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Abstract—We study constructive interference based block-level
precoding (CI-BLP) in the downlink of multi-user multiple-input
single-output (MU-MISO) systems. Specifically, our aim is to
extend the analysis on CI-BLP to the case when the number
of symbol slots in a given transmission block is smaller than
the number of users. To this end, we mathematically prove the
feasibility of using the pseudo-inverse to obtain a closed-form
structure of the optimal CI-BLP precoding matrix. Similar to the
case when the number of symbol slots in a given transmission
block is not smaller than the number of users, we show that
a quadratic programming (QP) optimization on simplex can be
constructed. We also design a low-complexity algorithm based on
the alternating direction method of multipliers (ADMM) frame-
work, which can achieve a flexible trade-off between communica-
tion performance and execution time by modifying the maximum
number of iterations. We further analyze the convergence and
complexity of the proposed algorithm. Numerical results validate
our analysis and the optimality of the QP optimization, and
further show that the proposed ADMM algorithm can provide
satisfactory results in dozens of iterations, which motivates the
use of CI-BLP in practical wireless systems.

Index Terms—MIMO, constructive interference (CI), block-
level precoding (BLP), quadratic programming (QP) optimiza-
tion, alternating direction method of multipliers (ADMM).
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PRECODING has been widely studied in multiple-input
multiple-output (MIMO) communication systems, which

is able to support data transmission to multiple users si-
multaneously [1]. In the downlink, if the channel state in-
formation (CSI) is fully known to the base station, dirty
paper coding (DPC) can achieve the best performance by
pre-subtracting interference before transmission [2], but its
prohibitive computational costs make it difficult to implement
in practical systems. Therefore, low-complexity closed-form
linear precoding schemes, represented by zero-forcing (ZF)
[3] and regularized ZF (RZF) [4], are proposed to reduce the
computational complexity in signal processing. At the same
time, optimization-based precoding schemes are gaining more
and more attention because they allow precoding to better meet
various communication constraints and requirements in differ-
ent scenarios. One popular example is the downlink signal-
to-interference-plus-noise ratio (SINR) balancing approach,
which aims to achieve a desired SINR for each user under
transmit power constraints [5]. Another popular form is to
minimize the transmit power under the SINR constraint of
each user [6]. [7] proves that the SINR balancing and the
power minimization problems are dual problem to each other,
where an effective iterative algorithm is proposed by exploiting
such duality to efficiently solve these two problems.

More recent research has shown that multi-user interference
need not be completely eliminated. This is because interfer-
ence can be utilized by interference exploitation precoding
techniques to enhance the power of useful signals and ben-
efit symbol detection, thus further improving the error-rate
performance of MIMO communication systems. In [8], the
concept of ‘constructive interference’ (CI) is introduced, and
CI-based precoding has received increasing research attention
[9]–[12]. In [13], multi-user interference is strictly aligned
with the desired data symbol, and a CI-based maximum ratio
transmission (MRT) precoding design is carried out to achieve
improved performance. This approach was later shown to be
sub-optimal and referred to as the ‘strict phase-rotation’ CI
metric. The concept of ‘constructive region’ is introduced in
[14] and [15], which shows that CI does not have to be strictly
aligned with the desired data symbol, and as long as the
interfered signals lie in the constructive region, the effect of
interference is constructive. This observation alleviates the re-
quirement that the interfering signals have to be strictly rotated
to the direction of the intended data symbols, leading to further
performance improvements. The CI metric introduced in [14]
was later named the ‘non-strict phase-rotation’ CI metric and
is widely adopted in the subsequent literature. Meanwhile,
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a relaxed CI metric based on a ‘relaxed detection region’
was introduced in [15], which expands the constructive region
based on a phase margin that is related to the signal-to-noise
ratio (SNR) target. The above CI-based precoding approaches
are all designed for PSK modulation, while [12] was the first
to extend the exploitation of CI to QAM modulation, where
the CI effect can be exploited by the outer constellation points
of a QAM constellation by employing the ‘symbol-scaling’ CI
metric. Due to the significant advantages of CI, symbol-level
precoding (SLP) based on CI has been applied to intelligent
reflecting surface (IRS)-assisted communication [16], [17],
1-bit precoding [18]–[22], radar-communication coexistence
[23], [24] and many other wireless communication scenarios.
For high-order QAM modulation, [25] gives the expression of
symbol error rate (SER) with respect to the transmitted signal
and the rescaling factor based on the noise distribution, and
constructs the optimization problem to minimize SER. This
scheme can achieve better SER. However, the complexity of
this scheme is high, especially when the number of transmit
antennas is larger than the number of users.

CI-SLP as its name indicates, requires the base station
to perform different precoding for each symbol slot, where
different precoding optimization problems need to be solved
per symbol. However, symbol-by-symbol optimization brings
significant computational burden to the signal processing unit
and requires high real-time processing capability. To alleviate
the computational costs, several studies attempt to reduce the
complexity of the CI-SLP optimization problem, including
derivations of the optimal precoding structure of CI-SLP with
efficient iterative algorithms [26], [27], sub-optimal solutions
[28], [29], and deep learning-based methods [30]–[32]. Specif-
ically, [26] and [27] derive the optimal precoding structure of
CI-SLP for PSK and QAM modulation, respectively, and show
that the CI-SLP optimization problem can equivalently be
transformed into a quadratic programming (QP) optimization
problem and solved using an iterative algorithm with a closed-
form solution at each step. Building upon this, the work in [28]
derives an exact closed-form but sub-optimal solution for the
power minimization CI-SLP problem. Despite the above at-
tempts to reduce the computational costs of solving the CI-SLP
optimization problem for each symbol slot, these approaches
still require solving precoding problems at the symbol level,
i.e., the total number of CI-SLP optimization problems that
needs to be solved in a channel coherence interval is not
reduced. In order to further motivate the realization of CI-
based precoding techniques in practical wireless communica-
tion systems, [33] proposed CI-based block-level precoding
(CI-BLP) for multi-user multiple-input single-output (MU-
MISO) communication system for the first time. Compared
to CI-SLP approaches that optimize the precoding matrix (or
the precoded signals) on a symbol level, CI-BLP scheme
applies a constant precoding matrix to a block of symbol slots
and the optimization only needs to be performed once per
block of symbol slots, which can greatly reduce the update
frequency of precoder and leave more computing resources
for each optimization. Based on the Lagrange function and
KKT conditions, a closed-form structure of the optimal CI-
BLP precoding matrix is derived when the number of symbol

slots in a block is not smaller than the number of users.
By further studying the corresponding duality problem, the
original optimization problem is transformed into a quadratic
programming (QP) optimization on simplex.

The CI-BLP optimization problem has been fully studied in
[33] when the number of symbol slots in the considered block
is less than the number of users. We find that the CI-BLP
scheme even outperforms CI-SLP when the number of symbol
slots in a block is small, and in high-mobility scenarios,
the channel coherence interval would become short, and the
number of symbol slots in a block is limited to a small range
[34]. These reasons encourage us to pay more attention to the
CI-BLP optimization problem when the number of symbols in
the considered block is smaller than the number of users. In
fact, the supplement of this case completes the research of CI-
BLP, which makes the application of CI-BLP more extensive.
However, it is still unclear whether a similar QP problem exists
for the case when the number of symbols in the considered
block is smaller than the number of users. This is because the
closed-form structure of the optimal CI-BLP precoding matrix
in [33] cannot be directly applied to the above scenarios.
Moreover, despite the fact that CI-BLP and the traditional CI-
SLP method share a similar QP problem structure, it is still
unclear whether the iterative closed-form algorithm proposed
in CI-SLP [26] can offer complexity benefits when used to
solve the QP problem for CI-BLP.

Therefore in this paper, we aim to extend the analysis on
CI-BLP to the case where the number of symbol slots in the
considered block is smaller than that of the users, and propose
an efficient algorithm to obtain the optimal or sub-optimal CI-
BLP precoding matrix. For clarity, we summarize the main
contributions of the paper below:

1) We extend the analysis on CI-BLP to the case where
the number of symbol slots in the considered block is
smaller than that of the users, where the results in [33] are
not directly applicable. Specifically, we mathematically
prove the feasibility of using the pseudo-inverse to obtain
a closed-form structure of the optimal CI-BLP precoding
matrix as a function of the dual variables, which does not
always hold in other cases. Building upon this, a similar
QP optimization on simplex can also be constructed. This
work thus generalizes and unifies the optimal precoding
structure for CI-BLP.

2) To validate whether the existing iterative closed-form
algorithm designed for CI-SLP can be directly applied
to CI-BLP, we study the rank of the quadratic coef-
ficient matrix of the formulated QP problem for CI-
BLP mathematically. This work is important because the
application of the iterative closed-form algorithm requires
the quadratic coefficient matrix to be invertible. We show
that the existing algorithm is applicable only when the
number of symbol slots in a block is smaller than the
number of users. However, the numerical convergence
rate is not promising for CI-BLP.

3) To design an efficient CI-BLP algorithm with the consid-
ered symbol block of any length, we leverage the ADMM
framework and obtain the closed-form solution of each
subproblem within the ADMM iteration. In addition,
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based on the equivalent transformation of the original
QP problem, an improved ADMM algorithm is proposed,
which can achieve a flexible trade-off between communi-
cation performance and execution time by modifying the
maximum number of iterations. We analyze the conver-
gence and complexity of the improved ADMM algorithm.
Compared with the conventional ADMM algorithm, the
updated variables can be obtained in a simpler way in the
improved ADMM algorithm, and better performance can
be obtained with fewer iterations.

Simulation results show that the QP optimization problem
with the proposed precoding structure of CI-BLP solved by
interior-point method (IPM) [35] offers the same result as
the original optimization problem solved by CVX with the
considered symbol block of any length. Without the need
for sophisticated initialization and parameter optimization, the
proposed ADMM algorithm can provide satisfactory results
in dozens of iterations, which is much faster than IPM,
which motivates the use of the block-level CI beamforming
in practice.

The remainder of this paper is organized as follows. Section
II introduces the system model and the problem fomulation of
CI-BLP. Section III extend the analysis on CI-BLP to the case
where the number of symbol slots in the considered block is
smaller than that of the users. The discussion on whether the
iterative closed-form algorithm in CI-SLP can be used directly
in CI-BLP is given in Section IV, and the proposed ADMM
algorithm is introduced in Section V. Numerical results are
provided in Section VI, and Section VII concludes the paper.

Notations: Herein, lowercase, boldface lowercase and bold-
face uppercase letters denote scalars, vectors and matrices,
respectively. R and C denote the set of real numbers and the
set of complex numbers, respectively. Superscripts T denotes
the transpose. The operator ∥ · ∥2 denotes the 2-norm of a
vector. R {·} and I {·} extract the real and imaginary parts
of the argument, respectively. Diag (x) represents a diagonal
matrix with the elements of x as diagonal elements. We use
ΠΩ to represent the projection of the argument onto the set
Ω. We define IN as the N × N identity matrix, and ON as
the N × N all-zero matrix. Finally, 1 and 0 denote all-one
vector and all-zero vector, respectively.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

We consider the generic multi-user multiple-input single-
output (MU-MISO) downlink system, where a base station

(BS) equipped with Nt antennas serves K single-antenna users
simultaneously. For the transmission of a block of symbol
slots, the data symbol vector in the n-th slot is denoted by
sn = [sn1 , s

n
2 , · · · , snK ]

T ∈ CK , which is assumed to be
drawn from a unit-norm M-PSK constellation1. Accordingly,
the received signal for user k in the n-th symbol slot can be
expressed as

ynk = hT
kWsn + znk , (1)

where hk ∈ CNt is the channel between BS and user k, which
is constant within the considered block, and znk ∈ C is the
additive noise of user k in the n-th symbol slot. W ∈ CNt×K

is the precoding matrix that applies to all sn in the considered
block. n ∈ {n|n ≤ N}, where N represents the length of
the considered block which may be smaller than the channel
coherence interval. An illustration of CI-BLP method is shown
in Fig. 1.

B. Symbol-Scaling CI Metric

Traditionally, interference is usually viewed as a perfor-
mance limiting factor in wireless communication systems. CI-
based precoding is designed to exploit inter-user interference
rather than eliminate it. The inter-user interference is used
to enhance the power of useful signals through CI-based
precoding design, thereby improving SER performance. To
illustrate the symbol-scaling CI metric introduced in [36],
below we depict one quarter of an 8PSK constellation in Fig. 2
as an example. Without loss of generality, we assume that

−→
OA

is the nominal constellation point for user k in the n-th slot,
i.e.,

−→
OA = snk .

−−→
OB represents the noiseless received signal

with interference, where based on the geometry we obtain−−→
OB =

−→
OA +

−−→
AB = hT

kWsn, where
−−→
AB can be regarded

as the sum interference from other user streams.
Different from the common phase-rotation CI metric which

uses phase relations, the symbol-scaling CI metric decomposes
the signal along the decision boundaries and imposes scaling
constraints on the decomposed components. In Fig. 2,

−→
OA

is decomposed along the two decision boundaries for 8PSK
modulation to obtain

−−→
OD and

−−→
OE:

−→
OA =

−−→
OD +

−−→
OE = snk,right + snk,left. (2)

Following a similar procedure, the received signal
−−→
OB can

also be decomposed along the two decision boundaries into
−−→
OB =

−−→
OF +

−−→
OG = αn

k,rights
n
k,right + αn

k,lefts
n
k,left. (3)

1For the extension to QAM modulation, see [33].

Fig. 1. An illustration of CI-BLP method.
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Fig. 2. Geometric diagram of the symbol-scaling CI metric for 8PSK.

where αn
k,right and αn

k,left > 0 are non-negative scaling factors.
By following the transformation in Section IV-A of [19], which
we omit in this paper due to the limited space and also for
brevity, we can construct a coefficient matrix Mn ∈ R2K×2Nt

and obtain:

αn
E = MnWEs

n
E, (4)

where αn
E =

[
αn
1,right, · · · , αn

K,right, α
n
1,left, · · · , αn

K,left

]T
∈

R2K , WE ∈ R2Nt×2K and snE ∈ R2K are defined as

WE =

[
R (W) −I (W)
I (W) R (W)

]
, snE =

[
R (sn)

T
, I (sn)

T
]T

.

(5)

C. Problem Formulation for CI-BLP

Recalling Fig. 2, we can observe that the value of αn
k,right

or αn
k,left represents the effect of inter-user interference, and

a larger value of αn
k,right or αn

k,left means that the symbol snk
is pushed further away from one of its decision boundaries.
Given the same noise at the receiver side, the signals that are
located further away from the decision boundaries are more
likely to be correctly demodulated. Accordingly, we can then
construct the CI-BLP optimization problem that maximizes
the minimum in αn

E for all the considered symbol slots within
the block, so as to improve the average symbol error rate
performance, given by

P0 : max
WE

min
k,n

αn
k

s.t. αn
E = MnWEs

n
E, ∀n ≤ N,

N∑
n=1

∥WEs
n
E∥22 ≤ Np0, (6)

where αn
k represents the k-th entry in αn

E, and p0 represents
the transmit power budget per symbol slot.

D. QP Formulation for the Case of N ≥ K

P0 is a joint optimization problem over all symbol slots
within the considered block, and it is a convex problem that

can be directly solved via optimization tools such as CVX. To
motivate our extension to the case of N < K in Section III,
in this section we review the process of transforming P0 into
a QP problem for N ≥ K [33].

We first introduce Ŵ ∈ RNt×2K :

Ŵ = [R (W) − I (W)] , (7)

based on which WE = PŴ+QŴT, where P ∈ R2Nt×Nt ,
Q ∈ R2Nt×Nt and T ∈ R2K×K are defined as

P =

[
INt

ONt

]
, Q =

[
ONt

INt

]
, T =

[
OK IK
−IK OK

]
. (8)

The expression for αn
E can be further transformed into:

αn
E = MnWEs

n
E = Mn

(
PŴ +QŴT

)
snE

= MnPŴsnE +MnQŴTsnE

= AnŴsnE +BnŴcnE, (9)

where An ∈ R2K×Nt , Bn ∈ R2K×Nt , cnE ∈ R2K are defined
as

An = MnP, Bn = MnQ, cnE = TsnE. (10)

Accordingly, the k-th entry of αn can be expressed as

αn
k = (ank )

T
ŴsnE + (bn

k )
T
ŴcnE, (11)

where (ank )
T and (bn

k )
T represent the k-th row of An and Bn,

respectively. With the above expression, P0 can be expressed
as a standard convex optimization problem:

P1 : min
Ŵ,t

−t

s.t. t− (ank )
T
ŴsnE − (bn

k )
T
ŴcnE ≤ 0, ∀k ≤ 2K, n ≤ N,

N∑
n=1

∥
(
PŴ +QŴT

)
snE∥22 ≤ Np0. (12)

The Lagrangian of P1 can be constructed as shown in (13)
on the top of the next page, where δn = [δn1 , δ

n
2 , · · · , δn2K ]

T

and µ are the non-negative dual variables associated with two
inequality constraints of P1 respectively, and we note that

PTP = QTQ = INt
, PTQ = QTP = 0. (14)

Accordingly, the KKT conditions for the optimality of P1

can be formulated and shown in (15). Based on the KKT
conditions, we first obtain that µ > 0, otherwise δn = 0, ∀n,
which contradicts with (15a). This means that the power
constraint is active when the optimality is achieved, i.e.,

N∑
n=1

(snE)
T
ŴTŴsnE +

N∑
n=1

(cnE)
T
ŴTŴcnE = Np0. (16)

To proceed, we transform (15b) into

2µŴD =

N∑
n=1

[
(An)

T
δn (snE)

T
+ (Bn)

T
δn (cnE)

T
]
, (17)

where D ∈ R2K×2K is given by

D =

[
N∑

n=1

snE (snE)
T
+

N∑
n=1

cnE (cnE)
T

]
. (18)

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2024.3480981

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on October 30,2024 at 14:37:45 UTC from IEEE Xplore.  Restrictions apply. 



5

L
(
Ŵ, t, δnk , µ

)
= −t+

N∑
n=1

2K∑
k=1

δnk

[
t− (ank )

T
ŴsnE − (bn

k )
T
ŴcnE

]
+ µ

[
N∑

n=1

(snE)
T
(
PŴ +QŴT

)T (
PŴ +QŴT

)
snE −Np0

]

=

(
N∑

n=1

1Tδn − 1

)
t−

N∑
n=1

(δn)
T
AnŴsnE −

N∑
n=1

(δn)
T
BnŴcnE + µ

N∑
n=1

(snE)
T
ŴTŴsnE + µ

N∑
n=1

(cnE)
T
ŴTŴcnE − µNp0.

(13)

∂L

∂t
=

N∑
n=1

1Tδn − 1 = 0, (15a)

∂L

∂Ŵ
= −

N∑
n=1

[
(δn)

T
An
]T

(snE)
T −

N∑
n=1

[
(δn)

T
Bn
]T

(cnE)
T
+ 2µŴ

[
N∑

n=1

snE (snE)
T
+

N∑
n=1

cnE (cnE)
T

]
= 0, (15b)

δnk

[
t− (ank )

T
ŴsnE − (bn

k )
T
ŴcnE

]
= 0, δnk ≥ 0, ∀1 ≤ k ≤ 2K, 1 ≤ n ≤ N (15c)

µ

[
N∑

n=1

(snE)
T
ŴTŴsnE +

N∑
n=1

(cnE)
T
ŴTŴcnE −Np0

]
= 0, µ ≥ 0. (15d)

When N ≥ K, D is thus full-rank and invertible. Accordingly,
we can directly obtain a closed-form structure of the optimal
CI-BLP precoding matrix Ŵ as

Ŵ =
1

2µ

N∑
n=1

[
(An)

T
δn (snE)

T
+ (Bn)

T
δn (cnE)

T
]
D−1.

(19)

Since problem P1 satisfies Slater’s condition, we can find the
optimal solution of P1 by solving its dual problem. We can
substitute the closed-form structure of Ŵ into the objective
function of the dual problem, and define δE ∈ R2NK×1 and
Um,n ∈ R2K×2K as

δE =

[(
δ1
)T

,
(
δ2
)T

, · · · ,
(
δN
)T]T

, (20)

Um,n =pm,nA
m (An)

T
+ fm,nA

m (Bn)
T

+ gm,nB
m (An)

T
+ qm,nB

m (Bn)
T
, (21)

where m ∈ {1, · · · , N} and n ∈ {1, · · · , N}. pm,n, fm,n,
gm,n and qm,n are defined as

pm,n = (snE)
T
D−1smE , fm,n = (cnE)

T
D−1smE ,

gm,n = (snE)
T
D−1cmE , qm,n = (cnE)

T
D−1cmE . (22)

The final dual problem of CI-BLP can be formulated as

P2 : min
δE

δTEUδE

s.t. 1TδE − 1 = 0,

δmE ≥ 0, ∀m ∈ {1, 2, · · · , 2NK} . (23)

Here, δmE is the m-th entry of vector δE, and U ∈ R2NK×2NK

is a block matrix constructed as

U =


U1,1 U1,2 · · · U1,N

U2,1 U2,2 · · · U2,N

...
...

. . .
...

UN,1 UN,2 · · · UN,N

 . (24)

P2 is a QP optimization problem over a simplex, which can
be more efficiently solved than P1 via the IPM. After solving
P2 and obtaining Ŵ via the closed-form structure in (19), the
original complex precoding matrix W can be obtained via (7).

III. QP FORMULATION FOR THE CASE OF N < K

The better performance of CI-BLP when N < K and the
demand for high-mobility scenarios encourage us to pay more
attention to the CI-BLP optimization problem when N < K.
However, the QP formulation derived in [33] is only applicable
when N ≥ K, because D is invertible only when N ≥ K. It is
not clear whether a similar QP problem exists when N < K.
In this section, we extend the result in [33] to the case where
the number of users is larger than the number of symbol slots
within the considered transmission block, i.e., N < K.

When N < K, the direct inverse included in (19) becomes
infeasible, as the matrix D is rank-deficient. In this case, we
propose to employ the more general pseudo inverse instead of
the direct matrix inverse. Accordingly, we express Ŵ as

Ŵ =
1

2µ

N∑
n=1

[
(An)

T
δn (snE)

T
+ (Bn)

T
δn (cnE)

T
]
D+.

(25)

Then, one can easily follow a similar approach in Section
II-D to obtain a QP optimization and the corresponding
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solution. Although we note that a pseudo-inverse does not
always guarantee that the original constraint is satisfied, our
derivations in this section and the corresponding numerical
results show that, in our problem the pseudo-inverse satisfies
the original constraint and the closed-form structure of Ŵ
given by (25) is feasible.

In order to make the expression more concise, we can define
a matrix C ∈ RNt×2K as

C =
1

2µ

N∑
n=1

[
(An)

T
δn (snE)

T
+ (Bn)

T
δn (cnE)

T
]
. (26)

To prove that the closed-form structure of Ŵ given by (25)
is feasible, we need to prove that (25) can satisfy (17), that is

Ŵ = CD+ ⇒ ŴD = C. (27)

In what follows, we further derive the equivalent condition of
(27).

According to (18), D is a real symmetric matrix. Thus, by
eigen decomposition, we can obtain

D = VDΣDV
T
D = VDDiag ([σ1, · · · , σrd , 0, · · · , 0])VT

D,

D+ = VDΣ
+
DV

T
D

= VDDiag
([

1

σ1
, · · · , 1

σrd

, 0, · · · , 0
])

VT
D, (28)

where ΣD is a diagonal matrix whose diagonal elements are
eigenvalues of D, and rd is the rank of D, i.e., the number
of non-zero eigenvalues of the matrix D. VD ∈ R2K×2K

is an orthogonal matrix composed of eigenvectors of D. By
substituting D and D+ in (28) into (27) and some simple
algebraic operations, we can obtain

F = EΣ+
D ⇒ FΣD = E, (29)

where E = CVD, F = ŴVD. In order to prove the above
condition, we study the relationship between each rows for E
and F, where the i-th row can be expresseded by element as

Fi,j = Ei,j ·
1

σj
⇒ Fi,j · σj = Ei,j , j ∈ {1, · · · , rd} , (30)

Fi,j = Ei,j · 0 ⇒ Fi,j · 0 = Ei,j , j ∈ {rd + 1, · · · , 2K} ,
(31)

where i ∈ {1, · · · , Nt}. Ei,j and Fi,j represent the elements
of the i-th row and j-th column of matrix E and matrix F
respectively. (30) is naturally true, and (31) is equivalent to

Ei,rd+1 = · · · = Ei,2K = 0. (32)

By decomposing E =
[
e1, e2, · · · , e2K

]
, the equivalent con-

dition of (27) can be rewritten as

erD+1 = · · · = e2K = 0. (33)

Before we proceed, we present the following property:

Proposition 1: Suppose
[
s1G, s

2
G, · · · , s

Ng

G

]
∈ RMg×Ng .

rank
([

s1G, s
2
G, · · · , s

Ng

G

])
= rg , and s1G, s

2
G, · · · , s

rg
G are

linearly independent. Then for a matrix formulated as

G =

Ng∑
n=1

snG (snG)
T
= VGΣGV

T
G

= VGDiag
([
σ̃1, · · · , σ̃rg , 0, · · · , 0

])
VT

G, (34)

where VG =
[
v1
G,v

2
G, · · · ,v

Mg

G

]
, the following condi-

tion must be satisfied for any n ∈ {1, 2, · · · , Ng} , m ∈
{rg + 1, rg + 2, · · · ,Mg}:

(snG)
T · vm

G = 0. (35)

Proof: See Appendix A.
Proposition 1 shows that for the coefficient matrix D given

in (18), the following conditions must be satisfied:

(snE)
T · vm

D = 0, (cnE)
T · vm

D = 0, (36)

where n ∈ {1, · · · , N} , m ∈ {rd + 1, · · · , 2K}, and vm
D is

the m-th column of matrix VD. Accordingly, for any m ∈
{rd + 1, · · · , 2K}, we obtain that

em =

(
1

2µ

N∑
n=1

[
(An)

T
δn (snE)

T
+ (Bn)

T
δn (cnE)

T
])

· vm
D

=
1

2µ

N∑
n=1

[
(An)

T
δn (snE)

T · vm
D + (Bn)

T
δn (cnE)

T · vm
D

]
=

1

2µ

N∑
n=1

[
(An)

T
δn · 0 + (Bn)

T
δn · 0

]
= 0, (37)

which means that the condition in (33) is satisfied and the
closed-form structure of Ŵ given by (25) is feasible.

We note that when N ≥ K, D is full-rank and the
closed-form structure of Ŵ given by (25) is also feasible. To
summarize, we can obtain a uniform closed-form structure of
Ŵ given by (25), and thus we can design optimal block-level
precoding by solving P2 in (23) for the considered symbol
block of any length.

IV. DISCUSSION ON THE ITERATIVE CLOSED-FORM
ALGORITHM FOR CI-BLP

The QP problem of CI-SLP can be effectively solved by the
iterative closed-form algorithm proposed in [26]. Compared
with the common IPM, the iterative closed-form algorithm
shows obvious advantages in solving the QP problem of CI-
SLP. Before applying the iterative closed-form algorithm to the
QP problem of CI-BLP, it is important to discuss the rank of U
because the application of the iterative closed-form algorithm
requires the quadratic coefficient matrix to be invertible.

Remark 1: Before analyzing the rank of U, we state
that the variables introduced in the proof of each subsequent
propositions in this section are only used to complete the proof
and have nothing to do with other variables of the same name
in this paper.
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According to (21) and (24), we can further get a new
expression of U. By defining Ûm,n as

Ûm,n =

[
pm,nA

m (An)
T

fm,nA
m (Bn)

T

gm,nB
m (An)

T
m,nB

m (Bn)
T

]
. (38)

We can construct a block matrix as

Û =


Û1,1 Û1,2 · · · Û1,N

Û2,1 Û2,2 · · · Û2,N

...
...

. . .
...

ÛN,1 ÛN,2 · · · ÛN,N

 . (39)

Then U can be written as

U = (IN ⊗ [I2K I2K ]) Û (IN ⊗ [I2K I2K ])
T
. (40)

We also define ∆ and Θ as:

∆ =


∆1,1 ∆1,2 · · · ∆1,N

∆2,1 ∆2,2 · · · ∆2,N

...
...

. . .
...

∆N,1 ∆N,2 · · · ∆N,N

 , (41)

Θ =


Θ1,1 Θ1,2 · · · Θ1,N

Θ2,1 Θ2,2 · · · Θ2,N

...
...

. . .
...

ΘN,1 ΘN,2 · · · ΘN,N

 , (42)

where

∆m,n =

[
pm,n fm,n

gm,n qm,n

]
,

Θm,n =

[
Am (An)

T
Am (Bn)

T

Bm (An)
T

Bm (Bn)
T

]
. (43)

Proposition 2: rank (D) = min {2K, 2N}.
Proof: See Appendix B.

Proposition 3: rank (∆) = rank (D).
Proof: See Appendix C.

Proposition 4: rank (Θ) = K.
Proof: See Appendix D.

Proposition 5: rank
(
Û
)
= rank (∆) · rank (Θ).

Proof: See Appendix E.
Proposition 6: rank (U) = rank

(
Û
)
=min

{
2NK, 2K2

}
.

Proof: See Appendix F.
Based on the above results, U is full rank when N ≤ K,

which means we can only use the iterative closed-form algo-
rithm proposed in [26] when N ≤ K. The iterative closed-
form algorithm is thus not generic for CI-BLP problems.

Moreover, since the problem size of CI-BLP is N times
that of CI-SLP, the iterative closed-form algorithm for CI-
BLP requires a large number of iterations to converge. We
simulate systems of different sizes using iterative closed-form
algorithm, and obtain their corresponding cumulative distribu-
tion functions (CDF) of the required number of iterations, as
shown in Fig. 3.

It is observed that the iterative closed-form solution is
not ideal for CI-BLP. Therefore, we propose to leverage the
ADMM framework to design an efficient CI-BLP algorithm
with the considered symbol block of any length.
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Fig. 3. CDF of the required number of iterations for CI-BLP, 8PSK.

V. THE PROPOSED ADMM ALGORITHM

A. The Conventional ADMM Algorithm

To apply the ADMM framework, we introduce a variable
ω and a set Ω = {ω|ωi ≥ 0, ∀i ∈ {1, 2, . . . , 2NK}}. P2 can
be written as

P3 : min
δE,ω

δTEUδE

s.t. 1TδE − 1 = 0,

δE − ω = 0,

ω ∈ Ω. (44)

By defining an indicator function for ω:

IΩ (ω) =

{
0, if ω ∈ Ω,

∞, otherwise,
(45)

the problem can be rewritten in an equivalent consensus form
as follows [37]:

P4 : min
δE∈{δE|1TδE−1=0},ω

δTEUδE + IΩ (ω)

s.t. δE − ω = 0. (46)

For the optimization problem P4, its augmented Lagrangian
is expressed as

Lρ (δE,ω,λ)

= δTEUδE + IΩ (ω)− ⟨λ, δE − ω⟩+ ρ

2
∥δE − ω∥22

= δTEUδE + IΩ (ω) +
ρ

2

∥∥∥∥δE − ω − λ

ρ

∥∥∥∥2
2

−
∥λ∥22
2ρ

, (47)

where λ ∈ R2NK×1 is the dual vector and ρ > 0 is the penalty
parameter. In the ADMM framework, the update of δE, ω, and
λ can be written as

δk+1
E = arg min

δE∈{δE|1TδE−1=0}
Lρ

(
δE,ω

k,λk
)
, (48)

ωk+1 = arg min
ω

Lρ

(
δk+1
E ,ω,λk

)
, (49)

λk+1 = λk − ρ
(
δk+1
E − ωk+1

)
. (50)
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In the δE-update, the subproblem for δE can be written as

min
δE

δTEUδE +
ρ

2

∥∥∥∥∥δE − ωk − λk

ρ

∥∥∥∥∥
2

2

s.t. 1TδE − 1 = 0. (51)

We can obtain the KKT condition of this subproblem:

1TδE − 1 = 0, (52)

2UδE + ρ

(
δE − ωk − λk

ρ

)
+ ν · 1 = 0, (53)

where ν is the dual variable associated with the equality
constraint. Then we can obtain[

2U+ ρ 1
1T 0

] [
δE
ν

]
=

[
ρωk + λk

1

]
. (54)

With the above formulation, we can obtain δk+1
E by an inverse

operation [
δk+1
E

ν

]
=

[
2U+ ρ 1
1T 0

]−1 [
ρωk + λk

1

]
. (55)

In the ω-update, the subproblem for ω can be written as

min
ω

IΩ (ω) +
ρ

2

∥∥∥∥∥δk+1
E − ω − λk

ρ

∥∥∥∥∥
2

2

. (56)

Then ω needs to satisfy

ρ

(
δk+1
E − ω − λk

ρ

)
∈ ∂IΩ (ω) , (57)

and we can obtain

ωk+1 = max

{
0, δk+1

E − λk

ρ

}
. (58)

The corresponding algorithm is summarized in Algorithm 1.

Algorithm 1 The conventional ADMM algorithm
1: Input: U
2: Initialization: δ1E = ω1 = λ1 = 0, ρ, maximum number

of iterations Kmax.
3: for k = 1, · · ·Kmax do
4: Compute δk+1

E by (55);
5: Compute ωk+1 by (58);
6: Update λk+1 by (50);
7: end for
8: Output: δE = δKmax+1

E .

B. The Improved ADMM Algorithm

In addition to directly applying the ADMM framework in
Section V-A, we also propose an improved ADMM algorithm
to solve the QP problem of CI-BLP.

Proposition 7: P2 is equivalent to

P5 : min
δE

δTEUδE

s.t. 1TδE − 1 ≥ 0,

δmE ≥ 0, ∀m ∈ {1, 2, · · · , 2NK} . (59)

Proof: Suppose δ∗E is the optimal solution to P5, and it
satisfies

1Tδ∗E − 1 > 0, (δ∗E)
m ≥ 0, ∀m ∈ {1, 2, · · · , 2NK} . (60)

Then there must exist δ∗∗E = κδ∗E such that

1Tδ∗∗E − 1 = 0, (δ∗∗E )
m ≥ 0, ∀m ∈ {1, 2, · · · , 2NK} ,

(61)

where κ = 1
1Tδ∗

E
∈ (0, 1). Then we can obtain

(δ∗∗E )
T
Uδ∗∗E = κ2 (δ∗E)

T
Uδ∗E < (δ∗E)

T
Uδ∗E, (62)

which contradicts the assumption that δ∗E is the optimal
solution to P5. The optimal solution to P5 must satisfy
1TδE − 1 = 0, which means that the optimal solution to P5

is the optimal solution to P2, i.e., P5 is equivalent to P2.
Based on the above proposition, We can apply the ADMM

framework to P5. We introduce a variable ω̂ and a set
Ω̂ = {ω̂|ω̂i ≥ 0, ∀i ∈ {1, 2, . . . , 2NK + 1}}. P5 is then
equivalent to:

P6 : min
δE,ω̂

δTEUδE

s.t.
[

1T

I2NK×2NK

]
δE =

[
1
0

]
+ ω̂,

ω̂ ∈ Ω̂. (63)

By defining an indicator function for ω̂:

IΩ̂ (ω̂) =

{
0, if ω̂ ∈ Ω̂,

∞, otherwise,
(64)

and

Γ =

[
1T

I2NK

]
∈ C(2NK+1)×(2NK), c =

[
1
0

]
∈ C(2NK+1)×1,

(65)

P6 can be written as

P7 : min
δE,ω̂

δTEUδE + IΩ̂ (ω̂)

s.t. ΓδE = c+ ω̂. (66)

The corresponding augmented Lagrangian function for P7 is
expressed as

L̂ρ

(
δE, ω̂, λ̂

)
= δTEUδE + IΩ̂ (ω̂) + λ̂

T
(−ΓδE + c+ ω̂)

+
ρ

2
∥−ΓδE + c+ ω̂∥22

=δTEUδE + IΩ̂ (ω̂) +
ρ

2

∥∥∥∥∥−ΓδE + c+ ω̂ +
λ̂

ρ

∥∥∥∥∥
2

2

−

∥∥∥λ̂∥∥∥2
2

2ρ
,

(67)

where λ̂ ∈ R(2NK+1)×1 is the dual vector and ρ > 0 is the
penalty parameter. The update of δE, ω̂, and λ̂ can be written
as

δk+1
E = arg min

δE

L̂ρ

(
δE, ω̂

k, λ̂
k
)
, (68)

ω̂k+1 = arg min
ω

L̂ρ

(
δk+1
E , ω̂, λ̂

k
)
, (69)

λ̂
k+1

= λ̂
k
+ ρ

(
−Γδk+1

E + c+ ω̂k+1
)
. (70)
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In the δE-update, the subproblem for δE can be written as

min
δE

δTEUδE +
ρ

2

∥∥∥∥∥−ΓδE + c+ ω̂k +
λ̂
k

ρ

∥∥∥∥∥
2

2

. (71)

The gradient of the objective function with respect to δE is 0,
which leads to(

2U+ ρΓTΓ
)
δE = ρΓT

(
c+ ŵk +

λ̂
k

ρ

)
. (72)

Then we can get a closed-form solution:

δk+1
E =

(
2U+ ρΓTΓ

)−1

ρΓT

(
c+ ŵk +

λ̂
k

ρ

)
. (73)

In the ω-update, the subproblem for ω can be written as

min
ω

IΩ (ω) +
ρ

2

∥∥∥∥∥−Γδk+1
E + c+ ω̂ +

λ̂
k

ρ

∥∥∥∥∥
2

2

. (74)

Then ω needs to satisfy

−ρ

(
−Γδk+1

E + c+ ω̂ +
λ̂
k

ρ

)
∈ ∂IΩ (ω) , (75)

and we can obtain

ω̂k+1 = max

{
0,Γδk+1

E − c− λ̂
k

ρ

}
. (76)

The corresponding algorithm is summarized in Algorithm 2.

Algorithm 2 The improved ADMM algorithm
1: Input: U
2: Initialization: δ1E = 0, ω̂1 = λ̂

1
= 0, c, Γ, ρ, maximum

number of iterations Kmax.
3: for k = 1, · · ·Kmax do
4: Compute δk+1

E by (73);
5: Compute ω̂k+1 by (76);
6: Update λ̂

k+1
by (70);

7: end for
8: Output: δE = δKmax+1

E .

Remark 2: In Algorithm 1, the ADMM framework is
directly applied to optimization problem P2, and the update
forδE is a subproblem with equality constraints. Although such
a method is common, it affects the convergence behavior of
the algorithm to some extent [37]. In Algorithm 2, the ADMM
framework is applied to the equivalent optimization problem
P5, and all updates are unconstrained optimization problems,
which can guarantee the convergence of the algorithm.

C. Convergence Analysis

First, the minimizer ω̂k+1 satisfies

L̂ρ

(
δkE, ω̂

k+1, λ̂
k
)
≤ L̂ρ

(
δkE, ω̂

k, λ̂
k
)
. (77)

It is easy to see that L̂ρ

(
δE, ω̂

k+1, λ̂
k
)

is strongly convex
with respect to δE. Because of the property of strongly convex
function:(

∂δE,1
L̂ρ

(
δE,1, ω̂

k+1, λ̂
k
)
− ∂δE,2

L̂ρ

(
δE,2, ω̂

k+1, λ̂
k
))T

·
(
δE,1 − δ̂E,2

)
≥ m

∥∥∥δE,1 − δ̂E,2

∥∥∥2
2
, (78)

where m is the strongly convex parameter of
L̂ρ

(
δE, ω̂

k+1, λ̂
k
)

, we can obtain that

∂δE,1
L̂ρ

(
δE,1, ω̂

k+1, λ̂
k
)
− ∂δE,2

L̂ρ

(
δE,2, ω̂

k+1, λ̂
k
)

=
(
2U+ ρΓTΓ

)
(δE,1 − δE,2) . (79)

Since

ρΓTΓ = ρ
[
1 I2NK×2NK

] [ 1T

I2NK×2NK

]
= ρ1 · 1T + ρI, (80)

where ρ1 · 1T is a positive-semidefinite matrix and U is also
a positive-semidefinite matrix, we can obtain(

∂δE,1L̂ρ

(
δE,1, ω̂

k+1, λ̂
k
)
− ∂δE,2L̂ρ

(
δE,2, ω̂

k+1, λ̂
k
))T

· (δE,1 − δE,2)

= (δE,1 − δE,2)
T
(
2U+ ρΓTΓ

)
(δE,1 − δE,2)

= (δE,1 − δE,2)
T (

2U+ ρ1 · 1T + ρI
)
(δE,1 − δE,2)

≥ ρ ∥δE,1 − δE,2∥22 . (81)

Thus, m = ρ and L̂ρ

(
δE, ω̂

k+1, λ̂
k
)

is ρ-strongly convex
with respect to δE.

Similarly, by definition of strongly convex function:

L̂ρ

(
δE,1, ω̂

k+1, λ̂
k
)
≥ L̂ρ

(
δE,2, ω̂

k+1, λ̂
k
)

+
(
∂δE,2L̂ρ

(
δE,2, ω̂

k+1, λ̂
k
))T

(δE,1 − δE,2)

+
ρ

2
∥δE,1 − δE,2∥22 . (82)

The minimizer δk+1
E satisfies

∂δk+1
E

L̂ρ

(
δk+1
E , ω̂k+1, λ̂

k
)
= 0. (83)

Thus, for any δkE, the minimizer δk+1
E also satisfies

L̂ρ

(
δk+1
E , ω̂k+1, λ̂

k
)

≤ L̂ρ

(
δkE, ω̂

k+1, λ̂
k
)
− ρ

2

∥∥∥δk+1
E − δkE

∥∥∥2
2
. (84)

Moreover, from the definition of L̂ρ and with the use of
(70), we have

L̂ρ

(
δk+1
E , ω̂k+1, λ̂

k+1
)
− L̂ρ

(
δk+1
E , ω̂k+1, λ̂

k
)

=
1

ρ

∥∥∥λ̂k+1
− λ̂

k
∥∥∥2
2
. (85)
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Then, summing (77), (84) and (85) yields

L̂ρ

(
δk+1
E , ω̂k+1, λ̂

k+1
)
− L̂ρ

(
δkE, ω̂

k, λ̂
k
)

≤ 1

ρ

∥∥∥λ̂k+1
− λ̂

k
∥∥∥2
2
− ρ

2

∥∥∥δk+1
E − δkE

∥∥∥2
2
. (86)

From (72), the minimizer δk+1
E satisfies(

2U+ ρΓTΓ
)
δk+1
E − ρΓT

(
c+ ŵk+1 +

λ̂
k

ρ

)
= 0. (87)

Substituting (70) into (87) we have

2Uδk+1
E − ΓTλ̂

k+1
= 0, (88)

which means∥∥∥ΓT
(
λ̂
k+1

− λ̂
k
)∥∥∥2

2
=
∥∥∥2U(δk+1

E − δkE

)∥∥∥2
2
. (89)

Before we proceed, we present the following property:
Proposition 8:∥∥∥ΓT

(
λ̂
k+1

− λ̂
k
)∥∥∥2

2
> 0. (90)

Proof: When N ≤ K, U is full rank according to
Proposition 6, which means UTU is a positive definite matrix
because rank

(
UTU

)
= rank (U) = 2NK. Therefore,∥∥∥2U(δk+1

E − δkE

)∥∥∥2
2

= 4
(
δk+1
E − δkE

)T
UTU

(
δk+1
E − δkE

)
> 0. (91)

Substituting (91) into (89) we can obtain (90).
When N > K, we can first obtain the matrix ΓΓT as

ΓΓT =

[
1T

I2NK×2NK

] [
1 I2NK×2NK

]
=

[
2NK 1T

1 I2NK×2NK

]
. (92)

It is easy to see that the matrix ΓΓT has one zero eigenvalue
and 2NK positive eigenvalues. The eigenvector corresponding
to the zero eigenvalue of the matrix ΓΓT is

[
−1,1T

]T
. This

also means ∥∥∥ΓT
(
λ̂
k+1

− λ̂
k
)∥∥∥2

2
= 0 (93)

only if
(
λ̂
k+1

− λ̂
k
)

is the eigenvector corresponding to

the zero eigenvalue of the matrix ΓΓT. Since each element
of λ̂

k
is constantly changing with each iteration and the

relationship between the individual elements of λ̂
k

is random,
the probability that

(
λ̂
k+1

− λ̂
k
)

meets the above condition
is almost zero, which is consistent with (90). Together with
the case of N ≤ K, the proof is completed.

According to Proposition 8, there must be a ς > 0 that
satisfies ∥∥∥ΓT

(
λ̂
k+1

− λ̂
k
)∥∥∥2

2
= ς ·

∥∥∥λ̂k+1
− λ̂

k
∥∥∥2
2
. (94)

Since ∥∥∥2U(δk+1
E − δkE

)∥∥∥2
2
≤ 4φ2

∥∥∥δk+1
E − δkE

∥∥∥2
2
, (95)

where φ = eigmax (U), we can obtain

ς ·
∥∥∥λ̂k+1

− λ̂
k
∥∥∥2
2
≤ 4φ2

∥∥∥δk+1
E − δkE

∥∥∥2
2
. (96)

Substituting (96) into (86) further results in

L̂ρ

(
δk+1
E , ω̂k+1, λ̂

k+1
)

≤ L̂ρ

(
δkE, ω̂

k, λ̂
k
)
−
(
ρ

2
− 4φ2

ς · ρ

)∥∥∥δk+1
E − δkE

∥∥∥2
2
, (97)

which means if the condition

ρ >
2
√
2φ

√
ς

(98)

holds, L̂ρ is monotonously decreasing in the iteration proce-
dure. This completes the proof for convergence.

D. Complexity Analysis

We analyze the computational complexity of the proposed
algorithm in terms of the number of real multiplication oper-
ations.

Considering the special structure of Γ shown in (65)
and ΓTΓ shown in (80), the computational complex-
ity can be greatly reduced. In Line 5 of Algorithm 2,

the computation of
(
2U+ ΓTΓ

)−1

requires 1
3 (2NK)

3

real multiplications, which involve the cost of computing
the Cholesky factorization. The computation of the ma-

trix product of
(
2U+ ΓTΓ

)−1

ΓT
(
c+ ŵk + λ̂

k
)

requires
2NK (2NK + 1) real multiplications. The total cost of
δE-update is

(
1
3 (2NK)

3
+ 2NK (2NK + 1)

)
real multi-

plications. The cost of projection ω̂-update in Line 6 is
negligible. And the λ̂-update in Line 7 does not require
any real multiplication. Therefore, Algorithm 2 requires(

1
3 (2NK)

3
+ 2NK (2NK + 1)

)
real multiplications when

k = 1.
Given that

(
2U+ ΓTΓ

)−1

does not change in each it-
eration, we can cache the result to perform the subse-
quent iterations efficiently. Accordingly, Algorithm 2 requires
2NK (2NK + 1) real multiplications for each iteration when
k ≥ 2. The total number of real multiplications for Algorithm
2 is

[
1
3 (2NK)

3
+ T · 2NK (2NK + 1)

]
, where T denotes

the number of iterations.

VI. SIMULATION RESULT

We assume standard Rayleigh fading channel, random com-
plex Gaussian distributed noise. The transmit power budget is
p0 = 1 per slot, and the SNR is defined as 1

σ2 , where σ2 is
the noise power. The execution time results are obtained from
a Windows 11 Desktop with i9-10900 and 16GB RAM.

For clarity, the following abbreviations are used throughout
this section:

1) ZF: Traditional ZF precoding with block-level power
normalization;

2) RZF: Traditional RZF precoding with block-level power
normalization;
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3) CI-SLP: Traditional CI-SLP method solved by IPM [35],
P8 in [26];

4) CI-BLP-CVX: CI-BLP method solved by CVX, P1;
5) CI-BLP-IPM: CI-BLP method solved by IPM [35], P2;
6) CI-BLP-ADMM-P2-(Kmax): CI-BLP method solved by

the ADMM algorithm based on P2 with the maximum
number of iterations Kmax;

7) CI-BLP-ADMM-P5-(Kmax): CI-BLP method solved by
the improved ADMM algorithm based on P5 with the
maximum number of iterations Kmax.

2 4 6 8 10 12 14 16 18 20
10

-5

10
-4

10
-3

10
-2

S
E

R

ZF

RZF

CI-SLP

CI-BLP-CVX

CI-BLP-IPM

Fig. 4. SER performance of different schemes, Nt = K = 10, 8PSK,
transmit SNR=35dB.

To verify the closed-form expression of the CI-BLP optimal
precoding matrix for N < K, in Fig. 4 we depict the SER
with respect to the block length N for a 10 × 10 MU-MISO
system, where 8PSK modulation is employed at a transmit
SNR of 35dB. As can be observed, CI-BLP returns the same
SER performance as CI-SLP when N = 1, because CI-BLP
reduces to CI-SLP when optimized independently for each
symbol slot. As the block length N increases, we observe
that the SER performance firstly improves since the benefit of
the relaxed power constraint outweighs the loss due to using
a fixed precoder over the block, while the SER performance
becomes worse as N further increases, because the benefit of
the relaxed power constraint cannot further compensate for the
loss of the fixed precoder. In Fig. 4, CI-BLP-IPM returns the
same SER performance as CI-BLP-CVX when N < K, which
proves that our scenario expansion is feasible.

Fig. 5 to depicts the convergence results of the proposed
ADMM algorithms for a 10×10 MU-MISO system with 8PSK
modulation, where the length of the block is N = 8. In both
algorithms, we take ρ = 1. Here, δE represents the solution
obtained by the proposed ADMM algorithm, and δ∗E represents
the optimal solution obtained by IPM. It can be seen that
there is no gap between the optimal solution and the solution
respectively obtained by the two proposed ADMM algorithms
with 600 iterations, which therefore means that both ADMM
algorithms can reach the optimal solution when the iteration
number is sufficient large.

Fig. 6 compares the SER performance of the conventional

0 200 400 600 800 1000

iterations

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

CI-BLP-ADMM-P2

CI-BLP-ADMM-P5

200 400 600 800 1000

0

0.5

1

1.5

2

2.5
10

-4

Fig. 5. Convergence behavior of the proposed ADMM algorithms, Nt =
K = 10, N = 8, 8PSK.
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10
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-1
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0

S
E

R

ZF

RZF

CI-SLP

CI-BLP-ADMM-P2-(50)

CI-BLP-ADMM-P2-(100)

CI-BLP-ADMM-P2-(500)

CI-BLP-ADMM-P2-(1000)

CI-BLP-IPM

Fig. 6. SER performance of different schemes, Nt = K = 10, N = 8,
8PSK.

ADMM scheme based on P2 with other precoding schemes
for a 10×10 MU-MISO system with 8PSK modulation, where
the length of the block is N = 8. Although the conventional
ADMM algorithm can obtain the optimal solution with 1000
iterations, the result with 500 iterations is still not ideal. This
is because a direct application of the ADMM framework based
on P2 inevitably results in the δE-update being a constrained
subproblem. Although such a method is common, it will affect
the convergence process.

Fig. 7 compares the SER performance of the improved
ADMM scheme based on P5 with other precoding schemes
for a 10×10 MU-MISO system with 8PSK modulation. When
N = 8, we observe that CI-BLP offers noticeable performance
gains over traditional CI-SLP, owing to the relaxed power
constraint over the entire block. The improved ADMM algo-
rithm based on P5 can achieve satisfactory results after 50 or
even 30 iterations, much faster than the conventional ADMM
algorithm based on P2. When SNR< 35dB, CI-BLP-ADMM
returns the better SER performance than CI-SLP after only
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CI-BLP-ADMM-P5-(2)

CI-BLP-ADMM-P5-(5)

CI-BLP-ADMM-P5-(30)
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CI-BLP-IPM

Fig. 7. SER performance of different schemes, Nt = K = 10, N = 8,
8PSK.

5 iterations. When the SNR of the practical system is high,
the proposed ADMM design can obtain a finer solution by
increasing the number of iterations, and thus obtain a more
significant performance gain. Therefore, the proposed ADMM
design can achieve a flexible trade-off between communication
performance and execution time by modifying the maximum
number of iterations.

1 2 3 4 5 6 7 8 9 10

10
-3

10
-2

10
-1

E
x
e
c
u
ti
o
n
 t
im

e
 p

e
r 

b
lo

c
k
 (

s
)

CI-BLP-IPM

CI-BLP-ADMM-P5-(2)

CI-BLP-ADMM-P5-(5)

CI-BLP-ADMM-P5-(30)

CI-BLP-ADMM-P5-(50)

Fig. 8. Execution time per block of different schemes, Nt = K = 10, 8PSK,
30dB.

In Fig. 8 we compare the execution time required for each
scheme as an indication to show the potential complexity
benefits of the proposed ADMM algorithm. Since the size of
the QP problem is independent of the modulation type, the
modulation does not significantly affect the complexity, which
is determined primarily by the number of users and transmit
antennas. It is observed that the proposed ADMM algorithm
is much faster than the IPM, which motivates the use of the
CI-BLP method in practice.

VII. CONCLUSION

In this paper, we focus on extending the analysis on CI-
BLP to the case where the number of symbol slots in a
block is smaller than the number of users and obtain a QP
optimization on simplex in this case. We study the possibility
of applying the iterative closed-form algorithm for QP prob-
lem in CI-SLP to CI-BLP. We further propose an improved
ADMM algorithm. All subproblems have simple closed-form
solutions. The proposed algorithm is shown to achieve an
identical performance to IPM with a reduced computational
cost, which enables the use of CI-BLP method in practical
wireless systems.

APPENDIX A
PROOF FOR PROPOSITION 1

By the definition of eigenvalues, for any m ∈
{rg + 1, rg + 2, · · · ,Mg},

G · vm
G = 0 · vm

G = 0. (99)

By substituting (34) into (99), we can obtain

0 =

Ng∑
n=1

snG (snG)
T · vm

G . (100)

Since s1G, s
2
G, · · · , s

rg
G is a maximal linearly independent sys-

tem, we can get

snG =

rg∑
i=1

kn−rg,is
i
G, n ∈ {rg + 1, · · · , Ng} . (101)

By substituting (101) into (100), we can obtain

0 =

rg∑
n=1

snG (snG)
T · vm

G

+

Ng∑
n=rg+1

(
rg∑
i=1

kn−rg,is
i
G

) rg∑
j=1

kn−rg,js
j
G

T

· vm
G

= l1,1s
1
G︸ ︷︷ ︸

ŝ1G

·
(
s1G
)T · vm

G +
(
l1,2s

1
G + l2,2s

2
G

)︸ ︷︷ ︸
ŝ2G

·
(
s2G
)T · vm

G

+ · · ·+
(
l1,rgs

1
G + l2,rgs

2
G + · · ·+ lrg,rgs

rg
G

)︸ ︷︷ ︸
ŝ
rg
G

·
(
s
rg
G

)T · vm
G ,

(102)

where

li,j =

{
1 +

∑Ng−rg
n=1 (kn,i)

2 if i = j,

2
∑Ng−rg

n=1 kn,ikn,j if i ̸= j.
(103)

Based on (103), we can obtain that li,i ̸= 0, which means that
ŝ1G, ŝ

2
G, · · · , ŝ

rg
G are linearly independent. Therefore,

(snG)
T · vm

G = 0, n ∈ {1, · · · , rg} . (104)
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For n ∈ {rg + 1, · · · , Ng}, combined with (101), we can
further obtain

(snG)
T · vm

G =

(
rg∑
i=1

kn−rg,is
i
G

)T

· vm
G

=

rg∑
i=1

kn−rg,i

(
siG
)T · vm

G = 0, (105)

which completes the proof.

APPENDIX B
PROOF FOR PROPOSITION 2

We introduce xn into this proof:

xn = snE, xN+n = cnE, n ∈ {1, · · · , N} . (106)

According to (18), D can be expressed as

D =

2N∑
n=1

xn (xn)
T
= [d1,d2, · · · ,d2K ]

T
. (107)

For any m ∈ {1, · · · , 2K},

dm = x1
m · x1 + x2

m · x2 + · · ·+ x2N
m · x2N , (108)

where xn
i is the i-th entry of xn. Since x1,x2, · · · ,x2N are

linearly independent, the row rank of D is min {2K, 2N}. In
the same way we can get that the column rank of D is also
min {2K, 2N}, which completes the proof.

APPENDIX C
PROOF FOR PROPOSITION 3

According to (22) and (28), we introduce xn and yn into
this proof and define them as

xn = VT
Ds

n
E, yn = VT

Dc
n
E, n ∈ {1, · · · , N} . (109)

Then, pm,n, fm,n, gm,n, qm,n can be written as

pm,n = (snE)
T
D+smE = (xn)

T
Σ+

Dx
m =

rd∑
i=1

1

σi
xm
i xn

i ,

fm,n = (cnE)
T
D+smE = (yn)

T
Σ+

Dx
m =

rd∑
i=1

1

σi
xm
i yni ,

gm,n = (snE)
T
D+cmE = (xn)

T
Σ+

Dy
m =

rd∑
i=1

1

σi
ymi xn

i ,

qm,n = (cnE)
T
D+cmE = (yn)

T
Σ+

Dy
m =

rd∑
i=1

1

σi
ymi yni ,

(110)

where σi is the i-th eigenvalues of D. We further introduce
zi into this proof:

zi =
1

σi

[
x1
i , y

1
i , x

2
i , y

2
i , · · · , xN

i , yNi
]
. (111)

where i ∈ {1, · · · , rd}. It is obvious that z1, z2, · · · , zrd are
linearly independent and each row of ∆ can be expressed as:

∆2n−1 = xn
1z1 + xn

2z2 + · · ·+ xn
rd
zrd ,

∆2n = yn1 z1 + yn2 z2 + · · ·+ ynrdzrd , (112)

where n ∈ {1, · · · , N}. Thus the row rank of ∆ is rd. In the
same way we can get that the column rank of ∆ is also rd,
which completes the proof.

APPENDIX D
PROOF FOR PROPOSITION 4

Θ can be decomposed as

Θ = ÂB̂, (113)

where Â ∈ R4NK×2NK and B̂ ∈ R2NK×4NK are defined as

Â = 1T ⊗
[(
A1
)T (

B1
)T · · ·

(
AN

)T (
BN
)T]T ,

B̂ = Diag
([(

A1
)T (

B1
)T · · ·

(
AN

)T (
BN
)T]) .

(114)

It is obvious that the rank of Â is K and we can obtain

rank (Θ) ≤ rank
(
Â
)
= K. (115)

From another perspective, Â can be decomposed as

Â = ΘB̃, (116)

where B̃ ∈ R4NK×2NK is defined as (117). Then we can
obtain

rank (Θ) ≥ rank
(
Â
)
= K. (118)

With (115), we can get

rank (Θ) = rank
(
Â
)
= K, (119)

which completes the proof.

APPENDIX E
PROOF FOR PROPOSITION 5

First, we introduce Y ∈ R3×3 and X ∈ R9×9 into this
proof and they are defined as

Y =

y1

y2

y3

 =

y1,1 y1,2 y1,3
y2,1 y2,2 y2,3
y3,1 y3,2 y3,3

 , (120)

X =


x1

x2

...
x9

 =

X1,1 X1,2 X1,3

X2,1 X2,2 X2,3

X3,1 X3,2 X3,3

 , (121)

where Xm,n ∈ R3×3 is defined as

Xm,n =

xm,n
1

xm,n
2

xm,n
3

 =

xm,n
1,1 xm,n

1,2 xm,n
1,3

xm,n
2,1 xm,n

2,2 xm,n
2,3

xm,n
3,1 xm,n

3,2 xm,n
3,3

 . (122)

We suppose that y1 and y2 are linearly independent, and
rank (Y) = r1 = 2. We also suppose that xm,n

1 and xm,n
2 are

linearly independent, and rank (X) = rank (Xm,n) = r2 = 2,

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2024.3480981

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on October 30,2024 at 14:37:45 UTC from IEEE Xplore.  Restrictions apply. 



14

B̃ = Diag
([

A1
((

A1
)T

A1
)−1

B1
((

B1
)T

B1
)−1

· · · AN
((

AN
)T

AN
)−1

BN
((

BN
)T

BN
)−1

])
. (117)

which means x1 and x2 are linearly independent. Then we
can get the following expression

y3 =l1y1 + l2y2,

xi =k1i x1 + k2i x2, i ∈ {3, · · · , 9} . (123)

We further introduce Z ∈ R9×9 and Ṽ ∈ R4×9, defined as

Z =


z1
z2
...
z9

 =

y1,1X1,1 y1,2X
1,2 y1,3X

1,3

y2,1X
2,1 y2,2X

2,2 y2,3X
2,3

y3,1X
3,1 y3,2X

3,2 y3,3X
3,3

 , (124)

Ṽ =


ṽ1

ṽ2

ṽ3

ṽ4

 =


y1,1x

1,1
1 y1,2x

1,2
1 y1,3x

1,3
1

y1,1x
1,1
2 y1,2x

1,2
2 y1,3x

1,3
2

y2,1x
1,1
1 y2,2x

1,2
1 y2,3x

1,3
1

y2,1x
1,1
2 y2,2x

1,2
2 y2,3x

1,3
2

 . (125)

According to (123), each row of Z can be expressed as
a linear combination of ṽ1, ṽ2, ṽ3, ṽ4. Next we prove that
ṽ1, ṽ2, ṽ3, ṽ4 are linearly independent.

Assuming that ṽ1, ṽ2, ṽ3, ṽ4 are linearly dependent, then
there exist coefficients t1, t2, t3, t4 that are not all zero, such
that

t1ṽ1 + t2ṽ2 + t3ṽ3 + t4ṽ4 = 0T, (126)

that is,

0T =t1y1,1x
1,1
1 + t2y1,1x

1,1
2 + t3y2,1x

1,1
1 + t4y2,1x

1,1
2

=(t1y1,1 + t3y2,1)x
1,1
1 + (t2y1,1 + t4y2,1)x

1,1
2 ,

0T =t1y1,2x
1,2
1 + t2y1,2x

1,2
2 + t3y2,2x

1,2
1 + t4y2,2x

1,2
2

=(t1y1,2 + t3y2,2)x
1,2
1 + (t2y1,2 + t4y2,2)x

1,2
2 ,

0T =t1y1,3x
1,3
1 + t2y1,3x

1,3
2 + t3y2,3x

1,3
1 + t4y2,3x

1,3
2

=(t1y1,3 + t3y2,3)x
1,3
1 + (t2y1,3 + t4y2,3)x

1,3
2 . (127)

Since xm,n
1 and xm,n

2 are linearly independent, we can get

t1y1,1 + t3y2,1 = t2y1,1 + t4y2,1 = 0,

t1y1,2 + t3y2,2 = t2y1,2 + t4y2,2 = 0,

t1y1,3 + t3y2,3 = t2y1,3 + t4y2,3 = 0. (128)

Since t1, t2, t3, t4 are not all zero, the following equation must
be satisfied

y1,1
y2,1

=
y1,2
y2,2

=
y1,3
y2,3

, (129)

which contradicts the fact that y1 and y2 are linearly indepen-
dent. Therefore, the assumption does not hold. ṽ1, ṽ2, ṽ3, ṽ4

are linearly independent. And rank (Z) = rank
(
Ṽ
)
= r1 · r2.

We extend this process by substituting ∆ into Y and Θ
into X. And then we can obtain

rank
(
Û
)
= rank (∆) · rank (Θ) , (130)

which completes the proof.

APPENDIX F
PROOF FOR PROPOSITION 6

We introduce X̂ = [x1,x2,x3,x4,x5,x6] into this proof.
We suppose that rank

(
X̂
)

= 3 and x1,x2,x4 are linearly
independent, which means

xn = k1nx1 + k2nx2 + k4nx4, n ∈ {3, 5, 6} . (131)

We further define

X = X̂ ·
[
I3 I3

]T
= [x1 + x4,x2 + x5,x3 + x6] . (132)

It is obvious that rank (X) ≤ rank
(
X̂
)

.

Assuming that rank (X) < rank
(
X̂
)

. Then x1 + x4,x2 +

x5,x3 + x6 are linearly dependent, which means there exist
coefficients t1, t2, t3 that are not all zero, such that

0T =t1 · (x1 + x4) + t2 · (x2 + x5) + t3 · (x3 + x6)

=
(
t1 + t2k

1
5 + t3

(
k13 + k16

))
· x1

+
(
t2
(
1 + k25

)
+ t3

(
k23 + k26

))
· x2

+
(
t1 + t2k

4
5 + t3

(
k43 + k46

))
· x4. (133)

Since x1,x2,x4 are linearly independent, we can get

t1 + t2k
1
5 + t3

(
k13 + k16

)
= 0,

t2
(
1 + k25

)
+ t3

(
k23 + k26

)
= 0,

t1 + t2k
4
5 + t3

(
k43 + k46

)
= 0. (134)

Since t1, t2, t3 are not all zero, the following equation must
be satisfied(

k23 + k26
)
k15

1 + k25
+ k13 + k16 =

(
k23 + k26

)
k45

1 + k25
+ k43 + k46. (135)

The coefficients in (135) are determined by channels and
symbols, and they are random data. Therefore, the left-hand
side and right-hand side of (135) are strictly equal with
probability 0, which means the assumption does not hold.
Therefore, rank (X) = rank

(
X̂
)

. We extend this process by

substituting Û into X̂ and U into X. And then we can obtain

rank (U) = rank
(
Û
)
= min

{
2NK, 2K2

}
, (136)

which completes the proof.
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