality condition says that different ways of tweaking the func-
tions between different indices are equivalent. More precisely, given a W°P-
morphism (27, U) — (#,V) consisting of the base-extension 2~ C # and
derivations V t (¥q,...,¥,,): U (assuming that the multiset U is of size
m), the following two ways of transforming a witness e of I' at (2", U)
(i.e., e € [I']({(Z,U))) to one of ¢ at (¥ UAB,V,S) (i.e., an element of
lel((#Z U A, V,S))) are equivalent: first, append (¥q,...,¥,,) to obtain a
witness of I" but at (#/, V), and then apply the support n; second, apply the
support 7, to witness ¢ at (#,V), and then append (Vq,...,¥,,). When I'
is empty, we write F, ¢ instead, which holds precisely when [¢]((4,S)) is
nonempty.
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To familiarise one with the category-theoretic constructions so far, we
provide a few examples. As a first sanity check, category-theoretic validity
should be monotone with regard to base-extensions:

ProposiTION 29. If T’ légg p and € O B, then I’ #1; .

Proor. This follows by induction of the sequent I'>¢. In the base case, prov-
ability z is monotone on 4. In the inductive steps we have [¢]((4,.5)) C
[el((€,S)) whenever € O Z; therefore, a natural transformation n: [I'] =
[¢](— o (#,S)) witnessing I' E3, ¢ also witnesses I' E, ¢. |

As in the B-eS in Figure5, , and ® are interpreted differently in the
category-theoretic semantic, but have the expected behaviour:

LEMMA 30. @9 Fg ¢ ® 1.

PROOF. The claim is that there is a natural transformation o»®: [¢] @pay
[v] = [¢ ® ¢]. Thus, we require to show that there is a natural transfor-
mation of the form

[l ©ay [¥] = T] ((I¢] ©Day 1] —ay [P]) —Day [0])

PEA

Notice that the codomain is a product, so according to the universal mapping
property (UMP) of products, it suffices to take an arbitrary q € A and define
a natural transformation

L] @y [#] = (([] @pay [¥] —Day [al) —pay [a)

One is induced from the evaluation natural transformation ([¢] ®@pay [¢/]

®pay ([¢] @pay [¥] —pay [a]) = [a] and the adjunction (— ®pay F)
(F —Day —), as required. .

It is instructive to see how the semantics works with a concrete example.

EXAMPLE 6. We show p,(p ® q) —o r F}, r for arbitrary base %. Thus, we
require to show that there is a natural transformation v: [p] ®pay [(p®q) —
1] = [r[((#,q)).

Let a® be the natural transformation in Lemma 30, and let ev be the
evaluation associated to —pay. Consider a natural transformation 6: [p]®pay
la] ®pay [(p ® q) — 1] = 1((#, @)), obtained as following:

»® ®Dayid ev
- 7

[p] ®pay [a] ®pay [(P® @) —o 1] — [p ® a] @pay ([p ® d] —Day [r]) < [x]
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Abbreviating p,(p ® q) —o r as I', the desired natural transformation 7 at
(Z°,U) is defined as follows:

[T1((2,0) = [)((2,0)) x 1 L0 )27, 0)) x [q)((2, q))

= ([1] @pay [a]) (2 U 2,U,q)) & [((2° U 2, U,q))

where

— 1 is a singleton set {x}

— Ref picks out the derivation q k3 q using exactly one step of REF (thus
an element of [q]((#,q)))

— ¢ maps each element (e, es) € [I']((2Z,U)) x [a]((#,q)) to (the equiva-
lence class of) (e1, ez, ref) € [[']((Z7, U))x[a] ((AB, @) xW({(Z U B,U,q))
in [ [T (21) % [al(@2) X W2 U B, Uy, 21 0.25).

This natural transformation witnesses py(p ® q) —o r F, .

6.4. Equivalence with Support

It remains to show that category-theoretic validity is equivalent to the B-eS
for IMLL. We begin with derivability in a base ( Definition 13):

LEMMA 31. S,P 5 q iff SE) q.
This can be seen as a category-theoretic counterpart of IMLL-AtComp.

PROOF. We require to show that S,P by q iff there exists a natural trans-
formation of the form n: [S] = [q]((#,P) e —).

The ‘if* direction. Assume there exists such an 7. By definition, (&, S),
na,sy: [S]((2,8)) — [al((#,SsP)). By REF, s I s for every s € S. They
determine an element of [S]((@, S)), denoted ref. By definition, 74 s)(ref) €
[q]((#,S,P)). This determines a derivation witnessing S,P F3 q.

The ‘only if* direction. Assume S,P 5 q. Fix one such derivation, say ®.
We first define 7 at an arbitrary (2", U). By definition of Day product as a
coend and the coequalizer characterisation of coends in 5, every element in
[S]((2",U)) is an equivalence class of derivations U I~ S, and 72" y) maps
one such derivation to a derivation U, P 3,4 q by composition with &,
thus an element in [q]((#,P) e (£, U)). Second, the naturality of n follows
from that of derivation substitutions. |

COROLLARY 32. If the atomic rule (S1>d1,...,5,>qn) = p is in B, then
there exists a natural transformation of the following form, for arbitrary
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Tl,...,Tn.'

po @ (1510w [l(A. T+ ) = BIATr,. T} o )

1=1,...,n

PROOF. Recall that at each (27, U), the morphism p 4 vy is of the type

®<ﬂsi]] pay [l (2, T5) » —>)<<%,U>> L l(# U 2, T,0))

7

So, take an element in the Day product, namely a representative set of
derivations {S;yTisU; Fouz di}ti=1,...n (Where Uj,...,U, = U), we turn
them into a derivation for S, U F»-_u% p by applying APP of the given rule
(S1>dq1,-.-,S,>qn) = p to ®q,...,P,. The naturality follows from the
substitutions of derivations. ]

We show soundness of the categorical notion of validity; that is, if ' I% ©,
then I )225 . We use the completeness result of the base-extension semantics
(Theorem 13) and its proof, taking the derivability in bases as a bridge be-
tween B-eS validity and categorical validity. Fix a base Z, " = [y1,...,7,] €
M(F), S € M(A), and ¢ € F. Let ()b and .Z be as in Section 4.3 for the se-
quent I' > . Without loss of generality, the image of ()b for non-atomic
formulae are disjoint with the atoms appearing in % and S (DISJOINT). Let
Pt be BU .. The following lemma is the key for soundness.

LEMMA 33. For any ACT, Q€ M(A), TCS andp € A, if A°,Q,T bpy
p, then there exists natural transformation of the form [A] ®pay [QY] =
[p*] ({2, T) ).

Before proceeding to the proof, we remark that the derived natural trans-
formation is not of the type [A] ®pay [QY] = [p*]((#*,T) e —) (that is,
the base in the codomain should be % rather than %#*). The .# part of
B+ = B U .M is solely used to encode NIMLL, and it plays no role in the
support relation, hence neither in the category-theoretic counterpart.

PROOF. We proceed by induction on Q, Ty AP -+ p using Definition 13. We
consider three cases separately: the judgement obtains by REF, the judge-
ment obtains by the ruse of a rule r € 4, the judgement obtains by the use
of a rule from r € .#Z. We treat each case separately:

First, Q, T, A’ F3+ p is obtained by REF. This includes three subcases
Q,T,A": exactly one of Q, T, A is p, and the rest two are empty multisets.

—~ Q = p. The desired natural transformation is of the form 7: [p?] =
[p"]((#,2) o ). Since [p*]((27,U)) C [p'|((#B U 27,U)) for all (27,U),
one can simply define 74" vy as the identity function.
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—T = p. The desired natural transformation is of the form
n: X(@,2) = [p]((#B,p) @ —) (recall that x(@, D) is the tensor unit
for @pay). At each (2, U), ny4 v is a function W((2",U), (2, @) —
[pf]((%,p) @ (2", U)). The domain is nonempty precisely when U = @; in
this case, the domain is a singleton set, say {x}. Also, according to DIS-
JOINT, the image of (-)” is disjoint with S, hence is disjoint with T. So p? is
p. Then, the codomain of 74" vy is [p](#U 2", p), and it has the element
p twug ref: p, namely the proof obtained by REF on p. Then 74 )
maps * to ref. Naturality follows from that this is a constant function.

— A’ = p. The desired natural transformation is of the form n: [p‘] =
[P°]((#,2) @ —). At each (2,U), niz vy is a function of the form
[P 1((27,U)) — [p*]((ZU 2 ,U)), and one can simply define it as the
identity function, since [p?]((2",U)) C [p*]({(Z U 27, U)).

Second, r € A. Let r = (S1>q1,...,5,>qn) = p. By APP, Q = Q1
coisQu, T=Ty,..., Ty, and A = Ay, ..., A, such that Q;,T;,S; 3 A% byt
q; for ¢ = 1,...,n. Hence, by the IH, there is a natural transformation
e [[Q%SE]] ®pay [Ai] = [[qf]] ((#,T;) e —) fori=1...n. By DISJOINT, the
type of 7; can be simplified as 7);: [[QE 9 3i] @pay [Ai] = [a:] (A, T;)e—).
The desired natural transformation follows immediately by composing (the
transposition of) the ;s with the p in Corollary 32.

Third, r € .#. We proceed by a case distinction on the atomic rules in

M

— =y, pY = (1 ® )", By APP, there are Q1, Qq, Ty, To € M(A) and
Ay, Ay € M(H‘_) satisfying QisQ =Q, T1,To =T, A1 Ay = A, such
that Qi s Ti s A by Y2, for i = 1,2. By the IH, there is a natural
transformations 7% : [A;] @pay [Q:i] = [[(wf)h]](Q@,TQ o) fori=1,2.
Let a»®: [¢1] ®pay [¢2] = [¥1 ® ¥2] be the natural transformation in
Lemma 30. Observe that (% ®pay n%?) ; a?’g’ﬂ._ is a natural transfor-

mation [A] ®pay [Q] = ﬂ(wb)hﬂ(<%, T) e —), as required.

—r= zpﬁmg >p,>(1; ® 1#2)b = p. By APp, there are Q1,Qa, T1, T2 € M(A)
and A1, Ay € M(F) satisfying Q1,Q2 = Q, T1,T2 =T, A1,A2 = A, such
that A2, Q1 ,T1 .12 305 b p and A%, Qe Ts bp (¥ @ 1h2)’. By the IH,
there are natural transformations

1P [A1] ®pay [Q}] @pay [¥1] ®pay [¥2] = [P1((#Z,T1) e —)

0122 [Ag] ©pay [Q3] = [¥1 ® 2] (B, T2) @ -)
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To finish the case, it suffices to find a natural transformation 0: [1); ®
Vo] @Day ([¥1502] —Day [P']) = [p], since the wanted natural transfor-
mation [A1,A2] @pay [QF Q4] = [p¥]((#, T) e —) can then be obtained
as follows, omitting the evident applications of associativity and commu-
tativity of @pay:
[A15 5] @pay [ Q5]
lﬁ@nwl‘@ﬂ&
([¥1] @pay [¥2]) —Day [PT((#,T1) @ —) @pay [1 ® ¢2]((#, T2) ® —)
lz via Lem. 28

([1] ®pay [t2] —pay [P°]) ((#,T1) ® =) @pay [t1 © 2] ((8,T2) ® —)
(([¥1] ®pay [12] —Day [P*]) ®pay [1h1 ® 12]) o (((B, T1) ® =) @pay ((Z, T2) ® —))

Jooe

[Pl o ((B,T1,T2) ® —)
This is essentially a category-theoretic version of Lemma 12. We proceed
by sub-induction on the structure of pf.

— p? = p. This follows immediately from:
1 @ o] = [T (([91] ©nay [zl ~Day [P]) —uy [01)

pPEA

Simply apply the projection on p and evaluation for —pa,y.
— p? = x1 ® x2. We require to define a natural transformation #X1®x2
of the form

[¥18¢2]@Day | [¥1532] —Day [T (D] €0y [xal =Dy [P]) =y [P])

pPEA

= [T (b @ay [xa] =pay o)~ [91)

PEA

Since the codomain is a product, according to the universal map-
ping property (UMP) of products, it suffices to define, for each q,
61 x2[q] : dom(6X1¥X2) = ([x1] ®pay [X2] —pay [al) —pay [al-

This is obtained by currying the composite of the following natu-
ral transformations, where on the arrows we only explicate the key
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components and omit the evident identity natural transformations:

[¥1®%2]®Day ([wlﬂz’?]]"DapreA (( [x1]®Dpay[x2]—Day [P]])"Day HP]])) ®Day ([[X1H®Day [x2]—Day [[‘ﬂ])

I

[¢¥1®%2]®Day ([[m s2]—Day (([[X1]]®Day [x2]—Day [[Q]])_’Day [[Q]]) ) ®Day <[[X1]]®Day [x2]—Day [[Q]])

lreass

[¥1®%2]®Day ((uxﬂ]@my[[m]]ﬂnay[[q]])ﬂnay(uwlnguﬂnw [[Q]]))®Day(ﬂX1]]®Day sz]]HDay[[Q]])
lz’d@Dayev
[%1 ® 2] ®pay ([¢1 5 ¥2] —Dpay [a])
Jor
[a]
Here reass is re-association.

— p? = I Spelling out the definition of [I], it amounts to finding a
natural transformation of the form:

0 TL((11] @pay [92] —pay [o]) —ay [p])

PEA

@bay ([¥1] @0y 2] —Day [T ([0] =pay [o1)) = [T (Ip] —0ay o))

PEA pPEA

Notice that the codomain is a product so by UMP of products, it
suffices to find 0[q]: dom(#) = ([a] —pay [a]) for arbitrary fixed
q € A. To this we define 6’[q]: dom(6) @pay [q] = [q] as the following
composition:

/N

[lpea (([[%]]@Day [¥2]—Day [P]) —Day [[p]]> ®pay | [¥11®Dpay [¥2]—Dayllpea(lPl—Day [[P]])) ®Day [al

Tq

TN ——

<([[1P1]]®Day [¥2]—Day [[QH)"Day [[Q]]) ®Day | [¥1]®Day [Y2] —Day ([al = Day [M])) ®Day [al

Tq

<([[¢1]]®Day [¥2]—Day[al) —Day [[Q]]) ®Day | [al—Dpay ([¥11®Dpay [¥2]—Day [[Cﬂ])) ®Day[al

— TN

id@Day ev
(111 @Day [v2] —Day [al) —Day [al) @ay ([¥1] @0y [2] ~ay [a)

lev

[d]
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— p? = x1 —o xo. By IH (for the case of x2), there exists a natural

transformation 0X2: ¢ ® V2] @pay ([¥1] @pay [¥2] —Day [Xx2]) =
[x2]- Then the desired natural transformation 6X*—°X2 is obtained by
currying the following composed natural transformation:

[[sz)l & 17[)2]] ®Day ([[wlﬂ ®Day [W)z]] —Day ([[Xl —° X2]])> ®Day [[Xl]]

ldef

[[?/)1 & 1/)2]] RDay <[[Q;Z)1ﬂ RDay [WQ]] —Day ([[Xl]] —Day [[X2]])) RDay [[Xl]]

lreass

[¥1 ® V2] @pay <HX1]] —Day ([¥1] ®pay [¥2] —Day [[Xz]])) ®pay [X1]
lid@Dayev
[¥1 ® ¥2] ®pay ([¥1] ®pay [¥2] —Day [Xx2])

J(QXQ

[x2]

— —o; case. The last rule is: ¥} > ¢} = (11 —o wz)b. Then A°,Q,T,15 b+
5. By TH, there exists a natural transformation
0 [A] ©pay [Q°] @ay [(89)'] = [(45)'1(2, T) o -)
That is,
n: [A] @pay [Q7] @pay [¥1] = [$2]((#,T) )
By adjunction, [A] @pay [Q7] = ([¢1] —ay [¥2]) (8, T) e =), which is

equivalently of the type [A] ®pay [Q°] = [¥1](—) —Dpay [¢2]((%, T)e—)
(Lemma 28). The wanted natural 7 is then obtained by adjunction.

— —og case. The last rule is: >(¢); —o ng)b,mpﬁ = 1. So it is derived from
Q15T1, A% bz (9 — d)g)b and Qg Tay A} bzt 9% using APP, where
Ql 9 Q2 = Q, T = Tl 9 T2, Al 9 Ag = A. By :[}I7 there are natural
transformations

71702 [A1] ®pay [Q}] = [t1 —o ¥o] ((Z,T1) e —)
"¢ [A2] ®pay [QS] = [1]((B, T1) e —)
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Then the following composition is the desired natural transformation:
[[A]] ®Day [[Q]]

B

[A4] @Day [Q1] @Day [A2] @Day [Q:]

Jf]wl —og ®Day77wl
(I — el o (8, T1) 0 =) ) @0y (1] 0 (8, T) 0 )

|

(111 =Dy [2]) @y [1]) 0 (. T1) @ =) @pay (2, T2) 0 )

J’evo%

[t2] o ((#,T15T2) @ —)

|=

[p2] o ((#,T) e —)

Here the third step uses the fact that ®pa,y is a (lax) monoidal product
in W.

The last rule is: >I’. In this case, Q,T,A are all empty, and the as-
sumption becomes @ bz+ I’. The goal is to show a natural transfor-
mation 0: [@] = [IJ((#,T) e —); that is, 0: XI = ([[,calP] —pay
Ip])({(#, ) @ —). Note that xI = W(—,(&,9)), and W((Z",U), (, 2))
is nonempty precisely when U = &, in which case W((.2", @), (&, @)) is a
singleton set, denoted {*}. So it suffices to define 6 at (2", @). We define
the component at p € A of 62 &)(*) as the identity natural transforma-
tion Id, which is an element in W([p], [p]((Z U 2", 2))). More precisely,
Id(2.sy: [P]({Z,S)) — [P]((#ZU 2 U Z,S)) maps a derivation of S I p
to itself, which is also a derivation for S Fz 21U p. The naturality is
evident given the definition of the maps being the identities.

— The last rule is: >I°,>p = p. Then A}, T1,Q1 b+ I” and A%, T, Qo gt
p. By IH, there exist naturla transformations:

n': [A1] @pay [Q] = [I((#,T1) @ -)
P [As] ®pay [Q3] = [P((%, T2) @ —)

IR
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Thus we haven! ®@pay 7°: [A] ®@pay [Q°] = ([1] ®pay [P'])((B,T) @ —).
Then, it suffices to define a natural deduction or° . 1] ®pay [P = [P
For this, we make an induction on pF.

— pf =p. 0°: [I] ®pay [p] = [p] is the following composite:
[Tiea (Ir] —pay [r]) ©pay [Pl
J’ﬂp@)Dayid
(IP] —pay [P]) ©pay [Pl
[p]

~ p*is x1 ® x2. The goal is 1% : [I] ®pay [x1 ® x2] = [x1 ® xal-
Spelling out the definition of [y; ® x2] in the codomain, using the
UMP of products, it suffices to define its p-component §X1®X2[q]:

[D®pay [x1®@x2] = ([X1]®@Day[x2] —Day [al) —pay [al, by currying
the following natural transformation:

[T ©pay [x1 © X2l ®pay (IXa] @Day [x2] —pay [al)

!

HreA([[r]]"Day [[r]])®DayHr€A (([[X1H®Day[[x2]]"Day [[r]])"Day [[ﬂ]) ®Day([[X1]]®Day [[X2]]"Day [[q]])

([a]—pay [a])®pay (( [x1]®pay [x2]—Dpay[a]) —Day [[‘ﬂ]) ®pay ([X1]®Day [x2] —Day[a])
1d@Day v

(Ia] —pay [a]) @pay [l

ev

[a]

— p?is I. Similar to the ®-case.

— phis x1 —o X2. The goal is X1 ~X2: [[[@pay [x1 —o x2] = [x1 — xal;
that is, 0X1 X2 [I] ®pay ([x1] —Day [x2]) = [x1] —Day [Xx2]- This
is obtained by currying the following natural transformation, using
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the 0X2: [I] ®pay [x2] = [x2] from IH:

[1] ®pay ([x1] —Day [x2]) ®pay [x1]
J’id@)payev

[[I]] ®Day IIX2]]

lgxg
[x2]

This completes the induction. [
THEOREM 34. (Algebraic Soundness) If T I, ¢, then T B}, .

ProOOF. Assume I’ @? ¢. By IMLL-Flat, S, I'” Fz+ ¢”. By Lemma 33,

there is a natural transformation n: [I'] = [[((p")h]]((%, S) @ —). That is,
n: [T] = [¢]((#,S) @ —). This witnesses I' £, ¢. n

In words, algebraic soundness says that, if I' supports ¢ in & with re-
source S, then there is a natural transformation [I'] = [¢]((%,S) e —).
This entails a useful observation when I' is empty, which is also used in the
proof of algebraic completeness later. We take a closer look at @ ;:23 . By
definition, it says that there exists a natural transformation §: x(@, @) =
[e](—e(A,S)). Spell out B pointwise, at each (£, U), there is the function
ﬁ(%',U): HOHI@((%,U),<@,@>) — [@H((%,U) . <<@, S>) Note that
Home ((27,U), (@,2)) is nonempty precisely when U = &; besides,
Hom¢ ({2, @), (@, @)) is a singleton set consisting of only (D,@). This
means that (s o) gives rise to an element in [p]((Z",2)  (%,5)) =
[e]((BUZ,S)), as the image of the unique element in
Home ({27, @), (9, @)) under mapping 32 o). In summary,

if 15, o, then [¢]((%,9)) is inhabited for arbitrary € > % 9)

Now we turn to the reverse of Theorem 34, namely algebraic complete-
ness. We first establish that the context-free version (formally stated as
Lemma 35): if a formula is categorically supported, then it is supported in
the base-extension semantics sense. This is exactly the reverse of (9). As we
shall see, Lemma 35 and (9) are the key ingredients in proving algebraic
completeness (see the proof of Theorem 36).

LEMMA 35. If [¢]((#,P)) is nonempty, then I, o.

PROOF. We proceed by induction on ¢:
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— ¢ is atomic. Let ¢ = r € A. According to Definition 24, [r]((#,P))
consists of all the derivations P - r. Hence, [r]({(#, P)) being nonempty
means there exists some derivation Ptz r. By (At), this witnesses IH) r.

~ ¢ is o ®7. To show IH, 0 ® 7, we fix some ¢ 2O %, P € M(A), and q € A
such that 0,7 I g, and the goal is to show Il—scgP q. [o @ 7]((#,8)) is a
product

IT (101 ©Day [7] —Day []) —~Day 1) ((.5))

pPEA
= H W/\\/([[U]] QDay [] —Day [p], [P]({%,S) e —))
pEA

So its g-th component — denoted as a? — is a natural transformation
[0] ®pay [7] —Dpay [a] = [a]((#,5) e —). In particular, at (€, P), o/ p

is a function (o] @pay [7] =pay [a]) (%, a) = [al({%, P,$)). By sound-

ness (Theorem 34), o , 7 IFf q implies o , 7 E, q; that is, there ex-
ists a natural transformation n: [o] ®pay [7] = [a]((¥€,P) e —). Since

(121 @Day [7] —Day [0]) (€, P) is V(o] @pay [7], [al (%, P)s-)), we have
oz?(gﬂ(n) € [a]({(€,P,S)). It follows from the atomic case that II—%S q.

— @ is 0 —o 7. The goal I%S% o —o T is, by definition, equivalent to o \F% 7. S0
we fix some ¢’ D % and P € M(A) satisfying I}, o, and show Il—g9S T.
Recall that [0 —o 7] is defined as [o] —pay [7], so [o — 7]((#,8S)) is
W([o], [7]((£,S)e—)). The assumption that [((£,S))] is nonempty then
implies that there is some element of W([o], [7]((#,S)e—)), say a: [o] =
[7]1((#.S) « —). By (9), £, ¢ implies that [¢]((¢,P)) is nonempty, so
we assume e € [o]((¢,P)). Since ay py is a function [o]({(€,P)) —
[7](€¢,P,S), we have a4 py(e) € [T]({€,P,S)), and by IH, this implies
H—;"’S T.

— ¢ is I. In order to show Iks% I, we fix some € 2O %A, P € M(A), and
q € A such that £, q, and show that H—C?S q. By (9), £ q implies
[a]({(€¢,P)) is nonempty, say it contains e. By definition, [I]((£4,S)) is
[T callpl —pay [P])((#,5)), and its q-component ([¢] —pay [¢])({#;S))
is W([q], [q]({#,S) @ —)). Since [I]({#,S)) is nonempty, we can assume
that the g-component of one of its element is n: [q] = [¢] ((#,S) e —), so
N py is a function [¢]((¢,P)) — [¢]((€,P,S)). Since e € [¢]((€,P)),
nee,py(e) € [q)((¢,P,S)), and by IH (the atomic case), it follows that

S,P
k2" q.
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This completes all the inductive cases. [
THEOREM 36. (Algebraic Completeness) IfI'EJ, ¢, then I' I, .

PRrOOF. Given |=§/9 ©, to show I’ I@q (p, We assume H-}; I for some € 2O % and
P € M(A), and the goal is Il—(sgP ¢. Apply (9) to IFf. T, we have [I']((%,P))
is inhabited; we may assume an element e € [I']((¢,P)). By definition,
3, ¢ says there exists a natural transformation 7: [I'] = [¢]((%,S) e —).
Then, at (¢, P), we have a function 14 py: [[]({(%,P)) — [©]((¢,P,S)), so
nee,py(e) € [p]({(€,P,8S)). According to Lemma 35, it follows that H—S%fp v. |

7. Conclusion

This paper has presented two sound and complete base-extension semantics
(B-eS) for intuitionistic multiplicative linear logic (IMLL) and a variation of
the B-eS for intuitionistic propositional logic. Our investigation builds upon
work by Sandqvist [48]; particularily, we adopt the simulation approach to
completeness in this work. Through a careful analysis, we identify defini-
tional reflection (DR) as a fundamental principle underlying the B-eS of
IPL. This informs the setup of the B-eS for IMLL to allow an analogous
completeness proof.

A crucial insight gleaned from the B-eS of IPL is the essential role of the
transmission of proof-theoretic content within B-eS. Specifically, a formula ¢
is supported in a base 4 relative to a context I' if, for any extension % of 4,
@ is supported in € whenever I' is supported in €. Leveraging this under-
standing, we extend our analysis to propose a ‘resource-sensitive’ adaptation
of B-eS, aligning with the characteristics of intuitionistic multiplicative lin-
ear logic (IMLL). Three pivotal adjustments are made: rendering the notion
of a base substructural, enriching the support relation to accommodate a
multiset of atoms as ‘resources’, and providing a distinct treatment for the
context-former and multiplicative conjunction.

This principled adaptation captures the intrinsic ‘resource reading’ of
IMLL as articulated by Girard [18]. The logical constants’ clauses are derived
through DR on their introduction rules, mirroring the approach taken for
IPL. Furthermore, we address the intriguing question of a more intuitive
semantics for the tensor, exploring the possibility of interpreting it as the
combination of resources. Despite its intuitive appeal, this approach is shown
to be incompatible with the standard completeness framework, prompting
necessary adjustments in the completeness proof.
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Beyond its contributions to IMLL, this paper marks a significant step in
expanding proof-theoretic semantics (P-tS) beyond classical and intuitionis-
tic propositional logics. The methodology proposed here serves as a blueprint
for delivering B-eS for other substructural logics, including (intuitionistic)
Linear Logic [18] (LL) and the logic of Bunched Implications [36] (BI). While
the addition of the additive connectives of LL follows straightforwardly (see
Gheorghiu et al. [13]), handling exponentials presents a challenge—see Bu-
zoku [7]. For BI, accommodating the bunched structure of contexts and
appropriately managing weakening and contraction in the additive context-
former pose significant hurdles—see Gheorghiu et al. [15].

The semantics of IMLL in this paper merits comparison with extant
semantics for fragments of Linear Logic. In particular, the use of certain
monoidal structure to deal with linearity is common. In [23], Hodas and
Miller have given a semantics for logic programming in the hereditary Harrop
formulae (hHf) fragment of intuitionistic linear logic (ILL), which employs
monoid-indexed interpretations of formulae in Kripke structures. In this
semantics, for example, the tensor product is interpreted as follows:

K., wE= @1 ® ¢y iff there are r1 and ro such that r = r; + ry and
K. ,wE ¢ and K,,,w = ¢

where 7, r1, and ry are elements of a (commutative) monoid (R, +,0) and
the world w is an element of a partially ordered set (W, <). Allwein and
Dunn’s Kripke semantics for classical linear logic given in [2] also employs
monoidal structure in similar ways to those discuss herein.

Given these works, it is forseeable that certain monoidal structure is
necessary to obtain a B-eS for IMLL from that for IPL, yet it is not ob-
vious which monoidal structure to choose. In our case, the free commuta-
tive monoid over A (i.e., multisets of atoms) is integrated into the support
relation to reflect the aforementioned resource reading. The relationships
between these ideas also remain to be explored. Moreover, it is interesting
to explore whether such monoidal structures are canonical, in the sense that
these semantics of (fragments of) linear logic could be obtained in a uniform
way on top of those of (fragments of) intuitionistic and classical logic.

The preceding semantics by Hodas and Miller [23] that is used as the basis
for a semantics of logic programming in ILL suggests a possible connection
to a line of research between base-extension semantics and logic program-
ming: in [16], Gheorghiu and Pym have shown how the ‘least Herbrand
model’ semantics of logic programming for the hereditary Harrop formu-
lae (hHf) fragment of IPL (cf. [35]) can be used to understand Sandqvist’s
base-extension semantics for IPL.
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The sense in which Hodas and Miller’s semantics stands in a similar
relationship to the base-extension semantics of IMLL presented here and the
relationship between the least Herbrand semantics and the base-extension
semantics for IPL given in [16] remains to be explored.

The development of P-tS for substructural logics is particularly valuable
in the context of system verification and modelling. This approach has al-
ready demonstrated its utility in simulation modelling, as evidenced by the
work of Kuorikoski and Reijula [24]. In a broader sense, the paper prompts
a consideration of the conditions a logic must satisfy to lend itself to a
B-eS. This exploration opens avenues for future research and underscores
the potential of proof-theoretic semantics in advancing our understanding
of diverse logical systems.
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