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ABSTRACT: Current methods for determining equilibrium
constants often operate in three-dimensional environments, which
may not accurately reflect interactions with membrane-bound
proteins. With our technique, based on single-molecule localization
microscopy (SMLM), we directly determine protein−protein
association (Ka) and dissociation (Kd) constants in cellular
environments by quantifying associated and isolated molecules
and their interaction area. We introduce Kernel Surface Density
(ks-density,) a novel method for determining the accessible area for
interacting molecules, eliminating the need for user-defined
parameters. Simulation studies validate our method’s accuracy
across various density and affinity conditions. Applying this
technique to T cell signaling proteins, we determine the 2D
association constant of T cell receptors (TCRs) in resting cells and the pseudo-3D dissociation constant of pZAP70 molecules from
phosphorylated intracellular tyrosine-based activation motifs on the TCR-CD3 complex. We address challenges of multiple detection
and molecular labeling efficiency. This method enhances our understanding of protein interactions in cellular environments,
advancing our knowledge of complex biological processes.
KEYWORDS: equilibrium constant, single-molecule localization microscopy, protein−protein interactions, DNA-PAINT, T cells

The thermodynamics of protein interactions within cells
play an essential role in several biological processes, such

as enzyme catalysis,1 cellular structure,2,3 or immune
responses.4 However, determining association constants, Ka,
in physiological environments is complex. Molecular associa-
tion depends on concentration, governed by the thermody-
namic chemical potential of each species, which in turn
depends on their density and interactions, determined by the
molecular nature and environment.5 Consequently, the degree
of association in cellular environments may differ significantly
from that in simple solutions.6 Still, many experimental
methods to study association constants rely on having free
proteins in solutions.7 Techniques like NMR,8 thermopho-
resis,9 stopped-flow spectrofluorimetry,5 analytical ultracen-
trifugation,10 and calorimetric methods (differential scanning
calorimetry or isothermal titration calorimetry11−13) are
reliable but require high concentrations of samples and
measure protein interactions in 3D. However, in vivo, several
protein interactions occur in two phases (membrane and
cytosol) or in 2D (membrane processes), leading to the
difference in dimension for the association constant (volume in
3D to area in 2D).14 Surface plasmon resonance (SPR), which
involves immobilizing one of the two proteins on a surface

while the other remains in solution, is widely used for studying
interactions in two-phase systems,15 but immobilization of
proteins on a surface can potentially alter their conformation
and affect interaction dynamics. On the other hand, to retrieve
2D association constants, mechanical-based methods, includ-
ing micropipette adhesion frequency,16 and fluorescence-based
imaging methods,16,17 involving fluorescence recovery after
photobleaching (FRAP)17 and single-molecule fluorescence
resonance energy transfer (FRET),6 were utilized, particularly,
for ligand−receptor interactions. These approaches revealed a
sharp contrast between 2D and 3D kinetic and thermodynamic
information,6 emphasizing the need for a simple method to
determine 2D association constants of proteins within their
cellular environment, beyond membrane-bound receptor−
ligand interactions.
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In this paper, we present an analysis technique based on
single-molecule localization microscopy (SMLM) to determine
protein−protein association, Ka, or dissociation, Kd, constants
in their cellular environments. SMLM uses isolated fluorescent
molecules to create super-resolved images with nanometer
precision. Counting associated and isolated molecules can
render a quantitative parameter to evaluate the strength of the
interaction (Figure 1a). We showed an example based on this
approach to determine the Ka of complementary DNA
sequences.18 Now, we extend the analysis to membrane
protein association and dissociation of membrane complexes,
releasing one component into the cytosol.
Ideally, in a 1:1 interaction of two species A and B to form a

complex AB: Ka = [AB]/([A]·[B]), concentrations can be
expressed per unit surface or volume. However, several factors
must be considered when computing concentrations from
SMLM experiments: (1) multiple detection of the same
molecule can render artificial overcounting or clustering, due
to emission blinking in PALM19 or STORM,20 or repetitive
binding−unbinding cycles in DNA-PAINT21 (Figure 1b); (2)
discrepancy between counted molecules and the real value
responsible for the chemical potential, due to labeling
efficiency and fluorescence detectability; (3) localization
precision, still bigger than the molecular size, requiring a
proximity criterion and reference distribution; (4) the area or
volume containing the molecules as association−dissociation
depends on molecular density. The multiple counting problem
can be diminished by correcting based on the SMLM
technique. For PALM and STORM, this requires careful
calibration and knowledge of the complex photophysical
properties of the fluorophores to correct for multiblinking.22

In DNA-PAINT, calibration depends on the reversible binding
kinetics between docking and imager strands, modality known

as qPAINT23−27 (Figure 1b). The second issue can be
accounted for in a 1:1 association or dissociation reaction if
measurements are performed as a function of the total
molecular density. The actual value of the Ka or Kd can be
obtained by extrapolation to infinite dilution (Supplementary
Note 1).18 The correlation problem can be treated by
establishing a proximity distance and using the random
distribution as a reference of nonassociated partners. Finally,
the magnitude of the area or volume containing the molecules
can be determined by methods based on the molecular density.
They include Delaunay28,29 (Figure 1c, left) and Voronoi30,31

(Figure 1c, middle) tessellations and kernel surface density
function, ks-density32,33 (Figure 1c, right). These are described
within the Methods (Supporting Information). All three
methods distinguish void or isolated areas from the core
region containing the majority of molecules and provide
quantitative measurement of this area. When needed, the
volume can be determined by multiplying the core area by the
illumination volume, Total Internal Reflexion Fluorescence
(TIRF) depth, which ranges from 100 to 250 nm.
The capability of computing 2D association constants from

SMLM data sets was tested by simulating 2D molecular
distributions of two species, at different molecular densities
(from 120 to 400 μm−2) and association affinities (as measured
by log Ka, from −3 to 0 on a μm−2 scale), in environments
mimicking cellular compartments (Figure 2a). Figure 2b
presents the molecular localizations across four different
combinations of extreme density and affinity. From the
molecular coordinates, we used Delaunay and Voronoi
tessellations, and ks-density, to recover the patterns containing
the localizations. Figure 2c displays the tessellation graphs and
the color scale representation of the ks-density function (top)
and compares the original pattern (Figure 2a) with those

Figure 1.Workflow for determining association constants from SMLM data. (a) SMLM imaging provides information that can be used to correlate
localizations and count associated and isolated molecules from a proximity criterion. With this criterion, and a reference distribution, we can render
a quantitative parameter to evaluate the strength of the association. Here, red circles represent an example species “A” and blue circles represent an
example species “B” at different positions within a cell. Here both the free and bound species can be imaged with SMLM. Concentrations of both
species A and B can be expressed per unit surface or volume (S,V). Radial solid line within the dashed circle indicates the proximity criterion
utilized to consider species as either free or associated. (b) Schematic of SMLM imaging comparing the ground truth data with SMLM-imaged data
followed by quantitative (qPAINT) or multiblinking analysis. Showing example species “A” in red circles, and “B” in blue circles, with their original
ground truth positions, results from SMLM data and final protein map from analysis. SMLM renders clusters of single-molecule localizations
around the ground-truth position of the target proteins. To accurately determine the number of associated and isolated molecules, SMLM data sets
must be corrected for multiblinking or subjected to qPAINT analysis, depending on the imaging modality. (c) To compute the space occupied by
the interacting species, we consider three different methods that use molecular coordinates to estimate the pattern containing the molecules:
Delaunay (left) and Voronoi (middle) tessellations and a kernel surface density function, ks-density (right). For the tessellations, the acceptance
area of the triangle (AT) or the polygon (AP) is set based on the average of the first nearest neighbor distance (μNND) weighted by suitable scaling
factors, FD and FV, respectively. For ks-density, two parameters are considered, the Gaussian point dispersion (σx,y), set by μNND weighted by scaling
factor (FK) and the rejection threshold (TH) as described in the Methods (Supporting Information).
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recovered (bottom) using Delaunay (Figure 2c, left), Voronoi
(Figure 2c, middle), and ks-density (Figure 2c, right). This
example has been computed for a total molecular density of
160 μm−2 and log Ka = −2.0. Additional recovered patterns for
simulations performed at other molecular densities and affinity
are presented in Supplementary Figure 1. Finally, Figure 2d
shows the difference between the computed and input values
of −ΔG°/RT = log Ka as a function of the density and affinity.
We present a summary of the implementation of each pattern
analysis algorithm, along with the optimization of their relevant
parameters. More details can be found in the Supporting
Information.
The key reference to parametrize all three methods is the

average of the distance to the first nearest neighbor (NND) of
the total distribution, μNND, an unbiased parameter easily
accessible from the raw data. Based on μNND, an expansion

factor (FD, FV, or FK for Delaunay, Voronoi, or ks-density,
respectively) was used as a parameter to optimize the
coincidence between the simulated and recovered area. F1
score of the confusion matrix was used as an optimization
criterion. The results are summarized in Supplementary Table
1 and Supplementary Figure 2.
After recovering the pattern using each method, molecules

included were individualized, and their locations were used to
identify associated and isolated ones. As described (Methods,
Supporting Information), the most suitable proximity limit to
consider association in these simulations was established as 15
nm, by considering the average uncertainty in the location of
pairs and searching the coincidence of the computed Ka value
with the input value within a range of 0.3 logarithmic units
(Supplementary Figure 3). Across the simulated density and
affinity ranges, ΔG°/RT could be recovered with a deviation of

Figure 2. Method performance computed from 2D simulations of interacting molecular species in environments that mimic cell shapes. (a)
Example of a simulated pattern of 692 μm2 in a 35 × 35 μm2 frame. (b) Simulations under different extreme conditions on a 1 × 1 μm2 region: (i)
density = 120 μm−2 and log Ka = −3, (ii) density = 120 μm−2 and log Ka = 0, (iii) density = 400 μm−2 and log Ka = −3, and (iv) density = 400
μm−2 and log Ka = 0. (c) The smaller region of 4 × 4 μm2 indicated in panel (a) with a total density of 160 μm−2. Here, there are equal amounts of
each species with a log Ka = −2 and no localizations are out of the pattern, with the following methods: Top, Left: Delaunay tessellation. Top,
Middle: Voronoi tessellation. Top, Right: ks-density with Gaussian expansion of FK = 1. Bottom: Recovered patterns with the respective expansion
factor that are compared to the original one (FP, gray; FN, sky-blue; TN, white; and TP, yellow, pink, and green to Delaunay, Voronoi tessellation,
and ks-density methods, respectively). Left: Delaunay tessellation method considering all triangles with area: AT ≤ (3·μNND),

2 F1 = 0.99. Middle:
Voronoi tessellation method considering all polygons with area: AP ≤ (3·μNND),

2 F1 = 0.98. Right: ks-density method with σx,y = 1·μNND and TH
given by equation in the Methods, F1 = 0.87. (d) Difference in -ΔG°/RT between the recovered value (R subindex) and the value used in the
simulation (S subindex), in patterns recovered with F1 ≥ 0.86 for the three methods: (i) Delaunay tessellation method with FD = 3. (ii) Voronoi
tessellation method with FV = 3. ks-density function method with FK = 1 and (iii) TH = 1.5/( 2 ·σx,y·NT); (iv) TH = 2.5/( 2 ·σx,y·NT). All
simulations are described in the Methods (Supporting Information).
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±0.3 with respect to the computed value, using any of the
three methods, except at the lowest affinity and highest density,
where deviations scale up to ±0.4. A difference of ±0.3 in
ΔG°/RT at 25 °C is equivalent to ±743 J/mol in ΔG°, a very
low energy difference, supporting the whole procedure.
Although Ka is unknown, the parameters can be optimized
through iteration. Notably, the ks-density shows the least
sensitivity to parameter changes (Supplementary Table 1 and
Supplementary Figure 2) and requires less computational time
than tessellation methods. Keeping this in mind, in what
follows we show results obtained using ks-density to stress the
applicability of this method. As mentioned above, the
extension of this procedure to 3D concentrations involves
simply multiplying the area by the observation depth in TIRF.
To highlight the method’s potential for determining 2D

association constants of biologically relevant partners in situ,
we applied the validated analysis to examine the association of
T cell receptors (TCR) in the context of T cell signaling. T
cells play a central role in pathogen elimination and tumor
surveillance by identifying, as quickly and precisely as possible,

harmful antigens displayed on major histocompatibility
complexes (MHCs) expressed on the surface of antigen-
presenting cells (APCs). To achieve antigen sensitivity and
specificity, TCRs associate to form preactivation nanoscale
clusters, which then increase in size and number upon T cell
activation.34−37 Here, we quantified the 2D association
constants between TCRs located in the membrane of
nonactivated T cells from SMLM data.
Figure 3a shows a representative super-resolved image of

TCRs in nonactivated Jurkat T cells obtained via DNA-PAINT
imaging under TIRF excitation. For imaging, TCRs were
labeled with primary antibodies, targeting the CD3ζ subunit,
chemically coupled to orthogonal docking sequences featuring
a repetitive (AC)n sequence38 (Figure 3b), resulting in 6 nm
localization precision (Supplementary Figure 4).39 To quantify
antibody-labeled CD3ζ proteins, we subjected the DNA-
PAINT data to qPAINT analysis (Methods, Supporting
Information). Figure 3c shows the histogram of the inverse
of the measured dark times, known as the qPAINT indexes
(QPI), which is fitted to the sum of two Gaussian functions

Figure 3. Association analysis of T cell receptors (TCR) in resting Jurkat T cells. (a) Super-resolution DNA-PAINT image of CD3ζ proteins in a
representative nonactivated Jurkat T cell. (b) Schematic representation of the sequential association of TCRs characterized by the corresponding
association constant Ka,j. Inset shows DNA docking and imager strand sequences displaying the 7x repeat binding motif. (c) Histogram of qPAINT
indexes, defined as (τOFF)−1, for CD3ζ single molecule localization clusters. The fit to a sum of two Gaussian functions is shown as solid lines,
whereas each component is shown as a dashed line. Inset shows blinking kinetics of an example single molecule localization cluster of CD3ζ with
indicated dark time (τOFF). (d) Distribution of CD3ζ cluster sizes from qPAINT analysis from the example cell depicted in panel a. (e) Surface area
of Jurkat T cell CD3ζ distribution as calculated by ks-density (green). Purple points represent the CD3ζ protein distribution. (f) Whole-cell
analysis of first nearest neighbor distances (NNDs) of CD3ζ (purple). The histogram of NNDs for complete spatial randomness (CSR) is
represented in gray. (g) Difference between log Ka for CD3ζ and a random distribution as a function of the proximity limit threshold utilized to
consider proteins as associated pairs for the cell presented in Figure 3a. (h) log Ka as a function of total molecular density with a linear fit used to
extrapolate the value of log Ka,limit. Each data set (squares) in this graph corresponds to the analysis from whole-cell images. (i) log Ka,j for the
stepwise formation of clusters of j number of CD3ζ proteins from the association of a monomer to a cluster of j − 1 proteins. Values are the average
for the eight cells shown in Supplementary Figure 5. Zoom area in panels (a) and (e) is 2 × 2 μm2. Scale bar represents 3 μm.
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with peaks located at multiples of a QPI value of 0.017 s−1 for
the CD3ζ docking-imager pair. This value, in combination
with a distance-based algorithm, was used to recover an
accurate quantitative map of the nanoscale distribution of
antibody-labeled CD3ζ proteins in nonactivated Jurkat T cells.
Figure 3d shows the cluster size distribution. With this
information at hand and using the method presented in this
work, we determined the molecular pattern of the space
occupied by the TCRs. Figure 3e shows the recovered pattern
using the ks-density method in green, with the receptor
locations in purple. The whole-cell analysis of the first NND of
CD3ζ proteins for the same Jurkat T cell is displayed in Figure
3f. In this same plot, it is compared to the first NNDs
histogram of the random distribution as a reference of
nonassociated partners (i.e., corresponding to the case of
complete spatial randomness (CSR), computed at the
experimentally measured density), demonstrating the intrinsic
association between TCRs in nonactivated Jurkat T cells.
To determine the proximity threshold for identifying free vs

bound proteins, we calculated log Ka as a function of the
threshold and compared it to CSR at the same density (Figure
3g and Supplementary Figure 5). The greatest difference
between experimental Ka and CSR lies in the 20−25 nm range,
matching the maximum of the first NNDs histogram. This
result is consistent across three independent experiments and
data from 8 cells (Supplementary Figure 5). A 25 nm value was
used as the proximity limit. The criterion used here differs
from the one used in the simulations because the average
localization uncertainty of the proteins in qPAINT is not as
precisely known as in the simulations, and the true value of Ka
is unknown. On the other hand, the comparison with CSR can
always be performed for experimental data.
As a result of incomplete labeling detection of the proteins,

there should be a slight dependence of the computed Ka on
molecular density. The corrected value of this parameter can
be obtained by extrapolation to infinite dilution. Figure 3h
shows the values of Ka as a function of molecular density for
the 1:1 association of CD3ζ in whole cells. This plot represents
the expected tendency with density due to incomplete labeling
detection expressed in eq S8 of Supplementary Note 1. The
extrapolated value is Ka = (25 ± 10) × 10−3 on the μm2 scale.
Cluster formation can be visualized as a stepwise process

involving the association−dissociation of one protein at a time,
as shown in Figure 3b. At equilibrium, this results in a
distribution of the number of proteins per cluster. The
distribution of cluster size is shown in Figure 3d and
Supplementary Figure 6. From this distribution, we can
calculate the equilibrium constant for each step as Ka,j =
[Nj/(Nj−1N1)]A, where j represents the number of proteins in
each cluster, N1 being the monomer and A the area. For a j
between 2 and 8, the values of log Ka,j are shown in
Supplementary Table 2. They are all around log Ka,2−8 = −1.4
on the μm2 scale (Figure 3i). This is not the prediction of the
simplest Poisson type association, which renders decreasing
association constants with an increasing number of proteins, as
a consequence of size independent association and a size
increasing dissociation rate (eq S12). If we agree that
association of a monomer is mainly dependent on its diffusion
ability independent of cluster size, then we can conclude that
results show an increasing residence time per monomer with
cluster size, pointing to cluster stabilization.
To showcase the method’s ability to compute equilibrium

constants in pseudo-3D environments, we next examine the

dissociation of phosphorylated protein tyrosine kinase ZAP70
(pZAP70) from phosphorylated intracellular tyrosine-based
activation motifs (ITAMs) on the TCR complex (pCD3ζ) in
the T cell membrane (Figure 4). This process is significant
because the release of active ZAP70 (pZAP70) to the cytosol is
believed to enable the phosphorylation of the linker for
activation of T cells (LAT) at distant membrane sites and
nearby vesicles, contributing to downstream T cell activa-
tion.40,41 This dissociation process involves species in the
membrane (pCD3ζ and pCD3ζ-pZAP70 complex), and the
cytosol (pZAP70) and will be evaluated on a molar scale. To
determine the Kd of pZAP70 from pCD3ζ, we first activate T
cells with a planar glass-supported lipid bilayer (SLB)
functionalized with anti-CD3 and anti-CD28 antibodies to
promote TCR engagement. When a T cell comes into contact
with the SLB, the TCRs on the cell surface interact with the
ligands embedded in the SLB, leading to T cell activation42−45

(Figure 4b).
Figure 4a shows a super-resolved image of pCD3ζ (blue)

and pZAP70 (red) proteins in activated Jurkat T cells,
obtained using DNA-PAINT imaging under TIRF excitation;
localization precision was 10 nm for both pseudocolors
(Supplementary Figure 7). DNA-PAINT data were subjected
to qPAINT analysis to quantify the number of labeled pCD3ζ
and pZAP70 proteins. Figure 4c shows QPI histograms and
representative single-molecule ON/OFF time series for
clusters in the pCD3ζ and pZAP70 data sets (blue and red,
respectively). Figure 4d shows the recovered distribution map
of both proteins with their spatial pattern calculated via ks-
density. It is noteworthy that control DNA-PAINT imaging of
pCD3ζ alone confirms that there is no significant under-
counting due to potential steric hindrance in the dual-labeling
of pCD3ζ and pZAP70. Quantification revealed 77 ± 2 and 80
± 5 pCD3ζ proteins per μm2 in single- and dual-labeling
experiments, respectively.
The first NNDs histogram comparison with a random

distribution demonstrates the association between pCD3ζ and
pZAP70 (Figure 4e). Analysis of log Kd as a function of pair
distance shows that the proximity threshold for distinguishing
free from bound proteins is 20−25 nm (Figure 4f and
Supplementary Figure 8), based on data from nine FOVs and
11 cells. For heterospecies analysis, the CSR distribution was
computed in three scenarios (each component in the
experimental distribution was paired with the other in CSR,
and vice versa, or both in CSR), all yielding similar NND
distributions. Figure 4g shows the Kd of pCD3ζ and pZAP70
heterodimers as a function of pZAP70 concentration for whole
cells (squares) and 9 μm2 and 100 nm depth cell portions
comprising at least 1000 protein locations. Both data sets show
similar linear correlations, indicating consistent behavior across
the whole cell. A linear extrapolation from the whole-cell
analysis gives a Kd value of (1.0 ± 0.4) μM.
If we consider now the sequential model of Taylor et al.,46

the analysis of the population distribution of pZAP70
molecules in pCD3ζ clusters of j number of members renders
the probability that one position is coordinated, pbound,j (eq
S13a). In the Langmuir-type association, this value is a
function of j and the concentration of pZAP70. The relative
distribution of clusters of pCD3ζ with j number of proteins
and s number of bound pZAP70 is shown for the nine FOVs in
Supplementary Figure 9 together with the corresponding plots
of the inverse of pbound,j as a function of j to derive Kd from the
slope, once the concentration of free pZAP70 is taken into
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account. Supplementary Table 3 contains the value of pbound,j,
for the nine FOVs as well as the difference between this
experimental value and the ones derived from a reference with
the actual locations of pCD3ζ and pZAP70 molecules placed
at random. As expected, practically all actual values of the
binding probability are higher than those for the random
distribution. The average value of Kd for pCD3ζ-pZAP70
recovered from the model of the association to clusters, (0.6 ±
0.2) μM, is very similar to the extrapolated value obtained
considering the 1:1 interaction. The calculated Kd value in the
micromolar range indicates that pZAP70 has a relatively
weaker binding affinity for pCD3ζ chains compared to the
stronger nanomolar-range affinity observed for ZAP70 in SPR
experiments.47 This weaker affinity suggests that pZAP70
dissociates more rapidly from pCD3ζ, supporting a model in
which dynamic and transient interactions facilitate efficient
signal propagation within the T cell activation pathway.
Similarly, recent findings on the dissociation of ZAP70 from
pCD3ζ in T cells show that its unbinding can be accelerated by
the dephosphorylation of individual phosphotyrosines on
CD3ζ, resulting in dissociation constants in the micromolar
range.48 Such rapid dissociation is likely crucial for allowing

swift and reversible signaling events, which are essential for the
precise regulation of T cell responses.
In conclusion, we demonstrate the feasibility and strength of

our method in accurately determining association and
dissociation constants in cellular environments, marking a
significant advancement in the SMLM field. Furthermore, we
introduce ks-density analysis as a novel tool to evaluate the
accessible area for the interacting molecules. This method
produces results comparable to those obtained with more
traditional techniques, such as Delaunay or Voronoi
tessellations, but with significantly reduced sensitivity to
parameter values. Ultimately, this allows researchers to
implement the developed method without the need to
optimize the scale factor. We envision the proposed method
to provide a straightforward measurement of association and
dissociation for a vast breadth of biological partners, which are
already typically visualized via SMLM, thereby expanding the
analysis toolkit available to researchers in the field. Looking
ahead, as advancements in live-cell SMLM technology
continue to improve, our method holds the potential to be
adapted for use in live cells, enabling the study of molecular
interactions under more physiologically relevant conditions.

Figure 4. Dissociation analysis of pZAP70 from phosphorylated T cell receptors, pCD3ζ. (a) Super-resolution DNA-PAINT image of pCD3ζ
(blue) and pZAP70 (red) proteins in a representative activated Jurkat T cell. (b) Schematic representation of the TCR ζ chains depicting the
location of ZAP-70 binding, phosphorylation sites and antibody binding sites for super-resolution DNA-PAINT imaging. Inset shows DNA docking
and imager strand sequences displaying the 5x and 7x repeat binding motif. (c). Histogram of qPAINT indexes, defined as (τOFF)−1, for pCD3ζ
(blue, left) and pZAP70 (red, right) single molecule localization clusters. The fit to a sum of two Gaussian functions is shown as solid lines, whereas
each component is shown as a dashed line. Inset shows blinking kinetics of an example single molecule localization cluster of pCD3ζ (blue) and
pZAP70 (red) with indicated dark time (τOFF). (d) Surface area (green) of Jurkat T-cell pCD3ζ and pZAP70 distribution as calculated by ks-
density. Blue and red points represent pCD3ζ and pZAP70 protein distributions, respectively. (e) Whole-cell analysis of first nearest neighbor
distances (NNDs) of pCD3ζ-pZAP70 (top). The histogram of NNDs for CSR is represented in gray. (f) Difference between log Kd for pCD3ζ-
pZAP70 and a random distribution as a function of the proximity limit threshold utilized to consider proteins as associated pairs for the cell
presented in Figure 3a. CSR was computed considering three possibilities, either of the two components in its experimental distribution and the
other in CSR or both in CSR. (g) log Kd as a function of pZAP70 concentration with a linear fit used to extrapolate the value of log Kd,limit. Each
point in this graph corresponds to values computed in randomly selected 3 × 3 μm2 sections of the DNA-PAINT pCD3ζ and pZAP70 Jurkat T cell
images. Analysis from whole-cell images is represented with squares. Zoom area in panels (a) and (d) is 4 × 4 μm2. Scale bar represents 3 μm.
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