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Abstract—Vehicle localization is essential for intelligent trans-
portation. However, achieving low-latency vehicle localization
without sacrificing precision is challenging. In this paper, we
propose a road-aware localization mechanism in heterogeneous
networks (HetNet), where distinct features of HetNet signals are
extracted for two-spatial-scale position mapping, enabling low-
latency positioning with high precision. Specifically, we propose
a sequence segmentation method to extract the low-dimensional
positioning space on two spatial scales. To represent roads
and sub-segments according to HetNet signals, we propose a
salient feature extraction method to eliminate redundant features
and retain distinct features, thereby reducing feature-matching
complexity and improving representation accuracy. Based on the
extracted salient features, a two-spatial-scale localization algo-
rithm is designed through salient feature matching, which can
achieve low-latency road-aware localization. Furthermore, high-
precision positioning is achieved by coordinate mapping based
on curve fitting. Simulation results show that our mechanism
can provide a low-latency and high-precision positioning service
compared to the benchmark schemes.

Index Terms—uvehicle localization, low latency, heterogeneous
network, two spatial scales, salient feature

I. INTRODUCTION

With the development of intelligent transportation systems,
vehicle localization is becoming essential in the applica-
tions of autonomous driving, vehicle navigation, and traffic
management [1]. Tremendous demand of low-latency and
high-precision vehicle localization exists in road-related lo-
calization services, where vehicle localization and navigation
accounted for more than 90% of road-related localization
services [2]. Especially, to ensure traffic safety, low-latency
and high-precision localization is essential for high-speed ve-
hicles. However, the responding time and positioning precision
couldn’t always be simultaneously fulfilled through the Global
Position System (GPS) and the Inertial Navigation System
(INS) due to satellite signal loss or long-term cumulative
errors [3]. With seamless coverage and accessibility, cellular
networks provide alternative opportunities for vehicular road
localization.

In the existing literature, three typical positioning methods
based on cellular networks have been investigated, i.e., the
Cell-ID method, the geometric-based method, and the finger-
printing method. Though the delay of Cell-ID methods can be
shortened by obtaining a serving cell position, the accuracy
relies on the serving cell radius [4]. In geometric-based meth-
ods, location-related information, e.g., received signal strength

(RSS) and time of arrival (TOA), of multiple base stations
(BSs) is utilized for high-precision position estimations [3].
Nevertheless, the localization precision is generally dependent
on the explicit line-of-sight (LoS) links [6]. Meanwhile, mul-
tiple distance estimation computations between vehicular user
equipment (VUE) and BSs result in intolerable response delay
[7]. Without relying on LoS links, the radio frequency (RF)
signals from multiple transmitters, e.g., Wi-Fi access points
(APs) and BSs, can be utilized as fingerprints for localization
[8]. However, in wide outdoor environments, fine-grained
fingerprint matching is extremely time-consuming to ensure
vehicle localization precision. Additionally, the faint decay of
millimeter waves according to various environments would
greatly affect the localization performances [9]. With the
development of the fifth generation (5G) beyond and the sixth
generation (6G) communication systems, the heterogeneous
networks (HetNet) BSs have been widely deployed to improve
the network capacity, which provides the potential to reduce
localization latency and improve localization precision. Hence,
it’s urgent to study a vehicular localization mechanism based
on HetNet in complex road environments.

Focusing on the fast vehicle localization problem in HetNet,
achieving low-latency localization without sacrificing preci-
sion is challenging. First, the precision depends on the fine-
grained position mapping in wide road environments, resulting
in high computation complexity and intolerable delay. Second,
representing different roads with sparse signal features is
challenging due to complex fluctuations of HetNet signals.
To tackle the above problems, we propose a road-aware
localization mechanism in HetNet to achieve low-latency
vehicular positioning, where distinctive HetNet signal features
are extracted to sparsely represent roads and sub-segments. To
achieve high-precision localization, coordinates within sub-
segments can be localized through curve fitting. The main
contributions of this paper are summarized as follows:

e« We propose a road-aware localization mechanism in
HetNet, where salient signal features can be extracted
to represent low-dimensional roads and sub-segments,
enabling fast localization on roads.

o We propose a sequence segmentation method to extract
the low-dimensional positioning space on two-spatial
scales. To sparsely represent roads and sub-segments, we
propose a salient feature extraction method, which can



reduce feature-matching complexity.

e« We propose a two-spatial-scale vehicular localization
algorithm, where the sub-segment posterior probability
is obtained by two-spatial-scale feature matching, which
can reduce latency and ensure accuracy.

The remainder of this paper is organized as follows. Section
] describes the proposed mechanism and the HetNet signal
feature model. In section [[II] the HetNet signal feature extrac-
tion method is illustrated. The road-aware two-spatial-scale
localization algorithm is designed in section [[V} Section [V]
provides numerical results to reveal the performance of our
proposed mechanism. Section |[VI]| concludes this paper.

Notations: A capital bold-face letter denotes a matrix, e.g.,
W . A vector is denoted by a bold-face lowercase letter, e.g.,
f- The I, norm of a vector is represented by |[|-||2-

II. SYSTEM MODEL

A. Road-aware Localization Mechanism

The proposed road-aware localization mechanism, depicted
in Fig. 2] was designed to achieve low-latency vehicle local-
ization in the complex urban road scenario portrayed in Fig.
[} Our proposed road-aware localization mechanism can be
illustrated by Fig. [[]and Fig. 2] Unlike traditional localization
based on uniform grids, the wide road environments in Fig. [I]
can be divided into low-dimensional roads and sub-segments,
by analyzing the different fluctuation trends of HetNet signals
on roads. Therefore, the positioning computation complex-
ity can be reduced and the road localization precision can
be ensured. Highly distinctive signals can be extracted for
feature-matching positioning on two-spatial scales, which can
further reduce the feature-matching complexity and vehicular
positioning delay. To quickly localize vehicular positions on
roads, we propose a road-aware localization mechanism with
the architecture illustrated in Fig. 2]

HetNet signal feature extraction: To construct the low-
dimension positioning space on two-spatial scales, roads are
partitioned into sub-segments based on HetNet signal sequence
segmentation, which can reduce the positioning computation
complexity. To sparsely represent roads and sub-segments, sig-
nal features with significant differences can be extracted from
two-spatial-scale HetNet signal sequences, thereby reducing
feature-matching complexity and achieving low latency. Sub-
sequently, a sparse representation model is designed to repre-
sent different salient features. Meanwhile, the reference signal
received power (RSRP) values of HetNet signals within sub-
segments are mapped to coordinates through curve fitting.

Two-spatial-scale vehicle localization: To achieve vehicle
localization with low latency, salient signal features of the
real-time HetNet signals should be first extracted. Then, a ve-
hicle localization algorithm is used to match two-spatial-scale
salient features, which enables fast road and sub-segment lo-
calization. By employing curve fitting, the coordinates within
a sub-segment can be localized with high precision.

Sub-segments with different
signal trends
] I
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Fig. 1: Road localization scenario in urban area.
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Fig. 2: Road-aware localization mechanism.

B. HetNet signal feature model

1) HetNet signal sequence: HetNet signals received by a
vehicle moving on a road can be collected in the form of a
signal sequence, which can be leveraged for vehicular road
localization. Specifically, a HetNet system is utilized aiming
at localizing vehicular positions on roads. The number of
HetNet BSs is defined as K, i.e., one macro BS (MBS) and
K — 1 small-cell BSs (SBSs). Within a SBS coverage area,
the number of roads is defined as m, and these roads can
be defined as a road space R, ie., R = {r1,ra2,...,Im},
where r; denotes the ith road. The HetNet signal sequence
of the road r; is defined as a vector ¢,, which is expressed
as ¢, = [01,09,.. .,oL]T, where L represents the number
of signal sampling positions, and o; denotes a HetNet signal
vector of the jth position on the road r;. The o; takes the
form of 0; = [Pj1,Pja,...,P;k] , where P;) denotes
the RSRP of the kth BS. A position vector is defined as
c; composed by all RSRP sampling coordinates, i.e., ¢; =
(21, 51] 7. (2L, y2] T, where [z;,y;] represents a two-
dimensional (2D) coordinate vector of the jth position.

2) HetNet signal feature: The statistical signal features
and correlation signal features can be extracted from a Het-
Net signal sequence to represent corresponding roads, which
can reduce computational complexity and improve anti-noise
ability. Specifically, for a road-scale HetNet signal sequence
¢,, where i € [1,m], the gradient feature model [10] takes

the form:
Pitik = Pjk
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where g, represents the kth BS’s signal gradient between the
jth and the (j + 1)th positions on the road r;. Then, the mean
signal gradient of the kth BS on this road is denoted by g,.
To capture correlations between two BS signals, the difference
feature model [11]] is given by:

Ajr=Pjr— P, (2)
where A; ;; denotes the signal difference between the kth SBS
and the MBS on the jth position. Then, the mean difference
feature of all positions on this road can be expressed as Ay.
The variance feature oy, the mean value feature puy, and the
signal range feature x of ¢, can be extracted through general
statistical methods for road representations. Hence, a feature
set extracted from a road-scale HetNet signal sequence can be
defined as e,,, which is expressed as follows:

€r;, = [glv...1§K7N17"'7NJK70—17“~7

3
~7AK7X1a~~7XK]T @
The feature number of the e,, is ¢K, where g represents the
number of feature kinds. To reduce localization latency and lo-
calization errors, distinct signal features in e,, can be extracted
to represent positions on two-spatial scales, which enable low-
complexity feature matching and fast vehicle localization.

oK, A1, ..

III. HETNET SIGNAL FEATURE EXTRACTION

To represent different spatial-scale roads with accurate

signal features, sequence segmentation of HetNet signals and
salient signal feature extraction are essential. To establish a
fine-grained positioning space, roads should be divided into
multiple sub-segments. By utilizing the different fluctuation
trends of HetNet signals on roads, the HetNet signal sequences
can be segmented into sub-sequences. Then, the corresponding
sub-sequences can be used to determine the sub-segments. The
definition of a sub-segment is given as follows,
Definition 1 (Sub-segment). A sub-segment is a road segment
that possesses similar signal features within itself and different
features compared with other sub-segments. A sub-segment
position is denoted by a 2D coordinate of the middle position
within this sub-segment.

To accurately distinguish roads and sub-segments with
sparse features, distinct signal features should be extracted for
position representation, which can reduce the feature-matching
complexity and improve representation accuracy. Hence, the
salient features are defined as follows,

Definition 2 (Salient features). The HetNet signal features
that exist significant distinctions between roads, and between
sub-segments are defined as salient features.

However, the segmentation granularity is hard to keep the
same value, and extracting the sparse features to represent
different roads is challenging. To partition a road-scale HetNet
signal sequence, we propose a sequence segmentation method,
where all signal gradients are utilized for efficient sequence
segmentation. To extract distinctive signal features, we pro-
pose a salient feature extraction method through maximizing
information gain. Meanwhile, to represent two-spatial-scale
salient features, a sparse representation model is designed.

The proposed sequence segmentation method, salient feature
extraction method, and sparse representation model are ex-
plained in the following.

A. HetNet Signal Sequence Segmentation

To partition roads into sub-segments with different signal
gradients, we propose a sequence segmentation method by
detecting the singular points of a road-scale HetNet signal
sequence, which can ensure segmentation accuracy under
unequal partitioning granularity. Specifically, a singular point
is defined as a HetNet signal vector of a HetNet signal
sequence, where the signal gradient of at least one BS changes
on this singular point. For a road-scale HetNet signal sequence
@;, the position index set of all singular points is denoted by
B = {b1,ba,....;bn, 1}, where b; (b; € [1, L]) is the position
index of the /th singular point in ¢,. The L denotes the number
of signal sampling positions of ¢;, and the number of singular
points is m; — 1, which would be different when the road
changes. To obtain sub-segment-scale HetNet sequences with
different gradients from ¢,, the sequence segmentation method
can be designed by extracting the optimal position index set
of singular points as follows:

1 bl+1—1
K bit1 9iw — bi+1—b; jz;} ik
. =0
B* = arg min E E 4)
k=0 1=ty biy1 — by

where g, denotes the signal gradient of the kth BS on the
jth position extracted by the gradient feature model in Eq.
(I), and K is the number of HetNet BSs. Extracting the
B* is highly non-trivial since accurate singular points are
used to partition the HetNet signal sequences, which can
improve the accuracy of feature extraction and sub-segment
representation. To extract the optimal position index set B*
within the HetNet signal sequence ¢;, the Bottom-up algo-
rithm [[12] is utilized. Based on two adjacent position indexes
of the extracted singular points, a road-scale HetNet signal
sequence ¢, can be partitioned into multiple sub-segment-
scale HetNet RSRP sequences, i.e., ¢?Z = {1/:1,...71/17”},
where 1, = {0p,,..., 05, }, and n; denotes the number
of partitioned sub-segment-scale HetNet RSRP sequences. By
adopting the position indexes in B*, sub-segments within a
road r; can be extracted and defined as a sub-segment space
S;, ie., S; = {s1,82,...,8n, }, where s; denotes the Ith sub-
segment in the road r; corresponding to the sub-segment-scale
HetNet signal sequence 1; in (]5Z

B. Salient Signal feature Extraction

Due to high-dimensional signals within two-spatial-scale
HetNet signal sequences, distinct signal features should be
extracted to sparsely represent the roads and sub-segments.
Hence, we propose a salient feature extraction method that
orients to each road and each sub-segment, which can reduce
feature dimension and improve road representation accuracy.
Specifically, a feature set vector is extracted from the road-
scale signal sequence ¢; to select salient features representing



the road r;. This feature set vector is denoted by e, as
Eq. (B). The salient features of the road r; is expressed
as a vector f,.. To extract the optimal f:_ from e, with
the maximum information gain, a salient feature extraction
method is designed as follows:
fi, = argmax H(r;) — H (; | £, )
£.,Cex,
where the H(r;) denotes the road information entropy of
RSRP values in ¢;, and the H (r; | f,,) represents the road
conditional entropy of the salient feature vector f,. The
optimal salient feature vector is a subset of the feature set
e,, corresponding to the maximum information gain, which is
extracted by exhaustive search. The calculations of informa-
tion entropy and conditional entropy are respectively based on
the probability of RSRP values and salient features, which are
not described in detail here.
Due to different feature kinds among the extracted road-
scale salient features, a sparse representation model is de-
signed to represent salient feature vectors as follows:

fl‘,‘ = Wr,’er,’) (6)

where the W, € RN*N represents a feature selection matrix
which is denoted by a N x N diagonal matrix, and N repre-
sents the feature number of the feature set vector e,,, i.e, ¢K.
The subscript of the W, denotes that this feature extraction
matrix corresponds to the road r;. The wgi(k € [1,¢K])
represents the selection coefficient of the kth feature, which is
defined as a binary variable, i.e., wg; = 1 if the kth feature of
e,, is one feature of the extracted salient features. Otherwise,
wgr = 0. Since the salient feature vector of a road can be
represented by multiplying its feature selection matrix and its
feature set vector, a vector composed of all road-scale salient
features is defined as f,, which is expressed as follows:

fr: [fr17"'7frm]a (7)

where fr,_ denotes the salient feature vector of the road r;, and
f., is sparsely represented by W .e;,.

To improve the representation precision of sub-segments,
salient features of sub-segments should be extracted as well,
since similar gradients may exist in some sub-segments which
are not adjacent. To this end, the salient feature vector fs/
of the jth sub-segment s; on the road r; can be extracted
from corresponding feature set vector e, through the proposed
salient feature extraction method. Based on the proposed
sparse representation model, the extracted ij can be expressed
as W e, where W, € RV*Y denotes the feature selection
matrix of the jth sub-segment s;. Then, a vector composed of
all sub-segment-scale salient features is defined as f, taking
the form of:

fo=[furnta ] ®)
where fsj is sparsely represented by W e, and n; is the
number of the sub-segments within the road r;.
IV. TWO-SPATIAL-SCALE VEHICLE LOCALIZATION

To represent the estimated positions by signal features, the
sparse representation model is used to extract vehicular salient

feature vectors from the real-time HetNet signal sequence.
Based on the extracted two-spatial-scale salient feature vec-
tors, a two-spatial-scale localization algorithm is designed,
where the sub-segment posterior probability is utilized through
salient feature matching, which can enable low-latency road
and sub-segment localization. Moreover, the vehicular coor-
dinates within a sub-segment can be localized through curve
fitting.

A. Real-time Salient Signal Feature Extraction

To effectively extract vehicular salient feature vectors, the
vehicular HetNet signal sequence is segmented by singular
points extracted in to obtain the real-time HetNet signal
sequence. Based on this real-time HetNet signal sequence, the
vehicular feature set vector e, can be first extracted with the
same model in Eq. (3). Then, the vehicular two-spatial-scale
salient feature vectors, i.e., jA”rl_ and fsl, can be extracted by
multiplying the vehicular feature set vector and the feature
selection matrix of the matched road r; and sub-segment s;.

B. Two-spatial-scale Feature matching

Due to low computation complexity and high localization
precision, the posterior probability of a sub-segment fusing
geographical prior information is utilized for vehicular local-
ization by matching two-spatial-scale salient features. Based
on the extracted two-spatial-scale feature vectors f, and fg,
the vehicular posterior probability of a sub-segment can be
obtained by applying the Bayes’ rule as follows:

Pr (fr | r,-) Pr(s; | ;) Pr (fs[ | sl)
2”: Pr (}sq | Sq) Pr(sq)
q=1

Pr (s; | }s,) = ©)

where the Pr ( fri | r,-) denotes the matching probability of

road-scale salient features, Pr }s, \ sl) and Pr ( }'s,, | qu
represent the matching probability of sub-segment-scale
salient features. In the (9), the Pr(s; | ;) denotes the prior
probability of the sub-segment s; within the road r;.

Based on the posterior probability Pr (sl | }.s, , the vehic-
ular road and sub-segment can be estimated through solving
the following problem:

max
4,0

Pr (sl | fS,) (10)
st. 1<i<m,1<1<n;, (T0r)
where the constraint (I0p) gives the positioning space of
roads and sub-segments. To tackle this problem, we propose a
two-spatial-scale localization algorithm, where the road-scale
salient features are matched to localize the vehicular road
in the road space R, and then the sub-segment-scale salient
features are matched to position the vehicular sub-segment in
the sub-segment space S; within the localized road. The prob-
ability of the road-scale feature matching, i.e., Pr ( fri | 7
fits well to an exponential probability distribution [13]], and
can be expressed as:

Pr(f, 1) = 70 te), (11)



where d g}w fr,,) represents the /o-norm between the vector
of vehicular salient features and the vector of jth road-scale
salient features in f,.. The d (}ri, fr’,) can be obtained as
follows:

d(F8.) = IWoew = Wee o

where W, e, denotes the jth road’s salient features in the
road-scale salient feature vector f,, and W e, represents the
vehicular salient features corresponding to the jth road. The

12)

probability of sub-segment feature matching Pr ( }'SI | s,) can
be given by

Pr(fq 1) = emt0d), (13)
where d Q}Sl, fs,) represents the [o-norm between the vector
of vehicular sub-segment-scale salient features and the vec-
tor of the /th sub-segment-scale salient features in fs. The
d ( fs,, fsl) can be expressed as follows:

d (}sn .fs,) = ”Wsleu - WSIGSIH%

where W e, represents the vehicular salient features corre-
sponding to the /th sub-segment. The W e, in denotes
the salient feature vector of the lth sub-segment in the f.
Through the proposed two-spatial-scale localization algorithm,
the vehicular roads and sub-segments can be quickly located
with the maximum posterior probability.

To obtain fine-grained 2D coordinates within the localized
sub-segment, the RSRP values of the sub-segment-scale Het-
Net signal sequence can be first mapped to coordinates through
curve fitting in the offline stage. Then, the real-time latitude
and longitude values of a mobile vehicle can be localized
based on fitted curves.

In the two-spatial-scale road localization process, the com-
putation complexity is O (N, + Ny + K), where N,., N, and
K represent the number of all road-scale salient features,
the number of all sub-segment-scale salient features within
the localized road, and the number of HetNet BSs, respec-
tively. Since sparse features, low-dimensional roads, and sub-
segments are used in the localization process, the computation
complexity is significantly reduced.

(14)

V. EXPERIMENT RESULTS AND ANALYSIS

In this section, we conduct experiments to evaluate the
localization performance of the proposed road-aware local-
ization mechanism in the HetNet system. Specifically, two
performance metrics, i.e., the mean delay and the mean
distance error (MDE) of located positions, were verified with
different BS numbers and grid sizes. In the simulation, an area
of 600 m x 600 m with a high-rise building around four roads
is considered as the interested localization area. The number
of feature kinds ¢ in the proposed mechanism is set as 5.
HetNet signals are sampled with 1 m distance interval. The
target vehicle moves at the velocity of 30 Km/h. We have a
full implementation for the proposed mechanism in Python
3.9 on a PC with 24 GB RAM.

Three approaches are implemented for performance com-
parison, i.e., the state of art restricted weighted k-nearest
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Fig. 3: Localization performance based on different BS
numbers.

neighbor algorithm (RWKNN) [[14], the gradient-based finger-
printing (GIFT) [15], and the curve fitting-based exhaustive
location search algorithm (CF-ELS) [16]. The former two
respectively utilize the absolute value and the gradient feature
of HetNet signals to locate vehicles through signal pattern
matching. The CF-ELS is chosen to be compared as range
estimations are used for localization. The number of nearest
neighbors is set as 3 in RWKNN. The step size of the
exhaustive search is set to 0.1 m [16]. To achieve effective
experimental comparisons, a simulation data set and a real
data set are employed to evaluate the localization performance.
The simulation data set is collected through the Qualnet
simulator [17] based on real service parameters of HetNet BSs
[18] through signal measurement reports. Each record of the
simulation data set contains the RSRP values from 6 HetNet
BSs and a 2D coordinate. By using an RF measurement tool
(Cellular-Z) [[19], the real data set is collected, which records
RSRP values from 2 HetNet BSs and a 2D coordinate on each
signal sampling position.

Based on the signals from 1 BS to 6 BSs, the mean delay
and the MDE of positions within a real-time HetNet signal
sequence are shown in Fig. [3(a)] and Fig. [3(b)] respectively. In
Fig. 3(a)] the proposed mechanism achieves the lowest mean
delay compared with the benchmark method since salient
signal features of HetNet BSs are utilized for the feature-
matching localization. Fig. [3(b) demonstrates that by em-
ploying the two-spatial-scale localization algorithm, the MDE
of the proposed mechanism outperforms benchmark methods
under different BS numbers. Particularly, the proposed mech-
anism can achieve the lowest MDE of 2.43 m when signals
of 2 BSs are received by VUE due to the significant signal
attenuation in the 5G HetNet. To sum up, based on different
BS signals, the proposed mechanism can localize UE with the
lowest localization error and the lowest localization latency
compared with the RWKNN, GIFT, and CF-ELS.

Fig. fi(a)] and Fig. f(b)| show the localization performance
under different grid sizes. As shown in Fig[(a)] the lowest
mean delay is achieved by the proposed mechanism, measur-
ing less than 10 ms. This is due to the fact that roads and
sub-segments are divided according to the actual length of the
road and HetNet signal features, thereby avoiding reliance on
uniform grid sizes. The MDE of the proposed algorithm in
Fig. (b)| is below 2.5 m as the grid size increases. However,
though the mean delay of benchmark methods decreases,
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the MDEs increase on the larger grid size due to coarse-
grained fingerprints. These results indicate that the proposed
mechanism can achieve low-latency vehicle localization under
large grid sizes, which can consume less human cost and
storage space to maintain two-spatial-scale salient features.

Fig. |§] illustrates the cumulative distribution function (CDF)

of localization errors based on the real data set at the 2 m
grid size. It can be observed from Fig. [§ that the proposed
algorithm has respectively 17%, 27%, 35% improvement
(from 2 m to 0 m) compared with the RWKNN, the GIFT,
and the CF-ELS.

Table [} shows the mean delay of the four localization

methods based on the real data set. Since the position search
spaces are partitioned into road scale and sub-segmented scale,
the mean delay of our proposed method could be significantly
reduced to 7.2 ms. For high-speed vehicles, the localization
delay below 10 ms is essential for keeping a safe distance
between vehicles [20]. Since the localization times of the
RWKNN, the GIFT, and the CF-ELS are more than 10 ms,
it is hard to fulfill the vehicle localization requirements with
low latency and high reliability.

TABLE I: Mean delay of located positions

Method RWKNN GIFT CF-ELS Proposed

Mechanism

Mean delay | 32.7 ms | 28.5 ms | 57.8 ms 7.2 ms

VI. CONCLUSIONS

In this paper, we proposed a road-aware localization mech-

anism for low-latency vehicle localization. Specifically, a

HetNet signal sequence segmentation method and a salient
feature extraction method were devised to sparsely represent
roads and sub-segments. Then, a two-spatial-scale vehicular
localization algorithm was designed through road and sub-
segment salient feature matching. Fine-grained positioning
was achieved through curve fitting to localize vehicular co-
ordinates. The numerical results validated that the proposed
mechanism provided a promising solution to reduce localiza-
tion latency and support reliable localization accuracy. The
HetNet system with multiple MBSs and SBSs will be further
studied in our future work.
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