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BACKGROUND: Prediction of side-specific extraprostatic extension (EPE) is crucial in selecting patients for nerve-sparing radical prostatectomy 
(RP). Multiple nomograms, which include magnetic resonance imaging (MRI) information, are available predict side- specific EPE. It is crucial that the 
accuracy of these nomograms is assessed with external validation to ensure they can be used in clinical practice to support medical decision-
making. 
METHODS: Data of prostate cancer (PCa) patients that underwent robot-assisted RP (RARP) from 2017 to 2021 at four European tertiary referral 
centers were collected retrospectively. Four previously developed nomograms for the prediction of side-specific EPE were identified and externally 
validated. Discrimination (area under the curve [AUC]), calibration and net benefit of four nomograms were assessed. To assess the strongest 
predictor among the MRI features included in all nomograms, we evaluated their association with side-specific EPE using multivariate regression 
analysis and Akaike Information Criterion (AIC).
RESULTS: This study involved 773 patients with a total of 1546 prostate lobes. EPE was found in 338 (22%) lobes. The AUCs of the
models predicting EPE ranged from 72.2% (95% CI 69.1–72.3%) (Wibmer) to 75.5% (95% CI 72.5–78.5%) (Nyarangi-Dix). The nomogram with 
the highest AUC varied across the cohorts. The Soeterik, Nyarangi-Dix, and Martini nomograms demonstrated fair to good calibration for clinically 
most relevant thresholds between 5 and 30%. In contrast, the Wibmer nomogram showed substantial overestimation of EPE risk for thresholds 
above 25%. The Nyarangi-Dix nomogram demonstrated a higher net benefit
for risk thresholds between 20 and 30% when compared to the other three nomograms. Of all MRI features, the European Society
of Urogenital Radiology score and tumor capsule contact length showed the highest AUCs and lowest AIC.
CONCLUSION: The Nyarangi-Dix, Martini and Soeterik nomograms resulted in accurate EPE prediction and are therefore suitable to support medical 
decision-making. 

INTRODUCTION 
Accurate prediction of extraprostatic extension (EPE) of prostate cancer 
(PCa) is crucial for preoperative risk assessment, especially in case nerve-
sparing surgery is desired. Several previous studies showed that combining 
multi-parametric resonance imaging (MRI) features with other clinical 
parameters such as prostate-specific 
antigen (PSA) serum values and biopsy information, improves the 
accuracy of EPE risk prediction [1–3]. To further individualize surgical 
planning, the risk of EPE can be established for both prostate lobes 
separately; in a side-specific manner. A number of 
nomograms for side-specific EPE prediction, including MRI 

parameters, have been recently developed previously [4–7]. The variables 
used as inputs for these four nomograms are detailed in Supplementary Table 
1. To determine whether these nomograms can be safely applied in daily 
clinical practice, their diagnostic performance should be established using 
contemporary patient cohorts other than the ones used for model development 
[8]. As the prediction formula is tailored to the development data, a 
nomogram may show excellent performance in the development population 
but can perform poorly in an external cohort. Preferably, a nomogram is 
externally validated in different cohorts [9]. The nomograms described by 
Soeterik et al. and Martini et al., 
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include EPE risk prediction respectively in trichotomous (no tumor 
present on MRI, suspicious lesion on present on MRI, and EPE present on 
MRI) and dichotomous fashion (EPE present yes or no) [4, 6]. Both 
nomograms have been externally validated, showing moderate to good 
discrimination and moderate to strong calibration respectively [10–14]. 
The nomograms developed by Nyarangi-Dix et al. and Wibmer et al. 
include other MRI features such as tumor capsule contact length (TCCL) 
on MRI and the European Society of Urogenital Radiology (ESUR) score 
for EPE 
[5, 7]. In prior studies, these quantification methods for establish- ing EPE 
risk have been shown to improve diagnostic accuracy of MRI [15–18]. 
However, it is unclear if the incorporation of these 
promising MRI features into nomograms leads to improved EPE risk 
prediction, as both Nyarangi-Dix and Wibmer nomograms have not yet 
been externally validated. It is crucial that the accuracy of these 
nomograms is assessed in patients that underwent diagnostic evaluation 
according to the contemporary guidelines, minimizing the risk of 
discordance between biopsy and surgical pathology [19]. In addition, to 
minimize inter-reader variability of MRI interpretation, reporting should 
be done according to the most recent prostate imaging reporting and 
data system (PI-RADS) version 2.1 [20]. Therefore, the aim of this study 
is to externally validate four available side-specific EPE nomograms 
including MRI parameters, by using an international multi-center 
contemporary cohort of patients with prostate cancer undergoing radical 
prostatectomy. 

MATERIALS/SUBJECTS AND METHODS 
Patient population and study data 
Data of consecutive patients undergoing radical prostatectomy at four 
high-volume European tertiary referral centers, from 2017 to 2021, were 
used for the analyses. All clinically relevant variables in addition to those 
included in the four nomograms were retrospectively collected. Prostate 
biopsy evaluation and histo- pathological evaluation of the surgical 
specimens was done according to the International Society of Urogenital 
Pathology (ISUP) guidelines [21]. MRI prostate (either biparametric [bp] 
or multiparametric [mp]) reading and reporting was done according to PI-
RADS version 2.1 [22]. If missing, the ESUR score for EPE and 
tumor capsule contact length were retrospectively determined by 
experienced uro-radiologists in a side-specific manner, according to the 
ESUR guidelines [23]. 

Model discrimination, calibration and clinical usefulness External 
validation of the four nomograms was done according to the transparent 
reporting of a multivariable prediction model for individual prognosis or 
diagnosis (TRIPOD) guidelines [24]. Discrimi- nation, which refers to the 
ability of the nomogram to distinguish a prostate lobe with the endpoint 
(EPE) from a lobe without EPE, was 
quantified using the area under the receiver operating characteristic curve 
(AUC) [24]. Furthermore, the AUC of a logistic regression model, 
comprising PSA and the presence of EPE on MRI (no lesion, no EPE, 
equivocal, and EPE), was provided to demonstrate the additional value of 
the nomograms compared to generally used clinical parameters. The 
Model calibration, which refers to the agreement between observed 
endpoints and predictions, was assessed using calibration slopes [24]. The 
net benefit per risk threshold was 
determined using decision-curve analysis (DCA). The net benefit is 
calculated as the proportion of “net” true positives (true positives 
corrected for the false positives weighted by the odds of the risk cut- off, 
divided by the sample size) [25]. 

Association between the MRI features and EPE 
The predictive value of individual MRI variables included in the 
nomograms were assessed by multivariate regression analysis. In 

Table 1. Descriptive characteristics on patient level in the overall population. 

Overall  
No. of patients 773 

Age (median, IQR) 67 (62, 71) 

PSA (ng/ml) 7.5 (5.5, 11.0) 

   Mean (IQR)  
PSA density (ng/ml/ml) 0.19 (0.12, 0.28) 
   Mean (IQR)  
Clinical T stage N (%)a 

T1 424 (55) 

T2 284 (38) 

T3 45 (6) 

Missing 20 (3) 

MRI T stage N (%)a 

T0 44 (6) 

T2 493 (64) 

T2/T3 (uncertain EPE) 126 (16) 

T3 107 (14) 

T4 2 (0) 

Missing 1 (0) 

Biopsy type N (%)a 

TRUS-guided systematic 168 (22) 

MRI-guided 47 (6) 

TRUS + MRI-guided 552 (71) 

Missing 4 (1) 

Biopsy ISUP Grade Group N (%)a 

Benign 5 (1) 

1 126 (16) 

2 252 (33) 

3 171 (22) 

4 150 (19) 

5 67 (9) 

missing 2 (0) 

Pathological stage N (%)a 

T0 1 (0) 

T2 460 (60) 

T3 301 (40) 

T4 1 (0) 

missing 10 (1) 

Radical prostatectomy ISUP grade Group N (%)a 

1 60 (8) 

2 313 (40) 

3 224 (29) 

4 79 (10) 

5 80 (10) 

missing 17 (2) 

Postive surgical margin N (%)a 246 (32) 

missing 14 (2) 

EPE extraprostatic extension, PSA prostate specific antigen, PI-RADS 
Prostate Imaging-Reporting and Data System, ISUP International Society of 
Urologic Pathology, TRUS transrectal ultrasound. 
aPercentages may not sum to 100% due to rounding. 



Table 2. Descriptive characteristics on a per lobe level in the total cohort, 
divided by the presence of extra prostatic extension. 

Characteristic No EPE, (n = 
1204) 

EPE    (n = 
338) 

p 
valu
e

Age(years) (IQR) 67 (62, 71) 68 (63, 72) 0.06
7

PSA (ng/ml) (IQR) 7.2 (5.3, 10.5) 8.6 (5.9, 
13.0)

<0.0
01

Prostate volume(ml) 
(IQR)

40 (30, 55) 39 (30, 53) 0.3 

PSA density (ng/ml/ml) 
(IQR)

0.18 (0.12, 
0.27)

0.22 (0.15, 
0.34)

<0.0
01

Clinical T stadium N 
(%a)

<0.0
01

cT1/cT2a 1138 (95) 280 (83) 

cT2b/c 38 (3) 41 (12) 

cT3/4 19 (2) 14 (4) 

Unknown 9(1) 3 (1) 

PI-RADS 4 or 5, N 
(%a) 
missing

602 (50) 
8 (1) 

264 (78) 
1 (0) 

<0.0
01 

EPE on MRI, N (%a) <0.0
01

No visible lesion 571 (47) 74 (22) 

No EPE 499 (41) 143 (42) 

Equivocal 90 (7) 58 (17) 

EPE 38 (3) 61 (18) 

Unknown 6 (0) 2 (1) 

ESUR score (IQR) 0 (0, 1) 1 (1, 5) <0.0
01

TCCL(mm) (IQR) 0 (0,10) 12 (5,21) <0.0
01

ISUP Grade Group, N (%a) 

Benign 332 (28) 38 (11) 

1 279 (23) 33 (10) 

2 263 (22) 64 (19) 

3 145 (12) 62 (18) 

4 124 (10) 81 (24) 

5 35 (3) 57 (17) 

Unknown 26 (2) 3 (1) 

Percentage positive SB 
(%a) (IQR) missing

20 (0, 50) 
52

50 (17, 83) 
15

<0.0
01

Tumor extent in SB 
(mm) (IQR) Missing

2 (0, 10) 
179

9 (0, 13) 
65

<0.0
01

Tumor involvement in 
biopsy (%a) (IQR) 
missing

15 (0, 50) 
80 

50 (15,87) 
27 

<0.0
01 

   Cohort, N (%)  
1 460 (38) 112 (33) 

2 337 (28) 113 (33) 

3 329 (27) 81 (24) 

4 78 (6) 32 (9) 
EPE extraprostatic extension, PSA prostate specific antigen, PI-RADS 
Prostate Imaging-Reporting and Data System, MRI magnetic resonance 
imaging, ESUR European Society of Urogential Radiology, TCCL tumor 
capsule 
contact length, ISUP International Society of Urologic Pathology, SB 
systematic biopsy. 
aPercentages may not sum to 100% due to rounding. 

multivariable analysis, including PSA density and biopsy ISUP Grade Group, 
value of the five different MRI variables included in the four nomograms 
(supplement Table 1), was assessed using an AIC (Akaike Information 
Criterion) to determine the features with the best fit. In addition, the AUC of 
the ROC was established. 

Missing data 
Missing data patterns were explored using response matrix and correlation 
plots. Missing data were handled by using multivariate imputation by chained 
equations including pooling using Rubin’s rules [26]. 



Table 3. Discrimination of all four nomograms in the overall population. 

Overall 

Lobes AUC (95% CI) 
Soeterik 1546 (100%) 74.6% (71.6–77.7%) 

Martini 1150 (74%) 74.3% (71.1–77.6%) 

Wibmer 1469 (95%) 72.2% (69.1–75.3%) 

Nyarangi-Dix 1546 (100%) 75.5% (72.5–78.5%) 
AUC Area Under the Curve. 

RESULTS 
Baseline characteristics 
A total of 773 patients were included, representing a total of 1546 prostate 
lobes. Descriptive characteristics of the total cohort are presented in Table 1 
and per cohort in supplementary Table 2. A bpMRI was used in 288 (37%) 
patients, and a mpMRI in 485 (63%).The characteristics per lobe regarding 
the covariates used in the different nomograms are presented in Table 2. Of 
all the lobes 338 (22%) had EPE in prostatectomy specimens. In the per 
lobe analysis, presence of EPE was associate with relatively higher absolute 
serum PSA levels and PSA density measured in the patient. The lobes with 
EPE had more PI-RADS 4 or 5 lesions, a higher ESUR score, more tumor 
involvement in the biopsy cores, a higher percentage of positive systematic 
biopsy cores, more tumor extend in the systematic biopsy cores, and a 
higher ISUP Grade Group. In one of the four cohorts, all data regarding 
tumor core involvement (%) was not available. Due to the extensive amount 
of missing data, we decided not to impute this variable. Therefore, the 
prostate lobes containing cancer of this cohort were excluded per analysis. 
Missing data patterns of other variables showed data to be either missing 
completely at random or missing at random and were therefore imputed. 

Model discrimination 
The AUCs for the four nomograms are shown in Table 3. The AUC values 
are comparable between the four nomograms, ranging from 72.2% (95% CI 
69.1–75.3%) for the Wibmer nomogram (lowest) to 75.5% (95% CI 75.2–
78.5%) for the Nyarangi-Dix nomogram (highest). All nomograms 
exhibited a higher AUC than the 70.4% (95% CI 67.2–73.6%) of the model 
with PSA and EPE on MRI. AUCs of all four nomograms per individual 
hospital are presented in the Supplemental section (Supplementary Table 3); 
showing in- between-hospital differences of AUC values of all four 
nomograms. 

Model calibration 
The agreement between predicted and observed probabilities of all four 
nomograms are shown in Fig. 1. For the clinically most relevant thresholds 
for the risk of EPE of 0 to 40%, calibration was fair to good for the Soeterik, 
Martini and Nyarangi-Dix nomo- grams. The Soeterik and Martini 
nomogram showed slight overestimation, whereas the Nyarangi-Dix 
nomogram showed slight underestimation of EPE probability. For the 
Wibmer nomogram, substantial overestimation of the predicted risk was 
shown for the thresholds of 25% and above. Overall, the Soeterik 
nomogram showed the highest agreement of the predicted and observed 
probabilities for thresholds 0–90%. 

Clinical utility 
The DCA of the four nomograms are shown in Fig. 2. All four nomograms 
can be regarded as clinically useful for risk thresholds 9–30%. The 
Nyarangi-Dix nomogram showed slightly lower net benefit compared with 
the “treat all” approach for risk thresholds 
3–11%, respectively. The Wibmer nomogram showed a no benefit 
from risk threshold 40% and above, leading to a negative net benefit for risk 
thresholds 40% and above. The Soeterik and 



Fig. 1 Calibration slope for all four models. The Soeterik (S) nomogram, located on the top left, demonstrated fair to good calibration for the clinically most 
relevant thresholds concerning the risk of extraprostatic extension (EPE) from 0 to 40%. In addition, it showcased the highest 
concordance between its predictions and observed probabilities across the range of 0–90%. The Martini (M) nomogram, positioned on the top right, also 
exhibited a fair to good calibration for the 0–40% EPE risk thresholds. The Wibmer (W) nomogram, situated on the bottom left, displayed a more pronounced 
discrepancy. It substantially overestimated the predicted risk form a threshold of 25% and higher. Lastly, the Nyarangi-Dix (N) nomogram, located on the 
bottom right, was calibrated as fair to good for the clinically significant 0–40% EPE risk thresholds. Notably, in contrast to the Soeterik and Martini 
nomograms, it tended to slightly underestimate the EPE probability within this range. 



Fig. 2 Decision–curve analysis for the four models. The Soeterik nomogram showed a net benefit for risk thresholds ranging from 0 to 70%. The Martini 
nomogram performed comparable to the Soeterik nomogram, in the range from 0 to 35%. The Wibmer nomogram offered no benefit from a risk threshold of 
40% and above. The Nyarangi-Dix nomogram while it exhibited slightly lower net benefit than the “treat all” approach for risk thresholds between 3 and 9%, it 
surpassed the other three models by offering a slightly higher net benefit for thresholds between 20 and 30%. 

Martini nomogram showed comparable net benefit for risk thresholds 0–
35%. The Nyarangi-Dix nomogram was associated with a slightly higher 
net benefit for the risk thresholds 20–30%, compared with the other three 
nomograms. 
Predictive value of side-specific MRI features 
In Table 4, an analysis of the different MRI features incorporated in the four 
models is shown. The dichotomous classification for EPE had a lower AUC 
74.2 (95% CI 71.1–77.3) and a higher AIC of 1426 than the trichotomous 
classification for EPE used by Soeterik (AUC of 75.1 [95% CI 72.0–78.1] 
and an AIC of 1415) and the 
classification used by Wibmer 75.2 (95% CI 72.2–78.3) AIC 1414. The 
continuous variables used by Nyarangi-Dix had the highest 
AUCs and lowest AIC with an AUC of 76.5 (95% CI 73.6–79.5) and an 
AIC of 1396 for TCCL and an AUC of 76.3 (95% CI 73.3–79.3) and an 
AIC 1379 for the ESUR score, respectively. 

DISCUSSION 
In this study, we present the results of the external validation of four MRI-
based nomograms for the prediction of side specific EPE in a European 
dataset consisting of 773 patients with a total of 1546 prostate lobes. We 
observed a fair discriminative ability of all four nomograms, with AUC’s 
ranging from 72.2 to 75.5%. The 
calibration of the Soeterik, Martini, and Nyarangi-Dix nomograms was fair 
to good for the clinically most relevant risk thresholds of 0–40%. The 
Wibmer nomogram showed substantial overestima- tion of the predicted 
EPE risk for risk thresholds from 25% and above. DCA showed that the 
Soeterik, Martini and the Nyarangi- Dix nomograms are all clinically useful 
for risk thresholds 8 to 40%. We conclude that the Soeterik, Martini and the 
Nyarangi-Dix nomograms are well suitable for use in clinical practice. 
Based on this study, the Wibmer nomogram should be used which caution 
due to substantial miscalibration and limited clinical usefulness for risk 
thresholds above 25%. 

Our findings regarding model performance of the Soeterik and Martini 
nomograms are consistent to those reported in previous 
external validation studies. The study of Blas et al. reported an AUC of 81% 
for the Soeterik nomogram and 75% for the Martini nomogram, respectively 
[13]. Another external validation study of the Martini nomogram reported an 
AUC of 78% [14]. The study of Veerman et al. reported an AUC of 80% for 
the Soeterik nomogram [12]. A different study by Diamand et al. presented an 
AUC of 71% for the Soeterik nomogram and 73% for the Martini nomogram 
[11]. With regard to calibration, these prior studies all reported moderate to 
good agreement of predicted and observed probabilities for both the Martini 
and the Soeterik nomogram. 
To our knowledge, this is the first study in which the Wibmer and Nyarangi-
Dix nomograms are externally validated. On external validation, they both 
showed substantially lower AUCs 
compared to the AUCs reported for the development cohorts; respectively 
76% versus 87% for Nyarangi-Dix and 72.2% versus 82.8% for the Wibmer 
nomogram [5, 7]. In this study, the Wibmer nomogram showed the relatively 
lowest AUC of all validated nomograms of respectively 72.2%, substantial 
underestimation of 
the predicted EPE risk from thresholds above 25% and a negative net benefit 
on DCA for thresholds above 40%. The Nyarangi-Dix nomogram showed 
more favorable results, with an AUC of 75.5%, fair agreement between 
predicted and observed probabilities and the highest net benefit on DCA 
compared with the other 
nomograms (for the clinically most relevant risk thresholds 
between 10 to 40%). 
The reason the Nyarangi-Dix nomogram showed slightly better model 
performance compared to the other nomograms could be due to the inclusion 
of the potentially more robust MRI predictors: TCCL and the ESUR score. 
Due to the scaling of these variables, they may have to potential to explain 
more variance compared to MRI predictors including solely two or three 
subclasses. This hypothesis is supported by our multivariable analysis for the 



Table 4. Model discrimination of the multivariable logistic regression 
models including different MRI variables in the overall population. 

OR 95% CI p value AUC 95% CI AIC 

Model 1 74.2 (71.1–77.3) 1426 

PSAD 2.0(1.2, 3.3) 0.007 

   ISUP 
Benign Reference 

GG1 1.0 (0.6, 1.6) > 0.9 

GG2 2.1 (1.4, 3.2) < 0.001 

GG3 3.2 (2.0, 5.0) < 0.001 

GG4 5.0 (3.3, 7.8) < 0.001 

GG5 11.0 (6.4, 
19.1) < 0.001
   MRI 
No EPE Reference 

EPE 4.0 (2.5, 6.3) < 0.001 

Model 2 75.1 (72.0–78.1) 141
5

PSAD 1.8 (1.1, 3.0) 0.02 

   ISUP 
Benign Reference 

GG1 0.9 (0.5, 1.4) 0.6 

GG2 1.6 (1.0, 2.5) 0.048 

GG3 2.4 (1.5, 3.9) < 0.001 

GG4 3.9 (2.5, 6.2) < 0.001 

GG5 8.7 (5.0, 

15.3) < 0.001 
   MRI 

No lesion Reference  

No EPE 1.8 (1.3, 2.5) < 0.001 

EPE 6.0 (3.6, 
10.1) < 0.001 

Model 3 75.2 (72.2–78.3) 141
4

PSAD 1.8 (1.1, 3.0) 0.02 

   ISUP 
Benign Reference 

GG1 1 (0.6, 1.6) > 0.9 

GG2 1.9 (1.2, 2.9) 0.004 

GG3 2.9 (1.8, 4.6) < 0.001 

GG4 4.6 (2.9, 7.1) < 0.001 

GG5 9.5 (5.5, 

16.7) < 0.001 
   MRI 

No EPE Reference 

Equivocal 2.1 (1.4, 3.1) < 0.001  
EPE 4.5 (2.8, 7.3) < 0.001 

Model 4 76.5 (73.6–79.5) 139
6

PSAD 1.7 (1.0, 2.9) 0.03 

   ISUP 
Benign Reference 

GG1 0.8 (0.5, 1.4) 0.5 

GG2 1.4 (0.9, 2.2) 0.14 

GG3 2.4 (1.5, 3.8) < 0.001 

GG4 3.5 (2.3, 5.6) < 0.001 

GG5 7.4 (4.2, 
13.2) < 0.001 



Table 4. continued 

OR 95% CI p value AUC 95% CI AI
C

   MRI

TCCL
1.1 (1.0, 1.1) < 0.001 

Model 5 76.3 (73.3–79.3) 137
9

PSAD 1.6 1.0, 2.7) 0.08 

   ISUP

Benign
Reference 

GG1 0.9 (0.6, 1.5) 0.8 

GG2 1.6 (1.0, 2.5) 0.045 

GG3 2.6 (1.7, 4.2) < 0.001 

GG4 3.7 (2.3, 5.8) < 0.001 

GG5 7.1 (4.0, 

12.6) < 0.001 
   MRI 

ESUR 1.3 (1.2, 1.4) < 0.001 
PSAD prostate specific antigen density, ISUP International Society of 
Urologic Pathology, MRI magnetic resonance imaging, TCCL tumor 
capsule contact length, ESUR European Society of Urogential Radiology, 
EPE 
extraprostatic extension, Area Under the Curve, AIC Akaine Information 
Criterion. 

prediction of EPE; showing that inclusion of TCCL and the ESUR score 
on multivariable logistic regression leads to overall best model fit in terms 
of AIC as well as most favorable discrimination in terms of AUC. The 
suggested higher predictive potential is countered by the additional effort 
required to document these features (in a side specific manner) during 
routine clinical care - making the nomogram potentially less easy-to-use 
in daily practice. Besides TCCL and the ESUR score, other methods have 
been proposed to improve EPE risk prediction. For instance, the use of 
artificial intelligence and radiomics features could potentially further 
improve EPE risk prediction. Hou et al. showed an excellent AUC of 86% 
for their developed artificial intelligent model, showing the outperform 
the radiologist (AUC of 72%) for the prediction of EPE [27]. In another 
study, combined use of MRI index lesion radiomics in a machine learning 
model was demonstrated to have a high accuracy for EPE detection, 
reaching an overall accuracy of 83% in the training set [28]. In addition, a 
prior study by Solari and colleagues showed that PSMA PET/MR 
radiomics could further improve prostate cancer staging in addition to 
MRI radiomics. The authors evaluated 9 support vector machine models 
with PET and/or MRI radiomics features including the apparent diffusion 
coefficient (ADC). The authors concluded that the best performing model 
included both PET and ADC 
radiomics; suggesting their complementary value [29]. 
Moving forward, it is also crucial to evaluate if the use of side- specific 
EPE nomograms leads to improved patient selection for nerve sparing RP. 
Such an approach could potentially enhance functional outcomes owing 
to the benefits of more nerve preservation without risking a PSM [30, 31]. 
However, studies on 
this topic are scarce. To our best knowledge, one prior single- center 
prospective study was performed on this subject and showed that the use 
of a side-specific EPE MRI-based nomogram for preoperative planning 
results in comparable rates of full nerve- sparing (45% vs. 30%; p = 
0.083), but relatively lower rates of PSM 
on lobes with histological EPE (45% vs. 85%; p < 0.05) [32]. Future 
prospective multicenter trials are needed to further evaluate if the use of 

nomograms for preoperative planning improve clinical outcomes for the 
patient. 
Although our study has a number of strengths such as being a multicenter 
international study including a contemporary popula- tion of patients treated 
at tertiary referral centers, it is not exempt 



from limitations. First, due to the retrospective collection of data there is a 
risk of information bias. In addition, although MRI review was performed 
by dedicated high-volume uro-radiologists, the lack of central review is a 
limitation. However, interobserver variability is unavoidable in daily 
clinical practice and thus, on the other hand, 
our study reflects a real-world clinical situation. It should also be noted that 
we used both bpMRI and mpMRI in this study. However, we do not 
consider this as a major limitation as both modalities 
have been shown to be comparably effective in detecting EPE [33]. 

CONCLUSION 
The external validation of four side-specific nomograms including MRI 
features showed that three of four nomograms (Nyarangi-Dix, Soeterik and 
Martini) showed fair to good model discrimination, calibration, and net 
benefit. Based on this study data, these nomograms can be used in clinical 
practice to support medical decision-making. 

DATA AVAILABILITY 
The datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request. 
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