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Abstract—The constructive interference (CI) based symbol-
level precoding (SLP) design for integrated sensing and communi-
cation (ISAC) systems is investigated in this paper. The minimum
communication scaling factor among the users is maximized un-
der radar performance constraint and power constraint through
optimizing the transmit signal. In order to solve the proposed
optimization problem, two groups of approximate feasible do-
mains are adopted to transform the optimization problem into
convex. The simulation results show that the proposed SLP design
based on symbol scaling has significant advantages in enhancing
the communication performance under the condition that the
radar performance satisfy the requirements. And compared with
the previous SLP schemes in ISAC system, the computational
complexity of the proposed schemes can be reduced significantly.

Index Terms—Symbol scaling, integrated sensing and com-
munication (ISAC), constructive interference (CI), symbol-level
precoding (SLP).

I. INTRODUCTION

The rapid growth of wireless services makes spectrum
resources scarce. A large portion of the available spectrum
of the radar band can be shared with various communication
systems. Spectrum sharing between radar and communication
systems is consistent with the continuous fusion of integrated
sensing and communication (ISAC) [1], [2], which has trig-
gered massive research on coexistence, cooperation and joint
design of these two functions [3].

Recently, many researchers have focused on the design
of transmit beamforming in multiple-input multiple-output
(MIMO) ISAC systems, optimizing the transmit precoding
matrix through different radar and communication metrics [4]–
[10]. MIMO architecture is widely used in ISAC systems to
provide waveform diversity for radar target detection [11],
beamforming gain and spatial multiplexing for multi-user
communications.

The transmit waveform designs mentioned above [4]–[10]
are all conventional block-level precoding (BLP). However,
since conventional BLP designs employ performance metrics
mainly based on the second-order statistics (e.g., SINR and
MSE) to optimize the average transmit beampattern, the radar
sensing performance can be guaranteed only when the number
of transmitted symbols is sufficiently large. As a result, the in-
stantaneous transmit beampatterns in different time slots might
have significant distortions, which causes severe performance

degradation on target detection and parameter estimation if
only a limited number of samples are collected. In light
of the shortcomings for BLP, symbol-level precoding (SLP)
technology is further adopted in ISAC systems.

Unlike the conventional BLP, SLP is a non-linear and
symbol-dependent approach, which optimizes each instanta-
neous transmitted vector based on the specific symbols to be
transmitted, rather than simply eliminates MUI at the symbol
level [12]. From the communication perspective, SLP can
exploit the symbol information to convert harmful MUI into
constructive components, i.e., constructive interference (CI), to
reduce the symbol error rate (SER) and perform more reliable
multi-user communications. From the radar perspective, the
instantaneous transmit beampattern in each time slot can be
carefully designed and a well-formed beampattern can be
guaranteed with a limited number of waveform samples.

In previous work [13], the transmit vectors for CI-based SLP
(CI-SLP) are optimized to minimize the squared error between
the obtained and the desired beampattern, subject to CI con-
straints for communications and power constraints. This work
confirms the significant advantage of SLP in enhancing the
communication performance over conventional BLP, but the
complexity of the optimization problem is difficult to accept
due to the non-convex nature of the objective function. In addi-
tion, [14] utilizes space-time adaptive processing (STAP) and
CI-SLP to implement MIMO ISAC. This scheme shows better
performance in the presence of strong signal-dependent clutter.
In [15], the authors investigate the SLP-based low-range-
sidelobe waveform design for an MIMO-OFDM ISAC system,
and the simulation results reveal the performance improvement
of radar ranging. All these work take radar performance as the
objective function of optimization problems. The non-convex
objective function make the optimization problem difficult to
solve directly and the iterative methods are resorted to provide
solvable solutions which require a large number of iterations
and make the computational complexity of these schemes dif-
ficult to accept. On the other hand, under high communication
requirements, the infeasible probability of these schemes will
also increase. In other words, the communication performance
of these CI-SLP ISAC schemes is limited. In view of these
shortcomings, we adopt the symbol-scaling metric in CI-SLP
ISAC system and take the communication performance as the
objective function of optimization problem, taking the radar



performance as a necessary constraints, which has not been
previously investigated in the literature.

The contributions of this paper can be summarized as
follows:

• We initially propose a symbol-scaling based CI-SLP
design in ISAC system. The minimum communication scaling
factor among the communication users is maximized while
satisfying the radar target illumination power requirement and
total power budget constraint.

• In order to solve the proposed ISAC optimization problem,
two groups of approximate feasible domains are adopted to
transform the optimization problem into convex.

• Finally, simulation results are provided to demonstrate
the advantages and the effectiveness of the proposed symbol-
scaling based CI-SLP design in ISAC systems.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

Fig. 1. The ISAC system with one multi-antenna ISAC BS serving multiple
communication users while sensing the target of interest.

We consider a MIMO ISAC system as shown in Fig.1,
where the multi-antenna ISAC BS simultaneously transmits
radar probing waveforms to the target and communication
symbols to the downlink users. The ISAC BS is equipped
with a uniform linear array (ULA) of N antennas, serving Ku
single-antenna users while detecting the target of interest at
the same time, generally with Ku ≤ N . The same antenna
array is used for both transmitting and receiving in different
time slots via time-division (TD) protocol.

In this paper, the transmit signal matrix X =
[x [1] ,x [2] , · · · ,x [L]] ∈ CN×L is used as the ISAC wave-
form for both radar and communication operations, where
x [l] = [x1 [l] , x2 [l] , · · · , xN [l]]

T ∈ CN×1 is the correspond-
ing ISAC waveform in the l-slot with l ∈ {1, 2, · · · , L}. In
addition, the data symbol vector for Ku users in the l-th slot is
denoted by s [l] = [s1 [l] , s2 [l] , · · · , sKu [l]]

T ∈ CKu×1, which
is assumed to be drawn from a unit-norm PSK constellation.
Unlike conventional BLP designs where x [l] is a linear
function of s [l], SLP in general employs a non-linear mapping
from s [l] to x [l], and optimizes x [l] directly according to the
instantaneous symbol vector s [l] instead of using second-order
statistics-based metrics.

B. Communication Model

The received signal for the k-th user in the l-th slot is

yk [l] = hT
k x [l] + zc

k [l] , (1)

where hk ∈ CN×1 is the channel between the ISAC BS and
user k, and zc

k [l] ∼ CN
(
0, σ2

c

)
is the additive noise of user

k in the l-th slot with σ2
c being the noise power.

Fig. 2. Geometric diagram of the symbol-scaling CI metric for QPSK.

To illustrate the symbol-scaling CI meric introduced in [12],
we depict one quarter of a QPSK constellation in Fig. 2 as an
example, where we drop the time slot index [l] for conciseness.
Without loss of generality, we assume that

−→
OA is the nominal

constellation point for user k ∈ {1, 2, · · · ,K} in the l-th slot,
i.e.,

−→
OA = sk [l] . (2)

−−→
OB represents the noiseless received signal with interference,
which can be expressed as

−−→
OB =

−→
OA+

−−→
AB = hT

k x [l] , (3)

based on the geometry, and
−−→
AB can be regarded as the sum

CI from other user streams.
Different from the common phase-rotation CI metric which

uses phase relations for SLP [13]–[15], we try to leverage
the the symbol-scaling CI metric for SLP, which decomposes
the signal along the decision boundaries and imposes scal-
ing constraints on the decomposed components. One of the
advantages for the symbol-scaling based SLP method is that
the precoding optimization problem based on symbol scaling
can be easily extended to QAM modulation [16]. Hence, we
leverage the symbol-scaling metric to design the SLP scheme
for enhancing the system ISAC performance.

Based on the symbol-scaling metric,
−→
OA is decomposed

along the two decision boundaries of the QPSK modulation
to obtain

−−→
OC and

−−→
OD:

−→
OA =

−−→
OC +

−−→
OD

= sright
k [l] + sleft

k [l] . (4)



Following a similar procedure, the noiseless received signal−−→
OB can also be decomposed along the two decision bound-
aries as

−−→
OB =

−−→
OE +

−−→
OF

= αright
k [l] sright

k [l] + αleft
k [l] sleft

k [l] , (5)

where αright
k [l] and αleft

k [l] are non-negative scaling factors. We
can observe that the value of αright

k or αleft
k represents the effect

of inter-user CI, and a larger value of αright
k or αleft

k means that
the symbol can be pushed further away from one of its decision
boundary.

By following the transformations in [17], we can construct
a coefficient matrix M ∈ R2Ku×2N and obtain:

αE = MxE, (6)

where αE ∈ R2Ku×1 and xE ∈ R2N×1 are defined as

αE =
[
αright
1 [l] , · · · , αright

Ku
[l] , αleft

1 [l] , · · · , αleft
Ku

[l]
]T

,

xE =
[
R (x [l])

T
, I (x [l])

T
]T

. (7)

The construction of M follows Section IV-A of [17].

C. Radar Model

For the radar sensing, the received signal at the target of
interest is expressed as

r [l] = βa (θ)
H
x [l] + zr [l] , (8)

where a (θ) =
[
1, ejsinθ, · · · , ej(N−1)sinθ

]T ∈ CN×1 is the
steering vector of the BS towards the target with θ as the
corresponding azimuth angle. β accounts for the effective
channel propagation coefficient, and zr [l] ∼ CN

(
0, σ2

r

)
is

the additive noise of the target in the l-th slot. Thus, the
illumination power [18] towards the target is given by

Pr =β2 ·
∣∣∣a (θ)H x [l]

∣∣∣2
=β2

(∣∣aTExE

∣∣2 + ∣∣bT
ExE

∣∣2) , (9)

where aE ∈ C2N×1 and bE ∈ C2N×1 are defined as

aE =
[
R (a (θ))

T
, I (a (θ))

T
]T

,

bE =
[
−I (a (θ))

T
,R (a (θ))

T
]T

. (10)

The radar illumination power is expected to be no less than
a preset minimum to guarantee the detection probabilities.
Hence the radar constraint is formulated as

β2
(∣∣aTExE

∣∣2 + ∣∣bT
ExE

∣∣2) ≥ pr, (11)

where pr > 0 is the preset minimum illumination power
requirement for the target.

III. SYMBOL-SCALING CI-SLP DESIGN FOR ISAC

A. Problem Formulation

Based on the above description, in this paper, we aim to
design the transmit signal vector xE to maximize the minimum
entry in αE so as to enhance the overall communication
performance during the considered time period. As for the
radar sensing performance, we introduce the the illumination
power requirement for the target and total power budget
constraint. Therefore, the SLP optimization problem for ISAC
is formulated as

P0 : max
xE

min
i

αi (12)

s.t. αE = MxE, (12a)

β2
(∣∣aTExE

∣∣2 + ∣∣bT
ExE

∣∣2) ≥ pr, (12b)

∥xE∥22 ≤ p0, (12c)

where αi represents the i-th entry in αE, and p0 represents
the transmit power budget per symbol slot.

We note that the total power constraint (12c) can be ex-
tended to other power-related constraints, such as the following
per-antenna power constraint

|xE,n|2 + |xE,n+N |2 ≤ p0
N

, ∀n ∈ {1, · · · , N} , (13)

which is also a convex constraint. Here, xE,n represents the
n-th entry in xE.
P0 is non-convex because the constraint on the target

illumination power (12b) is non-convex. Therefore, we first
deal with the constraint of the target illumination power.

B. Problem Transformation

By defining p̂r = pr

β2 , r1 = aTExE and r2 = bT
ExE, the

constraint on the target illumination power constraint (12b)
can be written as:

r21 + r22 ≥ p̂r. (14)

This constraint indicates that the feasible solutions of r1 and
r2 fall outside a circle shown in Fig. 3(a), which is a non-
convex constraint. We try several tangent lines of the circle
as its approximations, so as to transform the non-convex
constraint into convex. As shown in Fig. 3(b) and 3(c), we
select two groups of approximate feasible domains, which are
given below:

1) The first group has four tangent lines, and the approxi-
mated feasible region includes four convex sets which is
given below

S1 = T1 ∪ T2,

T1 =
{
xE|r1 ≤ −

√
p̂r

}
∪
{
xE|r1 ≥

√
p̂r

}
,

T2 =
{
xE|r2 ≤ −

√
p̂r

}
∪
{
xE|r2 ≥

√
p̂r

}
. (15)



(a) (b) (c)
Fig. 3. (a) The constraint on the target illumination power. (b) The first group of feasible domains. (c) The second group of feasible domains.

2) The second group has eight tangent lines, and the approx-
imated feasible region includes eight convex sets which
is given below

S2 = S1 ∪ T3 ∪ T4,

T3 =
{
xE|r1 + r2 ≤ −

√
2p̂r

}
∪
{
xE|r1 + r2 ≥

√
2p̂r

}
,

T4 =
{
xE|r1 − r2 ≤ −

√
2p̂r

}
∪
{
xE|r1 − r2 ≥

√
2p̂r

}
.

(16)

It is easy to note that the above two groups of feasible
domains are all unions of some simple convex sets. Therefore,
the solution of the original optimization problem P0 can be
easily transformed into solving several convex optimization
problems. Note that the approximated problem with the second
group of feasible domains has smaller gap with problem P0,
but the corresponding complexity is higher compared with the
first group, which will be confirmed in Section VI. Through
choosing different groups can achieve different trade-offs
between the ISAC performance and computational complexity.
It is true that we can further increase the number of tangent
lines to get more accurate approximation but at the sacrifice
of higher complexity.

Specifically, these convex optimization problems corre-
sponding to different convex sets can be written in a unified
form:

P1 : max
xE

min
i

αi (17)

s.t. αE = MxE, (17a)

cTxE ≥ d, (17b)

∥xE∥22 ≤ p0, (17c)

where c and d in (17b) take different values according to
different convex sets.

Further, we can equivalently transform problem P1 to
the following minimization problem P2 by introducing an
auxiliary variable t

P2 : min
t,xE

− t (18)

s.t. MxE ≥ t · 1, (18a)

cTxE ≥ d, (18b)

∥xE∥22 ≤ p0. (18c)

It is easy to prove that P2 is a standard convex optimization
problem that can be directly solved via optimization tools
such as CVX [19]. Furthermore, P2 can be solved more
efficiently with the aid of the modified Hook-Jeeves Pattern
Search algorithm [20].

Therefore, for each group of feasible domains, we just
need to solve the optimization problem P2 individually under
certain convex set with specific c and d to get sets of local
optimal solutions to the original optimization problem P0, and
then we choose the solution with the best result among these
sets of local optimal solutions as the global optimal solution.
In particular, assuming that the number of P2 to be solved is
Np, then Np sets of local optimal solutions will be obtained.
For example, Np = 4 and 8 for the first and second of feasible
domains, respectively. By denoting these Np sets of local
optimal solutions as

{{
t∗1,x

∗
E,1

}
, · · · ,

{
t∗Np

,x∗
E,Np

}}
, then

the global optimal solution x∗
E = x∗

E,n can be determined as
follows:

n = argmax
i={1,··· ,Np}

t∗i . (19)

Finally, the optimal transmit signal vector in the l-slot can
be obtained:

x [l] =
[
IN ON

]
· x∗

E + j ·
[
ON IN

]
· x∗

E, (20)

based on the definition of xE in (7). The proposed symbol-
scaling CI-SLP design for ISAC in this section can be sum-
marized by the following Algorithm 1.

Algorithm 1 Symbol-Scaling CI-SLP Design for ISAC

1: Input: sk [l], H = [h1, · · · ,hKu
]
T, a (θ), p0, p̂r

2: Initial M, aE and bE;
3: Solve Np optimization problems P2, with specific c and

d according to the composition of the feasible domain and
obtain

{{
t∗1,x

∗
E,1

}
, · · · ,

{
t∗Np

,x∗
E,Np

}}
;

4: Find the global optimal solution x∗
E by (19);

5: Obtain the transmit signal vector x [l] by (20).
6: Output: x [l]

IV. SIMULATION RESULTS

In this section, we present numerical results to validate the
above derivations and illustrate the superiority of the proposed



approach. The proposed schemes are compared with PDD-
MM-BCD in [13] in terms of SER performance, transmit
beampattern and execution time. The execution time results
are obtained from a Windows 11 Desktop with i5-12400 and
16GB RAM.

The following abbreviations are used throughout this sec-
tion:

1) PDD-MM-BCD: PDD-MM-BCD in [13], which is an CI-
SLP scheme based on the penalty dual decomposition
(PDD), majorization-minimization (MM), and block co-
ordinate descent (BCD) methods for ISAC system.

2) ISAC-SS-SLP(1/2): The proposed CI-SLP based on
symbol scaling summarized in Algorithm 1, with the
first/second group of feasible domains.

Throughout the simulations, the transmit power budget per
symbol slot is set as p0 = 30dBm, and QPSK modulation is
employed. The BS is equipped with N antennas with antenna
spacing ∆ = λ

2 where λ is the wavelength of the carrier signal.
We set the QoS for communication requirement of the PDD-
MM-BCD scheme as βc = σcΓc, where σc = 22dBm and
Γc = 2.2dB . In the ISAC-SS-SLP scheme proposed in this
paper, we assume that the illumination power requirement for
the target is pr = σrΓr, where Γr = 18.4dB and σr = 20dBm.
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Fig. 4. The effect of Γr on the ISAC-SS-SLP scheme, N = 10, Ku = 3.
(a) illumination power towards the target versus Γr. (b) SER versus Γr

The effect of Γr on the ISAC-SS-SLP scheme is first plotted,
when N = 10, Ku = 3, and the target at the location θ1 = 0◦

with β1 = 1. In Fig. 4(a) and 4(b), a larger Γr means a higher
requirement for illumination power towards the target, and at
the same time the SER performance for communication will
be worse.

Fig. 5(a) and 5(b) respectively depict the SER performance
and transmit beampatterns of different schemes, when N =
10, Ku = 3, and the target at the location θ1 = 0◦ with β1 = 1.
When the transmit beampatterns are similar, the proposed CI-
SLP ISAC schemes based on symbol scaling can obtain better
SER performance under the constraint of the second group
of feasible domains, because the second group of feasible
domains is closer to the original feasible domains. ISAC-SS-
SLP constrained by the first and the second groups of feasible
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Fig. 5. Transmit Beampatterns of different schemes, N = 10, Ku = 3. (a)
SER performance. (b) Transmit Beampattern.

domains can achieve better SER performance than PDD-MM-
BCD, which shows the advantages of our proposed CI-SLP
ISAC schemes based on symbol scaling. For ISAC-SS-SLP,
the results of taking the first and the second groups of feasible
domains are very close, indicating that these two groups of
feasible domains are closely approaching the original non-
convex feasible domains.
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Fig. 6. Performance of different schemes, N = 15, Ku = 3. (a) SER
performance. (b) Transmit Beampattern.

Fig. 6(a) and 6(b) respectively depict the SER performance
and transmit beampatterns of different schemes, when N =
15, Ku = 3, and the target at the location θ1 = 0◦ with
β1 = 1. At this time with a larger number of transmit
antennas, although the sidelobe power of PDD-MM-BCD is
decreased, the illumination power in the target direction is not
significantly improved. This indicates that the performance
improvement of PDD-MM-BCD by increasing the number
of transmit antennas is limited. At the same time, it can
be observed that the SER performance of the proposed SLP
ISAC schemes based on symbol scaling is greatly improved
when the number of transmit antennas increases, i.e., a 7dB
SNR reduction can be obtained when achieving the same SER



performance with PDD-MM-BCD scheme, which means that
our proposed scheme is more potential in massive MIMO
systems.
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Fig. 7. SER performance of different schemes, N = 10, Ku = 3.

Fig. 7 depicts the complexity of the proposed schemes with
PDD-MM-BCD in terms of the execution time. For fairness
of comparison, the optimization problems in PDD-MM-BCD
and ISAC-SS-SLP are solved by the Hooked-Jeeves pattern
search algorithm. With the increase of the number of transmit
antennas, the computational complexity of each scheme will
increase correspondingly, because the number of optimization
variables in the optimization problem increases. As can be
seen, the execution time of CI-SLP ISAC schemes based
on symbol scaling is significantly less than PDD-MM-BCD,
thanks to the objective function in the original problem that
does not require approximation, which eliminates the need for
iterative procedures.

V. CONCLUSION

In this work, we propose a symbol-scaling based CI-SLP
design in ISAC system. The minimum communication scaling
factor among the communication users is maximized while
satisfying the radar target illumination power requirement and
total power budget constraint. In order to solve the proposed
ISAC optimization problem, two groups of approximate feasi-
ble domains are adopted to transform the optimization problem
into convex. simulation results are provided to demonstrate
the advantages and the effectiveness of the proposed symbol-
scaling based CI-SLP design in ISAC systems.
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