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Abstract: SpacetimeAl and GeoAl are currently hot topics, applying the latest algorithms in computer science, such as deep learning,
to spatiotemporal data. Although deep learning algorithms have been successfully applied to raster data due to their natural applicability
to image processing, their applications in other spatial and space-time data types are still immature. This paper sets up the proposition
of using a network ( &graph) -based framework as a generic spatial structure to present space-time processes that are usually represented
by the points, polylines, and polygons. We illustrate network and graph-based SpaceTimeAl, from graph-based deep learning for
prediction, to space-time clustering and optimisation. These applications demonstrate the advantages of network ( graph)-based
SpacetimeAl in the fields of transport&mobility, crime&policing, and public health.
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1 Introduction

Geographic Information Science (GIS) has a long his-
tory, starting with Dr. John Snow using the manual map
to reveal the association of Cholera cases with the water
pumps near Broad Street in central London. Since
then , the field has gone through rapid technological ad-
vances, in particular the advent of computer-aided
desktop mapping (such as using ArcInfo) in the 1970s
and subsequently web-based spatial analysis (e. g.,
ArcGIS) in the 2010s. With the development of mobile
technologies, IoT, Big Data, and AI, GIS is moving
quickly from GeoComputation towards GeoAl, a topic
that has risen to prominence as a field of study that ap-

plies the latest methods from computer science, such as
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deep learning, to geospatial problems. While GeoAl
methods have had great success in image processing
tasks due to their natural applicability to raster data,
their application to other spatial and spatiotemporal
data types remains underexplored.

Due to the uniform nature of rasters, there have
been vast recent advances in the application of machine
learning to image understanding (using Convolutional
Neural Networks ( CNNs) as a representative ) in GIS

such as urban object detection'"

and street view analy-
sis'?!. To make use of CNNs, some traffic forecasting
work involving traffic, telecommunication and other
networks is performed by converting spatial data struc-
tures ( such as networks and points) into grids''.

There are three potential issues of this grid-based ap-
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proach: (D Gridding leads to the loss of point accuracy
of the original vector data, which in turn leads to inac-
curate subsequent analysis results. The grid size usually
used for spatiotemporal analysis and prediction is large,
ranging from several hundred meters to several kilome-

tres'

'. Such grids may contain multiple features of
different types of geographic objects (such as lakes,
roads, and railway stations) ; @ Grids of different sizes
may lead to different analysis results, and there will be
a Modifiable Area Unit Problem (MAUP)"'; & The
grid structure is not suitable for urban applications and
management, such as urban traffic, because the traffic
flow must follow the street network , not moving in an arti-
ficially divided grid'”'. Grid-based methods push traffic
into spaces where there is no traffic at all (outside of
roads) , which will further lead to unsuitable analysis re-
sults for practical use.

On the contrary, the network-based spatial repre-
sentation will have the following advantages compared
with the grid-based approach; (O Network-based ST
modelling can provide fine-grained analysis in high ac-
curacy compared with the region- or grid-based forecas-
ting. The network-based quadrat method derives a more
accurate estimate of the local spatial similarity. For in-
stance, regarding the predictive crime mapping, Rosser
et al.'* have demonstrated that the network-based model
substantially outperformed a grid-based alternative in
crime prediction accuracy, and hence should be used
for operational policing. This might be because a net-
work , as a naturally underlying structure, can capture
the spatial correlation better than a gridded structure;
@ Network-based spatial structure avoids converting
the original observations in urban studies into grids in
different sizes which leads to MAUP; 3 Network-
based ST analysis is practical and usable. The intrinsic
structure of many spatiotemporal data in urban studies
is network-based since the road network is a crucial de-

terminant of urban systems, such as traffic, crime,

telecom, energy, and sensor networks. It is natural to
expect that the network topology will affect the spatio-
temporal correlation'®* and the distribution of such ST
phenomena is constrained by the layout of the net-
works'®’. Using Euclidean planes (e.g., grids or re-
gions) in this case may distort the representation of
spatial distribution patterns on the network and the
computation of spatial distances. Considering its practi-
cality, network-based analysis and prediction can be
more convenient to use in practice. For example, crime
hotspot prediction based on the street network can
guide police patrolling the city more intuitively than
grid-based prediction' ", There are therefore many po-
tential advantages to using the network as the spatial
basis for spatiotemporal analysis.

On another note, graph-based deep learning has
been gaining popularity as the latest approach to deal
with irregular data in non-Euclidean space, which has
been advanced in biology, chemistry, and social
network analysis. Given their flexibility, any spatial
data could be represented as graphs, to take full ad-
vantage of graph-based deep learning for spatial and
spatiotemporal modelling. Therefore, this paper proposes
to use networks (graphs) as the analytical framework to
advance SpacetimeAl. Networks (graphs) are proposed
as the spatial structure to represent space-time processes
that are conventionally represented as spatial units;
points, lines/networks, or polygon/areas.

This paper aims to provide a systematic theoretical
research framework, and thus does not review all rele-
vant application literature, but the examples cited in
the paper are the precedents of network-based spatio-
temporal intelligence methods-prediction, clustering,
and optimisation. For the subsequent application and
improvement of related methods, reference may be
made to other related documents.

This paper is organised as follows. After the Intro-

duction, Section 2 illustrates how to represent space-
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time data and processes as graphs. It describes how a
network ( graph ) can be used as a general spatial
structure to represent spatiotemporal processes usually
expressed as points, lines/networks or polygons/areas/
grids. We categorise the broad SpacetimeAl methods
according to the categories of space-time analytics pres-
ented in Literature [ 11], including spatiotemporal
modelling and prediction, spatiotemporal clustering,
and optimisation. Section 3 reviews the use of graph
structures for spatiotemporal prediction and practical
applications in the fields of transportation, crime, and
public health. Section 4 introduces network-based spa-
tiotemporal clustering and optimisation, and their ap-
plications in understanding travel behaviour and
guiding police patrolling. Finally, Section 5 outlines di-

rections for future research.

2 Graph-based Representation of Space-
Time Data and Processes

The terms “network” and “graph” are synonymous to a
large extent''?’. However, network terminology is gen-
erally used in the analysis of real network structures,
either physical objects (e.g., road networks) or virtual
systems (e.g., Internet networks and social networks).
Network science primarily aims to address issues such
as, detecting community, quantifying connectivity or
determining the relevance of specific entities'™. A
graph is an abstract mathematical concept that does not
exist in the real world'"*'. It is a general data represen-
tation method that can conveniently describe the geo-
metric structure of complex networks. Therefore, most
network issues are also reduced to graph-based prob-
lems.

Graph theory offers a way of tackling abstract con-
cepts like relationships and interactions where the
edges in a graph represent types of relationships
between the vertices. Typically, vertices of a graph are

associated with discrete entities (e.g., road intersec-

tions) and the edges refer to the relationships between
the entities. The weight associated with each edge in
the graph represents the similarity or distance between
the two connected vertices. The connectivity and the
edge weight are either derived from the physics of real
scientific questions or inferred from the data. For exam-
ple, we can convert a road network to a graph showing
its connectivity with an adjacency matrix, or we can
convert it to a spatial weight matrix containing distances
(or inverse distances). The spatial weight matrix can be
of first or higher order to represent spatial associations of
different spatial entities. Furthermore , networks (or graphs)
can be both undirected and directed'” . Fig.1 shows how the
spatial units are transformed into a network graph.

This graph-based representation of the network
brings mathematical convenience to model spatio-tem-
poral network processes. There are two ways to convert
a network into a graph. The first one is to represent the
network node as the graph vertex, and the network link
into the graph link. The other way is to turn the
network link into the graph vertex, and the network ad-
jacency as the graph link. The data defined on the
graph is a set of values residing on a set of vertices of
the graph, which is referred to as a graph signal'' as

shown below in Fig.2.

3 Graph-based Deep Learning for Space-
Time Modelling

Deep Learning ( DL) refers to the advanced develop-
ments of traditional machine learning methods. It has
made breakthroughs in video processing, language trans-

T ) addition, deep learning

lation, games, etc.
has also been successfully applied to solve many urban
problems. Compared with traditional machine learning
methods, DL models have three advantages. First, DL
models achieve “end-to-end” learning. It accepts input
data in raw format and automatically extracts latent fea-

tures to model underlying, complex, and nonlinear re-
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lationships in the data to generate the desired output.
This feature greatly simplifies the workload of feature
extraction. Second, the deep structure with thousands

of trainable variables enables modelling of the compli-
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Fig.2  Graph representation of network-based Space-Time processes

There is a wide range of DL structures being used
for either spatial or temporal data modelling, as briefly
explained in the following two sub-sections. The three
most popular DL architectures for modelling time series
data include RNNs, LSTMs, and GRUs:

® Recurrent Neural Networks ( RNNs): RNNs

are a class of neural networks in which connections be-
tween nodes form a directed graph along a time
series'” to exhibit temporal dynamic behaviour. Unlike

classical ANNs,

(memory) to process input sequences. It is suitable for

RNNs can use their internal state

them to process the tasks such as speech recognition
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and language translation. However, RNNs suffer from
short-term memory. When sequences are long enough,
it is difficult for them to transfer information from
earlier time steps to later time steps. RNNs also suffer
from gradient vanishing, which means that gradients
shrink back-propagated over time.

® Long Short-Term Memory (LSTM) . LSTM""*
is a variant of RNN. LSTMs have a similar control flow
to RNNs but are created as a short-term memory solu-
tion. A typical LSTM "'’ has an input, a forget, and an
output gate, which respectively determines whether to
pass the new input, block the current state, and let the
current state affect the output at each time step. It also
has a cellular state that, in theory, could carry infor-
mation from earlier time steps, reducing the impact of
short-term memory.

® Gated Recurrent Unit (GRU) ; As a new gen-
eration of RNN, GRU is very similar to LSTM, but
simpler' . GRU uses a hidden state to transmit early
information without a cell state. It only has two gates, a
reset gate and an update gate. The reset gate is another
gate used to decide how much past information is for-
gotten. The update gate determines which information is
passed and which new information is added, similar to
the forget and input gates of LSTMs.

Two typical DL architectures include CNNs for
regular spaces and GCNs for irregular spaces:

® Convolutional Neural Network ( CNN). CNN

It s

was first proposed by LeCun and Bengio'
mainly used for image processing. CNNs typically have
a series of convolutional layers that treat the image as a
2D plane. In a convolutional layer, each grid ( pixel)
of an image is only connected to its neighbour grid
(e.g., local awareness), not all cells. It uses weight
vectors to extract features ( called feature maps). Grids
located at different locations on the image have the

same weight vector (weight sharing) and stacking mul-

tiple convolutional layers can capture long-range spatial

dependencies from regular Euclidean space.

® Graph Convolutional Networks (GCNs) ; Clas-
sical CNNs operate on regular grid topologies and lack
the ability to handle network/graph structured data. DL
for graphs, especially GCNs, has attracted a lot of at-
tention in recent years. In general, there are two
classes of GCNs: spatial methods and spectral methods.
In spatial methods, convolution operators aggregate the
features of adjacent nodes for spatial information extrac-

2! Spatial methods can work on directed or undi-

tion
rected graphs, but it is not easy to share weights be-
tween different locations of the graph'®’. In spectral
methods, graph convolution is defined in the spectral
domain by a graph Fourier transform on the graph
Laplacian''. So far, most methods have been limited
to undirected graphs, because convolution requires a
symmetric Laplacian matrix to obtain an orthogonal
eigendecomposition.

Early developed DL models are often used to pre-
dict spatiotemporal data with a grid-based representa-
tion, because these models employ CNNs to capture
spatial dependencies. However, spatiotemporal data
naturally exists in network-space in applications such
as transportation, sensors, energy, and social networ-
king. The network-based representation can express
spatiotemporal data accurately and practically, so that
graph-based deep learning can be used for modelling
spatiotemporal data, either dense or sparse.

To model the dependencies of spatiotemporal
data, a straightforward and effective approach is to in-
tegrate spatial and temporal modelling components into
DL models, which can be grouped into four main types
(Fig.3) >,

poral modelling structures. A typical example is ConvL-

(a) Integrate spatial operators into tem-

STM'*' | which is essentially a recurrent layer (e.g.,
LSTM), but the internal matrix multiplication is re-
placed by a convolution operation. It can learn complex

spatiotemporal patterns in datasets through nonlinear
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and convolutional structures. (b) Integrate temporal
operators into spatial modelling structures. This type of
hybrid deep learning approach integrates recurrent
mechanisms into spatially modelled deep learning struc-
tures, such as recurrent CNN (RCNN) that incorporates
recurrent connections into each convolutional layer'”’’.
(¢) Time modelling first, then spatial modelling. For
example, the LSTM-CNN architecture is very suitable for

face anti-spoofing by utilizing LSTM to find long relations
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Fig.3 Four typical deep learning configurations for spatio-temporal data modelling

3.2 Show cases of network-based SpaceTime fore-
casting
A spatiotemporal process can be spatially dense (every-
where) or sparse (just somewhere). For spatially dense
processes, we usually use SpatioTemporal Sequences
(STS) to represent them; for sparse processes, they
are often referred to as SpatioTemporal Point Processes
(STPP )", The applications of graph-based spatio-
temporal prediction methods in traffic, crime, and
health areas are used to further explain the DL archi-

tecture in Fig.3, and the advantages of graph-based

from its input sequence and extract local and dense fea-
tures through convolution operations ™. (d) Modelling in
space first and then in time. This approach learns spati-
otemporal information by sequentially connecting spatial
and temporal deep learning structures. For example, a

combination of CNN-LSTM structures has been used for

PM 2.5 prediction'®’ and traffic prediction ™’ in smart
cities.
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spatiotemporal intelligence.
3.2.1 Traffic flow prediction—intensive spatio-
temporal sequence process

In transport studies, traffic prediction has been a hot
topic, and various approaches have been developed,
from time series and STARIMA (or its various forms) ,
to grid-based LSTM modelling. Early DL work parti-
tioned the space into grids and then used CNNs to
model daily and hourly patterns of the week for predic-

tion. Ren et al.'*®" developed the first network-based

deep spatiotemporal residual neural network. It is the
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first time to directly use the network links (road seg-
ments) to be the modelling node of the neural network.
In Ren’ s work, spatial adjacency matrices are used to
model spatial associations, e.g., different layers use
different spatial adjacency orders. This turns a fully
connected deep learning neural network into a localised
deep learning network. In a follow-up study, Ren et al.
developed a deep learning structure combining CNN
and LSTM to predict traffic flow"*’

veloped the first graph-based spatiotemporal sequence

prediction-the RGC-LSTM network. Due to the strong

. Yang et al.'"*" de-

temporal dependence of traffic flow, both Ren and
Zhang’ s work integrated spatial convolution operators
into temporal deep learning models.

To handle directed traffic flow, Zhang et al."** fur-
ther developed a directed graph deep learning model. It

represents network-based spatiotemporal data as a

series of signal “well-behaved” graphs with directions,

and whose edges re-

This well-behaved
graph enables the topology of directed networks to be
The dy-

namics of the network flow are then modelled as

whose vertices are network links,

present adjacency relationships.

incorporated into spatiotemporal predictions.

Markov chains on the graph with edge weights deter-
mined by the Markov TPM. In addition, they designed
a novel spatiotemporal graph convolution-STGC operator
which capture various spatio-temporal dependencies from
different spatial scales, tackling the spatio-temporal het-
erogeneity to a large degree. Additionally, this is the first
time the inception residual learning technique has been
used for network-structured STS prediction. The approach
was evaluated on a large traffic network consisting of
China, 30-
min, and 60-min ridesharing flow prediction (Fig.4).
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Compared with other traffic prediction methods in-
cluding ARIMA, SVR, LSTM, CNN, STGCN, and
RGC-LSTM, the directed graph deep learning model
significantly improves the prediction accuracy and effi-
ciency, especially performing well during peak hours
(e.g., Fig.4(d)). In addition, no additional processing
is required for traffic accidents and congestion, and the
entire prediction process is fully automated. This algo-
rithm does not need to artificially divide the road seg-
ment into 10-meter small road segments, as used by
Google, to create additional network nodes. Therefore,
it has higher learning and computational efficiency,
and thus has good application prospects, especially for
real-time traffic prediction in large cities.

3.2.2 Crime hotspot prediction-an example for
sparse point processes

Hotspot mapping could highlight areas/locations with
higher incidents and sparsely distributed in space and
time , which are characterised by Spatio-Temporal Point
Process (STPP). Early efforts on hotspot mapping are
primarily retrospective, aiming to measure and detect
space-time clusters of historical sparse ST data, inclu-
ding public safety, earthquake, crimes, and some
issues in epidemiology and environmental science. Re-
cently, there has been an increasing interest in using
historical data to produce hotspot maps for predictive
purposes owing to its prospective benefits. For instance,
accurate crime forecasting can help police enforcements
to prevent criminal behaviours, and traffic accident pre-
diction is useful for road safety interventions and traffic
reengineering.

Although a network-based structure can better
capture the micro-level variation of ST events, existing
deep learning methods for sparse events forecasting are
either based on area or grid units. The key challenge of
DL for predictive hotspots mapping of network based
STPP lies in how to model the complex spatio-temporal

dependencies of sparse events along the network. The

sparsity means that counting the events over space and
time results in many zero counts of some segments/
links of the network. The difficulties are in three as-
pects: (1) The sequence of event counts in the time
domain is not a continuous function that can be approxi-
mated in traditional deep learning models' . (2) Graph-
based DL models commonly used in the spatial domain
use a weight sharing strategy to learn spatial dependen-
cies'* . Since many linked observations are zero, if this
method is directly applied, the weights will be all zero,
and the prediction map cannot be generated. (3) If the
prediction map directly uses the standard regression
loss function for parameter learning, the DL model will be
prone to overfitting, combined or all-zero predictions,
which leads to the creation of imbalanced regression
learning scenarios' ™.

Yang & Cheng''®’ developed a novel and effective
graph-based DL framework, named Gated Localised
Diffusion Network ( GLDNet), to generate predictive
hotspot mapping of STPP in network space. This model
uses the configuration of Fig.3 (d) to combine space
and time-where the street network is represented as a
weighted and undirected graph, and event counts are
defined as the values on the vertex set of the graph. In
GLDNet, the temporal propagation of historical events
is modelled by a gated network, and the associated
spatial propagation is captured via a localised diffusion
network using network distance and topology, which
overcomes the spatial heterogeneity. In the process of
model training, a weighted regression loss function is
employed to solve the issue of many zero observations.
The proposed model is evaluated using crime data from
the City of Chicago, Illinois, USA to prove its feasibility
and effectiveness (Fig.5). To our best knowledge, it is
the first attempt to develop graph-based DL approaches
for predictive hotspot mapping of sparse ST data on net-

works.
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Fig.5 Network-based predictive hotspot mapping of crimes in Chicago '’

3.2.3 Health-prediction of the COVID-19 cases
globally
In the early stage of the COVID-19 pandemic, modelling
the spread of coronavirus globally and learning trends at
global and country levels were crucial for tackling the
pandemic. Although there were a number of statistical
and epidemiological models to analyse the COVID-19
outbreak , these models had many assumptions in asses-
sing the impact of intervention plans, which resulted in
low accuracy and inaccuracy deterministic predic-

tions' "

. Therefore, it is vital to develop new methods
for predicting and responding to the virus spread'®.
Among others, Tbrahim et al."* introduced a novel
Variational Autoencoder- LSTM model to predict the
spread of the COVID-19 virus across the globe. This
spatio-temporal model does not only rely on the time-
series data of the virus spread, but also incorporates
the urban analytics data represented in locational and
demographic indicators ( such as population density,
urban population, and fertility rate) , and an index that

represents the governmental measures and response

amid toward mitigating the outbreak ( includes 13
measures ) .

The proposed model uses a graph structure to re-
present 139 countries as nodes of the graph. Then it uses
Long Short-Term Memory (LSTM) to learn not only
from the previously defined timestamps for each country,
but also from other countries at each timestamp. To
learn the relations between its inputs and outputs at
local and global levels, a self-attention mechanism has
been introduced to the LSTM units. The graph was first
initialised based on the spatial weight among all
global

However, the spatial weight may change between days

infected countries using their distances.
due to different policies and measures that are taken by
countries. Instead of feeding the model with a static
graph, a variational autoencoder graph is used to learn
and output a variation that could meet the changes from
day to day, country to country, or even the overall
measures of the entire globe. Therefore, this model uses
the framework of Fig.3 (a). As shown in Fig.6, the

model is more accurate in predicting the number of in-
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fections by country than other existing models.
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Fig.6  The proposed variational LSTM autoencoder model and prediction results

4 Network-based Clustering and Optimisation

4.1 Network-based clustering of spatial and spati-
otemporal hotspots
Region of Interest (Rol) has many synonymous names
in activity studies, such as hotspot, interesting place
and interesting region. This concept is widely used in
travel pattern analysis, criminology, and epidemiology,
in which the occurrence of events is represented by
point records in space, and hotspots are significant ag-
gregations of the point records. In human dynamics
studies, the Rols are the places that attract high
volumes of visits from people. With more and more lo-
cation-based data generated by modern sensors, such
as GPS devices and mobile phone networks, Rols have
become a hot research topic. Rols are usually detected
by finding dense aggregations of stopping behaviours,
information posted via telecommunication devices or

check-ins with LBS applications.
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[39]

Traditional Rol detection methods only look for ag-
gregated regions in planar space, thereby generating
Rols distributed in 2D Cartesian space, as shown in
Figs.7(a) and (b) based on small regions and grid-
based active hotspots. In contrast, the network-based
activity hotspots in Fig.7(c¢) provide a finer granularity
representation and analysis *" .

The combination of spatial hotspots and time di-
mensions leads to the problem of space-time hotspot are-
as. The commonly used methods in research are Space-
Time Scan Statistics and ST-DBSCAN. These methods
all add the time dimension to the hot spot detection
analysis based on the spatial dimension. This allows not
only to detect Rols in space, but also to find temporal
aggregation patterns in other non-spatial properties of
events (Fig.8).

Shen developed a network-based Rol detection
method named ST-LOI'**) . This approach extends spati-

otemporal clustering from Cartesian space to network-
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based space and seamlessly considers both spatial and
temporal dimensions (Fig.9). The spatial range of net-
work-based spatiotemporal hotspots is more precise than
the range of the spatial convex hull (Fig.8) , which is

more conducive to combining POls with specific coordi-

(a) Output area activity

(b) Grid-based activity

nates ( POIs, Point of Interests) and their semantic in-
formation to mark the types of active hotspots, so as to
facilitate clustering the activity behaviours to profiles

individuals.

Egoels & uines.
[ Travel & Truscpan
Wark & Lds

(c) Street network-based activity

Fig.7 The prominent activity derived from Twitter data
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4.2 SpaceTime optimisation-designing efficient and
balanced police patrol districts on an urban
street network

The Police Districting Problem ( PDP) concerns the

optimal partition of territory into several patrol sectors
with respect to performance attributes such as workload
and response time. Traditionally, the police districts

were manually drawn by police officers on a road map
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following the main streets in the area without accomplis-

8] In

hing workload balance or geographic compactness
recent decades, automatic methods for defining police
districts have gained increasing attention among re-

searchers and police departments*’. Following the first

24:00 1 |

00:00 -

(a) Detected ST-LOIs visualised in a space-time cube and their

projections on basemap

study on PDP by Mitchell'*’ | different mathematical
optimisation models for PDP have been developed, fo-
cusing on the contiguity of districts and the balanced

workload distribution.

103:40

Officer
| Number

S bl e L

=V 00:00

(b) The 3D wall map visualisation of
one ST-LOI in a space-time cube *?1

Fig.9 ST-LOIls detection and visualisation

In formulating a PDP, the first step is to choose
the basic units that can be consolidated into districts.
Most PDP models use areal units or zones (e.g., grids,

(4461 " as shown in Figs.10

census blocks) as basic units
(a) and (b). However, considering street networks in
PDP is promising for several reasons. The first is
simply that the features of street network influence both
the long-term crime pattern and the short-term dynamics
of crime behaviours, suggesting the importance of street-
level crime prevention. Second, as street network fun-
damentally influences the movement of police officers,
network-based models would produce districting plans
of better usability than the alternatives. In contrast, as
grids or census blocks may intersect physical barriers
and contain unconnected street segments, It is less
suitable for them to operational deploy PDPs than street
segments. Furthermore, as streets are the basic elements
of human movement and spatial cognition, the street-

based districting solution is able to mitigate the effects

of MAUP, which is the inherent issue in the grid-based
models. Therefore, Chen proposed a PDP method
based on urban road network (Fig.10(c) ) ) This
method could design efficient and balanced police
patrol areas and optimise patrol routings in real-time
online, and could reduce emergency response time by
20%. These improvements allow police officers to spend
more time patrolling on cirme hotspots. This method
could also be employed in the logistics operation of large

fleets.

5 Summary and Discussion

This paper proposes the use of networks and graphs as
the basic spatial structure for SpaceTimeAl or GeoAl
for spatiotemporal analysis. Since people live and travel
along the urban road network, this framework is partic-
ularly suitable for the study of urban issues. Compared
to traditional grid-based representations, network-based

structures are more precise and practical. Graphs can
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express a variety of spatial structures such as points,
lines, surfaces/polygons/grids, and networks, by con-
verting these spatial structures into ( directed or undi-
rected) graphs and signals on graph vertices, using the
spatial domain or spectral domain to model dense and

sparse spatiotemporal processes. Taking spatio-temporal

(a) Grids

(b) Census blocks

prediction, spatio-temporal clustering, and spatio-tem-
poral optimization as examples, this paper introduces
network and graph-based spatio-temporal analysis
methods and their applications in the fields of transpor-

tation, policing, and public health.

(c) Street-based districting

Fig.10 Spatial units in PDP models

This paper aims to provide a theoretical research
framework for spatio-temporal intelligence analysis
based on networks and graphs, so as not strictly define
SpaceTiemAl and GeoAl. This paper introduces a pio-
neering network-based spatio-temporal analysis method
to illustrate spatio-temporal prediction, spatio-temporal
clustering, and spatio-temporal optimization. For the
subsequent application and development of related
models, other related literatures can be referred to.

The development of graph-based deep learning
and spatio-temporal prediction is in full swing, but
most of them are based on the static graph structure,
that is, the graph structure is fixed and invariant. If the
network structure changes ( nodes or links between
nodes are lost and increased ), none of the existing
models can make spatio-temporal predictions for such
dynamic graph structures. The development of this type
of dynamic graph model will help to study traffic acci-
dents, road network optimization and other issues. Due
to the lack of historical data to train the model, the de-

velopment of transfer learning or reinforcement learning

may help to solve this problem. In addition, spatio-
temporal optimization using reinforcement learning of
multi-agents is also a current hot direction, such as
matching taxis and user needs'*’.

Despite the rapid development of graph theory-re-
lated research, its application in geographic information
science is still limited to navigation and route searching.
Therefore, graph-based knowledge and matrix-based
computing capabilities still need to be improved to
further assist the application of graph structures in geo-
graphic information science and promote the development
of SpaceTiemAl and GeoAl. In addition, more graph-
based analysis and database management tools need to
be developed and applied, which will strongly promote
the development of digital twins and metaverses. For
example, the graph database Neo4] can flexibly link
geometric and semantic information, and its route
search is fast, showing outstanding superiority in the
study of connecting indoor and outdoor paths""’.

Since the 1980s, the study of network complexity

has been in the ascendant, but it is still limited to sin-
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gle-layer networks in geographic information science re-
search, such as roads, power grids or social networks.
As the core functions of each city are increasingly inter-
connected, the interactions between each network are
closer, such as transportation, telecommunications and
energy. Multilayer networks and related models have
also become an important direction to promote the de-
velopment of SpaceTiemAl and GeoAl, as well as to
study practical problems in the geospatial and real
world.
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