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Abstract
Proactive strategies for data-driven operational schedules based on monitored occupancy patters can enable
energy demand reduction and optimal resource utilisation. A replicable framework that enables strategic
closure of specific thermal zones is introduced and design and operational considerations are discussed. The
potential of the framework is illustrated through a case study building, where up to 6% annual energy savings
were estimated, highlighting the effectiveness of zone closures. Further findings indicated that total energy
savings from the simultaneous closure of multiple zones were marginally larger compared to savings from
closing off zones individually, depending on zone capacity and use. Therefore, balanced considerations should
take place prior to selecting which zones to close off, also taking into account user acceptability, capacity of
systems and controls as well as the internal layout of the building. The research enhances the understanding of
the relationship between occupancy and energy demand, while offering recommendations for more energy
efficient and sustainable building design and operations that require minimal capital cost.

Practical Application: This paper provides design and operational considerations based on a robust and
replicable framework for energy savings by optimising operational building schedules based on monitored
occupancy patterns. This allows a proactive implementation of data-driven strategies that maximise resource
utilisation, such as closure of specific zones during periods of low occupancy, without requiring any physical
intervention. The findings on a case study building demonstrate that annual energy savings can be achieved,
underscoring the potential for substantial cost reductions and improved energy efficiency. Applications can
also extend to optimising energy demand for energy flexibility.
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Introduction

Buildings serve as significant contributors to global
energy consumption, with building operations ac-
counting for 26% of total global energy consump-
tion.1 Internationally, government policies and
schemes have focused on amplifying energy effi-
ciency to reduce carbon emissions of the buildings
sector.1 Furthermore, operational energy consump-
tion has been identified as the predominant con-
tributor of a building’s life cycle energy usage,
accounting for 80%–90%.2 All stakeholders in the
built environment bear a collective responsibility to
champion enhanced sustainability practices, partic-
ularly in the domain of operational energy
consumption.

Building Energy Models (BEMs), particularly
dynamic thermal simulation models, are tools for
analysing energy flows, occupant behaviours and
environmental interactions in buildings.3 These
models enable informed decision-making, support-
ing the development of operational strategies and
addressing energy concerns in the built environment.
They are essential instruments that allow stake-
holders to gain a deeper understanding of energy
dynamics within the built environment and to pave
the way for more sustainable building practices.

Efficient building operations are pivotal in
achieving energy reduction goals, and the integration
of data-driven responsiveness holds promise in this
endeavour. The incorporation of smart data-driven
control systems into building operations has gained
prominence, offering the potential to optimise op-
erational strategies without affecting building oc-
cupants. The influence of occupancy on building
energy consumption can be substantial,4 motivating
a focused exploration of strategies that respond
operations to occupancy patterns to achieve signif-
icant energy savings. Occupancy-based climate
controls were found to save energy consumption in

both simulations and field experiments.5 Accounting
for occupancy patterns without architectural changes
can result in energy savings with minimal financial
investments.6

This study proposes a novel operational frame-
work and design considerations to leverage occu-
pancy data and enhance operational energy
efficiency strategies, which are adaptable to evolving
occupancy patterns.

The replicable data-driven framework devised can
be readily scaled and extended to different building
types, providing versatile energy reduction strategies
without requiring significant physical retrofits. The
research offers actionable recommendations for
sustainable operational practices in non-domestic
buildings, addressing a major source of global car-
bon emissions.

Methodology

This section illustrates the framework devised for the
development of occupancy-driven energy demand
reduction strategies. Its implementation is demon-
strated and discussed through a case study building.

The framework

The framework devised consists of three main stages:
assessment of occupancy patterns and space usage;
implementation and calibration of a baseline model
to assess the energy demand of the building in object;
and development of occupancy-driven operational
strategies to reduce energy demand at periods of low
usage. The input data and workflow are summarised
in Figure 1.

Data collection and pre-processing: The data re-
quired for this work include hourly measured oc-
cupancy, hourly measured energy demand as well as
building-related information to develop a detailed

2 Building Services Engineering Research & Technology 0(0)



dynamic thermal model (e.g., external and detailed
internal geometry, fabric, systems, controls, equip-
ment). Occupancy data serve multiple purposes,
including understanding occupancy patterns, in-
forming energy model inputs for occupancy sched-
ules, and shaping proposed operational strategies.
Measured energy data are used to calibrate the energy
model of the building.

Modelling and calibration: The modelling process
starts with the creation of a baseline model using the
building-related information available. Subse-
quently, a calibration procedure is applied to the
baseline model to minimise the discrepancy between
the model’s energy demand prediction and the actual
metered data. The calibrated model is then used to
simulate a variety of operational-strategies scenarios,
enabling subsequent detailed analysis.

Operational strategies formulation: Operational
strategies are formulated by understanding the
building usage and identifying periods of low oc-
cupancy where specific floors and/or zones can be
closed during designated timeframes. This analysis

aims at consolidating occupancy into smaller oper-
ational areas - potentially reducing energy demand -
and adopting a more responsive operation of the
building during periods of lower occupancy - en-
hancing efficiency. Careful consideration to the de-
sign and operational features of the building in object
is necessary to guide the decision-making process
and devise strategies that can be effectively im-
plemented with minimum effort.

Experimental methodology

Case study building. The case study building is a large
educational building in London7 (United Kingdom),
consisting of four floors above ground and two
basement levels and spanning 5400 m2 (Figure 2).
The building is operational 24/7 throughout the year
and it accommodates individual and group study
spaces, a café and staff offices. The building attained
an Energy Performance Certificate (EPC) rating of
“A” in 2018 and adopts a “passive-first” design

Figure 1. Methodology overview of the framework devised and workflow.
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approach which uses efficient fabric materials,
thermal mass and natural ventilation when possible.7

The building design and layout is notably
complex. It presents a mixed variety of heating,
ventilation and air conditioning (HVAC) config-
urations throughout. While the HVAC system is
electrically powered with ground-source heat
pumps, the domestic hot water supply is separately
sourced from a district heating system. Addi-
tionally, the presence of a central atrium void,
spanning from the ground floor to the main roof
skylight, introduces intricacies in managing the
building’s HVAC requirements. There are some
entire zones on the first and second floors directly
exposed to this atrium void.

The building design features operable window
openings to enable for natural ventilation when
outdoor temperatures allow. One of the most sig-
nificant operational alterations from design inten-
tions is the use of temperature sensors for HVAC
control, departing from the originally intended car-
bon dioxide sensor-based system.

The building’s design does not include occupant
controls as the lighting, windows and HVAC are
centrally managed, as with many non-domestic
buildings in the UK. This makes the building suit-
able for testing the framework devised examining

how operational strategies can be responsive to oc-
cupancy patterns.

Data collection and pre-processing. The information
required to implement the proposed framework on
the case study building were retrieved from a number
of resources. Data from the full calendar year of
2022 were selected due to completeness and up-to-
date nature of the sources.

Building data: Design-stage drawings and docu-
ments were used to model the building geometry,
interior layouts, HVAC systems, construction ma-
terials and their U-values.7,8 Valuable insights with
regards to HVAC operations and the energy-use
breakdown were also drawn from a prior case study.9

Occupancy data: Occupancy data originated from
the university API platform10 and are available to all
individuals with university credentials. Historical
readings from seat occupancy sensors were available
for a number of study spaces, including those located
in the case study building. The seat occupancy
readings were processed in several temporal di-
mensions such as academic term dates (Table 1),
monthly, day of the week and hour of the day to
investigate potential occupancy patterns. The widely
used unsupervised machine learning algorithm, the
k-means clustering approach, used for partitioning a

Figure 2. External view of the case study building in modelling environment.
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dataset,11 was selected for identifying clusters of
dates with notably different occupancy rates. This
analysis derived an evidence-based occupancy rate
schedule for the case study building, which is re-
ported and discussed in the following section.

Subsequently, occupancy data were mapped
against seats location in the building to identify zones
with reduced occupancy at specific time of the year.
This informed the occupancy-based optimisation,
which aimed at closing off zones to minimise energy
demand.

Energy consumption data: Metered energy data
and daily main meter electricity consumption were
extracted from the university building management
systems12 (BMS). This did not include the hot water
consumption which is separately supplied through a
district heating network. Notably, submeter and
system-level data were unavailable.

Climate data: A weather file featuring the actual
2022 weather conditions of the area surrounding the
case study building was utilised, courtesy of the
DesignBuilder Climate Analytics platform.13

Baseline model. The modelling process started with
the creation of a baseline model of the case study
building, which was created using DesignBuilder
v7.014 and simulated using the EnergyPlus
v9.4 engine.15 Building systems data were used to
implement the model of the building. As detailed
specification for the HVAC systems were absent,
such characteristics were mostly auto sized by the
software. Considering data availability constraints,
only electricity-consuming segments of the building
were modelled, which represent all energy demand
of the building except domestic hot water (the latter is

supplied by the district heating system). It’s worth
noting that the dynamic thermal model was set up in a
way that thermal comfort conditions are reached and
maintained regardless of occupancy levels. Fur-
thermore, any distribution losses from systems
running through the building, although modelled,
they have not been considered in this work, since
information on the detailed layout of the HVAC was
not available. Table 2 summarises key inputs for the
energy model.

Model calibration. The model calibration was carried
out based on three key variables as outlined in
Table 3, using the jEPLUS v2.1.0 software.17 The
heating and cooling ranges were selected in line with
commonly accepted set-points for non-domestic
buildings in the UK and after consideration of the
measured energy data. A generous air change rate
range was selected for the mechanical ventilation
system to reflect the need for high ventilation rates in
response to the COVID-19 pandemic safety con-
cerns18 (see Table 3). The monthly energy con-
sumption of each iteration was then compared to the
measured meter data and evaluated based on the
Coefficient of Variation of the Root Mean Square
Error (CV(RMSE)) and Normalised Mean Bias Error
(NMBE), aligning with the standards established by
ASHRAE Guideline 14 (2002).19

Development of modelling scenarios. Two periods of
low occupancy were identified in the case study data
from the occupancy analysis and were used to model
operational scenarios aiming at closing off specific
floors/zones in certain periods and concentrating the
users in other areas. Specifically, these periods were a
long period of low occupancy (15 May - 02 Oct
2022) and regular short periods of low occupancy
(i.e. weekends throughout the year).

In the proposed strategy, occupancy count is
maintained but redistributed across areas of the
building that are operational and not closed. Occu-
pancy count is determined by occupancy density
(person/m2) multiplied by the occupancy rate (%)
and the floor area (m2) of the building/zone. The
concentration of occupancy in opened areas of the
building can be simulated in the energy model by
increasing the occupancy density or rate. The

Table 1. Academic calendar dates.

Academic year (AY) calendar Dates (calendar year 2022)

AY 21/22 winter break 1 – 9 Jan
AY 21/22 term 2 10 Jan – 25 Mar
AY 21/22 easter break 26 Mar – 24 Apr
AY 21/22 term 3 25 Apr – 10 Jun
Summer break 11 Jun – 25 Sep
AY 22/23 term 1 26 Sep – 16 Dec
AY 22/23 winter break 17 Dec – 31 Dec

Soong et al. 5



increases of occupancy density and rate can be
calculated in proportion to the closed zones’ floor
area to maintain total occupancy count across the
building, which correspond to the redistribution of
occupants across opened areas. The closure of zones
was simulated by setting their occupancy, HVAC,
equipment, and lighting schedules to zero.

Operational strategies formulation. Two operational
strategies were proposed, which entail the temporary
closure of specific floors or zones within the case
study during (1) long periods of low occupancy and
(2) regular short periods of low occupancy.

The decision making was guided by whether a
floor or zone contained essential functions (e.g.,
entrances); if it could be feasibly closed off; and if
similar workspaces are available elsewhere in the
building. Table 4 provides an overview of the
building floors and their functions.

Consequently, B2 and Ground floor were ex-
cluded from the scenario modelling as they served
essential functions, while L1 was omitted from the
scenarios explored as it primarily comprises staff
offices that are occupied throughout the year. For-
mulation of scenarios involving closed zones ensured
that no zones within the remaining operational areas

of the building would reach maximum occupancy
during the simulated period, avoiding overcrowding.

Results & discussion

This section presents and discusses the im-
plementation of the framework on the case study
building and its main outcomes. A detailed analysis
of the occupancy data is firstly provided, followed by
a discussion of the baseline energy model simulation
and calibration process. Insights from occupancy
assessment are subsequently used to simulate zone
closure scenarios at periods of low occupancy to
maximise resource utilisation and achieve energy
demand reduction. Design guidelines and recom-
mendations are provided to guide the decision-
making process and ensure that effective strategies
can be implemented with minimum effort.

Occupancy assessment

A key requirement of the framework is to gain a
comprehensive understanding of occupancy patterns
through detailed analysis of occupancy data. This
serves two purposes: firstly, to create a custom oc-
cupancy schedule for input into the energymodel and

Table 2. Variable inputs for energy model.

Variable Inputs

Occupancy • Occupancy density of 0.2194 person/m2, derived from 1185 occupants across 5400 m2

• Occupancy schedule derived from historical occupancy readings, except for staff zones utilising
a generic office schedule

Lighting • 400 lux16

Equipment power
density

• 12.01 W/m2 (software default value)

HVAC • Auto-sized by software due to lack of specifications available
• HVAC setpoints were varied as part of the calibration process

Table 3. Key variables varied for calibration.

No. Variable Range

1 Heating setpoint 19°C–22 °C (1°C increments)
2 Cooling setpoint 23°C–25 °C (1°C increments)
3 Mechanical vent. rate 15-25 L/second/person (2.5 L/s/p increments)

6 Building Services Engineering Research & Technology 0(0)



secondly, to explore potential avenues for energy
reduction in response to occupancy dynamics.

Average hourly occupancy data were initially
used to define usage patterns. The working hours
observed in the case study building extend beyond
the conventional 9 a.m. to 5 p.m. in the UK. A
diurnal (9 a.m. to 9 p.m.) and a nocturnal (9 p.m. to
9 a.m.) slot were defined based on the typical
starting time of university timetables at 9 a.m.,
alongside a decline in occupancy observed in the
data after 9 pm.

The analysis was further extended to evaluate
occupancy patterns during academic term dates, term
breaks and the summer break. However, a distinct
demarcation between occupancy rates during these
academic periods was not clear (Figure 3).

Thus, a k-means clustering algorithm11 was used
to identify periods with notably different occupancy
rates. The outcome yielded two distinct clusters of
dates (Figure 4), which are subsequently indicated as
“low-occupancy” in red bars (between 15 May to
02 October 2022) and “high-occupancy” in green
bars (for the rest of the year).

Based on the historical occupancy data, a custom
weekly occupancy schedule (Table 5) was generated
for the two periods, with average weekday and
weekend rates to reflect the nuanced occupancy

dynamics throughout the week. These schedules
were also used as input to the dynamic thermal
simulation modelling.

For an energy demand reduction target to be
successful, minimising disruption to space occupants
is essential; therefore, utilising the periods of low
occupancy was preferred to demonstrate the viability
of the proposed occupancy-based optimisation sce-
narios. In addition, periods of lower occupancy
present greater potential for redistributing users in
space so that certain zones can be empty and
therefore be viably closed off.

The low occupancy periods examined in this
work were split in two distinct sections: a longer
period of low occupancy (the one outside term
times) and a set of regular shorter periods of low
occupancy (the weekends). While the occupancy
rates did not strictly adhere to the academic dates
as the low occupancy period overlapped with
Term three dates, the low occupancy cluster is in
line with an expected decline in presence around
campus between mid-May (when most students
may be done with final exams) and beginning of
October (when the new academic year starts).
Despite the absence of academic activities during
the weekends and hence an expectation of a lower
occupancy rate compared to weekdays, the

Table 4. Function of floors and information regarding their suitability for closure.

Floor Function Critical information

B2 • Quiet contemplation rooms
• Showers

• Essential function

B1 • Quiet study area • Easily closed as access from lobby can be restricted
Ground • Entrance from street • Essential function
Mezzanine • Entrance from UCL campus

• Quiet study area
• Study area can be closed off due to single point of access
• Rest of the floor serves essential functions

L1 • Staff offices
• Group study meeting rooms
• Open group study area

• Essential function

L2 • Quiet study room
• Open group study area
• Group study meeting rooms

• Less ideal to be closed due to porous nature of open study area

L3 • Café
• Quiet study room
• Group study meeting rooms

• Study areas can be closed off due to single point of access
• Café serves essential functions

L4 • Group study room • Easily closed due to single point of access

Soong et al. 7



reduction in occupancy was only around 15%.
The occupancy analysis highlighted that field
measurements may differ greatly from default
values4 therefore enhancing the importance of
adapting model inputs to specific building
attributes.

Case study simulation

Following the calibration process, the most ef-
fective iterations are outlined in Table 6. Evalu-
ation based on ASHRAE Guideline 1419 revealed
that iteration 54 demonstrated the most optimal

Figure 3. Daily occupancy with academic term dates before clustering.

Figure 4. Daily occupancy after clustering analysis (low-occupancy: red bars, high-occupancy: green bars).
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performance. It was thus selected as the model for
subsequent scenario simulations, with heating
and cooling setpoints at 21 and 23°C respectively,
and a mechanical ventilation rate of 25 litres/
second/person. This rather high value for venti-
lation is likely to be the result of COVID-related
measures applied to the building operations and
possibly not reversed during the monitoring pe-
riod of 2022.

The energy demand results from the highest
performing iterations (Figure 5) generally follow
the overall trend of the metered data, closely
aligning with it in the earlier months of the year
and displaying a larger deviation in the second
half of the year. Besides the complexities of the
building itself that may have introduced sources
of uncertainties in the model and contributed to
this phenomenon, several factors could be re-
sponsible for this discrepancy including outdoor
air temperature changes, heating/cooling sea-
sonality, occupancy variations. It is also likely
that the operations of the case study building
might have undergone changes at some points
during 2022, such as decreasing ventilation rates
due to uplifting of COVID-19 restrictions or
implementing energy-efficiency related strate-
gies. This could account for the divergence from
the modelled pattern towards the end of the year.
While the calibration process yielded outputs that
aligned well with ASHRAE standards, it is crucial

to acknowledge that identifying parameter com-
binations leading to a good fit with observed data
may not necessarily guarantee an accurate rep-
resentation of reality.20

The breakdown of the simulated system loads and
total monthly energy consumption for the calibrated
model (selected as iteration 54) are presented in
Figure 6. The distinctive patterns of heating and
cooling seasons can be observed, with cooling
peaking during the summer months and heating
peaking during winter. The equipment loads reflect a
reduction during low occupancy months as informed
by the custom occupancy schedule, reinforcing the
interplay between occupancy patterns and energy
usage.

Lighting loads represent a substantial 25% share
of annual energy consumption, while equipment
usage contributes to 28% of the overall consumption
(Figure 7). The remaining portion is predominantly
allocated to HVAC operation, particularly ventilation
and heating systems. The notable prominence of
lighting load can be attributed to the building’s 24/
7 operations.

Given the absence of submeter data, calibration
could not be performed based on individual system
loads. Thus, it is possible that while the overall
energy demand may exhibit close correspondence
with actual values, the distribution of system loads
within the model may deviate from reality to some
extent.

Table 6. Highest performing calibration results compared against ASHRAE Guideline 1419 thresholds.

ASHRAE guideline 14 No. 54 No. 51 No. 42 No. 55 No. 48

CV(RMSE) (%) 15 12.21 15.11 14.63 16.12 16.66
NMBE (%) +/� 5 �0.74 �1.10 �1.05 �1.16 �1.25
Absolute annual deviation (kWh) NA �79,095 �117,461 �112,966 �124,393 �134,190

Table 5. Custom occupancy schedule for the case study building.

Period
High occupancy (01 Jan - 14 May and
03 Oct - 31 Dec) Low occupancy (15 May - 02 Oct)

Day of week Weekday Weekend Weekday Weekend
Time of day Day Night Day Night Day Night Day Night
Occupancy rate (%) 66.3 26.3 57.0 24.4 41.6 12.3 35.7 12.6

Soong et al. 9



Operational scenarios assessment

For both low occupancy periods identified (long and
regular short), simulations of zone closure scenarios
for five individual floors were carried out. Then, the

best-performing scenario was combined with the
second and third best-performing individually, to
create new scenarios of two closed floors each. This
aimed at assessing the performance of simulta-
neously closing multiple floors. In total, seven zone

Figure 5. Monthly energy demand of calibration iterations.

Figure 6. Monthly electricity load breakdown for the case study building for 2022.
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closure scenarios consisting of five individual floors
and two combined floors were carried out for each
period using the calibrated model. The simulations
for the long period of low occupancy were analysed
for 140 days (15 May - 02 October 2022), whereas
the simulations for the regular short periods of low
occupancy encompassed 104 days in total (all
weekends throughout the year).

The zone closure scenarios for long low occu-
pancy periods saw a range of energy savings from
2.22% to 6.05% of annual demand, translating into
18,000 to 49,000 kWh reduction (Table 7). This
equates to the annual electricity consumption of 6-
17 medium-sized UK households.21

Figure 8 shows the breakdown of energy sav-
ings for each zone closure scenario, highlighting
that the majority of savings are from lighting and
cooling loads. Notably, the savings in lighting
loads are substantial, which may be attributed to
how occupancy is reassigned to spaces that are
already illuminated, translating into absolute
savings.

The cooling load savings are particularly pro-
nounced during the summer months when cooling
demand is dominant. The comparison between the
monthly consumption of the fully operational

building and the zone closure scenarios (Figure 9)
shows that the most significant savings are evident in
July and August across all scenarios, aligning with
the months of peak cooling load for the building as a
whole. Since the model underestimates energy
consumption by approximately 14% for the months
between May to October, the energy savings of these
scenarios could potentially be higher in absolute
terms.

Conversely, equipment savings are compara-
tively less significant. As occupancy was redis-
tributed, additional equipment power was
consumed in the areas where occupancy has shifted
to. In addition, the elevated fans load observed in
L2, B1, and L4 is likely to be attributable to higher
fans loads in the remaining operational areas,
which accommodated the additional occupancy
resulting from the closed zones. The individual
closure of mezzanine, L3 and L4 demonstrated
robust performance, likely due to their smaller
enclosed floor areas that facilitated easier isolation.
In contrast, L2 exhibited lower energy savings,
influenced by a significant portion of open-air
space exposed to the main atrium. The energy
savings in B1 were comparatively less, attributable
to its location underground, which is less

Figure 7. Annual breakdown of system load.
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susceptible to outdoor air temperature variations.
This is evident in its notably lower cooling energy
savings, reflecting a lower demand during the
cooling season compared to other floors. An im-
portant finding is that the energy savings achieved
from closing individual floors did not cumulatively
equal to multiple floors being closed simulta-
neously. For instance, adding the energy savings
from the individual closure of L3 and those from
the individual closure of L4 are not equal to the
energy savings from the closure of both L3 and
L4 simultaneously. This phenomenon can be at-
tributed to the fact that the HVAC systems on other

floors need to compensate for the higher occu-
pancy levels.

By translating the energy savings into CO2

emissions (CO2e) using a conversion rate of
0.193 kg/kWh,22 it becomes evident that the pro-
posed closure of the Mezzanine and L3 could po-
tentially yield annual reductions of approximately
9300 kg and 8400 kg of CO2e, respectively. Fur-
thermore, the closure of both Mezzanine and
L3 during the long period of low occupancy could
potentially generate annual savings of £14,500 and
£13,100, respectively, based on an electricity rate of
30 pence/kWh. 23 While these figures might appear

Table 7. Results for energy demand reduction for the zone closure scenarios during the long period of low occupancy
(in ranking order).

Zone closure scenario Total energy savings (kWh) Percentage of annual(%)

L3 and L4 �49,248 �6.05
Mezz (study area only) �48,316 �5.93
L3 (study area only) �43,726 �5.37
Mezz and L3 �41,296 �5.07
L4 �28,174 �3.46
L2 (study area only) �22,974 �2.82
B1 �18,087 �2.22

Figure 8. Load breakdown of energy demand reduction for zone closure scenarios during the long period of low
occupancy.
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modest in comparison to the overall utility expenses
of the institution, they still represent tangible eco-
nomic savings, especially in relation to the recent
surge in energy costs. The scenarios for the regular
short periods of low occupancy throughout the year
saw a range of annual energy consumption changes
from�2.09% to +1.26%, translating into�17,000 to
+10,000 kWh (Table 8 and Figure 10). The savings
equate to the electricity consumption of 3-6 medium-
sized UK households.21

Figure 10 shows that the predominant sources
of savings are lighting and heating loads, which
contrasts with the off-peak period scenarios
where cooling savings are more prominent. No-
tably, heating savings are substantial as these
scenarios encompass the entire calendar year and
the building is located in a heating-dominated
climate.

An interesting observation is the dissimilarity in the
magnitude of savings between the regular short and the
long periods of low occupancy. The highest energy
savings achieved during the regular short periods zone
closure scenarios reach 2.09% compared to the 6.05%
during the long period zone closure scenarios. This does
not align with the proportional ratio of the number of

days for each period (104 days for regular short and
140 days for the long period). Such disparity can be
attributed to the frequent need for space reconditioning
for the regular short periods (i.e. reopening every
Monday after the weekend). In contrast, the zone closure
scenarios for the long period of low occupancy occur
within a continuous time frame, resulting in a once-off
reconditioning energy consumption.

It is worth noting that variance in savings between the
highest (closure of L1) and lowest (closure of L3) stands
at approximately 8000 kWh, amounting to 1.08% of the
annual consumption. This marginal difference indicates
that closing off different zones does not yield signifi-
cantly more savings, which aligns with the recurring
need for space reconditioning leading to reduced energy
savings discussed above. As previously indicated, higher
occupancy loads in the remaining operational areas
potentially lead to reduced benefits, evident in the L4 &
Mezzanine scenario, where HVAC loads in the form of
heating, cooling and fans exhibit energy increases rather
than savings.

For both periods, overall energy reductions are
evident across all zone closure scenarios except one
(although with varied magnitude), and are attributed
to the shutdown of HVAC, lighting and equipment

Figure 9. Monthly consumption for zone closure scenarios during long period of low occupancy.
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loads on the closed zones, leading to the redistri-
bution of occupancy throughout the remaining op-
erational areas. The findings align with results by
Wang, Mathew and Pang,24 who also underscored
HVAC operations as the most influential system load
when exploring the impact of operational practices
on annual energy consumption. Their findings
highlighted a 3.9% savings in annual energy con-
sumption from optimising operational practices of
vacant spaces, such as using setback temperatures
and shutting off lighting and equipment load. In
comparison, our study calculated annual energy

savings up to 6% after redistributing occupancy to
create non-conditioned vacant spaces in the case
study building and optimising the operational con-
trols of these spaces to reduce energy demand. In
terms of savings on specific energy uses, the findings
align with Dong and Lam’s research3 on adjusting
HVAC operations based on predicted occupant be-
haviour and weather conditions, which demonstrated
energy savings of 30.1% for heating and 17.8% for
cooling loads. For the case study building in this
work, up to 11% energy savings came from heating
and up to 29% from cooling, due to the focus on an

Table 8. Results for energy demand reduction for the zone closure scenarios during the regular short periods of low
occupancy (in ranking order).

Zone closure scenario Total energy savings (kWh) Percentage of annual(%

L4 �17,025 �2.09
L1 �16,259 �2.00
Mezz (study area only) �14,860 �1.82
B1 �12,584 �1.55
L1 and 4 �12,242 �1.50
L2 (quiet study room only) �11,497 �1.41
L3 (study room only) �8225 �1.01
L4 and mezz +10,278 +1.26

Figure 10. Load breakdown of energy demand reduction for zone closure scenarios during the regular short periods of
low occupancy.
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off-peak period mainly covering the summer months
in the UK. It is also worth highlighting that the two
findings are not directly comparable due to the scale
of operational strategies employed, as the presented
study explored the case of maximal closure of two
floors in an 8-storey building, as opposed to the entire
facilities of a smaller building.3

Design guidelines
and recommendations

The framework devised in this study proposes the uti-
lisation of hourly occupancy data for optimising the
availability of conditioned zones in non-domestic
buildings with the aim of reducing energy demand.
This occupancy-driven operational strategy is a rather
cost-effective measure, as it does not require energy
efficiency retrofit works, and it is therefore easily ac-
cessible to building management professionals. The
successful implementation of the framework is grounded
in a comprehensive understanding of occupancy pat-
terns, building layout and usage. Accurate and sys-
tematic data collection aswell as thoughtful design of the
buildings’ systems and controls is therefore essential to
avoid systems inefficiencies and compromising the
users’ needs.

Strategies envisaging the closure of certain zones and
users’ relocation based on occupancy optimisation
should still leave ample remaining workspaces to ac-
commodate the space demand in line with the central
function of these areas. Minimising any disruption and
inconvenience brough to the users should be of para-
mount importance; therefore, users’ engagement in the
decision-making process is vital. Open communications
should be established to convey the rationale behind
proposed actions, emphasising that it is an evidence-
based approach aimed at reducing energy demand and
enhancing sustainability, potentially increasing the ac-
ceptability of the proposed strategies.

The implementation of these strategies requires
certain resource considerations before being practically
feasible. The HVAC, lighting and power systems ca-
pability of switching off loads based on the schedules
needs to be ascertained by the building management
team, in relation to existing configurations of the
building systems in place, to ensure that no energy is

effectively used when a zone is closed off; to avoid that
heat gains are inadvertently provided in closed zones
from pipes running through them towards other thermal
zones or from uninsulated pipes. The location of zone
thermostats and sensors is essential to enable feasible
closure of certain zones without impacting others and
ensure the operational success of such framework.
Furthermore, the size of theHVAC systems should allow
for creating healthy indoor environments when zones are
occupied closer to their maximum capacity, without
introducing inefficiencies or system’s strains. Prolonged
cycles of closures, such as seasonal periods, are likely to
require less effort to implement and have lower main-
tenance considerations. However, in both short cycles
and longer cycles, manual effort is likely to be required
to close off designated zones and potentially regular
safeguarding to prevent truant entry and triggering of
sensors.

Economic implications associated with the im-
plementation of the proposed framework should also be
carefully considered. The evaluation should encompass
potential minor costs associated with necessary equip-
ment, such as door locks or barriers, to facilitate the
closure of these spaces as well as costs associated to
increased labour, equipment procurement, and even
consulting fees to assess the compatibility of existing
building systems with proposed strategies.

Overall, conducting a detailed feasibility study,
weighing the costs associated with operational
strategy against the expected economic and en-
vironmental gain is recommended. Focusing on
both user receptivity and the technological feasi-
bility of implementing the occupancy-optimisation
strategies within the building systems is key.
Measuring the user experience and satisfaction,
might pose challenges due to their inherent qual-
itative nature, but it should be dimmed essential for
the sustainability of the implemented measures. A
balanced consideration of all aspects is necessary
for making informed decisions before the im-
plementation of occupancy-driven optimisation
strategies.

Conclusions

This paper presented a novel data-driven framework for
optimising occupancy in non-domestic buildings with
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the goal of devising versatile operational strategies that
enable reducing energy demand without requiring sig-
nificant physical retrofits. Design guidelines and rec-
ommendations are provided to enhance the adoption of
the framework by building management professionals.
Balanced considerations of various aspects are essential
before its implementation, including user acceptability,
the capacity of HVAC systems and controls as well as
the space uses and the internal layout of the building. The
proposed strategies require minimal capital cost for
implementation and are adaptable as they aim at opti-
mising operations based on responsive shifts in occu-
pancy according to empirical data, rather than
modification works of the interior space.

The proposed framework is highly replicable as it can
be readily scaled and extended to other buildings. The
research presented not only enhances the understanding
of the intricate relationship between occupancy and
energy, but it also offers actionable operational strategies
that contribute to sustainable practices and energy effi-
ciency without compromising the available functions to
users. The applicability of the framework was demon-
strated on a case study educational building in the UK.
By exploring historical occupancy data and creating a
calibrated dynamic thermal energymodel of the building,
operational strategies were proposed to reduce energy
demand during periods of low occupancy. These centred
around targeted zone closures during long periods of low
occupancy and regular shorter periods of low occupancy.
The strategies comprising of zone closures for a longer
continuous timeframe exhibited greater energy and car-
bon emissions savings compared to those achieved
during regular short closures, as they avoided incurring
energy consumption for regular space reconditioning
after the zone closures. Additionally, large energy savings
were observed for lighting as the occupants were reas-
signed to spaces that are already illuminated, leading to
absolute savings. The results showed a reduction in
energy demand by up to 6%, which in absolute numbers
could be equal to the annual electricity consumption of up
to 17 medium-sized UK households.

A novel finding indicated that in certain cases the
energy savings from the simultaneous closure of mul-
tiple floors were only marginally larger compared to the
closure of the same floors individually. This is likely
attributable to both the capacity of certain zones and the
greater concentration of occupancy in remaining zones.

Therefore, careful consideration and investigation should
take place prior to selecting which zones to close off.

Despite the successful calibration of the model, it is
crucial to acknowledge that identifying parameter
combinations leading to a good fit with observed data
may not necessarily guarantee an accurate represen-
tation of reality and therefore a Bayesian approach for
model calibration should be preferred in further ex-
plorations of this field. It is also important to ac-
knowledge the inherent time lag and retroactive nature
of this approach. Buildings are “artifacts with very long
lifespans”, accommodating to changing usages and
user groups over time, alongside the implications of
shifting occupancy trends. The occupancy patterns of
future years may not mirror those observed, potentially
leading to disparities in the actual energy savings re-
alised through the proposed operational strategies.

Further work could explore operational strategies that
respond in real-time to occupancy patterns or minimise
the time lag between occupancy pattern identification
and responsive action, for example to increase benefit
from flexible demand incentives such as dynamic time-
of-use tariffs.
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