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Query-aware Cross-mixup and Cross-reconstruction
for Few-shot Fine-grained Image Classification
Zhimin Zhang, Dongliang Chang, Rui Zhu, Xiaoxu Li, Zhanyu Ma, Senior Member, IEEE, Jing-Hao

Xue, Member, IEEE

Abstract—Few-shot fine-grained image classification is promi-
nent but challenging in computer vision, aiming to distinguish
sub-classes under the same parent class but with only a few
labeled support samples. Data augmentation techniques were
explored to address the few-shot issue, but they often fail to
mitigate the bias between support and query samples. Therefore,
in this paper we propose a query-aware cross-mixup and cross-
reconstruction method to address both few-shot and fine-grained
issues. Specifically, in the training phase, we randomly select
query samples and mix them with the support samples from
the same class to augment the support set. This first strategy
ensures the augmented support set query-aware within each sub-
class. Then, we reconstruct both query samples and support
samples from both original and cross-mixed support samples,
thus leveraging both cross-reconstruction and self-reconstruction
to enhance classification. This second strategy, enabling the
reconstruction also query-aware, further mitigates the bias be-
tween support and query samples, leading to more reliable
generalization. We evaluate our proposed method on four widely
used few-shot fine-grained image classification datasets, and
experimental results demonstrate its effectiveness in achieving
the state-of-the-art classification performance.

Index Terms—Data augmentation, Few-shot image classifica-
tion, Fine-grained image classification.

I. INTRODUCTION

F INE-GRAINED image classification is an important topic
in computer vision and pattern recognition. It is partic-

ularly challenging due to the extremely similar sub-classes
that yield minimal inter-class variance [1], [2]. Concurrently,
variations in pose, age, and background, etc. within each sub-
class lead to substantial intra-class variance [3], [4]. These two
factors make the fine-grained image classification task highly
challenging. With the advancements in deep learning, there
have been significant strides in image classification [5]–[13].
However, these achievements usually depend on large sample
sizes, which may not be available in many practices. As a
result, few-shot fine-grained image classification has emerged.

Current techniques to enhance few-shot image classification
include metric learning, transfer learning, and data augmenta-
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Figure 1. Visualization of the regions of interest (i.e. the bright areas)
identified by VFD [14] and our method, using Grad-CAM [15] on samples
from the CUB-200-2011 dataset. Compared with VFD, our method can
identify discriminative regions more accurately.

tion. Among them, data augmentation, aiming at augmenting
the support set, has garnered significant attention in recent
years due to its simplicity and plug-and-play nature [14],
[16]–[20]. Xu et al. [14] propose a feature disentanglement
framework (VFD) that can provide augmented features with
randomly sampled intra-class variations. Li et al. [16] de-
velop adversarial feature hallucination networks hallucinating
diverse and discriminative features. Zhao et al. [17] present
mirror mapping networks to generate the common features
for augmentation based on textual descriptions and knowledge
graph. However, as illustrated in Figure 1, they still fall short in
mitigating the bias between support and query samples, which
can be crucial for correctly classifying fine-grained samples.
This inadequacy underscores a key challenge for few-shot fine-
grained image classification [1], [21], [22].

Therefore, in this paper we propose a query-aware cross-
mixup and cross-reconstruction method to address both few-
shot and fine-grained issues. Specifically, in the training phase,
we randomly select query samples and mix them with the
support samples from the same class to augment the sup-
port set. This first strategy ensures the augmented support
set query-aware within each sub-class. Then, we reconstruct
both query samples and support samples from both original
and cross-mixed support samples, thus leveraging both cross-
reconstruction and self-reconstruction to enhance classifica-
tion. This second strategy, enabling the reconstruction also
query-aware, further mitigates the bias between support and
query samples, leading to more reliable generalization.

In sum, our novelties and contributions are three-fold:

1) We propose a data augmentation strategy called query-
aware cross-mixup that generates new support sam-
ples with imported information from the query samples
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within the same class. This strategy ensures the aug-
mented support set query-aware within each sub-class,
hence better generalization for fine-grained sub-classes.

2) We develop a strategy leveraging both cross-
reconstruction and self-reconstruction to reconstruct
both query samples and support samples from both
original and cross-mixed support samples. This strategy,
enabling the reconstruction also query-aware, further
mitigates the bias between support and query samples,
leading to a more reliable classification.

3) Experimental results on four widely used few-shot fine-
grained image classification datasets demonstrate the
proposed method’s effectiveness in achieving the state-
of-the-art classification performance.

II. RELATED WORK

A. Few-shot Fine-grained Image Classification

Few-shot fine-grained image classification aims to distin-
guish sub-classes within a parent class using only a few labeled
samples. Recently, some methods have achieved significant
progress [1], [23]–[26]. Li et al. [23] propose a bi-similarity
network (BSNet) that utilizes two different similarity measures
to improve the performance with small model complexity.
Xu et al. [1] introduce a dual attention network, which hard-
attention and soft-attention branches jointly learn global and
local features to classify fine-grained data. Lee et al. [25]
present the task discrepancy maximization module (TDM)
for fine-grained few-shot classification, which learns task-
specific channel weights. Zha et al. [26] develop a two-stage
background suppression and foreground alignment framework.

Different from them, we use query-aware data cross-
augmentation and feature cross-reconstruction to align query
samples with support samples, thus improving the few-shot
fine-grained image classification performance.

B. Few-shot Learning with Data Augmentation

Data augmentation aims to increase sample information
to assist feature learning and improve the generalization
ability of the model [20], [27]–[29]. For few-shot learning,
Wang et al. [30] optimize both the meta-learner and the data
generator to generate additional training samples. Gidaris et
al. [31] propose a self-supervised data augmentation method
via rotation at different angles. Phoo et al. [32] introduce a
representation learning method that allows few-shot learners
to leverage coarsely-labeled data before evaluation. Zhang et
al. [33] proposed a hierarchical tree structure-aware method to
generate multiple groups of augmented images. Ma et al. [34]
proposed partner-assisted learning with supervised contrastive
learning.

Different from these methods, our data augmentation ap-
proach is query-aware cross-mixup. It ensures the augmented
support set query-aware within each sub-class, hence offering
better generalization for fine-grained sub-classes.

C. Few-shot Learning with Feature Reconstruction

Recently, some feature reconstruction approaches have
achieved excellent results in few-shot learning [25], [35]–[38].
Wertheimer et al. [35] propose feature map reconstruction
networks, which use ridge regression to reconstruct query
sample features from support sample features, alleviating
metric bias. Li et al. [37] propose a locally-enriched cross-
reconstruction network (LCCRN) to extract more discrimina-
tive local representations. Sun et al. [38] introduce an l2,1-
norm regularization to guide feature reconstruction towards
semantically rich target regions. Wu et al. [36] introduce a
bi-reconstruction mechanism to simultaneously accommodate
for inter-class and intra-class variations.

Different from these methods, we develop a strategy lever-
aging both cross-reconstruction and self-reconstruction to re-
construct both query samples and support samples and thus
alleviate metric bias.

III. THE PROPOSED METHOD

A. Problem Formulation

Given a dataset D = {(xi, yi), yi ∈ L}Ni=1, following
the setting in [23], we divide it into three parts: Dtrain =
{(xi, yi), yi ∈ Ltrain}Ntrain

i=1 , Dval = {(x̄i, ȳi), ȳi ∈
Lval}Nval

i=1 , Dtest = {(x∗
i , y

∗
i ), y∗i ∈ Ltest}Ntest

i=1 , where
Dtrain

⋂
Dval

⋂
Dtest = ∅. We train the model on the Dtrain,

validate it on Dval to select appropriate hyperparameters, and
finally use Dtest to evaluate the performance of the trained
model. In the C-way K-shot few-shot setting, we randomly
select C classes from the training set, with M samples
randomly selected from each class. Among them, K samples
form the support set S = {(xi, yi), yi ∈ Ltrain}C×K

i=1 , and the
rest M −K samples form the query set Q = {(xj , yj), yj ∈
Ltrain}C×(M−K)

j=1 ; S and Q together form a task T in training.
Similarly, we construct tasks T̄ for validation and T ∗ for test.

B. Overview of the Proposed Method

As shown in Figure 2, our method consists of four modules:
feature embedding module fθ, cross-mixup module, feature
calibration module, and Euclidean metric module.

In the training phase, firstly, a meta-task with support set S
and query set Q is input into the cross-mixup module, where
each support sample is randomly mixed with a query sample
from the same class. Then, the original and new support
samples, as well as the query samples, are fed into feature
embedding module fθ to produce Sc, S+

c and Q, respectively.
Then, they enter the feature calibration module, containing two
branches that use two support sets, Sc and S+

c , to produce
for Sc and Q four reconstructed feature maps, two for each:
S̃c, S̃+

c , Q̃c, and Q̃+
c . Finally, the original features and four

reconstructed features enter the Euclidean module to calculate
four corresponding distances and make the final decision of
classification.

In the test phase, we only use the original support set to
reconstruct the query sample, and use the distance between the
reconstructed query feature Q̃c and the original query feature
Q for the final classification.
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Figure 2. Diagram of the proposed method. It consists of four modules: feature extractor fθ , cross-mixup module, feature calibration module, and Euclidean
metric module. The black line shows the process of original support samples’ participation the in model training, while the purple line is for the newly
generated support samples.

Algorithm 1 Cross-mixup
Input: Support set S, query set Q, C-way, K-shot.
Output: Set S+ of augmented support samples.

1: δ ∼ Uniform(0, 1)
2: for class c = 1, . . . , C do
3: For each support sample Sck, k = 1, . . . ,K, randomly

select a query image Qck from Qc of class c
4: S+

ck = δ × Sck + (1− δ)×Qck

5: return S+

C. Cross-mixup Module

As summarized in Algorithm 1, our query-aware cross-
mixup strategy is very simple. For each support sample Sck

from class c in a support set S, we randomly select a query
image Qck from Qc, where Qc is the set of the query samples
also from class c, and then linearly combine these two samples
with a random weight to generate a new support sample. This
strategy, although simple, ensures the augmented support set
query-aware within each sub-class, hence better diversity and
generalization for fine-grained sub-classes.

D. Feature Calibration Module and Euclidean Metric Module

To fully exploit the augmented support samples, we design
a feature calibration module, which as shown in Figure 2
contains two modules for using self-reconstruction and cross-
reconstruction to reconstruct four feature maps. The support
calibration module uses the original support features Sc to
reconstruct two feature maps, S̃c for support samples Sc

and Q̃c for query samples Qc, respectively. In contrast, the
augmented support calibration module uses the augmented
data S+

c to reconstruct two feature maps, S̃+
c for support

samples Sc and Q̃+
c for query samples Qc, respectively.

For convenience of presentation, we shall describe the four
reconstructions together with the Euclidean metric module in
more detail as follows.

1) Reconstruct query from support: Sc → Q̃c: We express
the feature of the support set and the feature of the query
sample in the form of matrix. That is, let matrix Sc ∈ RKR×d

represent the support set feature of class c, where K is the
shot number, R = H ×W , and d is the number of channels.

In the meantime, let matrix Qj ∈ RR×d represent the matrix
of the j-th query sample.

As with [35], we use ridge regression to estimate a weight
matrix Mw ∈ RR×KR, such that Qj ≈ MwSc:

M̃w = argmin
Mw

∥Qj −MwSc∥2 + λ1 ∥Mw∥2 , (1)

where λ1 is the penalty weight. The ridge regression has a
closed-form solution:

M̃w = QjS
⊤
c (ScS

⊤
c + λ1I)

−1, (2)

where I ∈ RKR×KR is the identity matrix. Therefore, the
cross-reconstructed Q̃j from Sc can be expressed as

Q̃cj = γ1M̃wSc = γ1Qj(S
⊤
c Sc + λ1I)

−1S⊤
c Sc, (3)

where λ1 and γ1 can be designed to improve the stability of
training by setting

λ1 =
KR

d
eα1 , γ1 = eβ1 , (4)

where α1 and β1 are learnable parameters.
Then, Qj and its cross-reconstructed feature map Q̃cj for

class c are input into the Euclidean metric module to calculate
their distance (d2 in Figure 2) as

d2 = dcj =
∥∥∥Qj − Q̃cj

∥∥∥2 , (5)

2) Reconstruct query from augmented support: S+
c →

Q̃+
c : Similarly, we can use ridge regression to get cross-

reconstructed query feature map Q̃+
cj from the augmented

support feature maps S+
c , and its distance (d4 in Figure 2)

from Qj as

Q̃+
cj = γ2Qj(S

+⊤
c S+

c + λ2I)
−1S+⊤

c S+
c , (6)

d4 = d+cj =
∥∥∥Qj − Q̃+

cj

∥∥∥2 . (7)

3) Reconstruct support from support: Sc → S̃c: When self-
reconstructing the i-th feature map Si from the feature maps
in Sc, we can use the following formula:

S̃ci = γ3Si(S
⊤
c Sc + λ3I)

−1S⊤
c Sc, (8)

and its distance (d1 in Figure 2) from Si:

d1 = dci =
∥∥∥Si − S̃ci

∥∥∥2 . (9)
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4) Reconstruct support from augmented support: S+
c →

S̃+
c : Similarly, we can reconstruct the i-th support map Si

from the augmented support feature maps S+
c to obtain S̃+

ci

and calculate its distance (d3 in Figure 2) from Si as

S̃+
ci = γ4Si(S

+⊤
c S+

c + λ4I)
−1S+⊤

c S+
c , (10)

d3 = d+ci =
∥∥∥Si − S̃+

ci

∥∥∥2 . (11)

E. Loss Functions
1) Query loss: Considering both the distances in Eq.(5)

and Eq.(7), we can obtain the probability of predicting the
j-th query sample into class c as

P (yj = c|Qj) =
e−ξ1(dcj+d+

cj)∑
c′∈Ce

−ξ1(dc′j+d+

c′j)
, (12)

where ξ1 is a learnable temperature factor.
Then the cross-entropy loss lossquery for classifying query

samples can be expressed as

lossquery = − 1

M −K

M−K∑
j=0

y⊤
j log(P (yj |Qj)), (13)

where M − K is the number of query samples, yj is the
one-hot vector and P (yj |Qj) is the vector of predicted prob-
abilities.

2) Support loss: Similarly, considering both the distances in
Eq.(9) and Eq.(11), we can obtain the probability of predicting
the i-th support sample into class c as

P (yi = c|Si) =
e−ξ2(dci+d+

ci)∑
c′∈Ce

−ξ2(dc′i+d+

c′i)
, (14)

and the cross-entropy loss losssupport for classifying support
samples as

losssupport = − 1

K

K∑
i=0

y⊤
i log(P (yi|Si)), (15)

where K is shot number, and yi is the one-hot vector.
3) Auxiliary loss: In addition, we follow [35] to use an

auxiliary loss to make the support classes orthogonal to each
other and increase the distance between classes:

lossaux =
∑
i∈C

∑
j∈C,j ̸=i

∥∥∥ŜiŜ
T
j

∥∥∥ , (16)

where Ŝ is the normalized support sample feature.
4) Total loss: Finally, we use the total Loss for model

training:

Loss = losssupport + lossquery + lossaux. (17)

F. Inference
In the test phase, we do not use the augmented support set.

For every test image, only the reconstruction of query from
support Sc → Q̃ is conducted and the distance in the form of
Eq.(5) to calculate the the prediction probabilities:

P (yj = c|Qj) =
edcj∑

c′∈Ce
dc′j

. (18)

The query sample will be classified into the class with the
highest probability.

IV. EXPERIMENTAL ANALYSIS

A. Datasets

To evaluate the effectiveness of our method, we use four
fine-grained benchmark datasets: CUB-200-2011, Flowers,
Stanford-Cars, and FGVC-Aircraft. For each dataset, follow
the setting in [23], we divide them into the training set Dtrain,
the validation set Dval, and the test set Dtest. All images in
the four datasets are resized to 84× 84.

CUB-200-2011 (CUB) [52] contains 11,788 images of 200
bird species. We divide it into a training set with 100 classes,
a validation set with 50 classes, and a test set with 50 classes.

Flowers [53] consists of 102 categories of common flowers
and each category consists of 40 to 256 images. We randomly
divide this dataset into a training set with 51 classes, a
validation set with 26 classes, and a test set with 25 classes.

Stanford-Cars (Cars) [54] contains 16,185 images of 196
classes of cars. We randomly select 130 classes to form the
training set, 17 classes for the validation set, and 49 classes
for the test set.

FGVC-Aircraft (Aircraft) [55] contains 10,000 images of
aircraft spanning 100 aircraft models. We randomly select 50
classes to form a training set, 25 classes for a validation set,
and 25 classes for a test set.

In addition, for a comprehensive evaluation, we also test our
method on three coarse-grained datasets: mini-ImageNet [49],
tiered-ImageNet [56], and FC-100 [57].

mini-ImageNet [49] consists of 100 categories, each cate-
gory with 600 images. Following [58], we divide the dataset
into 64 classes for training, 16 classes for validation, and 20
classes for testing.

tiered-ImageNet [56] consists of 351 categories for training,
97 classes for validation, and 160 for testing.

FC100 [57] is extracted from the CIFAR-100 dataset, with
the training set of 60 categories, the validation set of 20
categories, and the test set of 20 categories.

B. Implementation Details

Follow the setting in [42], we adopt two widely-used
backbones: ResNet-12 [59], [60] and ResNet-18 [5], [61].

However, we do not completely adopt the ResNet-18 set
of [5], but modify it based on ResNet-12. Our ResNet-18 has
four layers, and the first two layers each contains two residual
blocks. There is only one residual block for each of the last
two layers, and each residual block contains three convolution
layers of 3× 3 convolution kernels. Each convolution layer is
followed by a batch normalization layer. Only after the first
bath normalization layer, there is a ReLU nonlinear activation
layer, and each residual block has a 2×2 max pooling layer at
the end. In this setting, the input is of 3× 84× 84 dimension
and the output is of 640× 5× 5 dimension.

The initial learning rate is set to 0.1. After every 400 epochs,
the learning rate decreases by a factor of 10. The weight decay
is set to 5e-4. We train ResNet-12 and ResNet-18 backbones
in the 10-way 5-shot setting for 1,200 epochs. In addition,
we verify the performance of the model every 20 epochs in
training, preserving the best model parameters.
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Table I
EVALUATION OF 5-WAY CLASSIFICATION ACCURACY ON FOUR FINE-GRAINED DATASETS USING THE RESNET-12 BACKBONE. WE REPRODUCED THE
COMPARISON METHOD UNDER THE SAME SETTINGS AND DATASETS USING THEIR OPEN SOURCE CODE. ∗ DENOTES THE CLASSIFICATION ACCURACY

ORIGINAL FROM THEIR ORIGINAL PAPER.

Model
CUB Flowers Cars Aircraft

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet (NIPS-17) [39] 79.64 ± 0.20 91.15 ± 0.11 75.41 ± 0.22 89.46 ± 0.14 82.29 ± 0.20 93.11 ± 0.10 86.57 ± 0.18 93.51 ± 0.09
RelationNet (CVPR-18) [40] 63.94 ± 0.92 77.87 ± 0.64 69.51 ± 1.01 86.84 ± 0.56 69.67 ± 1.01 84.29 ± 0.68 74.20 ± 1.04 86.62 ± 0.55
Baseline++ (ICLR-19) [10] 64.62 ± 0.98 81.15 ± 0.61 69.03 ± 0.92 85.72 ± 0.63 67.92 ± 0.92 84.17 ± 0.58 74.51 ± 0.90 88.06 ± 0.44
DeepEMD (CVPR-20) [41] 71.11 ± 0.31 86.30 ± 0.19 70.00 ± 0.35 83.62 ± 0.26 73.30 ± 0.29 88.37 ± 0.17 69.86 ± 0.30 85.17 ± 0.28

MiXFSL (ICCV-21) [42] 67.87 ± 0.94 82.18 ± 0.66 72.60 ± 0.91 86.52 ± 0.65 58.15 ± 0.87 80.54 ± 0.63 60.55 ± 0.86 77.57 ± 0.69
VFD (ICCV-21) [14] 79.12 ± 0.83 91.48 ± 0.39 76.20 ± 0.92 89.90 ± 0.53 77.52 ± 0.85 90.76 ± 0.46 76.88 ± 0.85 88.77 ± 0.46
FRN (CVPR-21) [35] 83.16 ± 0.19 92.59 ± 0.11 81.07 ± 0.20 92.52 ± 0.11 86.48 ± 0.18 94.78 ± 0.08 87.53 ± 0.18 93.98 ± 0.09
RENet (ICCV-21) [43] 79.49 ± 0.44 91.11 ± 0.24 79.91 ± 0.42 92.33 ± 0.22 79.66 ± 0.44 91.95 ± 0.22 82.04 ± 0.41 90.50 ± 0.24

DeepBDC (CVPR-22) [44] 79.71 ± 0.44 92.54 ± 0.22 81.10 ± 0.49 93.25 ± 0.23 81.92 ± 0.40 96.12 ± 0.15 85.92 ± 0.41 94.62 ± 0.16
TDM (CVPR-22) [25] 82.41 ± 0.19 92.37 ± 0.10 82.85 ± 0.19 93.60 ± 0.10 86.91 ± 0.17 96.11 ± 0.07 88.35 ± 0.17 94.36 ± 0.08

HelixFormer (MM-22) [45] 81.66 ± 0.30 91.83 ± 0.17 - - 79.40 ± 0.43 92.26 ± 0.15 - -
BiFRN (AAAI-23) [36] 82.90 ± 0.19 93.11 ± 0.10 80.30 ± 0.20 92.30 ± 0.11 87.80 ± 0.16 96.49 ± 0.06 87.05 ± 0.18 93.78 ± 0.09
TFD∗ (TCSVT-23) [19] 84.08 ± 0.81 92.54 ± 0.39 - - - - - -
BSFA (TCSVT-23) [26] 83.88 ± 0.44 90.76 ± 0.26 74.48 ± 0.54 86.05 ± 0.36 88.93 ± 0.38 95.20 ± 0.20 87.85 ± 0.35 94.93 ± 0.14

LCCRN (TCSVT-23) [37] 82.71 ± 0.19 93.48 ± 0.10 84.12 ± 0.18 94.77 ± 0.09 87.27 ± 0.18 96.01 ± 0.06 86.78 ± 0.18 95.09 ± 0.07
EFRN∗ (TCSVT-23) [38] 84.55 ± 0.19 93.46 ± 0.10 - - - - - -

QSFormer∗ (TCSVT-23) [46] 75.44 ± 0.29 86.30 ± 0.19 - - - - - -
IDEAL-clean (TPAMI-23) [47] 77.56 ± 0.86 88.87 ± 0.51 74.39 ± 0.93 87.29 ± 0.61 74.02 ± 0.89 89.98 ± 0.50 61.37 ± 0.92 82.51 ± 0.55

C2-Net (AAAI-24) [48] 83.37 ± 0.42 92.20 ± 0.23 80.86 ± 0.46 91.54 ± 0.27 84.81 ± 0.42 92.61 ± 0.23 87.98 ± 0.39 93.96 ± 0.20

Ours 84.56 ± 0.18 94.21 ± 0.09 83.52 ± 0.19 94.51 ± 0.09 87.51 ± 0.17 97.11 ± 0.06 88.38 ± 0.16 95.10 ± 0.07

Table II
EVALUATION OF 5-WAY CLASSIFICATION ACCURACY ON FOUR FINE-GRAINED DATASETS USING THE RESNET-18 BACKBONE. WE REPRODUCED THE
COMPARISON METHOD UNDER THE SAME SETTINGS AND DATASETS USING THEIR OPEN SOURCE CODE. ∗ DENOTES THE CLASSIFICATION ACCURACY

ORIGINAL FROM THEIR ORIGINAL PAPER.

Model
CUB Flowers Cars Aircraft

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchingNet (NIPS-16) [49] 72.88 ± 0.89 85.25 ± 0.57 76.07 ± 0.82 87.46 ± 0.51 75.03 ± 0.95 87.02± 0.56 82.84 ± 0.81 88.77 ± 0.54
ProtoNet (NIPS-17) [39] 78.20 ± 0.21 90.73 ± 0.11 75.82 ± 0.22 90.47 ± 0.13 84.16 ± 0.19 94.02 ± 0.09 85.81 ± 0.19 93.66 ± 0.09

Baseline++ (ICLR-19) [10] 65.67 ± 0.95 81.53 ± 0.58 67.90 ± 0.96 84.34 ± 0.62 67.41 ± 0.99 85.50 ± 0.58 75.92 ± 0.88 88.13 ± 0.47
Neg-margin (ECCV-20) [50] 72.51 ± 0.82 89.25 ± 0.43 76.34 ± 0.89 90.83 ± 0.47 76.04 ± 0.81 93.06 ± 0.38 77.40 ± 0.86 90.92 ± 0.39

FRN (CVPR-21) [35] 83.40 ± 0.19 92.69 ± 0.10 81.22 ± 0.21 92.33 ± 0.11 87.63 ± 0.17 95.35 ± 0.08 87.89 ± 0.18 93.96 ± 0.09
RENet (ICCV-21) [43] 77.14 ± 0.47 90.59 ± 0.27 76.81 ± 0.49 89.13 ± 0.30 80.33 ± 0.44 91.63 ± 0.23 82.95 ± 0.42 90.51 ± 0.23

DeepBDC (CVPR-22) [44] 83.65 ± 0.40 94.18 ± 0.17 80.65 ± 0.48 93.28 ± 0.24 85.57 ± 0.39 96.36 ± 0.15 87.45 ± 0.39 94.97 ± 0.15
TDM (CVPR-22) [25] 83.25 ± 0.19 92.98 ± 0.10 82.31 ± 0.20 93.46 ± 0.11 87.69 ± 0.17 96.06 ± 0.07 87.91 ± 0.17 94.28 ± 0.08

BiFRN (AAAI-23) [25] 82.86 ± 0.19 93.24 ± 0.10 80.44 ± 0.20 93.11 ± 0.10 88.29 ± 0.16 96.80 ± 0.06 87.73 ± 0.17 94.16 ± 0.09
LCCRN (TCSVT-23) [37] 82.74 ± 0.19 93.55 ± 0.10 83.58 ± 0.18 94.87 ± 0.08 86.24 ± 0.18 96.34 ± 0.07 86.95 ± 0.18 95.06 ± 0.07

QGN∗ (PR-23) [51] 83.82 91.22 - 89.9 - 91.3 - 92.0

Ours 85.22 ± 0.18 94.47 ± 0.09 84.12 ± 0.18 94.91 ± 0.08 88.35 ± 0.16 97.15 ± 0.05 89.00 ± 0.16 95.41 ± 0.07

In the test phase, we report the average classification ac-
curacies with 95% confidence intervals of 10,000 randomly
generated tasks on the test sets under the standard 5-way 1-
shot and 5-way 5-shot settings.

C. Comparison with State-of-the-Art Methods

The classification accuracies of our method and the state-
of-the-art methods using the ResNet-12 and ResNet-18 back-
bones are listed in Table I and Table II, respectively. We
reproduce the results of all state-of-the-art methods with the

same training settings using their open-source code. The
proposed method achieves the best performance in most cases
for CUB, Cars and Aircraft data using both backbones. For the
Flowers dataset, although our method performs the second best
using the ResNet-12 backbone in Table I, it is the best using
the ResNet-18 backbone in Table II.

This can be ascribed to the fact that the proposed method
uses the query samples to generate augmented support samples
and models the diverse similarities between the two types of
support samples and the query samples within the same sub-
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class, alleviating the large intra-class variance and improving
the classification accuracy.

To further verify the statistical significance of the superior
performance of our method, we perform the one-tailed paired
t-test to compare the 5-shot accuracies of our method with
those of state-of-the-art methods in Tables I and II, and report
the results in Table III. In this hypothesis test, we have null
hypothesis H0 : µOurs − µ∗ ≤ 0 and alternative hypothesis
H1 : µOurs−µ∗ > 0, where µ is the mean accuracy of a method
and ∗ denotes the state-of-the-art methods. When the p-value
is less than 0.05, we reject the null hypothesis and conclude
that our method is significantly better than the state-of-the-art
methods. In Table III, ✓ denotes p < 0.05 while ✗ denotes
p ≥ 0.05. We can observe in both tables that our method is
significantly better than most state-of-the-art methods, except
for LCCRN on Flowers and Aircraft datasets.

Table III
THE p-VALUES OF THE ONE-TAILED PAIRED t-TEST

(H1 : µOURS − µ∗ > 0), CALCULATED BASED ON THE 5-WAY 5-SHOT
CLASSIFICATION ACCURACIES ON FOUR FINE-GRAINED DATASETS USING

RESNET-12 BACKBONE IN TABLE I AND USING RESNET-18 BACKBONE IN
TABLE II. THE SIGNIFICANCE LEVEL IS 0.05. NOTATION: “✓” : p < 0.05

AND “✗” : p ≥ 0.05.

Dataset In Table I: Ours vs. *

ProtoNet FRN BiFRN BSFA LCCRN C2-Net

CUB ✓ ✓ ✓ ✓ ✓ ✓

Flowers ✓ ✓ ✓ ✓ ✗ ✓

Cars ✓ ✓ ✓ ✓ ✓ ✓

Aircraft ✓ ✓ ✓ ✓ ✗ ✓

Dataset In Table II: Ours vs. *

ProtoNet FRN BiFRN LCCRN

CUB ✓ ✓ ✓ ✓

Flowers ✓ ✓ ✓ ✗

Cars ✓ ✓ ✓ ✓

Aircraft ✓ ✓ ✓ ✓

D. Ablation Studies

1) The impact of different branches of reconstruction: Table
IV shows the impact of the two branches and the inner four
reconstructions on classification performance. The first row
represents the results that reconstruct the query and support
feature maps by only using the original support features
(SCM), the second row shows the results that reconstruct the
query and support feature maps by only using the augmented
samples (ASCM), and the third row is the proposed method
including both SCM and ASCM. It is clear that the best
performance is reached when both branches are used. The
middle row of Table IV shows the case of eliminating all
support self-reconstruction, and the results also verify that
the support self-reconstruction strategy improves the model’s
classification performance. The lower part of Table IV displays
the classification accuracies of removing one of the four re-
constructions, and the results show that using all four achieves
the best performance.
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Figure 3. The effect of the number of ways on classification accuracy. We
employ the C-way 5-shot training approach and evaluate using the 5-way
1-shot and 5-way 5-shot settings on CUB and Flowers with the ResNet-12
backbone.
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Figure 4. The effect of the number of shots on classification accuracy. We
employ the 10-way K-shot training approach and evaluate using the 5-way
1-shot and 5-way 5-shot settings on CUB and Flowers with the ResNet-12
backbone.

Flowers CUB

Figure 5. The boxplots of the test classification accuracies of ProtoNet, FRN
and our method (Ours) across 100 randomly sampled tasks. The models are
trained by the 10-way 5-shot setting and evaluated by 5-way 1-shot test tasks.
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Table IV
ABLATION STUDY OF DIFFERENT RECONSTRUCTION TASKS ON THREE FINE-GRAINED DATASETS USING THE 5-WAY SETTING AND RESNET-12

BACKBONE.

SCM ASCM CUB Flowers Cars

Sc → Q̃c Sc → S̃c S+
c → Q̃+

c S+
c → S̃+

c 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

✓ ✗ 83.50 ± 0.19 93.19 ± 0.10 83.14 ± 0.19 94.06 ± 0.10 86.48 ± 0.18 95.85 ± 0.07
✗ ✓ 83.98 ± 0.18 93.76 ± 0.09 82.20 ± 0.20 93.61 ± 0.10 85.71 ± 0.18 95.89 ± 0.07
✓ ✓ 84.56 ± 0.18 94.21 ± 0.09 83.52 ± 0.19 94.51 ± 0.09 87.51 ± 0.17 96.58 ± 0.07

✓ ✗ ✓ ✗ 83.69 ± 0.19 94.08 ± 0.10 82.11 ± 0.20 93.48 ± 0.10 87.34 ± 0.17 96.51 ±0.06

✗ ✓ ✓ ✓ 84.73 ± 0.18 94.14 ± 0.09 82.81 ± 0.20 94.03 ± 0.10 86.62 ± 0.18 95.99 ± 0.07
✓ ✗ ✓ ✓ 84.23 ± 0.18 94.02 ± 0.09 82.63 ± 0.19 94.15 ± 0.09 86.42 ± 0.18 96.43 ± 0.07
✓ ✓ ✗ ✓ 84.19 ± 0.18 93.76 ± 0.09 82.66 ± 0.20 93.93 ± 0.10 86.13 ± 0.18 95.58 ± 0.08
✓ ✓ ✓ ✗ 84.34 ± 0.18 94.08 ± 0.09 83.05 ± 0.19 94.21 ± 0.09 86.07 ± 0.18 96.39 ± 0.07

Table V
ABLATION STUDY OF DIFFERENT DATA AUGMENTATION METHODS ON THREE FINE-GRAINED DATASETS USING THE 5-WAY SETTING AND RESNET-12

BACKBONE.

CUB Flowers Cars

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Ours w/ Cutout [62] 83.06 ± 0.19 92.89 ± 0.10 82.52 ± 0.19 94.09 ± 0.09 87.29 ± 0.18 95.77 ± 0.07
Ours w/ Mixup [63] 82.88 ± 0.19 92.90 ± 0.10 81.04 ± 0.20 92.40 ± 0.11 85.60 ± 0.18 95.10 ± 0.08

Ours w/ Cutmix (query-aware) [64] 84.22 ± 0.18 93.82 ± 0.09 83.26 ± 0.19 94.62 ± 0.09 86.93 ± 0.18 96.56 ± 0.06

Ours w/ Cross-mixup 84.56 ± 0.18 94.21 ± 0.09 83.52 ± 0.19 94.51 ± 0.09 87.51 ± 0.17 96.58 ± 0.07

Table VI
CLASSIFICATION ACCURACY OF CROSS-DOMAIN TASKS USING TWO

DIFFERENT BACKBONES.

Training
−→Testing Method Backbone 1-shot 5-shot

Flowers
−→CUB

ProtoNet [39]

ResNet-12

40.16 ± 0.19 56.22 ± 0.19
FRN [35] 43.34 ± 0.20 58.34 ± 0.20

LCCRN [37] 44.12 ± 0.18 62.91 ± 0.19
Ours 47.30 ± 0.20 65.27 ± 0.19

ProtoNet [39]

ResNet-18

39.64 ± 0.19 56.58 ± 0.19
FRN [35] 45.72 ± 0.21 60.18 ± 0.20

LCCRN [37] 44.53 ± 0.19 63.42 ± 0.19
Ours 47.41 ± 0.20 64.37 ± 0.19

Cars
−→Aircraft

ProtoNet [39]

ResNet-12

29.98 ± 0.14 45.13 ± 0.15
FRN [35] 30.87 ± 0.14 40.04 ± 0.14

LCCRN [37] 40.07 ± 0.16 59.76 ± 0.16
Ours 41.86 ± 0.17 62.38 ± 0.16

ProtoNet [39]

ResNet-18

29.85 ± 0.14 43.71 ± 0.15
FRN [35] 30.01 ± 0.14 38.84 ± 0.14

LCCRN [37] 33.14 ± 0.14 46.57 ± 0.14
Ours 40.46 ± 0.16 60.41 ± 0.16

2) The impact of different data augmentation methods: In
Table V, we compare the proposed cross-mixup augmentation
method with three related augmentation methods, cutout [62],
mixup [63] and cutmix [64]. Cutout randomly masks out
squared regions of images, mixup creates augmented samples
by convex combinations of training samples, while cutmix cuts
and pastes patches in training samples. In this experiment,
cutout and mixup are applied to the same classes of the support
set only. Cutout is revised to fit the image size of 84 × 84,
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Figure 6. Visualization of the predicted probabilities of FRN and the proposed
method (Ours) on the CUB dataset. In the confusion matrices, each block
contains 16 bars representing the predicted probabilities of 16 randomly
selected test query images. The darker the bars, the higher the predicted
probability.

and crop is performed with the 0.25 ratio of the width of the
image. Cutmix is performed to cut and paste the patches of
query samples with support samples from the same classes,
which makes the method query-aware.

Clearly, our proposed cross-mixup is the best augmentation
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Input

FRN

Ours

ProtoNet

Figure 7. Visualization of the discriminative regions captured by ProtoNet, FRN and our method (Ours). Our method can identify the most delicate and
discriminative regions to classify fine-grained classes.

Query 
imagesSupport images

Support 
images

Query 
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Support 
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c iS S→ 

c iS S+ +→ 

Figure 8. Visualization of the reconstructed query and support images from the CUB dataset of the four reconstruction tasks in our method. The reconstructed
images from the SCM and ASCM branches can provide complementary details.

method. Compared with mixup, cross-mixup substantially
increases the classification accuracies of all datasets, demon-
strating the importance of query-awareness. In addition, higher
accuracies of cross-mixup over query-aware cutmix suggest
that the linear mixture strategy is better than the simple cut-
and-paste strategy for fine-grained image classification.

3) The impact of the numbers of ways and shots: In order
to further analyze the impact of the numbers of ways and shots
on the model performance, we compare the test classification
accuracies of ProtoNet, FRN and our method in Figures 3
and 4, respectively. The results of two test settings, 5-way
1-shot and 5-shot, are reported for the CUB and Flowers data.

In Figure 3, when the number of ways increases from 5
to 10, the overall classification performance shows an upward
trend. However, when the number of ways exceeds 10, the
classification accuracy of FRN and our method declines.
In Figure 4, 5 shots tend to provide the best classification

accuracy. Nonetheless, our method is superior over the other
two methods for all number of ways and shots.

E. Distribution of Classification Accuracy

In Figure 5, we show the boxplots of the classification
accuracies of ProtoNet [39], FRN [35] and our method for 100
randomly selected test tasks. The three models are trained by
the 10-way 5-shot setting and evaluated by 5-way 1-shot test
tasks. In the boxplots, the red line is the median and the blue
dotted is the mean. We can clearly observe that our method
performs better than the other two methods with higher means
and medians.

F. Cross-Domain Performance

In Table VI, we further compare the performance of our
method with the most relevant methods, FRN [35] and LC-
CRN [37], on two cross-domain tasks, where the models

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2024.3484530

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on October 23,2024 at 18:19:47 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 9

Table VII
EVALUATION OF 5-WAY CLASSIFICATION ACCURACY ON TREE COARSE-GRAINED DATASETS USING THE RESNET-12 BACKBONE.

mini-ImageNet tiered-ImageNet FC-100

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

FRN [35] 66.40 ± 0.19 83.43 ± 0.13 70.93 ± 0.22 85.70 ± 0.15 41.05 ± 0.18 55.52 ± 0.18
Ours 63.90 ± 0.19 84.08 ± 0.12 70.52 ± 0.22 84.97 ± 0.15 41.59 ± 0.18 57.09 ± 0.18

are trained and test on two different datasets. Our method
can achieve the best classification accuracies for all cases,
demonstrating its superior generalization ability.

G. Qualitative Analysis via Visualization

1) Visualizing the predicted probabilities: In Figure 6, we
provide the visualization of the predicted probabilities for
FRN and the proposed method in the training settings of
5-way 1-shot and 5-way 5-shot on the CUB dataset. The
predicted probabilities are calculated according to Eq.(12) on
16 randomly sampled query images for each class. In each
plot, the diagonal blocks represent the probabilities of the
correct prediction while the off-diagonal blocks represent those
of the wrong predictions. The darker the bars, the higher
the predicted probability. It is obvious that our method can
provide more correct predictions on the diagonals and less
wrong predictions in the off-diagonal blocks.

2) Visualizing the discriminative regions: The discrimina-
tive regions captured by ProtoNet, FRN and our method are
visualized in Figure 7. ProtoNet tends to include most of the
object and irrelevant background as discriminative features,
while FRN can focus more on the targets with less background
involved. Our method can provide the most delicate discrim-
inative regions; for example, the head and rear lights of cars
and the heads, beaks and wings of birds.

3) Visualizing the reconstructed images of the four recon-
struction tasks: In Figure 8, we visualize the reconstructed
images obtained by the four reconstruction tasks, and the
following two conclusions can be drawn. First, the images
reconstructed by images from the same class are better than
those reconstructed by images from different classes, showing
evidence of using the reconstruction error as a metric for
classification. Second, the reconstruction by augmented sup-
port features complement the details ignored by the original
support feature reconstruction, e.g., the branch of S+

c → Q̃+
c

reconstructs the query feature better.

H. Performance on Coarse-grained Datasets

In Table VII, we evaluate the classification accuracies of
our method against FRN on three coarse-grained datasets.
Both methods are trained using the 10-way 5-shot setting
and evaluated in 5-way 1-shot and 5-way 5-shot scenarios.
While our method outperforms FRN on the FC-100 dataset,
it performs worse or comparably to FRN on mini-ImageNet
and tiered-ImageNet, unlike its superior performance on fine-
grained datasets. Coarse-grained data normally have more
diverse scenes and coarse-grained classes than fine-grained
data. However, while our cross-mixup can enhance subtle

discriminative regions between fine-grained sub-classes, it may
also mix up sub-classes within a coarse-grained class while
creating the cross-mixed support samples during the training
phase, hence falls short in coarse-grained tasks during the test
phase that only original support samples can be used.

I. Evaluation of Model Efficiency

Table VIII
COMPARISON OF MODEL EFFICIENCY.

Method FLOPs (G) Params (K)

FRN [35] 1127.36 12424.32
RENet [43] 1469.49 12659.53
TDM [25] 1409.20 12424.32

BiFRN [36] 1446.14 16116.48
LCCRN [37] 2832.85 25005.95
C2-NET [48] 1440.81 18486.09

Ours 1761.50 12424.32

We compare the model efficiency in a 10-way 5-shot setting
and use THOP to obtain the FLOPs and parameters for each
model. As shown in Table VIII, our method has fewer param-
eters, but it has more FLOPs due to the augmented support
samples for cross-reconstruction and self-reconstruction.

V. CONCLUSION

In this paper, we propose a data augmentation method,
called query-aware cross-mixup. Unlike traditional mix-up
methods that combine samples from different classes in the
support set, the proposed method randomly selects samples
from the query set and mixes them with support samples from
the same class, to augment the support set and encourages the
model to learn fine-grained feature representation. In addition,
we develop a strategy to leverage both cross-reconstruction
and self-reconstruction to mitigate the bias between support
and query samples for a better generalization. Extensive exper-
iment results on four widely used few-shot fine-grained image
datasets demonstrate the superior classification performance of
the proposed method to the state-of-the-art methods.

We note two limitations of our method. First, as indi-
cated in Table VIII, our method has relatively high FLOPs.
This suggests some room in computational efficiency for our
method to improve. Second, as shown in Table VII, our
method, particularly designed for fine-grained datasets, does
not perform so superior on coarse-grained datasets as on fine-
grained datasets. This suggests a comprehensive extension of
our method to both fine-grained and coarse-grained data. It is
our future work to address these two limitations.

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2024.3484530

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on October 23,2024 at 18:19:47 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 10

ACKNOWLEDGEMENT

This work was partly supported by the National Nature
Science Foundation of China (Grants 62176110, 62463015,
62225601,U23B2052,62406171), the Key Research and De-
velopment Program of Gansu Province, China under Grant
22YF7GA130, S&T Program of Hebei, China under Grant
SZX2020034, Hong-Liu Distinguished Young Talents Founda-
tion of Lanzhou University of Technology, in part by the Bei-
jing Natural Science Foundation Project under Grant L242025,
in part by the Youth Innovative Research Team of BUPT
under Grant 2023YQTD02, in part by the China Postdoctoral
Science Foundation No. 2023M741961, and in part by the
Postdoctoral Fellowship Program of CPSF No. GZB20240359,
and the Royal Society under International Exchanges Award
IEC\NSFC\201071.

REFERENCES

[1] Shu-Lin Xu, Faen Zhang, Xiu-Shen Wei, and Jianhua Wang. Dual
attention networks for few-shot fine-grained recognition. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), volume 36,
pages 2911–2919, 2022.

[2] Ruyi Ji, Jiaying Li, Libo Zhang, Jing Liu, and Yanjun Wu. Dual
transformer with multi-grained assembly for fine-grained visual classifi-
cation. IEEE Transactions on Circuits and Systems for Video Technology,
33(9):5009–5021, 2023.

[3] Wenbin Li, Lei Wang, Jinglin Xu, Jing Huo, Yang Gao, and Jiebo Luo.
Revisiting local descriptor based image-to-class measure for few-shot
learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 7260–7268, 2019.

[4] Huaxi Huang, Junjie Zhang, Jian Zhang, Jingsong Xu, and Qiang Wu.
Low-rank pairwise alignment bilinear network for few-shot fine-grained
image classification. IEEE Transactions on Multimedia, 23:1666–1680,
2020.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016.

[6] Jinhui Tang, Xiangbo Shu, Guo-Jun Qi, Zechao Li, Meng Wang,
Shuicheng Yan, and Ramesh Jain. Tri-clustered tensor completion
for social-aware image tag refinement. IEEE transactions on pattern
analysis and machine intelligence, 39(8):1662–1674, 2016.

[7] Xiangbo Shu, Jinhui Tang, Guo-Jun Qi, Zechao Li, Yu-Gang Jiang,
and Shuicheng Yan. Image classification with tailored fine-grained
dictionaries. IEEE Transactions on Circuits and Systems for Video
Technology, 28(2):454–467, 2016.

[8] Meng Pang, Yiu-Ming Cheung, Risheng Liu, Jian Lou, and Chuang
Lin. Toward efficient image representation: Sparse concept discriminant
matrix factorization. IEEE Transactions on Circuits and Systems for
Video Technology, 29(11):3184–3198, 2018.

[9] Jinhui Tang, Xiangbo Shu, Zechao Li, Yu-Gang Jiang, and Qi Tian.
Social anchor-unit graph regularized tensor completion for large-scale
image retagging. IEEE transactions on pattern analysis and machine
intelligence, 41(8):2027–2034, 2019.

[10] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and
Jia-Bin Huang. A closer look at few-shot classification. In Proceedings
of the International Conference on Learning Representation (ICLR),
2019.

[11] Yinbo Chen, Zhuang Liu, Huijuan Xu, Trevor Darrell, and Xiaolong
Wang. Meta-baseline: Exploring simple meta-learning for few-shot
learning. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 9062–9071, 2021.

[12] Shell Xu Hu, Da Li, Jan Stuhmer, Minyoung Kim, and Timothy M.
Hospedales. Pushing the limits of simple pipelines for few-shot learning:
External data and fine-tuning make a difference. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 9068–9077, 2022.

[13] Meng Pang, Binghui Wang, Mang Ye, Yiu-Ming Cheung, Yintao Zhou,
Wei Huang, and Bihan Wen. Heterogeneous prototype learning from
contaminated faces across domains via disentangling latent factors. IEEE
Transactions on Neural Networks and Learning Systems, pages 1–15,
2024.

[14] Jingyi Xu, Hieu Le, Mingzhen Huang, ShahRukh Athar, and Dimitris
Samaras. Variational feature disentangling for fine-grained few-shot
classification. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 8812–8821, 2021.

[15] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual
explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 618–626, 2017.

[16] Kai Li, Yulun Zhang, Kunpeng Li, and Yun Fu. Adversarial feature
hallucination networks for few-shot learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13470–13479, 2020.

[17] Jiabao Zhao, Xin Lin, Jie Zhou, Jing Yang, Liang He, and Zhaohui Yang.
Knowledge-based fine-grained classification for few-shot learning. In
Proceedings of the IEEE International Conference on Multimedia and
Expo (ICME), pages 1–6, 2020.

[18] Chia-Ching Lin, Hsin-Li Chu, Yu-Chiang Frank Wang, and Chin-Laung
Lei. Joint feature disentanglement and hallucination for few-shot image
classification. IEEE Transactions on Image Processing, 30:9245–9258,
2021.

[19] Zixuan Hu, Li Shen, Shenqi Lai, and Chun Yuan. Task-adaptive feature
disentanglement and hallucination for few-shot classification. IEEE
Transactions on Circuits and Systems for Video Technology, 33(8):3638–
3648, 2023.

[20] Shuai Shao, Yan Wang, Bin Liu, Weifeng Liu, Yanjiang Wang, and
Baodi Liu. Fads: Fourier-augmentation based data-shunting for few-
shot classification. IEEE Transactions on Circuits and Systems for Video
Technology, 34(2):839–851, 2024.

[21] Huaxi Huang, Junjie Zhang, Jian Zhang, Qiang Wu, and Jingsong Xu.
Compare more nuanced: Pairwise alignment bilinear network for few-
shot fine-grained learning. In Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME), pages 91–96, 2019.

[22] Xin Sun, Hongwei Xv, Junyu Dong, Huiyu Zhou, Changrui Chen, and
Qiong Li. Few-shot learning for domain-specific fine-grained image
classification. IEEE Transactions on Industrial Electronics, 68(4):3588–
3598, 2020.

[23] Xiaoxu Li, Jijie Wu, Zhuo Sun, Zhanyu Ma, Jie Cao, and Jing-Hao
Xue. Bsnet: Bi-similarity network for few-shot fine-grained image
classification. IEEE Transactions on Image Processing, 30:1318–1331,
2020.

[24] Huaxi Huang, Junjie Zhang, Litao Yu, Jian Zhang, Qiang Wu, and Chang
Xu. Toan: Target-oriented alignment network for fine-grained image
categorization with few labeled samples. IEEE Transactions on Circuits
and Systems for Video Technology, 32(2):853–866, 2021.

[25] SuBeen Lee, WonJun Moon, and Jae-Pil Heo. Task discrepancy
maximization for fine-grained few-shot classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5331–5340, 2022.

[26] Zican Zha, Hao Tang, Yunlian Sun, and Jinhui Tang. Boosting few-shot
fine-grained recognition with background suppression and foreground
alignment. IEEE Transactions on Circuits and Systems for Video
Technology, 33(8):3947–3961, 2023.

[27] Ryo Takahashi, Takashi Matsubara, and Kuniaki Uehara. Data augmen-
tation using random image cropping and patching for deep cnns. IEEE
Transactions on Circuits and Systems for Video Technology, 30(9):2917–
2931, 2019.

[28] Xiaofeng Zhang, Zhangyang Wang, Dong Liu, Qifeng Lin, and Qing
Ling. Deep adversarial data augmentation for extremely low data
regimes. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 31(1):15–28, 2020.

[29] Weiqiu Wang, Zhicheng Zhao, Pingyu Wang, Fei Su, and Hongying
Meng. Attentive feature augmentation for long-tailed visual recognition.
IEEE Transactions on Circuits and Systems for Video Technology,
32(9):5803–5816, 2022.

[30] Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath Hariha-
ran. Low-shot learning from imaginary data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7278–7286, 2018.

[31] Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick Pérez, and
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