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Abstract

Deep learning is the most predominant learning paradigm in artificial intelli-

gence. The deep neural network models deployed in practise are increasingly

data and resource hungry. This thesis introduces several methodological ideas

to improve the data efficiency of deep learning algorithms across a diverse range

of applications.

The first section deals with supervised deep learning in settings where

collecting labelled data is expensive in time and/or cost. We focus on the

scenario where multiple weak and relatively cheap sources of supervision are

also available. We develop an approach that jointly trains the supervised model

and a separate label model to aggregate weak supervision sources and show it

outperforms existing weak learning approaches across a benchmark of natural

language processing problems.

The second section focuses on unsupervised deep learning; specifically the

problem of generative modelling. We study generalisation in variational in-

ference when neural network based amortization is used. We introduce a

wake-sleep style training scheme for variational autoencoders that improves

generalization performance for a given budget of training data and demonstrate

the utility of this approach in image modelling and compression applications.

The third section explores how to improve the efficiency of deep reinforcement

learning (RL). We propose a model-based RL framework that learns a low

dimensional representation of the environment while avoiding the need to learn

a generative model of the environment. We demonstrate gains in efficiency over

model-free methods when learning directly from pixels in a control problem.
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The final section tackles how to align large pretrained generative models

to human preferences. We discuss an alternative approach to reinforcement

learning from human feedback based on a maximum likelihood criterion and in-

troduce a simple active learning regime for more efficiently collecting preference

data.



Impact Statement

The work presented in this thesis has the potential to have both academic,

industrial and societal impact related to the practical application of deep

learning methods. In particular where data efficiency is of concern, which is

increasingly the case as models grow bigger and more data hungry as we discus

in chapter 1.

Collecting labelled data is the crux for many applications of supervised deep

learning, which is arguably the most widely applied form of deep learning in

industry to date. In fact, there is a dedicated industry around data annotation

services concerned with helping companies efficiently collect high quality labels

for training and evaluating their AI applications. Chapter 3 improves upon

existing methods in weak learning which have had widespread practical and

commercial impact in this industry [1]. Of particular societal impact are those

problems wherein expensive domain experts such as doctors are required, in

applications such as medical image based diagnostics, to provide supervision.

Chapter 4 sheds light on the problem of generalization in unsupervised

generative models and has already had some academic impact; being peer

reviewed and published at a top tier conference [2] and cited multiple times

in independent follow up research. It also has positive industrial potential for

improving state-of-the-art image modelling and compression applications where

strong generalization for the class of model studied is required.

With the advent of large generative models reaching human capabilities

across a range of increasingly diverse tasks, an increasingly pressing academic,

industrial and societal problem is that of aligning these models with human
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preferences. Both from the perspective of improving the utility of these models

and relating to AI safety. The methods presented in chapter 6 present a

practically simple approach to making better use of data for preference fine-

tuning models, which is currently seen as an important stage in the training

pipeline towards this alignment goal. It also touches on important themes of

how to automate the evaluation of these models using other models. This work

has already had academic impact evidenced by being published at a top tier

journal and cited multiple times in independent follow on work [3].

Finally, creating agents that can effectively plan and act in the physical

and digital world is a panacea for value creation using AI in industry and

society. Deep reinforcement learning is the methodology underpinning most

innovations in this direction. Chapter 5, although prototypical in nature and

still with practical limitations, contains promising ideas around efficiently

learning directly from pixels while filtering out redundant information. We

have seen related methods scaled up to provide state of the art results in

reinforcement learning [4].
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Notation

Throughout this work we will largely follow these notational conventions unless

specified otherwise:

x Scalar

xxx Vector

XXX Matrix

x Scalar random variable

x Vector random variable

X Matrix random variable

X Set, usually of vectors X = {xxx1, · · · ,xxxN}

xxx, zzz Observed and latent observations respectively

yyy, ỹyy Label and weak/noisy label observations respectively

xxxn n’th element of a set

xxxi i’th dimension of a vector

xxxt Vector at step t in an episode

x̌xx Test datapoint

N Gaussian distribution

Hp(x) Entropy of distribution p(x)

p(.) q(.) ρ(.) Probability density/mass functions

Ep(x)[x] Expectation of x under distribution p

L Objective function

KL(.||.) Kullback-Leibler divergence

θθθ, ϕϕϕ, ηηη Vectors of learnable parameters

fθθθ Neural network parameterized by θθθ

∇θθθ First order gradient w.r.t θθθ

O(·) Big-O notation



Chapter 1

Introduction

Deep learning is a foundation of modern day progress in Artificial Intelligence

(AI) research [5, 6], the impact of which can now be felt across society. We’ve

gone from seeing success in classical narrow applications - such as image

classification [7, 8], speech recognition [9] and basic natural language processing

[10, 11] - to experiencing intelligent systems that are redefining industries.

From autonomous driving technology [12], to coding co-pilots that significantly

increase the productivity of software engineers [13], to personal assistants like

ChatGPT that arguably pass the original Turing test [14]. The international

community are now cooperating on ensuring the next phase of AI development

is inclusive in terms of economic growth and sustainable development, and to

foster public trust in AI systems [15].

Fundamentally deep learning is a machine learning methodology that utilizes

function approximators consisting of multiple layers of artificial neurons; so-

called neural networks models. These models transform raw input data, such

as text or image pixels, through a series of linear and non-linear operations

defined by the neurons, producing complex hierarchical representations. These

representations are used by the model to make predictions. The form the

prediction takes is dependent on the specific task; in image classification, the

prediction would be the class of the image, for example a cat if learning to

categorise animals. The learning process involves adjusting the parameters of

the neurons at each layer to satisfy some criteria over a given training dataset.
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One of the origins of deep learning research can be traced back to the

development of the brain inspired perceptron model by Frank Rosenblatt in the

1950s [16]. This laid the foundation for modern day neural network models that

form the basis for deep learning research. However in 1969 Minksy and Papert

published their work Perceptrons that highlighted the inability for the simple

perceptron model to solve non-linear problems such as XOR [17]. This work

contributed to a decrease in interest and funding in neural network research

for the subsequent couple of decades. Alternative more traditional statistical

methods prospered, like support vector machines [18] and decision trees [19]. It

was not until the early 2000s when deep learning really saw a more widespread

research resurgence, which has continued to grow in momentum to produce

the modern day impact described above. Prior methodological advancements,

like stacking multiple perceptrons to create deep models [20] and the efficient

back-propagation learning algorithm [21], were combined with significantly

larger and more efficient computational resources and significantly larger data

sets. During the 2010s, this resurgence and scaling-up lead to variations of deep

neural network models getting close to or surpassing human level performance

on a range of specific narrow problems such as image classification [7, 8], reading

comprehension [22, 23] and game playing [24, 25].

Now in recent years the popular trend coined Generative AI by marketeers

has emerged; transcending both academia and industry. This is mainly due to

the advent of very large language models (LLMs) trained on internet scale data

such as GPT-4 [26]. This class of model is capable of generating remarkably

human-like text and exhibiting more general capabilities than previous systems.

This new capability is linked to a hypothesis in deep learning known as the

scaling laws, which has supporting empirical evidence [27]. Scaling laws suggest

that the performance of models improves as a power-law function of their

size, training data and computational resources. This implies that by simply

scaling up existing models - some combination of increasing the number of

model parameters, training on larger datasets and leveraging more computation
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- we can expect to achieve better performance. On one hand, this suggests

an exciting path forward: continued growth in model and dataset size and

computational resources could lead to further advancements in capabilities.

On the other hand, this poses serious challenges: larger models and datasets

may become impractical for many important use cases, require vast amounts

of energy and raise important questions about the democratization of AI, as

only a few entities may have the resources to gather such datasets and train

such models [28].

Hence a drawback of deep learning methodology is the typical requirement

for increasingly large amounts of data to effectively train and generalize to

new unseen data. This requirement seems to be at odds with how humans and

animals are understood to learn [29]. For instance, unlike the deep learning

image classifiers referenced above, a child does not need to see thousands of

images of a cat to recognize one. Equipped with only a few examples, they can

effectively generalize and identify a cat in various positions, sizes, and colors.

Similarly, a human player does not need tens of thousands, if not millions, of

games to begin to effectively understand the rules and devise strategies for

board games like chess or go. This apparent limitation in learning efficiency is

the core motivation that ties together the work in this thesis.

Our core research question is how do we make these deep learning systems

more data efficient such that they can do more with less data? We seek simple

and practical adjustments to deep learning techniques to make them more

data efficient. To better understand what we mean by data efficiency, we

must first consider the different applications of deep learning before discussing

further our specific contributions. There are three canonical types of learning

methodology where deep neural networks are applied that we touch on in this

thesis; supervised learning, unsupervised learning and reinforcement learning.

We discuss each informally here before more careful treatment in the next

chapter.

Supervised learning (SL) is where deep learning found much of it’s early
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success. In this paradigm, models are trained to learn a mapping from an

input datapoint to a corresponding output or target label, based on a labeled

dataset of input/output pairs. A common example being data classification.

Our aim in SL is to minimize the discrepancy between the model’s predictions

and the actual targets. The measure of data efficiency in this setting usually

refers to how many labels are required to achieve a specified performance. In

many important real world applications of supervised learning the collection

of labelled data can be very expensive in time and/or cost and can severely

limit adoption. One such example is medical imaging, on tasks like tumour

detection, where the collection of labelled data involves the participation of

medical experts who’s time is sparse and expensive [30, 31, 32].

Unsupervised learning, in contrast, involves training models on datasets

without explicit target labels. The learning process is guided by an objective

of discovering underlying structures or distributions in the available collection

of unlabelled datapoints. This form of learning is particularly useful for tasks

such as generative modeling or dimensionality reduction, where the goal is

to generate new data that represent the underlying distribution of the input

data, or to understand the underlying structure in the data for downstream

tasks. The measure of data efficiency in this setting usually refers to how many

datapoints are required to achieve a particular performance level. Although

there is no need for labels like in supervised learning, there are various practical

problems that benefit from unsupervised deep learning and where data is

sparse and expensive to collect. For example in chemistry and biology research,

deep generative models are used to generate molecular structures for potential

new drugs; the models are trained on existing molecular structures that are

expensive to produce [33, 34].

Lastly, reinforcement learning (RL) is a type of learning where an agent

learns to make decisions by interacting with an environment. Each interaction

with the environment is known as an episode. The agent receives feedback in

the form of rewards based on the actions taken and our goal is to learn a policy
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model that determines which actions to take at a given step in the episode, that

maximizes the cumulative reward over time. Deep neural networks are used as

the policies and other components of various state of the art RL frameworks.

This form of learning naturally applies to problems that involve sequential

decision making, such as game playing, robotics, and autonomous driving [35].

The measure of data efficiency in this setting is typically the number of episodes

required to reach a target cumulative reward. In certain real world examples

each episode is associated to a physical cost. For example in real robotic control,

the cost could be the fuel source and wear and tear on the robot itself [36, 37].

How to improve data efficiency is a very multi-faceted problem in deep

learning. A plethora of different broad strategies have emerged in the literature

towards this goal, many of which are complimentary and are often combined in

practise with great effect. The following topics are relevant to the contributions

in this thesis and will be discussed in more detail in the relevant chapters: weak

learning (chapter 3), transfer learning (chapter 4), active learning (chapter 6)

and training data augmentation (chapters 4 and 5).

• Weak learning encompasses techniques that leverage noisy or imprecise

labels to train models usually in the supervised regime, thereby reducing

the dependence on large, clean datasets [38, 39].

• Transfer learning involves reusing a model developed for one task as

the starting point for a model on subsequent (usually related) tasks in

order to speed up learning [40].

• Active learning is an iterative process where the model actively queries

an oracle (such as a human expert) during training to label new data

points that it predicts will be most beneficial for learning, which reduces

the amount of data required for training overall [41].

• Data augmentation generally involves generating additional training

data to improve performance either by applying transformations or noise

to the existing data, using a trained generative model to synthesize
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additional examples, or by bootstrapping predictions from the model

being trained [42].

Other related research areas are meta-learning [43] and semi-supervised learning

[44], which lie outside of the scope of this thesis.

In the next section 1.1 we describe how each of the contributions in this

thesis map onto these problem areas and summarise the specific contributions

that help improve performance around data efficiency.

Throughout this thesis we adopt a basic probabilistic modeling perspective

on deep learning. While deep neural network models are in principle complex,

highly non-linear functions, they can be formulated as parameterising probabil-

ity distributions of observed data. This perspective allows us to leverage a basic

toolbox of probability theory and statistical inference, providing a common,

principled language for developing and communicating our methods.

1.1 Outline and contributions
This section will clarify the structure of this thesis and discuss how it relates to

my existing publications. The majority of the work presented in this thesis was

born from collaborations, to varying degrees, as are many machine learning

papers given their multi-faceted and interdisciplinary nature. Where I am not

the first author of the associated publication, I summarise the contribution

boundaries below.

This thesis is broadly composed of 4 independent chapters that deal with

ideas for improving data efficiency within the learning domains discussed in the

previous section. The first part develops a weak learning approach for improving

label efficiency for deep supervised learning models, the second improves on

generalisation performance in deep unsupervised generative models, the third

introduces a deep model based reinforcement learning method, and finally the

fourth improves supervised preference fine-tuning of large pre-trained generative

models. More specifically the structure of the thesis is the following:

Chapter 1 - Background: Provides details on the necessary background
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for the contributions to follow; building upon the concepts presented in

this introduction. Further background related to the sub-topics (weak

learning, variational methods, reinforcement learning and active learning)

is provided in the relevant chapters.

Chapter 2 - Integrated Weak Learning: focuses on the paradigm

of weak learning where it’s assumed that multiple weak and relatively

cheap sources of supervision are available alongside the labelled data in

supervised learning. Typically a two-stage process is followed, where a

separate label model is constructed in order to denoise and aggregate

the weak sources to produce labels that can be added to the training set

to improve performance. We develop an approach that instead jointly

trains the end model with the label model. This chapter is based on the

following paper:

P. Hayes, M. Zhang, R. Habib, J. Burgess, E. Yilmaz, and D. Barber. Integrated

Weak Learning. In arXiv preprint arXiv:2206.09496. 2022.

Chapter 3 - Generalization Gap in Amortized Inference: deals

with the problem of unsupervised deep generative modelling. Specifically

we focus on the popular setting where neural networks are used to amor-

tise the cost of inference across datapoints in probabilisitic deep models.

We introduce a wake-sleep style training scheme for the variational au-

toencoder class of model that improves generalization performance for a

given budget of training data by augmenting the dataset with predictions

from the model.

This chapter is based around joint work in the following paper. My

contributions were around ideation on the generalization gap that our

collaborator David originally seeded, experiment design and the transfer

learning experiments that use the learned representations. My other col-

laborator and lead author Mingtian formalised the initial ideas, suggested

the wake-sleep connection and did the main application to compression.
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Mingtian and I wrote the conference paper together with feedback from

David.

M. Zhang, P. Hayes, and D. Barber. Generalization Gap in Amortized Inference. In

Advances in Neural Information Processing Systems. 2022.

Chapter 4 - Solipsistic Reinforcement Learning: explores how to

improve the data efficiency of deep reinforcement learning. We introduce

a model-based RL framework that learns a low dimensional representation

of the environment while avoiding the need to learn a generative model of

the environment. This is based on the following paper where I am joint

first author:

P. Hayes, M. Zhang, Z. Andi, and D. Barber. Solipsistic Reinforcement Learning. In

International Conference on Learning Representations Workshop on Self-Supervision

for Reinforcement Learning. 2021.

Chapter 5 - Active Preference Learning: is based around a setting

of particular practical interest; we build upon methods to align large

pre-trained deep generative models to human preferences. We introduce

a simple active learning regime for more efficiently collecting preference

data. This work is based on the following paper and was carried out

mainly in collaboration with William Muldrew at UCL. I seeded the

original idea, implemented the first version, collaborated on experiment

design and wrote the paper with feedback from co-authors William and

Mingtian. William implemented the experiments scaling up to larger

language models in the conference paper and collaborated on iterating

on the methodology and experiment design throughout the project.

W. Muldrew, P. Hayes, M. Zhang, and D. Barber. Active Preference Learning for

Large Language Models. In International Conference on Machine Learning. 2024.

The following research was also published during my PhD but, although

aspects can be related to the broad theme, will not be covered by this thesis:
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M. Morris, P. Hayes, I. J. Cox, and V. Lampos. Neural network models for influenza

forecasting with associated uncertainty using Web search activity trends. In PLoS

Computational Biology. 2023.

M. Zhang, P. Hayes, T. Bird, R. Habib, and D. Barber. Spread Divergence. In

International Conference on Machine Learning. 2020.

E. Yilmaz, P. Hayes, R. Habib, J. Burgess, and D. Barber. Sample efficient model

evaluation. In arXiv preprint arXiv:2109.12043. 2021.

M. Zhang, O. Key, P. Hayes, D. Barber, B. Paige, and F.-X. Briol. Towards Healing

the Blindness of Score Matching. In Advances in Neural Information Processing

Systems Workshop on Score-Based Methods. 2022.



Chapter 2

Background

This chapter builds upon the concepts introduced in the last chapter to detail

the necessary terminology, notation and methodology on probabilistic models

and neural networks and their relevant training protocols.

Given this thesis is composed of multiple pieces of relatively independent

work, the relevant recent work and topic specific background related to active

learning, model based RL and fine-tuning generative models, will be covered in

the relevant subsequent chapters. The background in this section are the prior

building blocks of notation and modelling concepts required before covering

these specific topics further.

The contents to follow assume a general background in multivariate calculus,

linear algebra and probability theory. For a more thorough resource on the

topics covered here, we recommend reading [51], [52] and [53].

2.1 Probabilistic modelling
Given an observed dataset Xtrain = {xxx1, · · · ,xxxN}, where xxx ∈RD or xxx ∈ {0,1}D,

sampled from some underlying unknown data distribution pd(x), the goal of

unsupervised learning is to approximate pd(x) with another distribution pθθθ(x).

We refer to pθθθ(x) as our model with parameters θθθ that we aim to determine or

learn using the observed data. The process of learning in our setting generally

entails minimising some measure of distance between pθθθ(x) and the unknown

pd(x) by changing θθθ. A principled method we’ll use throughout this thesis is
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to minimize the Kullback-Leibler (KL) divergence. That is, we want to find

the parameters θ̂θθ such that

θ̂θθ = argmin
θθθ

KL(pd(x)||pθθθ(x)) (2.1)

where the KL is defined as

KL(pd(x)||pθθθ(x)) = Epd(x)[logpd(x)]−Epd(x)[logpθθθ(x)]. (2.2)

We use Ep(x)[f(x)] to denote the expectation of function f(x) with respect to

distribution p(x), Ep(x)[f(x)] ≡
∫

f(x)p(x)dx. The first term represents the

negative entropy of the data distribution −Hpd
(x)≡ Epd(x)[logpd(x)], which

is a constant (i.e. it does not depend on θθθ). The second cross entropy term

involves integrating over the unknown data distribution pd(x), which can be

approximated using a Monte-Carlo estimate with the observed data Xtrain that

in general we assume to be sampled identically and independently (i.i.d);

Epd(x)[logpθθθ(x)]≈ 1
N

N∑
n=1

logpθθθ(xxxn). (2.3)

Estimating θθθ by minimizing the KL divergence in this way is equivalent to

maximum likelihood estimation (MLE). The likelihood here refers to how likely

a set of parameters are given the data. We will cover off how this minimization

procedure works in practise later in section 2.3. This optimization process

using Xtrain is referred to as training or learning.

Traditionally in the case of supervised learning, where we instead have

labelled data pairs Xtrain = {(xxx1,yyy1), · · · ,(xxxN ,yyyN )}, the underlying data dis-

tribution is now the joint distribution pd(x,y) = pd(y|x)p(x). We wish to

approximate the true conditional distribution pd(y|x) with a supervised model

pθθθ(y|x). We can similarly use maximum likelihood estimation for fitting our
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model using the observed data

θ̂θθ = argmax
θθθ

1
N

N∑
n=1

logpθθθ(yyyn|xxxn). (2.4)

For specific machine learning problems, there are two design choices typically

required to define the likelihood. Firstly, depending on the domain of x (in the

case of unsupervised learning) or x and y (in the case of supervised learning), we

must choose an appropriate class of probability distribution for the likelihood.

Secondly, we require a parameterization fθθθ(xxx) for the chosen distribution to

define how the parameters might relate to the input data - in our setting this is

a deterministic function. To illustrate this, sticking with the supervised setting

and the choice of distribution, in binary classification settings where yn ∈ {0,1}

we can use a Bernoulli likelihood function

pθθθ(y = 1|xxx) = σ(fθθθ(xxx)), (2.5)

where σ(xxx) = (1+ exxx)−1 is the sigmoid function. In multi-class classification

settings, where yn can now take one of K different classes, we can define yyyn as

a K dimensional one-hot vector and use a categorical distribution

pθθθ(yi = 1|xxx) = softmax(fθθθ(xxx))i (2.6)

where softmax(xxx)i = exxxi/
∑

xxxi′ e
xxx

i
′ is the softmax function that maps to the

probability simplex. And finally in the case of regression, we can use a Gaussian

distribution where the mean of the distribution is the learned function of data

pθθθ(y|xxx) =N (y|fθθθ(xxx),ν). (2.7)

The variance ν can also be learnt but is usually considered as part of a more

Bayesian treatment where a prior is introduced on the parameters.

In the limit of an infinite amount of data the MLE estimate θ̂θθ will converge

to the true value that recovers pd, but, crucially, assuming a well specified model
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1. A model is considered well-specified if there exists a choice of distribution p

(e.g exponential family) and parameterization θθθ such that KL
(
pd(x)||p

θ̂θθ
(x)

)
=

0⇒ pd(x) = p
θ̂θθ
(x). For a given choice of distribution, a significant focus of

machine learning is concerned with the choice of a function approximator fθθθ

and how to update the parameters during training. In principle, the goal is to

select a model with enough capacity to capture the underlying complexity of

the data. Capacity here refers to the ability of a function approximator to fit

a wide variety of functions. If the capacity is too low, say for example using

a strictly linear model to model data with non-linear correlations, the model

will be unable capture the true data-generating process. This results in what

we refer to as under-fitting. This is where neural networks and deep learning

come in. The promise of deep learning is to provide a very general purpose

and powerful function approximator. With tens of billions of dimensions in θθθ

in modern state-of-the-art models, they have capacity for learning the most

complex of distributions. In section 2.2 we will drill into the specifics of neural

network functions and then in 2.3 how optimization works in practise using

efficient gradient descent methods.

In practise we only have access to finite noisy samples from pd(x) in Xtrain.

Hence when measuring the performance of a trained model p
θ̂θθ
(x), we do so

by computing the test likelihood (and other evaluation metrics of interest

that are use case specific) on a separate held out (from training) dataset

Xtest = {x̌xx1, . . . , x̌xxM} ∼ pd(x). We refer to this as the test or the generalization

performance of the model. If the model capacity is too high and the learning

procedure is not robust, the model may end up encoding the noise or spurious

correlations in the training samples; as opposed to capturing the true underlying

generative process leading to a model that does not generalise well to test data.

We refer to this as over-fitting. Therefore the power of neural networks can

yield inferior performance versus simpler models for certain use cases where
1There are also other technical requirements such as the data is sampled i.i.d., the

parameter space is identifiable, the likelihood function is twice differentiable with respect to
the parameters, and the Fisher information matrix is positive definite - see [54] for a more
thorough treatment.
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data is sparse and/or noisy. We will explore the concepts of over-fitting and

under-fitting in more detail in chapter 4 in context of unsupervised generative

models.

2.1.1 Latent variables
The probabilistic models discussed so far have been specified with fully observed

random variables. It is often useful to introduce unobserved latent random

variables into the specification of our models to better model the phenomena

of interest. Consider for example the problem of modelling the topics that

appear in a collection of documents; many techniques, such as Latent Dirichlet

Allocation (LDA) [55], assume that an observed document xxxn is a mixture of

unobserved latent topics zzzn that one would like to infer. Another more general

example that motivates the use of latent variables is if we assume our observed

data actually lies on some lower dimensional latent manifold that we wish to

learn.

Latent variable models assume the data is generated by the transformation

of one or more underlying latent variables. As with the fully observed case, we

can use maximum likelihood estimation; but here we must marginalise out the

unobserved variables

logpθθθ(x) = log
∫

pθθθ(x,z)dz. (2.8)

With pθθθ(x,z) = pθθθ(x|z)p(z)dz, this integral may not be tractable for certain

choices of pθθθ(x|z) and attempting to do the integration numerically would

mean we no longer have a closed form objective for optimizing θθθ.

We can get around this intractability by first forming a lower bound on the

log-likelihood using Jensen’s inequality

logpθθθ(x)≥ Eq(z)[logpθθθ(x,z)− logq(z)] =: L(x, q,θθθ), (2.9)

which introduces q(z), which is referred to as a variational distribution. And

by then using the classic Expectation Maximisation (EM) algorithm [56]. Here
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we have assumed our latent is continuous; for discrete variables the integral

can be replaced with a sum.

The EM procedure optimizes the log likelihood by iteratively increasing the

lower bound by alternating between the steps:

E-step: hold θθθ fixed and optimize L(x, q,θθθ) w.r.t q(z).

M-step: hold q(z) fixed and optimize L(x, q,θθθ) w.r.t θθθ.

With some simple manipulation we can show

L(x, q,θθθ) = logpθθθ(x)+Eq(z)[log pθθθ(z|x)
q(z) ]. (2.10)

The second term here is the KL divergence KL(q(z)||pθθθ(z|x)) that is minimised

if and only if the two distributions are the same. Hence the lower bound is equal

to the marginal log likelihood when q(z) is equal to the true posterior pθθθ(z|x).

Therefore at the E-step L(x, q,θθθ) is maximised by setting q(z) = pθθθ(z|x).

Within the realm of probabilistic deep learning, neural networks are often

used to parameterise pθθθ(x|z) to increase the expressiveness of the model. With

this choice, the posterior pθθθ(z|x) cannot be easily computed and therefore

directly applying the EM algorithm to optimize the log likelihood is not possible.

Approximate inference methods like variational inference techniques have been

developed to overcome this source of intractability.

2.1.2 Variational inference

The core idea behind variational inference is to convert a slow or intractable

inference problem into a tractable and more scalable optimization problem [57,

58]. The basic approach in this latent variable setting is to parameterise an

inference model qϕϕϕ(z|x) with parameters ϕϕϕ and then maximise the same lower

bound on the log likelihood as in the EM algorithm, but with respect to both
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the generative parameters θθθ and inference parameters ϕϕϕ;

logpθθθ(x)≥ Eqϕϕϕ(z|x)
[
log pθθθ(x|z)p(z)

qϕϕϕ(z|x)
]

(2.11)

= Eqϕϕϕ(z|x)[logpθθθ(x|z)]−KL
(
qϕϕϕ(z|x)||p(z)

)
(2.12)

=: ELBO(x, θθθ,ϕϕϕ). (2.13)

This version of the lower bound is commonly referred to as the Evidence Lower

Bound (ELBO). The specific choice of the parametric form of qϕϕϕ is usually

a trade-off between data and computational efficiency, and expressivity. Our

focus is around variations where neural networks are utilized. Specifically,

in chapter 4 we focus on the popular choice where qϕϕϕ(x,z) is a Gaussian

N (µµµϕϕϕ1
(x),diag(σσσ2

ϕϕϕ2
(x))), with the mean µµµϕϕϕ1

(x) and variance σσσ2
ϕϕϕ2

(x) are neural

networks that take xxxn as inputs and produce the parameters of the latent

distribution [59, 60]. The cost of inference is amortised here because ϕϕϕ is

generally shared across datapoints. The concept of amortization using neural

networks is touched on in chapter 3 and more so in chapter 4. Here we have

assumed a continuous latent, but it is also possible to support discrete latents

using an appropriate choice of distribution, such as the categorical.

In the next section we will first go into detail on the different functional forms

neural networks can take, before then outlining how optimization happens in

practise.

2.2 Neural networks
In the previous section we introduced probabilistic modelling and discussed

at a high level where neural networks come into the fold as powerful function

approximators used to parameterise probability distributions. Now we first

define the specific types of neural network architectures that are used in

practise throughout this thesis. Specifically we cover feed-forward networks,

convolutional networks, recurrent networks and transformers. Each of which

has inductive biases that make them more effective for certain types of problem.
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We will then cover the optimization procedures for training these types of

models when used to learn distributions.

2.2.1 Feed-forward networks
Arguably the simplest form of neural network is the feedforward network, or

sometimes referred to as the multi-layer perceptron (MLP). This consists of

an input layer, one or more hidden layers, and an output layer. Each layer

is composed of units or neurons that apply a nonlinear transformation to the

weighted sum of their inputs

hhh0 = xxx (2.14)

hhhl = al(WWW lhhhl−1) for l = 1, . . . ,L (2.15)

where θθθ = {WWW 1, . . . ,WWW L} are the parameters to optimize and al denotes the non-

linear activation function applied element-wise. Activation functions introduce

non-linearity into the network, allowing it to learn complex functions. Exam-

ples of activation functions al include the sigmoid, hyperbolic tangent (tanh),

and rectified linear unit (ReLU). The ReLU function relu(xxx)i = max(xxxi,0) is

particularly popular in deep learning models due to its computational efficiency

and favourable properties when computing gradients during optimization (see

section 2.3). The form of the output layer is dependent on the task; different

output domains and parameterizations for our pθθθ will result in different choices

here as touched on in section 2.1. This class of neural network with an appro-

priate number of neurons and layers has been shown to be a universal function

approximator [61]. We use simple and relatively small (in terms of parameter

count) feed-forward architectures as baselines in many of the experiments

throughout this thesis.

2.2.2 Convolutional networks
Convolutional neural networks (CNNs) incorporate a layer design with an

inductive bias that is translation-invariant and which leverages the spatially

local features of input data. The hallmark feature of these networks is the
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convolution operation that identifies local patterns within the input. Unlike

dense or fully connected layers that calculate a weighted sum of all inputs,

convolutional layers apply filters across local patches of the input. This model

architecture was inspired originally by the organization of the visual cortex

and is particularly adept at image recognition where it’s beneficial to recognize

objects regardless of their position in the visual field [62].

For an input tensor XXX ∈ RC×H×W , where C is the number of channels (e.g.

3 for RGB images), and H and W are the height and width of the input, and

a parameter tensor WWW ∈ RK×C×M×N ; the convolution operation at layer l for

output channel k is computed as follows:

HHH
(i,j,k)
l = al

C−1∑
c=0

M−1∑
m=0

N−1∑
n=0

WWW
(k,c,m,n)
l ·XXX(c,i+m,j+n)

 , (2.16)

where HHH l is commonly referred to as the feature map at layer l, (i, j) indexes

the spatial position on the feature map and k indexes the output channels.

M ×N is the size of the convolutional kernel and K the number of output

channels. The weight tensor WWW l represents the parameters of the convolutional

filters, and al is a nonlinear activation function such as the ReLU.

In CNNs, pooling layers are commonly interspersed with convolutional

layers to reduce the spatial dimensions of the feature maps. The purpose

of pooling is to down-sample the input representation, making the network

more computationally efficient and robust to small variations in the location of

features within the inputs. The most common form of pooling is max pooling.

This takes the maximum value within a local neighborhood of the feature map.

For example, with a 2×2 max pooling operation, the input is partitioned into

2× 2 blocks, and the maximum value from each block is taken to form the

down-sampled output. This operation can be defined as:

PPP
(i,j,k)
l = max

p∈Pi,j

HHH
(p,k)
l−1 , (2.17)

where PPP l is the pooled feature map, Pi,j is the pooling window corresponding
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to the spatial position (i, j), and HHH l−1 is the feature map from the previous

layer. In chapters 4 and 5 we make use of CNNs for image modelling problems.

There are two additional architectural components we exploit that are regu-

larly incorporated into CNNs (and more broadly) that help bolster empirical

performance - in particular on larger dimensional and more complex image

datasets. They are batch normalization and residual connections.

Batch normalization

Batch normalization is a technique that has been found empirically to help

stabilize and accelerate the optimization of many deep neural network archi-

tectures by normalizing layer inputs. There is a lack of formal understanding

as to when and why batch norm improves performance, but there is at least

some consensus in the literature that it aids optimisation by allowing larger

learning rates by smoothing the objective function [63]. Applied before the

activation function, it adjusts the inputs to have zero mean and unit variance

by introducing scale and shift parameters that are also learnable (i.e. added to

θθθ):

hhhnorm
l = γγγ⊙ hhhl−E[xxx]√

V[xxx]+ ϵ
+βββ. (2.18)

hhhl are the inputs to batch norm, E[xxx] and
√
V[xxx] are the mean and variance

of the samples provide in batch to the model (more on mini-batching in section

2.3). ϵ is a small constant for numerical stability and γγγ and βββ are parameters

jointly optimized during training along with the parameters of the layers to

which batch norm is applied.

Residual connections

Residual connections, also known as skip connections, facilitate the training of

very deep architectures. By adding the input of a layer onto its output, they

enable the network to learn modifications to the identity mapping rather than

complete transformations, in some cases simplifying the learning process:
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hhhl = gl(hhhl−1)+hhhl−1, (2.19)

where hhhl denotes the output of the l-th layer, and gl is the residual mapping

to be learned by that layer. Intuitively, this approach allows each layer to

focus on learning the small, incremental changes that need to be applied to the

input data. The path for information flow also ensures that the signal is not

diluted as it passes through multiple layers, which is particularly beneficial for

maintaining the strength of the signal in deep networks. This type of layer was

popularised by the the so called ResNet architecture [8].

2.2.3 Recurrent networks

Recurrent neural networks (RNNs) incorporate a layer design with an inductive

bias that is well suited to handle sequential data, such as sequences of images

describing a scene, or sequences of words in a sentence for natural language

processing. The defining characteristic of a recurrent layer is a hidden state

vector that captures information from previous inputs in the sequence. This

stateful design enables RNNs to more easily exhibit temporal dynamics and to

process sequences of variable length. The hidden state hhht is updated at each

time step t based on the previous hidden state and the current input according

to the layer definition

hhht = at(WWW hhhhht−1 +WWW xhxxxt), (2.20)

where xxxt is the input vector at time step t, WWW hh represents the weights applied

to the hidden state from the previous time step, which are shared across time

and WWW xh is the weight matrix for the input at the current time step. at is

again a nonlinear activation function such as the ReLU. RNN layers can be

stacked together in order to better model higher order temporal interactions

and they can also be combined with convolutional layers (in particular for

feature encoding temporal image data) and feed-forward layers (commonly for

the output layers of the network).
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This recurrent neural network (RNN) form inherently faces difficulties

in modeling long-range dependencies within sequences. This limitation is

closely associated with the spectral properties of the recurrent weight matrix

WWW hh. During the optimization process the eigenvalues of WWW hh have significant

implications for the network’s ability to propagate information through time.

Informally, eigenvalues of the matrix with small magnitudes can cause gradients

to vanish (see section 2.3). This phenomenon results in the RNN’s inability to

retain and utilize long-term dependencies within the data. On the other hand,

if the eigenvalues are large, the network is susceptible to the gradients growing

exponentially during back-propagation, rendering the optimization process

unstable (see section 2.3). To address these limitations, variations of RNNs

have been designed with gating mechanisms within the recurrent component

of the layer [64, 65]. For example, the Gated Recurrent Unit (GRU) which

modifies the standard hidden state update rule with two gates: the update

gate and the reset gate;

uuut = σ(WWW u[hhht−1,xxxt]), (2.21)

rrrt = σ(WWW r[hhht−1,xxxt]), (2.22)

h̃hht = tanh(WWW h[rrrt⊙hhht−1,xxxt]), (2.23)

hhht = (1−uuut)⊙hhht−1 +uuut⊙ h̃hht, (2.24)

where uuut is the update gate vector, rrrt is the reset gate vector, h̃hht is an activation

vector, WWW u, WWW r, and WWW h are parameter matrices and ⊙ denotes the Hadamard

product (element-wise multiplication). Intuitively, the update gate helps the

model determine how much of the past information needs to be passed along

to the future, while the reset gate decides how much of the past information to

forget. Mechanistically it makes it far more difficult for the mentioned eigenval-

ues above to become too big or too small during optimization and so results in

a more robust model that is better able to learn long term dependencies. One

apparent downside of the RNN architecture is that it is difficult to implement in
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a highly paralleled way to best exploit GPU computation. In the next section

we discuss another architecture that is very effective for sequence modelling

that is more naturally parrellelizable.

2.2.4 Transformers

The final NN variant we discuss is that of the Transformer [10]. The transformer

architecture has won in popularity over the RNN for sequence modelling for

popular tasks like language modelling. It forms the basis for the large pre-

trained generative models that are the subject of the latest AI trends and the

scaling laws as discussed in section 1. At the core of the transformer is the

inductive bias of attention for sequence modelling. Attention is favoured for

certain use cases over the recurrent layer introduced in the last section due

to its innate parallelization capabilities, significantly enhancing computational

efficiency on specialized harder like GPUs.

The attention mechanism [10] assigns importance to each element in a se-

quence, enabling the model to focus selectively on different parts of the sequence

when making predictions. For a sequence of input vectors {xxx1,xxx2, . . . ,xxxT}, we

first stack and transform these inputs into different matrices for queries QQQ,

keys KKK, and values VVV (according to the typical transformer terminology for

the projections of input vectors) through learned parameter matrices specific

to each.

QQQ = WWW Q


...

xxxt

...

 , KKK = WWW K


...

xxxt

...

 , VVV = WWW V


...

xxxt

...

 , (2.25)

where each query (i.e. row) in QQQ, key in KKK, and value in VVV corresponds to

one of the input vectors xxxt and θθθ = {WWW Q,WWW K ,WWW V }. The attention function

is then

Aθθθ(QQQ,KKK,VVV ) = softmax
QQQKKK⊤
√

dk

VVV . (2.26)

The dot product QQQKKK⊤ measures the similarity between queries and keys and the
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softmax function converts these similarity scores into a probability distribution.

The scaling factor in the denominator, where dk is the dimensionality of the

keys, helps with numerical stability during optimization. The output of the

attention function is a weighted sum of the value vectors, where the weights

reflect the relevance assigned to each input. The transformer architecture is

composed of a stack of layers that usually follow the same structure. Each layer

contains two main subcomponents: a multi-head attention and a position-wise

feed-forward network.

Multi-head attention

The multi-head attention mechanism extends the attention mechanism by

running it in parallel with different learned projections of queries, keys, and

values. This allows the model to capture different aspects of the sequence

information from different representation sub-spaces. For a given number of

heads K, the multi-head attention is defined as:

AK
θθθ (QQQ,KKK,VVV ) = Concat(Aθθθ1(QQQ,KKK,VVV ), . . . ,AθθθK

(QQQ,KKK,VVV ))WWW O (2.27)

where θθθk is the parameter matrices for the k-th head and WWW O is the output

parameter matrix that combines the outputs from all the K attention heads.

Position-wise feed-forward network

Since the attention mechanism itself does not take into account the order of the

sequence, positional encodings are often added to the input vectors to inject

information about the position of the tokens in the sequence. The positional

encodings have the same dimension as the input vectors so that the two can

be summed together. The positional encodings can be defined using a specific

function, which in the case of the original transformer is a combination of sine
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and cosine functions with different frequencies:

P(i,2j) = sin
(

i

100002j/d

)
, (2.28)

P(i,2j +1) = cos
(

i

100002j/d

)
, (2.29)

where i is the position of the token in the sequence, j is the index in the

positional encoding vector. The intuition behind this choice is that these

functions can provide a unique encoding for each position (up to a certain

sequence length). The use of geometrically spaced frequencies (as in the term

100002j/d) means that each subsequent dimension of the positional encoding

corresponds to a wavelength that is longer than the previous one. This helps

the model to capture both fine-grained and coarse positional relationships.

The patterns created by these frequencies allow the model to learn how far

apart tokens are in the sequence (their relative positions), which is key to

understanding the structure and meaning within sequences such as sentences.

In chapters 3 and 6 we make heavy use of variations of the transformer model

and focus on natural language processing applications in our experiments.

2.3 Learning with gradients
In section 2.1 we introduced a probabilistic modeling perspective on machine

learning and established maximum likelihood estimation (MLE) as a principled

objective for optimizing neural network parameters that parameterize the

probability distributions we aim to learn from data. Section 2.2 then explored

the specific functional forms of neural networks that are relevant to this work.

We now turn our attention to the optimization process that underpins the

learning of neural network parameters within this framework; with gradients of

the objective w.r.t to θθθ being the key.

2.3.1 Stochastic gradient descent

Gradient descent and its stochastic variants are the backbone of neural network

optimization. Given a differentiable objective function L(θθθ)∈R, which typically
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represents the negative log-likelihood in our case, the goal is to find the

parameters θθθ that minimize this function. Unfortunately for our choices of

model, there is no closed-form solution to this minimization problem and so we

instead aim to find a good local minimum using gradient descent methods. The

core principle of gradient descent is to iteratively update θθθ (from a carefully

chosen initialization) in the direction that most steeply decreases L using an

update rule at iteration t until some convergence criteria is met:

θθθt+1 = θθθt−α∇θθθL(θθθt). (2.30)

α denotes the learning rate that determines the step size of each update and

∇θθθ the first order gradient of the scalar objective.

An important insight towards scaling up the training of NNs to arbitrarily

large datasets is that replacing the full gradient in equation 2.30 (which is

computed over all of Xtrain) with the gradient w.r.t a much smaller sampled

mini-batch of data works well in practise. This stochastic gradient descent

(SGD) variant is based on the unbiased Monte Carlo estimate of the gradient

by sampling (without replacement) a mini-batch of data B ⊂ Xtrain of size B

and computing the approximate gradient

∇θθθL(θθθ)≈ N

M

B∑
i

∇θθθL(fθθθ(xxxi)). (2.31)

In practise each so-called epoch of training consists of iterating through the

full training dataset worth of mini-batches, updating the parameters with each

mini-batch using SGD. There are many variants of SGD that are found to

perform better in practise. One such method that we use exclusively in our

experiments is ADAM [66], which computes adaptive learning rates for each

parameter using past gradients. For a thorough introduction on this topic see

chapter 8 of [5].
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2.3.2 Automatic differentiation

To calculate the gradients ∇θθθL(θθθ) required for these optimizers, deep learning

frameworks leverage automatic differentiation techniques. Unlike symbolic

differentiation or numerical finite differences approaches, these are techniques

that recursively apply the chain rule of calculus to compute derivatives compu-

tationally efficiently. Autodiff underpins the operation of modern deep learning

libraries such as PyTorch [67] and JAX [68] that we use throughout this thesis

to implement our experiments. Consider computing the gradient w.r.t to the

parameters WWW L of the final layer of the neural network as defined in section

2.2.1 using the chain rule:

∇WWW L
L(hhhL−1,yyy,WWW L) = ∂pppL

∂WWW L

∂hhhL

∂pppL

∂L
∂hhhL

, (2.32)

where ppp = WWWhhh. Notice that hhhL is a function of parameters WWW L−1 that

we would also like the derivatives of; and so in practise this chain rule is

applied again recursively across all layers of the network. We can illustrate this

computation as an Abstract Syntax Tree (AST) (also known as a computation

graph/tree) to help describe the workings of Autodiff:

Autodiff frameworks generally decompose the computation of a neural

network into such a directed graph with nodes for each elementary operation

for which derivatives are well-defined. During training, when evaluating the loss

for a given batch of inputs and the latest parameter values, which is referred to

as a forward pass, intermediary values n calculated at each node i are stored.

These are the input values needed to compute the partial derivatives for the

chain rule at this node. Then, in order to compute the overall derivative

w.r.t to all the parameters ∇θθθL, the graph is traversed in reverse ancestral (or

backwards) order implementing the following Autodiff procedure:

1. Define t1 = 1 for the first node of the reverse graph.

2. For the next node i in the backwards traversal, find the child nodes C(i)



2.3. Learning with gradients 42

...

hhhL−1 WWW L

pppL = WWW LhhhL−1

hhhL = aL(pppL) yyy

L(xxx,yyy,WWW L,WWW L−1, . . .WWW 1)

∂hhhL−1
∂pppL−1

∂pppL
∂hhhL−1

∂pppL
∂WWW L

∂hhhL
∂pppL

∂L(xxx,yyy,WWW L,WWW L−1,...WWW 1)
∂hhhL

Figure 2.1: Computation graph focusing in on the final layer of a feed-forward
neural network. The nodes contain the intermediary operations required
by the forward pass and the edges are annotated with the relevant
partial derivatives needed by the chain rule.

and define:

ti =
∑

c∈C(n)

∂nc

∂ni
tc (2.33)

3. Repeat this process until you reach the root nodes of the graph.

4. The total derivatives of the final node w.r.t to the root nodes (in our case

the layer-wise parameter values WWW l) are given by the values for t at those

nodes.

This so called backward pass is efficient because it avoids redundant cal-

culations and information is split between parents only when required. This

procedure is generally referred to as backwards mode Autodiff, or back propa-

gation [69, 70].

Autodiff is broader than just variations of this backpropagation algorithm.

There is also forward mode Autodiff. Forward-mode instead computes the

derivative of each intermediate node with respect to a single input variable

during the forward pass of the graph and can be less memory intensive than
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backwards mode. However, this variation, unlike backpropagation, is less well

suited to problems with many inputs and a single output, which is characteristic

of the loss functions we deal with for training our neural network models.

Forward mode can be more suitable for functions that have a low-dimensional

input space and a high-dimensional output space. For further reading see [71].

2.3.3 Reparameterization trick
In section 2.1.1 we introduced latent variable models and the ELBO for jointly

training the parameters of our model pθθθ(x|z) and inference network qϕϕϕ(z|x).

Using the gradient based methods naively to optimize the ELBO w.r.t ϕϕϕ can

be challenging due to the high variance of the Monte Carlo estimate:

∇ϕϕϕEqϕϕϕ(z|x)[logpθθθ(x|z)]≈ 1
S

S∑
s=1

(
∇ϕϕϕ logqϕϕϕ(zzzs|x)

)
logpθθθ(x|zzzs). (2.34)

The so-called reparameterization trick is a way to provide a much lower

variance unbiased estimate of this same gradient [59]. With this approach we

reparameterize zzz ∼ qϕϕϕ(z|x) as a differentiable transformation of some other

random variable ϵϵϵ∼ p(ϵϵϵ). This does restrict our choice of variational distribution

to those that can be transformed in this way; such as the Gaussian distribution.

With this reparameterization we have Eqϕϕϕ(z|x)[f(z)] = Ep(ϵϵϵ)[f(gϕϕϕ(ϵϵϵ,x))] with

gradient estimate:

∇ϕϕϕEqϕϕϕ(z|x)[f(z)] =∇ϕϕϕEp(ϵϵϵ)[f(gϕϕϕ(ϵϵϵ,x))] (2.35)

= Ep(ϵϵϵ)[∇ϕϕϕf(gϕϕϕ(ϵϵϵ,x))] (2.36)

≈ 1
S

S∑
s=1
∇ϕϕϕf(gϕϕϕ(ϵϵϵs,x)) (2.37)

A common choice that we use in this work is a Gaussian distribution where

ϵϵϵ∼N (0, III) then zzz = µµµϕϕϕ(xxx)+σσσϕϕϕ(xxx)⊙ ϵϵϵ has the distribution N (µµµϕϕϕ(x),σσσϕϕϕ(x)).

In context of Autodiff, this moves the stochastic variable into an input leaf

node on the graph that’s not dependent on the parameters.



Chapter 3

Integrated Weak Learning

In this chapter we focus on the problem of improving data efficiency in su-

pervised learning. As introduced in chapter 1, data efficiency in this setting

refers to the number of labelled datapoint pairs required to achieve a target

performance level. We focus on the paradigm of weak learning.

The general research question that motivates weak learning is given a

relatively little reliably-annotated data and a set of weaker sources of noisy

labels, how should one best combine them to train a supervised machine learning

model? In this work, we focus on how to best parameterise and train the label

and end model during training?

Our contributions are as follows:

• We introduce Integrated Weak Learning, a general framework that inte-

grates weak supervision into the training process of traditional supervised

models. Our approach jointly trains the original model and a label model

that aggregates multiple sources of weak supervision.

• We introduce a label model that can learn to aggregate weak supervision

sources differently for different datapoints and takes into consideration

the performance of the end-model during training.

• We show that our approach outperforms existing weak learning tech-

niques across a set of 6 benchmark classification datasets using mainly

transformer based architectures as introduced in section 2.2. When both
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a small amount of labeled data and weak supervision are present we

observe an increase in performance of on average between 2-5 point test

F1 points and as much as a 20 point gain over non-integrated methods.

3.1 Weak learning
To overcome the cost of manual data annotation, it has become increasingly

common to include cheaper but less reliable sources of supervision when training

deep learning models [39, 72, 73, 74, 75]. These noisy sources of supervision

might include crowd labels, weaker models, distant supervision by knowledge

bases, or manually curated heuristic rules, amongst others[72]. Given relatively

little reliably-annotated data and a set of weaker sources of noisy labels, how

should one best combine them to train a supervised machine learning model?

Early attempts at answering this question [72] typically decompose the

problem into two stages. They first stage considers how to form an estimate

of the unobserved label given a set of noisy labels and then consider how to

train an end-model on the denoised labels. This approach has had considerable

practical success [74, 76], enabling deep learning systems to be deployed in

industry without manual labeling. Two-stage methods have the advantage that

after denoising, the rest of the training pipeline remains essentially unchanged.

To achieve this though, they make quite an unnatural independence assumption;

they typically ignore the dependence of the approximate labels on the input

data. The cost of this assumption is that valuable information from the end-

model can not be incorporated in denoising and the estimated accuracy of

different supervision sources is fixed across the entire dataset. In addition,

in general, a small amount of task-specific oracle sourced labels continues to

be critical for reliable results [74, 77], even when given access to pre-trained

models in transfer learning settings [78].

In this chapter we present a modeling framework, Integrated Weak Learning

(iWL), that simultaneously denoises the weak supervision sources and trains the

end-model. Though there have been other approaches to joint model training
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and denoising [79, 80], they have typically relied on intuitive heuristics, required

extensive changes to the training objective and have high empirical variance.

Our approach is based on a simple application of maximum likelihood learning

in an appropriately chosen probabilistic model that assumes that the true label

is an unobserved latent variable (as discussed in section 2.1). It can learn

to exploit the relevant expertise of different weak supervision sources, whilst

taking into consideration the performance of the end-model.

In traditional supervised learning we have access to a set of labeled data pairs

{(xxx1,y1), · · · ,(xxxN ,yN )} that are identically and independently (i.i.d) sampled

from a true underlying joint distribution (xxxn,yn)∼ pd(x,y) = pd(y|x)p(x). We

are interested in applications where yn is expensive (in time and/or cost) to

define, such as when a judgement from a human expert such as a doctor is

required. A model pθθθ(y|x) is then specified to approximate the true conditional

distribution pd(y|x). In the classification setting, each label y takes a discrete

value in {1, . . . ,C} where C is the number of output classes for the problem. The

parameter θθθ can be estimated by maximum likelihood estimation as discussed

in section 2.1 using the objective

θθθ∗ = argmax
θθθ

1
N

N∑
n=1

logpθθθ(yn|xxxn). (3.1)

In weak learning (WL), instead of requiring access to labels on all datapoints,

we assume access to K weak supervision sources {ρ1(ỹ|x), . . . ,ρK(ỹ|x)}. Each

ρk(ỹ|x) can provide an approximate labels ỹk given an input data xxx, resulting in

a weakly labeled dataset W =
{
(xxx1, ỹ1

1, . . . , ỹ1
K), . . . ,(xxxW , ỹW

1 , . . . , ỹW
K )
}
, where

W is the number of data-points that have weak labels only. In the data

programming formalism [72] these supervision sources are encapsulated into

so-called labeling functions. They usually can easily be applied across large

unlabeled datasets. In principle, the domain of ỹ can be different from the

domain of the true label y. For example, in our experiments we use labeling

functions that can return one of C +1 classes ỹ ∈ {0, . . . ,C}, where the class
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0 represents an abstain where the labeling function refrains from making a

decision.

If the weak labels have some useful signal for the true data generating

process, then they can still serve as a useful source of supervision for training

an end-model. Each of the labeling functions may not be very informative about

the true label across all data points, but may have some useful specialisation for

certain regions of the inputs space; and collectively, if combined appropriately,

these sources may help accurately predict the true label. The simplest approach

to aggregating weak supervision sources is to take the majority vote label from

the weak labels for each datapoint. Popular WL approaches improve on this

by training a probabilistic model that learns an estimate for the accuracy of

each labeling function and use this to calculate the distribution p(y|ỹn
1 , . . . , ỹn

K)

[1, 73].

In real world applications it is common for the practitioner to have access to

both weak labels and a (relatively small) set of training data with ‘strong’ labels

(i.e. oracle labels we assume come from the true underlying data distribution,

such as those generated by human subject-matter experts). With this in

mind, we denote the dataset that contains both strong and weak labels as

S =
{
(xxx1,y1, ỹ1

1, . . . , ỹ1
K), . . . ,(xxxS ,yS , ỹS

1 , . . . , ỹS
K)
}
, where ys ∼ pd(y|xxxs).

In the next section we present a simple probabilistic graphical model that

makes it possible to learn the parameters of the model pθθθ(y|x) both when the

only labels are from weak supervision and when there are some strong labels

present.

3.2 A joint training approach

Given a weakly supervised dataset W , we wish to specify a probabilistic model

over the weak label ỹ and the input x that would allow us to jointly learn

an end-model pθθθ(y|x) and learn to leverage the weak labels (which is also

commonly referred to as denoising the weak labels). A simple approach would
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be to parameterize the full distribution without loss of generality as:

pθθθ,ϕϕϕ(ỹ|x) =
∑
y

pϕϕϕ(ỹ|y,x)pθθθ(y|x), (3.2)

where we have marginalized over the unobserved true label y. However, this

simple model has a potentially degenerate solution in which the distribution

pϕϕϕ(ỹ|y,x) becomes independent or approximately independent of the label y,

i.e the model learns to ignore the latent pϕϕϕ(ỹ|y,x)≈ pϕϕϕ(ỹ|x). If that were to

happen, then there would be no sharing of information between the weak labels

and the true label y. In order to ensure that the weak labels contribute to the

training of the end-model, we must constrain the distribution pϕϕϕ(ỹ|y,x) so that

the information flow from x to ỹ is limited. The simplest way to achieve this

constraint is to introduce an assumption that ỹ is independent of x given y:

pθθθ,ϕϕϕ(ỹ|x) =
∑
y

pϕϕϕ(ỹ|y)pθθθ(y|x). (3.3)

We refer to pϕϕϕ(ỹ|y) as the label model and pθθθ(y|x) is free to be any parametric

end-model. We explore alternative forms of the label model in the following

section.

This model formulation allows us to jointly estimate the parameters {ϕϕϕ,θθθ}

using maximum likelihood estimation as introduced in section 2.1. In practice we

have K weak supervision sources. If we assume these sources are conditionally

independent given y, our model becomes

pθθθ,ΦΦΦ(ỹ1, . . . , ỹK |x) =
∑
y

pθθθ(y|x)
K∏

k=1
pϕϕϕk

(ỹk|y), (3.4)

where we denote ΦΦΦ = {ϕϕϕ1, . . . ,ϕϕϕK}. Figure 3.1a shows the corresponding

graphical model.

The log-likelihood for the data-points that include both strong and weak

labels S =
{
(xxx1,y1, ỹ1

1, . . . , ỹ1
K), . . . ,(xxxS ,yS , ỹS

1 , . . . , ỹS
K)
}

becomes:
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LS(θθθ,ΦΦΦ)≡ 1
S

S∑
s=1

logpθθθ(ys|xxxs)+ log
∑
ys

pθθθ(ys|xxxs)
K∏

k=1
pϕϕϕk

(ỹs
k|ys)

 . (3.5)

For the data-points that only have weak labelsW =
{
(xxx1, ỹ1

1, . . . , ỹ1
K), . . . ,(xxxW , ỹW

1 , . . . , ỹW
K )
}

we have the log-likelihood term

LW (θθθ,ΦΦΦ)≡ 1
W

W∑
w=1

log
∑
yw

pθθθ(yw|xxxw)
K∏

k=1
pϕϕϕk

(ỹw
k |yw). (3.6)

Therefore, our overall likelihood training objective for integrating weak super-

vision (iWL) into model training is

L(θθθ,ΦΦΦ) = λSLS(θθθ,ΦΦΦ)+λWLW (θθθ,ΦΦΦ), (3.7)

where λS ,λL are user defined scaling parameters that control how much

the strongly and weakly labeled datasets influence the model training. We

can then jointly estimate both sets of parameters {ΦΦΦ, θθθ} by directly optimising

objective 3.7. The label model can then learn to take into consideration the

performance of the end-model during training because the gradients used to

update the label model parameters will contain information about how the end

model performance is impacted under out joint objective. Once trained, the

discriminator pθθθ(y|x) can be used independently to the label model to make

predictions. This framework is flexible for supporting different choices of label

and end-model.

In practise we can use stochastic gradient descent to train both sets of

parameters jointly by sampling mini-batches of data fromW and S to calculate

LS and LW respectively for each parameter update step - see section 3.4 for

further details. We compute the marginalization over y exactly in equations

3.5 and 3.6. This is efficient in this setting because the number of classes C to

sum over tends to be relatively small.



3.2. A joint training approach 50

xxxn

yn

ỹn
k ϕϕϕk

θθθ

K K

N

(a) Basic graphical model (iWL)

xxxn

yn

ỹn
k ϕϕϕn

k

θθθ

ηηη

K

N

(b) Including xxx (iWLD)

Figure 3.1: Graphical models for the integrated weak learning variants. θθθ and
ΦΦΦ = {ϕϕϕ1, . . . ,ϕϕϕK} are the parameters of the end-model and label model
respectively. K is the number of available weak supervision sources
and N the number of observed training datapoints. The left model
assumes the generative process is the same for all datapoints, whereas
the right model assumes similar datapoints will have a similar noisy
label generative process.

3.2.1 Design of label model

In the previous section, we assumed that the weak labels only depend on the

underlying true label y, yielding the label model in equation 3.4. In this case

pϕϕϕk
(ỹ|y) is parameterized by a linear transition matrix i.e. pϕϕϕk

(ỹk = i|y =

j) = ϕϕϕij
k , with i ∈ {1, . . . ,C +1}, including the abstain label, and j ∈ {1, . . . ,C}.

Each row in the transition matrix sums to one: ∑i ϕϕϕij
k = 1.

A natural extension is to consider incorporating a dependency on x. The

label model could then represent different transitions for different data-points.

Intuitively this would allow the label model to understand the relevant ex-

pertise of the different labeling functions and emphasize appropriately. This

is particularly relevant given in practice labeling functions tend to be quite

specialized in the data-points they perform well on [39]. However, we must

take care when introducing x-dependence to constrain the flow of information

so that the label model does not become independent of y.

We therefore also introduce a variation where we parameterize the transition

matrix ϕϕϕk itself as a function of x - see figure 3.1b for the updated graphical
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model. This ensures that p(ỹ|x,y) is still parameterized by a constrained linear

transition matrix. The label model becomes p(ỹk|y,ϕϕϕk = fηηη(x)[k]), where fηηη(·)

is a neural network that maps a data point xxx to the K linear transition matrices

and we use fηηη(x)[k] to denote the kth matrix. This allows our label model to

produce similar transitions ϕϕϕk for similar xxx and amortises the cost of computing

the transition for each data-point. Therefore, the full model can be written as

pηηη,θθθ(ỹ1, . . . ỹK |x) =
∑
y

pθθθ(y|x)
K∏

k=1
p(ỹk|y,ϕϕϕk = fηηη(x)[k]). (3.8)

This model extends equation 3.4 with a more complex label model param-

eterized by ηηη instead of ϕϕϕk. In practise the objective and training procedure

is the same as that described in section 3.2 using stochastic gradient descent

and exact marginalisation over y, but we replace L(θθθ,ΦΦΦ) with L(θθθ,ηηη). Hence

during training we are learning the parameters ηηη of our label model neural

network that learns to output the transition matrices given an xxx, as opposed

to directly learning the transition matrices independent of xxx.

In principle, it is still possible though unlikely that the label model

p(ỹk|y,ϕϕϕk = fηηη(x)[k]) becomes independent of the label y because it learns to

ignore y - for example in the regime where we have very little or no strong labels

to help infer the latent configuration during training. In section 3.4 we validate

that this does not happen in practice and demonstrate how incorporating the

x dependency in this way improves performance across a range of benchmark

problems. As with existing weak learning techniques, it is possible to extend our

label model to more explicitly consider correlations between labeling functions

- see appendix A.4 for more details.

3.2.2 Discussion of model

As with prior works [1], our model can suffer from y being unidentifiable. For-

tunately, in our framework, access to strongly labeled data naturally mitigates

against this. For notational simplicity we consider the case of only one labeling

function ρ(ỹ|x) =∑
y pϕϕϕ∗(ỹ|y)pd(y|x) where pd(y|x) is the true label generation
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distribution and we assume pϕϕϕ∗(ỹ|y) parameterized by a linear transition matrix,

i.e. pϕϕϕ∗(ỹ = i|y = j) = ϕϕϕij
∗ with known parameters ϕϕϕ∗. In this case, training our

model pθθθ(y|x) using equation 3.7 is able to identify the true underlying pd(y|x).

Specifically, maximizing the likelihood function is equivalent to minimizing the

KL divergence

Eρ(ỹ|x)(logpθθθ,ϕϕϕ∗(ỹ|x)) =−KL
∑

y
pϕϕϕ∗(ỹ|y)pd(y|x)||

∑
y

pϕϕϕ∗(ỹ|y)pθθθ(y|x)
+const,

(3.9)

where the constant is the entropy of pϕϕϕ∗(ỹ|y) with fixed ϕϕϕ∗. During training,

as θθθ→ θθθ∗ the KL divergence goes to 0 and we have

∑
j

ϕϕϕij
∗ pd(y = j|x) =

∑
j

ϕϕϕij
∗ pθθθ∗(y = j|x) ∀i. (3.10)

As long as the linear transition matrix ϕϕϕ∗ (with size C + 1×C) does not

degenerate (i.e. has rank C), then the mapping from the distribution of y to ỹ

is injective. We then have pθθθ∗(y|x) = pd(y|x), which successfully recovers the

underlying true model. To note, when ϕϕϕ is a function of xxx (3.1b) the same

reasoning can be applied if we assume the true transition generation function

fηηη∗ is also known.

When the true label model pϕϕϕ∗(ỹ|y) is unknown, we need to learn ϕϕϕ. In

this case we cannot guarantee to identify the true underlying model using

only the weak labels. To give an example, we first assume that we have

learned a label model pϕϕϕ1(ỹ|y) using MLE with a model pθθθ1(y|x). We can

always construct an alternative label model pϕϕϕ2(ỹ|y) (with ϕϕϕ2 = ϕϕϕ1×MMM−1,

where MMM is a C×C invertible transition matrix, and model pθθθ2(y|x) (with

pθθθ2(y = i|x) =∑
j MMM ijpθθθ1(y = j|x)) that can give the same marginal distribution:

∑
y

pϕϕϕ1(ỹ|y)pθθθ1(y|x) =
∑
y

pϕϕϕ2(ỹ|y)pθθθ2(y|x). (3.11)

This observation easily generalizes to the case of K weak supervision sources.

Similar counter examples are constructed in the context of disentangled repre-
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sentation learning, where the true representation cannot be identified under

maximum likelihood learning [81].

Incorporating strong labels y ∼ pd(y|x), like we discuss in section 3.2, can al-

leviate this unidentifiability issue. Intuitively, when the number of strong labels

goes to infinity S→∞, then the first term in Equation 3.5 1
S

∑S
s=1 logpθθθ(ys|xs)

will reach an optimum when pθθθ(y|x) = pd(y|x), which is due to the consistency

of MLE [82]. In practice, we find that a relatively small number of strong labels

is effective at mitigating this issue allowing us to recover a useful end-model.

We leave to future work exploring more deeply the relationship between the

identifiability problem and the number of strong labels required. In the case

where it is not possible to access any strong labels for a given problem, similar

to prior work we can leverage the majority vote heuristic to initialize the

parameters of our label model, which we find works well empirically.

3.3 Related work

Two-Stage Weak Learning
Two stage weak labeling methods separate the label model from end-model

training [72, 1, 73, 75] . The primary advantage of this separation is that the

cost of label denoising is paid only once and the change needed to training

pipelines is minimal.

In our work it is necessary to alter the training objective by adding additional

terms and one has to learn the parameters of the label model every time the

end-model is changed. However, the additional computational cost of learning

the label model pϕϕϕ(ỹ|y) can be kept small by using a relatively smaller model

compared to the end-model pθθθ(y|x). Our experiments provide evidence that

this additional cost is rewarded by improved end-model performance, especially

when some strong labels are present.

Joint Weak Learning
Most similar in spirit to our work are two end-to-end weak labeling methods

that also jointly denoise and train: WeaSel [79] and Denoise [80]. These
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methods differ both in how they parameterize the label model and in their

training objective. The primary difference with our work is in the choice

of training objective. Whereas we train using maximum-likelihood learning,

Weasel uses a heuristic consistency constraint. Namely that the labels predicted

by a denoising model and an end-model should agree. Training their heuristic

objective can be unstable [79] and can result in degenerate solutions. In their

paper the method is primarily justified by empirical performance but in our

experiments it under-performed both Denoise and Integrated Weak Learning

(see section 3.4). In contrast, our framework simply proposes an appropriate

graphical model and trains via maximum likelihood with stochastic gradient

descent.

The Denoise algorithm has an additional algorithmic component beyond

weak supervision which incorporates self-supervision [83, 84] of its end-model.

Confident predictions from the end-model are bootstrapped for learning where

the labeling functions have low coverage. Based on their ablation studies, this

significantly improves performance. Self-supervision could naturally be applied

to our objective 3.7 to further bolster performance, which we leave for future

work.

Learning with Noisy Labels

There are multiple different approaches to learning with noisy labels, including

data cleaning [85, 86, 87], where useful information is potentially lost, and data

re-weighting that weighs training data-points based based on different criteria

[88, 89]. Most relevant to our line of work are those methods that attempt

to correct noisy labels using a label model parameterized similarly to ours

[90, 91, 92]. In the recent Confident Learning [90] they assume a probabilistic

label model, treating the true underlying y as a latent, and do inference on a

single C×C noise transition matrix in order to correct their noisy labels. Our

approach differs in a few key ways. Firstly, our label model is integrated as part

of the end-model training. Secondly, we are dealing with multiple transition

matrices, one per each source of label noise, where the noisy label domain is
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different than the true label domain. Lastly, our label model from figure 3.1b

can learn different transitions for different xxxn, releasing the assumption that

label noise needs to be constant across a dataset. In [92] they do in fact have a

noise transition matrix that is dependent on xxxn, but they have an alternating

training scheme for the end-model, instead of jointly training, and they too

don’t deal with multiple sources of noisy labels with different domains.

Crowdsourcing

Applications that deploy crowdsourcing to collect labeled data also face the

challenge of how to aggregate multiple noisy sources of supervision. Each

source being a human annotator as opposed to a labeling function. Major

works in this area use the EM algorithm to jointly model the unknown true

label and annotator skill [93, 94, 95]. Most similar to our work is [96], where the

annotator skill model (equivalent to our label model) and end model are jointly

optimized using a formulation similar to our basic model described in figure

3.1a. In contrast to [96], firstly we propose an objective that can incorporate

ground truth data when available. Secondly, the domain of our noisy labels is

different to the true label domain (labeling functions can choose to abstain but

crowd workers cannot). This results in a non-square noise transition matrix,

hindering the application of a trace regularizer as proposed in [96]. Lastly, we

extend our probabilistic formulation (in figure 3.1b) to relax the assumption in

[96] that the annotator skill is independent of xxx, which we demonstrate leads

to improved performance.

3.4 Experiments
The goal of our experiments is to provide a robust performance comparison

between the variants of our iWL approach and the existing weak learning

approaches discussed in section 3.3. In addition, we want to understand how

the amount of strongly labeled data L impacts the performance of these methods

for deep learning models, which may be of independent interest for practitioners.

For our choice of datasets and the implementations of existing methods, we
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leverage the recent comprehensive benchmark for weak supervision (WRENCH)

[39]. Specifically, we use 6 of the classification problems that vary in dataset

size as well as labeling function complexity - see table 3.1 for details.

This set of datasets provides some variance in the number of classes (from 3

up to 6) and number of labelling functions (from 5 up to 83). The number of

classes directly impacts the number of parameters ϕ in our label and the number

of strong labels required for inferring the latent effectively. An interesting future

direction of research and ablation is to study the impact on our method of a

much larger number of classes.

We compare to the two-stage weak learning approaches of Majority Vote and

Snorkel [72], and to the end-to-end weak learning approaches of Denoise [80] and

the more recent WeaSEL [79]. We refer to these as benchmark methods. We use

the implementations of these methods available in the WRENCH benchmark.

Table 3.1: Attributes of the chosen classification datsets [39]

Dataset #Classes #LFs #Train #Validation #Test
Census 2 83 10,083 5,561 16,281
IMDB 2 5 20,000 2,500 16,281

Yelp 2 8 30,400 3,800 3,800
SMS 2 73 4,751 500 500

AGNews 4 9 96,000 12,000 12000
TREC 6 68 4,965 500 500

3.4.1 Implementation details
Here we introduce our basic implementation details. Further details can be

found in appendix A.2.

Discriminative model
We keep the end discriminative model pθθθ(y|x) common across all methods

in our comparisons and vary the label model accordingly. Specifically for

pθθθ(y|x) we use the distilled RoBerta transformer model [97] to provide a rich

embedded representation for textual x. This acts as input to a two-layer feed

forward neural network model, with 100 hidden units in each layer and RelU
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activation functions and a softmax final output. Across all experiments we use

the Adam optimizer [66] with learning rate 1e−3 and mini-batch size of 128. As

in WRENCH we do early stopping on the validation F1-score with a patience

of 300 optimization iterations using the validation datasets provided. Specific

to our proposed integrated approach: we set the hyperparameters λL,λW from

equation 3.7 to 1 throughout - meaning we weight equally the contributions

from the strong and weak labels in our objective. For the two-stage weak

learning approaches of majority vote and snorkel, we use the probabilistic

denoised labels, i.e. the softmax probability values (as opposed to the one-hot

label values) and noise-aware loss objective as recommended in prior works as

the highest performing configuration of these methods.

Label model

For our proposed approach we include both of the label model variants presented

in figure 3.1 - including and excluding the dependency on x. We refer to

these as iWL and iWLD respectively in the results. For iWLD, the network

fηηη(xxx) : xxx→ {ϕϕϕk, . . . ,ϕϕϕK} uses the same architecture and hyperparameters as

pθθθ(y|x) as specified above, except for the structure of the final layer that instead

outputs the linear transition matrix. In principle the label model can be of a

much smaller network size than the end model; we leave further ablation around

choice of model and impact on performance to future work. We initialize our

label model parameters using the majority vote to help mitigate against the non-

identifiability of y issue discussed in section 3.2.2. For the benchmark methods

we use the default label model hyperparameters as provided by WRENCH

except for the WeaSEL model. For the WeaSEL temperature hyperparameter

we try values from the range {0.5,1,3,5} based on their recommendations and

select the best performing value for each experiment configuration because we

found this method to be sensitive to this parameter in our setup. In appendix

A.3 we provide visualizations to illustrate how our label model is able to learn

different transitions ϕϕϕn
k for different datapoints.



3.4. Experiments 58

Incorporating strong labels
We also evaluate all methods with different proportions of strong labels available

at training time in addition to the weak labels. We believe this to be a realistic

and important scenario for many real world applications. Specifically we

evaluate the scenarios where 1%, 10%, 50% and 100% of the training data is

strongly labeled (selected at random). The strong label log-likelihood term in

our objective equation 3.5 means that our proposed approach can deal with

this scenario by design. To ensure that the benchmark methods also benefit

from these strong labels in our comparisons, we add an additional labeling

function in these cases that outputs the strong label if available and abstains

otherwise. For the two-stage weak learning approaches, we also include results

for an alternative approach of leaving the labeling functions unchanged and

instead replacing the resulting denoised label with the corresponding strong

label if available when training the end-model pθθθ(y|x) - see appendix A.1 for

further details.

3.4.2 Results

We report the test F1-score as our main evaluation metric averaged over 5

random seeds alongside 1 standard deviation. In table 3.4.2 we summarize

the performance results for the different methods, for different proportions of

strongly labeled data, across all datasets considered. In figure 3.2, we plot the

corresponding quartiles of the F1 scores to provide further insight into how

the variability between seeds compares across the different methods. We also

include a baseline where we train the end-model pθθθ(y|x) only on the strong

labels provided, ignoring any weak labels. We refer to this baseline as ‘labels

only’ (LO).

We see from table 3.4.2 that our proposed approaches result in the best

performing model (as measured by test F1 score averaged over 5 random seeds)

in 19 out of the 30 cases and first or second best-performing in 28 out of the 30

cases. In particular, in the regime where you have a relatively small amount

of strongly labeled data in addition to your weak labeling sources (i.e. the
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Figure 3.2: Box-plots of test F1 scores showing the quantiles across 5 random seeds
on the y-axis. Each plot refers to a specific dataset. The models are
grouped by the different fractions of strongly labeled data available on
the x-axis (0%, 1%, 10%, 50%, 100%). In the majority of datasets and
strong label splits, our proposed iWL and iWLD models are the best
performing models and are robust to random seed changes shown by the
relatively low variance. Methods that converge to significantly worse
or degenerate solutions fall below a performance display threshold and
are not shown. See table 3.4.2 for more detail.

1% row in table 3.4.2) our approach provides a conclusive improvement in all

but one of the datasets. Here we consistently outperform the weak learning

baselines by between 2 and 5 test-F1 points. In 5 of the 6 datasets we see

that our integrated weak learning approach outperforms the LO baseline of
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the end-model trained with 100% strong labels available. Furthermore, the

boxplot quartiles in figure 3.2 illustrates that for a majority of the datsets and

strong label splits, our iWLD model results in lower variance solutions than

the benchmark methods.

Our results also provide some noteworthy insights related to the benchmark

methods. Generating results across a range of different strong label proportions

demonstrates that there is a tipping point at 10% over which LO becomes a

competitive baseline. This can still represent a relatively significant amount

of labeling effort (e.g. in AGNews this would be 9600 labels). It is likely that

our use of the distilled RoBerta transformer as the feature extractor will be

contributing to this performance, bringing some transfer learning benefits.

The joint approach Denoise is highlighted as the best performing approach in

a small number of cases. This was unexpected because in the original WRENCH

benchmark Denoise failed to outperform the other methods in any of these

datasets. Furthermore, the more recent WeaSEL paper does not compare to

Denoise as an end-to-end alternative. We note that Denoise, in addition to

the weak and strong labels provided, also incorporates self-supervision signal

into their training process. Our framework can naturally be extended with

self-supervised labels which will likely further improve performance. This

involves extending the dimensionality of our label model to consider another

labelling function that takes predictions from the current state of the end model

as the weak label. Finally, we experienced that WeaSEL failed with degenerate

solutions in some of the experiments, for example for the TREC dataset, and

performed for the most part worse than other methods. In an attempt to

improve performance for WeaSEL, we tuned the temperature parameter as

discussed in section 3.4.1.

3.5 Conclusion

This chapter introduced a new framework for improving the data efficiency

of training supervised machine learning models that can principally integrate
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both strong and weak supervision sources during training. It models the

true underlying label y as a latent variable and jointly trains both the label

model and end-model parameters using maximum likelihood. It is a generic

framework that can be used in conjunction with existing supervised learning

models to improve performance. We provide an empirical study across a range

of classification benchmark problems of varying degrees of size and complexity

and demonstrate that our approach consistently outperforms existing methods.

This work acts as a foundation for future work in many complimentary

directions. Firstly, improving the label model to explicitly model correlations

between weak supervision sources. We outline a provisional approach based on

introducing an additional latent variable in appendix A.4. Secondly, exploring

alternative parameterizations for our label model as presented in 3.2.1, including

those that introduce constraints that remove the need to initialize with majority

vote in the cases where no strong labels are available. Lastly, understanding

how to combine our framework with related methods that attempt to mitigate

the burden of gathering labeled data - namely self-supervised learning, active

learning and transfer learning.

An application of particular interest is aligning large foundation models

with human preferences (see chapter 6). It’s common to get a wide array of

slight different preferences for a given scenario. Weak learning approaches as

outlined here could be an effective way to distil the wisdom of the crowd.
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Table 3.2: Test F1 score averaged over 5 random seeds with 1 standard deviation
in brackets across all datasets and all models considered: two stage weak
learning approaches of Majority Vote (MV) and Snorkel. End-to-end
weak learning approaches of WeaSEL and Denoise. The end-model
pθ(y|x) trained with the available strong labels only (labels only - LO).
Our proposed integrated training approach with and without the x
dependency in the label model (iWL and iWLD respectively). The
results are grouped by the different proportions of strongly labeled
data available (0%, 1%, 10%, 50%, 100%). Values highlighted in red
indicates best performing and blue indicates second best. Our proposed
approaches are the best performing models as measured by average test
F1 score in 19 out of the 30 cases and the first or second best performing
models in 28 out of the 30 cases.

Dataset AGNews Census IMDB SMS TREC Yelp
Labels Model

0%

MV 85.14 (0.16) 80.68 (0.16) 81.42 (0.10) 96.12 (1.38) 62.80 (1.54) 89.75 (1.16)
Snorkel 83.15 (3.85) 77.89 (0.72) 80.91 (0.16) 88.72 (1.84) 47.96 (2.19) 88.09 (0.74)
WeaSEL 66.32 (1.64) 76.38 (0.00) 81.05 (0.35) 86.60 (0.00) 27.60 (0.00) 54.38 (2.04)
Denoise 85.39 (0.10) 78.48 (0.02) 80.79 (0.24) 97.60 (0.42) 56.32 (2.74) 88.41 (1.35)
LO - - - - - -
iWL 85.02 (0.14) 81.40 (0.51) 81.50 (0.34) 62.32 (2.04) 59.80(2.20) 90.41 (0.74)
iWLD 85.13 (0.13) 81.11 (0.20) 81.54 (0.29) 96.84 (1.20) 65.00 (1.71) 91.17 (0.69)

1%

MV 85.05 (0.36) 80.59 (0.28) 81.52 (0.16) 95.40 (1.88) 62.88 (1.58) 89.67 (0.45)
Snorkel 83.45 (3.78) 77.89 (0.73) 82.03 (0.28) 88.76 (1.93) 48.24 (1.82) 88.38 (0.43)
WeaSEL 66.30 (2.10) 76.38 (0.00) 80.92 (0.63) 86.60 (0.00) 27.60 (0.00) 53.62 (1.34)
Denoise 85.37 (0.09) 78.51 (0.11) 80.53 (0.21) 97.72 (0.18) 56.44 (2.25) 87.64 (1.67)
LO 87.39 (0.20) 80.41 (0.71) 81.98 (1.80) 96.84 (1.13) 51.76 (5.13) 91.34 (0.42)
iWL 87.75 (0.27) 82.29 (0.67) 84.25 (0.89) 95.88 (0.78) 64.56 (2.98) 92.43 (0.18)
iWLD 87.77 (0.31) 82.82 (0.29) 84.31 (0.84) 97.44 (0.55) 67.32 (1.95) 92.21 (0.31)

10%

MV 85.65 (0.25) 81.03 (0.21) 82.05 (0.44) 96.76 (1.60) 64.28 (1.19) 90.63 (0.76)
Snorkel 84.80 (2.36) 77.67 (0.94) 83.78 (0.73) 89.64 (2.60) 50.64 (3.73) 91.16 (1.03)
WeaSEL 68.42 (0.49) 76.38 (0.00) 81.62 (0.36) 86.60 (0.00) 27.60 (0.00) 61.02 (8.33)
Denoise 85.79 (0.12) 78.51 (0.07) 80.82 (0.20) 98.44 (0.26) 58.32 (2.88) 88.35 (1.48)
LO 89.94 (0.30) 82.86 (0.39) 86.63 (0.47) 98.64 (0.46) 72.52 (4.41) 93.91 (0.17)
iWL 89.42 (0.22) 82.42 (0.33) 86.20 (0.47) 98.52 (0.27) 72.92 (3.97) 94.03 (0.16)
iWLD 90.00 (0.18) 83.84 (0.30) 86.53 (0.42) 98.48 (0.39) 71.16 (5.72) 94.06 (0.06)

50%

MV 88.17 (0.22) 81.59 (0.26) 84.82 (0.34) 98.44 (0.22) 69.72 (1.98) 93.18 (0.28)
Snorkel 88.23 (0.24) 78.69 (1.01) 85.85 (0.21) 93.20 (2.84) 58.56 (6.41) 93.92 (0.25)
WeaSEL 70.47 (2.17) 76.38 (0.00) 82.98 (0.32) 86.60 (0.00) 27.60 (0.00) 71.89 (4.14)
Denoise 89.44 (0.11) 79.53 (0.13) 82.26 (0.31) 98.76 (0.17) 64.92 (1.83) 92.33 (0.32)
LO 90.60 (0.21) 83.91 (0.27) 87.56 (0.44) 98.88 (0.30) 80.24 (3.02) 94.19 (0.13)
iWL 89.60 (0.09) 82.66 (0.34) 86.62 (0.31) 98.88 (0.39) 77.36 (2.60) 94.51 (0.10)
iWLD 90.53 (0.17) 84.55 (0.13) 87.52 (0.43) 98.80 (0.28) 78.40(2.58) 94.18 (0.21)

100%

MV 89.65 (0.09) 82.93 (0.30) 86.15 (0.21) 98.44 (0.09) 77.76 (0.89) 94.03 (0.16)
Snorkel 89.05 (0.25) 80.97 (0.58) 85.64 (0.27) 96.60 (2.16) 64.76 (2.95) 93.74 (0.22)
WeaSEL 72.72 (3.04) 76.38 (0.00) 84.20 (0.69) 86.60 (0.00) 27.60 (0.00) 84.43 (1.81)
Denoise 90.65 (0.14) 84.29 (0.11) 87.61 (0.11) 98.80 (0.23) 81.88 (1.68) 94.17 (0.16)
LO 90.59 (0.34) 84.40 (0.07) 87.70 (0.24) 98.64 (0.22) 81.96 (1.11) 94.28 (0.18)
iWL 89.67 (0.20) 82.61 (0.51) 86.73 (0.24) 98.80 (0.24) 78.40 (2.19) 94.56 (0.12)
iWLD 90.46 (0.39) 84.78 (0.20) 87.74 (0.18) 98.52 (0.11) 82.52 (1.25) 94.47 (0.24)



Chapter 4

Generalization Gap in

Amortized Inference

The ability of generative models trained with maximum likelihood to perform

well on data unseen during training is central to the application of machine

learning in many of the important problems we touched on in chapter 1 such as

text and image generation. As discussed in section 2.1, we refer to this as the

problem of generalization. One popular class of probabilistic generative model

- the Variational Auto-Encoder (VAE) [98] - is an example of a latent variable

model as introduced in chapter 2.1.1. As well as being an effective method to

approximate the underlying generative process of datasets such as images and

text, the lower dimensional representation of data encoded by the learned latent

variables in VAEs are often used in the context of transfer learning. That is,

the latent representations are often used as features for downstream tasks such

as classification or compression. One reliable way to improve the generalization

performance in this setting is to add more training data.

In this chapter, following the theme of data efficiency, we study the question

of how to improve generalization performance for this class of model for a given

training data budget?

We first study the problem of generalization for this class of probabilistic

latent variable model. We decompose the generalization error into two gen-

eralization gaps that affect VAEs and demonstrate that over-fitting can be
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dominated by the process of amortized inference using neural networks. Based

on this observation, we propose a new training scheme that improves the gener-

alization of amortized inference by bootstrapping samples from the model when

training the inference network. We demonstrate how our method can improve

performance in the context of image modelling and lossless compression.

4.1 Overfitting to training data

To recap briefly, for a finite dataset, a common concern in both supervised

and unsupervised learning is that the probabilistic model may overfit to the

training dataset Xtrain, degrading generalization performance [99]. The gener-

alization performance in the unsupervised setting can be measured by the test

likelihood [100]: 1
M

∑M
n=1 logpθθθ(x̌xxm), where Xtest = {x̌xx1, . . . , x̌xxM} ∼ pd(x) is the

test dataset. A model that has overfit to the training dataset Xtrain generally

results in a high training likelihood but a low test likelihood. As discussed

in section 2.1 the use of neural networks to parameterise our distribution can

amplify this problem given their capacity to model the noise and spurious

correlations that may be present in the training data.

Although the test likelihood is a common evaluation criterion [101], the

factors that affect the generalization of unsupervised probabilistic models are

less well studied in comparison to supervised learning. We posit that this is

because for common tasks, like sample generation or representation learning,

good generalization in terms of the test likelihood is not a sufficient measure

of performance. For example implicit models can generate sharp samples

without having a likelihood function [102, 103, 48] and representations learned

by latent variable models can be arbitrarily transformed without changing

the likelihood [81]. In recent applications that use deep generative models for

lossless compression [104, 105, 106, 100, 107], generalization in terms of the

test likelihood directly indicates higher compression rate [100]. Specifically,

given a probabilistic model pθθθ(x), a lossless compressor can be constructed to

compress a test data point x̌xx to a bit string with length approximately equal
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to − log2 pθθθ(x̌xx). When pθθθ(x)→ pd(x), the average compression length attains

the entropy of the data distribution − 1
M

∑M
m=1 log2 pθθθ(x̌xxm)→Hp(x), which is

optimal under Shannon’s source coding theorem [108], see chapter 4 of [51] for

a detailed introduction. Therefore, a better test likelihood can lead directly to

a greater saving in bits.

4.2 Variational auto-encoders
A popular type of probabilistic model is the Variational auto-encoder (VAE)

[59, 60] which assumes a latent variable model pθθθ(x) =
∫

pθθθ(x|z)p(z)dz. For

a nonlinear parameterization of pθθθ(x|z) (e.g. a deep neural network), the

evaluation of logpθθθ(x) involves solving an intractable integration over z. In

this case, the evidence lower bound (ELBO) can be used to side-step the

intractability as introduced in section 2.1.1

Epd(x)
(

logpθθθ(x)
)
≥ Eqϕϕϕ(z|x)pd(x)

(
logpθθθ(x,z)− logqϕϕϕ(z|x)

)
(4.1)

≡ Epd(x)
(
ELBO(x, θθθ,ϕϕϕ)

)
, (4.2)

where qϕϕϕ(z|x) is a variational posterior parameterized by a neural network

with parameter ϕϕϕ. The use of an approximate posterior of the form qϕϕϕ(z|x)

amortizes the cost of inference across the dataset. To better understand this

objective, we can rewrite the expected ELBO as the following

Epd(x)
(
ELBO(x, θθθ,ϕϕϕ)

)
= Epd(x)

(
logpθθθ(x)−KL

(
qϕϕϕ(z|x)||pθ(z|x)

))
(4.3)

=−Hpd
(x)︸ ︷︷ ︸

constant

−KL(pd(x))||pθθθ(x))︸ ︷︷ ︸
model learning

(4.4)

−Epd(x)
(
KL

(
qϕϕϕ(z|x)||pθθθ(z|x)

))
︸ ︷︷ ︸

amortized inference

, (4.5)

We denote the posterior family of qϕϕϕ(z|x) as Q parameterized by ϕϕϕ [109].

If Q is flexible enough such that the true posterior pθθθ(z|x) ∈ Q, where

pθθθ(z|x) ∝ pθθθ(x|z)(z), then at the optimum of equation 4.3, we have

KL
(
qϕϕϕ(z|x)||pθθθ(z|x)

)
= 0⇒ qϕϕϕ(z|x) = pθθθ(z|x) and the ELBO will be equal to
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Figure 4.1: Bits per dimension (BDP) vs epochs. The training BPD decreases but
the testing BPD increases during training, which indicates the VAE
overfits to Xtrain.

the log-likelihood ELBO(x, θθθ,ϕϕϕ) = logpθθθ(x) [59, 110]. Many methods have

been developed to increase the flexibility of Q to obtain a tighter bound. For

example adding auxiliary variables [111, 112], or flow-based methods [113, 114].

4.3 Generalization of VAEs
During training, we only have access to a finite dataset Xtrain, which leads to

the following Monte-Carlo approximation:

Epd(x)
(
ELBO(x, θθθ,ϕϕϕ)

)
≈ 1

N

N∑
n=1

ELBO(xxxn, θθθ,ϕϕϕ). (4.6)

This empirical approximation to the true ELBO can lead to the VAE

overfitting to the training data. To help illustrate this, we train a VAE on the

binary MNIST dataset for 1000 epochs and plot the Bits-Per-Dimension (BPD)

of both the training and testing dataset at every 100 epochs. In this case the

BPD is defined as the the negative ELBO (with a base 2 logarithm) normalized

by the data dimension. Lower BPD indicates higher ELBO. We provide more

specifics on the training and model setup in section 4.5. Figure 4.1 plots the

training and testing BPD during training, which demonstrates that the VAE

model is overfitting to the training dataset. We now focus on understanding
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which components of the model are contributing to this behaviour in order to

adapt the training process to improve generalization performance for the same

amount of training data. If we take the the decomposition in equation 4.5, we

see there are two empirical approximations contributing to the ELBO.

Firstly, an empirical approximation related to the model term:

KL(pd(x)||pθθθ(x))≈ 1
N

N∑
n=1

logpθθθ(xxxn)+const. (4.7)

Secondly there is an empirical approximation related to the amortised

inference term, which is the expected KL:

Epd(x)
(
KL

(
qϕϕϕ(z|x)||pθθθ(z|x)

))
≈ 1

N

N∑
n=1

KL
(
qϕϕϕ(z|xxxn)||pθθθ(z|xxxn)

)
. (4.8)

For flexible enough parameterizations of pθθθ(x) and qϕϕϕ(z|x) (such as those

parameterized by deep neural networks) there is the risk of overfitting to the

training data for both elements. Focusing on the amortized inference term;

we define ϕ̂ϕϕ to be the optimal parameter of the empirical variational inference

objective

ϕ̂ϕϕ = argmin
ϕϕϕ

1
N

N∑
n=1

KL
(
qϕϕϕ(z|xxxn)||pθθθ(z|xxxn)

)
(4.9)

and we assume for any training data point xxxn ∈ Xtrain

q
ϕ̂ϕϕ
(z|xxxn) = argminq∈Q KL

(
qϕϕϕ(z|xxxn)||pθθθ(z|xxxn)

)
≡ q∗(z|xxxn),

where q∗(z|xxxn) is the true optimal posterior within the Q family for datapoint

xxxn. Here for simplicity we have assumed that, for a powerful enough inference

neural network, there is no amortization gap [115], which means q
ϕ̂ϕϕ
(z|xxx) can

produce the optimal q∗(z|xxxn) for any training datum xxxn ∈ Xtrain
1. If q

ϕ̂ϕϕ
(z|xxxn)

overfits to a limited Xtrain, q
ϕ̂ϕϕ
(z|x̌xxm) fails to be a good approximation to the

1See section 4.5.3 for empirical analysis of the tightness of the ELBO
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true posterior pθθθ(z|x̌xxm) for test data x̌xxm ∈ Xtest.

We refer to the difference between the ELBO evaluated using q
ϕ̂ϕϕ
(z|x) and

the ELBO evaluated using q∗(z|x) as the Amortized Inference Generalization

Gap (AIGG), defined as

AIGG(x, ϕ̂ϕϕ,q∗) = Epd(x)

(
KL

(
q

ϕ̂ϕϕ
(z|x)||pθθθ(z|x)

)
−KL(q∗(z|x)||pθθθ(z|x))

)
,

(4.10)

with the expectation w.r.t to the data distribution pd(x) and where q
ϕ̂ϕϕ

is the

optimal distribution for the training data. Equivalently, this gap can be written

as the difference between two ELBOs calculated with different q

= Epd(x)

(
Eq∗(z|x)

(
logpθθθ(x,z)− logq∗(z|x)

)
︸ ︷︷ ︸

ELBO with optimal inference

−Eq
ϕ̂ϕϕ(z|x)

(
logpθθθ(x,z)− logq

ϕ̂ϕϕ
(z|x)

)
︸ ︷︷ ︸

ELBO with amortized inference

)
.

(4.11)

The inference neural network introduced by amortization is the cause of this

inference generalization gap. It is important to emphasize that this gap

cannot be reduced by simply using a more flexible Q. This would only make

KL
(
(qϕϕϕ(z|xxxn)||pθθθ(z|xxxn)

)
smaller for the training data xxxn ∈ Xtrain but would

not explicitly encourage better generalization performance on test data [116].

To summarize, the generalization performance of a VAE depends on two

factors:

• Generative model generalization gap (GMGG): defined in equation

4.7, caused by the generative model overfitting to the training data.

• Amortized inference generalization gap (AIGG): defined in equa-

tion 4.11, caused by the amortized inference model overfitting to the the

training data.
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4.3.1 Impact of the generalization gaps

Now we can consider how the two different generalization gaps outlined in the

previous section contribute to the overall degradation in performance due to

overfitting.

The generative model generalization gap (GMGG) estimate for the test

dataset Xtest;

KL(pd(x)||pθθθ(x))≈− 1
M

M∑
m=1

logpθθθ(x̌xxm)+ const, (4.12)

cannot be calculated explicitly since we can only evaluate the lower bound

− 1
M

∑M
m=1 ELBO(x̌xxm, θθθ,ϕϕϕ). Fortunately, using equation 4.3, if we know the op-

timal posterior for the test data q∗(z|x̌xxm)≡ argminq∈Q KL(q(z|x̌xxm)||pθθθ(z|x̌xxm)),

the log-likelihood can be approximated by the lower bound logpθθθ(x̌xxm) ≈

ELBO(x̌xxm, θθθ,ϕϕϕ), which becomes an equality when pθθθ(z|x̌xxm) ∈ Q (assuming

Q is flexible enough).

The AIGG can be estimated for the test dataset Xtest by knowing the

optimal posterior q∗(z|x̌xxm):

AIGG(x, ϕ̂ϕϕ,q∗)≈ 1
M

M∑
m=1

Eq∗(z|x̌xxm)
(

logpθθθ(x̌xxm,z)− logq∗(z|x̌xxm)
)

(4.13)

−Eq
ϕ̂ϕϕ

(z|x̌xxm)
(

logpθθθ(x̌xxm, zzz)− logq
ϕ̂ϕϕ
(z|x̌xxm)

)
. (4.14)

We can estimate q∗(z|x̌xxm) by fixing θθθ (which is learned on the training dataset)

and learning ϕϕϕ∗ on the test dataset and further assume for simplicity that for

an expressive enough inference network q∗(z|x̌xxm) = qϕϕϕ∗(z|x̌xxm), where

ϕϕϕ∗ = minϕϕϕ KL
(
qϕϕϕ(z|x̌xxm)||pθθθ(z|x̌xxm)

)
(4.15)

= maxϕϕϕEqϕϕϕ(z|x̌xxm)
(

logpθθθ(x̌xxm,z)− logqϕϕϕ(z|x̌xxm)
)
. (4.16)

We refer to this as the optimal inference strategy, given we are using the test

dataset directly to learn the appropriate inference network. Using this optimal
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inference strategy we can in principle eliminate the effect of the AIGG, allowing

us to isolate the degree to which both the GMGG and AIGG are contributing

to overfitting.

To help illustrate the contribution of GMGG and AIGG, we take the VAE

trained on binary MNIST that was used to demonstrate overfitting in 4.1

from the previous section and we continue training using the optimal inference

strategy as follows:

We train qϕϕϕ(z|x), keeping θθθ fixed, for an additional 1000 epochs on the

test data using equation 4.16 to obtain the test BPD for the optimal inference

strategy. In figure 4.2 we overlay the test ELBO (BPD) using the optimal

inference strategy at every 100 epochs during the subsequent training (green)

with the existing test (pink) and train (blue) BPDs. For the optimal inference

strategy the average likelihood 1
M

∑M
n=1 logpθθθ(x̌xxm) can be effectively approxi-

mated by the ELBO, therefore the difference between the two inference curves

on the test set (test (pink) and optimal (green)) is the AIGG. We observe that

after eliminating the AIGG using the optimal inference strategy, the test BPD

(green) is stable with a marginal increase during training for this problem. This

suggests that the generative model pθθθ(x) slightly overfitting to the data but

that the overfitting is actually dominated by the amortized inference network.

Although the optimal inference strategy can help eliminate the inference

generalization gap, training qϕϕϕ on the test data is not practical in most ap-

plications of interest. Therefore, we now turn our attention to improving the

generalization of amortized inference without access to the test data at training

time and without leveraging any additional true training data.

4.4 Consistent amortized inference
We first propose an inference consistency requirement which, if satisfied, would

result in optimal generalization performance for amortized variational infer-

ence, before then introducing a way to improve generalization performance by

reducing AIGG.
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AIGG

GMGG

Figure 4.2: BDPs vs epochs. Visualization of the GMGG and AIGG.

When pθθθ→ pd, the amortized posterior should converge to the true posterior

qϕϕϕ(z|x)→ pθθθ(z|x) for every xxx ∼ pd(x) (if we assume that the true posterior

belongs to the variational family pθθθ(z|x) ∈ Q). Although this requirement

seems natural for variational inference, the classic amortized inference training

used for VAEs does not satisfy it [59]. Recall the empirical ELBO objective

1
N

N∑
n=1

logpθθθ(xxxn)−KL
(
qϕϕϕ(z|xxxn)||pθθθ(z|xxxn)

)
. (4.17)

When the model converges to the true distribution pθθθ∗ = pd the training criterion

for qϕϕϕ(z|xxx)

minϕϕϕ−
1
N

N∑
n=1

KL
(
qϕϕϕ(z|xxxn)||pθθθ∗(z|xxxn)

)
(4.18)

can still result in the amortized posterior qϕϕϕ(z|xxx) overfitting to the training data.

In principle, one could also limit the network capacity and/or add an explicit

regularizer to the parameters [99] in an attempt to improve the generalization.

However, this still will satisfy the consistency requirement in principle because

it only uses the finite training dataset. Alternatively, there is another classic

variational inference method, the wake-sleep training algorithm [117, 118],

which does in fact satisfy the proposed consistency requirement.
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4.4.1 Wake-sleep training

Defining qϕϕϕ(x,z) = qϕϕϕ(z|x)pd(x) and pθθθ(x,z) = pθθθ(x|z)p(z), the two phases of

wake-sleep training [117, 118] can be written as minimizing two different KL

divergences in both x and z space.

• Wake phase model learning: pθθθ(x|z) is trained by minimizing the KL

divergence

minθθθ KL
(
qϕϕϕ(x,z)||pθθθ(x,z)

)
= maxθθθEpd(x)

(
ELBO(x, θθθ,ϕϕϕ)

)
+const,

(4.19)

where the expectation Epd(x) is approximated using the training data.

This is referred to as the wake phase since the model is trained on

experience from the so called real environment, i.e. it uses true data

samples from pd(x).

• Sleep phase amortized inference: qϕϕϕ(z|x) is trained by minimizing

the KL divergence

minϕϕϕ KL
(
pθθθ(x,z)||qϕϕϕ(x,z)

)
= minϕϕϕEpθθθ(x)

(
KL

(
pθθθ(z|x)||qϕϕϕ(z|x)

))
+const.

(4.20)

Leaving out the terms that are irrelevant to ϕϕϕ, the objective can be

estimated with Monte-Carlo

Epθθθ(x,z)
(
− logqϕϕϕ(z|x̌xxm)

)
≈ 1

K

K∑
k=1
− logqϕϕϕ(zzzk|xxxk), (4.21)

where zzzk ∼ p(z) and xxxk ∼ pθθθ(x|zzzk). This is referred to as the sleep phase

because the samples from the model used to train qϕϕϕ are interpreted as

dreamed experience.

In contrast, the training criterion for the typical VAE amortized inference

(equation 4.8) uses the true data samples from pd to train qϕϕϕ(z|x), which we
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refer to as wake phase amortized inference. If a perfect model pθθθ∗(x) = pd(x)

were used for sleep phase amortized inference, then it is equivalent to minimizing

Epθθθ∗(x)
(
KL

(
pθθθ(z|x)||qϕϕϕ(z|x)

))
= Epd(x)KL

(
pθθθ(z|x)||qϕϕϕ(z|x)

))
. (4.22)

In this set up, the inference network training satisfies the inference consistency

requirement since we can access infinite training data from pd by sampling from

pθθθ∗ .

However, the wake-sleep algorithm presented lacks convergence guaran-

tees [117] and minimizing KL
(
pθθθ(z|x)||qϕϕϕ(z|x)

)
in the sleep phase doesn’t

necessarily encourage an improvement to the ELBO. Therefore, in the next

section, we propose a different variational inference scheme: reverse sleep amor-

tized inference, and demonstrate how it helps improve the generalization of the

inference network in practice.

4.4.2 Reverse sleep amortized inference

We now propose to instead use the reverse KL divergence in the sleep phase

when updating the inference network parameters. Specifically we consider the

scheme where we fix θθθ at the end of normal VAE training and then continue to

train ϕϕϕ. This has the practical advantage of being a simple bolt on algorithm

to the existing training process. Our objective is

minϕϕϕEpθθθ(x)
(
KL

(
qϕϕϕ(z|x)||pθθθ(z|x)

))
= maxϕϕϕEqϕϕϕ(z|x)pθθθ(x)

(
logpθθθ(x,z)− logqϕϕϕ(z|x)

)
,

(4.23)

where the integration Epθθθ(x) is approximated by Monte-Carlo using samples

from the generative model pθθθ(x). Unlike the vanilla wake-sleep protocol, this

reverse KL objective encourages improvements to the ELBO. In the case of a

perfect model pθθθ∗(x) = pd(x) the reverse sleep phase is equivalent to

minϕϕϕEpθθθ∗(x)
(
KL

(
pθθθ∗(z|x)||qϕϕϕ(z|x))

))
= minϕϕϕEpd(x)

(
KL

(
pθθθ∗(z|x)||qϕϕϕ(z|x))

))
(4.24)
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Figure 4.3: Test BPD vs epochs. We compare the consistency property between
three amortized inference methods.

which indeed satisfies the inference consistency requirement.

We now illustrate the consistency requirement in the case of a perfect model.

This can be achieved by using a pretrained VAE as the true data generation

distribution pd(x) to emulate the perfect model. We first train a VAE to fit

the binary MNIST problem. The VAE has the same structure as that used

in section 4.3.1 and is trained for 100 epochs (see section 4.5 for more details

on the model and training setup). After training, we treat the pre-trained

p
θ̂θθ
(x|z) as the true data distribution pd(x)≡

∫
p

θ̂θθ
(x|z)p(z)dz. We sample 10000

data samples from pd to form a training set Xtrain and 1000 samples to form

a test set Xtest. We then train a new qϕϕϕ(z|x) with: wake phase inference

(vanilla VAE training), sleep inference (from the normal wake-sleep setup and

our reverse sleep inference and compare the results. Figure 4.3 shows the test

BPD calculated after every training epoch. We can see sleep phase inference

out-performs wake phase inference and that reverse sleep inference achieves

the best BPD. Intuitively, given how we have constructed pd, this is due to

both the forward and reverse sleep inference using the true model to generate

additional training data whereas the wake inference only has access to the finite

training dataset Xtrain.
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4.4.3 With imperfect models

In practice our model will not be perfect pθθθ ̸= pd. Empirically we find that

samples from even a well trained model pθθθ may not always be sufficiently like

the samples from the true data distribution. This can lead to degradation in

the performance of the inference network when using the reverse-sleep approach

presented in the previous section. In practise, we propose to use a mixture

distribution between the model and the empirical training data distribution as

follows

Em(x)
(
KL

(
qϕϕϕ(z|x)||pθθθ(z|x)

))
where m(x)≡ αpθθθ(x)+(1−α)p̂d(x).

(4.25)

When α = 0, it reduces to the standard approach used in VAE training. When

α = 1, we recover the reverse sleep method (equation 4.23). Although this in-

troduces another hyper-parameter into the training scheme, we find empirically

that a setting of α = 0.5 works well in practice. This balances samples from

the true underlying data distribution with samples from the model.

We refer to this method as reverse half-sleep since it uses both data and

model samples to train the amortized posterior. We can rewrite the equation

4.25 as a sum of two positive terms

αEp̂d(x)
(
KL

(
qϕϕϕ(z|x)||pθθθ(z|x)

))
+(1−α)Epθθθ(x)

(
KL

((
qϕϕϕ(z|x)||pθθθ(z|x)

))
.

(4.26)

The optimum of this objective will make the first term 0, which is the same

requirement as the classic amortized inference (equation 4.8). The second term,

which is equivalent to the reverse sleep amortized inference (equation 4.23),

encourages the inference consistency requirement: when pθθθ = pd, the optimum

of the second term will set qϕϕϕ(z|x) = pθθθ(z|x) for any xxx∼ pd(x). When pθθθ is not

perfect, the second term can be seen as a regularizer of the classic amortized

inference objective that penalizes the hypothesis space of the amortization
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Figure 4.4: Test BPD comparisons of amortized inference with different α. We find
the reverse half sleep method (α = 0.5) achieves the best BPD. The
mean and std are calculated with three random seeds.

neural network [99].

To illustrate the impact of different settings of α we again fit a VAE to

the binary MNIST dataset, freeze θθθ, and then continue to train the amortized

posterior for an additional 100 epochs using sleep inference (equation 4.20) and

reverse half-sleep inference for three different α values. Figure 4.4 shows the test

BPD comparison. We find the proposed reverse half-sleep method with α = 0.5

outperforms the reversed sleep method (α = 1), whereas the standard amortized

inference training in VAE (α = 0) leads to overfitting of the inference network.

We also plot the sleep inference training curve, whose BPD is expected to be

less competitive since it is not directly optimizing the ELBO.

4.5 Experiments
Up to this point we have included illustrations of the generalization gaps and our

application of reverse sleep inference method using a simple running example of

a basic VAE model trained on the binary MNIST dataset. The architecture for

this model consists of feedback forward networks for the model and inference

networks; each with 2 layers of 500 hidden units and a latent variable dimension

of 16. We used ADAM [66] with a learning rate of 5×10−4, which we found to

be a stable choice across the different variations.
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In this section we expand our empirical analysis to a broader range of prob-

lems to demonstrate the utility of our method for improving the generalization

performance and data efficiency. We first replicate the VAE image modelling

experiment introduced in the previous sections on more challenging datasets.

Next we apply our method in a transfer learning setting and demonstrate how

it benefits the performance of downstream classification. Finally we run some

ablation experiments on the tightness of the ELBO, how the latent dimension-

ality impacts performance and the impact of applying our reverse sleep training

procedure from the start of the original model training as opposed to only as

a post-hoc training procedure. In appendix B we also present an application

where VAEs are used as the generative model for lossless compression.

4.5.1 Image modelling

We apply the reverse half-sleep to improve the generalization of VAEs on three

different datasets: binary MNIST, grey MNIST [119] and CIFAR10 [120].

Binary and Grey MNIST

We use a latent dimension of 16 and 32 respectively, and neural nets with 2

layers of 500 hidden units in both the model and inference neural networks.

We use Bernoulli p(x|z) in binary MNIST and discretized logistic distribution

for grey MNIST for the likelihood.

We first train the VAE with the usual amortized inference approach using

Adam with lr = 3×10−4 for 1000 epochs and save the model every 100 epochs.

We then use the saved models to train qϕϕϕ(z|x) on 1) the test data using the

optimal inference and 2) using our reverse half-sleep method. This produces 2

different models we can evaluate against the usually trained VAE on the test

data at each 100 epoch checkpoint.

For our reverse half-sleep training, we train ϕϕϕ keeping θθθ fixed for 100 epochs

using the same optimization settings from the original VAE training. To sample

from pθθθ(x), we first sample zzz′ ∼ p(z) and then sample xxx′ ∼ p(x|zzz′).

For the optimal inference strategy, we train ϕϕϕ keeping θθθ fixed on the test
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data set for an additional 500 epochs to ensure the same number of gradient

steps are conducted (since the training set is 5 times as big as the test set).

Figure 4.5a and 4.5b show that our approach does not require further training

on the test data to improve generalization performance in terms of test BPD.

CIFAR10
We use the convolutional ResNet architecture that we introduced in section 2.2

[8, 121] with 2 residual blocks and latent variable size of 128. The likelihood is

a discretized logistic distribution with linear autoregressive parameterization

within the channels. We train the original VAE for 500 epochs with Adam

and lr = 5×10−4 and save the model every 100 epochs. This pre-trained VAE

achieves 4.592 test BPD for CIFAR102.

Ideally, when the VAE model converges to the true distribution pθθθ → pd,

the aggregate posterior qϕϕϕ(z) =
∫

qϕϕϕ(z|x)pd(x)dx will match the prior p(z).

However, for a complex distribution like CIFAR10, a significant mismatch

between qϕϕϕ(z) and p(z) is usually observed in practice [122, 123]. In this case,

a sample xxx′ that we generate using a latent sample from the prior xxx′ ∼ pθθθ(x|zzz′),

where zzz′ ∼ p(z), may be blurry or invalid. A common solution is to train

another model, e.g. a VAE [123] or a PixelCNN [124, 121] to approximate qϕϕϕ(z).

We decide to instead directly sample from qϕϕϕ(z) rather than p(z) to generate

samples when updating ϕϕϕ using our reverse sleep approach (equation 4.23),

which can be done by first sampling xxx′ ∼ pd(x) (from the training dataset) and

then sample zzz′ ∼ qϕϕϕ(z|xxx′). This scheme still results in a consistent training

objective since qϕϕϕ∗(z) = p(z) for the optimal posterior qϕϕϕ∗(z|x). As before, for

our reverse half-sleep training, we train ϕϕϕ keeping θθθ fixed for 100 epochs using

the same optimization settings from the original VAE training and for the

optimal inference strategy, we train on the test data set for an additional 500

epochs. In figure 4.5c we find the proposed reverse half-sleep approach (with

sampling from qϕϕϕ(z)) consistently improves the generalization performance of

2This performance is comparable with other single latent VAE models reported in [121] -
4.51 BPD with a VAE with latent dimension 256 and 4.67 BPD with a discrete latent VAE
(VQVAE)
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the amortized posterior for the same budget of training data.

Since the model parameters θθθ are shared and fixed in all comparisons, better

test ELBO indicates the predicted qϕϕϕ(z|xxx′) is closer to the true posterior pθθθ(zzz|x′)

under the KL divergence measure (see equation 4.3).

(a) Binary MNIST (b) Grey MNIST (c) CIFAR10

Figure 4.5: Test BPD comparisons among amortized inference (VAE), optimal
inference strategy and the reverse half-sleep inference on three datasets.
The x-axis represents the training epochs.

4.5.2 Down-stream classification tasks

One common use of VAEs is in transfer learning where we use the learned amor-

tized posterior qϕϕϕ(z|x) for down stream tasks. For example image classification

where the samples zzz′ ∼ qϕϕϕ(z|xxx′) can be treated as a latent stochastic representa-

tion [125, 126] of a given data point xxx′ that can be used as a lower dimensional

feature representation. Given a labeled dataset {(xxx1,y1), · · · ,(xxxN ,yN )} and a

pretrained amortized posterior qϕϕϕ(z|x) we can train a classifier pηηη(y|z) that

maps from the latent space z to the label y.

After training the classifier, for a given test set of unlabelled data

{x̌xx1, · · · , x̌xxM}, the predictive distribution can be written as

p(y|x) =
∫

pηηη(y|z)qϕϕϕ(z|x)dz (4.27)

and can be approximated using a Monte-Carlo estimate p(y|x)≈ 1
K

∑K
k=1 p(y|zzzk),

where zzzk ∼ qϕϕϕ(z|x).

We train a classifier with a 2 layer feed-forward neural network with hidden

size 200, RelU activation and dropout with rate 0.1 on our binary and gret

MINST datasets. The models are trained for 10 epochs with Adam optimizer
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and learning rate 3×10−4. During training, we randomly sample one zzzk for each

data point xxx and we use k = 100 in the testing stage to estimate the predictive

distribution. Figure 4.6 compares the posterior trained by the classic amortized

inference approach and our proposed reverse half-sleep method. We find that

our method consistently improves the classification accuracy performance for

the same training data budget.

(a) Binary MNIST (b) Grey MNIST

Figure 4.6: Representation learning for down-stream classification. We train the
VAE for 1000 epochs and evaluate the classification accuracy (y-axis,
higher is better) on the down-stream classification task every 100 epochs
(x-axis). The results are averaged over 3 random seeds and we also
plot the standard deviation. VAE in the legend refers to typical VAE
training, whereas RHS refers to our reverse-half-sleep method.

4.5.3 Ablation studies

Comparisons with regularization methods
Recent related work [116] proposed to alleviate the overfitting of amortized

inference by optimizing a linear combination between the traditional amortized

inference (equation 4.8) and a denoising objective

αEp(ϵ)
(
KL

(
qϕϕϕ(z|x + ϵ)||pθθθ(z|x)

))
+(1−α)KL

(
qϕϕϕ(z|x)||pθθθ(z|x)

)
, (4.28)

where p(ϵ) =N (0,σ2I). We compare this regularizer to our method by training

the pre-trained ϕϕϕ, keeping θ fixed, for an additional 100, 300 and 100 epochs

on Binary, Grey MNSIT and CIFAR respectively using both methods.

For the denoising regularizer, we use the same linear combination weight

α = 0.5 as we use in equation 4.25 and vary σ ∈ {0.1,0.2,0.4,0.6,0.8,1.0}. See
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table 4.1 for the comparisons. For MNIST, we find σ ∈ {0.1,0.2,0.4} improves

generalization performance, but larger noise levels hurts the performance.

For CIFAR10, only σ = 0.1 can slightly improve the generalization. In

contrast, our method consistently achieves better generalization performance

without tuning any hyper-parameters (given we are using a fixed value for

α = 0.5, which could in principle also be tuned). See figure 4.7 for the test BPD

(evaluated every training epoch with the mean and standard deviation being

calculated with 3 random seeds). One drawback of our method compared to

the denoising regularizer approach is the requirement for model samples, which

is more computational expensive during training.

Table 4.1: Average test BPD comparisons with Denoising Regularizer [116].

Methods VAE σ = 0.1 σ = 0.2 σ = 0.4 σ = 0.8 σ = 1.0 Ours
Binary MNIST 0.200 0.195 0.192 0.191 0.196 0.201 0.187
Grey MNIST 1.543 1.527 1.519 1.515 1.545 1.550 1.513

CIFAR10 4.592 4.591 4.598 4.614 4.651 4.667 4.572

(a) Binary MNIST (b) Grey MNIST (c) CIFAR 10

Figure 4.7: Test BPD evaluated after every training epoch. We find, compared to
the denoising regularizer, the proposed amortized inference training
scheme consistently achieves better generalization performance in all
tasks.

Tightness of the ELBO
In this section we want to verify the tightness of the ELBO as a lower bound of

the log likelihood. Consider the likelihood for a single data point xxx′, we have

logpθθθ(xxx′)≥ Eqϕϕϕ(z|xxx′)
(

logpθθθ(xxx′|z)
)
−KL

(
qϕϕϕ(z|xxx′)||p(z)

)
(4.29)

≡ ELBO(x, θθθ,ϕϕϕ). (4.30)
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To evaluate logpθθθ(xxx′) we can use an importance weighted estimation (IWAE

[127]):

logpθθθ(xxx′) = logEqϕϕϕ(z|x)

(
pθθθ(xxx′|z)p(z)

qϕϕϕ(z|x)

)
(4.31)

≈ log 1
K

K∑
k=1

pθθθ(xxx′|zzzk)p(zzzk)
qϕϕϕ(zzzk|xxx′) (4.32)

≡ IWAEk(xxx′, θθθ,ϕϕϕ), (4.33)

where zzzk ∼ qϕϕϕ(z|xxx′). The accuracy of the importance sampling heavily depends

on the proposal distribution qϕϕϕ(z|xxx′) and will be poor if qϕϕϕ(z|xxx′) underestimates

the high density regions of pθθθ(z|x) [127]. For the ELBO computed using the

optimal inference procedure, we can assume that the approximate posterior is

close to the true posterior. Therefore if the lower bound is tight we will observe

that the ELBO is approximately equal to the IWAE.

In figure 4.8 we compare the ELBO and IWAE using classic amortized

inference and the optimal inference setup respectively. We use k = 10 in all

cases. We find that the IWAE can improve the ELBO for the traditional

amortized inference and is approximately equivalent to the ELBO using the

optimal inference strategy. This is evdience to support that the ELBO using

the optimal inference strategy is tight to logpθθθ(x).

We also estimate the IWAE using the proposal posterior learned by our

reverse half-sleep inference and find that our method can also improve the

IWAE result; see figure 4.8 for details. In this case our method is providing a

better proposal distribution for importance sampling.

Effects of latent space dimensionality

In this section we look at the effect of the dimensionality of z on the gener-

alization performance. We use the VAE described in section 4.5 applied to

binary Mnist with different sized latents: [16,64,128]. In figure 4.9 we find that

the amortized inference network overfits in all cases, regardless of the latent

size. We then apply our reverse half-asleep procedure to the checkpointed
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(a) Tightness (b) All Comparisons

Figure 4.8: IWAE comparisons on binary MNIST. The x-axis indicates the training
epoch and the y-axis is the Bits-per-dimension, which corresponds to
the negative ELBO or IWAE with log 2 base and normalized by data
dimension, lower is better. In figure a, we see that IWAE improves
the ELBO when using classic amortized inference but is approximately
equal to the ELBO when using optimal inference, which indicates the
bound is tight. In figure b, we compare the IWAE with classic amortized
inference, optimal inference and the proposed reverse half-asleep (RHS)
inference. Here we find the proposed method can also improve the
classic IWAE estimation without training on the test data.

model every 100 epochs and found it consistently improves the generalization

performance across all latent sizes.

(a) Dim(z) = 16 (b) Dim(z) = 64 (c) Dim(z) = 128

Figure 4.9: Effects of different latent dimension. The y-axis is the BPD and x-axis
is the training epochs. We find the amortized inference generalization
gap exits in all cases.

Reverse half-sleep from the beginning
Up to this point we have applied the reverse half-sleep training in a post-hoc

fashion. This allowed us to extend the original VAE training with this additional

step. It also allowed us to isolate the degree to which both the generative model

and amortized inference generalization gaps are contributing to overfitting.

It has also been observed that a poor variational posterior in the early
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stage of training can cause the M-step of the generative model pθθθ(x|z) to get

trapped into a local minimum (see “Two problems with variational expectation

maximization for time-series models” section in [128]). Here we want to check

how our method behaves if applied from the beginning of training as opposed to

just as a bolt on at the end with a fixed θθθ. In figure 4.10 we find that using the

proposed reverse half-sleep from the beginning can lead to a better test ELBO

compared to the classic VAE training, or our proposed post-hoc training, for a

relatively simple dataset like Binary MNIST. However, we also find that for a

more complex dataset like grey-scale MNIST, applying our method from the

beginning performs worse than the classic VAE training. We hypothesize that

for a complex dataset, the model in the beginning cannot generate valid images,

which will lead to biased gradients. We also report the results of using the

reverse half-sleep training starting from 200 epochs onwards and find it does in

fact improve performance over classic VAE training, but is still worse than the

post-hoc version. We leave further study of how to improve the generalization

from the beginning of the training to future work.

(a) Binary MNIST (b) Grey MNIST

Figure 4.10: We compare different ways of using the proposed training objective
(from the beginning or post hoc). We also plot the standard VAE
training and the ELBO with optimal inference for reference.

4.6 Related work
A different perspective on generative models’ generalization is proposed in

[129] where the generalization is evaluated by testing if the model can generate

novel combinations of features. In contrast, we measure generalization using
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test likelihood, which is more relevant for certain applications like lossless

compression. Recent work [100] first studies likelihood-based generalization in

context of lossless compression. They focus on the scenario where the test and

train data come from different distributions, whereas we assume they both follow

the same underlying distribution. Additionally, their model has a tractable

likelihood and they focus purely on the generative model generalization gap,

whereas we focus on the amortized inference generalization gap in VAEs.

Previous work [115] studied the so called amortization gap in amortized

inference. This is caused by using qϕϕϕ∗(z|xxxn) to generate posteriors for each input

xxxn rather than learning a posterior qn
∗ (z) for each xxxn individually. This gap can

be alleviated using a larger capacity inference network. This amortization gap

is fundamentally different from the amortized inference generalization gap we

discuss in this chapter since the latter focuses solely on test time generalization

but the former problem also exists at training time.

Recent work [130] proposes a compression scheme based on the IWAE [127]

bound, which is tighter than the ELBO and thus improves the compression rate.

However, this method has to compress/decompress multiple latent samples,

which requires extra time cost. On the other hand, we focus on improving the

ELBO-based compression that only needs to compress one single latent sample.

Nevertheless, similar to the K-step optimal inference strategy, our amortized

training objective can also be used in the IWAE-based method, which gives a

better proposal distribution for importance sampling.

Another example of related previous work [131] considers the following

data generation process xxx1 ∼ pd(x), zzz1 ∼ pθθθ(z|xxx1), xxx2 ∼ pθθθ(x|zzz1) and propose

enforcing latent consistency between qϕϕϕ(z|xxx1) and qϕϕϕ(z|xxx2) for the pairs (xxx1,xxx2)

to encourage the learned representations to be more robust. This procedure is

similar to the self-supervised contrasting learning procedure [132] where the

augmented data is training data reconstructed using the VAE model. In this

chapter, we want to encourage samples from the model xxx′ ∼
∫

pθθθ(x|z)p(z)dz to

have high ELBO under the model (equation 4.23) to improve the generalization
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of the amortized inference network. We don’t require any paired data in our

method.

4.7 Conclusion
We have shown how the generalization of the VAE class of latent variable

model is largely affected by the amortized inference network. We proposed

an additional training stage for the inference network that uses generations

from the model that provides better generalization for a given set of training

data; as demonstrated in the applications to down stream classification and

compression problems.

Improving the generalization performance of the decoding model in addition

to the inference network was outside of the scope of this work; but is an obvious

future consideration. As well as scaling our method up to larger generative

models and adapting it for hierarchical latent variable models.

In particular we are interested in exploring how this method can benefit

applications of VAE style models in molecular design, where generalization to

unseen structures is paramount [133]. Furthermore extending our method to

the challenges of hierarchical VAE models [134].



Chapter 5

Solipsistic Reinforcement

Learning

In this chapter we present ideas for a latent variable model-based deep re-

inforcement learning framework that aims to tackle environments with high

dimensional state spaces in a more data efficient way; in particular attempting

to learn directly from pixels. By improved data efficiency in this RL set-

ting, as discussed in chapter 1, we mean reducing the number of environment

interactions required to achieve a target reward.

Specifically, we aim to address the research question as to whether it is

possible to develop a framework that learns a low dimensional latent represen-

tation of the environment while avoiding the need to learn a generative model

of the environment itself? And furthermore whether that representation can

be effective for planning and reward modelling?

We refer to this as a solipsistic representation that we train to encode a belief

that is consistent with the dynamics of the environment and is then exploited

for effective planning. We explore choices of model and corresponding planning

algorithms that can deal with both discrete and continuous state environments.

We demonstrate empirically gains in data efficiency over existing model-free

methods when learning directly from pixels and analyze the properties of our

learned representations.
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5.1 Reinforcement learning
The real world is complex and a learning agent must be able to recognize

relevant signals to decide what actions to take towards reaching a goal. The

focus of our work is to form environment representations for model-based

planning and reward prediction without having to learn a generative model of

the potentially complex environment.

For example, Pavlov’s dog[135] learns to associate the sound of a bell with

the eventual reward of food in spite of other potential sensory distractions.

If we attempted to create a model for the dog’s predictions of this reward it

would be unnecessary to create a complex representation of the dog’s complete

sensory experience of the laboratory. Instead we should only need a solipsistic 1

representation that encodes the belief of the dog as to whether food will appear

or not conditioned on the extracted signal of bell sounds alone. Thus, lessening

the burden of the modeling problem. This intuition is the essence of what we

are trying to formalize in this work under a model-based reinforcement learning

(RL) framework. Our general principle of interest is representation learning

that automatically encodes only the information in the environment needed to

solve a given decision problem; ultimately improving the data efficiency of the

agent. Practically speaking, we attempt to answer the question of whether it’s

possible to learn a useful low dimensional representation of an environment for

planning and reward prediction without having to learn a generative model of

the environment itself. We believe that any successful steps in this direction

is progress towards more effective real world deployments of reinforcement

learning.

To motivate our approach, Pavlov’s dog [135] learns to associate the sound

of a bell with the eventual reward of food, despite sensory distractions. There

are classically two interpretations: (a) a model-free interpretation is that the

dog learns a value V(xt) (expectation of eventual food reward) as a function of

the environment state xt at time t; (b) a standard model-based interpretation
1Solipsism is the philosophical idea that the external world may not exist and only an

internal world may exist, whose representations are informed by the external world alone.
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is that the dog models the environment and can use that to predict the future

p(xt+k|xt) and any eventual reward p(rt+k|xt+k). In contrast to these standard

approaches, we posit an alternative model-based interpretation in which the dog

forms an internal ‘solipsistic’2 low-dimensional representation st as a function

of the external environment state xt and forms a predictive model p(st+k|st) of

the representation, without learning a model of the environment itself. This

representation is useful if the dog is able to accurately predict eventual reward

using the solipsistic transition p(st+k|st) and reward model p(rt+k|st+k).

In the Reinforcement Learning (RL) setting an agent observes state xxxt from

the environment at time-step t, takes action aaat, and subsequently observes xxxt+1

and reward rrrt+1. The goal of the agent is to learn (through interactions with

the environment) how to take actions that result in favorable long-term rewards

[35]. A standard RL assumption is that there is an underlying Markov Decision

Process with transition p(xt+1|xt,at) [137, 138, 139, 140]; rewards are functions

of the observed state and the goal is usually to take actions that maximize

cumulative reward, see figure 5.1a3. The action aaat depends on the state xxxt−1,

meaning that the state xxxt−1 is revealed before the action aaat is decided.

In model-based RL, we attempt to learn the model of the transition dynamics

. Compared to model-free approaches, model-based RL can be significantly

more sample efficient [137, 138, 139, 140]. However, for environments with

high-dimensional states (such as an image pixels) the complexity and potential

redundancy in the observations can make learning the environment dynamics

using a model difficult and potentially unnecessary [142, 143].

A recent trend is to learn a lower dimensional representation st that is

used to model relevant dynamics and reward prediction, such as PlaNet [143],

World Model [142] and other variants [141, 142], see figure 5.1b. The usual

strategy is to train a latent variable model p(xt) =
∫

p(xt|st)p(st)dst with an

2We use ‘solipsism’ to refer to the philosophy that only an internal representation of
the world may exist [136]. In our context, the agent can plan on the basis of an internal
dynamical representation of the external world.

3Alternatively one may use a higher-order Markov model p(xt+1|hhht) where hhht = {sss1:t,aaa1:t}
is the history of states and actions up to time point t [141].
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encoding-decoding structure [98] like the VAE studied in section 4, while

jointly training a dynamics model p(st+1|st,at) in the lower dimensional latent

space [143, 141, 142, 4]. The learned model infers a latent representation

ssst given a state observation xxxt (for example a sample from the posterior

p(st|xt)∝ p(xt|st)p(st)) that can be used by the dynamics model for efficient

planning. Arguably, a limitation of these recent approaches is that they spend

significant computational resources on learning a generative model of the high-

dimensional state xt – however, this generative model is not used directly

during the planning phase. The learned representation st in these approaches

is therefore likely encoding redundant information about the environment xt.

An alternative is to use model-free algorithms such as Deep Q-Networks

(DQN), Proximal Policy Optimization (PPO), amongst others [144, 145, 146,

147]. The upside is that these approaches avoid creating a generative model of

the environment by learning a policy from pixels to state values. A potential

downside is that they suffer from poor data efficiency compared to model based

approaches; meaning they generally require much larger numbers of interactions

with the environment.

The question we therefore study here, similar to other recent research work

in this area [148], is whether it is possible to perform model-based RL without

making a generative model of the environment. If this were possible, we could

potentially reap the benefits of the data-efficiency of model-based RL, without

the need to model complex high-dimensional observations.

5.2 Solipsistic representations
A good solipsistic representation ssst of an observation xxxt is one that is consistent

(the predicted next solipsistic state ssst+1 given action aaat matches the observed

next solipsistic state ssst+1) and informative (one can predict the reward well

using ssst).

A solipsistic Markov model is depicted in figure 5.2a, where we remove

the arrow from s to x in the latent variable model and instead introduce
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r1 r2 r3

x1 x2 x3

a1 a2

(a) Observed Markov Model

xxx1 r1 x2 r2 x3 r3

s1 s2 s3

a1 a2

(b) Latent Variable Model.

Figure 5.1: Graphical models for model-based RL. Shaded nodes denote observed
quantities. (a) Model dynamics and reward in the original space x and
(b) in latent space s.

xt rt

st st+1 st+1

xt+1

at

(a) Solipsistic Markov Model

x1 r1 r2 r3

s1 s2 s3

a1 a2

s2 s3

x2 x3

(b) Solipsistic Memory Model

Figure 5.2: Graphical models of the solipsistic Markov model (a) and memory
model (b). We color the edge from the observation to the latent state
to highlight that this is not a generative model of the environment.
A dashed line indicates the consistent relationship between solipsistic
state prediction and future state recognition, as discussed in section
5.2.

a recognition distribution p(st|xt), the purpose of which is to encode only

the information in xt that is needed to effectively learn the dynamics and

the reward of the environment. We introduce a toy ‘MNIST game’ to help

build intuition, see figure 5.3. Each observation xxxt is a 28×28 MNIST image

representing a digit from 0 to 9. The agent has two possible actions: ‘minus

1’ or ‘plus 1’; the environment shows the resulting digit’s image. The digit

will stay the same when taking action ‘minus 1’ from digit 0 and ‘plus 1’ from

digit 9. The game is initialized at digit 4. The reward rt is 1 if the state is an

image of digit 9; otherwise the reward rt = 0. Whilst the observation xxxt is a

784 dimensional image, clearly the underlying dynamics is representable by an

integer ssst ∈ {0, . . . ,9} (that we represent in practise by 1 hot vectors).
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(a) States of the environment (b) Transition dynamics

Figure 5.3: MNIST game. (a) The observation xt is one of the 10 images. (b)
Given a ‘plus 1’ action, the following image xt+1 is a higher digit and
vice versa for ‘minus 1’.

5.2.1 Learning objective

In what follows we describe three desiderata for our latent variable model that

ultimately inform our learning objective - consistency in the predicted latent

dynamics, consistency in the predicted rewards and the effective filtration of

redundant observation state information.

Latent dynamics consistency

We wish to ensure that, for a given recognition distribution pϕϕϕ(st|xt), parame-

terised by a neural network with parameters ϕϕϕ, the dynamics of the solipsistic

model are consistent with the dynamics of the true environment when training

the model under sampled trajectories. In the setting of Pavlov’s dog, if the

model maps the current environment xxxt to the internal state xxxt → ssst that

represents hearing the bell ssst = bell, and the dog predicts ssst→ ssst+1 from this

that ssst+1 = food, then we must observe that the next external state xxxt+1→ ssst+1

indeed maps to food. This ensures that latent transitions are effective for

planning.

Similarly, in the MNIST game, we need to force the solipsistic model to

predict a digit that is consistent with the image that would appear in the

next time step under the true environment transition. More specifically, we

assume a Markov transition distribution pθθθ(st+1|st,at), parameterised by a

neural network with parameters θθθ, which takes the current solipsistic state and

action as input and gives the distribution for the next solipsistic state st+1.
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The solipsistic state distribution at time t+1 can be formulated as

pθθθ,ϕϕϕ(st+1|xt,at) =
∑
st

pθθθ(st+1|st,at)pϕϕϕ(st|xt). (5.1)

We want this predicted distribution to be consistent with the recognition

distribution pϕϕϕ(st+1|xt+1) from the next time step. To achieve this we introduce

an agreement objective. We aim to leverage maximum likelihood, as introduced

in section 2.1, against sampled trajectories for training, therefore the KL

divergence is a natural choice:

KL
(
pθθθ,ϕϕϕ(st+1|xt,at)||pϕϕϕ(st+1|xt+1)

)
. (5.2)

Reward consistency

For effective planning, we want the solipsistic representation to be useful for

reward prediction using a reward model we can learn from experience pηηη(rt|st).

Given solipsistic state ssst and observed reward rrrt pairs, we can again use

maximum likelihood, to learn the reward model pηηη(rt|st). This is equivalent

to minimizing the KL divergence KL(p̃(rt)||pηηη(rt|st)) between the empirical

reward distribution p̃(rt) that places all mass on the observed rewards and the

model pηηη(rt|st). We assume that we are in a dense reward settings; that is we

observe a reward at every time value.

Redundancy filtering

Finally, the intention of the recognition distribution pϕϕϕ(st|xt) is to filter out

redundant information when producing the solipsistic representation. To achieve

this, we need it to learn to distinguish if the state information is useful or not

for both reward prediction and transition dynamics. For example in the MNIST

game, the recognition distribution may just focus on the image backgrounds

which are stationary over time and the solipsistic transition function could

just learn the identity mapping. Although this forms a consistent solipsistic
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representation, it would be useless for planning. Furthermore, having a reward

objective is not sufficient to avoid this behavior. Features of the state which

inform reward prediction may not be the same as those which inform a useful

dynamics model. For example in the MNIST game, the recognition distribution

may just keep the features which are relevant to distinguish if an image is 9 or

not for predicting the reward, but ignore other useful information about the

system dynamics.

One solution is to additionally encourage the agent’s solipsistic dynamics

to be inconsistent with trajectories which are not observed in reality. In

other words, we want an objective that forces the predictive distribution

pθθθ,ϕϕϕ(st+1|x,at) to be different from pηηη(si|xi) for i ̸= t+ 1 4. To achieve this we

can maximize the expected KL divergence:

Ei̸=t+1KL
(
pθθθ,ϕϕϕ(st+1|xt,at)||pϕϕϕ(si|xi)

)
. (5.3)

We refer to this as a solipsistic contrast term. It is similar in spirit to the

contrastive loss used for representation learning or self-supervised learning

[149, 150, 151]. Since the KL divergence is unbounded here, we use a positive

constant cap m.

Overall objective

For a trajectory of length T our overall objective for jointly training the

components introduced for our solipsistic model combines the three elements

from the previous sections. We seek to minimize

1
T −1

T −1∑
t=1

KL
(
pθθθ,ϕϕϕ(st+1|xt,at)||pϕϕϕ(st+1|xt+1)

)
+ λr

T

T∑
t=1

KL(p̃(rt)||pηηη(rt|st))

+ λs

T −1

T −1∑
t=1

Ei ̸=t+1max
(
0,m−KL

(
pθθθ,ϕϕϕ(st+1|xt,at)||pϕϕϕ(si|xi)

))
(5.4)

4More generally, in the case of multiple trajectories, we can sample sssi from other trajec-
tories.
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with respect to the parameters of the recognition distribution ϕϕϕ, transition

distribution θθθ and reward distribution ηηη; λs, λr and m are user chosen hyper-

parameters. In our experience, the results are not particularly sensitive to the

choice of these parameters, which we discuss further in section 5.4.

For tasks that require accurate long-term planning, prediction errors using

the simple solipsistic Markov model may accumulate during roll-out5. In

such cases we consider a variation of our model we refer to as the Solipsistic

Memory Model (SMM). The SMM differs in that it’s transition depends on

all past solipsistic states and actions – see figure 5.2b for the graphical model

representation. Within our overall objective 5.4, we replace pθθθ,ϕϕϕ(st+1|xt,at)

with pθθθ,ϕϕϕ(st+1|xt,ht) where ht = {s1:t,a1:t} and use a recurrent neural network

[64, 65] to learn the transition dynamics of the solipsistic model.

5.3 Acting and planning

For a given solipsistic model, we take a sequence of actions using a re-planning

procedure: we observe xxx1 and determine the first solipsistic state distribu-

tion using the recognition process pϕϕϕ(s1|xxx1). We then determine aaa∗
1 using a

planning procedure (e.g. dynamic programming, or sampling from a trained

parameterized policy, as we discuss further below) and take this action in

the environment, observing the resulting xxx2. We repeat this recognition and

planning procedure until time T , observing xxxt at each step and then planning

the best next action. This process of re-planning at every time step helps

prevent the accumulation of prediction errors from our model and is efficient

since our solipsistic representation is relatively low dimensional. How planning

and acting in the environment is folded into the overall RL process of model

and policy training is described in detail in algorithm 1.

5Whilst the underlying physical dynamics of a problem might be Markovian, any pixel
based representation will result in some discretization error. For long sequences, small
discretization errors can accumulate, resulting in poor long term prediction unless a longer
term history is used.
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5.3.1 Markov model

Given the observation xxx1, we would like to predict the expected rewards we

would obtain by taking a sequence of subsequent actions aaa1:T −1. The recognition

distribution enables us to determine the distribution for the first solipsistic state

pθθθ(s1|xxx1). The state-action trajectory can be described by the distribution

p(s1:T |xxx1,aaa1:T −1) = p(s1|xxx1)
T −1∏
t=1

p(st+1|st,aaat). (5.5)

For planning, the goal is to maximize the cumulative reward by choosing a

sequence of actions. For a discrete solipsistic state space, the objective is

∑
s1:T

 T∑
t=1
R(st)

p(s1|xxx1)
T∏

t=2
p(st|st−1,aaat−1), (5.6)

where we use the reward function defined asR(st)≡Epηηη(rt|st)[rt]. If we interpret

the solipsistic model as a Markov Decision Process (MDP) then the optimal

action sequence has value

max
aaa1

∑
s1

p(s1|xxx1,aaa1) · · ·max
aaaT −2

∑
sT −1

p(sT −1|sT −2,aaaT −1)max
aaaT −1

∑
sT

p(sT |sT −1,aaaT −1)
T∑

t=1
R(st).

(5.7)

This is readily solved by dynamic programming.

Value Estimation

We let V(sT ) =R(sT ). For t = T −1, . . . ,2 and each state of st we calculate

V(st) =R(st)+max
aaat

∑
st+1

p(st+1|st,aaat)V (st+1). (5.8)

The first optimal action can be computed using the value function

aaa∗
1 = argmax

aaa1

∑
s1

p(s1|xxx1)
∑
s2

p(s2|s1,aaa1)V(s2). (5.9)
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We then take the first optimal action aaa∗
1 in the real environment to get observa-

tion xxx2, and do re-planning based on the new solipsistic distribution p(s2|xxx2).

The general procedure is to repeat: (1) take the action aaa∗
t in the environment

and get the new observation xxxt+1, (2) use the recognition function to compute

p(st+1|xxxt+1), (3) compute the next action aaa∗
t+1 using

aaa∗
t+1 = argmax

aaat+1

∑
st+1

p(st+1|xxxt+1)
∑
st+2

p(st+2|st+1,aaat+1)V(st+2). (5.10)

By using this re-planning scheme, we can sequentially decide the optimal action

sequence under our model, which we demonstrate in our MNIST game in

section 5.4.1. For continuous latent states and non-linear transition dynamics,

exact dynamic programming is usually not available. See [152] for alternative

approximate dynamic programming techniques.

5.3.2 Memory model

In the SMM dynamic programming becomes intractable and we instead learn a

policy pwww(at|st), parameterized by a neural network with paramters www. Here we

assume that the observed state ssst contains sufficient information to determine

the best action; however, in order to accurately track long term behavior we

need to use the SMM dynamics to track changes in state. This is typically

required in the case of pixel-based planning in which the best action is readily

determinable from the current state; however, keeping track of the long-term

consequences of a sequence of actions requires using a history of states because

of the discretization errors in observing images only.

The resulting objective to maximize is

E(www)≡
∫  T∑

t=1
R(st)

p(s1|xxx1)
T∏

t=2
p(st|ht−1)pwww(at−1|st−1)ds1:T da1:T −1.

(5.11)

where, for discrete actions, the integral over a1:T −1 can be replaced by summa-

tion.
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Previous work has demonstrated that Variational Optimization (VO) style

algorithms [153, 154] have an advantage over policy gradients for environments

with long time horizons. We therefore use a standard VO algorithm to learn

the policy parameters www, see appendix(C.1).

In the RL setting, we iterate through cycles of the following steps; trajectory

collection from the environment (using the latest best policy and some action

exploration), model training, policy training (which are separate steps - full

details provided in algorithm 1) and policy evaluation. We provide specific

parameter settings and architecture choices in section 5.4.2. We re-initialise

the parameters of our policy www to a random initialisation after every round of

sampling a new batch of trajectories and updating our transition, recognition

and reward models offline. This is so that our policy learning process using VO

does not over-fit to older trajectories and can appropriately exploit the latest

information about the environment.

In the case of discrete actions, which we encounter in section 5.4.2, we choose

at each step of the environment interaction a random action with probability ϵ

and an action based on the current best policy with probability (1− ϵ). In the

case of continuous actions, small Gaussian noise can be added to the action

chosen based on the current best policy.
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Algorithm 1 Overall learning procedure in practise - bringing together the
previous methodology, where we assume the use of the memory model and a
parameterized policy.

1: Set constants I, Nmodel, Npolicy, Tcollect, Tmodel, Tpolicy, B, ϵ, J
2: Initialize M←∅
3: Initialize Parameters of θθθ0, ϕϕϕ0, ηηη0, www0
4: for i = 0, . . . , I do
5: for c = 0, . . . ,C do
6: Reset environment
7: for t = 1, . . . ,Tcollect do
8: Observe xxxt, rrrt and sample ssst ∼ pϕϕϕi

(st|xxxt)
9: Sample âaat with exploration strategy using pwwwi(at|ssst), ϵ

10: Take action âaat in environment
11: end for
12: M←M∪{(xxxt,ssst, âaat, rrrt)}Tcollect

t=1
13: end for
14: for n = 0, . . . ,Nmodel do
15: Sample trajectories {{(xxxt,ssst, âaat, rrrt)b}Tmodel

t=1 }Bb=1 ∼M
16: Update θθθi, ϕϕϕi, ηηηi using equation 5.4 and ADAM
17: end for
18: Re-initialize wwwi to a random policy
19: Initialise VO parameter µµµ0← wwwi

20: for n = 0, . . . ,Npolicy do
21: for j = 0, . . . ,J do
22: Initialize hhh1←∅
23: Sample xxx1 from memory M
24: Sample sss1 ∼ pϕϕϕ(s1|xxx1)
25: Sample wwwj ∼N (µµµn,σ = 0.2)
26: for t = 0, . . . ,Tpolicy do
27: Sample aaat ∼ p

wwwj
i
(at|ssst)

28: hhht← hhht∪ (ssst,aaat)
29: Predict R(ssst)
30: Sample ssst+1 ∼ pθθθ(st+1|hhht)
31: end for
32: Compute E(wwwj) =

∑T
t=1R(ssst)

33: end for
34: Compute µµµn+1 with {E(wwwj)}Jj using VO equation C.2 and ADAM
35: end for
36: Update policy parameters wwwi+1← µµµn+1
37: end for
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Figure 5.4: The learned solipsistic model for the MNIST game. The pixel images
xxxt are represented by their corresponding number on the x-axis. (a)
The y-axis is the solipsistic state ssst. The model learns to associate an
image xxxt with a unique solipsistic state ssst, with p(st|xt) being almost
deterministic. (b) The learned model predicts the instantaneous reward
correctly. (c) The y-axis is the time step from 1 to 10. The value is
normalized within each time-step, the darker patches indicate higher
values. Given any state at time step 1, the optimal action is always
‘plus 1’.

5.4 Experiments
Rather than showing state-of-the-art across a range of RL challenges, the goal

of the experiments is to confirm our hypothesis that model-based RL can be

achieved without requiring a generative model of the observations xxxt and to go

deeper into understanding qualitatively how the learned representations are

behaving. We discuss details of the simple MNIST game introduced in section

5.2. We apply our proposed method to a variation of the Cartpole benchmark

from OpenAI gym [155]. If using the low dimensional cartpole state provided

by this environment, this is an easy problem for control. We instead try to

learn directly from pixels using continuous ssst to demonstrate our recognition

distribution works as expected. Further details of the models and training are

given in appendix(C.2).

5.4.1 MNIST Game

For the solipsistic state we assume we know the true number of states

ssst ∈ {1, . . . ,10} (represented by 1 hot vectors). The recognition distribution

pϕϕϕ(st|xt) is parameterized by a convolutional network. The output of the neural
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network is a softmax function, which gives the probability pϕϕϕ(st = i|xt). We

parameterize the transition pθθθ(st+1|st,at) with two normalized 10×10 matrices

p(st+1|st,at = 0) and p(st+1|st,at = 1) (for the actions of minus 1 and plus 1 to

the current digit - see the description in section 5.2). The reward distribution

pηηη(rt|st) is parameterized by a normalized 10× 2 matrix. At each episode

we select random actions a1:14 and collect a single trajectory xxx1:15 to add to

our memory6. Then during model training, we iteratively sample batches of

consecutive states from memory with batch size 64 and update the model using

equation 5.4 and ADAM [66]. This process then repeats at each episode.

We can see from figure 5.4a that the 10 different images are assigned to 10

different solipsistic states with high probability. In figure 5.4b, we see successful

reward predictions, with the image state 9 having high probability of reward

1. At test time, we randomly initialize the image state and set the horizon

for planing to T = 10, since for any given state at t = 1, the agent can reach

the goal state within 10 steps. In figure 5.4c we plot the value of each state

from t = 1, . . . ,10. The optimal action at time 1 is ‘plus 1’ for each initial state;

similarly the subsequent optimal action is always ‘plus 1’; the learned model

has correctly solved the problem.

5.4.2 Cartpole control from pixels

In cartpole, a pole is attached by an un-actuated joint to a cart that moves

along a friction-less track, which can be controlled by applying a force of +1 or

−1 to the cart at each time step. A reward of 1 is received at every time step

that the pole remains upright and the episode terminates when it falls over or

the cart moves too far from the center. A maximum horizon of 200 time steps

is generally used.

Instead of using the low-dimensional states provided by the OpenAI gym,

we use the rendered image frames as the state observations. We first gray

scale each video frame and down-sample to produce a 64× 64 frame fff t at

6The MNIST game is simple enough that, during model training, random exploration is
sufficient.
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time t; three consecutive frames are then stacked to represent each state

observation, xxxt = {fff t,fff t−1,fff t−2} for t≥ 3. This provides higher-order dynamics

information like speed, which are hidden in a single frame. For simplicity we

assume a stationary initial position (initial pole position is upright) and define

xxx1 = {fff1,fff1,fff1} and xxx2 = {fff2,fff1,fff1}. We use the SMM since this gives

better long-term prediction, despite errors from the pixel rendering of the true

continuous underlying dynamics.

We follow algorithm 1 to interact with the environment and learn the

policy and model. We set st ∈ R16 and choose pϕϕϕ(st|xt) = δ(st− gϕϕϕ(xt)),

pθ(st+1|ht) = δ(st+1−fθθθ(ht)). The recognition function gϕϕϕ and transition func-

tion fθθθ are a convolutional neural network and recurrent network respectively.

The reward distribution pηηη(rt|st) is a Bernoulli distribution with the proba-

bility parameterized using a small neural network with a sigmoid output. All

model parameters are trained jointly using the ADAM optimizer. Since the KL

divergence between two delta distributions is not formally defined for equation

5.4, we use the spread KL divergence [156] with fixed Gaussian spread noise

that has variance 0.5, resulting in a square loss objective.

The policy, section 5.3.2, pwww(at|st) is a Bernoulli distribution with the

probability parameterized using a small feed-forward network with a sigmoid

output and trained using variational optimization - see appendix(C.2). When

evaluating the trained policy in the real environment we take the most likely

action at each re-planning step.

We compare to DQN and PPO [144, 145] following their standard open source

implementations adapted for acting directly in pixel space – see appendix(C.2.3)

for details. In figure 5.4.2 we report the average reward over 5 different runs

for all methods, with each run carried out using different random parameter

seeds, but the same fixed initial position of the environment.

Compared to PPO and DQN our solipsistic model-based approach is sig-

nificantly more data efficient, learning to balance the pole for over 150 time

steps, after seeing only 300 trajectories. This demonstrates that our solipsistic
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Figure 5.5: Evaluating learned policies. x-axis is number of trajectories sampled
from the environment. y-axis is cumulative reward received, averaged
over 5 training runs. The data is smoothed using a moving average
with window size 3.

approach is accurately modeling both the relevant environment dynamics and

the reward. For this setting, we found PPO and DQN struggled to balance the

pole for over 50 time steps on average after 2500 sampled trajectories from the

environment - see figure C.1 in appendix(C.2.3).

Learned representations

Of interest for a qualitative analysis on the recognition function and learned

solipsistic representations are: (1) has the recognition function learned to filter

out redundant information? (2) are the solipsistic trajectories consistent with

their corresponding observation trajectories? To answer (1) we extract filters

from the first layer of the CNN recognition function, which act as attention

maps over the pixels. In figure 5.6 we see that different filters are attending

to different physical attributes, for example pole position, pole speed and cart

position. The right half of the figure shows the activations of the CNN’s first

layer in the recognition network. We select 4 filters’ activations (there are 8

filters in the first layer of recognition network) and use a sigmoid function to

create these grey-scale images.
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The first filter appears to encode spatial information of the cart and pole

(the activated pixels are consistent with the position of both throughout). The

second and third filters we believe represent velocity information for the pole

(given the activated pixels can be interpreted as providing a finite difference

type estimate of velocity by encoding the position of the pole in the first and

last frames), while the fourth can be interpreted as encoding information about

the velocity of the cart (given more pixels become activated in the region of

the cart the faster it goes).

In contrast, no clear physical interpretation was apparent for samples from

PPO’s convolutional policy and value networks, which we discuss further in

appendix(C.2.4). In support of (2), in figure 5.7d we illustrate that the solipsistic

trajectories have smooth transitions and are disentangled in accordance with

their corresponding trajectories in pixel space.

Figure 5.6: Visualization of the CNN filters’ activations. We take action ‘push
cart to the right’ for 15 steps, so that the velocity of the cart and
pole are monotonically increasing. The left half of the figure shows
four states (i.e. the 4 rows) {xxx1,xxx5,xxx10,xxx15} where each state is the
stack of 3 successive frames (i.e. the 3 columns) xxxt = {fff t,fff t−1,fff t−2}
This illustrates that different filters are attending to different physical
attributes, for example pole position, pole speed and cart position. The
right half of the figure shows the activations of the CNN’s first layer in
the recognition network.

5.5 Related work
A traditional approach to reduce the complexity of the state is to apply

state-aggregation methods, such as non-parametric dimensionality reduction

techniques [157], or hand-coded features, to obtain lower-dimensional state

representations – see [158] and [159] for a review. These methods require
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Figure 5.7: (a,b,c) show three test trajectories, where we plot the frames
{fff1,fff10, . . . ,fff50}. (d) We construct xxx1, . . . ,xxx50 by stacking the suc-
cessive frames within each trajectory, and then produce sss1, . . . ,sss50. We
use PCA to project the solipsistic states to 2D for visualization. Tra-
jectories 1 and 2 are similar (the pole falls to the left) and have similar
solipsistic trajectories. Trajectory 3 shows the object fall to the right
and the solipsistic representation is far away from that of trajectory 1
and 2.

strong prior knowledge about the environment and are not generally useful in

situations with complex state spaces. Further the representations are learned

separately from the modeling process, which can hinder overall performance

when utilized for planning [160]. In contrast, our solipsistic approach jointly

learns the dynamics model and representations.

Recent work [161, 162] also propose to use deep neural networks to learn

state representations without reconstructing the original state. However, they

only demonstrate the benefits of this approach in model-free learning whereas

we show how to do planning using the learned representation and the model

dynamics.

Contrastive learning is widely used in the field of representation learning

[163]. The aim is to encourage similar datapoints to have similar representations

[149, 150, 151]. In RL, this idea has been used to improve the data efficiency

of model-free algorithms by treating contrastive learning as an auxiliary task

[164, 165, 166]. The contrastive objective we use (section 5.2) instead aims to

prevent the recognition function from learning a trivial solution to ensure the

solipsistic representation is useful for planning.

Most closely related to our work is [148] which uses a Recurrent State Space
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Model without a decoder component, akin to our Solipistic Markov Model

setup. They use the variational information bottleneck (VIB) principle [167,

168] to derive the following regularizing term for their learning objective:

logp(st|xt)− log
∑

i

p(st|xxxi), (5.12)

where the summation is over the observations in the current sequence batch.

The paper shows that this term keeps ssst predictable from the current image,

whilst also keeping the latent representations diverse. Although this work also

achieves model based RL in the representation space without reconstructing the

original image state, their regularized VIB objective is different to our solipsistic

consistent-contrast objective (equation 5.4). We leave detailed comparisons in

both theory and practice to future work.

5.6 Conclusion
We introduced Solipsistic Reinforcement Learning, a model-based reinforcement

learning framework that learns useful latent representations of the environment

for planning and reward prediction, without constructing a generative model

of the environment. Our work is consistent with the recent general trend away

from modeling the dynamics of high dimensional spaces and towards learning

models that more directly solve the task at hand.

In our experiments on learning from pixels we assume a stationary initial

position for our episodes. Without this simplifying constraint, the temporal

consistency of our learned latent representations suffered, which negatively

impacts overall performance. This phenomenon may restrict the ability for the

model to solve larger and more complex problems. Resolving this practical

limitation should be explored in future work.

Whilst model-based reinforcement learning is arguably preferable to model-

free alternatives, previous approaches do not learn in an end-to-end fashion

and also require an explicit model of the environment. We hope therefore that

we have shown that there is scope to solve reinforcement learning problems in
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a model-based way, but without the downsides of requiring complex models of

the environment.



Chapter 6

Active Preference Learning

Arguably one of the more impactful practical breakthroughs in deep learning

research over the last decade has been the scaling up of foundation models like

large language models (LLMs) in terms of training data and model sizes. The

scaling laws [27] have resulted in emergent properties of reasoning and these

models are fast replacing our traditional search engines as a go to source of

societal knowledge. This is particularly apparent in the case of ChatGPT by

OpenAI, which has reportedly become one of the fastest growing consumer

software products ever [169].

Such large language models are based on variants of the transformer archi-

tecture as introduced in section 2 trained using the back-propagation procedure

as discussed in section 2.3. These auto-regressive models are first trained in

an unsupervised manner to do next token prediction on vast troves of data

predominately collected on the internet. Fundamentally this objective produces

compression pressure on a system with limited capacity; therefore in order

to get good at predicting the next token for arbitrary sequences of tokens on

the internet, the model is forced to encode underlying latent concepts and

reasoning procedures. This results in unprecedented capabilities in zero-shot

and few-shot learning [26, 170]. Transfer learning is then adopted to make

these base models more practical; they are generally subsequently fine-tuned

on human preference data.

As large language models (LLMs) become more capable, fine-tuning tech-
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niques for aligning with human intent are increasingly important. A key

consideration for aligning these models is how to most effectively use human

resources, or model resources in the case where LLMs themselves are used

as oracles. Our research question is how can we more effectively use these

resources during fine-tuning in a way that is simple and practical to implement?

Reinforcement learning from Human or AI preferences (RLHF/RLAIF) is

the most prominent example of a fine-tuning technique [171], but is complex

and often unstable. Direct Preference Optimization (DPO) is simpler and more

stable alternative to RLHF [172]. In this chapter, we develop this idea further

with a simple active learning strategy to make better use of preference labels.

We propose simple acquisition functions for prompt/completion pairs based

on the predictive entropy of the language model and a measure of certainty

of the implicit preference model optimized by DPO. We demonstrate how our

approach improves both the rate of learning and final performance of fine-tuning.

In our experiments using open source models with up to ≈ 1 billion parameters,

we see this approach improves final performance of the fine-tuned model by

3-7% on average over a random baseline.

6.1 RL from Human Feedback

The process of fine-tuning form human preferences is an important component

to producing highly capable and generally helpful systems like ChatGPT. The

most prominent class of fine-tuning technique is reinforcement learning from

human feedback (RLHF) [171]. RLHF consists of a two stage process to adapt

the pretrained autoregressive LLM pθθθ(y|x).

First, a reward model rϕϕϕ(x,y) is trained in a supervised manner on ranked

pairwise preference data. For a given prompt xxx, two completions are sampled

from the model (yyy0,yyy1)∼ pθθθ(y|x) and an oracle rater judges which they prefer.

We denote yyyw as the preferred completion and yyyl as the other. Typically the

rater is a human participant, however the use of LLMs to instead provide

feedback has also shown great promise [173]. This process is repeated over N
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prompts resulting in the pairwise preference dataset XP = {xxx,yyyw,yyyl}N . Second,

a reinforcement learning (RL) algorithm such as Proximal Policy Optimization

(PPO) [174] is used to fine-tune the parameters of the language model θθθ by

maximising the expected reward of completions as measured by rϕϕϕ(x,y). RL

is used here because of the non-differentiability of sampling from pθθθ(y|x).

During the reward modelling phase in RLHF, the preference data is assumed

to follow the Bradley-Terry (BT) model [175]. The objective for training the

reward model can be framed as a binary classification task with a cross entropy

objective:

Lϕϕϕ(XP ) =−E(xxx,yyyw,yl)∼XP
[logσ(rϕϕϕ(xxx,yyyw)− rϕϕϕ(x,yl))]. (6.1)

During the subsequent RL fine-tuning phase, the trained reward model is

then used to score completions. PPO is used to update the parameters θθθ by

maximising the objective:

Exxx∼X ,yyy∼pθθθ(y|x)[rθθθ(xxx,yyy)]−βKL
(
pθθθ(yyy|xxx)||pθθθ0(yyy|xxx)

)
. (6.2)

The second term here regularises the fine-tuned model using the KL-divergence

to stay close to the state of the LLM before fine-tuning pθθθ0(y|x) . The main

rationale provided for this is to prevent the model from deviating too far from

the distribution on which the reward model is accurate. In practise the following

reward function is used with PPO to update θθθ [176, 177]:

rppo(xxx,yyy) = rϕϕϕ(xxx,yyy)−β(logpθθθ(yyy|xxx)− logpθθθ0(yyy|xxx)). (6.3)

A downside of RLHF is it’s complexity; PPO introduces separate reward and

value models that may be comparable in size to pθθθ(y|x), which are typically

kept in memory during training. Furthermore PPO is found to have high

variance and be sensitive to choices of hyper-parameters.
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6.2 Direct Preference Optimization
Recently Direct Preference Optimization (DPO) has been proposed as a simpler

and more stable alternative to RLHF [172]. DPO also depends on the collection

of pairwise preference data, but crucially does not require first training an

explicit reward model or the subsequent use of RL. Instead it relies on a straight

forward binary cross entropy objective that increases the likelihood yyyw and

decreases the likelihood of yyyl. This approach implicitly optimizes the same

objective as RLHF, without the added complexity.

DPO is originally derived from the optimal solution to 6.2; providing a

maximum likelihood objective analogous to equation 6.1, but parameterised by

θθθ instead of ϕϕϕ [172];

Lθθθ(XP ) =−E(xxx,yyyw,yyyl)∼XP

[
logσ

(
β log pθθθ(yyyw|xxx)

pθθθ0(yyyw|xxx) −β log pθθθ(yyyl|xxx)
pθθθ0(yyyl|xxx)

)]
. (6.4)

We refer to this objective as having an implicit reward model:

r̂(x,y) = β
pθθθ(y|x)
pθθθ0(y|x) . (6.5)

This formulation has the distinct advantage of not requiring the explicit

reward modeling step and avoids the need to perform any reinforcement learn-

ing. Furthermore it has been shown to outperform RLHF across a range of

benchmarks [172]. In practise the construction of XP for DPO, including the

preference labelling, is done upfront and stochastic gradient descent (SGD) is

then used to fine-tune θθθ according to equation 6.4 as introduced in section 2.3.

6.3 Active Preference Learning
Fine-tuning state-of-the-art LLMs using both of the aforementioned methods

can require highly skilled domain experts, or expensive LLMs in the case of AI

feedback, to produce the required preference data. In this section, we focus

on how best to utilize the available preference labelling budget for training.
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Instead of randomly sampling prompts during fine-tuning, we explore a more

active sampling approach, which we refer to as Active Preference Optimization

(APO). Informally, active learning is a paradigm in machine learning that aims

to iteratively select the most useful datapoints during training using the current

state of the model. Specifically we are interested in the setting of pool-based

active learning which involves selecting a subset of observations from a closed

pool of unlabeled data [178].

We use straight forward acquisition functions for prompt/completion pairs

that leverage the predictive entropy of pθθθ(y|x) and a simple proxy for the

certainty of DPOs implicit preference model. Our APO training algorithm

consists of iterations of the following scheme: randomly sample a large batch

of prompts; generate pairs of completions for each prompt according to the

latest version of the fine-tuned pθθθ(y|x); rank the prompt/completion pairs

according to our acquisition function; select the highest ranking subset as a

mini-batch of preference pairs for training; get preference labels on this actively

selected mini-batch and, finally, fine-tune pθθθ(y|x) using the labelled data before

repeating the process until some preference labelling budget has been reached.

We first outline in more detail our general active learning training procedure

before introducing our acquisition functions for data selection.

This approach requires us to augment the existing DPO fine-tuning loop,

which randomly samples mini-batches from a fixed preference labeled dataset,

with an outer data acquisition loop. We compute the number of data acquisition

steps K based on the acquisition batch size M and the overall labelling budget

B. At each step S we randomly sample (without replacement) S prompts,

generate completions using the current state of the model if required, then score

the sampled datapoints using an acquisition function, where M < S < N (where

N is the total number of available prompts). We then select the highest ranking

M datapoints to add to XP before updating θθθ with a round of fine-tuning. We

specify our full process in algorithm 2.

Unlike the typical application of active learning in supervised learning
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Algorithm 2 Active Learning Training Procedure
1: X ← {xxx}N ▷ initialise dataset of prompts
2: XP ←{. . .} ▷ initialise empty preference labelled dataset
3: K← ⌊ B

M ⌋ ▷ compute number of acquisition steps
4: θθθ← θθθ0 ▷ initialise model weights
5: for i = 1 . . .K do ▷ iterate through acquisition steps
6: XS := {xxx}S ∼X ▷ randomly sample prompts
7: XS := {yyy0,yyy1,xxx}S ←Generate(θθθ,XS) ▷ generate completions
8: XS := {sss,yyy0,yyy1,xxx}S ← Score(θθθ,XS) ▷ score data using acquisition function
9: XM := {yyy0,yyy1,xxx}M ← Subset(XS) ▷ subset to highest scoring pairs

10: XM := {yyyw,yyyl,xxx}M ←Oracle(XM ) ▷ get preference labels from orcale
11: Xp←Xp +XM ▷ expand preference dataset
12: θθθ← Finetune(θθθ0,θθθ,XP ) ▷ train using DPO until some stop critiera
13: EvaluateUsingOracle(θθθ,θθθ0) ▷ evaluate model on some held out test dataset
14: end for

settings, where at each acquisition step only the scoring of observations xxx

is required, we have an additional step of also generating the corresponding

completions for the acquired data. This is indicated by step 7 in our training

procedure 2. This is required here if our choice of acquisition function requires

access to completions, which we will discuss further in section 6.3.1. If this were

not the case, it would still be required after step 9 when a subset of the data

has been selected because our oracle needs access to completions for providing

preference labels.

Although the choice of acquisition function is the primary concern of this

study, there are some additional important design choices to consider for the

practical implementation of this procedure. For example, how many fine-tuning

training iterations to do at each acquisition? How many prompts to randomly

sample and how many completions to generate? We will discuss these design

choices further in appendix D.

6.3.1 Acquisition functions

In selecting scoring methods (step 8 in 2) we aim for options that are straightfor-

ward to implement and do not require modifications to the model architectures

or the fine-tuning procedure itself. This allows for a drop in addition to existing

implementations. As a result, we propose using the predictive entropy of
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pθθθt
(y|x) as well as a measure of certainty under the Bradley-Terry preference

model, which leverages the implicit reward model in DPO.

Entropy of the language model

Prior work has shown the predictive entropy (PE) to be a well calibrated

measure of uncertainty in LLMs [179]. Therefore, if used as an acquisition

function it will bias the fine-tuning process towards prompts the model is more

uncertain about. The model represents a conditional distribution over possible

completions. The predictive entropy is defined as:

Hpθθθ
(y|x) =−Epθθθ(y|x)[logpθθθ(y|x)], (6.6)

where this intractable integral can be approximated with Monte-Carlo samples

in practise

Hpθθθ
(y|x) =−Epθθθ(y|x)[logpθθθ(y|x)] (6.7)

≈− 1
N

N∑
n=1

logpθθθ(yyyn|x), (6.8)

where we calculate logpθθθ(yyyn|x) by summing the log probability of each token

in the completion.

Preference model certainty

The predictive entropy alone does not capture the extent to which the model

accurately reflects oracle preferences, which is the ultimate goal of the fine-

tuning process in this setting. To address this, we turn to characteristics of

the Bradley-Terry model. We define a function we refer to as the certainty of

the implicit preference model using yyy1,yyy2 ∼ pθθθt
(y|x) that is maximised when

the difference between the implicit rewards (see equation 6.5) for yyy1 and yyy2 is

large and minimised when it’s small. Specifically, during our scoring process

(step 8 in algorithm 2) we determine the difference in our model’s predicted
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rankings for two different completions corresponding to the same input as

|r̂(xxxi,yyyi
1)− r̂(xxxi,yyyi

2)|. (6.9)

We prioritize prompt/completion pairs with higher differences during the

selection of data points for fine-tuning. Our hypothesis is that data points with

high values provide valuable learning opportunities. Should the model’s implicit

preference predictions diverge from the oracle’s evaluation, especially with high

certainty, prioritising these discrepancies when fine-tuning can enhance model

performance.

This choice is well motivated by the behaviour of the DPO training objective

(equation 6.4). Consider the gradient update with respect to the parameters θθθ

∇θθθLθθθ =−βEXP
[www(∇θθθ logpθθθ(yyyw|xxx)−∇θθθ logpθ(yyyl|xxx))] , (6.10)

where www = σ(r̂(xxx,yyyl)− r̂(xxx,yyyw)) weights each sample (xxx,yyyw,yyyl) ∼ XP . This

gradient update can be interpreted as weighting examples by how incorrectly the

implicit reward model is while accounting for the strength of the KL constraint.

Early in fine-tuning, when the implicit preference model is still likely to be

wrong often, our proposed acquisition strategy prioritises examples that result

in substantial gradient updates, which we find to accelerate learning progress

and lead to an improvement in the final performance in our experiments in

section 6.5.

A hybrid approach
In practise we can combine both entropy and preference certainty as complimen-

tary metrics for scoring data to exploit the strengths of both. Our hypothesis is

that higher entropy prompts are more likely to give incorrect predictions from

the implicit preference model. In our experiments for this hybrid approach, we

first select a relatively large batch of prompts and rank them by the entropy.

We then take the top subset of prompts ranked by entropy and generate the

required completion pairs before scoring and ranking according to preference
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certainty. Finally, we take the top subset of prompt/completion pairs ranked

by preference certainty and add them to our preference dataset for fine-tuning.

6.3.2 Choice of oracle

In step 10 and 13 of our algorithm 2 we require access to an oracle to provide

preference judgements on pairs of completions; in step 10 to produce training

data and step 13 to evaluate against a held out test data set. Given our

desired setup of generating completions from the latest version of the model at

each data acquisition step, we can’t easily leverage prelabelled datasets here.

Furthermore, given the need to re-run experiments multiple times with multiple

different dataset, model, acquisition functions and seed (to get some measure

of statistical significance) combinations, using humans to provide judgements

is not feasible.

As we discuss in the experiments section 6.5, we do use relatively large

open source language models to empirically test our hypotheses; however, the

absolute performance of these models falls far short of the state-of-the-art

models that have been trained for months with millions of dollars of compute

by commercial entities. These models are only accessible to make inferences

via black box APIs. This presents an opportunity to leverage these far superior

models to provide the labels we need for the rather simple preference judgements.

The questions then become; are these models good enough? Which model

should we choose? How should we prompt?

We can look to recent research to answer the first question in the affirmative.

Recent work has suggested that LLMs are superior oracles than existing metrics

[180]. Of particular relevance is the LLM as an evaluator study carried out

in [172] for the summarization task we also use in our experiments; they

convincingly demonstrate that judgements form OpenAI’s GPT-4, appropriately

prompted, correlate strongly with humans. Furthermore, GPT-4 and human

agreement is typically similar or higher than inter-human annotator agreement.

With this choice of oracle, our evaluation approach (on held out test prompts)

is to use head-to-head win-rate comparisons versus completions sampled from
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the model at the start of training pθθθ(y|x). In the cases where suitable human-

provided completions are already provided on the hold out test data, we can

instead use these to evaluate the models performance. We don’t evaluate every

acquisition step, because of how expensive in cost and time using GPT-4 as an

oracle is. Depending on the experiment we evaluate at multiple appropriate

way-points during training, or just at the end.

Oracle prompt
As LLMs get more broadly capable, the amount of so-called prompt engineering

research is on the rise. Although not the focus of this work, we need to provide

a prompt to our LLM based oracle. We follow the guidelines outlined in [172]

given their robust results. We make one additional change, which is also asking

the model to provide a rationale for it’s reference. Qualitatively we found this

to provide superior results on a handful of testcases; there is also good evidence

to support that chain of thought-like prompting is an effective strategy to

improve zero shot performance [181].

In our experiments we require two distinct oracle prompts: one for sentiment

analysis and the other for summarization - see figure 6.1. In order to mitigate

against any potential bias due to the ordering of results presented, we randomly

change the ordering of the model completions presented to the oracle during

evaluation and fine-tuning.

Choice of base model
A major downside of using GPT-4 as our oracle model is the expensive cost

and high latency. In particular the cost can restrict the number of seeds we

can afford to run and similarly the number of ablation studies. A far more

economical choice would be to use older versions of models such as GPT-3.5.

We therefore tested to see whether this would be sufficient.

We ran a simple test where we generated preference labels twice for both

GPT-3 and GPT-4 on a set of 50 prompts and completions sampled sampled

from the fine-tuning from human preferences dataset [176]. Unfortunately we

found that GPT-4 was far more consistent (>90%) than GPT-3.5-turbo (only
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// SENTIMENT ORACLE PROMPT

<SYSTEM>
You are a helpful assistant that evaluates the quality and
positive sentiment of movie reviews
</SYSTEM>

<USER>
Which of the following movie reviews is better? The best one
will be the one with the most positive sentiment, which also
is grammatically correct, consistent, and avoids repetition.

Review A:
{{PROMPT}} {{COMPLETION-A}}

Review B:
{{PROMPT}} {{COMPLETION-B}}

First, provide a one-sentence comparison of the two reviews,
explaining which is better and why. Second, on a new line,
state only "A" or "B" to indicate your choice.

You must choose A or B for the preferred answer even if
neither review is very good.

Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Preferred: <"A" or "B">
<\USER>

// SUMMARIZATION ORACLE PROMPT

<SYSTEM>
You are a helpful assistant that evaluates the quality of
summaries for internet posts.
</SYSTEM>

<USER>
Which of the following summaries does a better job of
summarizing the most important points in the given
forum post, without including unimportant or irrelevant
details?

Post:
{PROMPT}

Summary A:
{COMPLETION_A}

Summary B:
{COMPLETION_B}

First, provide a one-sentence comparison of the two
summaries, which you prefer and why. Second, on a new line,
state only "A" or "B" to indicate your choice.

You must choose A or B for the preferred answer even
if neither summary is very good.

Your response should use the format:

Comparison: <one-sentence comparison and explanation>
Preferred: <"A" or "B">
<\USER>

Figure 6.1: GPT-4 oracle prompts for sentiment and summarization tasks

Figure 6.2: Self-consistency of preference labels provided by GPT-3 and GPT-4
across 50 prompt completion pairs. Each model provided two preference
labels for each prompt completion pair.

∼60%) at a range of sampling temperatures - see figure 6.2. We therefore chose

to use GPT-4 as the oracle for our experiments and adjusted our budget of

evaluations appropriately to contend with the cost.
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Completion sampling
Another important aspect of evaluating language models is the strategy used for

getting completions from the model given auto-regressive probabilistic model;

often referred to as the decoding strategy. The choice of decoding method can

impact the quality and characteristics of the model’s output. Common decoding

strategies include greedy, beam search, top-k sampling, nucleus sampling, and

temperature-scaled sampling, among others. Greedy decoding just selects

the most probable next token at each step, which can lead to repetitive and

deterministic outputs. Beam search maintains multiple hypotheses at each step

and can produce more diverse and coherent outputs, but may still suffer from a

lack of diversity and can be computationally expensive. Top-k sampling restricts

the next token to be sampled from the k most probable tokens, introducing

randomness into the output. Nucleus sampling, or top-p sampling, takes this

further by sampling from the smallest set of tokens whose cumulative probability

exceeds a threshold p, allowing for a dynamic number of tokens to be considered

based on the model’s confidence.

In our experiments we leverage temperature-scaled sampling that adjusts

the probability distribution over the next token by scaling the logits before

applying the softmax function. A temperature parameter T controls the degree

of scaling. A low temperature (T < 1) sharpens the distribution, making the

model more confident and conservative in its predictions, often leading to

less diverse outputs. A high temperature (T > 1) flattens the distribution,

increasing diversity in the output by making less probable tokens more likely

to be chosen. A temperature of zero (T = 0) effectively turns the sampling into

greedy decoding. In our experiments to follow we use T = 0.7 for pθθθ(y|x) during

training, T = 0.2 during testing (to encourage lower variance) and T = 0.05 for

the GPT-4 oracle to promote deterministic oracle judgements.

Fine-tuning details
Here we discuss in more detail the implementation details for the fine-tuning

step (12) in algorithm 2. We adopt the most straight-forward implementation,
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which is to re-initialise θt to θ0 at each time step t and fine-tune to convergence,

sampling uniformly from all previously acquired preference data Xp. This is

consistent with previous work on deep active learning [182] and relies on the

assumption that the cost (in time and/or money) of acquiring oracle labels

outweighs the cost of fine-tuning again on all acquired data after each new

batch of labels is acquired. The focus of our main experiments in section 6.5 is

to isolate the differences in performance caused by the different acquisition vs

randomly acquiring data. In Appendix D.4, we discuss adapting our approach

for online learning and present some provisional results.

6.4 Related Work

Our work is closely related to Direct Preference Optimization [172] which

we leverage as our fine-tuning algorithm of choice. We augment the training

process with an additional data acquisition and fine-tuning loop as outlined

in algorithm 2. The random baseline in our experiments is equivalent to the

DPO procedure.

There are numerous recent research efforts in exploring how a more active

learning setup can improve fine-tuning LLMs, but don’t use DPO as a basis.

The Reward rAnked FineTuning (RaFT) technique [183] introduces an online

training procedure that ranks, using an oracle reward model, multiple com-

pletions for each prompt; selecting the top performers to use in a traditional

supervised fine-tuning process. That is; maximising the likelihood of the best

performing completions for each prompt. Once training is complete, they ran-

domly sample a new batch of data, then re-generate completions form the latest

version of the trained model and repeat the ranking/filtering and training step.

Like DPO, this approach does not require the use of reinforcement learning for

updating the parameters of the model. Unlike our approach, RaFT consults

the oracle on every data point before filtering for the subset that will be used

during training; therefore is not trying to make better use of the oracle resource.

Another orthogonal application of active learning in the setting of improving
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pre-trained LLM performance is the active sampling of few shot examples for

prompt stuffing [184]. In this work, the authors use acquisition functions based

on different uncertainty, diversity and similarity scores of the language model

across datasets of few-shot examples to determine which examples are best to

reference in the prompt to improve performance. Although similar in spirit

to our work, they don’t consider updating the parameters of the model using

preference-labelled data.

An alternative active learning approach is data pruning. In [185], pruning

heuristics are applied to filter the data used in the first stage of unsupervised

LLM pre-training. This leads to improved performance on downstream tasks

versus the LLMs pre-trained on the full dataset. Over 50% of the data can

be pruned while still leading to improvements. This work does not directly

consider the impact of such pruning techniques for the preference fine-tuning

stage, but some of their perplexity based heuristics could represent viable

alternatives to our acquisition strategies.

Finally, a research theme adjacent to active learning that can also reduce

the amount of preference labels required is that of self-play fine-tuning [186,

187]. These works focus on how to bootstrap pθθθt
(y|x) during fine-tuning to

provide preference labels, or to act as a reward model, as opposed to trying to

make better use of oracle resources. This in principle could be combined with

our active preference learning approach and so we consider it complimentary.

6.5 Experiments

The focus of our experiments is to determine if more active sampling during

the fine-tuning process can bring us gains in data efficiency when dealing

with limited labelling budgets; in terms of the rate of learning and the final

performance achieved. We compare four different acquisition configurations:

random, entropy, certainty and entropy + certainty (as discussed in section

6.3.1). We evaluate across two different open source large language models

and two different datasets used in recent related work. We also gather some
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qualitative findings about the characteristics of the datapoints being acquired

under the different schemes, which we discuss further in 6.5.5.

6.5.1 Datasets
In line with recent work [176, 172] we focus on two distinct datasets for our

experiments; IMDB and TLDR. IMDB is a dataset of movie reviews where the

task is to complete a positive review given the start of a review. TLDR is a

dataset of Reddit posts where the task is to provide a summary of the post.

Table 6.1 provides a summary of the dataset details.

Table 6.1: Preference learning datasets summary

IMDB TLDR

Train size 25,000 117,000
Test size 25,000 6,550
Task Complete reviews according

to preference
Generate summaries accord-
ing to preferences

Data source https://huggingface.co/datasets/
imdb

https://huggingface.co/datasets/
CarperAI/openai_summarize_tldr

The choice of oracle for providing labels and evaluating on the test data is

GPT-4; details of the prompts are provided in the previous section 6.3.2. Our

prompts specify a task specific preference, but also consider grammatical cor-

rectness and consistency. We provide further details on dataset pre-processing

in appendix D.

6.5.2 Models
For both IMDB and TLDR we use relatively large transformer based architec-

tures. See table 6.2 for a summary of the models and main hyper-parameters

used in both cases. For IMDB, the GPT-2 base transformer model provided by

Hugging Face1 was pre-trained on the WebText corpus [188] and has 12 layers

with 768 dimensions, with 12 attention heads. It was also further trained in an

unsupervised way on the full IMDB dataset. For TLDR, we use the Pythia2

1Downloaded pre-trained base model from https://huggingface.co/edbeeching/
gpt2-large-imdb

2Pre-trained base model from https://huggingface.co/pvduy/
pythia-1B-sft-summarize-tldr

https://huggingface.co/datasets/imdb
https://huggingface.co/datasets/imdb
https://huggingface.co/datasets/CarperAI/openai_summarize_tldr
https://huggingface.co/datasets/CarperAI/openai_summarize_tldr
https://huggingface.co/edbeeching/gpt2-large-imdb
https://huggingface.co/edbeeching/gpt2-large-imdb
https://huggingface.co/pvduy/pythia-1B-sft-summarize-tldr
https://huggingface.co/pvduy/pythia-1B-sft-summarize-tldr


6.5. Experiments 123

class of transformer model [189] that has an architecture similar to GPT-3,

with 805M parameters, 16 layers with 2048 dimensions and 8 attention heads.

We ran our fine-tuning on single 40GB RAM A100 and 48GB 600 ADAs GPUs

throughout our experiments.

6.5.3 Acquisition sampling

Given we follow a pool-based active learning approach we assume access to an

abundant supply of prompts to choose from during fine-tuning. In practise we

have two steps to consider for filtering the data - after the initial selection of

prompts (step 6 in algorithm 2) and after completions have been generated

(step 7). In the latter case, more information is available, but require potentially

expensive completions.

In our experiments we first randomly sample S = 4000 for IMDB and S = 2048

for TLDR for our entropy only and preference certainty only acquisition runs.

When doing entropy + preference certainty, we first randomly sample J ×S

prompts, rank them by entropy and take the top S prompts to generate

completions before further scoring and ranking by preference certainty. We

use J = 8 for IMDB and J = 4 for TLDR. We use N = 8 samples when

approximating the entropy. For all experiments we set the final acquisition

batch size to M = 128.

6.5.4 Evaluation

We use GPT-4 as the oracle for providing labels and evaluating the test data.

Details of the prompts are provided in section 6.3.2. Our prompts specify a task-

specific preference but also consider grammatical correctness and consistency.

Our evaluation approach on held-out test prompts uses head-to-head win-rate

comparisons versus completions sampled from the pre-trained model from the

start of training pθθθ0(y|x) for IMDB. For TLDR, we replaced the pre-trained

model completions with the human-provided completions that were available

on the hold-out test data. Due to the significant cost of using GPT-4 as the

oracle for evaluation, we don’t evaluate after every single data acquisition step.
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Each evaluation is done against 1024 test prompts.

Table 6.2: Preference learning models summary

IMDB TLDR Comment

Model used Pre-trained
GPT-2 [10]

Pre-trained
Pythia [189]

Parameter size 774M 805M
Optimizer ADAM lr: 1e-06 ADAM lr: 1e-06 as per DPO [172]
Finetuning
Epochs

50 70 See appendix
D.2

Mini-batch
size

64 64 For fine-tuning

Prompt batch
size (S)

4000 2048

Acquisition
batch size (M)

64 64 Out of 512
prompts scored

β 0.2 0.2 as per DPO [172]
Model source https://huggingface.

co/edbeeching/
gpt2-large-imdb

https://huggingface.
co/pvduy/
pythia-1B-sft-summarize-tldr

6.5.5 Results

We run our active learning procedure (algorithm 2) to fine-tune the models

discussed in the previous section against IMDB and TLDR. The overall data

acquisition, fine-tuning and evaluation processes are repeated for 9 different

random seeds. Figure 6.3 and table 6.3 contain the detailed win-rate results of

each configuration. The cost associated to evaluating using GPT-4 limited the

number of data acquisition steps we could practically carry out, therefore we

focused on doing more seeds on fewer numbers of data acquisition steps to aid

in drawing conclusions.

Overall we find that our certainty acquisition function outperforms random

and entropy, improving win-rate performance by between 1-6% on average.

This provides evidence in favour of our hypothesis discussed in 6.3.1 that

prompts with higher differences in the implicit rewards corresponding to their

completions provide valuable learning opportunities. We find that combining

preference certainty with entropy gives a small improvement for the larger

https://huggingface.co/edbeeching/gpt2-large-imdb
https://huggingface.co/edbeeching/gpt2-large-imdb
https://huggingface.co/edbeeching/gpt2-large-imdb
https://huggingface.co/pvduy/pythia-1B-sft-summarize-tldr
https://huggingface.co/pvduy/pythia-1B-sft-summarize-tldr
https://huggingface.co/pvduy/pythia-1B-sft-summarize-tldr
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acquisition batch sizes (512, 768) on IMDB, but this result is not consistent

across both datasets. Given these results and the additional complexity due

to the Monte Carlo estimation of the entropy, we recommend the preference

certainty acquisition as a simple acquisition strategy to use in practise.

For the first fine-tuning step (M = 128), there is no discernible difference

between the strategies. This makes sense when using the preference certainty

acquisition because the initial pre-trained model is used to rank the data and it

doesn’t yet know anything about the oracle’s preferences. In Appendix D.3 we

provide examples of typical prompt and completion pairs, alongside the oracle

preference and rationale provided by our GPT-4 oracle, before and after the

fine-tuning process.

(a) IMDB Win-Rate (b) TLDR Win-Rate

Figure 6.3: Win-rate at evaluation waypoints. (a) IMDB is win-rate vs the initial
model.(b) TLDR is win-rate vs human provided summaries on the test
prompts (b). The x-axis is the size of the acquired dataset used for
fine-tuning at the point of evaluation. Each model and dataset pair was
trained with 9 random seeds and we plot means with standard errors.
Preference certainty and entropy + preference certainty outperform
the random baseline.

Analysing acquired data
In section 6.3.1 we motivate why the preference certainty acquisition strategy

may provide an advantage versus a random baseline when fine-tuning with

DPO. This focused on whether it would surface examples where the implicit
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Table 6.3: Active preference learning results: the mean to 2 d.p. and standard
errors to 3 d.p. of the win-rates. For IMDB, we calculate the win-rate vs
the completions generated by the initial pre-trained model. For TLDR
we calculate the win-rate vs the human completions available on the test
set. The size column represents the size of the acquired dataset used for
fine-tuning at the point of evaluation.

Dataset Size Random Entropy Pref cer-
tainty

Pref + Ent

IMDB

128 0.67±0.012 0.68±0.011 0.68±0.003 0.68±0.004
256 0.76±0.008 0.74±0.009 0.82±0.005 0.81±0.007
512 0.84±0.004 0.84±0.009 0.87±0.007 0.89±0.006
768 0.88±0.004 0.89±0.004 0.90±0.004 0.92±0.005

TLDR

128 0.51±0.008 0.51±0.013 0.52±0.012 0.53±0.006
256 0.55±0.01 0.57±0.01 0.56±0.012 0.55±0.01
384 0.55±0.009 0.56±0.017 0.58±0.01 0.59±0.007
512 0.56±0.012 0.58±0.01 0.60±0.009 0.59±0.01

Figure 6.4: Histograms of probabilities from our implicit Bradley Terry preference
model across a batch of acquired data; grouped by incorrect (red) and
correct (green) preferences according to the oracle. This assumes a
decision threshold of 0.5. Our preference certainty acquisition function
surfaces confidently with wrong examples.

preference model provided an incorrect prediction, with certainty. We carry

out a post hoc analysis of the data acquired during our experiments to better

understand the characteristics of the acquired examples. In particular, what

differs between the different acquisition strategies and how they change as fine-

tuning phases progress. The approach we take is to look at how the implicit

preference predictions from the model correlate with the true oracle preferences.

We construct a classifier using the Bradley Terry (BT) model - equation 6
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in [172] - that gives us p(y1 ≻ y0|x) ∈ [0,1] under our implicit reward model

(equation 6.5). Using the probabilities provided, we construct histograms in

figure 6.4 for the batches of M acquired datapoints across all 9 seeds. We map

the data in such a way that the bucket at 0.9 will contain examples where the

BT model was most confidently correct according to it’s probability, and 0.1

will contain the most confidently wrong. The red 0.0→ 0.5 contains all the

incorrect predictions bucketed into 10 bins according to their probability. The

green 0.5→ 1 contains all correct predictions. To determine correctness, we

use a 0.5 decision threshold on our BT model and compare the result to the

ranking provided by the oracle.

We can see from these histograms that the random acquisition selects quite

uniform examples according to the implicit preference model predictions. The

preference certainty-based acquisition on the other hand surfaces a lot of

confidently incorrect examples which ultimately aid with improving fine-tuning

performance when using DPO.
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6.6 Conclusion
We’ve demonstrated a simple and effective way to improve the use of an oracle

labelling budget for preference fine-tuning LLMs. Our active learning setup

builds upon DPO and uses the implicit preference model to determine which

data points to get oracle judgements for during training.

There are a couple of noteworthy limitations to address in future work:

• Reducing the model training budget: Although we are focused

here on making better use of the oracle labelling budget, as opposed

to the overall training computation budget, it is worth also considering

for practical reasons how the latter may be improved. Currently after

each data acquisition step, we re-initialise the parameters of the model to

the unsupervised pre-trained LLM parameters and do a full fine-tuning

process before re-acquiring data. This will get prohibitively slow and

expensive the larger the models and datasets become.

One potential option to explore to reduce the training computation budget

is to not reset the parameters of the model at each data acquisition step

and only do a much smaller number of fine-tuning epochs. In Appendix

D.4, we discuss adapting our approach for online learning and present

some provisional results. Considerations for how to balance the amount

the model trains on previously acquired datapoints will be important.

Ideally a Bayesian formulation could be considered; using an online

update to the posterior over the parameters in the face of newly acquired

preference labels. Such that we don’t need to consider previously acquired

data points. The challenge here will be how to effectively compute the

posterior distribution and updates for a model of this size. Tactics like

only considering a subset of parameters (say last layer) may be helpful.

Another potential option is to continue to reset the parameters after each

data acquisition step, but only consider fine-tuning a subset of model

parameters so that the fine-tuning iterations are much faster and less

computationally burdensome. Combining our approach with parameter
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efficient fine-tuning methods like LORA [190] and Q-LORA [191] are

reasonable options.

• Hyper-parameter calibration: Due to the significant cost of evaluation

(using GPT-4) and computation time for a full cycle of training (on A100

GPUs) we were limited in our ability to do ablation studies on hyper-

parameters in this study. Instead relying on default values from existing

work. For instance, future work with additional budget should consider

ablation on optimizer choice, learning rate, fine-tuning stopping criteria

and more random seeds for improving the statistical robustness of the

results.

• More scale: To prove out that these techniques will have material impact

on training SOTA LLMs, we would need to move into the multi-billion

parameter regime. This would require distributed training across multiple

GPU nodes and more conservative choice of training and evaluation

configurations given the cost.

In addition, there are also multiple avenues of potential future work we are

exploring:

• More sophisticated acquisition strategies: Our preference model

certainty acquisition function is simple and our results provide evidence

that it is effective. Combining the merits of multiple strategies, such

as entropy and certainty and adding additional criteria around diversity

of prompts and completions could are also worth exploring to further

improve efficiency. Furthermore, more explicit treatment of the epistemic

uncertainty of the model when acquiring prompts may also be useful.

• Surrogate preference model and self-supervision: One potential

avenue to further save on oracle labels is to bootstrap the predictions of

our implicit preference modoel, or an explicit surrogate preference model

we train on the labels acquired to date. An interesting challenge here is
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to determine an acquisition strategy that selections data points where we

should trust the model predictions.

• Broader applications: Our proposed techniques are applicable to any

generative model that can be fine-tuned using a DPO like objective where

preference pairs are used in a MLE objective. Moving beyond the text

modality to images, sound and multi-modal applications are promising

avenues for future work.

• Beyond binary feedback: As part of our model-based evaluation

framework discussed in section 6.3.2 we are generating both a preference

label and a natural language rationale. The primary purpose of getting

the oracle GPT-4 model to also generate a rationale is that this has been

shown to improve the performance of the model at providing preferences.

An interesting idea is to update our MLE objective to jointly maximise

the likelihood of the rationale alongside maximising the likelihood of the

preferred objective and minimising the likelihood of the less preferred

completion for a given prompt. This may provide more information about

the latent preferences to the model being fine-tuned and allows us to

get away with less preference labels. It may also help regularise the

model into still producing valid language when preference fine-tuning,

potentially allowing us to remove the KL regularisation to the initial

pre-trained model in equation 6.4; saving on memory and computation

during fine-tuning.



Chapter 7

Conclusions

The overarching goal of this thesis was to improve on the data efficiency of deep

learning systems, which are becoming increasingly data and resource hungry [27].

Within this broad theme we presented methodological contributions across the

different learning paradigms of supervised learning (chapter 3), unsupervised

learning (chapter 4), reinforcement learning (chapter 5) and preference learning

(chapter 6). As discussed with examples in chapter 1, informally data efficiency

has a different goal in each of these learning categories. In supervised and

preference learning data efficiency is mainly concerned with minimizing the

number of queries to an oracle to label data. Implicit in this is the assumption

that the oracle labels (either human generated, or other model generated) are

expensive in time and or cost. In unsupervised learning data efficiency is mainly

concerned with minimizing the amount of unlabelled training data required.

In reinforcement learning, the goal is the minimize the number of interactions

required with the environment.

In chapter 3 we introduced a weak learning framework that jointly trains a

label model and end-model. We illustrated that this can significantly improve

performance versus existing 2-stage methods [72, 1, 73, 75] across a range

of natural language classification benchmark tasks [39]. We also presented

a parameterization of the label model that can produce similar mappings

between the latent and true label (the transitions ϕϕϕk) for similar datapoints

xxx and amortises the cost, using a neural network, of computing this for each
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datapoint. There are many promising avenues of future work in this direction.

We can naturally combine our weak learning framework with active learning

to further improve data efficiency. This would entail actively sampling mini-

batches of data (like in chapter 6) in order to reduce the epistemic uncertainty

w.r.t both the label model and end model parameters; considering both weak

and strong labels in the process. Another promising direction is to combine this

weak learning approach with the work in chapter 6 on preference fine-tuning

LLMs; to aggregate preference data from different sources - both Human and

AI based preference data of different qualities.

In chapter 4 we focused on arguably a relatively under-studied problem of

generalization in VAE style models. VAEs have been shown to be effective

in many important problems wherein acquiring training data is challenging;

such as in chemistry and biology research, when models are trained on exist-

ing molecular structures [33, 34]. We demonstrated that this type of model

does suffer significantly from over-fitting. We framed this in context of two

distinct generalization gaps: the generative model and the amortized inference

generalization gaps, where the over-fitting was dominated by the amortized

inference neural network. We proposed an inference consistency requirement,

which, if satisfied, would result in optimal generalization performance for this

class of model. We demonstrated how the default training objective does not

satisfy this, but that the wake-sleep training algorithm [118] does. We then

introduced an alternative sleep-type training step for updating the parameters

of the inference neural network after normal training that, unlike the traditional

wake-sleep setup, directly improves the ELBO. This approach bootstraps pre-

dictions from the generative model to improve the generalization performance

of the inference network. We provided empirical evidence on image modelling

and compression tasks that our approach is a useful addition to existing VAE

training pipelines to improve generalization performance. Natural next steps

for future would involve applying our method to other applications where VAEs

have shown promise; such as molecular design [133], combining it with methods
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to also reduce the generative model generalization gap [129] and extending it

to cater for more hierarchical latent variable structures [134].

In chapter 5 we then turned our attention to the problem of reinforcement

learning; in particular model-based reinforcement learning. We present ideas for

a model that learns a low-dimensional representation of the target environment

while avoiding the need to learn a full generative model of the environment,

which prior works have required. We explore different choices of model and

planning algorithms. On the model front, we introduce a memory model that

aids the ability of the model to accurately track long term behaviour in it’s

latent dynamics. We build up an overall learning objective for our model

using three desiderata around consistency in predicted dynamics, consistency

in predicted rewards and the effective filtration of redundant observation state

information. Future research in this area should first explore scaling up the

proposed learning framework to larger and more complex learning from pixel

RL problems and addressing any practical limitations around the initialization

of the learned representations.

Finally in chapter 6 we tackle the problem of making more efficient, in terms

of oracle usage, aligning large pre-trained language models to human preferences.

We first discussed direct preference optimization as an alternative to RLHF [171,

172] before then presenting an active learning process that requires generating

completions with the latest version of the model for every data acquisition step.

Of independent interest is the use of LLM based oracles for both generating

training labels and for evaluation; without which our experiments would not

have been tractable. We demonstrated that using our certainty metric of the

implicit reward model as a simple choice of acquisition function improved

win-rate performance by 3−7% in our experiments over a random baseline. We

discussed multiple promising avenues of future work. To improve the practical

utility, it’s important to explore approaches to minimise the computation budget

required during the active fine-tuning process; for example by combining our

approach with parameter efficient fine-tuning methods like LORA and Q-
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LORA [190, 191], or taking more of an online Bayesian learning perspective. Of

particular interest is moving beyond just binary and categorical feedback types

to also leverage the rationale produced by our oracle; we believe this learning

from more natural feedback to be an important next step in AI alignment.

Our hope is that the methods introduced in chapter 3 and 4 can help

practitioners improve the data efficiency of their existing deep learning systems

in practise as well as inform future research, and that chapters 5 and 6 represent

effective stepping-off points for further research in this area.



Appendix A

Integrated Weak Learning

A.1 Further ablation
In this section we provide results for the ablation on how to include strong labels

when available in the two-stage baseline methods, namely Snorkel and Majority

Vote (MV). The standard approach is to add an additional labeling function

that outputs the strong label if available and abstains otherwise. We refer to

this as the voting variant (-V). This is what we use in the results reported in

section 3.4. An alternative approach we also consider is to leave the labeling

functions unchanged and instead replace the resulting denoised label with the

corresponding strong label if available when training the end-model pθθθ(y|x).

We refer to this as the strong variant (-S). Figure A.1 and the corresponding

table A.1 compare Snorkel-V, Snorkel-S, MV-V and MV-S to our model variant

iWLD across the same 6 datasets for different splits of available strongly labeled

data. We can see that the -S variants in fact consistently outperform the -V

variants. Furthermore our iWLD approach is the best performing method in

28 out of the 30 cases.

A.2 Further experiment details
All experiments were run on a GPU cluster with access to 10 V100 GPU

processors. Each experiment run was executed on a single GPU instance.

The code we have made available for producing our experimental results is

implemented using PyTorch [192].
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Figure A.1: Box-plots of test F1 scores showing the quantiles across 5 random
seeds on the y-axis. Each plot refers to a specific dataset. The model
variants discussed in section A.1 are grouped by the different fractions
of strongly labeled data available on the x-axis (1%, 10%, 50%, 100%).
See table A.1 for more detail.

The specific train, validation and test data splits used across all datasets are

available in a standardized schema at the following URL: https://drive.

google.com/drive/folders/1VFJeVCvckD5-qAd5Sdln4k4zJoryiEun. This

is provided as part of the WRENCH benchmark [39]. Further information on

how this data was gathered, the original source, and the relevant attributes is

available in WRENCH [39].

https://drive.google.com/drive/folders/1VFJeVCvckD5-qAd5Sdln4k4zJoryiEun
https://drive.google.com/drive/folders/1VFJeVCvckD5-qAd5Sdln4k4zJoryiEun
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Table A.1: Test F1 score averaged over 5 random seeds with 1 standard deviation
in brackets across all datasets and model variants discussed in section
A.1. The results are grouped by the different proportions of strongly
labeled data available (1%, 10%, 50%, 100%). Values highlighted with
bold indicate the best performing method.

Agnews Census IMDB SMS TREC Yelp
Labels Model

1%

MV-V 85.05 (0.36) 80.59 (0.28) 81.52 (0.16) 95.40 (1.88) 62.88 (1.58) 89.67 (0.45)
MV-S 85.27 (0.25) 80.80 (0.30) 81.45 (0.38) 95.88 (1.91) 62.84 (1.34) 89.71 (0.52)
SKL-V 83.45 (3.78) 77.89 (0.73) 82.03 (0.28) 88.76 (1.93) 48.24 (1.82) 88.38 (0.43)
SKL-S 84.23 (2.47) 78.36 (0.85) 82.43 (0.63) 88.84 (2.07) 47.56 (2.67) 89.25 (0.38)
iWLD 87.77 (0.31) 82.82 (0.29) 84.31 (0.84) 97.44 (0.55) 67.32 (1.95) 92.21 (0.31)

10%

MV-V 85.65 (0.25) 81.03 (0.21) 82.05 (0.44) 96.76 (1.60) 64.28 (1.19) 90.63 (0.76)
MV-S 85.89 (0.10) 81.68 (0.34) 82.54 (0.57) 97.08 (1.76) 65.44 (0.82) 91.61 (0.56)
SKL-V 84.80 (2.36) 77.67 (0.94) 83.78 (0.73) 89.64 (2.60) 50.64 (3.73) 91.16 (1.03)
SKL-S 87.59 (0.64) 80.03 (1.34) 84.29 (1.22) 90.00 (2.99) 54.56 (4.88) 92.71 (0.34)
iWLD 90.00 (0.18) 83.84 (0.30) 86.53 (0.42) 98.48 (0.39) 71.16 (5.72) 94.06 (0.06)

50%

MV-V 88.17 (0.22) 81.59 (0.26) 84.82 (0.34) 98.44 (0.22) 69.72 (1.98) 93.18 (0.28)
MV-S 89.11 (0.14) 83.99 (0.23) 85.91 (0.23) 98.76 (0.33) 74.80 (4.23) 94.03 (0.17)
SKL-V 88.23 (0.24) 78.69 (1.01) 85.85 (0.21) 93.20 (2.84) 58.56 (6.41) 93.92 (0.25)
SKL-S 90.14 (0.24) 81.96 (0.57) 87.14 (0.23) 98.64 (0.38) 76.64 (3.89) 94.15 (0.18)
iWLD 90.53 (0.17) 84.55 (0.13) 87.52 (0.43) 98.80 (0.28) 78.40 (2.58) 94.18 (0.21)

100%

MV-V 89.65 (0.09) 82.93 (0.30) 86.15 (0.21) 98.44 (0.09) 77.76 (0.89) 94.03 (0.16)
MV-S 90.53 (0.18) 84.50 (0.06) 87.66 (0.14) 98.76 (0.22) 82.40 (0.40) 94.23 (0.09)
SKL-V 89.05 (0.25) 80.97 (0.58) 85.64 (0.27) 96.60 (2.16) 64.76 (2.95) 93.74 (0.22)
SKL-S 90.40 (0.16) 84.48 (0.04) 87.64 (0.15) 98.76 (0.22) 82.40 (0.40) 94.21 (0.12)
iWLD 90.46 (0.39) 84.78 (0.20) 87.74 (0.18) 98.52 (0.11) 82.52 (1.25) 94.47 (0.24)

A.3 Visualizing the label model

In section 3.2.1 we proposed a label model that included a dependency on x

(see figure 3.1b). Figure A.2 plots an array of different transitions ϕϕϕn
k , after

training, for different labeling functions k and different datapoints n. These

are sampled from the TREC dataset (number of class labels C = 6 and number

of labeling functions K = 68). This helps illustrate that our model has in fact

learned different transitions for different datapoints.

A.4 Dependent labeling functions

There is a straightforward extension to our model that may be well suited to

where we have multiple dependent labels ỹ1, . . . , ỹK . In principle, the labeling

functions are conditionally independent given xxx. To take information from the

weak labels, our assumption in section 3.2 is that we can explain the weak
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Figure A.2: Heat plots of the transitions ϕϕϕn
k at convergence after training. For

an array of different labeling functions k and different datapoints n,
sampled from the TREC dataset (number of class labels C = 6 and
number of labeling functions K = 68). This illustrates that our model
is learning different transitions for different datapoints.

labels based only on the true label y, that is

pϕϕϕ(ỹ|y,x) =
K∏

k=1
pϕϕϕ(ỹk|y). (A.1)

A simple alternative choice to consider dependent weak labels is to include an

additional latent h

pϕϕϕ(ỹ|y,x) =
∑
h

pϕϕϕ(h|x)
K∏

k=1
pϕϕϕ(ỹk|y,h). (A.2)
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For a discrete h we can use the EM algorithm for learning. In principle, we

can also include a dependency pϕϕϕ(h|y). We leave further investigation of this

variant to future work.



Appendix B

Generalization Gap In

Amortized Inference

B.1 Application to lossless compression

Lossless compression is an important application of VAEs where improved

generalization translates directly to compression rate. Given a VAE with

pθθθ(x|z), qϕϕϕ(z|x) and p(z), a compressor can be efficiently implemented using

the Bits Back algorithm [193, 104] with the ANS coder [194].

In algorithm 3, we summarize the Bits Back procedure with amortized

inference to compress/decompress a test data point xxx′ to a stack that contains

bit string of messages. The resulting code length for data xxx′ is approximately

equal to the negative ELBO:

− log2 pθθθ(xxx′|zzz′)− log2 p(zzz′)+ log2 qϕϕϕ(zzz′|xxx′). (B.1)
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Algorithm 3 Bits Back with Amortized Inference
1: Share {pθθθ(x|z), qϕϕϕ(z|x),p(z)} with sender and receiver.
2: Compression:
3: Draw sample zzz′ ∼ qϕϕϕ(z|xxx′) from the stack.
4: Encode xxx′ ∼ pθθθ(x|zzz′) onto the stack.
5: Encode zzz′ ∼ p(z) onto the stack.
6: Decompression:
7: Decode zzz′ ∼ p(z) from the stack.
8: Decode xxx′ ∼ pθθθ(x|zzz′) from the stack.
9: Encode zzz′ ∼ qϕϕϕ(z|xxx′) onto the stack.

We demonstrated in chapter 4 that qϕϕϕ(z|x) may overfit to the training data,

directly degrading compression performance in this setting by producing a

worse ELBO on test data where it matters. To improve the compression BPD,

the optimal inference strategy outlined in section 4.3 can be applied within the

Bits Back algorithm. In the compression stage, we can train ϕϕϕ using the single

datapoint:

ϕϕϕ∗ = argmaxϕϕϕ ELBO(xxx′, θθθ,ϕϕϕ). (B.2)

When the qϕϕϕ(z|xxx′) is parameterized to be a Gaussian, we can take ϕϕϕ to be the

mean and standard deviation N (ϕϕϕµµµ,ϕϕϕ2
σσσ).

In the decompression stage the compressed data xxx′ is recovered before the

qϕϕϕ(z|xxx′) is used to encode zzz′. Therefore, we can also train qϕϕϕ(z|xxx′) using the

recovered xxx′ to maximize the test ELBO.

If the optimization procedure is the same as that used at the compression

stage, we will get the same qϕϕϕ∗(z|xxx′). In practice, we need to prespecify

the number of gradient descent steps K to train ϕϕϕ. When K is large, we

approximately recover the optimal inference strategy and the code length is

approximately

− log2 pθθθ(xxx′|zzz′)− log2 p(zzz′)+ log2 qϕϕϕ∗(zzz′|xxx′). (B.3)
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Algorithm 4 Bits Back with K-step Optimal Inference
1: Share {pθθθ(x|z), qϕϕϕ(z|x),p(z)} and the optimization procedure B.2 between the

sender and receiver.
2: Compression:
3: Take K gradient steps ϕϕϕ→ ϕϕϕK using equation B.2.
4: Draw sample zzz′ ∼ qϕϕϕK (z|xxx′) from the stack.
5: Encode xxx′ ∼ pθθθ(x|zzz′) onto the stack.
6: Encode zzz′ ∼ p(z) onto the stack.
7: Decompression:
8: Decode zzz′ ∼ p(z) from the stack.
9: Decode xxx′ ∼ pθθθ(x|zzz′) from the stack.

10: Take K gradient steps ϕϕϕ→ ϕϕϕK using equation B.2.
11: Encode zzz′ ∼ qϕϕϕK (z|xxx′) onto the stack.

This procedure of using optimal inference was first proposed in [195] in

the context of lossy compression and then applied to lossless compression

with Bits Back coding in [130]. By varying the optimization steps K in the

optimal inference we can trade off between the speed of decompression and the

compression rate. We summarise the Bits Back algorithm with K-step optimal

inference in algorithm 4.

The added run-time of additional training steps when doing the actual

compression is a major downside of this optimal inference approach. In contrast,

our proposed reverse half-sleep inference scheme can improve the compression

rate without adding any additional training burden at compression time.

Furthermore, our method can be combined with this optimal inference

strategy to provide a better model initialization to reduce the amount of

subsequent compression time training needed to reach the same compression

rate.

We implement Bits Back with ANS [194] and compare the compression

among four inference methods:

1. Baseline: This is the classic VAE-based compression introduced by

[104]. For binary and grey MNIST, both the encoder and decoder contain 2

fully connected layers with 500 hidden units and latent dimension 10. The

observation distributions are Bernoulli and discretized logistic distribution

respectively. For CIFAR10, we use fully convolutional ResNets [8] with 3
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residual blocks in the encoder/decoder, latent dimension 128 and discreteized

logistic distribution with a channel-wise autogressive linear layer[196] as the

observation distribution. We train both the amortized posterior and the decoder

by maximizing the ELBO (equation 4.2) using ADAM with lr = 3×10−4 for

100, 100 and 500 epochs (for binary MNIST, grey MNIST and CIFAR10

respectively), and then apply algorithm 3 at compression time.

2. Reversed half-sleep: We use our method from equation 4.25 to

further train our inference network before compression for an additional 100

and 300 epochs using ADAM with (lr = 3×10−4) for binary and grey MNIST

respectively, and lr = 1×10−5 for 100 epochs for CIFAR10. Other training

details are the same as the baseline method.

3. Optimal inference: we take the amortized posterior and decoder model

from the baseline and apply the K-step optimal inference strategy described in

algorithm 4 to do compression. We use ADAM and vary the K from 1 to 10

to achieve a trade-off curve between compression rate and speed. We actively

choose the highest learning rate that makes the BPD consistently improve as

we inrecase K: lr = 5×10−3 for binary and grey MNIST and lr = 1×10−3 for

CIFAR10.

4. Reversed half-asleep to improve initialisation for optimal in-

ference: we take the inference networks trained in option 2 above and the

decoder model from the baseline and conduct K-step optimal inference. All

other training details are as per method 3.

Baseline Ours K=7
BPD 0.185 0.179 0.179

Com. Time 0.006 0.006 0.013
Dec. Time 0.006 0.006 0.013
Time Cost - 0% 116.7%

Table B.1: Demonstrates the compression and decompression time comparisons for
MNIST

In tables B.1, B.2, we detail test BPD comparisons for the different methods

outlined. We can see if optimization is not allowed at compression time, the
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Baseline Ours K=8
BPD 4.602 4.585 4.585

Com. Time 0.27 0.27 0.38
Dec. Time 0.26 0.26 0.38
Time Cost - 0% 46.2%

Table B.2: Demonstrates the compression and decompression time comparisons for
CIFAR10

use of our reverse-half-sleep method achieves better compression rate with no

additional computational cost. If we allow K-step optimization during com-

pression, for a given computational budget, the amortized posterior initialized

using our reverse-half-sleep method also achieves lower BPD, which leads to a

better trade-off between the run-time and compression rate.



Appendix C

Solipsistic Reinforcement

Learning

C.1 Variational optimization
With VO we model the parameters of the policy with a Gaussian distribution

www ∼ N (www µµµ,σσσ) to form a differentiable upper bound that we can minimise

w.r.t µµµ and σσσ.

U(µµµ,σσσ) = Ep(www|µµµ,σσσ)−E(www), (C.1)

where E(www) is our memory model planning objective from equation 5.11. After

optimising this bound with respect to µµµ,σσσ, we take the final µµµ as our value for

www. We compute gradients with the usual log-derivative trick, using J Monte

Carlo samples to approximate the resulting expectation as follows. In practice,

we find that learning σσσ does not improve performance, hence we fix it to an

isotropic value of 0.2 throughout and minimize w.r.t µµµ,

∂U

∂µµµ
≈ 1

J

J∑
j=1

∂

∂µµµ
logp(wwwj |µµµ,σσσ)(−E(wwwj)), (C.2)

where wwwj refers to the jth Monte Carlo sample of the policy parameters - see

section policy training in algorithm 1 for further details. In practice, we also

apply fitness shaping [154] to E(wwwj) in equation C.2 to make the VO update

invariant w.r.t. order-preserving transformations of the reward value.
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C.2 Experiment details

C.2.1 MNIST Game
In this section we discuss the details of the architectures and hyper-parameter

settings used for our toy MNIST game experiment from section 5.4.1.

Model architecture The recognition network is composed of a two-layer

convolution neural network, followed by a two-layer feed-forward network. The

two convolution layers have 10 and 20 filters respectively with stride 2 and

kernel size 5. We use max pooling after convolutional layer. We use ReLU

activation functions for both the convolutional and feed-forward layers. The

forward network has 100 hidden units in each layer and the output size is equal

to the number of solipsistic states (in this case 10). We use a softmax function

to create the probabilities of the categorical distribution for determining the

solipsistic state assignments.

Model training For our model objective equation 5.4 we set the hyper

parameters as λs = 1, λr = 2 and m = 5. We use ADAM [66] as the optimizer

with learning rate 10−4 to train the model for Nmodel = 3000 iterations with

batch size B = 64.

Redundancy filtering For computational efficiency, we approximate equa-

tion 5.3 using the following Monte Carlo approximation

Ei ̸=t+1KL(p(st+1|xt,at)||p(si|xi))≈
1

B−1
∑
sssj

KL(p(st+1|xt,at)||p(sssj |xxxj)) ,

(C.3)

where sssj ∈M(ssst+1)\ssst+1 andM(ssst+1) is the mini-batch set that ssst+1 belongs

to and the set M(ssst+1)\ssst+1 has size B−1.

C.2.2 Gym Control from pixels
In this section we discuss the details of the architectures and hyper-parameter

settings used for our Cartpole experiment from section 5.4.2. For model and

policy training we follow algorithm 1.

Model architecture The recognition network is a four-layer convolution
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neural network with Batch Norm [197] and ReLU activation functions followed

by a feed-forward layer with output size equal to the size of the solipsistic

representation dim(S) = 16. We set the kernel size to 3 for the first three

convolutional layers and 5 for the last convolutional layer. We set the channel

size to 8 and stride to 1 for the first convolutional layer and 16 with stride 2 for

the other three convolutional layers. The policy network is a two layers feed

forward neural network with 50 hidden units in each layer, which maps from

the solipsistic state to a sigmoid function that parameterizes the probability of

a Bernoulli distribution. The RNN we used is a single layer Gated Recurrent

Unit (GRU) [65] with memory in the first time-step initialized as the first

solipsistic state s1. In each recurrent step, the GRU cell takes one action as

input and outputs the prediction of the solipsistic state for the next time step.

Therefore, the size of the hidden memory of GRU is equal to the size of the

solipsistic state.

Model training We use ADAM with learning rate 10−4, on batches of size

B = 10 of sampled environment trajectories of length Tmodel = 50, with λs = 1,

λr = 2 and m = 5.

Policy training We use VO (section C.1), with J = 50 parameter pertur-

bations, under model prediction roll-outs of length Tpolicy = 200 and we train

for Npolicy = 50 iterations, using ADAM with learning rate 10−2. We found

that re-initializing the policy parameters w after each model update helped

overall performance.

Exploration strategy At each iteration i of algorithm 1 during the trajec-

tory collection phase we collect C = 5 trajectories and add them to our memory

for subsequent model training. We use an exploration strategy (see line 9 of

1) during trajectory collection as follows: for c = 1 we follow the latest policy

pwwwi(at|st) with re-planning (section 5.3) to collect a full trajectory. Then, for

c = 2, . . . ,5, we instead follow an ϵ-policy, where we take the action sampled

from pwwwi(at|st) with probability ϵ and we take a random action with probability

1− ϵ, where ϵ = 0.5.
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Redundancy filtering We use xm
t to denote the state at time t of the

mth trajectory. We approximate equation 5.3 using the following Monte Carlo

approximation

Ei ̸=t+1KL
(
p(sm

t+1|xm
t ,am

t )||p(si|xi)
)
≈KL

(
p(sm

t+1|xm
t ,am

t )||p(sn
t+1|xn

t+1)
)

,

(C.4)

where the nth (n ̸= m) trajectory is sampled from memory. We found this

one-sample Monte Carlo approximation works well in practice.

C.2.3 Baseline model-free methods

0 500 1000 1500 2000 2500

0

50

100

150

200 PPO clip=0.1
PPO clip=0.2
DQN

Figure C.1: Evaluating the baseline policies trained using 2500 trajectories. We
plot the average over 5 runs using different random seeds for our
parameter initialization. We smooth the curves using a moving average
with window size 3. We find the curves for PPO have high variance,
meaning that PPO can occasionally get reasonable performance for
this number of trajectories (e.g. balancing the pole for over 100 time
steps successfully) but is not very stable during training and across
across different random seeds.

C.2.3.1 PPO
We implemented the PPO method [145] as a baseline to evaluate our methods.

We run PPO using two different clip ratios 0.1 and 0.2. The policy and

the value networks share similar architecture to our recognition convolutional
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neural network described in section C.2.2 with the only difference being the

dimensionality of the output layers. For the Cartpole experiment, the output

size of the policy network is 2 and we use a softmax activation function to

parameterize the probabilities of choosing from two actions. The output of

the value network is a linear layer with output dimension 1. For each training

episode, we sample 5 trajectories from the true environment with a maximum

length of 200. We then train the model for 10 epochs using ADAM where we

take the hyper-parameters provided by the OpenAI Baselines implementation

[198], where learning is 3−4, γ = 0.99, λ = 0.95, the weight of the value term

is 0.5 and the weight of the entropy term is 0.01. We report results for two

different clip ratios of 0.1 and 0.2.

C.2.3.2 DQN

The other model free baseline we compared to is DQN [144]. Like for the case

of PPO, we keep the architecture of the Q-network and the target network

similar to our recognition network, except for the final output layer. In our

Cartpole experiment, the Q-network outputs the Q-value for the two possible

actions given the states. The action with the larger Q-value is chosen during

control. We train DQN for 2500 episodes (as shown in figure C.1). For each

episode, we sample one trajectory with the maximum length of 200. After a

limited grid search of hyper-parmeters, we find that the hyper-parameters from

the PyTorch DQN tutorial [199, 192].

C.2.4 Activation maps for PPO

In this section, we visualize the activations of the first convolution layer of the

policy network and the value network for PPO. We plot all 8 filters’ activations

and use a sigmoid function to create the following grey-scale images. Each

column represents a filter. Each row represents the state of a trajectory as the

cart is pushed to the right with monotonically increasing velocity (as in figure

5.6). In both figure C.2 and figure C.3, none of the activation maps have a

change in activation that can clearly be interpreted as relating to the increase
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in velocity (unlike the case of the solipsistic recognition model illustrated in

figure 5.6); only the positional information of the cart and pole is obviously

captured.

Figure C.2: Visualization of the activations in PPO’s policy network.

Figure C.3: Visualization of the activations in PPOs value network.



Appendix D

Active Preference Learning

D.1 Data preprocessing
For IMDB, each sample xxx is randomly drawn beginning of a review. The

only processing we do here is to randomly truncate xxx to a number of tokens

randomly drawn from the range 8-16 tokens. See table D.1 for some truncated

examples that we feed to the model to complete a positive review for:

Truncated movie review prompt samples
I very much looked forward to this movie. Its a good family ...
Really, I can’t believe that I spent $5 on this movie. I am a huge zombie ...
I have read all of the Love Come Softly books....
I’ve seen all four of the movies in this series. Each one strays further ...

Table D.1: IMDB data from https://huggingface.co/datasets/imdb; ran-
domly truncated to produce a prompt for training data generation
and evaluation.

For TLDR, we filtered the Reddit posts between 200-1000 characters. This

was mainly due to memory contraints of the GPUs used to train the models. We

also filtered whole broad categories of Reddit posts out, such as r/offmychest

and r/tifu, because they had high likelihood of containing explicit content.

Finally we removed trailing space tokens. See table D.2 for examples.

D.2 Fine-tuning iterations
In order to determine how many fine-tuning epochs to carry out after each new

data acquisition step, we took a simple approach of defining a fixed number

https://huggingface.co/datasets/imdb
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Prompt SUBREDDIT: r/cats TITLE: Acquired cat! Now a question.. POST: So, I just got a
lovely little cat named Luna. She’s about a year, a year and a half and pretty tiny. I live
in an apartment located on the 5th floor of my building. My apartment doesn’t have AC
(I’m in NYC) and I usually like to leave the windows open for ventilation. They’ve got
child bars, but because Luna is so small she can easily fit through them–and did a few
moments ago. Nearly gave me a heart attack watching her slip through them and walked
out onto a very narrow ledge 5 floors above a concrete sidewalk. She came right back in,
but now I’m concerned about having a dead cat on my hands (or more accurately, on my
sidewalk). So my question is, should I trust her cat instincts and leave the windows open?
Or shall I sit in a stuffy apartment with the windows sealed? TL;DR:

Human Summary I live on the 5th floor and my cat just walked out on my window ledge and came back in.
Should I be nervous she’s going to explore too far out and fall to her kitty death?

Prompt SUBREDDIT: r/AskReddit TITLE: I want to throw a great party, Reddit. What are
some special things that I can do to make this happen? POST: Alright, so my 19th
birthday is next Friday. I live in a college town, renting a house alone for the summer,
and I want to throw a great party. I have invited friends from both school (which means
they are coming from all over the state) and from home. However, since it’s summer, I
know that a lot of people won’t show. Gas is expensive and for some, it’s a far drive, so I
understand. I’m thinking music, card playing, beer pong, etc... But what else can I do to
make sure that everyone mingles, it isn’t lame, and that things stay under control while
everyone still has a good time? TL;DR:

Human Summary How do I throw a kick ass party with a bunch of people who don’t really know each other
and my house is still standing in the morning?

Table D.2: Samples of TLDR data from https://huggingface.co/datasets/
CarperAI/openai_summarize_tldr

of epochs. The parameters of the model are re-initialized after each data

acquisition step. We based the choice of how many epochs to fine-tune for on

the number of epochs it took on average for the model to converge at different

dataset sizes. We analysed loss and win-rate curves for the different model and

dataset combinations and decided upon 50 epochs for IMDB and 70 for TLDR

- see figure D.1 for a sample of convergence behaviour.

Figure D.1: Illustrates a sample of how the convergence of the loss relates to the
win-rate. Used for emprically inferring the number of fine-tuning
epochs to apply after each data acquisition step.

Future work will explore different early stopping criteria and techniques for

https://huggingface.co/datasets/CarperAI/openai_summarize_tldr
https://huggingface.co/datasets/CarperAI/openai_summarize_tldr
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not resetting the model parameters after each data acquisition step to make

the method more computationally efficient and practical for scaling up.

D.3 Example responses
In tables D.3, D.4 we provide examples of prompt completion pairs for our

models discussed in section 6.5.2 after the fine-tuning process alongside the

preferred GPT-4 oracle choice.

Prompt The comments of the previous user are harsh indeed
A: Fine-tuned completion . This is a great film with a great story and a great cast. Highly

recommended. I saw this movie on Sund
B: Original completion . I am a fan of the original series and I have watched the first two

seasons of the series. I have also
Preference A
Rationale Review A is better as it expresses a clear positive sentiment towards

the film, while Review B does not provide any opinion on the movie

Prompt I was looking forward to this so much, being a
Fine-tuned completion huge Harry Potter fan. I was very impressed with the story and

the acting. I highly recommend it.
Original completion huge fan of the original series. I was so disappointed. I was

expecting a lot more from this.
Preference A
Rationale Review A is better because it provides a positive sentiment about

the movie, is grammatically correct, and does not contain repetition
like Review B.

Table D.3: Sampled completions, and GPT-4 oracle evaluation from an IMDB
fine-tuned with certainty acquisition.

D.4 Online variation
In section 6.5 we note that a practical limitation to scaling algorithm 2 to

significantly larger models is that the parameters θθθt are reset to θθθ0 in step 12

and the model is fine-tuned on all the data acquired so far each step. Here we

motivate an online variant where we instead don’t reset the parameters and do

a single gradient update with respect to the most recently acquired data during

fine-tuning. This significantly reduces the time spent fine-tuning during the

active learning approach. This is similar to the approach taken in [200], where

they randomly, instead of actively, acquire the data and consider comparing

online vs offline.

We re-run our IMDB experiment from section 6.5 with this online active
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Prompt SUBREDDIT: r/relationships TITLE: I(17M)am gealous because
my girlfriend(16F) of over 4 months is having conversation that she
starts with my classmate. POST: I am now really down because
of this. We had an argument 2 months ago about this and I told
her to stay away from my classmate(he is a really bad person and
always speaks really bad about her when he is with others or even
with me, we’ve been colleagues for 10 years now and he is awful, I
hate him), and I’m sick of it. The problem is, today after checking
her phone I realized she starts most conversation and he is mostly
not answering to her immediately. I am not sure what to do and I
am really confused and really really sad and disappointed. What
should I do? TL;DR:

A: Fine-tuned completion GF of over 4 months starts most conversation with my classmate,
he is mostly not answering to her immediately. I am not sure
what to do and am really sad and disappointed. Need advice.
[endoftext]

B: Original completion I am really sad because my girlfriend starts most conversation with
my classmate and I’m sick of it. What should I do?[endoftext]

Preference A
Rationale Summary A is preferred as it includes more relevant details from

the post, such as the duration of the relationship, the classmate’s
lack of immediate response, and the poster’s need for advice, which
were missing in Summary B.

Prompt SUBREDDIT: r/dogs TITLE: Need a little advice regarding our
elderly dog. POST: Our rescue [Lt. Ellen Ripley] has been showing
her age lately. Actually for the last six months or so she has been
going a bit downhill. Formerly very active and happy to play she’s
blind, deaf and now sleeps or spins in circles all day. She hasn’t
been able to hold her water or poops at all and we’ve been coming
home to a nightly cleanup. Worse she’s been biting at us a lot and
seems to think our hands are actually delicious fish sticks.
We’ve tried medicine and have seen the vet numerous times but
she just seems to be getting worse and worse.
So, advice time. Am I being selfish? I feel like keeping her around
may not be the best thing for her anymore. I worry that she
spends her time now scared, confused and in the dark. But so far
as I know, she’s not in any pain and she can still recognize me on
occasion.
I’ll TL;DR:

A: Fine-tuned completion Old rescue dog has been getting worse and worse. Tried medicine
and the vet. Don’t know if keeping her around is the best thing
for her anymore. Need advice.[endoftext]

B: Original completion We have a dog that is getting older and is starting to become more
depressed. What should we do about it?[endoftext]

Preference A
Rationale Summary A is more accurate and detailed, capturing the severity

of the dog’s condition, the attempts at treatment, and the owner’s
dilemma, while Summary B oversimplifies the situation by referring
to the dog as merely "more depressed."

Table D.4: Sampled completions, and GPT-4 oracle evaluation from an TLDR
fine-tuned with certainty acquisition.
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variation for random and preference certainty acquisitions. We do 3 random

seeds and include standard error bars in figure D.2. We find that preference

certainty significantly outperforms random on this problem, motivating further

study.

Figure D.2: Win-rate vs initial model after each acquired batch for IMDB with
random and preference certainty acquisition and online fine-tuning.
Only a single fine-tuning gradient step is taken on the latest batch.
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