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ABSTRACT

Recent years have seen a dramatic rise in the use of passive acoustic monitoring (PAM) for biological and ecological
applications, and a corresponding increase in the volume of data generated. However, data sets are often becoming so
sizable that analysing them manually is increasingly burdensome and unrealistic. Fortunately, we have also seen a
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corresponding rise in computing power and the capability of machine learning algorithms, which offer the possibility of
performing some of the analysis required for PAM automatically. Nonetheless, the field of automatic detection of acous-
tic events is still in its infancy in biology and ecology. In this review, we examine the trends in bioacoustic PAM applica-
tions, and their implications for the burgeoning amount of data that needs to be analysed. We explore the different
methods of machine learning and other tools for scanning, analysing, and extracting acoustic events automatically from
large volumes of recordings.We then provide a step-by-step practical guide for using automatic detection in bioacoustics.
One of the biggest challenges for the greater use of automatic detection in bioacoustics is that there is often a gulf in
expertise between the biological sciences and the field of machine learning and computer science. Therefore, this review
first presents an overview of the requirements for automatic detection in bioacoustics, intended to familiarise those from a
computer science background with the needs of the bioacoustics community, followed by an introduction to the key ele-
ments of machine learning and artificial intelligence that a biologist needs to understand to incorporate automatic detec-
tion into their research. We then provide a practical guide to building an automatic detection pipeline for bioacoustic
data, and conclude with a discussion of possible future directions in this field.

Key words: animal communication, artificial intelligence, automatic detection, bioacoustics, classification, deep learning,
machine learning, neural networks, passive acoustic monitoring.

CONTENTS

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
(1) Acoustic monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

(a) What is automatic detection? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
(b) Scope of the review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II. Background to automatic detection in bioacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
(1) What is automatic detection and why do we need it? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
(2) The current state of the art in automatic detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
(3) What do we hope for from automatic detection? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

III. Perspectives from biological sciences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
(1) Overview of uses of automatic detection in the biological sciences . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

(a) Ecosystems and acoustic indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
(b) Species occupancy and density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
(c) Spatial analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
(d) Species characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
(e) Populations and social groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
(f ) Individual characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

(2) Key challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
IV. Technical perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

(1) Perspectives from computer science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
(a) The role of computation in automatic detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
(b) State of the art in automatic detection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
(c) Assessing pre-existing models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

(2) Conclusions on the technical constraints on the current uses, limitations and expectations of automatic
detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

V. A practical guide to automatic detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
(1) Define research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
(2) Study design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
(3) Start with a pilot study (if possible) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
(4) Data collection and archiving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
(5) Data annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
(6) Choose your detection pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

(a) Interfacing with your pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
(b) Split your data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
(c) Pick your feature representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
(d) Decide on feature transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
(e) Decide on a method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

(i ) Deep learning or not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
(ii ) Choose your evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

(7) Verifications – check your results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Biological Reviews (2024) 000–000 © 2024 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

2 Arik Kershenbaum and others

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13155 by B

ethany Sm
ith - <

Shibboleth>
-staff@

ucl.ac.uk , W
iley O

nline L
ibrary on [28/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fbrv.13155&mode=


(a) When is a model good enough? Performance thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
(b) How harmful are mistakes (false positives versus false negatives)? . . . . . . . . . . . . . . . . . . . . . . . . 18
(c) Reproducibility and accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
(d) Access to raw recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

VI. Ways forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
(1) Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

(a) Bioacoustic challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
(b) Computational challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

(2) Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
(a) Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
(b) Foundation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
(c) Multi-modal detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
(d) Biologists and computer scientists working together on the design loop . . . . . . . . . . . . . . . . . . . 21

VII. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
VIII. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
IX. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

I. INTRODUCTION

(1) Acoustic monitoring

The acoustic monitoring of captive and wild animals pro-
vides valuable data for many purposes, including scientific
research, conservation efforts, management decisions, and
the welfare of individual animals. Acoustic data can be col-
lected using handheld microphones, on-animal devices, or
autonomous recording units (ARUs) placed in the field. Such
data can be collected over periods of time ranging from short,
opportunistic recordings to long-term deployments lasting
months or years. Handheld microphones and ARUs are
non-invasive methods that do not require the capture of indi-
vidual animals, and so reduce disturbance and welfare
impacts (Browning et al., 2017; Soulsbury et al., 2020;
Ross et al., 2023). Acoustic data can help with the monitoring
of elusive, cryptic, or nocturnal species that are difficult to
observe directly (Zwerts et al., 2021), such as bats (Frick, 2013),
wolves Canis lupus (Harrington & Mech, 1982; Kershenbaum,
Owens & Waller, 2019), or marine mammals (Fleishman
et al., 2023). Additionally, where animals use long-distance voca-
lisations, ARUs are beneficial in recording species over large
spatial scales, for example crested argus pheasants Rheinardia
spp. (Vu et al., 2023), gibbons (Vu & Tran, 2019; Dufourq
et al., 2021), howler monkeys Alouatta spp. (Pérez-Granados &
Traba, 2021), wolves (Kershenbaum et al., 2019; Smith
et al., 2021) or cetaceans (Zimmer, 2011). Such methods can
offer detection ranges on the order of several kilometres for
some species, compared with tens of metres for camera traps.
However, as a passive technique, the obvious disadvantage of
acoustic monitoring is that the animal needs to be producing
sound to be detected.

Whilst the collection of acoustic data offers many benefits
and opportunities, it brings with it certain challenges. First,
the deployment and servicing of ARUs (e.g. replacing batte-
ries and memory storage cards) can be costly in terms of time
and labour (Metcalf et al., 2023). Second, although the tools
for acoustic monitoring are now more widely available,

cheaper in cost, and include larger storage capacities and
longer battery life (Hill et al., 2019), this has led to a very large
increase in the quantity of data being stored, transferred, and
analysed. Third, a major challenge is distinguishing the
sound(s) of interest from background sounds which takes an
enormous amount of researcher time, effort, and expertise,
to recognise the calls of species accurately and annotate the
recordings reliably. All of this creates long delays between
data collection and the final results of a study, yet the need
for real-time results can be pressing, especially in the field
of conservation biology. Automatic detection can solve many
of these issues, as a tool to extract sounds of interest automat-
ically, reducing or even eliminating the need for manual
analysis of the data.

(a) What is automatic detection?

Throughout this paper, we will use the term “acoustic signal”
to describe any sound or acoustic event produced by an
animal without regard to the purpose or intentionality of
the signal. This category includes vocalisations (calls, song)
as well as non-vocal sounds such as stridulation. Automatic
detection is the process of identifying the presence of acoustic
signals from sound recordings automatically, without human
effort. Once detected and further processed, numerous prop-
erties of the acoustic signal can be determined (with or with-
out additional human effort). For example, the acoustic
signal could be classified as being produced by a particular
species, its location determined, and the identity of the ani-
mal inferred. The temporal and spectral properties (e.g. call
rate, fundamental frequency, harmonics, modulation, etc.)
of the acoustic signal can be measured and used for addi-
tional processing or for inferring additional information
about the sound production. Some approaches implicitly
combine the processes of automatic detection with other
tasks, for example classification of the detected species, but,
fundamentally, the first step within an automated bioacoustic
processing pipeline is detection.
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(b) Scope of the review

This review arose from an investigative workshop held in July
2023 at Girton College, University of Cambridge, attended
by 22 scientists from both the biological and computer sci-
ences. In this review we set out to highlight and describe
the emerging field of automatic detection of acoustic signals
as a highly interdisciplinary effort that requires expertise
from both biological and computer science to move forward.
We present a review and tutorial that addresses both the
needs of the community of biologists using acoustic monitor-
ing to answer ecological, evolutionary, and conservation
research questions, and the needs of computer scientists
developing new algorithms and implementations. As the
overlap between these two needs and the overlap between
domain knowledge of these two groups is often small, this
review attempts to bridge that gap by addressing both groups
simultaneously, emphasising the missing knowledge of both.
A reader from either field will find this review to be a useful
integration of both domains, providing new information to
both without being inaccessible to either. Whilst we acknowl-
edge that there are ethical concerns surrounding the record-
ing of human activities (Sharma et al., 2020; Sandbrook
et al., 2021), and that automatic detection and removal or
masking of human speech could alleviate some of these con-
cerns (e.g. Cretois, Rosten & Sethi, 2022), we focus this
review on the automatic detection of animal sounds and
encourage more in-depth discussion of human detection
elsewhere.

By way of introduction, the review first presents perspec-
tives on automatic detection for bioacoustics from the point
of view of a biological researcher, aiming to instruct the com-
puter scientist in the needs of the end-user. Then, we present
the perspective of the computer scientist, aiming to instruct
the biologist in the technologies available and their limita-
tions. There then follows a step-by-step guide to the practical
implementation of automatic detection, and finally a discus-
sion of the potential future directions of this field.

Several existing reviews of automated detection for passive
acoustic monitoring (PAM) have been developed in recent
years. Certain existing reviews have a narrow focus on
either a specific taxon, such as birds (Pérez-Granados &
Traba, 2021; Xie et al., 2023), insects (Kohlberg, Myers
& Figueroa, 2024), or cetaceans (Usman, Ogundile &
Versfeld, 2020; Kowarski & Moors-Murphy, 2021), or
emphasise specific applications, such as welfare monitoring
of livestock (Mcloughlin, Stewart & McElligott, 2019).
Others do not comprehensively explore machine learning
(ML) (Gibb et al., 2019; Sugai et al., 2019; Mutanu
et al., 2022) or are very focused on a particular field of ML,
for example classical methods (Bittle & Duncan, 2013) or
deep learning (DL) methods (Stowell, 2022). Our review dis-
tinguishes itself from the existing literature by providing a
comprehensive and interdisciplinary roadmap tailored for
both biologists and computer scientists. This is crucial as
existing reviews often provide limited guidance to research
students new to the concepts in either PAM or automatic

detection, whereas ours aims to fill this gap, making it an
ideal starting point for newcomers to the field. Additionally,
while Sharma, Sato & Gautam (2022) present a related but
brief overview including 20 studies, our review extends
beyond this by encompassing the broader field of automatic
detection for PAM. By integrating these perspectives, our
review updates the academic community on the broader
advancements of automated detection and serves as a practi-
cal guide for emerging scientists in this rapidly evolving field.

II. BACKGROUND TO AUTOMATIC DETECTION
IN BIOACOUSTICS

(1) What is automatic detection and why do we
need it?

To address the challenge of converting terabytes of acoustic
recordings into useful information, scientists have sought to
develop techniques to automate the detection of acoustic sig-
nals of interest. The traditional method of identifying the
signals of interest from longer acoustic recordings was to cre-
ate a spectrogram and manually draw bounding boxes
around the signals of interest, incurring a significant cost in
terms of time and expertise. Fundamentally, the challenge
is to replace the human annotator with computational
methods without a consequent loss in accuracy (Miller
et al., 2023). At its simplest, the aim of automatic detection
is to indicate segments or windows of audio that are likely
to contain a target sound of interest, substantially reducing
the burden, even if the automated annotations need then
be checked by a human. The annotation label can simply
be a binary label of presence/absence of a sound, but this
can also be further refined to classify by taxon, call-type,
number of individuals, etc., in increasing levels of precision
and consequent difficulty for both annotator and algorithm
(Fig. 1). For some species, it can be possible to identify an
individual through its unique vocal characteristics (Petso,
Jamisola & Mpoeleng, 2021). In addition to the class label,
it is possible to design PAM systems that also allow the posi-
tion or bearing of the sound to be estimated (Kershenbaum
et al., 2019; Smith et al., 2021). Such information can then
be used in numerous downstream tasks such as occupancy
monitoring, spatial habitat use, and behavioural analysis,
and automatic detection offers researchers the opportunity
to scale to larger spatiotemporal data sets.

(2) The current state of the art in
automatic detection

The use of automatic detection to accelerate acoustic moni-
toring has a relatively long history (Anderson, Dave &
Margoliash, 1996; Acevedo et al., 2009; Aide et al., 2013;
Dufourq et al., 2021; Oswald et al., 2022). As an early
approach towards automation, simple techniques based on
the energy within a particular frequency range, characteristic
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to the target sound, were used to detect signals of interest
(Ward et al., 2000). More sophisticated approaches consider
the relative energy across multiple frequency bands obtained
through spectral or wavelet decomposition, which provides
higher robustness to variable background noise (Gillespie &
Chappell, 2002). However, these approaches only work if
the signal-to-noise ratio (SNR) of the target sound is suffi-
ciently high, and if other sounds are not present in the same
frequency range which act to mask it.

Other approaches are based on the use of a template or
kernel which acts as a prototypical example vocalisation
(Mellinger & Clark, 1997). Through the use of either
one-dimensional (1-D; temporal) or two-dimensional
(2-D; spectrogram) cross-correlation, a score can be derived
which captures how closely the recorded sound matches the
template sound. By careful selection of a threshold (which
may need to be dynamic), detections can be produced. These
template-based approaches are efficient and easy to under-
stand, but do not generalise well to variations in call structure
and struggle to discriminate between calls from different spe-
cies with similar structure.

Subsequent techniques have used statistical modelling
such as hidden Markov models to detect calls that are modu-
lated in frequency and/or time (Duan et al., 2013; Oswald
et al., 2022), by identifying properties of the target sound
beyond simply frequency range. Such models can provide
more robust and sensitive detections. More recently, there
has been a strong push towards the use of data-driven ML,
exemplified by DL, using techniques such as convolutional
neural networks (CNNs) (LeCun, Bengio & Hinton, 2015),
recurrent neural networks (Yu et al., 2019) and more recently

transformers (Lin et al., 2022). Transformers have been
shown to obtain impressive detection accuracies, for example
BirdNET (Kahl et al., 2021), and the BTO Acoustic Pipeline
(British Trust for Ornithology, 2023). Note, however, that
advances in DL are built on foundations such as correla-
tion/convolution, simply with large numbers of stacked,
learnable kernels and non-linearity between layers.

There is, however, a highly fragmented landscape in the
field of automatic detection – in particular between the
fields of computer science/ML, and bioacoustics/acoustic
ecology – and it can be very challenging for practitioners to
know where to get started. Should one build their own classi-
fier from scratch, fine-tune an existing model, or simply use
an off-the-shelf pretrained model (Dufourq et al., 2022;
Stowell, 2022)? Good quality detectors already exist in a
relatively user-friendly format for: birds (e.g. BirdNet;
Kahl et al., 2021), bats [e.g. BTO Acoustic Pipeline (British
Trust for Ornithology, 2023); Kaleidoscope (Wildlife Acous-
tics, Inc, 2024)], cetaceans (e.g. PAMGuard; Gillespie
et al., 2009) and rodents [e.g. DeepSqueak (Coffey, Marx &
Neumaier, 2019); MUPET (Van Segbroeck et al., 2017)].
However, these detectors tend to be known only by those
using them in the field and are not straightforward to gener-
alise to other taxa without retraining or altering the model
architecture or assumptions. There is also an imbalance with
some taxa being better represented than others in terms of
the availability of detectors. The process of building or fine-
tuning a new DLmodel for a practitioner’s particular habitat
and species of interest is non-trivial and involves several tasks
such as installing the correct software scripts, designing data-
loaders, and training models on specialised computing

Ecosystems and acoustic indices
Measuring acoustic variation and diversity across 
many different species in the environment.

Species repertoire
Measuring the range of different acoustic signals 
produced by a single species.

Populations and dialects
Measuring acoustic variation between different 
populations of the same species.

Individual identity
Identifying individuals by differences in their 
acoustic signals.

Fig. 1. Hierarchy of acoustic signal specificity.
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hardware such as Graphical Processing Unit (GPU) clusters.
This serves as a major barrier to widespread adoption of
these new techniques, unless a tame computer scientist
can be persuaded to assist in the process. By contrast, the
more mature field of automatic detection in image-based
detection (“camera trapping”) [e.g. Camelot (Hendry &
Mann, 2018) and Agouti (Casaer et al., 2019)], can serve
as an exemplar for deriving best practices, as existing tools
are easy to use for non-programmers, and easily general-
ised to different taxa.

(3) What do we hope for from automatic detection?

Despite the challenges associated with the automatic detec-
tion of acoustic signals, rapid advances in ML are starting
to bring this concept into reality. Although the context under
which acoustic data are recorded and their end use will vary
widely, the common requirement is for algorithms that take
acoustic data as an input, and then detect and return
extracted sounds as the output. Some users may only require
outputs of particular target sounds, such as a selected species,
whereas others may require all sounds of potential interest to
be detected. Ideally, the ultimate end goal of automatic
detection for biologists would be a universal, off-the-shelf
algorithm capable of detecting and classifying all animal
vocalisations such that anybody, including those without
any training in computational methods, could process their
acoustic data more efficiently and tailor it flexibly to
their particular use-case (Romero-Mujalli et al., 2021).
Where an off-the-shelf detector for a sound of interest is not
readily available, algorithms that are easy to train with a rel-
atively small amount of data and minimal annotation effort
should be the aim.

III. PERSPECTIVES FROM BIOLOGICAL
SCIENCES

In this section, we provide, largely for the benefit of the
reader from a computer science or other non-biological
background, an overview of the possible roles for bioacous-
tics in addressing several important evolutionary, ecological,
and conservation questions, highlighting the potential benefit
that automatic detection can provide.

(1) Overview of uses of automatic detection in the
biological sciences

Detecting acoustically active animals through their acoustic
signals can provide a wealth of information that is important
to conservation biology, ecology, evolutionary biology, ani-
mal behaviour, and welfare (Mcloughlin et al., 2019; Odom
et al., 2021; Erbe & Thomas, 2022). Often, these areas of
study can overlap: animals can produce sounds to influence
the behaviour of others in a wide range of contexts, for
example to attract a mate or warn off an intruder, or as a

by-product of other behaviours, such as the sound of wings
flapping or footsteps.
Historically, conservation efforts and biodiversity surveys

have been skewed towards species that are easy to trap or
track across the landscape, often depending on direct obser-
vation or finding physical traces, such as scat or hair
(Boakes et al., 2010). However, the field of bioacoustics allows
us to survey remote or otherwise inaccessible areas without
the need for the researcher to be present, for example deep
sea environments, Arctic and Antarctic regions, and rain-
forests (Staaterman et al., 2017), with research often focus-
ing on the loud and persistent calls of target species to
detect their presence. Like image-based detection, bio-
acoustics generates large data sets which challenge analy-
sis, but, unlike camera traps, the same sound can be
recorded in multiple places, multiplying the data to be
assessed and analysed.
Below, we provide a broad review of the uses of acoustic

data in the biological and ecological sciences, from measures
of biodiversity at geographic scales to tracking the move-
ments and behaviours of individual animals, and highlight
how automatic detection can increase the efficiency and effi-
cacy of monitoring.

(a) Ecosystems and acoustic indices

Any multi-species soundscape will consist of a wide range of
frequencies being used by different species in the same
environment (Krause, 1993). To maximise the chance that
their signal will be audible to others, animals usually avoid
acoustic signal interference by vocalising in different fre-
quency ranges or at different times, as described by the
acoustic adaptation hypothesis (Hansen, 1979; Rothstein
& Fleischer, 1987). This ecological phenomenon makes it
possible to detect particular clades or species. It also means
that estimates of biodiversity can be made based on the num-
ber of different acoustic signals being produced at different
times/frequencies.
Acoustic indices are summary metrics that provide a quan-

titative measure of acoustic complexity by analysing varia-
tion in the frequency and timing of acoustic signals, rather
than identifying individual sounds. Such indices offer metrics
for wildlife monitoring and assessment, characterising bio-
logical communities through sound (Sueur et al., 2014;
Buxton et al., 2018; Alcocer et al., 2022). While acoustic indices
are informative about the acoustic complexity or general biodi-
versity of a landscape, they are less useful for deriving specific
information about species or the individuals vocalising.
Acoustic indices typically do not use automatic detection

and classification of acoustic signals, as, by their nature, they
characterise the soundscape as a whole. However, automatic
detection of sound classes, for example distinguishing acous-
tic signals of anthropogenic origin from those of biological
origin, can improve the ability of acoustic indices to provide
useful indications of biological activity (Narasimhan, Fern &
Raich, 2017; Fairbrass et al., 2019; Clark et al., 2023). Thus,
effective automatic classification of acoustic signals may
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become an important element of improving acoustic indices
in future research.

(b) Species occupancy and density

Occupancy modelling is the statistical analysis of the patterns
and dynamics of a species in a given space over time
(MacKenzie et al., 2003), which can be informed by acoustic
signals (Wood & Peery, 2022; Cole et al., 2022). Bioacoustic
occupancy monitoring can provide critical information on
the presence and absence of species and the dynamics of
the ecosystem, particularly for cryptic or elusive species.

Population density estimates model a species’ abundance
within a defined space. Density estimates are an extremely
important tool for assessing spatiotemporal population changes
that can be the result of declining prey numbers, land-use
change, human–wildlife conflict (Wolf & Ripple, 2016; Ogutu
et al., 2016), or other factors, and bioacoustics data can provide
an important tool for estimating the densities of animal popula-
tions (Marques et al., 2009).

(c) Spatial analyses

Population surveys and behavioural research often need to
be able to determine the location and/or movement patterns
of animals. Bioacoustic surveys have been used in more
recent years to supplement or replace previous tracking
methods (Frommolt & Tauchert, 2014). For example, the
tracking of migratory species across their extensive ranges,
where radio/satellite telemetry is only useful if the individuals
tagged with a transmitter survive what may be a high-
mortality journey, can benefit from the application of bio-
acoustic techniques. While telemetry is an effective method
for learning about a species’ movement, it can also be highly
invasive, can affect the behaviour of individuals being
trapped, and is not always suitable for all species/age groups,
for example species that are too small to carry the weight of a
transmitter, or species in remote areas (Sharpe et al., 2009).

Depending on the intended research goals, it may be
sufficient simply to detect the presence/absence of an
animal within a recorder’s range (macro-localisation), or
one may need to infer the exact position of an individual
(micro-localisation). There are benefits and limitations to
each: macro-localisation can inform on occupancy, habitat
suitability, territory use, and migratory patterns. On the
other hand, with a significant increase in the complexity of
use, advanced tools also allow amore targeted approach such
as multilateration, where the exact individual’s location is
calculated based on the time difference of arrival (TDOA)
of an acoustic signal to multiple recording devices (Mennill
et al., 2012). Such micro-localisation avoids double counting
(if that is required) for density estimates, can inform on ani-
mal movement speed and direction, as well as providing
fine-grained territory boundaries, but requires additional
downstream processing to carry out the localisation analysis.

Estimation of a focal animal’s home range and territory
can provide wildlife managers with a boundary for their

activity (Powell, 2000), permitting the study of intraspecific
dynamics and spatial distribution of individuals across a land-
scape (Burgos & Zuberogoitia, 2020), which can be impor-
tant for conservation action. The feasibility of using
PAM to monitor animal ranging patterns will depend on
the natural history of the animals, available resources,
and ethical concerns For example, PAM has been used to
estimate home range size in bats (Coleman et al., 2014)
and to monitor spatial activity in chimpanzee Pan troglodytes
communities (Kalan et al., 2016). The use of global posi-
tioning system (GPS) collars or satellite tags may provide
more precise estimates of ranging behaviour, however,
for many species (e.g. those where for conservation
reasons, capture and sedation is undesirable) these
approaches are not feasible, warranting a non-invasive
approach such as PAM. Real-time automatic detection
combined with localisation reduces the research effort
required for follow-up visual observation and can obviate
the need for visual observation entirely.

(d) Species characteristics

Automatic detection of acoustic signals is complicated by the
fact that there are relatively few species that, like the
American toad (Anaryxus americanus), produce a single call
(Bee, 2012), while many species produce multiple call types
[e.g. the northern mockingbird (Mimus polyglottos) produces
hundreds of different song types (Derrickson, 1988)]
(Fig. 2). Thus, while it is relatively easy to link a croak to
the presence of a toad, it can be more challenging to design
a tool that will detect all the potential acoustic signals of the
mockingbird. This is further complicated if the species’ dif-
ferent call types need to be classified beyond simple detection
(e.g. as contact calls versus alarm calls).

Collectively, all the distinct call types a species produces
can be defined as the vocal repertoire. The size of the
repertoire may be thought of as a simple proxy for vocal com-
plexity (Bouchet, Blois-Heulin & Lemasson, 2013; Manser
et al., 2014), and the structure of the repertoire (e.g. how often
call types are used and interpretations of the potential uses)
are important for describing a species’ behavioural ecology.
Therefore, both general acoustic signal detection (“the target
species made a sound in some way”) and specific call-type
detection (“the leopard-specific alarm call has been pro-
duced”) are useful to different studies and these analyses
can be nested. Comparisons of vocal complexity between
species, species groups, and taxa (Kershenbaum et al., 2021;
Leighton & Birmingham, 2021) may enable research into
broad evolutionary or ecological questions, such as cognitive
abilities, adaptive advantages of cognitive skills, or the evolu-
tion of language (McComb & Semple, 2005; Dunn &
Smaers, 2018).

The more varied and less stereotyped calls are, the larger
the challenge to automatic detection. However, the implica-
tions of variability within a single call type on the perfor-
mance of automatic detection and classification have not
been adequately investigated.
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(e) Populations and social groups

The same species can show variation in their vocalisations
among social groups and or across geographic regions.
Research into these differences can offer unique insight into
phylogenetic patterns, speciation (Meyer et al., 2012; Riesch
et al., 2012; Heaphy & Cain, 2021), historic geographical
patterns (Laiolo et al., 2001; Kershenbaum et al., 2012; Hebets
et al., 2021), or differences between social groups (Ford, 1991;
Vel�asquez et al., 2013; Garland, Castellote & Berchok, 2015;
Kershenbaum et al., 2016b). Automatic detection can scan
through long-term recordings to unveil temporal and cultural
variations of vocal behaviours, for example in whales
(McDonald, Hildebrand & Mesnick, 2009; Garland et al.,
2011; Best et al., 2022).

(f ) Individual characteristics

For some research questions, it may be important to identify
individual animals and/or characterise the traits or states of
individuals of a target species, such as age, sex, body size,
emotional valence/arousal, and physiology. Acoustic signals
can potentially encode all of this information. Examples of

the benefits of individual identification include gaining
insights into the evolution and ecology of a species, such as
life-history stages and social structure (Clutton-Brock &
Sheldon, 2010); facilitating conservation efforts, for example
tracking movement of critically endangered species in the
landscape (Mcloughlin et al., 2019); and improving manage-
ment in captivity, for example measuring vocal activity as
an indicator of welfare in zoo-housed animals (Castellote &
Fossa, 2006; Clark & Dunn, 2022). A diverse range of spe-
cies’ calls have been found to encode individual identity from
birds (Fox, Roberts & Bennamoun, 2008; Martin et al., 2022)
to cattle (Green et al., 2019), cetaceans (Kershenbaum,
Sayigh & Janik, 2013; Bøttcher et al., 2018), and frogs
(Qian et al., 2023). Individual identification provides an open
scope for spatiotemporal monitoring of species without tag-
ging (Aide et al., 2013), while also offering the opportunity
for population estimation using mark–capture recapture
methods, which rely on individual identification (Marques
et al., 2013; Buxton et al., 2018).
Acoustic signals can be used in a wide range of species to

assess the intensity (high to low) and valence (positive to neg-
ative) of emotional arousal of animals, which in turn can be
used as an estimate of welfare in animals in captivity

Fig. 2. (A) The call of the American toad (Anaxyrus americanus), which only produces a single call, repeated for long periods. (B) The
varied mimicry of the northern mockingbird (Mimus polyglottus), composed of varied songs of other species, which would be difficult to
detect in a general way. The spectrograms show time on the x-axis and frequency on the y-axis.
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(Volodina & Volodin, 1999; Clark & Dunn, 2022) and farms
(Manteuffel, Puppe & Schön, 2004). Inferring emotional
arousal from acoustic signals also allows for the assessment
of “positive welfare” in animals (Laurijs et al., 2021), and it
is possible to monitor farm animals for the onset of disease
[e.g. pigs (Sus domesticus) (Exadaktylos et al., 2008; Mcloughlin
et al., 2019) and chickens (Gallus domesticus) (Mao et al., 2022)].

(2) Key challenges

As outlined above, many studies in ecology and evolution
require relatively precise identification of the type of acoustic
signal, for example different call types, the source of the
sound, individual identification, or the localisation of
the source of the sound in space. Despite the huge potential
for automatic detection to answer these challenges, the field
is still facing significant barriers during implementation in
biological studies, ranging from limitation in infrastructure,
lack of training, inaccessibility of methods, and practical lim-
itations in the field. For example, field recordings are often
not of optimal recording quality and have a low SNR. Even
under ideal conditions, acoustic signals themselves may be
highly varied and irregular, with low stereotypy and a high
degree of variability between individuals and groups, or geo-
graphical dialects (Nelson, 2000), all of which can present a
challenge for automatic detection. The broad uptake and
implementation of automatic detection requires that models
are robust to such variation.

The training of models requires data to be robustly identi-
fied and correctly attributed to the study species or individ-
ual, often derived from visual observation of the callers.
Collecting these data can be challenging as, for instance,
individuals may remain visually cryptic, or call only at certain
times. Thus, ground-truthing data requires high quality, reli-
ably identified call data sets which can be difficult to obtain,
but are essential. Furthermore, generalising data from cap-
tive animals or in unique circumstances might give rise to
misleading results (e.g. owing to differences in call structure
or repertoire). Thus, robust ground-truthing of large data
sets is rare, but essential, and should be a focus for future
research.

IV. TECHNICAL PERSPECTIVES

(1) Perspectives from computer science

(a) The role of computation in automatic detection

Advanced computational methods can provide solutions to a
wide range of bioacoustic problems. For example, acoustic
signals of interest can be merely detected (i.e. the start and
end times identified), or additional information can be
extracted, such as classification of signal type, or location of
the sound source. If different types of acoustic signal are pre-
sent, they can be grouped into multiple classes, which might
represent different species, or different call types within a

single species. Even when a single type of acoustic signal is
present, the task of counting the number of such events or
sub-elements of the events is often non-trivial (e.g. the differ-
ent notes in a birdsong, or the individual barks of a dog).
Therefore, the role of automatic detection and automatic
processing of bioacoustic data is a broad field, with many
possible applications.

Computational methods can help with any task that can be
clearly defined. One way to define the task is through explicit
rules (an engineering approach), for example, to specify that
a target acoustic signal occurs solely and uniquely in a certain
range of frequencies. Alternatively, a set of examples can be
provided to the algorithm (a ML approach), and the algo-
rithm is trained to generalise those examples to detect suc-
cessfully when presented with novel examples. In the case
of automatic detection, some tasks are simple enough that a
good method can be designed directly using the engineering
approach: this typically happens with situations of highly ste-
reotyped sounds, where template-matching often works well
(Barker, Herrera & West, 2014), or low-noise environments
with few interfering sounds, where energy detection may
work well (Hood, Flogeras & Theriault, 2016).

When the target sounds, or the background, are more
complex – such as with recordings of elaborate bird song or
soundscapes with high levels of anthropogenic noise – then
ML is of benefit. As noisy problems can rarely be defined in
a clear-cut “engineering” way, ML attempts to reach a solu-
tion by generalising from a set of examples instead. Although
ML has been investigated for many years (Towsey
et al., 2012), it is the era of DL that now makes many bio-
acoustic detection tasks achievable (Stowell, 2022). It is still
important to define the task to be solved clearly – by curating
good data sets for training and evaluating systems, and by
specifying the input and output data formats. Input data for-
mat, in bioacoustic applications, is generally some represen-
tation of the sounds recorded, whereas the output format is
defined by the nature of the “answer” that the system
is trained to supply, for example species presence, individual,
call type, etc., or properties of the call itself.

Data curation aside, the power of ML comes from having
techniques that can “train” (optimise) the system to achieve a
particular goal, and so the output data format matters
because it is closely tied to this procedure of optimisation. If
the output format is a yes/no answer about species presence,
this is the same format as a binary classification task in ML
and can be addressed directly by training a classifier
(Stowell, 2022), which takes sound as input, and outputs a
corresponding indicator: present/absent. Very often, how-
ever, the output format wanted is more complex; for
instance, given a long audio recording as input, we may want
to output a list of (predicted) events, giving each event’s start
and end time, and optionally its frequency range as well.
Note that this is quite similar to “object detection” in image
recognition, and indeed, most bioacoustic research uses spec-
trograms as a visual representation of a sound, rather than
working with the sound directly. In this case, we may typi-
cally be looking for a list of “bounding boxes” along the time
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axis or in time-frequency, leading some directly to
adapt image object detection algorithms to spectrograms
(Kershenbaum & Roch, 2013; Venkatesh, Moffat &
Miranda, 2022; Wu et al., 2022).

When a MLmodel has been trained, better results may be
obtained if the model is applied in the same conditions as the
training data, that is “in-domain” as opposed to “out-of-
domain” data (Best et al., 2020). For example, conditions
might be “in-domain” if they have the same background con-
ditions, microphone type, and sampling protocol as in the
training data, for example the same cetacean species in two
different oceans.

(b) State of the art in automatic detection methods

No algorithm will generalise perfectly to all situations: the
choice of training data represents the choice of intended
domain. Classic ML advice would be to avoid “out-of-
domain” situations, but many taxa do not benefit from such
a large amount of prior work as that which has been carried
out, for example, on birds. Could we nevertheless make use
of off-the-shelf models from similar tasks, or must we start
building a large new data set?

Happily, a recent widespread trend involves “transfer
learning”, using one or more pretrained models that have
been trained on tasks that are different from (but usually
related to) the original domain: for example, we could con-
sider models trained on human speech recognition. The
models are then re-used for the current application
(i.e. acoustic signals of other species), and it is often found that
the original learning makes training the model on the current
data more effective (Zhuang et al., 2021).

A common approach to transfer learning, known as
fine-tuning, consists of modifying only a small subset of
parameters and adapting the inputs and/or outputs. The
modification requires training the model on a new set of
examples, made up of audio recordings and corresponding
annotations. This procedure is computationally much lighter
than performing the process from scratch. It also requires
fewer labels since it exploits many of the regularities in the
initial data set. As a rule of thumb, one may try to choose a
base model that has been trained on similar target sounds
or background noise, for example BirdNet, an algorithm
trained for birds that has been used for various bioacoustic
tasks (Kahl et al., 2021). Yet we have observed successful
attempts in adapting models from significantly different
acoustic data, even from different frequency ranges, espe-
cially applying models trained on human data to broader
ecological systems (Çoban et al., 2020; Sethi et al., 2020;
Leroux et al., 2021; Sarkar & Magimai Doss, 2023).

When using transfer learning (also known as “pretrained”
models), special care must be taken. The model must be
applied to acoustic data that closely resemble the data on
which it has been trained. The user must reflect on details
such as matching sampling rates, normalisations, SNR-levels,
and duration of the input audio segments. Usually, the pro-
ducers of such models will have trained models on diverse

data to ensure generalisation. However, optimal perfor-
mance is achieved when staying within the domain of opera-
tion for which the model was designed.
The algorithm trained on a different system can be consid-

ered to perform a role similar to the role of the spectro-
graphic representation in aiding human interpretation of
sounds. In the same way that a spectrogram or filterbank
takes a sound waveform and presents it in a different format
(and one where the important features are easy to detect by
eye), so a model trained on a different species, for example,
cannot detect the target species well, but may nonetheless
produce an output (known as extracted acoustic features) that
can be used as the input to train another model, which will
then be more successful in finding the focal species. In the
ML literature the resulting features are often referred to as
embeddings or latent representations. Unlike traditional
acoustic features like a spectrogram, these embeddings are
often difficult to interpret on their own. They are the result
of a large composition of complex functions whose parame-
ters have been optimised to solve a particular task such as
classifying an acoustic scene or discriminating from a given
set of videos the one that matches a particular sound. Fine-
tuning alone may not be sufficient to obtain the desirable
level of accuracy. We may then further adapt the model to
our specific needs by retraining all of its parameters on the
acoustic data of interest. One must take into consideration
that these models have been designed with a large number
of parameters – 317 million parameters for the large version
of HuBERT for instance (Hsu et al., 2021) – to be optimised
on thousands of hours of audio. When trained on a small
number of examples this may quickly lead to overfitting,
where the model will work as expected on the data presented
during training but will fail to produce satisfactory predic-
tions for unseen audio examples.
Even when many hours of field recordings are available, it

is not clear if the acoustic data will be sufficiently diverse to
produce acoustic features that will be performant for down-
stream tasks such as the detection of vocalisations. In other
words, if a bioacoustic data set does not contain any useful
(or additional) information which could be reemployed in
the downstream detection tasks, then retraining the pre-
trained model might not improve performance. Further-
more, re-training these models on large amounts of data is
usually a tedious task which calls for the expertise of trained
computer scientists and access to costly computational
resources such as GPU clusters.
The approach of adapting transfer learning models to

automatic bioacoustic detection can still be carried out by
pretraining models on bioacoustic data directly, instead of
human speech or generic audio. It has been shown to yield
interesting results in the downstream detection performances
for a variety of species (Hagiwara, 2022), but much work still
needs to be done in this area. The success of this method
relies on the availability of large data sets which could allow
for the pretraining of a single, large-scale, multispecies foun-
dation model. As is the case in the speech processing and
image recognition domains, making such a model available

Biological Reviews (2024) 000–000 © 2024 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
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to the bioacoustic community could then allow for efficient
user-friendly classifiers to be trained for new tasks (“fine-
tuned” i.e. derived from the original trained system) within
a unified pipeline.

An alternative to the transfer learning approaches is to use
smaller models, with fewer parameters that may be trained
entirely on the target audio data. For example, an algorithm
called TweetyNet is designed for detecting/segmenting bird
vocalisations in a laboratory context, based on a CNN to
be trained specifically for each target bird; the package
includes an interface to simplify that training process
(Cohen et al., 2022); DeepSqueak can do the same for rodent
vocalisations (Coffey et al., 2019). Those algorithms directly
train the CNN as a classifier/detector. Another approach
used by many in the bioacoustics community is to train a
so-called “auto-encoder” on the data set of interest to extract
deep feature representations from unlabelled data. This
unsupervised approach consists in optimising a neural net-
work to compress the data from an audio snippet into a
numerical vector; this compression is intended to create
a semantic representation of the data, following the principle
that a semantic representation should be a good solution to
the problem of highly compressing data. This technique has
been applied to call categorisation in a variety of species
(Sainburg, Thielk & Gentner, 2020; Best et al., 2023).

Even using such methods, it is common that bioacoustic
data sets are not large enough to train an ML detector well,
or that some categories/contexts are underrepresented in
the training data. It is thus common (and recommended) to
use “data augmentation” to assist with this: “new” training
examples can be created by small modifications of existing
ones. This has been widely investigated and found to
improve performance, to a similar extent as the use of pre-
trained networks (Lostanlen et al., 2018).

The bioacoustics community faces complex scenarios with
sound events potentially overlapping both in time and fre-
quency (e.g. dawn chorus of birdsong) or with highly non-
stationary background noise (e.g. urban scenes). These
require more advanced and specific solutions that tackle the
problem of working with mixtures of sounds. Data-
augmentation techniques serve this purpose by artificially
constructing similar data for which annotations can be cre-
ated by design (Jansson et al., 2017; Zhang et al., 2018;
Wisdom et al., 2020). These approaches have been applied
to improve performance on up to 10 simultaneously calling
bird species in a simulation study (Parrilla & Stowell, 2022)
and in real recordings with significantly fewer simultaneous
calls (Denton, Wisdom & Hershey, 2021; Bermant, 2021).

(c) Assessing pre-existing models

The fast pace at which the ML community publishes new
pretrained models renders them outdated quickly. The avail-
ability of accessible learning resources for some models
makes them a go-to solution for many practitioners, despite
having been superseded by other options. Model publishers
should document their work in a way approachable by

non-experts if they aspire to have an important impact on
the bioacoustic community. On the other hand, users of these
models may consult the latest benchmarks and challenges
that target diverse applications of audio ML representations.
For instance, HEAR (Turian et al., 2022) benchmarked mul-
tiple state-of-the-art methods on a varied set of tasks in
speech, music and environmental sounds. More recently
BEANS (Hagiwara et al., 2022) proposed a benchmark spe-
cific to bioacoustics where representations are tested on
detection and classification tasks of several species.

(2) Conclusions on the technical constraints on the
current uses, limitations and expectations of
automatic detection

Automatic detection has been used for density estimation
(McDonald & Fox, 1999; Marques et al., 2013), occupancy
(Dawson & Efford, 2009; Abrahams & Geary, 2020), species
presence (Obrist et al., 2010), and phenology, for example the
start of breeding, or daily onset of song (Willacy, Mahony &
Newell, 2015; Oliver et al., 2018). This technology can be
used in conjunction with other non-invasive monitoring
methods such as camera traps, scat surveys, hair collection,
and human observation (Long et al., 2012), providing addi-
tional information and allowing monitoring of otherwise
cryptic species that might elude detection. There should be
ongoing conversations between biologists and computer sci-
entists, bidirectional and iterative, improving the survey
quality, accuracy, and algorithm usability over time.
Biologists can provide the ground-truthing and validation
of the use of automatic detection, while computer scientists
can develop the system and work with them to improve the
automatic detection system iteratively.

While we have argued for the widespread use of automatic
detection systems, there are limitations, and these should be
considered at the start of a project. Some of these are self-evi-
dent: signals that do not rise above background noise will be
lost as undetectable. Also, signals can be difficult to separate if
they overlap with either intraspecific, interspecific, or unre-
lated sounds, as in the dawn chorus when birds sing with
many overlapping, very similar elements, making extrac-
tion/detection of a single unit difficult. Data set sizes (for both
training and deployment) may be a limiting factor. We have
referred to data augmentation and denoising to account syn-
thetically for data limitations. These and other tools (e.g. data
imputation) are often helpful, but the results are unlikely to
be as reliable or unbiased as they would be with a large rep-
resentative data set. They should not be relied upon as a sil-
ver bullet when recordings are rarely observed, noisy, or
otherwise hard to analyse. Just as with human annotation,
automatic detection will always be subject to some level of
bias and inaccuracy; one advantage of automatic systems is
that these factors can be numerically evaluated. Automatic
detection model predictions are only ever as good as
the input training data. Annotations that are not accurate
or have not been conducted appropriately for the
intended application may worsen the efficacy of the model.
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Furthermore, the usage of automatic detection systems
should be made in awareness of error rates. Indeed, while
tuning the confidence threshold enables balancing between
precision and recall, it never completely removes false posi-
tives nor false negatives. Nonetheless, if error rates are cor-
rectly taken into account in the following analysis, yielded
results will be reliable (e.g. density estimation is possible
despite 50% of false positives if they are accounted for;
Marques et al., 2009). There can be an accumulation of errors
over time if the thresholds are chosen either to be too low or
too high, discarding weak identifications wrongly, or placing
too much confidence in others. Finally, all acoustic detection
relies on the sound event occurring, and often animals may
choose not to vocalise or create a sound and thus can be
missed. What is not heard cannot be counted. However,
despite these caveats, we believe that automatic detection
and PAM offer the opportunity to collect and analyse data
that cannot be processed by other means, providing an excit-
ing and valuable new tool for the biological sciences.

V. A PRACTICAL GUIDE TO AUTOMATIC
DETECTION

We now present a practical guide for using automatic detec-
tion. There are many decisions that we must make when
designing a study that uses automatic detection, and our goal
is to help practitioners optimise these decisions. We realise
that some of these decisions may be constrained by access
to financial resources, lack of training in bioacoustics, limited
technical skills in coding and ML, and/or lack of access to
high-speed internet for cloud storage and computing. These
limitations may be particularly pronounced for researchers
in the Global South. We acknowledge that there is still much
to be done to make these tools and approaches accessible
for all.

This guide is developed to help users implement an “off-
the-shelf” automatic detection approach, or for developing
or adapting their own approach. We strongly advocate that
practitioners implement a pilot study to ensure the approach
they plan to use is feasible before embarking on a large-scale
endeavour. Importantly, even with the most sophisticated
automated approach, a substantial amount of human invest-
ment is needed to create training data sets, evaluate detector
performance, and verify the detections.

(1) Define research questions

The most important thing to consider when using automatic
detection is the specific research question. For example, if
you are interested in detecting the presence or absence of a
rare acoustic signal (e.g. a gunshot or the presence of an
endangered species) then you will want to use an approach
that will ensure high recall (i.e. high probability of detection)
and you may tolerate a relatively high number of false posi-
tives. Alternatively, if you are interested in subsequently

classifying individuals from the detections, you may prefer
to focus on retaining high SNR calls and will tolerate lower
recall with higher precision. Your research question will
influence every decision you make in the automatic detection
workflow, including study design, data collection and the
analytical approach. For guidance on defining research ques-
tions, we refer readers to Sugai et al. (2019).

(2) Study design

Depending on the nature of the research question,
researchers will need to determine their study design, includ-
ing hardware needs, recording schedule and whether the
processing of data will be carried out in real time or at a later
date. For instance, for the detection of a single species,
researchers may deploy ARUs over the landscape for a
period of time and then download the data onto a hard drive
to be processed offline. The recording schedule also needs to
be determined according to the research goal. We refer the
readers to more extensive discussions of this issue for further
details (e.g. Browning et al., 2017; Metcalf et al., 2023).
Real-time processing is an emerging area, but due to the lim-
itations of placing power-efficient computation in the field,
real-time automatic detection typically is more bespoke and
less accurate than offline processing.

(3) Start with a pilot study (if possible)

Given the costs, both financial and in human labour, of
implementing projects that use automatic detection, we
strongly advocate that researchers start with a small-scale
setup to test out their planned approach. For a large-scale
PAM study, deploying a few recorders over a smaller spatial
scale and a shorter time period may provide enough acoustic
data to get started with automatic detection. If the signals are
relatively rare (e.g. gunshots) perhaps finding online reposito-
ries or data sets of samples would be necessary. A well-
designed pilot study will help researchers make informed
decisions about annotations, choosing an automated detec-
tor, and reporting and interpreting their results.

(4) Data collection and archiving

Data storage and archiving remains challenging, since the
large data volume of the raw audio in many projects often
goes beyond the limits of free or easily available services. Fur-
thermore, Metcalf et al. (2023) recommend backing up audio
data in multiple copies, and also making use of cloud storage.
Simply storing the audio is typically only part of the issue: you
and your collaborators will also need to access it, for example
to visualise or to apply an algorithm to the data set, which
means that speed of upload and download (bandwidth)
may be an equal or greater concern. Cost of storage
and bandwidth are often significant questions. Arbimon
(Ganchev, 2020) is one project that aims to store and share
large volumes of wildlife audio on behalf of others.
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Reducing data sizes can be achieved in many ways, includ-
ing audio file compression and data subsampling. Lossless
compression (such as FLAC) can reduce file size without los-
ing information; lossy compression (such as MP3 or AAC)
will discard at least some information from the signal, but
might still support reliable analysis (Heath et al., 2021),
depending on the research question. An alternative strategy
very relevant in automatic detection, is to keep only the audio
corresponding to the positive detections: for rarely occurring
sounds this will greatly reduce the storage requirements,
while keeping the detected audio clips available for inspec-
tion or re-analysis. However, any missed (false-negative)
sound events will be irretrievably lost. This would also pro-
hibit future interrogation of the raw data for other
potential uses.

Good-quality metadata including time, date, and location,
is crucial for the success and reproducibility of any project.
This can be stored in the audio files (as “RIFF tags”) or sepa-
rately (Metcalf et al., 2023). Research and other publicly
shared data should be “FAIR” – findable, accessible, inter-
pretable, reusable (Wilkinson et al., 2016) – and publishing
metadata in standardised formats is key to this. The Biodiver-
sity Information Standards (TDWG) group maintains the
metadata standards Darwin Core (Darwin Core Task
Group, 2009) and Audiovisual Core (GBIF/TDWG Multi-
media Resources Task Group, 2013) which help with this
through a lightweight approach of specifying common field
names and their definitions (such as “Capture Device”,
“Taxon Coverage”, “Locality”, “Start Timestamp”). By
using such standards, researchers can ensure that their meta-
data will be understood by others and be findable. It also
enables a next generation of methods that could automati-
cally generalise across multiple available data sets, since the
metadata are compatible.

(5) Data annotation

A well-annotated data set is critical to the performance of a
ML-based automated detector (Fig. 3). When creating anno-
tations, many decisions must be made, including which soft-
ware will be used, the specific approach, as well as (often
subjective) decisions regarding specifics about the granular-
ity, or what “counts” as an annotation, for example individ-
ual vocalisation bouts or whole sequences. There have been
calls to standardise annotation approaches in bioacoustics
(Nicholson, 2023), similar to what has been done for human
speech (Gibbon, Moore & Winski, 1998) and music
(Humphrey et al., 2014). However, to our knowledge a stan-
dardised protocol does not yet exist, perhaps due to the diver-
sity of signal types and research questions across bioacoustics
and/or a lack of communication among fields. Here, we aim
to provide some guidance for annotating a data set for auto-
matic detection (Fig. 3).

Due to the relatively large amount of human investment
required to get high-quality annotations, researchers often
ask themselves how many annotations are needed. This gen-
erally depends on the research question, and it is often

recommended to annotate as many signals as possible, how-
ever there are more specific questions that can help guide
these decisions. The first concerns the classes or discrete types
of signals in your data set. For example, will you annotate
every bird species in a long-term recording? Will you anno-
tate a single call type from a single species? Or will you
annotate all the notes or elements in a sequence from a single
individual? In addition, one must decide whether to annotate
the “negative class” (often the “noise” or “absence” category).
If doing exhaustive annotation where all the signals of inter-
est are annotated, then it can be assumed that anything that is
not annotated is the “negative class”. However, strategically
annotating other “distractor/noise” sound events may
improve detector performance, especially sounds occurring
within the target frequency range which are loud or easily
confused with the target signal. These “noise” labels can help
with error analysis and with the training of an algorithm.

Decisions about the temporal scale of the annotations
must also be made. A common approach is to annotate the
smallest acoustic unit, for example note or syllable
(Kershenbaum et al., 2016a); however, this method can be
very time-consuming for large data sets. For vocal sequences
that are comprised of multiple acoustic units (e.g. gibbon
vocalisations) another approach is to annotate particular
call types or phrases within the longer sequence, e.g. anno-
tate only the female gibbon contribution to the duet
(Clink et al., 2023).

The number of annotations needed will be influenced by
the research question and the choice of the automatic detec-
tion approach (see Section V.6) but may also be limited by
external factors such as funding support for analysts. It is
important to consider the diversity of signal types as well as
background noise, and to work to include a distribution of
annotations or samples across sites, times of day, groups, indi-
viduals, etc. A higher number of annotations (and therefore
more available samples for training data) will likely improve
detector performance and may be necessary in cases where
the signals of interest are highly variable. In some cases, such
as the use of transfer learning, a smaller number of training
samples (� 25) may be sufficient (Dufourq et al., 2022), but
even in these cases, only a test set on the order of 100 exam-
ples would enable a reliable evaluation of the model.
Researchers also need to make decisions about which target
signals to include in their annotations, such as whether to
include low SNR acoustic signals, signals that substantially
overlap with non-target signals, or signals that are abnormal
in structure.

A common way to do annotations is by visualising spectro-
grams in a graphical user interface (GUI) such as Raven Pro
(K. Lisa Yang Center for Conservation Bioacoustics, 2014),
Sonic Visualizer (Cannam, Landone & Sandler, 2010) or
Praat (Boersma & Weenink, 2007) and creating bounding
boxes around the signal(s) of interest. Other possibilities
include the use of an energy or coherence detector (Wijers
et al., 2021) to identify all signals above a certain threshold
in a given frequency range and then labelling these detec-
tions, applying an unsupervised clustering algorithm and
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labelling the batches of samples that have been grouped
together, or the use of DL approaches to identify the start
and stop times of signals of interest automatically, for exam-
ple TweetyNet (Cohen et al., 2022). However, one must be
cautious about mass semi-automated annotations, since these
may introduce non-obvious bias that can affect the conclu-
sions of the study. We recommend including random sam-
pled manual inspection steps in the procedure. It is
important to document your annotation protocol, including
the decisions you made and why you made them, in a way
that can be reproduced by others. We suggest including
these protocols as online supporting information in publica-
tions. In addition, it is crucial to check both intra- and inter-
observer reliability for creating annotations (Duc et al., 2021).
Figure 4 illustrates the considerations when choosing
annotations.

(6) Choose your detection pipeline

Figure 5 illustrates the considerations in designing and using
different detector types.

(a) Interfacing with your pipeline

Selecting an automatic detection approach depends on
factors such as technical familiarity, desired granularity,

and budgetary constraints. Products such as Kaleidoscope
(https://www.wildlifeacoustics.com/), PAMGuard (https://
www.pamguard.org), and Arbimon (https://rfcx.org/
ecoacoustics) provide easy-to-use interfaces for systems that
can perform automatic detection on audio samples originat-
ing from a wide variety of environmental samples. These
tools come equipped with traditional approaches rooted in
standard signal-processing techniques but are limited in their
ability to utilise modern advances in ML. Conversely, mod-
ern DL frameworks, such as TensorFlow, PyTorch, and
Keras (Stowell, 2022), as well as the models built with them,
rarely come with an easy-to-use interface which makes them
less accessible. Commercial approaches offering cloud-based
ML as a service (MLaaS) solutions, such as those from
Amazon, IBM, or Microsoft, allow easier access to these
advanced methods, but can be prohibitively expensive.
Practitioners must decide whether easy-to-use tools are suffi-
cient for the problem at hand, or whether it would be advan-
tageous to exploit the often-superior performance of DL
methods, which require more investment of time, money or
both. The complexity of the research question has a signifi-
cant influence on the selection but may be outweighed by
the need to invest further in expertise or funding.
In the case of any automatic detection approach, the

pipeline must be evaluated in the context of the research
questions which necessitates dividing the data properly to

Fig. 3. Example annotation of acoustic signals, in this case, wolf howls. Taken from Kershenbaum et al. (2019), showing a
spectrogram generated using Raven Pro.
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evaluate performance and generalisability, the choice of an
appropriate detection mechanism, and the selection of rele-
vant, comparable, and appropriate metrics.

(b) Split your data

As for most ML tasks, data sets should be split into “training”,
“validation” and “test” subsets to ensure the true generalisa-
bility and comparability of a model’s performance. The
training set is directly used to optimise the detection algo-
rithm, that is to learn from data; the validation set is to check
performance during the training phase; the test set is to take a
final estimate of the algorithm’s performance on data it has
never before encountered. This way, an amount of data

(usually around 10–20% of the total data set) need to be kept
unseen during training and validation of the model. This
helps to avoid model overfitting, which would cause the
model to learn only the characteristics of the training data,
without the ability to generalise to new data, and would bias
performance scores (James et al., 2013, p. 176).

The validation (or development) set is also used for select-
ing good values for parameters that affect the model but are
not in the set of parameters it learns automatically (e.g. the
number of layers) – this is so-called “hyperparameter
tuning”. This is especially useful in the case of DL models
which involve empirical testing to determine the optimal
configuration for elements such as optimisers, learning rates,
or early stopping. The best-performing model, as determined
using the validation set, is then applied to the test set. The test
set should not be used to fit the values of such hyperpara-
meters or to compare model architectures since it would no
longer serve for generalisation assessment; it is kept for final
performance evaluation. Creating an effective test data set
may include the selection of a separate microphone entry,
specific time frames, separate recording locations, or subsets
of vocalisations from an individual which were not included
in the training set, amongst others. The general idea here is
to separate the prediction capabilities of the computer model
from recording specificities and data-related biases. We
always want to ensure that an automatic detection model is
generalisable rather than specifically trained for a single
recording setup, location, or individual.
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Fig. 5. A flowchart showing the decisions necessary in
automated detector design. DL, deep learning; GPU,
graphical processing unit; ML, machine learning.
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To provide an example, in the case of creating a presence/
absence detection model, one should not use annotations
from the same file for training and testing. Instead, certain
audio files should be used to create the training data set,
and independent files should be used to test the detection
model. Furthermore, the model should be applied to entire
testing audio files and not only to parts of the test file that
have been annotated, as this might result in an overly opti-
mistic evaluation of the model and potential false positives
would be missed.

(c) Pick your feature representation

Depending on the automatic detection approach, acoustic
data may be transformed through feature extraction to ease
the automatic detection process. In the computational bio-
acoustics literature, an array of such feature-extraction
methods can be found, each presenting their own advantages
and limitations.

In bioacoustics, the dominant approach is undoubtedly
spectral representations such as spectrograms or mel-
spectrograms. This type of representation usually allows for
interpretable visualisation of acoustic data and provides an
easy route to use popular vision-based models such as CNNs
for object detection and image classification. Despite this,
some information from the raw waveform may get lost
when computing these representations. This is especially
the case for transient signals such as odontocetes’ clicks which
are poorly represented by Fourier transforms (Jiang
et al., 2018). CNNs developed for spectrograms cannot be
used directly for waveforms, because the data are of different
dimensionality; however there have been a lot of recent
developments in DL methods applied directly to waveforms
and so this is increasingly feasible (Baevski et al., 2020).

DL methods now allow for high-dimensional inputs such
as whole spectrograms, with the succession of layers extract-
ing higher level features and information. However, histori-
cally, users were the ones responsible for selecting relevant
features to represent signals. In this context, low-dimensional
spectral summary statistics were often used, and given to a
classification algorithm such as a support vector machine
(Mitrovic, Zeppelzauer & Breiteneder, 2006). For relatively
simple use cases, for example stereotyped signals and low
background noise, this approach might suffice in obtaining
satisfactory performances.

Recently, as stated in Section IV.1.a, extracting pretrained
latent representations as features is also being adopted as a
promising solution. This approach may imply additional
effort on the part of the user and raises an array of questions
on pretraining data sets, selected model architectures or the
need for higher computational power. It can also prove suc-
cessful in easing the downstream learning process or allowing
for smaller annotated data sets in few-shot learning
perspectives.

Despite the advantage of using such abstract representa-
tions, using traditional engineered features such as funda-
mental frequency, call duration or number of notes may

still prove to be effective depending on the task at hand.
These can also be combined with features extracted from
the time domain such as energy and zero-crossing rates.
These can then allow for the use of simpler algorithms which
may be easier to implement and require little computational
power and training time.
Overall, there is no such thing as the perfect feature-

extraction method for bioacoustics. Comparing different fea-
ture representations should always be the preferred approach
and can be carried out on the previously mentioned valida-
tion set, ideally in a pilot study.

(d) Decide on feature transformation

Prior to feature extraction, specifically in the case of noisy
recordings characterised by low SNR, some detectors may
benefit from denoising, that is the automatic removal of
background noise from the acoustic signal of interest. An
extensive overview of recent approaches can be found in
Xie, Colonna & Zhang (2021) with accessible open-source
solutions. Some of these methods are built on light-weight
algorithms such as spectral-gating (Sainburg et al., 2020),
others involve the use of DL with CNNs, Noise-2-Noise-
based approaches (Bergler et al., 2020), or denoising-
autoencoder models (Vickers et al., 2021; Yang et al., 2021).
Although it is useful in some applications, this pre-

processing step is not always recommended andmust be used
with caution as it may result in a loss of information. In some
cases, noise can also be directly handled by the detector itself,
especially when using noise-resilient DL architectures or
when stationary noise is not overlapping the target signals.
In cases where noise reduction is applied prior to training,
the evaluation and test data sets will need to be put through
the same process, to ensure that training and testing data
have comparable characteristics and contain similar acoustic
information. When building a noise resilient model, one may
also resort to multi-condition training approaches. This
method can simply adding noisy corrupted versions of the
data to the training set or including both the original and
the denoised versions of the data during training to help with
model robustness to noisy acoustic contexts. This approach is
fairly common in speech processing (Yin et al., 2015) but
needs further exploration in bioacoustics.
Depending on the amount of training data available, data

augmentation techniques may be used to artificially increase
the variability of the data on which models are optimised.
The choice of which augmentation technique to use depends
on the application. One should aim to apply transformations
that cover the range of variations found in real signals. How-
ever, care must be taken to avoid transformations that could
invalidate the annotations. For instance, in a bird call detec-
tor, reversing sounds could be a tempting simple transforma-
tion, yet this could result in artificially making a bird call
more similar to that of another species. Simple transforma-
tions may also create artefacts that can complicate the model-
ling, for example a pitch shift of a howl may also
unrealistically shift the background noise.
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Commonly used techniques include stretching or com-
pressing the duration of acoustic signals, shifting their pitch,
making small volume modifications, or adding a variety of
noise or mixing with other audio events via some linear or
non-linear combination (e.g. taking one presence event and
mixing it with one or more absence events). These transfor-
mations may also be combined to produce more variation.
Going even further to generate training data, recently gener-
ative DL methods, such as Generative Adversarial Networks
(GANs) have been proposed to generate synthetic examples
(Wang, She & Ward, 2021; Bergler et al., 2022a).

(e) Decide on a method

(i) Deep learning or not. As mentioned above, the choice of a
detection mechanism is dependent at least partially on the
complexity of the problem. If the signals are well defined,
have high SNR, are highly stereotyped, and the research
question involves simple segmentation and can be done off-
line, a package such as Kaleidoscope or Arbimon may be
more than adequate.

Using ML or DL may be advantageous in situations
requiring a more complex analysis, such as call type classifi-
cation, or where robustness to environmental noise is neces-
sary (Aodha et al., 2018; Stowell, 2022). However, in
situations where access to either a large amount of computing
resources or the training/expertise to use them effectively is
limited, the use of DL may not be possible. Additionally, it
must be considered where the detection mechanism will be
deployed. If access to a large computing cluster is readily
available but the end result must function on a small device
for field deployment, then a large and complex model may
not work. Conversely, if the final model will only be used off-
line using minimal computing resources (budget GPU), then
the model choice becomes somewhat more flexible. Different
ML approaches are given in Table 1, together with their
requirements and example studies.
(ii) Choose your evaluation metrics. The evaluation of the

automatic detection mechanism depends primarily on
the type of task to be performed. A fully supervised detec-
tion/classification task is typically evaluated using metrics
such as accuracy, precision, recall, F-score, or area under
the receiver operating characteristic curve (AUROC)
(Lever, Krzywinski & Altman, 2016). These all provide dif-
ferent insights and can help evaluate how the model is per-
forming. For example, precision indicates the fraction of
relevant results (true positives) that are found among all
detected events, whereas recall indicates the fraction of sig-
nals in the data set that were effectively found. Typically, a
balance must be decided as to which metrics are most impor-
tant for a particular task. For example, recall may be an
important score to consider when detecting rare phenomena
where missing a single detection of an underrepresented class
may prove costly. Wrong choice of metrics may bias the
results, for example, in the case of highly unbalanced data
sets, that is when the acoustic object to be detected is rather
underrepresented in the data set compared to negative

labels, accuracy may be very high despite low performances
on the small number of positive test samples.

Visualising results from supervised training methods can
involve a confusion matrix, which is a table that shows the
ground truth values on one axis and predicted values on
the other, allowing easy-to-digest visual analysis of model
performance. Another option is the receiver operating char-
acteristic curve (ROC curve), which plots the trade-off
between true positive rate (TPR) and false positive rate
(FPR) at all confidence thresholds, enabling the analyst to
choose more easily a prediction threshold that suits their
needs. The AUROC gives a summary of the model’s perfor-
mance across thresholds and is agnostic of threshold choice.

A similar visualisation to the ROC curve is the precision-
recall (PR) curve, which also highlights the balance between
missing out events (false negatives) and making false alarms
(false positives). The area under the PR curve is commonly
referred to as the mean average precision (mAP). The impor-
tant difference between PR and ROC curves is that the pre-
cision gives the proportion of correct detection among all
detections and the FPR indicates the proportion of wrong
detections among all negative examples. In the case of highly
unbalanced data sets (e.g. 1% of positive examples), the FPR
can be rather optimistic as compared to the precision, and
thus the mAP might come out to be significantly lower than
the AUROC. Detailed discussions on possible performance
metrics can be found in Davis & Goadrich (2006) and Hil-
debrand et al. (2022).

Useful metrics for unsupervised learning are harder to
identify, as they depend on the research question. If labelled
data are available, they can be used to assess the quality of a
clustering attempt by measuring completeness (across how
many clusters are samples with the same label) or homogene-
ity (the proportion of samples in a cluster with the same
label). Visualisation for unsupervised clustering results are
often done by reducing the dimensionality to either two or
three dimensions using t-stochastic neighbour embedding
(t-SNE) (Maaten &Hinton, 2008), uniformmanifold approx-
imation and projection (UMAP) (McInnes, Healy &
Melville, 2020), or a similar method.

(7) Verifications – check your results

The verification of model performance on the test data
should involve quantitative and qualitative evaluations.
Quantitative metrics give the performance in terms of com-
parable values like accuracy, precision, or recall, or compos-
ite metrics like the F1 score, which combines both precision
and recall, whilst qualitative metrics would help to under-
stand the practical implications of the model. Qualitative
analysis involves manually checking or visualising the predic-
tions. This may involve plotting automatic segmentation
results on spectrograms to account visually for the precision
of detected time frames. It may also be carried out through
a simple manual inspection of a subset of results. Careful
manual analysis of the signals with missed detections or false
alarms could help to identify the characteristics that trigger
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or do not trigger the models and help to improve the models
further by adding the specific variations needed in the train-
ing data or in cleaning training data (especially wrong anno-
tations or mislabelled data).

(a) When is a model good enough? Performance thresholds

Understanding the performance thresholds and being realis-
tic about the task is a pragmatic way of approaching the
problem. It is important to understand that ML models are
statistical in nature and may never provide 100% perfor-
mance even with perfect data or models. Understanding
the limitations of the model and the desirable performance
in the real-world scenario can help set the thresholds for per-
formance, for example, in a trade-off between false positives
andmissed detections (Karnan, Akila &Krishnaraj, 2011). In
some scenarios it may not be even practically feasible to
achieve a desirable performance due to factors like overlap-
ping sounds, environmental noise or very low SNR. But
understanding and defining the problem based on a
trade-off between what is feasible with the acoustic data
and what is desirable (for example, defining the range of dis-
tance within which the target species needs to be detected)
could help define performance thresholds and build practical
models.

(b) How harmful are mistakes (false positives versus false negatives)?

The use case for automatic detection will influence how
much and what kind of errors are acceptable. For instance,
for an analysis on vocal behaviour, missing a call in a
sequence might strongly distort the results. Conversely, if
occupancy trends are aimed for, missing one call in a
sequence is insignificant, and imperfect detection can be
incorporated into occupancy models, albeit as a naïve proxy
(Bailey, MacKenzie & Nichols, 2014). Recall is thus more or
less important depending on the type of study being
conducted.

In general, false positives are undesirable, but a certain
number might be acceptable (Shiu et al., 2020). In any case,
converting the precision into the number of false positives
per hour allows an unambiguous interpretation by the user
and the planning of how to deal with false alarms.
Additionally, prior knowledge of vocal behaviour, such as

sequence regularities, might allow filtering out of false posi-
tives. Such priors can be used to reduce confidence thresh-
olds and increase the recall, but with the risk of imposing
too strong priors and missing out on uncommon sequences.

(c) Reproducibility and accessibility

We also expect automated vocalisation detection systems to
be made available to other users, thus broadening the contri-
bution to the field of bioacoustics (especially to users without
a strong computer science background). For this purpose,
code for detection systems should be shared in comprehen-
sive and accessible ways, such as in public repositories, and
should be well documented with detailed user manuals
(Braga et al., 2023). An easy way to make a detection model
available to the community is to follow common standards
for data input/output that will allow their integration
into pre-existing interfaces, such as ARISE (Hogeweg &
Stowell, 2023) or Raven Pro (K. Lisa Yang Center for
Conservation Bioacoustics, 2014).
Besides publishing code for experiments to be reproduc-

ible, data sets used for training and testing should be made
available to the community for building new systems and
comparing them using standard annotation protocols (see
Section V.5). Indeed, public benchmarking data sets exist
(Joly et al., 2015; Politis et al., 2021) but cover only a relatively
small set of species targeted by bioacoustic studies.

(d) Access to raw recordings

In addition to the labelled training data set, raw
recordings (as opposed to cut-out snapshots) are of potential
value to the research community, for example to train self-

Table 1. Different types of machine learning techniques.

Learning type
Labelled data
requirements

Metrics Visualisations Examples

Supervised
(segmentation,
classification)

Large amount of labelled
data

Accuracy, precision,
recall, F-score,
AUROC, mAP, UAR

Confusion matrix
ROC-curve,
PR-curve

Bergler et al. (2022b)

Unsupervised or
self-supervised
(clustering)

Labelled data not
necessary

Reconstruction loss
(MAE, MSE),
homogeneity,
completeness

Reconstructions,
dim-reduction
(t-SNE, UMAP)

Cuevas et al. (2017)

Semi-supervised
learning

Some labelled data – large
amount of unlabelled
data (optional)

Both supervised and
unsupervised

Both supervised and
unsupervised

Bermant et al. (2019); Saeed et al.
(2021); Leroux et al. (2021);
Hagiwara et al. (2022)

AUROC, area under the receiver operating characteristic curve; MAE, mean absolute error; mAP, mean average precision; MSE, mean
squared error; PR, precision-recall; ROC, receiver operating characteristic; t-SNE, t-stochastic neigbour embedding; UAR, unweighted
average recall; UMAP, uniform manifold approximation and projection.
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supervised models, or for reuse in a search for other sounds/
species. However, it might not always be feasible to make this
readily accessible in public repositories due to storage and
other constraints. We encourage researchers to store the
raw recordings locally and share them on demand with the
community or with interested parties.

VI. WAYS FORWARD

We now consider some important ways forward for auto-
matic detection for bioacoustics, including the challenges still
to be overcome, best practices that should be implemented
now, and the future directions of the field.

(1) Challenges

(a) Bioacoustic challenges

Although automatic detection has already brought large
improvements to the field of bioacoustics, challenges remain
that are closely related to the nature of animal sound and/or
the desired uses of such data. For instance, since population
density estimates rely on detections, overestimations are pos-
sible from double-counting individual vocalisations when
they are picked up by multiple devices (Kimura et al., 2010;
Marin-Cudraz et al., 2019). The estimates can be further
improved, and double-counting issues can be reduced if calls
can be localised and attributed to an identified individual
(Nijman, 2007; Knight & Bayne, 2019; Hedley et al., 2021;
Law et al., 2021).

Moreover, in most cases population density cannot be esti-
mated without knowing the detection range of the system
(Metcalf et al., 2023). The detection range of the acoustic sig-
nal will depend on multiple factors including source level and
frequency range of the signal, characteristics of the habitat
including ambient noise levels, vegetation and topography,
along with the specifications of the ARU (Haupert, Sèbe &
Sueur, 2022). However, detection range is often difficult to
estimate, especially in forest environments or areas with
extreme topography, and in many cases is ignored or
assumed to be consistent across studies, when this may not
be the case. When species of interest are near the limit of
the detection range of the device, recordings of vocal signals
may become attenuated or missed. This might cause prob-
lems in tasks that try to capture specific aspects of the vocali-
sation, for example to infer behaviour, caller identity, or
communication patterns, rather than generic tasks looking
at occupancy (Spillmann et al., 2017).

Even when accurately focusing on the vocal signals of a
target species, animals might engage in simultaneous vocali-
sations or choruses (Torti et al., 2018), which makes a simple
timestamped detection system insufficient for acoustic behav-
iour analysis. Also, it can be difficult to distinguish vocalisa-
tions of similar species if they share characteristics, for
example dog barks and coyote barks share a number of
similarities which make it difficult to determine which

species produced the rapid-fire sequence of noisy barks,
although there are some quantitative differences (Feddersen-
Petersen, 2000).

(b) Computational challenges

Computational challenges in this field include questions of
algorithms, data sets, computational efficiency, and comput-
ing platforms. One overarching challenge within ML in the
broad sense, and with particular relevance to automatic
detection, is the ability to generalise. For example, a model
well-trained for a particular species can perform poorly with
even slight variations in recording devices, ambient noise, or
operating environments. This could lead to low accuracy
without further testing and adjustment. Creating scalable
models that have the flexibility to add new species to the
training data set, to increase the number of vocally active spe-
cies that can be detected, is still a challenging task. Transfer-
ring knowledge from models built with data from one species
to a new species without further training data is even more
desirable. We also note that many models are highly task
specific – the data specification, annotations, model architec-
tures, and systems are highly optimised for best performance.
For example, a system used to determine the occupancy of a
species may not be suitable for individual identification,
understanding communication, or behaviour patterns which
superficially appear to be related but are subtly different
tasks. It is not immediately clear to a user how far to trust
in the generalisation of a detector.

Acquiring generic data sets that can address multiple tasks,
such as population density estimation and behavioural char-
acteristics, poses a significant challenge due to limitations in
data collection strategies. Typically, data collection is initially
planned to address specific tasks, which makes it difficult to
acquire data sets that can be scaled to any given task. This
is a challenge as it is essential to streamline and optimise
the recordings to collect only data of interest to a particular
task to increase storage and computational efficiency. But,
at the same time, the data collected might not include the
context or information needed to use it for a new task. A lack
of generic, benchmark data sets has significant implications
for the standardisation of methods in the field and the appro-
priate evaluation of research.

In bioacoustics, as in other fields, DL comes with very lim-
ited interpretability, an issue known as the “black box prob-
lem”. This amplifies the problem that conclusions drawn
about DL models will be specific to the data set they were
tested on, which significantly hinders the process of finding
a consensus for the best architecture or training procedure
to be used. In certain cases, it is also unclear how different
research studies split their data sets and conduct model eval-
uation. Currently, little to no standards on the best
approaches exist and without these best practices in place,
authors will implement their own approaches within their
research. The best opportunity to overcome issues such as
these is firstly to encourage further development of public
access or benchmark data sets, and secondly to probe models
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on their detailed behaviour regarding these data sets (Alain &
Bengio, 2018). Within the current literature, the approach
that authors have taken to implement their ML testing meth-
odologies and model evaluation differs drastically. In most
cases, comparisons are not made to existing results on data
sets that are publicly available, instead, most studies present
their findings related to their proposed method on the data
set that was collected for the study. These observations are
quite different to what has been observed within the com-
puter vision and natural language processing literature
where most studies compare their proposed method to vari-
ous baselines and existing state-of-the-art methods on the
same data sets. Consequently, a comparison among research
studies within bioacoustics is not feasible and determining the
state-of-the-art is non-trivial. Various initiatives exist that
provide bioacoustic benchmark data sets and standardised
public evaluations, including automatic detection in particu-
lar, although these are neither as large nor as widely used as
in mainstream ML application domains (Stowell et al., 2019;
Ferrari et al., 2020; Hagiwara et al., 2022).

TrainingMLmodels, particularly deep neural networks, is
computationally intensive. Specifically, computers, worksta-
tions, or servers with a large amount of processing power
and GPU may be needed, to speed up the training or just
to make it achievable in reasonable time. Furthermore, cer-
tain deep neural networks require a large amount of GPU
RAM to load the model into memory, given the large num-
ber of trainable neural network parameters that need optimi-
sation. The issue of access to computational power can
exacerbate inequalities between people, institutions, and
countries. However, the good news is that the widespread
use of pretrained models can massively decrease the amount
of computation needed: most researchers should not need to
train a model from scratch. This helps to reduce inequalities
as well as the carbon footprint incurred through a move to
ML methods.

In conjunction with computation, data storage require-
ments have skyrocketed, with the amount of data being col-
lected from PAM and necessities to store, share and create
backups of these very large data sets. In certain cases, practi-
tioners have had to ship hard drives physically across the
world to share acoustic data sets, and in other cases practi-
tioners share large data sets via cloud-based solutions. It is
unlikely that storing all audio for all projects is feasible, and
yet discarding audio takes away the possibility of reanalysis
or new uses. Bioacoustics will benefit from the development
of mixed schemes with well-designed heuristics to store some
audio in full resolution (e.g. detected audio clips) and the
remainder in highly compressed formats which are still reus-
able (e.g. embeddings or low-bitrate lossy compression).

There are other considerations that arise from the large
data volumes that are required both for training automatic
detection systems, and for investigating biological questions
using bioacoustics. Logistical challenges in maintaining the
data collection devices include changing batteries, calibra-
tion of microphones, and general wear and tear. Sometimes
the devices need to be deployed in remote, difficult-to-access,

or even dangerous locations, which makes maintenance even
more challenging. Therefore, the effort required to gather
the volume of data needed for training automatic detection
models needs to be considered carefully. However, artificial
intelligence being a rapidly evolving field means that new
techniques and models may ease (or indeed exacerbate) the
problems of providing enough data.

(2) Future directions

(a) Accessibility

The extent to which automatic detection for bioacoustics is
accessible to a wide range of researchers across different fields
and geographical regions is patchy and insufficient. Future
developments in the field must include increasing the ease
with which researchers can implement and customise the
technology. Usable, stable, and open-source tool kits with
an associated GUI, and potentially a cloud-based solution,
can aid the entry of practitioners from a non-ML background
and reduce the learning curve. Standards-based interopera-
bility and component-based approaches will help ensure that
solutions remain well-maintained and usable.
Tomove to the next generation of automatic detection, we

look forward to further work developing the scale, reliability,
and generality of ML methods in bioacoustics. But even con-
sidering the current state of the art, the barrier to entry for
practitioners, students and researchers who are new to the
field of ML is high (Broll & Whitaker, 2017; Schultze,
Gruenefeld & Boll, 2020). This barrier is potentially even
higher for newcomers in ML for bioacoustics than those
entering the field of ML for computer vision or natural lan-
guage processing. For the latter two, there are large quanti-
ties of educational material, including blog posts, online
tutorials, books, videos, and software repositories. The num-
ber of research laboratories, and researchers from tertiary
educational institutions working on automatic detection for
PAM or bioacoustics in general is not evenly distributed
between the Global North and South, and thus, the ability
to train students may differ between regions. There is a press-
ing need for more educational material to become available
so that those entering the field can rapidly learn the necessary
skills to facilitate progress, and as such, we encourage
researchers and practitioners to create and share open-access
educational material.
Complementary to educational materials is of course that

systems themselves should be more accessible and user-
friendly. The required use of Python or R (let alone libraries
such as Tensorflow, and repositories such as Github, etc.) acts
as a barrier to many potential users, and so projects that
develop good interfaces are to be celebrated. However, the
pace of change in ML methods is rapid, as well as the diver-
sity of platforms (e.g. mobile devices), so it is risky to advocate
a single graphical interface. The solution is to rely on
component-based approaches and well-documented stan-
dards; as long as user interfaces can use standards-based
methods to “talk to” algorithms and data sets, and each of
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these components can be replaced, substituted and
improved, work in this domain will provide a good substrate
that makes it easy for interface developers to add value to the
work (Darwin Core Task Group, 2009; GBIF/TDWG
Multimedia Resources Task Group, 2013). For all these com-
ponents, the community needs to consider their maintenance
models (open source or commercial, free or subscription
based) and the ongoing maintenance of core components
should not be left to chance.

(b) Foundation models

As with the maturation of ML in fields such as image or
speech recognition, we expect animal vocalisation detection
models progressively to standardise, not only in terms of
model architectures but also in data representation. Indeed,
pretrained models created from large data sets with a variety
of species or taxa can yield rather generic embeddings, allow-
ing good performances when fine-tuning for a specific task,
even when relatively few labels are available. Fields such as
text processing and image recognition are beginning to move
to a scale where “foundation models” emerge, meaning DL
models which are trained across massive and highly varied
data sets, whose scales lead to emergent generalisation
behaviour and which can be reused for a wide range of
downstream tasks (Bommasani et al., 2022). The same could
happen for bioacoustics and automatic detection: although
the size of the benefit is hard to foresee, large-scale highly
generalised models could indeed overcome the significant
limitation in bioacoustics that many custom tasks do not
come with strong training data sets. An alternative approach
is few-shot learning, recently explored to generalise robustly
from as few as five examples (Nolasco et al., 2023). Such
methods indicate that “one big data set” is not necessarily
the main objective for the field. These trends may converge,
with the many public bioacoustic data sets forming a richly
structured pretraining curriculum for systems to generalise
well from simple examples.

(c) Multi-modal detection

Some challenges posed by automatic bioacoustic detection,
including difficulties in separating individual emitters, pre-
cisely assessing population density, double counting, or miss-
ing detections, could potentially be eased by multi-modal
approaches: incorporating additional modalities such as
images, video or GPS data into the automatic inference pro-
cess. In fact, this may result in complementary information or
context missing from the acoustic data and enhance the
detector’s performance, which can then enable uses such as
abundance estimation (Akamatsu et al., 2013) and activity
tracking (Li et al., 2020; Morrison & Novikova, 2023). Auto-
matic multimodal approaches can also allow tackling com-
plex and innovative behavioural questions for species
known to communicate in multimodal ways, such as primates
(Slocombe, Waller & Liebal, 2011; Liebal & Oña, 2018) and
spiders (Uetz & Roberts, 2002; Hebets, 2005). Multimodal

data thus presents many advantages for automatic bioacous-
tic detection, all the while raising an array of limitations and
adding a certain degree of complexity to ML solutions.
Recording multimodal data is a first important challenge
which can be partly addressed through the increasing
availability of new efficient hardware solutions, such as
lightweight, inexpensive camera traps and drones. The auto-
matic processing of non-acoustic data is also being investi-
gated and numerous ML models exist as promising
solutions (Akamatsu et al., 2013). Yet, the simplicity, diversity
and quantity of information contained in bioacoustic data
seem to make it a superior solution in most detection tasks
(Enari et al., 2019), at least until vision-based ML and visual
recording hardware/large data storage and processing show
significant improvements.

(d) Biologists and computer scientists working together on the design loop

Some ML models and systems are designed without the full
domain knowledge or context of the problem being
addressed. There needs to be close collaboration between
the ML engineer designing the systems and training models,
and biological scientists, as domain experts, who can validate
the solutions and performance of the models. The process
pipeline needs to be designed such that domain experts
closely monitor every stage from the methodology for data
collection, design of data-collection devices, data annotation
techniques or methodology, data splits, model architecture
(including inputs and outputs), and performance metrics
and performance threshold values. It is also worth noting that
the same biologists may also be the ideal audience for the
commercialisation of foundational models once they become
available and the technologies and methods are easily acces-
sible. The system should be iteratively improved with active
feedback from experts in the field or through the knowledge
of the domain expert. This in turn maps to the process flow
standardisation discussed in earlier sections.

Since bioacoustic tasks deal with big data sets, demanding
high computational power, there needs to be consideration
of the environmental impacts of data storage, data transfer,
computation power in terms of model training, validation
or deployment in the real world. Training ML models is
computationally very expensive and the use of GPUs results
in large amounts of energy consumption. This raises the
question of sustainability with respect to the research being
conducted. Various independent researchers training similar
models on the same data sets would result in a suboptimal use
of resources. Energy consumption may be reduced by train-
ing smaller models (by model pruning, or “distillation”) or
by sharing models. There are options of cloud storage
or cloud computations (Aide et al., 2013) which could benefit
from the usage of green data centres in remote locations
(Ministry of Local Government and Modernisation, 2021)
that have green infrastructure for energy production
(through renewable energy sources) and are perhaps less
harmful to the environment, rather than local GPUs or
server solutions.
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It is also important to think of low-footprint, low-
power-usage models and systems in real-world deployment
for data collection or final deployment. Currently, many
research studies are applying automatic detection algorithms
on data that were collected in the past. We, however, antici-
pate that the field will move towards real-time algorithms
which require systems that consume less energy in compari-
son to modern GPUs. To achieve this, more efforts are
required within model compression, for these models to be
embedded into small devices during data collection or
deployment in the field.

Automatic detection holds large opportunities for
advances in the field of conservation and welfare, and draw-
ing on the domain knowledge of biologists not currently
involved in bioacoustics can open up new research directions.
The advantages of processing large amounts of acoustic data
seem clear to those currently involved in the field, but the
wider biological community should be involved to find new
fundamental research questions in the field of ecology and
evolution (Clutton-Brock & Sheldon, 2010; De Frenne
et al., 2018), for example around species occurrence
(Sebasti�an-Gonz�alez et al., 2015; Rice et al., 2021;
Sattar, 2023), population density (Marques et al., 2013) and
diversity (Kotera & Phillott, 2022), habitat use (Brookes,
Bailey & Thompson, 2013; Kotila et al., 2023), phenology
(Dede et al., 2014; Monczak et al., 2017), and the early detec-
tion of invasive species (Juanes, 2018). Such questions offer
opportunities for research into major conservation chal-
lenges like biodiversity loss and the effects of climate change
(Sugai & Llusia, 2019; Ross et al., 2023). Presently, studies
driven by existing bioacoustics practitioners mostly focus on
occurrence, or spatial or temporal distribution of a single spe-
cies, whereas the advancement of automatic detection poten-
tially allows for a focus on multiple species and to map
biodiversity and potentially the functioning of whole ecosys-
tems (Ross et al., 2018).

Another example of how biologists and ecologists can steer
the direction in which automatic detection may be developed
in the future is to identify research questions without current
technological solutions. For example, although detecting
signs of poor animal welfare in captivity has been the subject
of many studies (Zhang et al., 2022; Mao et al., 2022), there
are comparably very few studies investigating the welfare of
wild animals (Mcloughlin et al., 2019). This is surprising given
the great potential acoustic monitoring of threatened species
could provide, for example on species’ reproduction or social
behaviour (Teixeira, Maron & van Rensburg, 2019; Greggor
et al., 2021).

VII. CONCLUSIONS

(1) Automatic detection is no longer an optional capability in
bioacoustics. Increasing data volumes, the need for near-
real-time analysis, and the expanding range of questions that
biologists want to answer using passive acoustics mean

that opening up the capabilities of this promising technology
requires parallel new developments in the field of machine
learning (ML).
(2) Mature fields in ML, such as image or voice recognition,
are not immediately transferrable to automatic detection in
bioacoustics. Close cooperation between biologist practi-
tioners and ML developers will help advance solution crea-
tion by (a) providing developers with an understanding of
the problems facing bioacoustics practitioners, and (b)
informing biologists as to what can and cannot be provided
by the state of the art in ML.
(3) Despite the challenges, impressive advances in ML, par-
ticularly deep neural networks, hold out the potential for very
significant developments that would cut processing time and
enable a new wave of bioacoustics applications.
(4) Application development pipelines are of necessity prob-
lem specific, however, certain guidelines and workflows
should smooth the integration of solutions constrained both
by the biological features of the problem, and by the avail-
able ML capabilities.
(5) In summary, integrating multiple disciplines, leveraging
new ML technology, and rigorous standardisation of proto-
cols and data sets should open up multiple new opportunities
for ecological and behavioural research through automated
detection for bioacoustics.
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ORCA-CLEAN: a deep Denoising toolkit for killer whale communication. In
Interspeech, pp. 1136–1140. ISCA.

Bergler, C., Smeele, S. Q., Tyndel, S. A., Barnhill, A., Ortiz, S. T.,
Kalan, A. K., Cheng, R. X., Brinkløv, S., Osiecka, A. N., Tougaard, J.,
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Long-term passive acoustic monitoring revealed seasonal and diel patterns of
cetacean presence in the Istanbul Strait. Journal of the Marine Biological Association

of the United Kingdom 94, 1195–1202.
Denton, T.,Wisdom, S. &Hershey, J. R. (2021). Improving bird classification with

unsupervised sound separation. arXiv. http://arxiv.org/abs/2110.03209. Accessed
6 July 2023.

Derrickson, K. C. (1988). Variation in repertoire presentation in northern
mockingbirds. The Condor 90, 592–606.

Duan, S., Zhang, J., Roe, P., Wimmer, J., Dong, X., Truskinger, A. &
Towsey, M. (2013). Timed probabilistic automaton: a bridge between raven and
Song scope for automatic species recognition. Proceedings of the AAAI Conference on

Artificial Intelligence 27, 1519–1524.
Duc, P. N. H., Torterotot, M., Samaran, F., White, P. R., Gérard, O.,

Adam, O. & Cazau, D. (2021). Assessing inter-annotator agreement from
collaborative annotation campaign in marine bioacoustics. Ecological Informatics 61,
101185.

Dufourq, E., Batist, C., Foquet, R. & Durbach, I. (2022). Passive acoustic
monitoring of animal populations with transfer learning. Ecological Informatics 70,
101688.

Dufourq, E., Durbach, I., Hansford, J. P., Hoepfner, A., Ma, H.,
Bryant, J. V., Stender, C. S., Li, W., Liu, Z., Chen, Q., Zhou, Z. &
Turvey, S. T. (2021). Automated detection of Hainan gibbon calls for passive
acoustic monitoring. Remote Sensing in Ecology and Conservation 7, 475–487.

Dunn, J. C. & Smaers, J. B. (2018). Neural correlates of vocal repertoire in primates.
Frontiers in Neuroscience 12, 534.

Enari, H., Enari, H. S., Okuda, K., Maruyama, T. & Okuda, K. N. (2019). An
evaluation of the efficiency of passive acoustic monitoring in detecting deer and
primates in comparison with camera traps. Ecological Indicators 98, 753–762.

ERBE, C. & THOMAS, J. A. (eds) (2022). Exploring Animal Behavior through Sound: Volume 1:
Methods. Springer Nature, Gewerbestrasse, Switzerland.

Exadaktylos, V., Silva, M., Aerts, J.-M., Taylor, C. J. & Berckmans, D.

(2008). Real-time recognition of sick pig cough sounds. Computers and Electronics in

Agriculture 63, 207–214.
Fairbrass, A. J., Firman, M., Williams, C., Brostow, G. J., Titheridge, H. &

Jones, K. E. (2019). CityNet—deep learning tools for urban ecoacoustic
assessment. Methods in Ecology and Evolution 10, 186–197.

Feddersen-Petersen, D. U. (2000). Vocalization of European wolves (Canis lupus
lupus L.) and various dog breeds (Canis lupus f. fam.). Archives Animal Breeding 43,
387–398.

Ferrari, M., Glotin, H., Marxer, R. & Asch, M. (2020). DOCC10: open access
dataset of marine mammal transient studies and end-to-end CNN classification. In
2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IJCNN,
Glasgow, UK.

Fleishman, E., Cholewiak, D., Gillespie, D., Helble, T., Klinck, H.,
Nosal, E. M. & Roch, M. A. (2023). Ecological inferences about marine
mammals from passive acoustic data. Biological Reviews 98, 1633–1647.

Ford, J. K. B. (1991). Vocal traditions among resident killer whales (Orcinus orca)
in coastal waters of British Columbia. Canadian Journal of Zoology 69, 1454–
1483.

Fox, E. J. S., Roberts, J. D. & Bennamoun, M. (2008). Call-independent individual
identification in birds. Bioacoustics 18, 51–67.

Frick, W. F. (2013). Acoustic monitoring of bats, considerations of options for long-
term monitoring. Therya 4, 69–70.

Frommolt, K.-H. & Tauchert, K.-H. (2014). Applying bioacoustic methods for
long-term monitoring of a nocturnal wetland bird. Ecological Informatics 21, 4–12.

Ganchev, T. D. (2020). Chapter 8 - ubiquitous computing and biodiversity
monitoring. In Advances in Ubiquitous Computing (ed. A. NEUSTEIN), pp. 239–259.
Elsevier Science, Amsertdam, Netherlands.

Garland, E. C., Castellote, M. & Berchok, C. L. (2015). Beluga whale
(Delphinapterus leucas) vocalizations and call classification from the eastern Beaufort
Sea population. The Journal of the Acoustical Society of America 137, 3054–3067.

Garland, E. C., Goldizen, A. W., Rekdahl, M. L., Constantine, R.,
Garrigue, C., Hauser, N. D., Poole, M. M., Robbins, J. & Noad, M. J.

(2011). Dynamic horizontal cultural transmission of humpback whale song at the
ocean basin scale. Current Biology 21, 687–691.

GBIF/TDWG Multimedia Resources Task Group (2013). Audiovisual Core
Multimedia Resources Metadata Schema. https://www.tdwg.org/standards/ac/.
Accessed 5 July 2023.

Gibb, R., Browning, E., Glover-Kapfer, P. & Jones, K. E. (2019). Emerging
opportunities and challenges for passive acoustics in ecological assessment and
monitoring. Methods in Ecology and Evolution 10, 169–185.

GIBBON, D., MOORE, R. &WINSKI, R. (eds) (1998). Vol 1 Spoken Language System and Corpus

Design. De Gruyter Mouton, Berlin, Boston.
Gillespie, D. & Chappell, O. (2002). An automatic system for detecting and
classifying the vocalisations of harbour porpoises. Bioacoustics 13, 37–61.

Gillespie, D., Mellinger, D. K., Gordon, J., McLaren, D., Redmond, P.,
McHugh, R., Trinder, P., Deng, X. Y. & Thode, A. (2009). PAMGUARD:
Semiautomated, open source software for real-time acoustic detection and
localization of cetaceans. The Journal of the Acoustical Society of America, 125, 2547–2547.

Green, A., Clark, C., Favaro, L., Lomax, S. & Reby, D. (2019). Vocal
individuality of Holstein-Friesian cattle is maintained across putatively positive and
negative farming contexts. Scientific Reports 9, 18468.

Greggor, A. L., Masuda, B., Gaudioso-Levita, J. M., Nelson, J. T.,
White, T. H., Shier, D. M., Farabaugh, S. M. & Swaisgood, R. R. (2021).
Pre-release training, predator interactions and evidence for persistence of anti-
predator behavior in reintroduced ’alal�a, Hawaiian crow. Global Ecology and

Conservation 28, e01658.
Hagiwara, M. (2022). AVES: animal vocalization encoder based on self-supervision.
arXiv. http://arxiv.org/abs/2210.14493. Accessed 6 July 2023.

Hagiwara, M., Hoffman, B., Liu, J.-Y., Cusimano, M., Effenberger, F. &
Zacarian, K. (2022). BEANS: the benchmark of animal sounds. arXiv. http://
arxiv.org/abs/2210.12300. Accessed 6 July 2023.

Hansen, P. (1979). Vocal learning: its role in adapting sound structures to long-
distance propagation, and a hypothesis on its evolution. Animal Behaviour 27, 1270–
1271.

Harrington, F. H. & Mech, L. D. (1982). An analysis of howling response
parameters useful for wolf pack censusing. The Journal of Wildlife Management 46,
686–693.
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