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Abstract

Deep learning is the most predominant learning paradigm in artificial intelli-
gence. The deep neural network models deployed in practise are increasingly
data and resource hungry. This thesis introduces several methodological ideas
to improve the data efficiency of deep learning algorithms across a diverse range

of applications.

The first section deals with supervised deep learning in settings where
collecting labelled data is expensive in time and/or cost. We focus on the
scenario where multiple weak and relatively cheap sources of supervision are
also available. We develop an approach that jointly trains the supervised model
and a separate label model to aggregate weak supervision sources and show it
outperforms existing weak learning approaches across a benchmark of natural

language processing problems.

The second section focuses on unsupervised deep learning; specifically the
problem of generative modelling. We study generalisation in variational in-
ference when neural network based amortization is used. We introduce a
wake-sleep style training scheme for variational autoencoders that improves
generalization performance for a given budget of training data and demonstrate

the utility of this approach in image modelling and compression applications.

The third section explores how to improve the efficiency of deep reinforcement
learning (RL). We propose a model-based RL framework that learns a low
dimensional representation of the environment while avoiding the need to learn
a generative model of the environment. We demonstrate gains in efficiency over

model-free methods when learning directly from pixels in a control problem.
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The final section tackles how to align large pretrained generative models
to human preferences. We discuss an alternative approach to reinforcement
learning from human feedback based on a maximum likelihood criterion and in-
troduce a simple active learning regime for more efficiently collecting preference

data.



Impact Statement

The work presented in this thesis has the potential to have both academic,
industrial and societal impact related to the practical application of deep
learning methods. In particular where data efficiency is of concern, which is

increasingly the case as models grow bigger and more data hungry as we discus

in chapter [1}

Collecting labelled data is the crux for many applications of supervised deep
learning, which is arguably the most widely applied form of deep learning in
industry to date. In fact, there is a dedicated industry around data annotation
services concerned with helping companies efficiently collect high quality labels
for training and evaluating their AI applications. Chapter [3| improves upon
existing methods in weak learning which have had widespread practical and
commercial impact in this industry [1]. Of particular societal impact are those
problems wherein expensive domain experts such as doctors are required, in

applications such as medical image based diagnostics, to provide supervision.

Chapter [4] sheds light on the problem of generalization in unsupervised
generative models and has already had some academic impact; being peer
reviewed and published at a top tier conference [2] and cited multiple times
in independent follow up research. It also has positive industrial potential for
improving state-of-the-art image modelling and compression applications where

strong generalization for the class of model studied is required.
With the advent of large generative models reaching human capabilities
across a range of increasingly diverse tasks, an increasingly pressing academic,

industrial and societal problem is that of aligning these models with human
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preferences. Both from the perspective of improving the utility of these models
and relating to Al safety. The methods presented in chapter [6] present a
practically simple approach to making better use of data for preference fine-
tuning models, which is currently seen as an important stage in the training
pipeline towards this alignment goal. It also touches on important themes of
how to automate the evaluation of these models using other models. This work
has already had academic impact evidenced by being published at a top tier
journal and cited multiple times in independent follow on work [3].

Finally, creating agents that can effectively plan and act in the physical
and digital world is a panacea for value creation using Al in industry and
society. Deep reinforcement learning is the methodology underpinning most
innovations in this direction. Chapter [ although prototypical in nature and
still with practical limitations, contains promising ideas around efficiently
learning directly from pixels while filtering out redundant information. We
have seen related methods scaled up to provide state of the art results in

reinforcement learning [4].
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Notation

Throughout this work we will largely follow these notational conventions unless

specified otherwise:

Scalar

Vector

Matrix

Scalar random variable

Vector random variable

Matrix random variable

Set, usually of vectors X = {z!,--- 2™V}
Observed and latent observations respectively
Label and weak/noisy label observations respectively
n’th element of a set

7’th dimension of a vector

Vector at step t in an episode

Test datapoint

Gaussian distribution

Entropy of distribution p(x)

Probability density/mass functions
Expectation of x under distribution p
Objective function

Kullback-Leibler divergence

Vectors of learnable parameters

Neural network parameterized by 6
First order gradient w.r.t

Big-O notation



Chapter 1

Introduction

Deep learning is a foundation of modern day progress in Artificial Intelligence
(AI) research [, 6], the impact of which can now be felt across society. We've
gone from seeing success in classical narrow applications - such as image
classification [7, 8], speech recognition [9] and basic natural language processing
[10, 11] - to experiencing intelligent systems that are redefining industries.
From autonomous driving technology [12], to coding co-pilots that significantly
increase the productivity of software engineers [13], to personal assistants like
ChatGPT that arguably pass the original Turing test [14]. The international
community are now cooperating on ensuring the next phase of Al development
is inclusive in terms of economic growth and sustainable development, and to

foster public trust in Al systems [15].

Fundamentally deep learning is a machine learning methodology that utilizes
function approximators consisting of multiple layers of artificial neurons; so-
called neural networks models. These models transform raw input data, such
as text or image pixels, through a series of linear and non-linear operations
defined by the neurons, producing complex hierarchical representations. These
representations are used by the model to make predictions. The form the
prediction takes is dependent on the specific task; in image classification, the
prediction would be the class of the image, for example a cat if learning to
categorise animals. The learning process involves adjusting the parameters of

the neurons at each layer to satisfy some criteria over a given training dataset.
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One of the origins of deep learning research can be traced back to the
development of the brain inspired perceptron model by Frank Rosenblatt in the
1950s [16]. This laid the foundation for modern day neural network models that
form the basis for deep learning research. However in 1969 Minksy and Papert
published their work Perceptrons that highlighted the inability for the simple
perceptron model to solve non-linear problems such as XOR [17]. This work
contributed to a decrease in interest and funding in neural network research
for the subsequent couple of decades. Alternative more traditional statistical
methods prospered, like support vector machines [18] and decision trees [19]. It
was not until the early 2000s when deep learning really saw a more widespread
research resurgence, which has continued to grow in momentum to produce
the modern day impact described above. Prior methodological advancements,
like stacking multiple perceptrons to create deep models [20] and the efficient
back-propagation learning algorithm [21], were combined with significantly
larger and more efficient computational resources and significantly larger data
sets. During the 2010s, this resurgence and scaling-up lead to variations of deep
neural network models getting close to or surpassing human level performance
on a range of specific narrow problems such as image classification |7, 8], reading

comprehension [22, 23] and game playing [24, 25].

Now in recent years the popular trend coined Generative Al by marketeers
has emerged; transcending both academia and industry. This is mainly due to
the advent of very large language models (LLMs) trained on internet scale data
such as GPT-4 [26]. This class of model is capable of generating remarkably
human-like text and exhibiting more general capabilities than previous systems.
This new capability is linked to a hypothesis in deep learning known as the
scaling laws, which has supporting empirical evidence [27]. Scaling laws suggest
that the performance of models improves as a power-law function of their
size, training data and computational resources. This implies that by simply
scaling up existing models - some combination of increasing the number of

model parameters, training on larger datasets and leveraging more computation
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- we can expect to achieve better performance. On one hand, this suggests
an exciting path forward: continued growth in model and dataset size and
computational resources could lead to further advancements in capabilities.
On the other hand, this poses serious challenges: larger models and datasets
may become impractical for many important use cases, require vast amounts
of energy and raise important questions about the democratization of Al, as
only a few entities may have the resources to gather such datasets and train

such models [28].

Hence a drawback of deep learning methodology is the typical requirement
for increasingly large amounts of data to effectively train and generalize to
new unseen data. This requirement seems to be at odds with how humans and
animals are understood to learn [29]. For instance, unlike the deep learning
image classifiers referenced above, a child does not need to see thousands of
images of a cat to recognize one. Equipped with only a few examples, they can
effectively generalize and identify a cat in various positions, sizes, and colors.
Similarly, a human player does not need tens of thousands, if not millions, of
games to begin to effectively understand the rules and devise strategies for
board games like chess or go. This apparent limitation in learning efficiency is

the core motivation that ties together the work in this thesis.

Our core research question is how do we make these deep learning systems
more data efficient such that they can do more with less data? We seek simple
and practical adjustments to deep learning techniques to make them more
data efficient. To better understand what we mean by data efficiency, we
must first consider the different applications of deep learning before discussing
further our specific contributions. There are three canonical types of learning
methodology where deep neural networks are applied that we touch on in this
thesis; supervised learning, unsupervised learning and reinforcement learning.
We discuss each informally here before more careful treatment in the next

chapter.

Supervised learning (SL) is where deep learning found much of it’s early
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success. In this paradigm, models are trained to learn a mapping from an
input datapoint to a corresponding output or target label, based on a labeled
dataset of input/output pairs. A common example being data classification.
Our aim in SL is to minimize the discrepancy between the model’s predictions
and the actual targets. The measure of data efficiency in this setting usually
refers to how many labels are required to achieve a specified performance. In
many important real world applications of supervised learning the collection
of labelled data can be very expensive in time and/or cost and can severely
limit adoption. One such example is medical imaging, on tasks like tumour
detection, where the collection of labelled data involves the participation of

medical experts who’s time is sparse and expensive [30, [31, |32].

Unsupervised learning, in contrast, involves training models on datasets
without explicit target labels. The learning process is guided by an objective
of discovering underlying structures or distributions in the available collection
of unlabelled datapoints. This form of learning is particularly useful for tasks
such as generative modeling or dimensionality reduction, where the goal is
to generate new data that represent the underlying distribution of the input
data, or to understand the underlying structure in the data for downstream
tasks. The measure of data efficiency in this setting usually refers to how many
datapoints are required to achieve a particular performance level. Although
there is no need for labels like in supervised learning, there are various practical
problems that benefit from unsupervised deep learning and where data is
sparse and expensive to collect. For example in chemistry and biology research,
deep generative models are used to generate molecular structures for potential
new drugs; the models are trained on existing molecular structures that are

expensive to produce [33, 34].

Lastly, reinforcement learning (RL) is a type of learning where an agent
learns to make decisions by interacting with an environment. Each interaction
with the environment is known as an episode. The agent receives feedback in

the form of rewards based on the actions taken and our goal is to learn a policy
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model that determines which actions to take at a given step in the episode, that
maximizes the cumulative reward over time. Deep neural networks are used as
the policies and other components of various state of the art RL frameworks.
This form of learning naturally applies to problems that involve sequential
decision making, such as game playing, robotics, and autonomous driving [35].
The measure of data efficiency in this setting is typically the number of episodes
required to reach a target cumulative reward. In certain real world examples
each episode is associated to a physical cost. For example in real robotic control,
the cost could be the fuel source and wear and tear on the robot itself [36) 37].

How to improve data efficiency is a very multi-faceted problem in deep
learning. A plethora of different broad strategies have emerged in the literature
towards this goal, many of which are complimentary and are often combined in
practise with great effect. The following topics are relevant to the contributions
in this thesis and will be discussed in more detail in the relevant chapters: weak
learning (chapter [3), transfer learning (chapter [4)), active learning (chapter [6)
and training data augmentation (chapters [4 and [5)).

o Weak learning encompasses techniques that leverage noisy or imprecise
labels to train models usually in the supervised regime, thereby reducing

the dependence on large, clean datasets 38, |39).

« Transfer learning involves reusing a model developed for one task as
the starting point for a model on subsequent (usually related) tasks in

order to speed up learning [40].

o Active learning is an iterative process where the model actively queries
an oracle (such as a human expert) during training to label new data
points that it predicts will be most beneficial for learning, which reduces

the amount of data required for training overall [41].

« Data augmentation generally involves generating additional training
data to improve performance either by applying transformations or noise

to the existing data, using a trained generative model to synthesize
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additional examples, or by bootstrapping predictions from the model

being trained [42].

Other related research areas are meta-learning [43] and semi-supervised learning
[44], which lie outside of the scope of this thesis.

In the next section [L.1l we describe how each of the contributions in this
thesis map onto these problem areas and summarise the specific contributions
that help improve performance around data efficiency.

Throughout this thesis we adopt a basic probabilistic modeling perspective
on deep learning. While deep neural network models are in principle complex,
highly non-linear functions, they can be formulated as parameterising probabil-
ity distributions of observed data. This perspective allows us to leverage a basic
toolbox of probability theory and statistical inference, providing a common,

principled language for developing and communicating our methods.

1.1 Outline and contributions

This section will clarify the structure of this thesis and discuss how it relates to
my existing publications. The majority of the work presented in this thesis was
born from collaborations, to varying degrees, as are many machine learning
papers given their multi-faceted and interdisciplinary nature. Where I am not
the first author of the associated publication, I summarise the contribution
boundaries below.

This thesis is broadly composed of 4 independent chapters that deal with
ideas for improving data efficiency within the learning domains discussed in the
previous section. The first part develops a weak learning approach for improving
label efficiency for deep supervised learning models, the second improves on
generalisation performance in deep unsupervised generative models, the third
introduces a deep model based reinforcement learning method, and finally the
fourth improves supervised preference fine-tuning of large pre-trained generative

models. More specifically the structure of the thesis is the following:

Chapter 1 - Background: Provides details on the necessary background
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for the contributions to follow; building upon the concepts presented in
this introduction. Further background related to the sub-topics (weak
learning, variational methods, reinforcement learning and active learning)

is provided in the relevant chapters.

Chapter 2 - Integrated Weak Learning: focuses on the paradigm
of weak learning where it’s assumed that multiple weak and relatively
cheap sources of supervision are available alongside the labelled data in
supervised learning. Typically a two-stage process is followed, where a
separate label model is constructed in order to denoise and aggregate
the weak sources to produce labels that can be added to the training set
to improve performance. We develop an approach that instead jointly
trains the end model with the label model. This chapter is based on the

following paper:

P. Hayes, M. Zhang, R. Habib, J. Burgess, E. Yilmaz, and D. Barber. Integrated

Weak Learning. In arXiv preprint arXiv:2206.09496. 2022.

Chapter 3 - Generalization Gap in Amortized Inference: deals
with the problem of unsupervised deep generative modelling. Specifically
we focus on the popular setting where neural networks are used to amor-
tise the cost of inference across datapoints in probabilisitic deep models.
We introduce a wake-sleep style training scheme for the variational au-
toencoder class of model that improves generalization performance for a
given budget of training data by augmenting the dataset with predictions

from the model.

This chapter is based around joint work in the following paper. My
contributions were around ideation on the generalization gap that our
collaborator David originally seeded, experiment design and the transfer
learning experiments that use the learned representations. My other col-
laborator and lead author Mingtian formalised the initial ideas, suggested

the wake-sleep connection and did the main application to compression.
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Mingtian and I wrote the conference paper together with feedback from

Dayvid.

M. Zhang, P. Hayes, and D. Barber. Generalization Gap in Amortized Inference. In

Advances in Neural Information Processing Systems. 2022.

Chapter 4 - Solipsistic Reinforcement Learning: explores how to
improve the data efficiency of deep reinforcement learning. We introduce
a model-based RL framework that learns a low dimensional representation
of the environment while avoiding the need to learn a generative model of
the environment. This is based on the following paper where I am joint

first author:

P. Hayes, M. Zhang, Z. Andi, and D. Barber. Solipsistic Reinforcement Learning. In
International Conference on Learning Representations Workshop on Self-Supervision

for Reinforcement Learning. 2021.

Chapter 5 - Active Preference Learning: is based around a setting
of particular practical interest; we build upon methods to align large
pre-trained deep generative models to human preferences. We introduce
a simple active learning regime for more efficiently collecting preference
data. This work is based on the following paper and was carried out
mainly in collaboration with William Muldrew at UCL. I seeded the
original idea, implemented the first version, collaborated on experiment
design and wrote the paper with feedback from co-authors William and
Mingtian. William implemented the experiments scaling up to larger
language models in the conference paper and collaborated on iterating

on the methodology and experiment design throughout the project.

W. Muldrew, P. Hayes, M. Zhang, and D. Barber. Active Preference Learning for

Large Language Models. In International Conference on Machine Learning. 2024.

The following research was also published during my PhD but, although

aspects can be related to the broad theme, will not be covered by this thesis:
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M. Morris, P. Hayes, 1. J. Cox, and V. Lampos. Neural network models for influenza
forecasting with associated uncertainty using Web search activity trends. In PLoS

Computational Biology. 2023.

M. Zhang, P. Hayes, T. Bird, R. Habib, and D. Barber. Spread Divergence. In

International Conference on Machine Learning. 2020.

E. Yilmaz, P. Hayes, R. Habib, J. Burgess, and D. Barber. Sample efficient model

evaluation. In arXiv preprint arXiv:2109.12043. 2021.

M. Zhang, O. Key, P. Hayes, D. Barber, B. Paige, and F.-X. Briol. Towards Healing
the Blindness of Score Matching. In Advances in Neural Information Processing

Systems Workshop on Score-Based Methods. 2022.



Chapter 2

Background

This chapter builds upon the concepts introduced in the last chapter to detail
the necessary terminology, notation and methodology on probabilistic models
and neural networks and their relevant training protocols.

Given this thesis is composed of multiple pieces of relatively independent
work, the relevant recent work and topic specific background related to active
learning, model based RL and fine-tuning generative models, will be covered in
the relevant subsequent chapters. The background in this section are the prior
building blocks of notation and modelling concepts required before covering
these specific topics further.

The contents to follow assume a general background in multivariate calculus,
linear algebra and probability theory. For a more thorough resource on the

topics covered here, we recommend reading [51], [52] and [53].

2.1 Probabilistic modelling

Given an observed dataset Xy qin = {z!,---, 2}, where z € R or 2 € {0,1}7,
sampled from some underlying unknown data distribution py(x), the goal of
unsupervised learning is to approximate py(x) with another distribution pg(x).
We refer to pg(x) as our model with parameters @ that we aim to determine or
learn using the observed data. The process of learning in our setting generally
entails minimising some measure of distance between pg(x) and the unknown

pa(x) by changing 6. A principled method we’ll use throughout this thesis is
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to minimize the Kullback-Leibler (KL) divergence. That is, we want to find

the parameters 6 such that

A

0= arginin KL(pa(x)|[pe(x)) (2.1)

where the KL is defined as

KL(pa(x)||pg(x)) = Ep, (x)[log pa(x)] — Ep, (x)[log pe (x)]- (2.2)

We use E,)[f(x)] to denote the expectation of function f(x) with respect to
distribution p(x), E,w)[f(x)] = [ f(x)p(x)dx. The first term represents the
negative entropy of the data distribution —H,,(x) = E, x)[logpa(x)], which
is a constant (i.e. it does not depend on ). The second cross entropy term
involves integrating over the unknown data distribution py(x), which can be
approximated using a Monte-Carlo estimate with the observed data Xjqn that

in general we assume to be sampled identically and independently (i.i.d);

1 N
By [logpe(x)] ~ 210gpo($")- (2.3)

Estimating @ by minimizing the KL divergence in this way is equivalent to
maximum likelihood estimation (MLE). The likelihood here refers to how likely
a set of parameters are given the data. We will cover off how this minimization
procedure works in practise later in section [2.3] This optimization process

using Xyrqin is referred to as training or learning.

Traditionally in the case of supervised learning, where we instead have
labelled data pairs Xyrain = {(2!,y'), -, (z,y™)}, the underlying data dis-
tribution is now the joint distribution py(x,y) = pg(y|x)p(x). We wish to
approximate the true conditional distribution pg(y|x) with a supervised model

pe(y|x). We can similarly use maximum likelihood estimation for fitting our
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model using the observed data

A

1 N
0 = argmax ¥ > logpe(y"|z™). (2.4)
0

n=1

For specific machine learning problems, there are two design choices typically
required to define the likelihood. Firstly, depending on the domain of x (in the
case of unsupervised learning) or x and y (in the case of supervised learning), we
must choose an appropriate class of probability distribution for the likelihood.
Secondly, we require a parameterization fg(x) for the chosen distribution to
define how the parameters might relate to the input data - in our setting this is
a deterministic function. To illustrate this, sticking with the supervised setting
and the choice of distribution, in binary classification settings where y™ € {0,1}

we can use a Bernoulli likelihood function

pe(y = 1|z) = o(fo(x)), (2.5)

where o(z) = (1+¢%)~! is the sigmoid function. In multi-class classification
settings, where y” can now take one of K different classes, we can define y" as

a K dimensional one-hot vector and use a categorical distribution

pe(yi = 1|z) = softmax(fp()); (2.6)

where softmax(x); = %/« e is the softmax function that maps to the
probability simplex. And finally in the case of regression, we can use a Gaussian

distribution where the mean of the distribution is the learned function of data

po(ylz) = N(ylfo(z),v). (2.7)

The variance v can also be learnt but is usually considered as part of a more
Bayesian treatment where a prior is introduced on the parameters.
In the limit of an infinite amount of data the MLE estimate 8 will converge

to the true value that recovers pg, but, crucially, assuming a well specified model
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H A model is considered well-specified if there exists a choice of distribution p

pg(X)) =

0 = pg(x) = py(x). For a given choice of distribution, a significant focus of

(e.g exponential family) and parameterization 6 such that KL (pd(x)|

machine learning is concerned with the choice of a function approximator fy
and how to update the parameters during training. In principle, the goal is to
select a model with enough capacity to capture the underlying complexity of
the data. Capacity here refers to the ability of a function approximator to fit
a wide variety of functions. If the capacity is too low, say for example using
a strictly linear model to model data with non-linear correlations, the model
will be unable capture the true data-generating process. This results in what
we refer to as under-fitting. This is where neural networks and deep learning
come in. The promise of deep learning is to provide a very general purpose
and powerful function approximator. With tens of billions of dimensions in
in modern state-of-the-art models, they have capacity for learning the most
complex of distributions. In section [2.2] we will drill into the specifics of neural
network functions and then in 2.3 how optimization works in practise using
efficient gradient descent methods.

In practise we only have access to finite noisy samples from pg(x) in X¢rgin.
Hence when measuring the performance of a trained model pj (x), we do so
by computing the test likelihood (and other evaluation metrics of interest
that are use case specific) on a separate held out (from training) dataset
Xiost = {5:1, .. ,§:M} ~ pg(x). We refer to this as the test or the generalization
performance of the model. If the model capacity is too high and the learning
procedure is not robust, the model may end up encoding the noise or spurious
correlations in the training samples; as opposed to capturing the true underlying
generative process leading to a model that does not generalise well to test data.
We refer to this as over-fitting. Therefore the power of neural networks can

yield inferior performance versus simpler models for certain use cases where

I'There are also other technical requirements such as the data is sampled i.i.d., the
parameter space is identifiable, the likelihood function is twice differentiable with respect to
the parameters, and the Fisher information matrix is positive definite - see [54] for a more
thorough treatment.
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data is sparse and/or noisy. We will explore the concepts of over-fitting and
under-fitting in more detail in chapter [] in context of unsupervised generative

models.

2.1.1 Latent variables

The probabilistic models discussed so far have been specified with fully observed
random variables. It is often useful to introduce unobserved latent random
variables into the specification of our models to better model the phenomena
of interest. Consider for example the problem of modelling the topics that
appear in a collection of documents; many techniques, such as Latent Dirichlet
Allocation (LDA) [55], assume that an observed document ™ is a mixture of
unobserved latent topics 2" that one would like to infer. Another more general
example that motivates the use of latent variables is if we assume our observed
data actually lies on some lower dimensional latent manifold that we wish to
learn.

Latent variable models assume the data is generated by the transformation
of one or more underlying latent variables. As with the fully observed case, we
can use maximum likelihood estimation; but here we must marginalise out the

unobserved variables

logpg(x) = log/pg(x,z)dz. (2.8)

With pg(x,2) = pg(x|2z)p(z)dz, this integral may not be tractable for certain
choices of pg(x|z) and attempting to do the integration numerically would
mean we no longer have a closed form objective for optimizing 6.

We can get around this intractability by first forming a lower bound on the

log-likelihood using Jensen’s inequality

logpg(x) > Ey(4) [logpg(x,2) —logq(z)] =: L(x,q,0), (2.9)

which introduces ¢(z), which is referred to as a variational distribution. And

by then using the classic Expectation Maximisation (EM) algorithm [56]. Here
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we have assumed our latent is continuous; for discrete variables the integral

can be replaced with a sum.

The EM procedure optimizes the log likelihood by iteratively increasing the

lower bound by alternating between the steps:

E-step: hold 6 fixed and optimize L£(x,q,0) w.r.t q(z).

M-step: hold ¢(z) fixed and optimize £(x,q,0) w.r.t 6.

With some simple manipulation we can show

pg(Z’X)]‘

L(x,q,0) =1 LR,
(x,q,0) = logpg(x) + Ey(z)[log @)

(2.10)

The second term here is the KL divergence KL(q(z)||pg(z|x)) that is minimised
if and only if the two distributions are the same. Hence the lower bound is equal
to the marginal log likelihood when ¢(z) is equal to the true posterior pg(z|x).

Therefore at the E-step £(x,q,0) is maximised by setting ¢(z) = pg(z|x).

Within the realm of probabilistic deep learning, neural networks are often
used to parameterise pg(x|z) to increase the expressiveness of the model. With
this choice, the posterior pg(z|x) cannot be easily computed and therefore
directly applying the EM algorithm to optimize the log likelihood is not possible.
Approximate inference methods like variational inference techniques have been

developed to overcome this source of intractability.

2.1.2 Variational inference

The core idea behind variational inference is to convert a slow or intractable
inference problem into a tractable and more scalable optimization problem [57,
58]. The basic approach in this latent variable setting is to parameterise an
inference model g4 (z|x) with parameters ¢ and then maximise the same lower

bound on the log likelihood as in the EM algorithm, but with respect to both
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the generative parameters § and inference parameters ¢;

10gp0(x) = IEqd,(z|x) [1Og W} (2'11>
= Iqug,(z|x) [logpo(X‘Z)] —KL <Q¢(Z|X) ‘ |p(Z)) (212>
—. ELBO(x.0, 6). (2.13)

This version of the lower bound is commonly referred to as the Evidence Lower
Bound (ELBO). The specific choice of the parametric form of g4 is usually
a trade-off between data and computational efficiency, and expressivity. Our
focus is around variations where neural networks are utilized. Specifically,
in chapter 4] we focus on the popular choice where gg(x,z) is a Gaussian
N (g, (x),diag(ai2 (x))), with the mean pg (x) and variance 0352 (x) are neural
networks that take " as inputs and produce the parameters of the latent
distribution [59, |60]. The cost of inference is amortised here because ¢ is
generally shared across datapoints. The concept of amortization using neural
networks is touched on in chapter [3] and more so in chapter [4 Here we have
assumed a continuous latent, but it is also possible to support discrete latents

using an appropriate choice of distribution, such as the categorical.

In the next section we will first go into detail on the different functional forms
neural networks can take, before then outlining how optimization happens in

practise.

2.2 Neural networks

In the previous section we introduced probabilistic modelling and discussed
at a high level where neural networks come into the fold as powerful function
approximators used to parameterise probability distributions. Now we first
define the specific types of neural network architectures that are used in
practise throughout this thesis. Specifically we cover feed-forward networks,
convolutional networks, recurrent networks and transformers. Each of which

has inductive biases that make them more effective for certain types of problem.
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We will then cover the optimization procedures for training these types of

models when used to learn distributions.

2.2.1 Feed-forward networks

Arguably the simplest form of neural network is the feedforward network, or
sometimes referred to as the multi-layer perceptron (MLP). This consists of
an input layer, one or more hidden layers, and an output layer. Each layer
is composed of units or neurons that apply a nonlinear transformation to the

weighted sum of their inputs

h() =X (2.14)
hl:al(Wlhl—l) for lIl,...,L (2.15)
where 8 = {W,..., W} are the parameters to optimize and a; denotes the non-

linear activation function applied element-wise. Activation functions introduce
non-linearity into the network, allowing it to learn complex functions. Exam-
ples of activation functions g; include the sigmoid, hyperbolic tangent (tanh),
and rectified linear unit (ReLU). The ReLU function relu(z); = max(z;,0) is
particularly popular in deep learning models due to its computational efficiency
and favourable properties when computing gradients during optimization (see
section [2.3). The form of the output layer is dependent on the task; different
output domains and parameterizations for our pg will result in different choices
here as touched on in section 2.1} This class of neural network with an appro-
priate number of neurons and layers has been shown to be a universal function
approximator [61]. We use simple and relatively small (in terms of parameter
count) feed-forward architectures as baselines in many of the experiments

throughout this thesis.

2.2.2 Convolutional networks
Convolutional neural networks (CNNs) incorporate a layer design with an
inductive bias that is translation-invariant and which leverages the spatially

local features of input data. The hallmark feature of these networks is the
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convolution operation that identifies local patterns within the input. Unlike
dense or fully connected layers that calculate a weighted sum of all inputs,
convolutional layers apply filters across local patches of the input. This model
architecture was inspired originally by the organization of the visual cortex
and is particularly adept at image recognition where it’s beneficial to recognize

objects regardless of their position in the visual field [62].

For an input tensor X € RE*H*W where C is the number of channels (e.g.
3 for RGB images), and H and W are the height and width of the input, and
a parameter tensor W € REXCXMXN. the convolution operation at layer { for

output channel k£ is computed as follows:

(2.16)

c=0 m=0 n=0

(ij.) C—-1M-1N-1 k ) ] )
Hlm, —q (Z Z Z Wl ,C M, .X(cyz—f—m,]—i—n)) ,

where H; is commonly referred to as the feature map at layer [, (4,7) indexes
the spatial position on the feature map and k indexes the output channels.
M x N is the size of the convolutional kernel and K the number of output
channels. The weight tensor W; represents the parameters of the convolutional

filters, and q; is a nonlinear activation function such as the ReLU.

In CNNs, pooling layers are commonly interspersed with convolutional
layers to reduce the spatial dimensions of the feature maps. The purpose
of pooling is to down-sample the input representation, making the network
more computationally efficient and robust to small variations in the location of
features within the inputs. The most common form of pooling is max pooling.
This takes the maximum value within a local neighborhood of the feature map.
For example, with a 2 x 2 max pooling operation, the input is partitioned into
2 x 2 blocks, and the maximum value from each block is taken to form the

down-sampled output. This operation can be defined as:

piH) = max ; (2.17)

where P; is the pooled feature map, P; ; is the pooling window corresponding
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to the spatial position (7,7), and H;_; is the feature map from the previous
layer. In chapters [4] and [§] we make use of CNNs for image modelling problems.
There are two additional architectural components we exploit that are regu-
larly incorporated into CNNs (and more broadly) that help bolster empirical
performance - in particular on larger dimensional and more complex image

datasets. They are batch normalization and residual connections.

Batch normalization

Batch normalization is a technique that has been found empirically to help
stabilize and accelerate the optimization of many deep neural network archi-
tectures by normalizing layer inputs. There is a lack of formal understanding
as to when and why batch norm improves performance, but there is at least
some consensus in the literature that it aids optimisation by allowing larger
learning rates by smoothing the objective function [63]. Applied before the
activation function, it adjusts the inputs to have zero mean and unit variance

by introducing scale and shift parameters that are also learnable (i.e. added to

0):

hl — E[.’B]

h}’lorm — ’y @
Viz]+e€

+B. (2.18)

h; are the inputs to batch norm, E[z] and ,/V[z] are the mean and variance
of the samples provide in batch to the model (more on mini-batching in section
. € is a small constant for numerical stability and 4 and B are parameters
jointly optimized during training along with the parameters of the layers to

which batch norm is applied.

Residual connections

Residual connections, also known as skip connections, facilitate the training of
very deep architectures. By adding the input of a layer onto its output, they
enable the network to learn modifications to the identity mapping rather than

complete transformations, in some cases simplifying the learning process:
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hi = gi(hy—1) + hi_1, (2.19)

where h; denotes the output of the [-th layer, and g; is the residual mapping
to be learned by that layer. Intuitively, this approach allows each layer to
focus on learning the small, incremental changes that need to be applied to the
input data. The path for information flow also ensures that the signal is not
diluted as it passes through multiple layers, which is particularly beneficial for
maintaining the strength of the signal in deep networks. This type of layer was

popularised by the the so called ResNet architecture [§].

2.2.3 Recurrent networks

Recurrent neural networks (RNNs) incorporate a layer design with an inductive
bias that is well suited to handle sequential data, such as sequences of images
describing a scene, or sequences of words in a sentence for natural language
processing. The defining characteristic of a recurrent layer is a hidden state
vector that captures information from previous inputs in the sequence. This
stateful design enables RNNs to more easily exhibit temporal dynamics and to
process sequences of variable length. The hidden state h; is updated at each
time step t based on the previous hidden state and the current input according

to the layer definition

ht = CLt(Whhht_l + thzt), (220)

where x; is the input vector at time step t, Wy, represents the weights applied
to the hidden state from the previous time step, which are shared across time
and W, is the weight matrix for the input at the current time step. a; is
again a nonlinear activation function such as the ReLU. RNN layers can be
stacked together in order to better model higher order temporal interactions
and they can also be combined with convolutional layers (in particular for
feature encoding temporal image data) and feed-forward layers (commonly for

the output layers of the network).
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This recurrent neural network (RNN) form inherently faces difficulties
in modeling long-range dependencies within sequences. This limitation is
closely associated with the spectral properties of the recurrent weight matrix
W . During the optimization process the eigenvalues of Wy, have significant
implications for the network’s ability to propagate information through time.
Informally, eigenvalues of the matrix with small magnitudes can cause gradients
to vanish (see section [2.3)). This phenomenon results in the RNN’s inability to
retain and utilize long-term dependencies within the data. On the other hand,
if the eigenvalues are large, the network is susceptible to the gradients growing
exponentially during back-propagation, rendering the optimization process
unstable (see section [2.3). To address these limitations, variations of RNNs
have been designed with gating mechanisms within the recurrent component
of the layer |64} 65]. For example, the Gated Recurrent Unit (GRU) which
modifies the standard hidden state update rule with two gates: the update

gate and the reset gate;

ur = o(Wylhi—1,24)),
ry = U(Wr[ht—1,$t]),

o
)
)

h; = tanh(Wp[ri © hi—1,24]),

N
B
W

h; = (1 —’U,t) Ohi_1q +’ut®’~lt;

where u; is the update gate vector, r; is the reset gate vector, h; is an activation
vector, W, W, and W, are parameter matrices and ® denotes the Hadamard
product (element-wise multiplication). Intuitively, the update gate helps the
model determine how much of the past information needs to be passed along
to the future, while the reset gate decides how much of the past information to
forget. Mechanistically it makes it far more difficult for the mentioned eigenval-
ues above to become too big or too small during optimization and so results in
a more robust model that is better able to learn long term dependencies. One

apparent downside of the RNN architecture is that it is difficult to implement in
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a highly paralleled way to best exploit GPU computation. In the next section
we discuss another architecture that is very effective for sequence modelling

that is more naturally parrellelizable.

2.2.4 Transformers

The final NN variant we discuss is that of the Transformer [10]. The transformer
architecture has won in popularity over the RNN for sequence modelling for
popular tasks like language modelling. It forms the basis for the large pre-
trained generative models that are the subject of the latest Al trends and the
scaling laws as discussed in section [I] At the core of the transformer is the
inductive bias of attention for sequence modelling. Attention is favoured for
certain use cases over the recurrent layer introduced in the last section due
to its innate parallelization capabilities, significantly enhancing computational
efficiency on specialized harder like GPUs.

The attention mechanism [10] assigns importance to each element in a se-
quence, enabling the model to focus selectively on different parts of the sequence
when making predictions. For a sequence of input vectors {x,z2,..., 27}, we
first stack and transform these inputs into different matrices for queries @Q,
keys K, and values V' (according to the typical transformer terminology for
the projections of input vectors) through learned parameter matrices specific

to each.
Q=Wg |z, K=Wgk ||, V=Wy |z, (2.25)

where each query (i.e. row) in @, key in K, and value in V' corresponds to
one of the input vectors x; and 8 = {Wqo, W, Wy }. The attention function

is then

-
Ap(Q, K, V) = softmax (?/Ig_k ) V. (2.26)

The dot product QK T measures the similarity between queries and keys and the
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softmax function converts these similarity scores into a probability distribution.
The scaling factor in the denominator, where dj. is the dimensionality of the
keys, helps with numerical stability during optimization. The output of the
attention function is a weighted sum of the value vectors, where the weights
reflect the relevance assigned to each input. The transformer architecture is
composed of a stack of layers that usually follow the same structure. Each layer
contains two main subcomponents: a multi-head attention and a position-wise

feed-forward network.

Multi-head attention

The multi-head attention mechanism extends the attention mechanism by
running it in parallel with different learned projections of queries, keys, and
values. This allows the model to capture different aspects of the sequence
information from different representation sub-spaces. For a given number of

heads K, the multi-head attention is defined as:
A (Q.K.V) = Concat(Ag, (Q. K. V),.... A5, (Q.K.V))Wo  (2.27)

where 6}, is the parameter matrices for the k-th head and Wy is the output

parameter matrix that combines the outputs from all the K attention heads.

Position-wise feed-forward network

Since the attention mechanism itself does not take into account the order of the
sequence, positional encodings are often added to the input vectors to inject
information about the position of the tokens in the sequence. The positional
encodings have the same dimension as the input vectors so that the two can
be summed together. The positional encodings can be defined using a specific

function, which in the case of the original transformer is a combination of sine
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and cosine functions with different frequencies:

P(Z,QJ) — S1n <100002j/d> y (228)
P(l7 2] + ].) — COS (100002]/61) i (229)

where ¢ is the position of the token in the sequence, j is the index in the
positional encoding vector. The intuition behind this choice is that these
functions can provide a unique encoding for each position (up to a certain
sequence length). The use of geometrically spaced frequencies (as in the term
1000027/ d) means that each subsequent dimension of the positional encoding
corresponds to a wavelength that is longer than the previous one. This helps
the model to capture both fine-grained and coarse positional relationships.
The patterns created by these frequencies allow the model to learn how far
apart tokens are in the sequence (their relative positions), which is key to
understanding the structure and meaning within sequences such as sentences.

In chapters [3|and [6] we make heavy use of variations of the transformer model

and focus on natural language processing applications in our experiments.

2.3 Learning with gradients

In section we introduced a probabilistic modeling perspective on machine
learning and established maximum likelihood estimation (MLE) as a principled
objective for optimizing neural network parameters that parameterize the
probability distributions we aim to learn from data. Section then explored
the specific functional forms of neural networks that are relevant to this work.
We now turn our attention to the optimization process that underpins the
learning of neural network parameters within this framework; with gradients of

the objective w.r.t to @ being the key.

2.3.1 Stochastic gradient descent

Gradient descent and its stochastic variants are the backbone of neural network

optimization. Given a differentiable objective function £(0) € R, which typically
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represents the negative log-likelihood in our case, the goal is to find the
parameters @ that minimize this function. Unfortunately for our choices of
model, there is no closed-form solution to this minimization problem and so we
instead aim to find a good local minimum using gradient descent methods. The
core principle of gradient descent is to iteratively update 6 (from a carefully
chosen initialization) in the direction that most steeply decreases £ using an

update rule at iteration ¢ until some convergence criteria is met:
0t+1 = 075 - aVeﬁ(Gt). (230)

a denotes the learning rate that determines the step size of each update and

Vg the first order gradient of the scalar objective.

An important insight towards scaling up the training of NNs to arbitrarily
large datasets is that replacing the full gradient in equation (which is
computed over all of Xjqin) with the gradient w.r.t a much smaller sampled
mini-batch of data works well in practise. This stochastic gradient descent
(SGD) variant is based on the unbiased Monte Carlo estimate of the gradient
by sampling (without replacement) a mini-batch of data B C Xjyqip of size B

and computing the approximate gradient

NE .
VoL(0) ~ i ZVeE(fo(w’))- (2.31)

In practise each so-called epoch of training consists of iterating through the
full training dataset worth of mini-batches, updating the parameters with each
mini-batch using SGD. There are many variants of SGD that are found to
perform better in practise. One such method that we use exclusively in our
experiments is ADAM [66], which computes adaptive learning rates for each
parameter using past gradients. For a thorough introduction on this topic see

chapter 8 of [5].
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2.3.2 Automatic differentiation

To calculate the gradients VgL£(6) required for these optimizers, deep learning
frameworks leverage automatic differentiation techniques. Unlike symbolic
differentiation or numerical finite differences approaches, these are techniques
that recursively apply the chain rule of calculus to compute derivatives compu-
tationally efficiently. Autodiff underpins the operation of modern deep learning
libraries such as PyTorch [67] and JAX [68] that we use throughout this thesis
to implement our experiments. Consider computing the gradient w.r.t to the

parameters Wy, of the final layer of the neural network as defined in section

using the chain rule:

op; Ohy OLC
VWLE(hL—17y7WL) = 85‘)/[/[, api ahL, (232)

where p = Wh. Notice that hj is a function of parameters W_; that
we would also like the derivatives of; and so in practise this chain rule is
applied again recursively across all layers of the network. We can illustrate this
computation as an Abstract Syntax Tree (AST) (also known as a computation

graph/tree) to help describe the workings of Autodiff:

Autodiff frameworks generally decompose the computation of a neural
network into such a directed graph with nodes for each elementary operation
for which derivatives are well-defined. During training, when evaluating the loss
for a given batch of inputs and the latest parameter values, which is referred to
as a forward pass, intermediary values n calculated at each node 7 are stored.
These are the input values needed to compute the partial derivatives for the
chain rule at this node. Then, in order to compute the overall derivative
w.r.t to all the parameters VoL, the graph is traversed in reverse ancestral (or

backwards) order implementing the following Autodiff procedure:

1. Define t; =1 for the first node of the reverse graph.

2. For the next node 7 in the backwards traversal, find the child nodes C(7)
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Figure 2.1: Computation graph focusing in on the final layer of a feed-forward
neural network. The nodes contain the intermediary operations required
by the forward pass and the edges are annotated with the relevant
partial derivatives needed by the chain rule.
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ti= >
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te (2.33)

3. Repeat this process until you reach the root nodes of the graph.

4. The total derivatives of the final node w.r.t to the root nodes (in our case
the layer-wise parameter values W) are given by the values for ¢ at those

nodes.

This so called backward pass is efficient because it avoids redundant cal-
culations and information is split between parents only when required. This
procedure is generally referred to as backwards mode Autodiff, or back propa-
gation [69, 70].

Autodiff is broader than just variations of this backpropagation algorithm.
There is also forward mode Autodiff. Forward-mode instead computes the
derivative of each intermediate node with respect to a single input variable

during the forward pass of the graph and can be less memory intensive than
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backwards mode. However, this variation, unlike backpropagation, is less well
suited to problems with many inputs and a single output, which is characteristic
of the loss functions we deal with for training our neural network models.
Forward mode can be more suitable for functions that have a low-dimensional

input space and a high-dimensional output space. For further reading see |71].

2.3.3 Reparameterization trick

In section we introduced latent variable models and the ELBO for jointly
training the parameters of our model pg(x|z) and inference network g4(z[x).
Using the gradient based methods naively to optimize the ELBO w.r.t ¢ can

be challenging due to the high variance of the Monte Carlo estimate:

S
VB, (zlx) [l0g po(x[2)] ~ Z (V¢logq¢ |x))logp9(x|zs). (2.34)

The so-called reparameterization trick is a way to provide a much lower
variance unbiased estimate of this same gradient [59]. With this approach we
reparameterize z ~ qg(z|x) as a differentiable transformation of some other
random variable € ~ p(€). This does restrict our choice of variational distribution
to those that can be transformed in this way; such as the Gaussian distribution.
With this reparameterization we have Eg () [f(2)] = Epe)[f(9¢(€,%x))] with

gradient estimate:

Vo Eqy(zlx) [/ (2)] = Vg Epe) [ (9g(€,%))] (2.35)
=Ep)[Vg/f(9g(e.x))] (2.36)
S
~ £ 3" Vo f(g(e ) (2.37)
s=1

A common choice that we use in this work is a Gaussian distribution where
€ ~N(0,1) then z = py(x) +04(x) © € has the distribution N (ps(x),04(x)).
In context of Autodiff, this moves the stochastic variable into an input leaf

node on the graph that’s not dependent on the parameters.



Chapter 3

Integrated Weak Learning

In this chapter we focus on the problem of improving data efficiency in su-
pervised learning. As introduced in chapter [I, data efficiency in this setting
refers to the number of labelled datapoint pairs required to achieve a target
performance level. We focus on the paradigm of weak learning.

The general research question that motivates weak learning is given a
relatively little reliably-annotated data and a set of weaker sources of noisy
labels, how should one best combine them to train a supervised machine learning
model? In this work, we focus on how to best parameterise and train the label
and end model during training?

Our contributions are as follows:

o We introduce Integrated Weak Learning, a general framework that inte-
grates weak supervision into the training process of traditional supervised
models. Our approach jointly trains the original model and a label model

that aggregates multiple sources of weak supervision.

o We introduce a label model that can learn to aggregate weak supervision
sources differently for different datapoints and takes into consideration

the performance of the end-model during training.

e We show that our approach outperforms existing weak learning tech-
niques across a set of 6 benchmark classification datasets using mainly

transformer based architectures as introduced in section 2.2 When both



3.1. Weak learning 45

a small amount of labeled data and weak supervision are present we
observe an increase in performance of on average between 2-5 point test

F'1 points and as much as a 20 point gain over non-integrated methods.

3.1 Weak learning

To overcome the cost of manual data annotation, it has become increasingly
common to include cheaper but less reliable sources of supervision when training
deep learning models [39, |72, 73, |74, [75]. These noisy sources of supervision
might include crowd labels, weaker models, distant supervision by knowledge
bases, or manually curated heuristic rules, amongst others|72]. Given relatively
little reliably-annotated data and a set of weaker sources of noisy labels, how

should one best combine them to train a supervised machine learning model?

Early attempts at answering this question [72] typically decompose the
problem into two stages. They first stage considers how to form an estimate
of the unobserved label given a set of noisy labels and then consider how to
train an end-model on the denoised labels. This approach has had considerable
practical success |74} [76], enabling deep learning systems to be deployed in
industry without manual labeling. Two-stage methods have the advantage that
after denoising, the rest of the training pipeline remains essentially unchanged.
To achieve this though, they make quite an unnatural independence assumption;
they typically ignore the dependence of the approximate labels on the input
data. The cost of this assumption is that valuable information from the end-
model can not be incorporated in denoising and the estimated accuracy of
different supervision sources is fixed across the entire dataset. In addition,
in general, a small amount of task-specific oracle sourced labels continues to
be critical for reliable results [74, |77], even when given access to pre-trained
models in transfer learning settings [78].

In this chapter we present a modeling framework, Integrated Weak Learning
(iWL), that simultancously denoises the weak supervision sources and trains the

end-model. Though there have been other approaches to joint model training
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and denoising |79, 80|, they have typically relied on intuitive heuristics, required
extensive changes to the training objective and have high empirical variance.
Our approach is based on a simple application of maximum likelihood learning
in an appropriately chosen probabilistic model that assumes that the true label
is an unobserved latent variable (as discussed in section [2.1)). It can learn
to exploit the relevant expertise of different weak supervision sources, whilst

taking into consideration the performance of the end-model.

In traditional supervised learning we have access to a set of labeled data pairs
{(z',y"), -, (2, y™)} that are identically and independently (i.i.d) sampled
from a true underlying joint distribution (z™,3") ~ pa(x,y) = pa(y|x)p(x). We
are interested in applications where ¥, is expensive (in time and/or cost) to
define, such as when a judgement from a human expert such as a doctor is
required. A model pg(y|x) is then specified to approximate the true conditional
distribution pg(y|x). In the classification setting, each label y takes a discrete
value in {1,...,C} where C'is the number of output classes for the problem. The
parameter @ can be estimated by maximum likelihood estimation as discussed
in section using the objective

. Lo
= AIgmax > logpe(y™|z™). (3.1)

n=1

In weak learning (WL), instead of requiring access to labels on all datapoints,
we assume access to K weak supervision sources {p1(¥|x),...,pr(¥|x)}. Each
Pk (¥|x) can provide an approximate labels g given an input data z, resulting in
a weakly labeled dataset W = {(ml,j&%,...,gj}(),...,(mw,g{/‘/,...,g[v}/)}, where
W is the number of data-points that have weak labels only. In the data
programming formalism [72] these supervision sources are encapsulated into
so-called labeling functions. They usually can easily be applied across large
unlabeled datasets. In principle, the domain of § can be different from the
domain of the true label y. For example, in our experiments we use labeling

functions that can return one of C'+1 classes g € {0,...,C}, where the class
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0 represents an abstain where the labeling function refrains from making a

decision.

If the weak labels have some useful signal for the true data generating
process, then they can still serve as a useful source of supervision for training
an end-model. Each of the labeling functions may not be very informative about
the true label across all data points, but may have some useful specialisation for
certain regions of the inputs space; and collectively, if combined appropriately,
these sources may help accurately predict the true label. The simplest approach
to aggregating weak supervision sources is to take the majority vote label from
the weak labels for each datapoint. Popular WL approaches improve on this
by training a probabilistic model that learns an estimate for the accuracy of
each labeling function and use this to calculate the distribution p(y|y7,...,7%)

1], [73).

In real world applications it is common for the practitioner to have access to
both weak labels and a (relatively small) set of training data with ‘strong’ labels
(i.e. oracle labels we assume come from the true underlying data distribution,
such as those generated by human subject-matter experts). With this in
mind, we denote the dataset that contains both strong and weak labels as
S= {(ml,yl,g%,...,g]}(),...,(:I:S,ys,gjig,...,g]‘f{)}, where y* ~ pg(y|z®).

In the next section we present a simple probabilistic graphical model that
makes it possible to learn the parameters of the model pgy(y|x) both when the

only labels are from weak supervision and when there are some strong labels

present.

3.2 A joint training approach

Given a weakly supervised dataset W, we wish to specify a probabilistic model
over the weak label ¥ and the input x that would allow us to jointly learn
an end-model pg(y|x) and learn to leverage the weak labels (which is also

commonly referred to as denoising the weak labels). A simple approach would
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be to parameterize the full distribution without loss of generality as:

Po.6(Y|x) qus 1y, x)pe(y|x), (3.2)

where we have marginalized over the unobserved true label y. However, this
simple model has a potentially degenerate solution in which the distribution
P (Y|y,x) becomes independent or approximately independent of the label y,
i.e the model learns to ignore the latent py(¥|y,x) ~ pg(¥|x). If that were to
happen, then there would be no sharing of information between the weak labels
and the true label y. In order to ensure that the weak labels contribute to the
training of the end-model, we must constrain the distribution pg(¥|y,x) so that
the information flow from x to y is limited. The simplest way to achieve this

constraint is to introduce an assumption that ¥ is independent of x given y:

po.¢(¥|x) = qus (F1y)pe(y|x). (3.3)

We refer to pg(¥|y) as the label model and pg(y|x) is free to be any parametric
end-model. We explore alternative forms of the label model in the following

section.

This model formulation allows us to jointly estimate the parameters {¢,8}
using maximum likelihood estimation as introduced in section[2.1} In practice we
have K weak supervision sources. If we assume these sources are conditionally

independent given y, our model becomes

Po.a(V1.--- Y& [X) =D _po(y[x) ] g, (F2ly). (3.4)
y k=1

where we denote ® = {¢,...,dx}. Figure shows the corresponding
graphical model.

The log-likelihood for the data-points that include both strong and weak

labels S = {(ml,yl,g%,...,gj}{),...,(:I:S,ys,gf,...,gjf{)} becomes:
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S
Ls(0,®) = Z (logpo y|z%) +1og > pe(y’|z®) Hpqsk A )) (3.5)

ys k=1

CQ \

For the data-points that only have weak labels W = {(a:l,g%, i)y (Vg ,gj}’}/)}

we have the log-likelihood term

w K
w(0,®)=— ZlogZpe(ywlxw)Hpqsk(ﬂi”lyw)- (3.6)
w=1 yv k=1

Therefore, our overall likelihood training objective for integrating weak super-

vision (iWL) into model training is

ﬁ(o, <I>) = Asﬁs(e, ‘I’) + Awﬁw(a, q)), (3.7)

where \g, A\, are user defined scaling parameters that control how much
the strongly and weakly labeled datasets influence the model training. We
can then jointly estimate both sets of parameters {®,8} by directly optimising
objective 3.7, The label model can then learn to take into consideration the
performance of the end-model during training because the gradients used to
update the label model parameters will contain information about how the end
model performance is impacted under out joint objective. Once trained, the
discriminator pg(y|x) can be used independently to the label model to make
predictions. This framework is flexible for supporting different choices of label

and end-model.

In practise we can use stochastic gradient descent to train both sets of
parameters jointly by sampling mini-batches of data from W and S to calculate
L and LW respectively for each parameter update step - see section for
further details. We compute the marginalization over y exactly in equations
and [3.6] This is efficient in this setting because the number of classes C' to

sum over tends to be relatively small.
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(a) Basic graphical model (iWL) (b) Including  (iWLD)

Figure 3.1: Graphical models for the integrated weak learning variants. 6 and
® = {4)1, o } are the parameters of the end-model and label model
respectively. K is the number of available weak supervision sources
and NN the number of observed training datapoints. The left model
assumes the generative process is the same for all datapoints, whereas
the right model assumes similar datapoints will have a similar noisy
label generative process.

3.2.1 Design of label model

In the previous section, we assumed that the weak labels only depend on the
underlying true label y, yielding the label model in equation [3.4] In this case
pg, (¥y) is parameterized by a linear transition matrix i.e. pg, (V5 =ily =
j)= ¢§cj, with i € {1,...,C + 1}, including the abstain label, and j € {1,...,C}.
Each row in the transition matrix sums to one: > ; qbg =1.

A natural extension is to consider incorporating a dependency on x. The
label model could then represent different transitions for different data-points.
Intuitively this would allow the label model to understand the relevant ex-
pertise of the different labeling functions and emphasize appropriately. This
is particularly relevant given in practice labeling functions tend to be quite
specialized in the data-points they perform well on [39]. However, we must
take care when introducing x-dependence to constrain the flow of information

so that the label model does not become independent of y.

We therefore also introduce a variation where we parameterize the transition

matrix ¢, itself as a function of x - see figure for the updated graphical
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model. This ensures that p(y|x,y) is still parameterized by a constrained linear
transition matrix. The label model becomes p(¥.|y, @ = fy(x)[k]), where fy(:)
is a neural network that maps a data point & to the K linear transition matrices
and we use fp(x)[k] to denote the kth matrix. This allows our label model to
produce similar transitions ¢;, for similar £ and amortises the cost of computing

the transition for each data-point. Therefore, the full model can be written as

K
Poo(F1,---Txl%) = > _pe(vIx) [] p(Tily, bk = fn(x)[K])- (3.8)
y k=1

This model extends equation |3.4| with a more complex label model param-
eterized by n instead of ¢;. In practise the objective and training procedure
is the same as that described in section using stochastic gradient descent
and exact marginalisation over y, but we replace £(8,®) with £(8,n). Hence
during training we are learning the parameters n of our label model neural
network that learns to output the transition matrices given an x, as opposed

to directly learning the transition matrices independent of z.

In principle, it is still possible though unlikely that the label model
p(¥i|y, @1 = fn(x)[k]) becomes independent of the label y because it learns to
ignore y - for example in the regime where we have very little or no strong labels
to help infer the latent configuration during training. In section [3.4) we validate
that this does not happen in practice and demonstrate how incorporating the
x dependency in this way improves performance across a range of benchmark
problems. As with existing weak learning techniques, it is possible to extend our
label model to more explicitly consider correlations between labeling functions

- see appendix [A 4] for more details.

3.2.2 Discussion of model

As with prior works [1], our model can suffer from y being unidentifiable. For-
tunately, in our framework, access to strongly labeled data naturally mitigates
against this. For notational simplicity we consider the case of only one labeling

function p(¥[x) = >y pg. (F|y)pa(y|x) where pg(y|x) is the true label generation
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distribution and we assume py_(§|y) parameterized by a linear transition matrix,
ie py (Y=ily=17)= #" with known parameters ¢,. In this case, training our
model pg(y|x) using equation [3.7|is able to identify the true underlying py(y|x).
Specifically, maximizing the likelihood function is equivalent to minimizing the

KL divergence

E(3ix) (logpa,g, (¥1%)) = —KL (Z% F1Y)pay1)|1>_pg, (WY)po(Y\X)) +const,
y y
(3.9)
where the constant is the entropy of py _(¥|y) with fixed @,. During training,

as 0 — 0, the KL divergence goes to 0 and we have
>0 paly =jx) =3 ¢/ pe. (v =jlx) Vi (3.10)
J J

As long as the linear transition matrix @, (with size C'+1 x C') does not
degenerate (i.e. has rank '), then the mapping from the distribution of y to y
is injective. We then have pg, (v|x) = pq(y|x), which successfully recovers the
underlying true model. To note, when ¢ is a function of z the same
reasoning can be applied if we assume the true transition generation function

fn, is also known.
*

When the true label model pg (]y) is unknown, we need to learn ¢. In
this case we cannot guarantee to identify the true underlying model using
only the weak labels. To give an example, we first assume that we have
learned a label model pg (¥]y) using MLE with a model pg, (y|x). We can
always construct an alternative label model pg, (¥]y) (with ¢y = ¢ x M -1
where M is a C' x C' invertible transition matrix, and model pg, (y|x) (with

po, (y =1i|x) =>; Mijpg, (y = j|x)) that can give the same marginal distribution:

> pg, (F1¥)pe, (vIX) =D pg, (F1y)pe, (yI%). (3.11)

This observation easily generalizes to the case of K weak supervision sources.

Similar counter examples are constructed in the context of disentangled repre-



3.3. Related work 53

sentation learning, where the true representation cannot be identified under
maximum likelihood learning [81].

Incorporating strong labels y ~ py(y|x), like we discuss in section [3.2] can al-
leviate this unidentifiability issue. Intuitively, when the number of strong labels
goes to infinity S — oo, then the first term in Equation %Zle log pg(y®|z®)
will reach an optimum when pg(y|x) = p4(y|x), which is due to the consistency
of MLE [82]. In practice, we find that a relatively small number of strong labels
is effective at mitigating this issue allowing us to recover a useful end-model.
We leave to future work exploring more deeply the relationship between the
identifiability problem and the number of strong labels required. In the case
where it is not possible to access any strong labels for a given problem, similar
to prior work we can leverage the majority vote heuristic to initialize the

parameters of our label model, which we find works well empirically.

3.3 Related work

Two-Stage Weak Learning

Two stage weak labeling methods separate the label model from end-model
training [72, |1, 73, 75] . The primary advantage of this separation is that the
cost of label denoising is paid only once and the change needed to training
pipelines is minimal.

In our work it is necessary to alter the training objective by adding additional
terms and one has to learn the parameters of the label model every time the
end-model is changed. However, the additional computational cost of learning
the label model pg(¥|y) can be kept small by using a relatively smaller model
compared to the end-model py(y|x). Our experiments provide evidence that
this additional cost is rewarded by improved end-model performance, especially

when some strong labels are present.

Joint Weak Learning

Most similar in spirit to our work are two end-to-end weak labeling methods

that also jointly denoise and train: WeaSel [79] and Denoise [80]. These
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methods differ both in how they parameterize the label model and in their
training objective. The primary difference with our work is in the choice
of training objective. Whereas we train using maximum-likelihood learning,
Weasel uses a heuristic consistency constraint. Namely that the labels predicted
by a denoising model and an end-model should agree. Training their heuristic
objective can be unstable [79] and can result in degenerate solutions. In their
paper the method is primarily justified by empirical performance but in our
experiments it under-performed both Denoise and Integrated Weak Learning
(see section . In contrast, our framework simply proposes an appropriate
graphical model and trains via maximum likelihood with stochastic gradient
descent.

The Denoise algorithm has an additional algorithmic component beyond
weak supervision which incorporates self-supervision [83] |84] of its end-model.
Confident predictions from the end-model are bootstrapped for learning where
the labeling functions have low coverage. Based on their ablation studies, this
significantly improves performance. Self-supervision could naturally be applied
to our objective to further bolster performance, which we leave for future

work.

Learning with Noisy Labels

There are multiple different approaches to learning with noisy labels, including
data cleaning |85, 86, 87|, where useful information is potentially lost, and data
re-weighting that weighs training data-points based based on different criteria
[88, 189]. Most relevant to our line of work are those methods that attempt
to correct noisy labels using a label model parameterized similarly to ours
[90, 91, [92]. In the recent Confident Learning [90] they assume a probabilistic
label model, treating the true underlying y as a latent, and do inference on a
single C' x (' noise transition matrix in order to correct their noisy labels. Our
approach differs in a few key ways. Firstly, our label model is integrated as part
of the end-model training. Secondly, we are dealing with multiple transition

matrices, one per each source of label noise, where the noisy label domain is
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different than the true label domain. Lastly, our label model from figure [3.1b
can learn different transitions for different z", releasing the assumption that
label noise needs to be constant across a dataset. In [92] they do in fact have a
noise transition matrix that is dependent on ", but they have an alternating
training scheme for the end-model, instead of jointly training, and they too

don’t deal with multiple sources of noisy labels with different domains.

Crowdsourcing

Applications that deploy crowdsourcing to collect labeled data also face the
challenge of how to aggregate multiple noisy sources of supervision. Each
source being a human annotator as opposed to a labeling function. Major
works in this area use the EM algorithm to jointly model the unknown true
label and annotator skill [93, 94} 95]. Most similar to our work is [96], where the
annotator skill model (equivalent to our label model) and end model are jointly
optimized using a formulation similar to our basic model described in figure
In contrast to [96], firstly we propose an objective that can incorporate
ground truth data when available. Secondly, the domain of our noisy labels is
different to the true label domain (labeling functions can choose to abstain but
crowd workers cannot). This results in a non-square noise transition matrix,
hindering the application of a trace regularizer as proposed in [96]. Lastly, we
extend our probabilistic formulation (in figure to relax the assumption in
[96] that the annotator skill is independent of 2, which we demonstrate leads

to improved performance.

3.4 Experiments

The goal of our experiments is to provide a robust performance comparison
between the variants of our iWL approach and the existing weak learning
approaches discussed in section [3.3] In addition, we want to understand how
the amount of strongly labeled data £ impacts the performance of these methods
for deep learning models, which may be of independent interest for practitioners.

For our choice of datasets and the implementations of existing methods, we



3.4. Experiments 56

leverage the recent comprehensive benchmark for weak supervision (WRENCH)
[39]. Specifically, we use 6 of the classification problems that vary in dataset
size as well as labeling function complexity - see table for details.

This set of datasets provides some variance in the number of classes (from 3
up to 6) and number of labelling functions (from 5 up to 83). The number of
classes directly impacts the number of parameters ¢ in our label and the number
of strong labels required for inferring the latent effectively. An interesting future
direction of research and ablation is to study the impact on our method of a
much larger number of classes.

We compare to the two-stage weak learning approaches of Majority Vote and
Snorkel |72], and to the end-to-end weak learning approaches of Denoise [80] and
the more recent WeaSEL [79]. We refer to these as benchmark methods. We use
the implementations of these methods available in the WRENCH benchmark.

Table 3.1: Attributes of the chosen classification datsets [39]

Dataset #Classes #LFs #Train #Validation #Test

Census 2 83 10,083 5,561 16,281
IMDB 2 5 20,000 2,500 16,281
Yelp 2 8 30,400 3,800 3,300
SMS 2 73 4,751 500 500
AGNews 4 9 96,000 12,000 12000
TREC 6 68 4,965 500 500

3.4.1 Implementation details

Here we introduce our basic implementation details. Further details can be

found in appendix [A.2]

Discriminative model

We keep the end discriminative model pg(y|x) common across all methods
in our comparisons and vary the label model accordingly. Specifically for
pe(y|x) we use the distilled RoBerta transformer model [97] to provide a rich
embedded representation for textual x. This acts as input to a two-layer feed

forward neural network model, with 100 hidden units in each layer and RelU
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activation functions and a softmax final output. Across all experiments we use
the Adam optimizer [66] with learning rate le3 and mini-batch size of 128. As
in WRENCH we do early stopping on the validation F1-score with a patience
of 300 optimization iterations using the validation datasets provided. Specific
to our proposed integrated approach: we set the hyperparameters A, Ay from
equation to 1 throughout - meaning we weight equally the contributions
from the strong and weak labels in our objective. For the two-stage weak
learning approaches of majority vote and snorkel, we use the probabilistic
denoised labels, i.e. the softmax probability values (as opposed to the one-hot
label values) and noise-aware loss objective as recommended in prior works as

the highest performing configuration of these methods.

Label model

For our proposed approach we include both of the label model variants presented
in figure - including and excluding the dependency on x. We refer to
these as iWL and iWLD respectively in the results. For iWLD, the network
fn(x) 2 — {¢y,..., ¢k} uses the same architecture and hyperparameters as
pe(y|x) as specified above, except for the structure of the final layer that instead
outputs the linear transition matrix. In principle the label model can be of a
much smaller network size than the end model; we leave further ablation around
choice of model and impact on performance to future work. We initialize our
label model parameters using the majority vote to help mitigate against the non-
identifiability of y issue discussed in section [3.2.2] For the benchmark methods
we use the default label model hyperparameters as provided by WRENCH
except for the WeaSEL model. For the WeaSEL temperature hyperparameter
we try values from the range {0.5,1,3,5} based on their recommendations and
select the best performing value for each experiment configuration because we
found this method to be sensitive to this parameter in our setup. In appendix
we provide visualizations to illustrate how our label model is able to learn

different transitions ¢y, for different datapoints.
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Incorporating strong labels

We also evaluate all methods with different proportions of strong labels available
at training time in addition to the weak labels. We believe this to be a realistic
and important scenario for many real world applications. Specifically we
evaluate the scenarios where 1%, 10%, 50% and 100% of the training data is
strongly labeled (selected at random). The strong label log-likelihood term in
our objective equation means that our proposed approach can deal with
this scenario by design. To ensure that the benchmark methods also benefit
from these strong labels in our comparisons, we add an additional labeling
function in these cases that outputs the strong label if available and abstains
otherwise. For the two-stage weak learning approaches, we also include results
for an alternative approach of leaving the labeling functions unchanged and
instead replacing the resulting denoised label with the corresponding strong
label if available when training the end-model pg(y|x) - see appendix for
further details.

3.4.2 Results

We report the test Fl-score as our main evaluation metric averaged over 5
random seeds alongside 1 standard deviation. In table |3.4.2] we summarize
the performance results for the different methods, for different proportions of
strongly labeled data, across all datasets considered. In figure [3.2] we plot the
corresponding quartiles of the F1 scores to provide further insight into how
the variability between seeds compares across the different methods. We also
include a baseline where we train the end-model pg(y|x) only on the strong
labels provided, ignoring any weak labels. We refer to this baseline as ‘labels
only’ (LO).

We see from table [3.4.2] that our proposed approaches result in the best
performing model (as measured by test F1 score averaged over 5 random seeds)
in 19 out of the 30 cases and first or second best-performing in 28 out of the 30
cases. In particular, in the regime where you have a relatively small amount

of strongly labeled data in addition to your weak labeling sources (i.e. the
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Figure 3.2: Box-plots of test F'1 scores showing the quantiles across 5 random seeds
on the y-axis. Each plot refers to a specific dataset. The models are
grouped by the different fractions of strongly labeled data available on
the x-axis (0%, 1%, 10%, 50%, 100%). In the majority of datasets and
strong label splits, our proposed iWL and iWLD models are the best
performing models and are robust to random seed changes shown by the
relatively low variance. Methods that converge to significantly worse
or degenerate solutions fall below a performance display threshold and
are not shown. See table for more detail.

1% row in table|3.4.2)) our approach provides a conclusive improvement in all
but one of the datasets. Here we consistently outperform the weak learning
baselines by between 2 and 5 test-F1 points. In 5 of the 6 datasets we see

that our integrated weak learning approach outperforms the LO baseline of
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the end-model trained with 100% strong labels available. Furthermore, the
boxplot quartiles in figure [3.2] illustrates that for a majority of the datsets and
strong label splits, our iWLD model results in lower variance solutions than

the benchmark methods.

Our results also provide some noteworthy insights related to the benchmark
methods. Generating results across a range of different strong label proportions
demonstrates that there is a tipping point at 10% over which LO becomes a
competitive baseline. This can still represent a relatively significant amount
of labeling effort (e.g. in AGNews this would be 9600 labels). It is likely that
our use of the distilled RoBerta transformer as the feature extractor will be

contributing to this performance, bringing some transfer learning benefits.

The joint approach Denoise is highlighted as the best performing approach in
a small number of cases. This was unexpected because in the original WRENCH
benchmark Denoise failed to outperform the other methods in any of these
datasets. Furthermore, the more recent WeaSEL paper does not compare to
Denoise as an end-to-end alternative. We note that Denoise, in addition to
the weak and strong labels provided, also incorporates self-supervision signal
into their training process. Our framework can naturally be extended with
self-supervised labels which will likely further improve performance. This
involves extending the dimensionality of our label model to consider another
labelling function that takes predictions from the current state of the end model
as the weak label. Finally, we experienced that WeaSEL failed with degenerate
solutions in some of the experiments, for example for the TREC dataset, and
performed for the most part worse than other methods. In an attempt to
improve performance for WeaSEL, we tuned the temperature parameter as

discussed in section B.4.1]

3.5 Conclusion

This chapter introduced a new framework for improving the data efficiency

of training supervised machine learning models that can principally integrate
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both strong and weak supervision sources during training. It models the
true underlying label y as a latent variable and jointly trains both the label
model and end-model parameters using maximum likelihood. It is a generic
framework that can be used in conjunction with existing supervised learning
models to improve performance. We provide an empirical study across a range
of classification benchmark problems of varying degrees of size and complexity
and demonstrate that our approach consistently outperforms existing methods.

This work acts as a foundation for future work in many complimentary
directions. Firstly, improving the label model to explicitly model correlations
between weak supervision sources. We outline a provisional approach based on
introducing an additional latent variable in appendix [A.4] Secondly, exploring
alternative parameterizations for our label model as presented in [3.2.1] including
those that introduce constraints that remove the need to initialize with majority
vote in the cases where no strong labels are available. Lastly, understanding
how to combine our framework with related methods that attempt to mitigate
the burden of gathering labeled data - namely self-supervised learning, active
learning and transfer learning.

An application of particular interest is aligning large foundation models
with human preferences (see chapter @ It’s common to get a wide array of
slight different preferences for a given scenario. Weak learning approaches as

outlined here could be an effective way to distil the wisdom of the crowd.
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Table 3.2: Test F1 score averaged over 5 random seeds with 1 standard deviation

in brackets across all datasets and all models considered: two stage weak
learning approaches of Majority Vote (MV) and Snorkel. End-to-end
weak learning approaches of WeaSEL and Denoise. The end-model
po(y|x) trained with the available strong labels only (labels only - LO).
Our proposed integrated training approach with and without the x
dependency in the label model (iWL and iWLD respectively). The
results are grouped by the different proportions of strongly labeled
data available (0%, 1%, 10%, 50%, 100%). Values highlighted in red
indicates best performing and blue indicates second best. Our proposed
approaches are the best performing models as measured by average test
F1 score in 19 out of the 30 cases and the first or second best performing

models in 28 out of the 30 cases.

Dataset AGNews Census IMDB SMS TREC Yelp
Labels Model
MV 85.14 (0.16) 80.68 (0.16) 81.42 (0.10) 96.12 (1.38) 62.80 (1.54) 89.75 (1.16)
Snorkel  83.15 (3.85) 77.89 (0.72) 80.91 (0.16) 88.72 (1.84) 47.96 (2.19) 88.09 (0.74)
WeaSEL 66.32 (1.64) 76.38 (0.00) 81.05 (0.35) 86.60 (0.00) 27.60 (0.00) 54.38 (2.04)
0% Denoise  85.39 (0.10) 78.48 (0.02) 80.79 (0.24) 97.60 (0.42) 56.32 (2.74) 88.41 (1.35)
LO - - - - - -
iWL 85.02 (0.14) 81.40 (0.51) 81.50 (0.34) 62.32 (2.04) 59.80(2.20) 90.41 (0.74)
iWLD  85.13 (0.13) 81.11 (0.20) 81.54 (0.29) 96.84 (1.20) 65.00 (1.71) 91.17 (0.69)
MV 85.05 (0.36) 80.59 (0.28) 81.52 (0.16) 95.40 (1.88) 62.88 (1.58) 89.67 (0.45)
Snorkel  83.45 (3.78) 77.89 (0.73) 82.03 (0.28) 88.76 (1.93) 48.24 (1.82) 88.38 (0.43)
WeaSEL 66.30 (2.10) 76.38 (0.00) 80.92 (0.63) 86.60 (0.00) 27.60 (0.00) 53.62 (1.34)
1% Denoise  85.37 (0.09) 78.51 (0.11) 80.53 (0.21) 97.72 (0.18) 56.44 (2.25) 87.64 (1.67)
LO 87.39 (0.20) 80.41 (0.71) 81.98 (1.80) 96.84 (1.13) 51.76 (5.13) 91.34 (0.42)
iWL 87.75 (0.27) 82.29 (0.67) 84.25 (0.89) 95.88 (0.78) 64.56 (2.98) 92.43 (0.18)
iWLD  87.77 (0.31) 82.82 (0.29) 84.31 (0.84) 97.44 (0.55) 67.32 (1.95) 92.21 (0.31)
MV 85.65 (0.25) 81.03 (0.21) 82.05 (0.44) 96.76 (1.60) 64.28 (1.19) 90.63 (0.76)
Snorkel  84.80 (2.36) 77.67 (0.94) 83.78 (0.73) 89.64 (2.60) 50.64 (3.73) 91.16 (1.03)
WeaSEL 68.42 (0.49) 76.38 (0.00) 81.62 (0.36) 86.60 (0.00) 27.60 (0.00) 61.02 (8.33)
10% Denoise  85.79 (0.12) 78.51 (0.07) 80.82 (0.20) 98.44 (0.26) 58.32 (2.88) 88.35 (1.48)
LO 89.94 (0.30) 82.86 (0.39) 86.63 (0.47) 98.64 (0.46) 72.52 (4.41) 93.91 (0.17)
iWL 89.42 (0.22) 82.42 (0.33) 86.20 (0.47) 98.52 (0.27) 72.92 (3.97) 94.03 (0.16)
iWLD  90.00 (0.18) 83.84 (0.30) 86.53 (0.42) 98.48 (0.39) 71.16 (5.72) 94.06 (0.06)
MV 88.17 (0.22) 81.59 (0.26) 84.82 (0.34) 98.44 (0.22) 69.72 (1.98) 93.18 (0.28)
Snorkel ~ 88.23 (0.24) 78.69 (1.01) 85.85 (0.21) 93.20 (2.84) 58.56 (6.41) 93.92 (0.25)
WeaSEL 70.47 (2.17) 76.38 (0.00) 82.98 (0.32) 86.60 (0.00) 27.60 (0.00) 71.89 (4.14)
50% Denoise  89.44 (0.11) 79.53 (0.13) 82.26 (0.31) 98.76 (0.17) 64.92 (1.83) 92.33 (0.32)
LO 90.60 (0.21) 83.91 (0.27) 87.56 (0.44) 98.88 (0.30) 80.24 (3.02) 94.19 (0.13)
iWL 89.60 (0.09) 82.66 (0.34) 86.62 (0.31) 98.88 (0.39) 77.36 (2.60) 94.51 (0.10)
iWLD  90.53 (0.17) 84.55 (0.13) 87.52 (0.43) 98.80 (0.28) 78.40(2.58) 94.18 (0.21)
MV 89.65 (0.09) 82.93 (0.30) 86.15 (0.21) 98.44 (0.09) 77.76 (0.89) 94.03 (0.16)
Snorkel  89.05 (0.25) 80.97 (0.58) 85.64 (0.27) 96.60 (2.16) 64.76 (2.95) 93.74 (0.22)
WeaSEL 72.72 (3.04) 76.38 (0.00) 84.20 (0.69) 86.60 (0.00) 27.60 (0.00) 84.43 (1.81)
100% Denoise  90.65 (0.14) 84.29 (0.11) 87.61 (0.11) 98.80 (0.23) 81.88 (1.68) 94.17 (0.16)
LO 90.59 (0.34) 84.40 (0.07) 87.70 (0.24) 98.64 (0.22) 81.96 (1.11) 94.28 (0.18)
iWL 89.67 (0.20) 82.61 (0.51) 86.73 (0.24) 98.80 (0.24) 78.40 (2.19) 94.56 (0.12)
iWLD  90.46 (0.39) 84.78 (0.20) 87.74 (0.18) 98.52 (0.11) 82.52 (1.25) 94.47 (0.24)




Chapter 4

Generalization (GGap in

Amortized Inference

The ability of generative models trained with maximum likelihood to perform
well on data unseen during training is central to the application of machine
learning in many of the important problems we touched on in chapter [1] such as
text and image generation. As discussed in section [2.1 we refer to this as the
problem of generalization. One popular class of probabilistic generative model
- the Variational Auto-Encoder (VAE) [98] - is an example of a latent variable
model as introduced in chapter 2.1.1 As well as being an effective method to
approximate the underlying generative process of datasets such as images and
text, the lower dimensional representation of data encoded by the learned latent
variables in VAEs are often used in the context of transfer learning. That is,
the latent representations are often used as features for downstream tasks such
as classification or compression. One reliable way to improve the generalization

performance in this setting is to add more training data.

In this chapter, following the theme of data efficiency, we study the question
of how to improve generalization performance for this class of model for a given
training data budget?

We first study the problem of generalization for this class of probabilistic
latent variable model. We decompose the generalization error into two gen-

eralization gaps that affect VAEs and demonstrate that over-fitting can be
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dominated by the process of amortized inference using neural networks. Based
on this observation, we propose a new training scheme that improves the gener-
alization of amortized inference by bootstrapping samples from the model when
training the inference network. We demonstrate how our method can improve

performance in the context of image modelling and lossless compression.

4.1 Overfitting to training data

To recap briefly, for a finite dataset, a common concern in both supervised
and unsupervised learning is that the probabilistic model may overfit to the
training dataset Xyqin, degrading generalization performance [99]. The gener-
alization performance in the unsupervised setting can be measured by the test
likelihood [100]: ﬁanzllogpg(aV:m), where Xjegr = {&',..., M} ~ pa(x) is the
test dataset. A model that has overfit to the training dataset X},qin generally
results in a high training likelihood but a low test likelihood. As discussed
in section the use of neural networks to parameterise our distribution can
amplify this problem given their capacity to model the noise and spurious

correlations that may be present in the training data.

Although the test likelihood is a common evaluation criterion [101], the
factors that affect the generalization of unsupervised probabilistic models are
less well studied in comparison to supervised learning. We posit that this is
because for common tasks, like sample generation or representation learning,
good generalization in terms of the test likelihood is not a sufficient measure
of performance. For example implicit models can generate sharp samples
without having a likelihood function [102, [103, 48] and representations learned
by latent variable models can be arbitrarily transformed without changing
the likelihood [81]. In recent applications that use deep generative models for
lossless compression 104}, [105], (106}, [100], [107], generalization in terms of the
test likelihood directly indicates higher compression rate [100]. Specifically,
given a probabilistic model pg(x), a lossless compressor can be constructed to

compress a test data point Z to a bit string with length approximately equal



4.2. Variational auto-encoders 65

to —logype(Z). When pg(x) — pa(x), the average compression length attains
the entropy of the data distribution —4; S M logype(2™) — H,(x), which is
optimal under Shannon’s source coding theorem [108], see chapter 4 of [51] for
a detailed introduction. Therefore, a better test likelihood can lead directly to

a greater saving in bits.

4.2 Variational auto-encoders

A popular type of probabilistic model is the Variational auto-encoder (VAE)
[59, 60] which assumes a latent variable model pg(z) = [ pg(x|z)p(z)dz. For
a nonlinear parameterization of pg(x|z) (e.g. a deep neural network), the
evaluation of logpg(x) involves solving an intractable integration over z. In
this case, the evidence lower bound (ELBO) can be used to side-step the
intractability as introduced in section [2.1.1]

wolpato (108pe(x,2) —logag(zx))  (4.1)
Da(X) (ELBO(X707¢))7 (42)

where gg(z|x) is a variational posterior parameterized by a neural network
with parameter ¢. The use of an approximate posterior of the form g4(z|x)
amortizes the cost of inference across the dataset. To better understand this

objective, we can rewrite the expected ELBO as the following

E,,x) (ELBO(x,0,)) = E,, ) (logpe(x) — KL (qg(2lx)|Ipo(zlx)) ) (4.3)

= — Hp,(x) = KL(pa(x))lIpe(x)) (4.4)
constant model learning
— By, 0 (KL (gg(2[%) Ipo(2[x)) ), (4.5)

amortized inference

We denote the posterior family of g4(z[x) as Q parameterized by ¢ [109].
If Q is flexible enough such that the true posterior pg(z|x) € Q, where
po(z|x) < pg(x|z)(z), then at the optimum of equation [1.3] we have
KL(q¢(z|X)||p9(z|x)) = 0= q4(z|x) = pp(z|x) and the ELBO will be equal to
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Figure 4.1: Bits per dimension (BDP) vs epochs. The training BPD decreases but
the testing BPD increases during training, which indicates the VAE
overfits to Xirqin-

the log-likelihood ELBO(x,8,¢) = logpg(x) [59, 110]. Many methods have
been developed to increase the flexibility of Q to obtain a tighter bound. For
example adding auxiliary variables [111} |112], or flow-based methods [113} |114].

4.3 Generalization of VAEs

During training, we only have access to a finite dataset Xjqin, which leads to

the following Monte-Carlo approximation:

E,,(x) (ELBO(X,0,¢)) ~ ]1[ gleLBO(x”,o,gb). (4.6)
n—

This empirical approximation to the true ELBO can lead to the VAE
overfitting to the training data. To help illustrate this, we train a VAE on the
binary MNIST dataset for 1000 epochs and plot the Bits-Per-Dimension (BPD)
of both the training and testing dataset at every 100 epochs. In this case the
BPD is defined as the the negative ELBO (with a base 2 logarithm) normalized
by the data dimension. Lower BPD indicates higher ELBO. We provide more
specifics on the training and model setup in section 4.5 Figure plots the
training and testing BPD during training, which demonstrates that the VAE

model is overfitting to the training dataset. We now focus on understanding
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which components of the model are contributing to this behaviour in order to
adapt the training process to improve generalization performance for the same
amount of training data. If we take the the decomposition in equation [£.5] we

see there are two empirical approximations contributing to the ELBO.

Firstly, an empirical approximation related to the model term:

N
KL(pu(0)llpg(x) % 1 3 logpp(a”) +const. (47)
n=1

Secondly there is an empirical approximation related to the amortised

inference term, which is the expected KL:

N
By (KL (2(2[%)[[po(2[x) ) ) =~ ]172_: L(gp(zlz")|pp(zlz™)) .  (4.8)

For flexible enough parameterizations of pg(z) and gg(z|z) (such as those
parameterized by deep neural networks) there is the risk of overfitting to the
training data for both elements. Focusing on the amortized inference term:;
we define (2) to be the optimal parameter of the empirical variational inference

objective

R N
¢ = argmin > KL (q5(zls") [po(z]2")) (1.9
n=1

and we assume for any training data point " € Xy qin

g5(2|z") = argminge o KL (qy(z|z")|Ipp(2[2") ) = q"(2]2"),

where ¢*(z|2™) is the true optimal posterior within the Q family for datapoint
z". Here for simplicity we have assumed that, for a powerful enough inference
neural network, there is no amortization gap [115], which means q$(z|.’1:) can
produce the optimal ¢*(z|z™) for any training datum z" € Xtrainﬂ If q$(z|m”)

overfits to a limited Xiqin, q$(z|:im) fails to be a good approximation to the

1See section for empirical analysis of the tightness of the ELBO
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true posterior pg(z|2™) for test data " € Xjest-

We refer to the difference between the ELBO evaluated using q$(z|x) and
the ELBO evaluated using ¢*(z|x) as the Amortized Inference Generalization

Gap (AIGG), defined as

AIGG(x.§.4") = B, 0 (KL (1520 Ipo(2l)) ~ KL(q" ()] [po(z}x)) ).
(4.10)

with the expectation w.r.t to the data distribution pg(x) and where q is the
optimal distribution for the training data. Equivalently, this gap can be written

as the difference between two ELBOs calculated with different ¢

=E),«x) (Eq*(z|x) (logpo(x, z) —log q*(Z|X)) ~Egym (1OgP0(X, z) —log Q¢(Z|X)) >

ELBO with optimal inference ELBO with amortized inference
(4.11)

The inference neural network introduced by amortization is the cause of this
inference generalization gap. It is important to emphasize that this gap
cannot be reduced by simply using a more flexible Q. This would only make
KL((q¢(z|x”)||pg(z|x")> smaller for the training data " € Xj.q4, but would

not explicitly encourage better generalization performance on test data [116].

To summarize, the generalization performance of a VAE depends on two

factors:

» Generative model generalization gap (GMGG): defined in equation
[4.7] caused by the generative model overfitting to the training data.

« Amortized inference generalization gap (AIGG): defined in equa-
tion [4.11} caused by the amortized inference model overfitting to the the

training data.
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4.3.1 Impact of the generalization gaps

Now we can consider how the two different generalization gaps outlined in the
previous section contribute to the overall degradation in performance due to

overfitting.

The generative model generalization gap (GMGG) estimate for the test
dataset Xjest;

M

1
KL(pg(x)||pg(x _M Z logpg(£™) + const, (4.12)

cannot be calculated explicitly since we can only evaluate the lower bound

M M_ ELBO(%™,6,¢). Fortunately, using equation if we know the op-
timal posterior for the test data ¢*(z|2") = argminge o KL(q(z|2™)||pg(2]2™)),
the log-likelihood can be approximated by the lower bound logpg (™) ~
ELBO(£™,0,¢), which becomes an equality when pg(z|2"™) € Q (assuming
Q is flexible enough).

The AIGG can be estimated for the test dataset Xj.s; by knowing the

optimal posterior ¢*(z|Z™):

M
AIGG(x, AZZ]E m (1ogpo(&™,2) —logg* (2}E™))  (4.13)
]E

m=1

S5 (logpe(2™,2) —log gy (2[2™)). (4.14)

We can estimate ¢*(z|2"") by fixing 6 (which is learned on the training dataset)
and learning ¢* on the test dataset and further assume for simplicity that for

an expressive enough inference network ¢*(z|&™) = g+ (z[2™), where

6" = ming KL (q4(2/2"™)|[pg(2l&™)) (4.15)

=maxg By (5zm) (logpg(:i'm, z) —log q¢(z]5:m)> . (4.16)

We refer to this as the optimal inference strategy, given we are using the test

dataset directly to learn the appropriate inference network. Using this optimal
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inference strategy we can in principle eliminate the effect of the AIGG, allowing
us to isolate the degree to which both the GMGG and AIGG are contributing

to overfitting.

To help illustrate the contribution of GMGG and AIGG, we take the VAE
trained on binary MNIST that was used to demonstrate overfitting in
from the previous section and we continue training using the optimal inference

strategy as follows:

We train g4(z|x), keeping 6 fixed, for an additional 1000 epochs on the
test data using equation to obtain the test BPD for the optimal inference
strategy. In figure we overlay the test ELBO (BPD) using the optimal
inference strategy at every 100 epochs during the subsequent training (green)
with the existing test (pink) and train (blue) BPDs. For the optimal inference
strategy the average likelihood ﬁ Z%:l logpg(Z"") can be effectively approxi-
mated by the ELBO, therefore the difference between the two inference curves
on the test set (test (pink) and optimal (green)) is the AIGG. We observe that
after eliminating the AIGG using the optimal inference strategy, the test BPD
(green) is stable with a marginal increase during training for this problem. This
suggests that the generative model pg(x) slightly overfitting to the data but

that the overfitting is actually dominated by the amortized inference network.

Although the optimal inference strategy can help eliminate the inference
generalization gap, training ¢4 on the test data is not practical in most ap-
plications of interest. Therefore, we now turn our attention to improving the
generalization of amortized inference without access to the test data at training

time and without leveraging any additional true training data.

4.4 Consistent amortized inference

We first propose an inference consistency requirement which, if satisfied, would
result in optimal generalization performance for amortized variational infer-
ence, before then introducing a way to improve generalization performance by

reducing AIGG.
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Figure 4.2: BDPs vs epochs. Visualization of the GMGG and AIGG.

When pg — pg, the amortized posterior should converge to the true posterior
¢ (z|x) — pg(z|x) for every x ~ pg(x) (if we assume that the true posterior
belongs to the variational family pg(z|x) € Q). Although this requirement
seems natural for variational inference, the classic amortized inference training

used for VAEs does not satisfy it [59]. Recall the empirical ELBO objective

N
7 2 lomra(&") — KL (sp(rla”) ol (4.17)

When the model converges to the true distribution pg+ = p4 the training criterion

for q4(z|x)

N
min¢—;];KL(Q¢(z]$n)"po*(z|zn)) (4.18)

can still result in the amortized posterior g4(z|z) overfitting to the training data.
In principle, one could also limit the network capacity and/or add an explicit
regularizer to the parameters [99] in an attempt to improve the generalization.
However, this still will satisfy the consistency requirement in principle because
it only uses the finite training dataset. Alternatively, there is another classic
variational inference method, the wake-sleep training algorithm [117, |118],

which does in fact satisfy the proposed consistency requirement.
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4.4.1 Wake-sleep training
Defining g4 (x,2) = q¢(2z|x)pa(x) and pg(x,z) = pe(x|z)p(z), the two phases of
wake-sleep training [117, |118] can be written as minimizing two different KL

divergences in both x and z space.

« Wake phase model learning: py(x|z) is trained by minimizing the KL

divergence

ming KL (q¢(x,z)||p0(x,z)) =maxgE, () (ELBO(X,O, ¢)) + const,
(4.19)

where the expectation E, ) is approximated using the training data.
This is referred to as the wake phase since the model is trained on
experience from the so called real environment, i.e. it uses true data

samples from pg(x).

+ Sleep phase amortized inference: ¢4(z|x) is trained by minimizing

the KL divergence

ming KL (pg(x,2)||04(x,2) ) = ming E,, (x) (KL (pp(z|%)||g4(zlx)) ) + const.
(4.20)

Leaving out the terms that are irrelevant to ¢, the objective can be
estimated with Monte-Carlo
| K

Epp(x,1) ( —0gag(2[2™)) ~ = 2 —logge(2t|z®),  (4.21)
k=1

where z¥ ~ p(z) and z¥ ~ pg(x|2"). This is referred to as the sleep phase
because the samples from the model used to train g4 are interpreted as

dreamed experience.

In contrast, the training criterion for the typical VAE amortized inference

(equation [4.8)) uses the true data samples from pg to train g4(z|x), which we
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refer to as wake phase amortized inference. If a perfect model pg+(x) = pg(x)

were used for sleep phase amortized inference, then it is equivalent to minimizing

Epy- ) (KL (1o (21%)|gp(2[x) ) ) = B, 0 KL (pa(z]%)||gp(zlx)) ). (4.22)

In this set up, the inference network training satisfies the inference consistency
requirement since we can access infinite training data from p; by sampling from
Dg*-

However, the wake-sleep algorithm presented lacks convergence guaran-
tees [117] and minimizing KL(pg(z|X)||q¢(z|x)) in the sleep phase doesn’t
necessarily encourage an improvement to the ELBO. Therefore, in the next
section, we propose a different variational inference scheme: reverse sleep amor-
tized inference, and demonstrate how it helps improve the generalization of the

inference network in practice.

4.4.2 Reverse sleep amortized inference

We now propose to instead use the reverse KL divergence in the sleep phase
when updating the inference network parameters. Specifically we consider the
scheme where we fix @ at the end of normal VAE training and then continue to
train ¢. This has the practical advantage of being a simple bolt on algorithm

to the existing training process. Our objective is

ming B, () (KL (g (2[x)||pa(2]x)) ) = maxs By, (219 x) (10870 (X, 2) — log g (2[x)),
(4.23)

where the integration E, ) is approximated by Monte-Carlo using samples
from the generative model pg(x). Unlike the vanilla wake-sleep protocol, this
reverse KL objective encourages improvements to the ELBO. In the case of a

perfect model py(x) = pg(x) the reverse sleep phase is equivalent to

ming B, . ) (KL (pg- (2[x)|lag(2[x)) ) ) = ming B, ) (KL (pg- (2/%)[|4(2]x)) ) )
(4.24)
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Figure 4.3: Test BPD vs epochs. We compare the consistency property between
three amortized inference methods.

which indeed satisfies the inference consistency requirement.

We now illustrate the consistency requirement in the case of a perfect model.
This can be achieved by using a pretrained VAE as the true data generation
distribution py(x) to emulate the perfect model. We first train a VAE to fit
the binary MNIST problem. The VAE has the same structure as that used
in section and is trained for 100 epochs (see section for more details
on the model and training setup). After training, we treat the pre-trained
pp(x|z) as the true data distribution py(z) = [ py(x|z)p(z)dz. We sample 10000
data samples from py to form a training set Xj.qin and 1000 samples to form
a test set Xjes. We then train a new gg(z|x) with: wake phase inference
(vanilla VAE training), sleep inference (from the normal wake-sleep setup and
our reverse sleep inference and compare the results. Figure shows the test
BPD calculated after every training epoch. We can see sleep phase inference
out-performs wake phase inference and that reverse sleep inference achieves
the best BPD. Intuitively, given how we have constructed pg, this is due to
both the forward and reverse sleep inference using the true model to generate
additional training data whereas the wake inference only has access to the finite

training dataset X¢rqin.-
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4.4.3 With imperfect models

In practice our model will not be perfect pg # py. Empirically we find that
samples from even a well trained model pg may not always be sufficiently like
the samples from the true data distribution. This can lead to degradation in
the performance of the inference network when using the reverse-sleep approach
presented in the previous section. In practise, we propose to use a mixture
distribution between the model and the empirical training data distribution as

follows

Eon) (KL (gg(2[%)|pa(z[x)) ) where m(x) = apg(x) + (1 — a)pa(x).
(4.25)

When a = 0, it reduces to the standard approach used in VAE training. When
a =1, we recover the reverse sleep method (equation . Although this in-
troduces another hyper-parameter into the training scheme, we find empirically
that a setting of a = 0.5 works well in practice. This balances samples from

the true underlying data distribution with samples from the model.

We refer to this method as reverse half-sleep since it uses both data and
model samples to train the amortized posterior. We can rewrite the equation

[4.25 as a sum of two positive terms

OBy, ) (KL (gg(2[%)||pa(2]%) ) ) + (1= @)y ) (KL ( (a9 (21%) [ [po (2]x) ) )
(4.26)

The optimum of this objective will make the first term 0, which is the same
requirement as the classic amortized inference (equation . The second term,
which is equivalent to the reverse sleep amortized inference (equation ,
encourages the inference consistency requirement: when pg = pg4, the optimum
of the second term will set q4(z|x) = pg(z|x) for any x ~ py(x). When pg is not
perfect, the second term can be seen as a regularizer of the classic amortized

inference objective that penalizes the hypothesis space of the amortization
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Figure 4.4: Test BPD comparisons of amortized inference with different o. We find
the reverse half sleep method (= 0.5) achieves the best BPD. The
mean and std are calculated with three random seeds.

neural network [99).

To illustrate the impact of different settings of @ we again fit a VAE to
the binary MNIST dataset, freeze 6, and then continue to train the amortized
posterior for an additional 100 epochs using sleep inference (equation and
reverse half-sleep inference for three different o values. Figure[.4]shows the test
BPD comparison. We find the proposed reverse half-sleep method with a = 0.5
outperforms the reversed sleep method (« = 1), whereas the standard amortized
inference training in VAE (o = 0) leads to overfitting of the inference network.
We also plot the sleep inference training curve, whose BPD is expected to be

less competitive since it is not directly optimizing the ELBO.

4.5 Experiments

Up to this point we have included illustrations of the generalization gaps and our
application of reverse sleep inference method using a simple running example of
a basic VAE model trained on the binary MNIST dataset. The architecture for
this model consists of feedback forward networks for the model and inference
networks; each with 2 layers of 500 hidden units and a latent variable dimension
of 16. We used ADAM with a learning rate of 5 x 1074, which we found to

be a stable choice across the different variations.
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In this section we expand our empirical analysis to a broader range of prob-
lems to demonstrate the utility of our method for improving the generalization
performance and data efficiency. We first replicate the VAE image modelling
experiment introduced in the previous sections on more challenging datasets.
Next we apply our method in a transfer learning setting and demonstrate how
it benefits the performance of downstream classification. Finally we run some
ablation experiments on the tightness of the ELBO, how the latent dimension-
ality impacts performance and the impact of applying our reverse sleep training
procedure from the start of the original model training as opposed to only as
a post-hoc training procedure. In appendix [B] we also present an application

where VAEs are used as the generative model for lossless compression.

4.5.1 Image modelling

We apply the reverse half-sleep to improve the generalization of VAEs on three
different datasets: binary MNIST, grey MNIST [119] and CIFAR10 [120].

Binary and Grey MNIST

We use a latent dimension of 16 and 32 respectively, and neural nets with 2
layers of 500 hidden units in both the model and inference neural networks.
We use Bernoulli p(x|z) in binary MNIST and discretized logistic distribution
for grey MNIST for the likelihood.

We first train the VAE with the usual amortized inference approach using
Adam with Ir = 3x10™* for 1000 epochs and save the model every 100 epochs.
We then use the saved models to train gg4(z|x) on 1) the test data using the
optimal inference and 2) using our reverse half-sleep method. This produces 2
different models we can evaluate against the usually trained VAE on the test
data at each 100 epoch checkpoint.

For our reverse half-sleep training, we train ¢ keeping 0 fixed for 100 epochs
using the same optimization settings from the original VAE training. To sample
from pg(x), we first sample 2’ ~ p(z) and then sample &’ ~ p(x|2’).

For the optimal inference strategy, we train ¢ keeping 6 fixed on the test
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data set for an additional 500 epochs to ensure the same number of gradient
steps are conducted (since the training set is 5 times as big as the test set).
Figure and show that our approach does not require further training

on the test data to improve generalization performance in terms of test BPD.

CIFAR10

We use the convolutional ResNet architecture that we introduced in section 2.2]
[8, 1121] with 2 residual blocks and latent variable size of 128. The likelihood is
a discretized logistic distribution with linear autoregressive parameterization
within the channels. We train the original VAE for 500 epochs with Adam
and Ir = 5% 10~* and save the model every 100 epochs. This pre-trained VAE
achieves 4.592 test BPD for CIFAR10P]

Ideally, when the VAE model converges to the true distribution pg — pq,
the aggregate posterior q4(z) = [q4(z|x)pa(x)dx will match the prior p(z).
However, for a complex distribution like CIFARI10, a significant mismatch
between gg(z) and p(z) is usually observed in practice [122, [123]. In this case,
a sample z’ that we generate using a latent sample from the prior 2’ ~ pg(x|2’),
where 2’ ~ p(z), may be blurry or invalid. A common solution is to train
another model, e.g. a VAE [123] or a PixelCNN [124, [121] to approximate ¢4(z).
We decide to instead directly sample from g4(z) rather than p(z) to generate
samples when updating ¢ using our reverse sleep approach (equation ,
which can be done by first sampling &’ ~ pg(x) (from the training dataset) and
then sample 2’ ~ g4(z|z"). This scheme still results in a consistent training
objective since gy+(z) = p(z) for the optimal posterior gy« (z|x). As before, for
our reverse half-sleep training, we train ¢ keeping € fixed for 100 epochs using
the same optimization settings from the original VAE training and for the
optimal inference strategy, we train on the test data set for an additional 500
epochs. In figure we find the proposed reverse half-sleep approach (with

sampling from ¢4(z)) consistently improves the generalization performance of

2This performance is comparable with other single latent VAE models reported in [121] -
4.51 BPD with a VAE with latent dimension 256 and 4.67 BPD with a discrete latent VAE
(VQVAE)
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the amortized posterior for the same budget of training data.

79

Since the model parameters @ are shared and fixed in all comparisons, better

test ELBO indicates the predicted gy (z|2’) is closer to the true posterior pg(2|x’)

under the KL divergence measure (see equation [4.3]).
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Figure 4.5: Test BPD comparisons among amortized inference (VAE), optimal
inference strategy and the reverse half-sleep inference on three datasets.
The x-axis represents the training epochs.

4.5.2 Down-stream classification tasks

One common use of VAEs is in transfer learning where we use the learned amor-
tized posterior gg(z|x) for down stream tasks. For example image classification
where the samples 2’ ~ gy(z]2') can be treated as a latent stochastic representa-
tion [125]126] of a given data point 2’ that can be used as a lower dimensional
feature representation. Given a labeled dataset {(z!,y'),---,(z",y")} and a
pretrained amortized posterior gg(z|x) we can train a classifier py(y|z) that
maps from the latent space z to the label y.

After training the classifier, for a given test set of unlabelled data

{:i'l, e ,:EM}, the predictive distribution can be written as

p(v1x) = [ pa(y12)g(zlx)dz (4.27)

and can be approximated using a Monte-Carlo estimate p(y|x) &~ K p(yl2h),
where 2% ~ 4 (z|x).

We train a classifier with a 2 layer feed-forward neural network with hidden
size 200, RelU activation and dropout with rate 0.1 on our binary and gret

MINST datasets. The models are trained for 10 epochs with Adam optimizer
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and learning rate 3x10~%. During training, we randomly sample one 2* for each
data point z and we use k£ = 100 in the testing stage to estimate the predictive
distribution. Figure compares the posterior trained by the classic amortized
inference approach and our proposed reverse half-sleep method. We find that
our method consistently improves the classification accuracy performance for

the same training data budget.

P VAE VAE
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0.964 0970

0962 0.968

0.960
0.966

0.958

100 200 300 400 500 600 700 BOO 900 1000 100 200 300 400 500 GO0 VOO BOO 900 1000

(a) Binary MNIST (b) Grey MNIST

Figure 4.6: Representation learning for down-stream classification. We train the
VAE for 1000 epochs and evaluate the classification accuracy (y-axis,
higher is better) on the down-stream classification task every 100 epochs
(x-axis). The results are averaged over 3 random seeds and we also
plot the standard deviation. VAE in the legend refers to typical VAE
training, whereas RHS refers to our reverse-half-sleep method.

4.5.3 Ablation studies

Comparisons with regularization methods
Recent related work [116] proposed to alleviate the overfitting of amortized
inference by optimizing a linear combination between the traditional amortized

inference (equation [4.8)) and a denoising objective

aE o (KL(qg(zlx + o)l [pg(2x)) ) + (1 — )KL (g (zx)Ip(z]x)),  (4.28)

where p(e) = N(0,0%1). We compare this regularizer to our method by training
the pre-trained ¢, keeping 6 fixed, for an additional 100, 300 and 100 epochs
on Binary, Grey MNSIT and CIFAR respectively using both methods.

For the denoising regularizer, we use the same linear combination weight

a = 0.5 as we use in equation and vary o € {0.1,0.2,0.4,0.6,0.8,1.0}. See
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table for the comparisons. For MNIST, we find o € {0.1,0.2,0.4} improves
generalization performance, but larger noise levels hurts the performance.
For CIFARI10, only o = 0.1 can slightly improve the generalization. In
contrast, our method consistently achieves better generalization performance
without tuning any hyper-parameters (given we are using a fixed value for
«a = 0.5, which could in principle also be tuned). See figure for the test BPD
(evaluated every training epoch with the mean and standard deviation being
calculated with 3 random seeds). One drawback of our method compared to
the denoising regularizer approach is the requirement for model samples, which

is more computational expensive during training.

Table 4.1: Average test BPD comparisons with Denoising Regularizer [116).

Methods VAE 0=01 06=02 0=04 0=08 o0c=10 Ours

Binary MNIST 0.200 0.195 0.192 0.191 0.196 0.201 0.187
Grey MNIST  1.543  1.527 1.519 1.515 1.545 1.550 1.513
CIFAR10 4.592  4.591 4.598 4.614 4.651 4.667 4.572
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Figure 4.7: Test BPD evaluated after every training epoch. We find, compared to
the denoising regularizer, the proposed amortized inference training
scheme consistently achieves better generalization performance in all
tasks.

Tightness of the ELBO

In this section we want to verify the tightness of the ELBO as a lower bound of
the log likelihood. Consider the likelihood for a single data point ', we have

logpg(z') > By, (s/) (logpe('|2)) — KL (gg(z|2)Ip(z))  (4.29)
= ELBO(x,6,9). (4.30)
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To evaluate logpg(z’) we can use an importance weighted estimation (IWAE

[127)):

logpg(z') = log Ey, (z)x) <((||)Xp)(z)> (4.31)
1 & pp(|2M)p(2h)
Nlog?kzl W) (4.32)
= IWAE(z',0,9), (4.33)

where 2" ~ qe(2z|2"). The accuracy of the importance sampling heavily depends
on the proposal distribution g4 (z|2’) and will be poor if g4(z|2’) underestimates
the high density regions of pg(z|x) [127]. For the ELBO computed using the
optimal inference procedure, we can assume that the approximate posterior is
close to the true posterior. Therefore if the lower bound is tight we will observe

that the ELBO is approximately equal to the IWAE.
In figure we compare the ELBO and IWAE using classic amortized

inference and the optimal inference setup respectively. We use k = 10 in all
cases. We find that the IWAE can improve the ELBO for the traditional
amortized inference and is approximately equivalent to the ELBO using the
optimal inference strategy. This is evdience to support that the ELBO using
the optimal inference strategy is tight to logpg(x).

We also estimate the IWAE using the proposal posterior learned by our
reverse half-sleep inference and find that our method can also improve the
IWAE result; see figure for details. In this case our method is providing a

better proposal distribution for importance sampling.

Effects of latent space dimensionality

In this section we look at the effect of the dimensionality of z on the gener-
alization performance. We use the VAE described in section applied to
binary Mnist with different sized latents: [16,64,128]. In figure |4.9| we find that
the amortized inference network overfits in all cases, regardless of the latent

size. We then apply our reverse half-asleep procedure to the checkpointed
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Figure 4.8: IWAE comparisons on binary MNIST. The x-axis indicates the training
epoch and the y-axis is the Bits-per-dimension, which corresponds to
the negative ELBO or IWAE with log 2 base and normalized by data
dimension, lower is better. In figure a, we see that IWAE improves
the ELBO when using classic amortized inference but is approximately
equal to the ELBO when using optimal inference, which indicates the
bound is tight. In figure b, we compare the IWAE with classic amortized
inference, optimal inference and the proposed reverse half-asleep (RHS)
inference. Here we find the proposed method can also improve the
classic IWAE estimation without training on the test data.

model every 100 epochs and found it consistently improves the generalization

performance across all latent sizes.
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Figure 4.9: Effects of different latent dimension. The y-axis is the BPD and x-axis
is the training epochs. We find the amortized inference generalization
gap exits in all cases.

Reverse half-sleep from the beginning

Up to this point we have applied the reverse half-sleep training in a post-hoc
fashion. This allowed us to extend the original VAE training with this additional
step. It also allowed us to isolate the degree to which both the generative model
and amortized inference generalization gaps are contributing to overfitting.

It has also been observed that a poor variational posterior in the early
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stage of training can cause the M-step of the generative model pg(x|z) to get
trapped into a local minimum (see “Two problems with variational expectation
maximization for time-series models” section in [128]). Here we want to check
how our method behaves if applied from the beginning of training as opposed to
just as a bolt on at the end with a fixed . In figure we find that using the
proposed reverse half-sleep from the beginning can lead to a better test ELBO
compared to the classic VAE training, or our proposed post-hoc training, for a
relatively simple dataset like Binary MNIST. However, we also find that for a
more complex dataset like grey-scale MNIST, applying our method from the
beginning performs worse than the classic VAE training. We hypothesize that
for a complex dataset, the model in the beginning cannot generate valid images,
which will lead to biased gradients. We also report the results of using the
reverse half-sleep training starting from 200 epochs onwards and find it does in
fact improve performance over classic VAE training, but is still worse than the
post-hoc version. We leave further study of how to improve the generalization
from the beginning of the training to future work.
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Figure 4.10: We compare different ways of using the proposed training objective
(from the beginning or post hoc). We also plot the standard VAE
training and the ELBO with optimal inference for reference.

4.6 Related work

A different perspective on generative models’ generalization is proposed in
[129] where the generalization is evaluated by testing if the model can generate

novel combinations of features. In contrast, we measure generalization using
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test likelihood, which is more relevant for certain applications like lossless
compression. Recent work [100] first studies likelihood-based generalization in
context of lossless compression. They focus on the scenario where the test and
train data come from different distributions, whereas we assume they both follow
the same underlying distribution. Additionally, their model has a tractable
likelihood and they focus purely on the generative model generalization gap,

whereas we focus on the amortized inference generalization gap in VAEs.

Previous work [115] studied the so called amortization gap in amortized
inference. This is caused by using g¢ (z|T") to generate posteriors for each input
z" rather than learning a posterior ¢}(z) for each 2™ individually. This gap can
be alleviated using a larger capacity inference network. This amortization gap
is fundamentally different from the amortized inference generalization gap we
discuss in this chapter since the latter focuses solely on test time generalization

but the former problem also exists at training time.

Recent work [130] proposes a compression scheme based on the IWAE [127]
bound, which is tighter than the ELBO and thus improves the compression rate.
However, this method has to compress/decompress multiple latent samples,
which requires extra time cost. On the other hand, we focus on improving the
ELBO-based compression that only needs to compress one single latent sample.
Nevertheless, similar to the K-step optimal inference strategy, our amortized
training objective can also be used in the IWAE-based method, which gives a

better proposal distribution for importance sampling.

Another example of related previous work [131] considers the following
data generation process x! ~ pg(x), 2! ~ pg(z|z!), 2 ~ pe(x|2') and propose
enforcing latent consistency between gy (z|z') and g4(z|2?) for the pairs (z!,2?)
to encourage the learned representations to be more robust. This procedure is
similar to the self-supervised contrasting learning procedure [132] where the
augmented data is training data reconstructed using the VAE model. In this
chapter, we want to encourage samples from the model ' ~ [ pg(x|z)p(z)dz to

have high ELBO under the model (equation |4.23) to improve the generalization



4.7. Conclusion 86

of the amortized inference network. We don’t require any paired data in our

method.

4.7 Conclusion

We have shown how the generalization of the VAE class of latent variable
model is largely affected by the amortized inference network. We proposed
an additional training stage for the inference network that uses generations
from the model that provides better generalization for a given set of training
data; as demonstrated in the applications to down stream classification and
compression problems.

Improving the generalization performance of the decoding model in addition
to the inference network was outside of the scope of this work; but is an obvious
future consideration. As well as scaling our method up to larger generative
models and adapting it for hierarchical latent variable models.

In particular we are interested in exploring how this method can benefit
applications of VAE style models in molecular design, where generalization to
unseen structures is paramount [133]. Furthermore extending our method to

the challenges of hierarchical VAE models [134].



Chapter 5

Solipsistic Reinforcement

Learning

In this chapter we present ideas for a latent variable model-based deep re-
inforcement learning framework that aims to tackle environments with high
dimensional state spaces in a more data efficient way; in particular attempting
to learn directly from pixels. By improved data efficiency in this RL set-
ting, as discussed in chapter [I, we mean reducing the number of environment

interactions required to achieve a target reward.

Specifically, we aim to address the research question as to whether it is
possible to develop a framework that learns a low dimensional latent represen-
tation of the environment while avoiding the need to learn a generative model
of the environment itself? And furthermore whether that representation can

be effective for planning and reward modelling?

We refer to this as a solipsistic representation that we train to encode a belief
that is consistent with the dynamics of the environment and is then exploited
for effective planning. We explore choices of model and corresponding planning
algorithms that can deal with both discrete and continuous state environments.
We demonstrate empirically gains in data efficiency over existing model-free
methods when learning directly from pixels and analyze the properties of our

learned representations.
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5.1 Reinforcement learning

The real world is complex and a learning agent must be able to recognize
relevant signals to decide what actions to take towards reaching a goal. The
focus of our work is to form environment representations for model-based
planning and reward prediction without having to learn a generative model of
the potentially complex environment.

For example, Pavlov’s dog[135] learns to associate the sound of a bell with
the eventual reward of food in spite of other potential sensory distractions.
If we attempted to create a model for the dog’s predictions of this reward it
would be unnecessary to create a complex representation of the dog’s complete
sensory experience of the laboratory. Instead we should only need a solipsistic EI
representation that encodes the belief of the dog as to whether food will appear
or not conditioned on the extracted signal of bell sounds alone. Thus, lessening
the burden of the modeling problem. This intuition is the essence of what we
are trying to formalize in this work under a model-based reinforcement learning
(RL) framework. Our general principle of interest is representation learning
that automatically encodes only the information in the environment needed to
solve a given decision problem; ultimately improving the data efficiency of the
agent. Practically speaking, we attempt to answer the question of whether it’s
possible to learn a useful low dimensional representation of an environment for
planning and reward prediction without having to learn a generative model of
the environment itself. We believe that any successful steps in this direction
is progress towards more effective real world deployments of reinforcement
learning.

To motivate our approach, Pavlov’s dog [135] learns to associate the sound
of a bell with the eventual reward of food, despite sensory distractions. There
are classically two interpretations: (a) a model-free interpretation is that the
dog learns a value V(x;) (expectation of eventual food reward) as a function of

the environment state x; at time ¢; (b) a standard model-based interpretation

1Solipsism is the philosophical idea that the external world may not exist and only an
internal world may exist, whose representations are informed by the external world alone.
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is that the dog models the environment and can use that to predict the future
p(Xak|x¢) and any eventual reward p(ryy|xs1x). In contrast to these standard
approaches, we posit an alternative model-based interpretation in which the dog
forms an internal ‘solipsisticﬂ low-dimensional representation s; as a function
of the external environment state x; and forms a predictive model p(s¢4x|st) of
the representation, without learning a model of the environment itself. This
representation is useful if the dog is able to accurately predict eventual reward
using the solipsistic transition p(s;ix|s:) and reward model p(ryy|Stik)-

In the Reinforcement Learning (RL) setting an agent observes state z; from
the environment at time-step ¢, takes action a;, and subsequently observes x;1
and reward r+1. The goal of the agent is to learn (through interactions with
the environment) how to take actions that result in favorable long-term rewards
[35]. A standard RL assumption is that there is an underlying Markov Decision
Process with transition p(x¢11|x¢,a¢) [137), 138} 139, [140]; rewards are functions
of the observed state and the goal is usually to take actions that maximize
cumulative reward, see figure . The action a; depends on the state z;_1,

meaning that the state x;_ is revealed before the action a; is decided.

In model-based RL, we attempt to learn the model of the transition dynamics
. Compared to model-free approaches, model-based RL can be significantly
more sample efficient [137, 138 (139, 140]. However, for environments with
high-dimensional states (such as an image pixels) the complexity and potential
redundancy in the observations can make learning the environment dynamics
using a model difficult and potentially unnecessary [142, [143].

A recent trend is to learn a lower dimensional representation s; that is
used to model relevant dynamics and reward prediction, such as PlaNet [143],
World Model [142] and other variants [141} [142], see figure [5.1p. The usual

strategy is to train a latent variable model p(x;) = [ p(x¢|s¢)p(s¢)ds; with an

2We use ‘solipsism’ to refer to the philosophy that only an internal representation of
the world may exist [136]. In our context, the agent can plan on the basis of an internal
dynamical representation of the external world.

3 Alternatively one may use a higher-order Markov model p(x;41|h¢) where hy = {81.4,a1.¢}
is the history of states and actions up to time point ¢ [141].
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encoding-decoding structure [98] like the VAE studied in section , while
jointly training a dynamics model p(s;4+1[s¢,a¢) in the lower dimensional latent
space [143, [141}, {142, |4]. The learned model infers a latent representation
sy given a state observation x; (for example a sample from the posterior
p(se|xt) o< p(x¢|st)p(st)) that can be used by the dynamics model for efficient
planning. Arguably, a limitation of these recent approaches is that they spend
significant computational resources on learning a generative model of the high-
dimensional state x; — however, this generative model is not used directly
during the planning phase. The learned representation s; in these approaches

is therefore likely encoding redundant information about the environment x;.

An alternative is to use model-free algorithms such as Deep Q-Networks
(DQN), Proximal Policy Optimization (PPO), amongst others [144, [145| 146,
147). The upside is that these approaches avoid creating a generative model of
the environment by learning a policy from pixels to state values. A potential
downside is that they suffer from poor data efficiency compared to model based
approaches; meaning they generally require much larger numbers of interactions

with the environment.

The question we therefore study here, similar to other recent research work
in this area [148], is whether it is possible to perform model-based RL without
making a generative model of the environment. If this were possible, we could
potentially reap the benefits of the data-efficiency of model-based RL, without

the need to model complex high-dimensional observations.

5.2 Solipsistic representations

A good solipsistic representation s; of an observation z; is one that is consistent
(the predicted next solipsistic state $;41 given action a; matches the observed
next solipsistic state sy41) and informative (one can predict the reward well
using st).

A solipsistic Markov model is depicted in figure [5.2h, where we remove

the arrow from s to x in the latent variable model and instead introduce
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(a) Observed Markov Model (b) Latent Variable Model.

Figure 5.1: Graphical models for model-based RL. Shaded nodes denote observed
quantities. (a) Model dynamics and reward in the original space x and
(b) in latent space s.

® @ @

&

(a) Solipsistic Markov Model (b) Solipsistic Memory Model

Figure 5.2: Graphical models of the solipsistic Markov model (a) and memory
model (b). We color the edge from the observation to the latent state
to highlight that this is not a generative model of the environment.
A dashed line indicates the consistent relationship between solipsistic
state prediction and future state recognition, as discussed in section

b2

a recognition distribution p(s|x¢), the purpose of which is to encode only
the information in x; that is needed to effectively learn the dynamics and
the reward of the environment. We introduce a toy ‘MNIST game’ to help
build intuition, see figure [5.3] Each observation z; is a 28 x 28 MNIST image
representing a digit from 0 to 9. The agent has two possible actions: ‘minus
17 or ‘plus 1’; the environment shows the resulting digit’s image. The digit
will stay the same when taking action ‘minus 1’ from digit 0 and ‘plus 1’ from
digit 9. The game is initialized at digit 4. The reward r; is 1 if the state is an
image of digit 9; otherwise the reward r; = 0. Whilst the observation z; is a
784 dimensional image, clearly the underlying dynamics is representable by an

integer s; € {0,...,9} (that we represent in practise by 1 hot vectors).
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(a) States of the environment (b) Transition dynamics

Figure 5.3: MNIST game. (a) The observation z; is one of the 10 images. (b)
Given a ‘plus 1’ action, the following image x;y1 is a higher digit and
vice versa for ‘minus 1°.

5.2.1 Learning objective

In what follows we describe three desiderata for our latent variable model that
ultimately inform our learning objective - consistency in the predicted latent
dynamics, consistency in the predicted rewards and the effective filtration of

redundant observation state information.

Latent dynamics consistency

We wish to ensure that, for a given recognition distribution pg(s¢|x;), parame-
terised by a neural network with parameters ¢, the dynamics of the solipsistic
model are consistent with the dynamics of the true environment when training
the model under sampled trajectories. In the setting of Pavlov’s dog, if the
model maps the current environment x; to the internal state x; — s; that
represents hearing the bell s; = bell, and the dog predicts 8y — s8¢+ from this
that s;41 = food, then we must observe that the next external state &;11 — 841
indeed maps to food. This ensures that latent transitions are effective for

planning.

Similarly, in the MNIST game, we need to force the solipsistic model to
predict a digit that is consistent with the image that would appear in the
next time step under the true environment transition. More specifically, we
assume a Markov transition distribution pg(si+1|st,a:), parameterised by a
neural network with parameters @, which takes the current solipsistic state and

action as input and gives the distribution for the next solipsistic state s41.
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The solipsistic state distribution at time ¢+ 1 can be formulated as

Po.¢(stt1/xt,ar) =D po(ser1lse,ar)pg(selxt). (5.1)

St

We want this predicted distribution to be consistent with the recognition
distribution pg(s¢+1[x¢41) from the next time step. To achieve this we introduce
an agreement objective. We aim to leverage maximum likelihood, as introduced
in section [2.1, against sampled trajectories for training, therefore the KL

divergence is a natural choice:

KL<po,¢(St+1!Xtaat)\\p¢(St+1\Xt+1)) : (5.2)

Reward consistency

For effective planning, we want the solipsistic representation to be useful for
reward prediction using a reward model we can learn from experience py(r¢|s;).
Given solipsistic state s; and observed reward r; pairs, we can again use
maximum likelihood, to learn the reward model py(r¢|s;). This is equivalent
to minimizing the KL divergence KL(p(r¢)||pp(r¢|s:)) between the empirical
reward distribution p(r;) that places all mass on the observed rewards and the
model py(r¢|s;). We assume that we are in a dense reward settings; that is we

observe a reward at every time value.

Redundancy filtering

Finally, the intention of the recognition distribution pg(s¢|x;) is to filter out
redundant information when producing the solipsistic representation. To achieve
this, we need it to learn to distinguish if the state information is useful or not
for both reward prediction and transition dynamics. For example in the MNIST
game, the recognition distribution may just focus on the image backgrounds
which are stationary over time and the solipsistic transition function could

just learn the identity mapping. Although this forms a consistent solipsistic
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representation, it would be useless for planning. Furthermore, having a reward
objective is not sufficient to avoid this behavior. Features of the state which
inform reward prediction may not be the same as those which inform a useful
dynamics model. For example in the MNIST game, the recognition distribution
may just keep the features which are relevant to distinguish if an image is 9 or
not for predicting the reward, but ignore other useful information about the

system dynamics.

One solution is to additionally encourage the agent’s solipsistic dynamics
to be inconsistent with trajectories which are not observed in reality. In
other words, we want an objective that forces the predictive distribution
Po.6(st+1]x,a¢) to be different from py(s;|x;) for i # 41 ﬁ To achieve this we

can maximize the expected KL divergence:

Eyzr11KL (pg,g(st41 /%1, a1) [pg(silxs)). (5.3)

We refer to this as a solipsistic contrast term. It is similar in spirit to the
contrastive loss used for representation learning or self-supervised learning
[149, [150, |151]. Since the KL divergence is unbounded here, we use a positive

constant cap m.

Overall objective

For a trajectory of length T our overall objective for jointly training the
components introduced for our solipsistic model combines the three elements

from the previous sections. We seek to minimize

1 T-1 A T ~
w1 2 KL(gg(seetlxe an)lpg (i1 [xi1)) + 7 T KL(E(r) | [pn(relse)
t=1 t=1
)\S T-1
tr > Ei;«ét+1maX(07 m— KL (po,¢(st+1 |xt,a¢)| |p¢(Sz'|Xz‘))) (5.4)
t=1

4More generally, in the case of multiple trajectories, we can sample s; from other trajec-
tories.
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with respect to the parameters of the recognition distribution @, transition
distribution @ and reward distribution n; As, A, and m are user chosen hyper-
parameters. In our experience, the results are not particularly sensitive to the

choice of these parameters, which we discuss further in section [5.4]

For tasks that require accurate long-term planning, prediction errors using
the simple solipsistic Markov model may accumulate during roll—outE]. In
such cases we consider a variation of our model we refer to as the Solipsistic
Memory Model (SMM). The SMM differs in that it’s transition depends on
all past solipsistic states and actions — see figure for the graphical model
representation. Within our overall objective we replace pg ¢(Si+1]X¢,a¢)
with pg ¢(s¢+1[x¢, he) where hy = {s1.4,a1.4} and use a recurrent neural network

[64}, 65] to learn the transition dynamics of the solipsistic model.

5.3 Acting and planning

For a given solipsistic model, we take a sequence of actions using a re-planning
procedure: we observe x; and determine the first solipsistic state distribu-
tion using the recognition process pg(si|z1). We then determine a} using a
planning procedure (e.g. dynamic programming, or sampling from a trained
parameterized policy, as we discuss further below) and take this action in
the environment, observing the resulting £2. We repeat this recognition and
planning procedure until time 7', observing z; at each step and then planning
the best next action. This process of re-planning at every time step helps
prevent the accumulation of prediction errors from our model and is efficient
since our solipsistic representation is relatively low dimensional. How planning
and acting in the environment is folded into the overall RL process of model

and policy training is described in detail in algorithm

SWhilst the underlying physical dynamics of a problem might be Markovian, any pixel
based representation will result in some discretization error. For long sequences, small
discretization errors can accumulate, resulting in poor long term prediction unless a longer
term history is used.
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5.3.1 Markov model

Given the observation 1, we would like to predict the expected rewards we
would obtain by taking a sequence of subsequent actions a1.7_1. The recognition
distribution enables us to determine the distribution for the first solipsistic state
pg(si|z1). The state-action trajectory can be described by the distribution

T-1

p(s1r|z1,a1.0-1) = p(si|z1) [] p(se+1lse. ar). (5.5)
=1

For planning, the goal is to maximize the cumulative reward by choosing a

sequence of actions. For a discrete solipsistic state space, the objective is

T T
Z ( 1R(St)) p(s1|z1) HP(St|St—1,at—1), (5.6)

S1.T7 t=2

where we use the reward function defined as R(s¢) =E,, (r|s,)[r¢]. If we interpret
the solipsistic model as a Markov Decision Process (MDP) then the optimal

action sequence has value

T

II}Z%XZP(81|$1701)"'{ZI}ED§ > p(ST—1|ST—27aT—1>gj{a)fzp(SﬂST—l;aT—l)ZR(St)-
TSt t=1

(5.7)

s1 Tosro1

This is readily solved by dynamic programming.

Value Estimation

We let V(s7) =R(sr). For t =T —1,...,2 and each state of s; we calculate

V(St) = R(St) + Hla’%X Z p(SH_llSt, at)V(St+1). (58)

St41

The first optimal action can be computed using the value function

a; :argrraelxXZp(sﬂml)Zp(52|51,a1)]}(52). (5.9)
s1 So
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We then take the first optimal action aj in the real environment to get observa-
tion &2, and do re-planning based on the new solipsistic distribution p(sa|z2).
The general procedure is to repeat: (1) take the action a; in the environment
and get the new observation 41, (2) use the recognition function to compute

p(st+1|%¢41), (3) compute the next action aj,; using

a;,, = argmax > p(sea1]Ti1) Y p(siralsig1, 1)V (si42). (5.10)
s S¢y2

By using this re-planning scheme, we can sequentially decide the optimal action
sequence under our model, which we demonstrate in our MNIST game in
section [5.4.1] For continuous latent states and non-linear transition dynamics,
exact dynamic programming is usually not available. See [152] for alternative

approximate dynamic programming techniques.

5.3.2 Memory model

In the SMM dynamic programming becomes intractable and we instead learn a
policy pw(at|st), parameterized by a neural network with paramters w. Here we
assume that the observed state s; contains sufficient information to determine
the best action; however, in order to accurately track long term behavior we
need to use the SMM dynamics to track changes in state. This is typically
required in the case of pixel-based planning in which the best action is readily
determinable from the current state; however, keeping track of the long-term
consequences of a sequence of actions requires using a history of states because

of the discretization errors in observing images only.

The resulting objective to maximize is

T

T
E(w) E/ (XER(St)) p(silz1) T[] p(st/he—1)pw(as—1|si—1)dsi.rdag.r—1.

t=2
(5.11)

where, for discrete actions, the integral over aq.7_1 can be replaced by summa-

tion.



5.3. Acting and planning 98

Previous work has demonstrated that Variational Optimization (VO) style
algorithms [153] |154] have an advantage over policy gradients for environments
with long time horizons. We therefore use a standard VO algorithm to learn
the policy parameters w, see appendix.

In the RL setting, we iterate through cycles of the following steps; trajectory
collection from the environment (using the latest best policy and some action
exploration), model training, policy training (which are separate steps - full
details provided in algorithm |1)) and policy evaluation. We provide specific
parameter settings and architecture choices in section [5.4.2l We re-initialise
the parameters of our policy w to a random initialisation after every round of
sampling a new batch of trajectories and updating our transition, recognition
and reward models offline. This is so that our policy learning process using VO
does not over-fit to older trajectories and can appropriately exploit the latest
information about the environment.

In the case of discrete actions, which we encounter in section [5.4.2] we choose
at each step of the environment interaction a random action with probability e
and an action based on the current best policy with probability (1 —e¢). In the
case of continuous actions, small Gaussian noise can be added to the action

chosen based on the current best policy.
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Algorithm 1 Overall learning procedure in practise - bringing together the
previous methodology, where we assume the use of the memory model and a

parameterized policy.

1: Set constants I, Niodels Npolicy7 Teottects Trmodels Tpolicya B¢, J
2: Initialize M < ()

3: Initialize Parameters of 8, ¢y, 19, wo

4: for i1 =0,...,I do

5 for ¢=0,...,C do

6: Reset environment

7 fort=1,...,Teoyect do

8 Observe z;,r; and sample 8; ~ p¢i(St’-’L‘t)

9 Sample a; with exploration strategy using py,(a:|s:), €

10: Take action @; in environment
11: end for

~ Tco ec
12: M(—MU{(xt,st,at,rt) t:lll t

13: end for
14: for n=0,..., Npoder do

15: Sample trajectories {{(Z:,8s, @, 7¢)p} 1m0 Y2 ~ M
16: Update 8;, ¢,, 1, using equation [5.4 and ADAM
17: end for

18: Re-initialize w; to a random policy

19: Initialise VO parameter pq < w;

20: for n=0,..., Npyicy do

21: for j=0,...,J do

22: Initialize hy < 0

23: Sample z; from memory M

24: Sample 81 ~ pg(s1|21)

25: Sample w’/ ~ N (p,,,0 =0.2)

26: for t =0,...,Tyolicy do

27: Sample a; ~ p, ;(at|st)

28: ht — ht U (St, a;)

29: Predict R(s;)

30: Sample 811 ~ pg(sit1/hi)

31: end for

32: Compute &(w?) =YL R(s;)

33: end for

34: Compute p,,,; with {€(w’ )}‘J] using VO equation and ADAM
35: end for

36: Update policy parameters w; 1 < p,

37: end for
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Figure 5.4: The learned solipsistic model for the MNIST game. The pixel images
x; are represented by their corresponding number on the x-axis. (a)
The y-axis is the solipsistic state s;. The model learns to associate an
image x; with a unique solipsistic state 8;, with p(s¢|x;) being almost
deterministic. (b) The learned model predicts the instantaneous reward
correctly. (c¢) The y-axis is the time step from 1 to 10. The value is
normalized within each time-step, the darker patches indicate higher
values. Given any state at time step 1, the optimal action is always
‘plus 1.

5.4 Experiments

Rather than showing state-of-the-art across a range of RL challenges, the goal
of the experiments is to confirm our hypothesis that model-based RL can be
achieved without requiring a generative model of the observations x; and to go
deeper into understanding qualitatively how the learned representations are
behaving. We discuss details of the simple MNIST game introduced in section
5.2 We apply our proposed method to a variation of the Cartpole benchmark
from OpenAl gym [155]. If using the low dimensional cartpole state provided
by this environment, this is an easy problem for control. We instead try to
learn directly from pixels using continuous s; to demonstrate our recognition

distribution works as expected. Further details of the models and training are

given in appendix(C.2)).

5.4.1 MNIST Game

For the solipsistic state we assume we know the true number of states
sy € {1,...,10} (represented by 1 hot vectors). The recognition distribution

Pg(st|x¢) is parameterized by a convolutional network. The output of the neural
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network is a softmax function, which gives the probability py(s; = i|x;). We
parameterize the transition pg(s¢+1|s¢,a¢) with two normalized 10 x 10 matrices
p(St+1]st,ar = 0) and p(sgy1]se,ar = 1) (for the actions of minus 1 and plus 1 to
the current digit - see the description in section . The reward distribution
pn(1¢|s¢) is parameterized by a normalized 10 x 2 matrix. At each episode
we select random actions a1.14 and collect a single trajectory x1.15 to add to
our memoryﬁ. Then during model training, we iteratively sample batches of
consecutive states from memory with batch size 64 and update the model using
equation and ADAM [66]. This process then repeats at each episode.

We can see from figure that the 10 different images are assigned to 10
different solipsistic states with high probability. In figure [5.4D] we see successful
reward predictions, with the image state 9 having high probability of reward
1. At test time, we randomly initialize the image state and set the horizon
for planing to T'= 10, since for any given state at ¢ =1, the agent can reach
the goal state within 10 steps. In figure [5.4c| we plot the value of each state
from ¢t =1,...,10. The optimal action at time 1 is ‘plus 1’ for each initial state;
similarly the subsequent optimal action is always ‘plus 1’; the learned model

has correctly solved the problem.

5.4.2 Cartpole control from pixels

In cartpole, a pole is attached by an un-actuated joint to a cart that moves
along a friction-less track, which can be controlled by applying a force of +1 or
—1 to the cart at each time step. A reward of 1 is received at every time step
that the pole remains upright and the episode terminates when it falls over or
the cart moves too far from the center. A maximum horizon of 200 time steps
is generally used.

Instead of using the low-dimensional states provided by the OpenAl gym,
we use the rendered image frames as the state observations. We first gray

scale each video frame and down-sample to produce a 64 x 64 frame f, at

6The MNIST game is simple enough that, during model training, random exploration is
sufficient.
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time t; three consecutive frames are then stacked to represent each state
observation, ; = { f;, f_1, f1_o} for t > 3. This provides higher-order dynamics
information like speed, which are hidden in a single frame. For simplicity we
assume a stationary initial position (initial pole position is upright) and define
1 ={f1,f1,f1} and 2o ={fs, f1,f1}. We use the SMM since this gives
better long-term prediction, despite errors from the pixel rendering of the true

continuous underlying dynamics.

We follow algorithm [I] to interact with the environment and learn the
policy and model. We set s; € R'® and choose pg(se|xt) = 6(s¢ — gp(x¢)),
po(st+1/hy) = 0(st+1— fo(hy)). The recognition function g4 and transition func-
tion fg are a convolutional neural network and recurrent network respectively.
The reward distribution py(r¢|s¢) is a Bernoulli distribution with the proba-
bility parameterized using a small neural network with a sigmoid output. All
model parameters are trained jointly using the ADAM optimizer. Since the KL
divergence between two delta distributions is not formally defined for equation
5.4] we use the spread KL divergence [156] with fixed Gaussian spread noise

that has variance 0.5, resulting in a square loss objective.

The policy, section [5.3.2) py(a¢|s¢) is a Bernoulli distribution with the
probability parameterized using a small feed-forward network with a sigmoid
output and trained using variational optimization - see appendix. When
evaluating the trained policy in the real environment we take the most likely

action at each re-planning step.

We compare to DQN and PPO [144] |145] following their standard open source
implementations adapted for acting directly in pixel space — see appendix
for details. In figure [5.4.2| we report the average reward over 5 different runs
for all methods, with each run carried out using different random parameter

seeds, but the same fixed initial position of the environment.

Compared to PPO and DQN our solipsistic model-based approach is sig-
nificantly more data efficient, learning to balance the pole for over 150 time

steps, after seeing only 300 trajectories. This demonstrates that our solipsistic
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Figure 5.5: Evaluating learned policies. x-axis is number of trajectories sampled
from the environment. y-axis is cumulative reward received, averaged
over 5 training runs. The data is smoothed using a moving average
with window size 3.

approach is accurately modeling both the relevant environment dynamics and
the reward. For this setting, we found PPO and DQN struggled to balance the

pole for over 50 time steps on average after 2500 sampled trajectories from the

environment - see figure in appendix(C.2.3)).

Learned representations

Of interest for a qualitative analysis on the recognition function and learned
solipsistic representations are: (1) has the recognition function learned to filter
out redundant information? (2) are the solipsistic trajectories consistent with
their corresponding observation trajectories? To answer (1) we extract filters
from the first layer of the CNN recognition function, which act as attention
maps over the pixels. In figure [5.6| we see that different filters are attending
to different physical attributes, for example pole position, pole speed and cart
position. The right half of the figure shows the activations of the CNN’s first
layer in the recognition network. We select 4 filters’ activations (there are 8
filters in the first layer of recognition network) and use a sigmoid function to

create these grey-scale images.
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The first filter appears to encode spatial information of the cart and pole
(the activated pixels are consistent with the position of both throughout). The
second and third filters we believe represent velocity information for the pole
(given the activated pixels can be interpreted as providing a finite difference
type estimate of velocity by encoding the position of the pole in the first and
last frames), while the fourth can be interpreted as encoding information about
the velocity of the cart (given more pixels become activated in the region of
the cart the faster it goes).

In contrast, no clear physical interpretation was apparent for samples from
PPO’s convolutional policy and value networks, which we discuss further in
appendix((C.2.4). In support of (2), in figure[5.7d| we illustrate that the solipsistic
trajectories have smooth transitions and are disentangled in accordance with

their corresponding trajectories in pixel space.

. L pnoE
. L . HnDn
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N

Figure 5.6: Visualization of the CNN filters’ activations. We take action ‘push
cart to the right’ for 15 steps, so that the velocity of the cart and
pole are monotonically increasing. The left half of the figure shows
four states (i.e. the 4 rows) {®1,Z5,2Z10,215} where each state is the
stack of 3 successive frames (i.e. the 3 columns) z; = {f;, fi_1, fr_2}
This illustrates that different filters are attending to different physical
attributes, for example pole position, pole speed and cart position. The
right half of the figure shows the activations of the CNN'’s first layer in
the recognition network.

5.5 Related work

A traditional approach to reduce the complexity of the state is to apply
state-aggregation methods, such as non-parametric dimensionality reduction
techniques [157], or hand-coded features, to obtain lower-dimensional state

representations — see [158] and [159] for a review. These methods require



5.5. Related v~~" 105

(a) Trajectory 1

(b) Trajectory 2

trajectory 1

trajectory 2

- - - - - - trajectory 3
(c) Trajectory 3 (d) Solipsistic state trajecto-

ries

Figure 5.7: (a,b,c) show three test trajectories, where we plot the frames
{f1,F105---,F50t- (d) We construct z1,...,25 by stacking the suc-
cessive frames within each trajectory, and then produce s1,...,850. We
use PCA to project the solipsistic states to 2D for visualization. Tra-
jectories 1 and 2 are similar (the pole falls to the left) and have similar
solipsistic trajectories. Trajectory 3 shows the object fall to the right
and the solipsistic representation is far away from that of trajectory 1
and 2.

strong prior knowledge about the environment and are not generally useful in
situations with complex state spaces. Further the representations are learned
separately from the modeling process, which can hinder overall performance
when utilized for planning [160]. In contrast, our solipsistic approach jointly

learns the dynamics model and representations.

Recent work [161}, [162] also propose to use deep neural networks to learn
state representations without reconstructing the original state. However, they
only demonstrate the benefits of this approach in model-free learning whereas
we show how to do planning using the learned representation and the model
dynamics.

Contrastive learning is widely used in the field of representation learning
[163]. The aim is to encourage similar datapoints to have similar representations
[149, 150} 151]. In RL, this idea has been used to improve the data efficiency
of model-free algorithms by treating contrastive learning as an auxiliary task
[164} 165] 166]. The contrastive objective we use (section instead aims to
prevent the recognition function from learning a trivial solution to ensure the

solipsistic representation is useful for planning.

Most closely related to our work is [148] which uses a Recurrent State Space
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Model without a decoder component, akin to our Solipistic Markov Model
setup. They use the variational information bottleneck (VIB) principle [167,

168] to derive the following regularizing term for their learning objective:

logp(se|x¢) —logd  p(s¢|zi), (5.12)

where the summation is over the observations in the current sequence batch.
The paper shows that this term keeps s; predictable from the current image,
whilst also keeping the latent representations diverse. Although this work also
achieves model based RL in the representation space without reconstructing the
original image state, their regularized VIB objective is different to our solipsistic
consistent-contrast objective (equation . We leave detailed comparisons in

both theory and practice to future work.

5.6 Conclusion

We introduced Solipsistic Reinforcement Learning, a model-based reinforcement
learning framework that learns useful latent representations of the environment
for planning and reward prediction, without constructing a generative model
of the environment. Our work is consistent with the recent general trend away
from modeling the dynamics of high dimensional spaces and towards learning
models that more directly solve the task at hand.

In our experiments on learning from pixels we assume a stationary initial
position for our episodes. Without this simplifying constraint, the temporal
consistency of our learned latent representations suffered, which negatively
impacts overall performance. This phenomenon may restrict the ability for the
model to solve larger and more complex problems. Resolving this practical
limitation should be explored in future work.

Whilst model-based reinforcement learning is arguably preferable to model-
free alternatives, previous approaches do not learn in an end-to-end fashion
and also require an explicit model of the environment. We hope therefore that

we have shown that there is scope to solve reinforcement learning problems in
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a model-based way, but without the downsides of requiring complex models of

the environment.



Chapter 6

Active Preference Learning

Arguably one of the more impactful practical breakthroughs in deep learning
research over the last decade has been the scaling up of foundation models like
large language models (LLMs) in terms of training data and model sizes. The
scaling laws [27] have resulted in emergent properties of reasoning and these
models are fast replacing our traditional search engines as a go to source of
societal knowledge. This is particularly apparent in the case of ChatGPT by
OpenAl, which has reportedly become one of the fastest growing consumer

software products ever [169).

Such large language models are based on variants of the transformer archi-
tecture as introduced in section 2] trained using the back-propagation procedure
as discussed in section [2.3] These auto-regressive models are first trained in
an unsupervised manner to do next token prediction on vast troves of data
predominately collected on the internet. Fundamentally this objective produces
compression pressure on a system with limited capacity; therefore in order
to get good at predicting the next token for arbitrary sequences of tokens on
the internet, the model is forced to encode underlying latent concepts and
reasoning procedures. This results in unprecedented capabilities in zero-shot
and few-shot learning [26, [170]. Transfer learning is then adopted to make
these base models more practical; they are generally subsequently fine-tuned

on human preference data.

As large language models (LLMs) become more capable, fine-tuning tech-
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niques for aligning with human intent are increasingly important. A key
consideration for aligning these models is how to most effectively use human
resources, or model resources in the case where LLMs themselves are used
as oracles. Our research question is how can we more effectively use these

resources during fine-tuning in a way that is simple and practical to implement?

Reinforcement learning from Human or Al preferences (RLHF/RLAIF) is
the most prominent example of a fine-tuning technique |[171], but is complex
and often unstable. Direct Preference Optimization (DPO) is simpler and more
stable alternative to RLHF [172]. In this chapter, we develop this idea further
with a simple active learning strategy to make better use of preference labels.
We propose simple acquisition functions for prompt/completion pairs based
on the predictive entropy of the language model and a measure of certainty
of the implicit preference model optimized by DPO. We demonstrate how our
approach improves both the rate of learning and final performance of fine-tuning.
In our experiments using open source models with up to ~ 1 billion parameters,
we see this approach improves final performance of the fine-tuned model by

3-7% on average over a random baseline.

6.1 RL from Human Feedback

The process of fine-tuning form human preferences is an important component
to producing highly capable and generally helpful systems like ChatGPT. The
most prominent class of fine-tuning technique is reinforcement learning from
human feedback (RLHF) [171]. RLHF consists of a two stage process to adapt
the pretrained autoregressive LLM py(y|x).

First, a reward model rg(x,y) is trained in a supervised manner on ranked
pairwise preference data. For a given prompt x, two completions are sampled
from the model (yq,y;) ~ pe(y|x) and an oracle rater judges which they prefer.
We denote y,, as the preferred completion and y,; as the other. Typically the
rater is a human participant, however the use of LLMs to instead provide

feedback has also shown great promise [173]. This process is repeated over N
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prompts resulting in the pairwise preference dataset Xp = {z,9,,,3;}". Second,
a reinforcement learning (RL) algorithm such as Proximal Policy Optimization
(PPO) [174] is used to fine-tune the parameters of the language model 6 by
maximising the expected reward of completions as measured by r4(x,y). RL

is used here because of the non-differentiability of sampling from pg(y|x).

During the reward modelling phase in RLHF, the preference data is assumed
to follow the Bradley-Terry (BT) model [175]. The objective for training the
reward model can be framed as a binary classification task with a cross entropy

objective:

Ly(Xp) = ~E(zy, y)~apllogo(re(z,y,) —re(x,y1))]. (6.1)

During the subsequent RL fine-tuning phase, the trained reward model is
then used to score completions. PPO is used to update the parameters 6 by

maximising the objective:

Bt ypo i) [70(2, )] — BKL(po ()| Ipg, (yl2)) (6.2)

The second term here regularises the fine-tuned model using the KL-divergence
to stay close to the state of the LLM before fine-tuning pg, (y|x) . The main
rationale provided for this is to prevent the model from deviating too far from
the distribution on which the reward model is accurate. In practise the following

reward function is used with PPO to update 8 |176, [177]:

Tppo(T,Y) = 7¢(2,y) — B(log pg(y|z) —log pg, (y|x)). (6.3)

A downside of RLHF is it’s complexity; PPO introduces separate reward and
value models that may be comparable in size to pg(y|x), which are typically
kept in memory during training. Furthermore PPO is found to have high

variance and be sensitive to choices of hyper-parameters.
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6.2 Direct Preference Optimization

Recently Direct Preference Optimization (DPO) has been proposed as a simpler
and more stable alternative to RLHF [172]. DPO also depends on the collection
of pairwise preference data, but crucially does not require first training an
explicit reward model or the subsequent use of RL. Instead it relies on a straight
forward binary cross entropy objective that increases the likelihood y,, and
decreases the likelihood of y;. This approach implicitly optimizes the same
objective as RLHF', without the added complexity.

DPO is originally derived from the optimal solution to [6.2} providing a
maximum likelihood objective analogous to equation [6.1] but parameterised by

0 instead of ¢ [172];

B Po(Yu|®) po(yi|T)
Lo(Xp) = —Ezy,.9)~xp lloga </6’log pioo (Y. lz) — Blog peo(yl‘x)ﬂ . (64)

We refer to this objective as having an implicit reward model:

A L, Pe(y[x)
Px,y) = ﬁpoo O (6.5)

This formulation has the distinct advantage of not requiring the explicit
reward modeling step and avoids the need to perform any reinforcement learn-
ing. Furthermore it has been shown to outperform RLHF across a range of
benchmarks [172]. In practise the construction of Xp for DPO, including the
preference labelling, is done upfront and stochastic gradient descent (SGD) is

then used to fine-tune 8 according to equation [6.4] as introduced in section [2.3]

6.3 Active Preference Learning

Fine-tuning state-of-the-art LLMs using both of the aforementioned methods
can require highly skilled domain experts, or expensive LLMs in the case of Al
feedback, to produce the required preference data. In this section, we focus

on how best to utilize the available preference labelling budget for training.
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Instead of randomly sampling prompts during fine-tuning, we explore a more
active sampling approach, which we refer to as Active Preference Optimization
(APO). Informally, active learning is a paradigm in machine learning that aims
to iteratively select the most useful datapoints during training using the current
state of the model. Specifically we are interested in the setting of pool-based
active learning which involves selecting a subset of observations from a closed

pool of unlabeled data [178].

We use straight forward acquisition functions for prompt/completion pairs
that leverage the predictive entropy of pg(y|x) and a simple proxy for the
certainty of DPOs implicit preference model. Our APO training algorithm
consists of iterations of the following scheme: randomly sample a large batch
of prompts; generate pairs of completions for each prompt according to the
latest version of the fine-tuned pg(y|x); rank the prompt/completion pairs
according to our acquisition function; select the highest ranking subset as a
mini-batch of preference pairs for training; get preference labels on this actively
selected mini-batch and, finally, fine-tune pg(y|x) using the labelled data before
repeating the process until some preference labelling budget has been reached.
We first outline in more detail our general active learning training procedure

before introducing our acquisition functions for data selection.

This approach requires us to augment the existing DPO fine-tuning loop,
which randomly samples mini-batches from a fixed preference labeled dataset,
with an outer data acquisition loop. We compute the number of data acquisition
steps K based on the acquisition batch size M and the overall labelling budget
B. At each step S we randomly sample (without replacement) S prompts,
generate completions using the current state of the model if required, then score
the sampled datapoints using an acquisition function, where M < .S < N (where
N is the total number of available prompts). We then select the highest ranking
M datapoints to add to Xp before updating @ with a round of fine-tuning. We
specify our full process in algorithm [2|

Unlike the typical application of active learning in supervised learning
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Algorithm 2 Active Learning Training Procedure

1 X« {z}V > initialise dataset of prompts
2: Xp<+{...} > initialise empty preference labelled dataset
3 K+ L%J > compute number of acquisition steps
4: 0+ 0y > initialise model weights
5. fori=1...K do > iterate through acquisition steps
6: Xg={z}~ X > randomly sample prompts
7: Xs = {yo,y1,2}° < Generate(d, Xs) > generate completions
8: Xs = {8,90,¥1,2}° < Score(8,Xs) © score data using acquisition function
9: Xy = {yg,y1,2}M < Subset(Xs) > subset to highest scoring pairs
10: Xy = {Yu, ¥, M < Oracle(Xy) > get preference labels from orcale
11: Xp < A+ Xy > expand preference dataset
12: 0 <+ Finetune(0y,0, Xp) > train using DPO until some stop critiera
13: EvaluateUsingOracle(0,6y) > evaluate model on some held out test dataset
14: end for

settings, where at each acquisition step only the scoring of observations x
is required, we have an additional step of also generating the corresponding
completions for the acquired data. This is indicated by step 7 in our training
procedure [2} This is required here if our choice of acquisition function requires
access to completions, which we will discuss further in section [6.3.1} If this were
not the case, it would still be required after step 9 when a subset of the data
has been selected because our oracle needs access to completions for providing

preference labels.

Although the choice of acquisition function is the primary concern of this
study, there are some additional important design choices to consider for the
practical implementation of this procedure. For example, how many fine-tuning
training iterations to do at each acquisition? How many prompts to randomly
sample and how many completions to generate? We will discuss these design

choices further in appendix [D]

6.3.1 Acquisition functions

In selecting scoring methods (step 8 in we aim for options that are straightfor-
ward to implement and do not require modifications to the model architectures
or the fine-tuning procedure itself. This allows for a drop in addition to existing

implementations. As a result, we propose using the predictive entropy of
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pe, (¥|x) as well as a measure of certainty under the Bradley-Terry preference

model, which leverages the implicit reward model in DPO.

Entropy of the language model

Prior work has shown the predictive entropy (PE) to be a well calibrated
measure of uncertainty in LLMs [179]. Therefore, if used as an acquisition
function it will bias the fine-tuning process towards prompts the model is more
uncertain about. The model represents a conditional distribution over possible

completions. The predictive entropy is defined as:

Hpp (Y[X) = —E,p (yx) [logpa (¥ [x)], (6.6)

where this intractable integral can be approximated with Monte-Carlo samples

in practise

Hpo (Y‘X) = _Epo(y|x) [IOgPO(y‘X)] (6'7>
1 N

LS logpaly"lx). (69
n=1

where we calculate logpg(y"|x) by summing the log probability of each token

in the completion.

Preference model certainty

The predictive entropy alone does not capture the extent to which the model
accurately reflects oracle preferences, which is the ultimate goal of the fine-
tuning process in this setting. To address this, we turn to characteristics of
the Bradley-Terry model. We define a function we refer to as the certainty of
the implicit preference model using y,ys ~ pg, (y|x) that is maximised when
the difference between the implicit rewards (see equation for y; and y, is
large and minimised when it’s small. Specifically, during our scoring process

(step 8 in algorithm [2)) we determine the difference in our model’s predicted
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rankings for two different completions corresponding to the same input as

We prioritize prompt/completion pairs with higher differences during the
selection of data points for fine-tuning. Our hypothesis is that data points with
high values provide valuable learning opportunities. Should the model’s implicit
preference predictions diverge from the oracle’s evaluation, especially with high
certainty, prioritising these discrepancies when fine-tuning can enhance model
performance.

This choice is well motivated by the behaviour of the DPO training objective
(equation . Consider the gradient update with respect to the parameters @

VoLe = —PEx, [w(Vologpe(y.,|z)—Velogp(ylz))], (6.10)

where w = o(7(z,y;) — #(z,y,,)) weights each sample (z,y,,,y;) ~ Xp. This
gradient update can be interpreted as weighting examples by how incorrectly the
implicit reward model is while accounting for the strength of the KL constraint.
Early in fine-tuning, when the implicit preference model is still likely to be
wrong often, our proposed acquisition strategy prioritises examples that result
in substantial gradient updates, which we find to accelerate learning progress
and lead to an improvement in the final performance in our experiments in

section [6.0l

A hybrid approach

In practise we can combine both entropy and preference certainty as complimen-
tary metrics for scoring data to exploit the strengths of both. Our hypothesis is
that higher entropy prompts are more likely to give incorrect predictions from
the implicit preference model. In our experiments for this hybrid approach, we
first select a relatively large batch of prompts and rank them by the entropy.
We then take the top subset of prompts ranked by entropy and generate the

required completion pairs before scoring and ranking according to preference
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certainty. Finally, we take the top subset of prompt/completion pairs ranked

by preference certainty and add them to our preference dataset for fine-tuning.

6.3.2 Choice of oracle

In step 10 and 13 of our algorithm [2| we require access to an oracle to provide
preference judgements on pairs of completions; in step 10 to produce training
data and step 13 to evaluate against a held out test data set. Given our
desired setup of generating completions from the latest version of the model at
each data acquisition step, we can’t easily leverage prelabelled datasets here.
Furthermore, given the need to re-run experiments multiple times with multiple
different dataset, model, acquisition functions and seed (to get some measure
of statistical significance) combinations, using humans to provide judgements
is not feasible.

As we discuss in the experiments section [6.5] we do use relatively large
open source language models to empirically test our hypotheses; however, the
absolute performance of these models falls far short of the state-of-the-art
models that have been trained for months with millions of dollars of compute
by commercial entities. These models are only accessible to make inferences
via black box APIs. This presents an opportunity to leverage these far superior
models to provide the labels we need for the rather simple preference judgements.
The questions then become; are these models good enough? Which model
should we choose? How should we prompt?

We can look to recent research to answer the first question in the affirmative.
Recent work has suggested that LLMs are superior oracles than existing metrics
[180]. Of particular relevance is the LLM as an evaluator study carried out
in [172] for the summarization task we also use in our experiments; they
convincingly demonstrate that judgements form OpenAI’'s GPT-4, appropriately
prompted, correlate strongly with humans. Furthermore, GPT-4 and human
agreement is typically similar or higher than inter-human annotator agreement.

With this choice of oracle, our evaluation approach (on held out test prompts)

is to use head-to-head win-rate comparisons versus completions sampled from
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the model at the start of training pg(y|x). In the cases where suitable human-
provided completions are already provided on the hold out test data, we can
instead use these to evaluate the models performance. We don’t evaluate every
acquisition step, because of how expensive in cost and time using GPT-4 as an
oracle is. Depending on the experiment we evaluate at multiple appropriate

way-points during training, or just at the end.

Oracle prompt

As LLMs get more broadly capable, the amount of so-called prompt engineering
research is on the rise. Although not the focus of this work, we need to provide
a prompt to our LLM based oracle. We follow the guidelines outlined in |172]
given their robust results. We make one additional change, which is also asking
the model to provide a rationale for it’s reference. Qualitatively we found this
to provide superior results on a handful of testcases; there is also good evidence
to support that chain of thought-like prompting is an effective strategy to
improve zero shot performance [181].

In our experiments we require two distinct oracle prompts: one for sentiment
analysis and the other for summarization - see figure [6.1} In order to mitigate
against any potential bias due to the ordering of results presented, we randomly
change the ordering of the model completions presented to the oracle during

evaluation and fine-tuning.

Choice of base model
A major downside of using GPT-4 as our oracle model is the expensive cost
and high latency. In particular the cost can restrict the number of seeds we
can afford to run and similarly the number of ablation studies. A far more
economical choice would be to use older versions of models such as GPT-3.5.
We therefore tested to see whether this would be sufficient.

We ran a simple test where we generated preference labels twice for both
GPT-3 and GPT-4 on a set of 50 prompts and completions sampled sampled
from the fine-tuning from human preferences dataset [176]. Unfortunately we

found that GPT-4 was far more consistent (>90%) than GPT-3.5-turbo (only
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// SENTIMENT ORACLE PROMPT

<SYSTEM>

You are a helpful assistant that evaluates the quality and
positive sentiment of movie reviews

</SYSTEM>

<USER>

Which of the following movie reviews is better? The best one
will be the one with the most positive sentiment, which also
is grammatically correct, consistent, and avoids repetition.

Review A:
{{PROMPT}} {{COMPLETION-A}}

Review B:
{{PROMPT}} {{COMPLETION-B}}

First, provide a one-sentence comparison of the two reviews,
explaining which is better and why. Second, on a new line,
state only "A" or "B" to indicate your choice.

You must choose A or B for the preferred answer even if
neither review is very good.

Your response should use the format:

Comparison: <one-sentence comparison and explanation>
Preferred: <"A" or "B">

<\USER>

// SUMMARIZATION ORACLE PROMPT

<SYSTEM>

You are a helpful assistant that evaluates the quality of
summaries for internet posts.

</SYSTEM>

<USER>

Which of the following summaries does a better job of
summarizing the most important points in the given
forum post, without including unimportant or irrelevant
details?

Post:
{PROMPT}

Summary A:
{COMPLETION_A}

Summary B:
{COMPLETION_B}

First, provide a one-sentence comparison of the two
summaries, which you prefer and why. Second, on a new line,
state only "A" or "B" to indicate your choice.

You must choose A or B for the preferred answer even
if neither summary is very good.

Your response should use the format:
Comparison: <one-sentence comparison and explanation>

Preferred: <"A" or "B">
<\USER>

Figure 6.1: GPT-4 oracle prompts for sentiment and summarization tasks
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Figure 6.2: Self-consistency of preference labels provided by GPT-3 and GPT-4
across 50 prompt completion pairs. Each model provided two preference
labels for each prompt completion pair.

~60%) at a range of sampling temperatures - see figure . We therefore chose

to use GPT-4 as the oracle for our experiments and adjusted our budget of

evaluations appropriately to contend with the cost.
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Completion sampling

Another important aspect of evaluating language models is the strategy used for
getting completions from the model given auto-regressive probabilistic model;
often referred to as the decoding strategy. The choice of decoding method can
impact the quality and characteristics of the model’s output. Common decoding
strategies include greedy, beam search, top-k sampling, nucleus sampling, and
temperature-scaled sampling, among others. Greedy decoding just selects
the most probable next token at each step, which can lead to repetitive and
deterministic outputs. Beam search maintains multiple hypotheses at each step
and can produce more diverse and coherent outputs, but may still suffer from a
lack of diversity and can be computationally expensive. Top-k sampling restricts
the next token to be sampled from the k most probable tokens, introducing
randomness into the output. Nucleus sampling, or top-p sampling, takes this
further by sampling from the smallest set of tokens whose cumulative probability
exceeds a threshold p, allowing for a dynamic number of tokens to be considered
based on the model’s confidence.

In our experiments we leverage temperature-scaled sampling that adjusts
the probability distribution over the next token by scaling the logits before
applying the softmax function. A temperature parameter T' controls the degree
of scaling. A low temperature (7' < 1) sharpens the distribution, making the
model more confident and conservative in its predictions, often leading to
less diverse outputs. A high temperature (7" > 1) flattens the distribution,
increasing diversity in the output by making less probable tokens more likely
to be chosen. A temperature of zero (7' = 0) effectively turns the sampling into
greedy decoding. In our experiments to follow we use T'= 0.7 for pg(y|x) during
training, 7" = 0.2 during testing (to encourage lower variance) and 7" = 0.05 for

the GPT-4 oracle to promote deterministic oracle judgements.

Fine-tuning details

Here we discuss in more detail the implementation details for the fine-tuning

step (12) in algorithm [2] We adopt the most straight-forward implementation,
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which is to re-initialise ; to 6y at each time step t and fine-tune to convergence,
sampling uniformly from all previously acquired preference data A},. This is
consistent with previous work on deep active learning [182] and relies on the
assumption that the cost (in time and/or money) of acquiring oracle labels
outweighs the cost of fine-tuning again on all acquired data after each new
batch of labels is acquired. The focus of our main experiments in section is
to isolate the differences in performance caused by the different acquisition vs
randomly acquiring data. In Appendix [D.4] we discuss adapting our approach

for online learning and present some provisional results.

6.4 Related Work

Our work is closely related to Direct Preference Optimization [172] which
we leverage as our fine-tuning algorithm of choice. We augment the training
process with an additional data acquisition and fine-tuning loop as outlined
in algorithm [2l The random baseline in our experiments is equivalent to the

DPO procedure.

There are numerous recent research efforts in exploring how a more active
learning setup can improve fine-tuning LLMs, but don’t use DPO as a basis.
The Reward rAnked FineTuning (RaFT) technique [183] introduces an online
training procedure that ranks, using an oracle reward model, multiple com-
pletions for each prompt; selecting the top performers to use in a traditional
supervised fine-tuning process. That is; maximising the likelihood of the best
performing completions for each prompt. Once training is complete, they ran-
domly sample a new batch of data, then re-generate completions form the latest
version of the trained model and repeat the ranking/filtering and training step.
Like DPO, this approach does not require the use of reinforcement learning for
updating the parameters of the model. Unlike our approach, RaFT consults
the oracle on every data point before filtering for the subset that will be used

during training; therefore is not trying to make better use of the oracle resource.

Another orthogonal application of active learning in the setting of improving
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pre-trained LLM performance is the active sampling of few shot examples for
prompt stuffing [184]. In this work, the authors use acquisition functions based
on different uncertainty, diversity and similarity scores of the language model
across datasets of few-shot examples to determine which examples are best to
reference in the prompt to improve performance. Although similar in spirit
to our work, they don’t consider updating the parameters of the model using

preference-labelled data.

An alternative active learning approach is data pruning. In [185], pruning
heuristics are applied to filter the data used in the first stage of unsupervised
LLM pre-training. This leads to improved performance on downstream tasks
versus the LLMs pre-trained on the full dataset. Over 50% of the data can
be pruned while still leading to improvements. This work does not directly
consider the impact of such pruning techniques for the preference fine-tuning
stage, but some of their perplexity based heuristics could represent viable

alternatives to our acquisition strategies.

Finally, a research theme adjacent to active learning that can also reduce
the amount of preference labels required is that of self-play fine-tuning [186),
187]. These works focus on how to bootstrap pg,(y|x) during fine-tuning to
provide preference labels, or to act as a reward model, as opposed to trying to
make better use of oracle resources. This in principle could be combined with

our active preference learning approach and so we consider it complimentary.

6.5 Experiments

The focus of our experiments is to determine if more active sampling during
the fine-tuning process can bring us gains in data efficiency when dealing
with limited labelling budgets; in terms of the rate of learning and the final
performance achieved. We compare four different acquisition configurations:
random, entropy, certainty and entropy + certainty (as discussed in section
6.3.1)). We evaluate across two different open source large language models

and two different datasets used in recent related work. We also gather some
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qualitative findings about the characteristics of the datapoints being acquired

under the different schemes, which we discuss further in [6.5.5]

6.5.1 Datasets

In line with recent work [176] [172] we focus on two distinct datasets for our
experiments; IMDB and TLDR. IMDB is a dataset of movie reviews where the
task is to complete a positive review given the start of a review. TLDR is a
dataset of Reddit posts where the task is to provide a summary of the post.
Table [6.1] provides a summary of the dataset details.

Table 6.1: Preference learning datasets summary

IMDB TLDR

Train size 25,000 117,000

Test size 25,000 6,550

Task Complete reviews according Generate summaries accord-
to preference ing to preferences

Data source https://huggingface.co/datasets/ https://huggingface.co/datasets/
imdb) CarperAl/openai_summarize_tldr

The choice of oracle for providing labels and evaluating on the test data is
GPT-4; details of the prompts are provided in the previous section [6.3.2, Our
prompts specify a task specific preference, but also consider grammatical cor-

rectness and consistency. We provide further details on dataset pre-processing

in appendix D]

6.5.2 Models

For both IMDB and TLDR we use relatively large transformer based architec-
tures. See table for a summary of the models and main hyper-parameters
used in both cases. For IMDB, the GPT-2 base transformer model provided by
Hugging Facdﬂ was pre-trained on the WebText corpus [188] and has 12 layers
with 768 dimensions, with 12 attention heads. It was also further trained in an

unsupervised way on the full IMDB dataset. For TLDR, we use the Pythiaﬂ

!Downloaded pre-trained base model from https://huggingface.co/edbeeching/
gpt2-large-imdb

“Pre-trained base model from https://huggingface.co/pvduy/
pythia-1B-sft-summarize-tldr


https://huggingface.co/datasets/imdb
https://huggingface.co/datasets/imdb
https://huggingface.co/datasets/CarperAI/openai_summarize_tldr
https://huggingface.co/datasets/CarperAI/openai_summarize_tldr
https://huggingface.co/edbeeching/gpt2-large-imdb
https://huggingface.co/edbeeching/gpt2-large-imdb
https://huggingface.co/pvduy/pythia-1B-sft-summarize-tldr
https://huggingface.co/pvduy/pythia-1B-sft-summarize-tldr
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class of transformer model [189] that has an architecture similar to GPT-3,
with 805M parameters, 16 layers with 2048 dimensions and 8 attention heads.
We ran our fine-tuning on single 40GB RAM A100 and 48GB 600 ADAs GPUs

throughout our experiments.

6.5.3 Acquisition sampling

Given we follow a pool-based active learning approach we assume access to an
abundant supply of prompts to choose from during fine-tuning. In practise we
have two steps to consider for filtering the data - after the initial selection of
prompts (step 6 in algorithm and after completions have been generated
(step 7). In the latter case, more information is available, but require potentially
expensive completions.

In our experiments we first randomly sample S = 4000 for IMDB and S = 2048
for TLDR for our entropy only and preference certainty only acquisition runs.
When doing entropy + preference certainty, we first randomly sample J x .S
prompts, rank them by entropy and take the top S prompts to generate
completions before further scoring and ranking by preference certainty. We
use J =8 for IMDB and J =4 for TLDR. We use N = 8 samples when
approximating the entropy. For all experiments we set the final acquisition

batch size to M = 128.

6.5.4 Evaluation

We use GPT-4 as the oracle for providing labels and evaluating the test data.
Details of the prompts are provided in section Our prompts specify a task-
specific preference but also consider grammatical correctness and consistency.
Our evaluation approach on held-out test prompts uses head-to-head win-rate
comparisons versus completions sampled from the pre-trained model from the
start of training pg, (y|x) for IMDB. For TLDR, we replaced the pre-trained
model completions with the human-provided completions that were available
on the hold-out test data. Due to the significant cost of using GPT-4 as the

oracle for evaluation, we don’t evaluate after every single data acquisition step.
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Each evaluation is done against 1024 test prompts.

Table 6.2: Preference learning models summary

IMDB TLDR Comment
Model used Pre-trained Pre-trained

GPT-2 [10] Pythia [189)
Parameter size 774M 805M
Optimizer ADAM Ir: 1e-06 ADAM Ir: 1e-06 as per DPO [172]
Finetuning 50 70 See  appendix
Epochs D.2
Mini-batch 64 64 For fine-tuning
size
Prompt batch 4000 2048
size (S)
Acquisition 64 64 Out of 512
batch size (M) prompts scored
6 0.2 0.2 as per DPO [172]
Model source https://huggingface. https://huggingface.

co/edbeeching/ co/pvduy/

gpt2-large-imdb pythia-1B-sft-summarize-tldr

6.5.5 Results

We run our active learning procedure (algorithm 2 to fine-tune the models
discussed in the previous section against IMDB and TLDR. The overall data
acquisition, fine-tuning and evaluation processes are repeated for 9 different
random seeds. Figure [6.3 and table [6.3| contain the detailed win-rate results of
each configuration. The cost associated to evaluating using GPT-4 limited the
number of data acquisition steps we could practically carry out, therefore we
focused on doing more seeds on fewer numbers of data acquisition steps to aid
in drawing conclusions.

Overall we find that our certainty acquisition function outperforms random
and entropy, improving win-rate performance by between 1-6% on average.
This provides evidence in favour of our hypothesis discussed in that
prompts with higher differences in the implicit rewards corresponding to their
completions provide valuable learning opportunities. We find that combining

preference certainty with entropy gives a small improvement for the larger


https://huggingface.co/edbeeching/gpt2-large-imdb
https://huggingface.co/edbeeching/gpt2-large-imdb
https://huggingface.co/edbeeching/gpt2-large-imdb
https://huggingface.co/pvduy/pythia-1B-sft-summarize-tldr
https://huggingface.co/pvduy/pythia-1B-sft-summarize-tldr
https://huggingface.co/pvduy/pythia-1B-sft-summarize-tldr

6.5. Experiments 125

acquisition batch sizes (512, 768) on IMDB, but this result is not consistent
across both datasets. Given these results and the additional complexity due
to the Monte Carlo estimation of the entropy, we recommend the preference
certainty acquisition as a simple acquisition strategy to use in practise.

For the first fine-tuning step (M = 128), there is no discernible difference
between the strategies. This makes sense when using the preference certainty
acquisition because the initial pre-trained model is used to rank the data and it
doesn’t yet know anything about the oracle’s preferences. In Appendix we
provide examples of typical prompt and completion pairs, alongside the oracle
preference and rationale provided by our GPT-4 oracle, before and after the

fine-tuning process.
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Figure 6.3: Win-rate at evaluation waypoints. (a) IMDB is win-rate vs the initial
model.(b) TLDR is win-rate vs human provided summaries on the test
prompts (b). The x-axis is the size of the acquired dataset used for
fine-tuning at the point of evaluation. Each model and dataset pair was
trained with 9 random seeds and we plot means with standard errors.
Preference certainty and entropy + preference certainty outperform
the random baseline.

Analysing acquired data
In section [6.3.1| we motivate why the preference certainty acquisition strategy
may provide an advantage versus a random baseline when fine-tuning with

DPO. This focused on whether it would surface examples where the implicit
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Table 6.3: Active preference learning results: the mean to 2 d.p. and standard
errors to 3 d.p. of the win-rates. For IMDB, we calculate the win-rate vs
the completions generated by the initial pre-trained model. For TLDR
we calculate the win-rate vs the human completions available on the test
set. The size column represents the size of the acquired dataset used for
fine-tuning at the point of evaluation.

Dataset Size Random Entropy Pref cer- Pref + Ent
tainty
128 0.674+0.012  0.68+0.011 0.68+£0.003 0.68=+0.004
IMDB 256 0.76£0.008 0.74+£0.009 0.824+0.005 0.8140.007
512 0.84+£0.004 0.84+£0.009 0.87+£0.007  0.8940.006
768 0.88+£0.004 0.89£0.004 0.90£0.004 0.9240.005
128 0.51+£0.008 0.51+£0.013 0.52+0.012  0.53+0.006
TLDR 256 0.554+0.01 0.57+0.01 0.56+£0.012  0.55+0.01
384 0.55+£0.009 0.56+0.017 0.58+0.01 0.59+0.007
512 0.564+0.012  0.58+0.01 0.60+0.009 0.59+0.01
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Figure 6.4: Histograms of probabilities from our implicit Bradley Terry preference
model across a batch of acquired data; grouped by incorrect (red) and
correct (green) preferences according to the oracle. This assumes a
decision threshold of 0.5. Our preference certainty acquisition function
surfaces confidently with wrong examples.

preference model provided an incorrect prediction, with certainty. We carry

out a post hoc analysis of the data acquired during our experiments to better

understand the characteristics of the acquired examples. In particular, what

differs between the different acquisition strategies and how they change as fine-

tuning phases progress. The approach we take is to look at how the implicit

preference predictions from the model correlate with the true oracle preferences.

We construct a classifier using the Bradley Terry (BT) model - equation 6
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in [172] - that gives us p(y1 > yo|x) € [0,1] under our implicit reward model
(equation . Using the probabilities provided, we construct histograms in
figure for the batches of M acquired datapoints across all 9 seeds. We map
the data in such a way that the bucket at 0.9 will contain examples where the
BT model was most confidently correct according to it’s probability, and 0.1
will contain the most confidently wrong. The red 0.0 — 0.5 contains all the
incorrect predictions bucketed into 10 bins according to their probability. The
green (0.5 — 1 contains all correct predictions. To determine correctness, we
use a 0.5 decision threshold on our BT model and compare the result to the
ranking provided by the oracle.

We can see from these histograms that the random acquisition selects quite
uniform examples according to the implicit preference model predictions. The
preference certainty-based acquisition on the other hand surfaces a lot of
confidently incorrect examples which ultimately aid with improving fine-tuning

performance when using DPO.
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6.6 Conclusion

We’ve demonstrated a simple and effective way to improve the use of an oracle
labelling budget for preference fine-tuning LLMs. Our active learning setup
builds upon DPO and uses the implicit preference model to determine which
data points to get oracle judgements for during training.

There are a couple of noteworthy limitations to address in future work:

« Reducing the model training budget: Although we are focused
here on making better use of the oracle labelling budget, as opposed
to the overall training computation budget, it is worth also considering
for practical reasons how the latter may be improved. Currently after
each data acquisition step, we re-initialise the parameters of the model to
the unsupervised pre-trained LLM parameters and do a full fine-tuning
process before re-acquiring data. This will get prohibitively slow and

expensive the larger the models and datasets become.

One potential option to explore to reduce the training computation budget
is to not reset the parameters of the model at each data acquisition step
and only do a much smaller number of fine-tuning epochs. In Appendix
[D.4] we discuss adapting our approach for online learning and present
some provisional results. Considerations for how to balance the amount
the model trains on previously acquired datapoints will be important.
Ideally a Bayesian formulation could be considered; using an online
update to the posterior over the parameters in the face of newly acquired
preference labels. Such that we don’t need to consider previously acquired
data points. The challenge here will be how to effectively compute the
posterior distribution and updates for a model of this size. Tactics like

only considering a subset of parameters (say last layer) may be helpful.

Another potential option is to continue to reset the parameters after each
data acquisition step, but only consider fine-tuning a subset of model
parameters so that the fine-tuning iterations are much faster and less

computationally burdensome. Combining our approach with parameter
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efficient fine-tuning methods like LORA [190] and Q-LORA [191] are

reasonable options.

« Hyper-parameter calibration: Due to the significant cost of evaluation
(using GPT-4) and computation time for a full cycle of training (on A100
GPUs) we were limited in our ability to do ablation studies on hyper-
parameters in this study. Instead relying on default values from existing
work. For instance, future work with additional budget should consider
ablation on optimizer choice, learning rate, fine-tuning stopping criteria
and more random seeds for improving the statistical robustness of the

results.

e More scale: To prove out that these techniques will have material impact
on training SOTA LLMs, we would need to move into the multi-billion
parameter regime. This would require distributed training across multiple
GPU nodes and more conservative choice of training and evaluation

configurations given the cost.

In addition, there are also multiple avenues of potential future work we are

exploring:

« More sophisticated acquisition strategies: Our preference model
certainty acquisition function is simple and our results provide evidence
that it is effective. Combining the merits of multiple strategies, such
as entropy and certainty and adding additional criteria around diversity
of prompts and completions could are also worth exploring to further
improve efficiency. Furthermore, more explicit treatment of the epistemic

uncertainty of the model when acquiring prompts may also be useful.

e Surrogate preference model and self-supervision: One potential
avenue to further save on oracle labels is to bootstrap the predictions of
our implicit preference modoel, or an explicit surrogate preference model

we train on the labels acquired to date. An interesting challenge here is
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to determine an acquisition strategy that selections data points where we

should trust the model predictions.

Broader applications: Our proposed techniques are applicable to any
generative model that can be fine-tuned using a DPO like objective where
preference pairs are used in a MLE objective. Moving beyond the text
modality to images, sound and multi-modal applications are promising

avenues for future work.

Beyond binary feedback: As part of our model-based evaluation
framework discussed in section we are generating both a preference
label and a natural language rationale. The primary purpose of getting
the oracle GPT-4 model to also generate a rationale is that this has been
shown to improve the performance of the model at providing preferences.
An interesting idea is to update our MLE objective to jointly maximise
the likelihood of the rationale alongside maximising the likelihood of the
preferred objective and minimising the likelihood of the less preferred
completion for a given prompt. This may provide more information about
the latent preferences to the model being fine-tuned and allows us to
get away with less preference labels. It may also help regularise the
model into still producing valid language when preference fine-tuning,
potentially allowing us to remove the KL regularisation to the initial
pre-trained model in equation [6.4} saving on memory and computation

during fine-tuning.



Chapter 7

Conclusions

The overarching goal of this thesis was to improve on the data efficiency of deep
learning systems, which are becoming increasingly data and resource hungry [27].
Within this broad theme we presented methodological contributions across the
different learning paradigms of supervised learning (chapter , unsupervised
learning (chapter , reinforcement learning (chapter [5)) and preference learning
(chapter [6). As discussed with examples in chapter [1} informally data efficiency
has a different goal in each of these learning categories. In supervised and
preference learning data efficiency is mainly concerned with minimizing the
number of queries to an oracle to label data. Implicit in this is the assumption
that the oracle labels (either human generated, or other model generated) are
expensive in time and or cost. In unsupervised learning data efficiency is mainly
concerned with minimizing the amount of unlabelled training data required.
In reinforcement learning, the goal is the minimize the number of interactions

required with the environment.

In chapter |3| we introduced a weak learning framework that jointly trains a
label model and end-model. We illustrated that this can significantly improve
performance versus existing 2-stage methods [72, |1} 73, [75] across a range
of natural language classification benchmark tasks [39]. We also presented
a parameterization of the label model that can produce similar mappings
between the latent and true label (the transitions ¢;,) for similar datapoints

z and amortises the cost, using a neural network, of computing this for each
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datapoint. There are many promising avenues of future work in this direction.
We can naturally combine our weak learning framework with active learning
to further improve data efficiency. This would entail actively sampling mini-
batches of data (like in chapter @ in order to reduce the epistemic uncertainty
w.r.t both the label model and end model parameters; considering both weak
and strong labels in the process. Another promising direction is to combine this
weak learning approach with the work in chapter [ on preference fine-tuning
LLMs; to aggregate preference data from different sources - both Human and

Al based preference data of different qualities.

In chapter [4| we focused on arguably a relatively under-studied problem of
generalization in VAE style models. VAEs have been shown to be effective
in many important problems wherein acquiring training data is challenging;
such as in chemistry and biology research, when models are trained on exist-
ing molecular structures [33, 34]. We demonstrated that this type of model
does suffer significantly from over-fitting. We framed this in context of two
distinct generalization gaps: the generative model and the amortized inference
generalization gaps, where the over-fitting was dominated by the amortized
inference neural network. We proposed an inference consistency requirement,
which, if satisfied, would result in optimal generalization performance for this
class of model. We demonstrated how the default training objective does not
satisfy this, but that the wake-sleep training algorithm [118] does. We then
introduced an alternative sleep-type training step for updating the parameters
of the inference neural network after normal training that, unlike the traditional
wake-sleep setup, directly improves the ELBO. This approach bootstraps pre-
dictions from the generative model to improve the generalization performance
of the inference network. We provided empirical evidence on image modelling
and compression tasks that our approach is a useful addition to existing VAE
training pipelines to improve generalization performance. Natural next steps
for future would involve applying our method to other applications where VAEs

have shown promise; such as molecular design [133], combining it with methods
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to also reduce the generative model generalization gap [129] and extending it

to cater for more hierarchical latent variable structures [134].

In chapter [5| we then turned our attention to the problem of reinforcement
learning; in particular model-based reinforcement learning. We present ideas for
a model that learns a low-dimensional representation of the target environment
while avoiding the need to learn a full generative model of the environment,
which prior works have required. We explore different choices of model and
planning algorithms. On the model front, we introduce a memory model that
aids the ability of the model to accurately track long term behaviour in it’s
latent dynamics. We build up an overall learning objective for our model
using three desiderata around consistency in predicted dynamics, consistency
in predicted rewards and the effective filtration of redundant observation state
information. Future research in this area should first explore scaling up the
proposed learning framework to larger and more complex learning from pixel
RL problems and addressing any practical limitations around the initialization

of the learned representations.

Finally in chapter [0 we tackle the problem of making more efficient, in terms
of oracle usage, aligning large pre-trained language models to human preferences.
We first discussed direct preference optimization as an alternative to RLHF 171}
172] before then presenting an active learning process that requires generating
completions with the latest version of the model for every data acquisition step.
Of independent interest is the use of LLM based oracles for both generating
training labels and for evaluation; without which our experiments would not
have been tractable. We demonstrated that using our certainty metric of the
implicit reward model as a simple choice of acquisition function improved
win-rate performance by 3 — 7% in our experiments over a random baseline. We
discussed multiple promising avenues of future work. To improve the practical
utility, it’s important to explore approaches to minimise the computation budget
required during the active fine-tuning process; for example by combining our

approach with parameter efficient fine-tuning methods like LORA and Q-
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LORA [190, |191], or taking more of an online Bayesian learning perspective. Of
particular interest is moving beyond just binary and categorical feedback types
to also leverage the rationale produced by our oracle; we believe this learning
from more natural feedback to be an important next step in Al alignment.
Our hope is that the methods introduced in chapter 3 and 4 can help
practitioners improve the data efficiency of their existing deep learning systems
in practise as well as inform future research, and that chapters 5 and 6 represent

effective stepping-off points for further research in this area.



Appendix A

Integrated Weak Learning

A.1 Further ablation

In this section we provide results for the ablation on how to include strong labels
when available in the two-stage baseline methods, namely Snorkel and Majority
Vote (MV). The standard approach is to add an additional labeling function
that outputs the strong label if available and abstains otherwise. We refer to
this as the voting variant (-V). This is what we use in the results reported in
section [3.4 An alternative approach we also consider is to leave the labeling
functions unchanged and instead replace the resulting denoised label with the
corresponding strong label if available when training the end-model pg(y|x).
We refer to this as the strong variant (-S). Figure and the corresponding
table compare Snorkel-V, Snorkel-S, MV-V and MV-S to our model variant
iWLD across the same 6 datasets for different splits of available strongly labeled
data. We can see that the -S variants in fact consistently outperform the -V
variants. Furthermore our iWLD approach is the best performing method in

28 out of the 30 cases.

A.2 Further experiment details

All experiments were run on a GPU cluster with access to 10 V100 GPU
processors. Each experiment run was executed on a single GPU instance.
The code we have made available for producing our experimental results is

implemented using PyTorch [192].
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Figure A.1: Box-plots of test F1 scores showing the quantiles across 5 random
seeds on the y-axis. Each plot refers to a specific dataset. The model
variants discussed in section are grouped by the different fractions
of strongly labeled data available on the x-axis (1%, 10%, 50%, 100%).
See table for more detail.

The specific train, validation and test data splits used across all datasets are
available in a standardized schema at the following URL: https://drive.
google.com/drive/folders/1VFJeVCvckD5-qAd5Sd1lndk4zJoryiEun. This
is provided as part of the WRENCH benchmark . Further information on
how this data was gathered, the original source, and the relevant attributes is

available in WRENCH [39].


https://drive.google.com/drive/folders/1VFJeVCvckD5-qAd5Sdln4k4zJoryiEun
https://drive.google.com/drive/folders/1VFJeVCvckD5-qAd5Sdln4k4zJoryiEun
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Table A.1: Test F1 score averaged over 5 random seeds with 1 standard deviation
in brackets across all datasets and model variants discussed in section
The results are grouped by the different proportions of strongly
labeled data available (1%, 10%, 50%, 100%). Values highlighted with
bold indicate the best performing method.

Agnews Census IMDB SMS TREC Yelp
Labels Model

MV-V  85.05 (0.36) 80.59 (0.28) 81.52 (0.16) 95.40 (1.88) 62.88 (1.58) 89.67 (0.45)
MV-S 8527 (0.25) 80.80 (0.30) 81.45 (0.38) 95.88 (1.91) 62.84 (1.34) 89.71 (0.52)
1% SKL-V 83.45 (3.78) 77.89 (0.73) 82.03 (0.28) 88.76 (1.93) 48.24 (1.82) 88.38 (0.43)
SKL-S 84.23 (2.47) 78.36 (0.85) 82.43 (0.63) 88.84 (2.07) 47.56 (2.67) 89.25 (0.38)
iWLD  87.77 (0.31) 82.82 (0.29) 84.31 (0.84) 97.44 (0.55) 67.32 (1.95) 92.21 (0.31)

MV-V  85.65 (0.25) 81.03 (0.21) 82.05 (0.44) 96.76 (1.60) 64.28 (1.19) 90.63 (0.76)
MV-S 85.89 (0.10) 81.68 (0.34) 82.54 (0.57) 97.08 (1.76) 65.44 (0.82) 91.61 (0.56)
10% SKL-V 84.80 (2.36) 77.67 (0.94) 83.78 (0.73) 89.64 (2.60) 50.64 (3.73) 91.16 (1.03)
SKL-S 87.59 (0.64) 80.03 (1.34) 84.29 (1.22) 90.00 (2.99) 54.56 (4.88) 92.71 (0.34)
iWLD  90.00 (0.18) 83.84 (0.30) 86.53 (0.42) 98.48 (0.39) 71.16 (5.72) 94.06 (0.06)

MV-V  88.17 (0.22) 81.59 (0.26) 84.82 (0.34) 98.44 (0.22) 69.72 (1.98) 93.18 (0.28)
MV-S  89.11 (0.14) 83.99 (0.23) 85.91 (0.23) 98.76 (0.33) 74.80 (4.23) 94.03 (0.17)
50% SKL-V 88.23 (0.24) 78.69 (1.01) 85.85 (0.21) 93.20 (2.84) 58.56 (6.41) 93.92 (0.25)
SKL-S 90.14 (0.24) 81.96 (0.57) 87.14 (0.23) 98.64 (0.38) 76.64 (3.89) 94.15 (0.18)

iWLD  90.53 (0.17) 84.55 (0.13) 87.52 (0.43) 98.80 (0.28) 78.40 (2.58) 94.18 (0.21)

MV-V  89.65 (0.09) 82.93 (0.30) 86.15 (0.21) 98.44 (0.09) 77.76 (0.89) 94.03 (0.16)
MV-S  90.53 (0.18) 84.50 (0.06) 87.66 (0.14) 98.76 (0.22) 82.40 (0.40) 94.23 (0.09)
100% SKL-V 89.05 (0.25) 80.97 (0.58) 85.64 (0.27) 96.60 (2.16) 64.76 (2.95) 93.74 (0.22)
SKL-S 90.40 (0.16) 84.48 (0.04) 87.64 (0.15) 98.76 (0.22) 82.40 (0.40) 94.21 (0.12)

iWLD  90.46 (0.39) 84.78 (0.20) 87.74 (0.18) 98.52 (0.11) 82.52 (1.25) 94.47 (0.24)

A.3 Visualizing the label model

In section [3.2.1| we proposed a label model that included a dependency on x
(see figure [3.1b)). Figure plots an array of different transitions @, after
training, for different labeling functions k£ and different datapoints n. These
are sampled from the TREC dataset (number of class labels C'= 6 and number
of labeling functions K = 68). This helps illustrate that our model has in fact

learned different transitions for different datapoints.

A.4 Dependent labeling functions

There is a straightforward extension to our model that may be well suited to
where we have multiple dependent labels 71, ...,k . In principle, the labeling
functions are conditionally independent given z. To take information from the

weak labels, our assumption in section [3.2] is that we can explain the weak
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k=1,n=0,label =0, weak label = 0 k=1,n=2, label =0, weak label = 1 k=4,n=1,label = 1, weak label = 0

k =28, n =3, label = 1, weak label = 6 k =28, n =19, label = 5, weak label = 6 k=34, n =9, label = 5, weak label = 6

k=41,n=3, label = 1, weak label = 1 k =41,n =15, label =0, weak label = 1

k =44, n =12, label = 2, weak label = 3

Figure A.2: Heat plots of the transitions ¢ at convergence after training. For
an array of different labeling functions k and different datapoints n,
sampled from the TREC dataset (number of class labels C'= 6 and
number of labeling functions K = 68). This illustrates that our model
is learning different transitions for different datapoints.

labels based only on the true label y, that is

K
Pe(Fly,x) = kH Pe(Tily)- (A1)
—1

A simple alternative choice to consider dependent weak labels is to include an

additional latent h

K
pe(Fly,x) qus (h|x) H (Fxly,h) (A2)
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For a discrete h we can use the EM algorithm for learning. In principle, we
can also include a dependency pg(hly). We leave further investigation of this

variant to future work.



Appendix B

Generalization Gap In

Amortized Inference

B.1 Application to lossless compression

Lossless compression is an important application of VAEs where improved
generalization translates directly to compression rate. Given a VAE with
po(x|z), q4(z|x) and p(z), a compressor can be efficiently implemented using

the Bits Back algorithm 193} |104] with the ANS coder [194].

In algorithm [3, we summarize the Bits Back procedure with amortized
inference to compress/decompress a test data point 2’ to a stack that contains
bit string of messages. The resulting code length for data z’ is approximately

equal to the negative ELBO:

—log, po(mllzl) —logy p(z') +logy Qqs(zl |~”3/) . (B.1)
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Algorithm 3 Bits Back with Amortized Inference

Share {pg(x|z),q4(2|x),p(z)} with sender and receiver.
Compression:

Draw sample 2’ ~ g4 (z|2’) from the stack.

Encode z’ ~ pg(x|2’) onto the stack.

Encode 2’ ~ p(z) onto the stack.

Decompression:

Decode 2’ ~ p(z) from the stack.

Decode &’ ~ pg(x|2) from the stack.

Encode 2’ ~ gg(z|z") onto the stack.

We demonstrated in chapter {4 that ¢4(z|x) may overfit to the training data,
directly degrading compression performance in this setting by producing a
worse ELBO on test data where it matters. To improve the compression BPD,
the optimal inference strategy outlined in section can be applied within the
Bits Back algorithm. In the compression stage, we can train ¢ using the single

datapoint:
¢" = argmax, ELBO(z',6,9). (B.2)

When the g4(z|2’) is parameterized to be a Gaussian, we can take ¢ to be the

mean and standard deviation A/ (¢“,¢i).

In the decompression stage the compressed data z’ is recovered before the
qe(z|2’) is used to encode 2. Therefore, we can also train gg(z|z") using the

recovered ' to maximize the test ELBO.

If the optimization procedure is the same as that used at the compression
stage, we will get the same q¢*(z|x’ ). In practice, we need to prespecify
the number of gradient descent steps K to train ¢. When K is large, we
approximately recover the optimal inference strategy and the code length is

approximately

—logy pg(x'|2") —logy p(2) +log, 4o (2']2). (B.3)
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Algorithm 4 Bits Back with K-step Optimal Inference

1: Share {pg(x|z),q4(2z|x),p(z)} and the optimization procedure between the
sender and receiver.

Compression:

Take K gradient steps ¢ — ¢ using equation
Draw sample 2’ ~ ¢, (z|z’) from the stack.
Encode &’ ~ pg(x|2’) onto the stack.

Encode 2’ ~ p(z) onto the stack.
Decompression:

Decode 2’ ~ p(z) from the stack.

Decode ' ~ pg(x|2’) from the stack.

Take K gradient steps ¢ — o using equation
: Encode 2" ~ g4x (z|2’) onto the stack.

— =
—= O

This procedure of using optimal inference was first proposed in [195] in
the context of lossy compression and then applied to lossless compression
with Bits Back coding in |[130]. By varying the optimization steps K in the
optimal inference we can trade off between the speed of decompression and the
compression rate. We summarise the Bits Back algorithm with K-step optimal
inference in algorithm [4]

The added run-time of additional training steps when doing the actual
compression is a major downside of this optimal inference approach. In contrast,
our proposed reverse half-sleep inference scheme can improve the compression
rate without adding any additional training burden at compression time.

Furthermore, our method can be combined with this optimal inference
strategy to provide a better model initialization to reduce the amount of
subsequent compression time training needed to reach the same compression
rate.

We implement Bits Back with ANS [194] and compare the compression
among four inference methods:

1. Baseline: This is the classic VAE-based compression introduced by
[104]. For binary and grey MNIST, both the encoder and decoder contain 2
fully connected layers with 500 hidden units and latent dimension 10. The
observation distributions are Bernoulli and discretized logistic distribution

respectively. For CIFARI10, we use fully convolutional ResNets [8] with 3
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residual blocks in the encoder/decoder, latent dimension 128 and discreteized
logistic distribution with a channel-wise autogressive linear layer[196] as the
observation distribution. We train both the amortized posterior and the decoder
by maximizing the ELBO (equation using ADAM with Ir = 3x107% for
100, 100 and 500 epochs (for binary MNIST, grey MNIST and CIFAR10
respectively), and then apply algorithm [3| at compression time.

2. Reversed half-sleep: We use our method from equation to
further train our inference network before compression for an additional 100
and 300 epochs using ADAM with (Ir = 3x10~4) for binary and grey MNIST
respectively, and Ir = 1x107° for 100 epochs for CIFAR10. Other training
details are the same as the baseline method.

3. Optimal inference: we take the amortized posterior and decoder model
from the baseline and apply the K-step optimal inference strategy described in
algorithm [4] to do compression. We use ADAM and vary the K from 1 to 10
to achieve a trade-off curve between compression rate and speed. We actively
choose the highest learning rate that makes the BPD consistently improve as
we inrecase K: Ir = 5x1073 for binary and grey MNIST and Ir = 1x10~3 for
CIFAR10.

4. Reversed half-asleep to improve initialisation for optimal in-
ference: we take the inference networks trained in option 2 above and the
decoder model from the baseline and conduct K-step optimal inference. All

other training details are as per method 3.

Baseline Ours K=7

BPD 0.185 0.179  0.179
Com. Time 0.006 0.006 0.013
Dec. Time 0.006 0.006  0.013
Time Cost - 0% 116.7%

Table B.1: Demonstrates the compression and decompression time comparisons for
MNIST

In tables [B.1] [B.2] we detail test BPD comparisons for the different methods

outlined. We can see if optimization is not allowed at compression time, the
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Baseline Ours K=8

BPD 4.602 4.585 4.585
Com. Time 0.27 0.27 0.38
Dec. Time 0.26 0.26 0.38
Time Cost - 0%  46.2%

Table B.2: Demonstrates the compression and decompression time comparisons for
CIFAR10

use of our reverse-half-sleep method achieves better compression rate with no
additional computational cost. If we allow K-step optimization during com-
pression, for a given computational budget, the amortized posterior initialized
using our reverse-half-sleep method also achieves lower BPD, which leads to a

better trade-off between the run-time and compression rate.



Appendix C

Solipsistic Reinforcement

Learning

C.1 Variational optimization

With VO we model the parameters of the policy with a Gaussian distribution
w ~ N (wjp,0) to form a differentiable upper bound that we can minimise

w.r.t p and o.

Ulp.0) :Ep(wm,cr)_g(w)a (C.1)

where £(w) is our memory model planning objective from equation . After
optimising this bound with respect to u,o, we take the final g as our value for
w. We compute gradients with the usual log-derivative trick, using J Monte
Carlo samples to approximate the resulting expectation as follows. In practice,
we find that learning o does not improve performance, hence we fix it to an

isotropic value of 0.2 throughout and minimize w.r.t u,

Qj\q

1L 0 :
=53 g oer(w o) (€ (w), (©2)

where w’ refers to the j*" Monte Carlo sample of the policy parameters - see
section policy training in algorithm (1| for further details. In practice, we also

apply fitness shaping [154] to £(w’) in equation to make the VO update

invariant w.r.t. order-preserving transformations of the reward value.
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C.2 Experiment details

C.2.1 MNIST Game

In this section we discuss the details of the architectures and hyper-parameter
settings used for our toy MNIST game experiment from section

Model architecture The recognition network is composed of a two-layer
convolution neural network, followed by a two-layer feed-forward network. The
two convolution layers have 10 and 20 filters respectively with stride 2 and
kernel size 5. We use max pooling after convolutional layer. We use ReLLU
activation functions for both the convolutional and feed-forward layers. The
forward network has 100 hidden units in each layer and the output size is equal
to the number of solipsistic states (in this case 10). We use a softmax function
to create the probabilities of the categorical distribution for determining the
solipsistic state assignments.

Model training For our model objective equation we set the hyper
parameters as A\s = 1, A, =2 and m = 5. We use ADAM [66] as the optimizer
with learning rate 10~ to train the model for N,,,4:; = 3000 iterations with
batch size B = 64.

Redundancy filtering For computational efficiency, we approximate equa-

tion [5.3] using the following Monte Carlo approximation

1
Eizt1 KL(p(st41[x¢,a¢)|[p(silxi)) = 51 > _KL(p(st+1[xt,a1)[[p(s]25))

Sj

(C.3)

where 8; € M(8441)\8¢4+1 and M(s;41) is the mini-batch set that s;1 belongs

to and the set M (8¢+1)\8¢4+1 has size B — 1.

C.2.2 Gym Control from pixels

In this section we discuss the details of the architectures and hyper-parameter
settings used for our Cartpole experiment from section [5.4.2] For model and
policy training we follow algorithm [I]

Model architecture The recognition network is a four-layer convolution
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neural network with Batch Norm [197] and ReLU activation functions followed
by a feed-forward layer with output size equal to the size of the solipsistic
representation dim(S) = 16. We set the kernel size to 3 for the first three
convolutional layers and 5 for the last convolutional layer. We set the channel
size to 8 and stride to 1 for the first convolutional layer and 16 with stride 2 for
the other three convolutional layers. The policy network is a two layers feed
forward neural network with 50 hidden units in each layer, which maps from
the solipsistic state to a sigmoid function that parameterizes the probability of
a Bernoulli distribution. The RNN we used is a single layer Gated Recurrent
Unit (GRU) [65] with memory in the first time-step initialized as the first
solipsistic state s;. In each recurrent step, the GRU cell takes one action as
input and outputs the prediction of the solipsistic state for the next time step.
Therefore, the size of the hidden memory of GRU is equal to the size of the

solipsistic state.

Model training We use ADAM with learning rate 10~4, on batches of size

B =10 of sampled environment trajectories of length T},,,4¢; = 50, with A =1,

Ar =2 and m =5.

Policy training We use VO (section , with J = 50 parameter pertur-
bations, under model prediction roll-outs of length 77,40y, = 200 and we train
for Npolicy = 50 iterations, using ADAM with learning rate 1072. We found
that re-initializing the policy parameters w after each model update helped

overall performance.

Exploration strategy At each iteration ¢ of algorithm [I| during the trajec-
tory collection phase we collect C' =5 trajectories and add them to our memory
for subsequent model training. We use an exploration strategy (see line 9 of
during trajectory collection as follows: for ¢ =1 we follow the latest policy
Pw, (a¢|s¢) with re-planning (section to collect a full trajectory. Then, for
c=2,...,5, we instead follow an e-policy, where we take the action sampled
from py, (a¢|s:) with probability € and we take a random action with probability

1 —e¢, where € =0.5.
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Redundancy filtering We use x;" to denote the state at time ¢ of the
mth trajectory. We approximate equation [5.3| using the following Monte Carlo

approximation

By g KL (p(sy 1[5, ")l [p(silxi)) ~ KL (p(s7} X, ) [p(s7 1 X7 1))
(C.4)

where the nth (n # m) trajectory is sampled from memory. We found this

one-sample Monte Carlo approximation works well in practice.

C.2.3 Baseline model-free methods

200 —— PPO clip=0.1
—— PPOclip=0.2
—— DOQN

150

100

50

0 500 1000 1500 2000 2500

Figure C.1: Evaluating the baseline policies trained using 2500 trajectories. We
plot the average over 5 runs using different random seeds for our
parameter initialization. We smooth the curves using a moving average
with window size 3. We find the curves for PPO have high variance,
meaning that PPO can occasionally get reasonable performance for
this number of trajectories (e.g. balancing the pole for over 100 time
steps successfully) but is not very stable during training and across
across different random seeds.

C.2.3.1 PPO

We implemented the PPO method [145] as a baseline to evaluate our methods.
We run PPO using two different clip ratios 0.1 and 0.2. The policy and

the value networks share similar architecture to our recognition convolutional
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neural network described in section with the only difference being the
dimensionality of the output layers. For the Cartpole experiment, the output
size of the policy network is 2 and we use a softmax activation function to
parameterize the probabilities of choosing from two actions. The output of
the value network is a linear layer with output dimension 1. For each training
episode, we sample 5 trajectories from the true environment with a maximum
length of 200. We then train the model for 10 epochs using ADAM where we
take the hyper-parameters provided by the OpenAl Baselines implementation
[198], where learning is 374, v = 0.99, A = 0.95, the weight of the value term
is 0.5 and the weight of the entropy term is 0.01. We report results for two
different clip ratios of 0.1 and 0.2.

C.2.3.2 DQN

The other model free baseline we compared to is DQN [144]. Like for the case
of PPO, we keep the architecture of the Q-network and the target network
similar to our recognition network, except for the final output layer. In our
Cartpole experiment, the Q-network outputs the Q-value for the two possible
actions given the states. The action with the larger Q-value is chosen during
control. We train DQN for 2500 episodes (as shown in figure [C.1]). For each
episode, we sample one trajectory with the maximum length of 200. After a
limited grid search of hyper-parmeters, we find that the hyper-parameters from

the PyTorch DQN tutorial [199, [192].

C.2.4 Activation maps for PPO

In this section, we visualize the activations of the first convolution layer of the
policy network and the value network for PPO. We plot all 8 filters’ activations
and use a sigmoid function to create the following grey-scale images. Each
column represents a filter. Each row represents the state of a trajectory as the
cart is pushed to the right with monotonically increasing velocity (as in figure
[(.6). In both figure and figure [C.3] none of the activation maps have a

change in activation that can clearly be interpreted as relating to the increase
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in velocity (unlike the case of the solipsistic recognition model illustrated in
figure [5.6)); only the positional information of the cart and pole is obviously

captured.
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Figure C.3: Visualization of the activations in PPOs value network.




Appendix D

Active Preference Learning

D.1 Data preprocessing

For IMDB, each sample & is randomly drawn beginning of a review. The
only processing we do here is to randomly truncate & to a number of tokens
randomly drawn from the range 8-16 tokens. See table for some truncated

examples that we feed to the model to complete a positive review for:

Truncated movie review prompt samples

I very much looked forward to this movie. Its a good family ...

Really, I can’t believe that I spent $5 on this movie. I am a huge zombie ...
I have read all of the Love Come Softly books....

I've seen all four of the movies in this series. Each one strays further ...

Table D.1: IMDB data from https://huggingface.co/datasets/imdb; ran-
domly truncated to produce a prompt for training data generation
and evaluation.

For TLDR, we filtered the Reddit posts between 200-1000 characters. This
was mainly due to memory contraints of the GPUs used to train the models. We
also filtered whole broad categories of Reddit posts out, such as r/offmychest
and r/tifu, because they had high likelihood of containing explicit content.
Finally we removed trailing space tokens. See table for examples.

D.2 Fine-tuning iterations

In order to determine how many fine-tuning epochs to carry out after each new

data acquisition step, we took a simple approach of defining a fixed number
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Prompt

SUBREDDIT: r/cats TITLE: Acquired cat! Now a question.. POST: So, I just got a
lovely little cat named Luna. She’s about a year, a year and a half and pretty tiny. I live
in an apartment located on the 5th floor of my building. My apartment doesn’t have AC
('m in NYC) and I usually like to leave the windows open for ventilation. They’ve got
child bars, but because Luna is so small she can easily fit through them—and did a few
moments ago. Nearly gave me a heart attack watching her slip through them and walked
out onto a very narrow ledge 5 floors above a concrete sidewalk. She came right back in,
but now I'm concerned about having a dead cat on my hands (or more accurately, on my
sidewalk). So my question is, should I trust her cat instincts and leave the windows open?
Or shall I sit in a stuffy apartment with the windows sealed? TL;DR:

Human Summary

I live on the 5th floor and my cat just walked out on my window ledge and came back in.
Should I be nervous she’s going to explore too far out and fall to her kitty death?

Prompt

SUBREDDIT: r/AskReddit TITLE: I want to throw a great party, Reddit. What are
some special things that I can do to make this happen? POST: Alright, so my 19th
birthday is next Friday. I live in a college town, renting a house alone for the summer,
and I want to throw a great party. I have invited friends from both school (which means
they are coming from all over the state) and from home. However, since it’s summer, I
know that a lot of people won’t show. Gas is expensive and for some, it’s a far drive, so I
understand. I'm thinking music, card playing, beer pong, etc... But what else can I do to
make sure that everyone mingles, it isn’t lame, and that things stay under control while
everyone still has a good time? TL;DR:

Human Summary

How do I throw a kick ass party with a bunch of people who don’t really know each other
and my house is still standing in the morning?

Table D.2: Samples of TLDR data from https://huggingface.co/datasets/

CarperAI/openai_summarize_tldr

of epochs. The parameters of the model are re-initialized after each data

acquisition step. We based the choice of how many epochs to fine-tune for on

the number of epochs it took on average for the model to converge at different

dataset sizes. We analysed loss and win-rate curves for the different model and

dataset combinations and decided upon 50 epochs for IMDB and 70 for TLDR

- see figure for a sample of convergence behaviour.

IMDB Convergence TLDR Convergence
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Figure D.1: Illustrates a sample of how the convergence of the loss relates to the

win-rate. Used for emprically inferring the number of fine-tuning
epochs to apply after each data acquisition step.

Future work will explore different early stopping criteria and techniques for
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not resetting the model parameters after each data acquisition step to make

the method more computationally efficient and practical for scaling up.

D.3 Example responses

In tables [D.3] [D.4] we provide examples of prompt completion pairs for our
models discussed in section after the fine-tuning process alongside the

preferred GPT-4 oracle choice.

Prompt The comments of the previous user are harsh indeed
A: Fine-tuned completion . This is a great film with a great story and a great cast. Highly
recommended. I saw this movie on Sund

B: Original completion . I am a fan of the original series and I have watched the first two
seasons of the series. I have also

Preference A

Rationale Review A is better as it expresses a clear positive sentiment towards

the film, while Review B does not provide any opinion on the movie

Prompt I was looking forward to this so much, being a

Fine-tuned completion huge Harry Potter fan. I was very impressed with the story and
the acting. I highly recommend it.

Original completion huge fan of the original series. I was so disappointed. I was
expecting a lot more from this.

Preference A

Rationale Review A is better because it provides a positive sentiment about

the movie, is grammatically correct, and does not contain repetition
like Review B.

Table D.3: Sampled completions, and GPT-4 oracle evaluation from an IMDB
fine-tuned with certainty acquisition.

D.4 Online variation

In section we note that a practical limitation to scaling algorithm [2| to
significantly larger models is that the parameters ; are reset to @y in step 12
and the model is fine-tuned on all the data acquired so far each step. Here we
motivate an online variant where we instead don’t reset the parameters and do
a single gradient update with respect to the most recently acquired data during
fine-tuning. This significantly reduces the time spent fine-tuning during the
active learning approach. This is similar to the approach taken in [200], where
they randomly, instead of actively, acquire the data and consider comparing
online vs offline.

We re-run our IMDB experiment from section [6.5] with this online active
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Prompt SUBREDDIT: r/relationships TITLE: I(17M)am gealous because
my girlfriend(16F) of over 4 months is having conversation that she
starts with my classmate. POST: I am now really down because
of this. We had an argument 2 months ago about this and I told
her to stay away from my classmate(he is a really bad person and
always speaks really bad about her when he is with others or even
with me, we’ve been colleagues for 10 years now and he is awful, I
hate him), and I'm sick of it. The problem is, today after checking
her phone I realized she starts most conversation and he is mostly
not answering to her immediately. I am not sure what to do and I
am really confused and really really sad and disappointed. What
should I do? TL;DR:

A: Fine-tuned completion GF of over 4 months starts most conversation with my classmate,
he is mostly not answering to her immediately. I am not sure
what to do and am really sad and disappointed. Need advice.

[endoftext]
B: Original completion I am really sad because my girlfriend starts most conversation with
my classmate and I'm sick of it. What should I do?[endoftext]
Preference A
Rationale Summary A is preferred as it includes more relevant details from

the post, such as the duration of the relationship, the classmate’s
lack of immediate response, and the poster’s need for advice, which
were missing in Summary B.

Prompt SUBREDDIT: r/dogs TITLE: Need a little advice regarding our
elderly dog. POST: Our rescue [Lt. Ellen Ripley] has been showing
her age lately. Actually for the last six months or so she has been
going a bit downhill. Formerly very active and happy to play she’s
blind, deaf and now sleeps or spins in circles all day. She hasn’t
been able to hold her water or poops at all and we’ve been coming
home to a nightly cleanup. Worse she’s been biting at us a lot and
seems to think our hands are actually delicious fish sticks.

We’ve tried medicine and have seen the vet numerous times but
she just seems to be getting worse and worse.

So, advice time. Am I being selfish? I feel like keeping her around
may not be the best thing for her anymore. I worry that she
spends her time now scared, confused and in the dark. But so far
as I know, she’s not in any pain and she can still recognize me on
occasion.

I'll TL;DR:

A: Fine-tuned completion Old rescue dog has been getting worse and worse. Tried medicine
and the vet. Don’t know if keeping her around is the best thing
for her anymore. Need advice.[endoftext]

B: Original completion We have a dog that is getting older and is starting to become more
depressed. What should we do about it?[endoftext]

Preference A

Rationale Summary A is more accurate and detailed, capturing the severity

of the dog’s condition, the attempts at treatment, and the owner’s
dilemma, while Summary B oversimplifies the situation by referring
to the dog as merely "more depressed."

Table D.4: Sampled completions, and GPT-4 oracle evaluation from an TLDR
fine-tuned with certainty acquisition.
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variation for random and preference certainty acquisitions. We do 3 random
seeds and include standard error bars in figure [D.2] We find that preference
certainty significantly outperforms random on this problem, motivating further

study.

104 —F CERTAINTY
—F RANDOM

Vs initial model

05

o 25 50 s 100 125 150 175
Acquired batches

Figure D.2: Win-rate vs initial model after each acquired batch for IMDB with
random and preference certainty acquisition and online fine-tuning.
Only a single fine-tuning gradient step is taken on the latest batch.
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